Science.gov

Sample records for adjacent riparian areas

  1. Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings.

    PubMed

    Fisher, K; Jacinthe, P A; Vidon, P; Liu, X; Baker, M E

    2014-01-01

    Riparian buffers are important nitrate (NO) sinks in agricultural watersheds, but limited information is available regarding the intensity and control of nitrous oxide (NO) emission from these buffers. This study monitored (December 2009-May 2011) NO fluxes at two agricultural riparian buffers in the White River watershed in Indiana to assess the impact of land use and hydrogeomorphologic (HGM) attributes on emission. The study sites included a riparian forest in a glacial outwash/alluvium setting (White River [WR]) and a grassed riparian buffer in tile-drained till plains (Leary Weber Ditch [LWD]). Adjacent corn ( L.) fields were monitored for land use assessment. Analysis of variance identified season, land use (riparian buffer vs. crop field), and site geomorphology as major drivers of NO fluxes. Strong relationships between N mineralization and NO fluxes were found at both sites, but relationships with other nutrient cycling indicators (C/N ratio, dissolved organic C, microbial biomass C) were detected only at LWD. Nitrous oxide emission showed strong seasonal variability; the largest NO peaks occurred in late spring/early summer as a result of flooding at the WR riparian buffer (up to 27.8 mg NO-N m d) and N fertilizer application to crop fields. Annual NO emission (kg NO-N ha) was higher in the crop fields (WR: 7.82; LWD: 6.37) than in the riparian areas. A significant difference ( < 0.02) in annual NO emission between the riparian buffers was detected (4.32 vs. 1.03 kg NO-N ha at WR and LWD, respectively), and this difference was attributed to site geomorphology and flooding (WR is flood prone; no flooding occurred at tile-drained LWD). The study results demonstrate the significance of landscape geomorphology and land-stream connection (i.e., flood potential) as drivers of NO emission in riparian buffers and therefore argue that an HGM-based approach should be especially suitable for determination of regional NO budget in riparian ecosystems.

  2. Riparian Areas of the Southwest: Learning from Repeat Photographs

    ERIC Educational Resources Information Center

    Zaimes, George N.; Crimmins, Michael A.

    2010-01-01

    Spatial and temporal variability of riparian areas, as well as potential impacts from climate change, are concepts that land and water managers and stakeholders need to understand to effectively manage and protect riparian areas. Rapid population growth in the southwestern United States, and multiple-use designation of most riparian areas, makes…

  3. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones.

    PubMed

    Dandie, Catherine E; Wertz, Sophie; Leclair, Caissie L; Goyer, Claudia; Burton, David L; Patten, Cheryl L; Zebarth, Bernie J; Trevors, Jack T

    2011-07-01

    Lands under riparian and agricultural management differ in soil properties, water content, plant species and nutrient content and are therefore expected to influence denitrifier communities, denitrification and nitrous oxide (N(2) O) emissions. Denitrifier community abundance, denitrifier community structure, denitrification gene expression and activity were quantified on three dates in a maize field and adjacent riparian zone. N(2) O emissions were greater in the agricultural zone, whereas complete denitrification to N(2) was greater in the riparian zone. In general, the targeted denitrifier community abundance did not change between agricultural and riparian zones. However, nosZ gene expression was greater in the riparian zone than the agricultural zone. The community structure of nirS-gene-bearing denitrifiers differed in June only, whereas the nirK-gene-bearing community structure differed significantly between the riparian and the agricultural zones at all dates. The nirK-gene-bearing community structure was correlated with soil pH, while no significant correlations were found between nirS-gene-bearing community structure and soil environmental variables or N(2) O emissions, denitrification or denitrifier enzyme activity. The results suggested for the nirK and nirS-gene-bearing communities different factors control abundance vs. community structure. The nirK-gene-bearing community structure was also more responsive than the nirS-gene-bearing community structure to change between the two ecosystems.

  4. IDENTIFICATION EFFICIENCY IN GROUNDWATER ADJACENT TO DITCHES WITHIN CONSTRUCTED RIPARIAN WETLANDS: KANKAKEE WATERSHED, ILLINOIS-INDIANA, U.S.A.

    EPA Science Inventory

    Dual isotope evaluations of NO3 in groundwater adjacent to ditches within constructed riparian wetlands across the Kankakee water-shed may assist the determination of denitrification efficiency. Groundwater sampling indicates the NO3 -N exceeded 10 mg 1-1 in constructed riparian ...

  5. Small mammal habitat use within restored riparian habitats adjacent to channelized streams in Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian zones of channelized agricultural streams in northwestern Mississippi typically consist of narrow vegetative corridors low in habitat diversity and lacking riparian wetlands. Land clearing practices and stream channelization has led to the development of gully erosion and further fragmenta...

  6. Bridging Disciplines with the Riparian Area Management Project

    ERIC Educational Resources Information Center

    Cockerill, Kristan M.; Titus, Jonathan H.

    2004-01-01

    Faculty at Columbia University's Earth Semester created the interdisciplinary Riparian Area Management Project to help students integrate information and skills from life sciences, geosciences, social sciences, and humanities focused coursework. Structured as a "consulting" contract, students were required to make a policy recommendation…

  7. Quantifying Understory Transpiration in a Semiarid Riparian Area

    NASA Astrophysics Data System (ADS)

    McGuire, R. R.; Scott, R. L.

    2005-12-01

    One of the most challenging components to estimate when determining water budgets in semiarid basins is riparian evapotranspiration (ET). Much research has been conducted upon riparian overstory vegetation in these areas; however understory vegetation water use has been ignored due to measurement difficulties and the belief that its quantity is negligible. To better understand the magnitude of understory water use in a semiarid riparian ecosystem, we measured whole plant transpiration of the dominant understory shrub, seep willow (Baccharis salicifolia), along a perennial reach of the San Pedro River in southeastern Arizona. . Shrub transpiration was monitored using the heat balance sap flow technique and was compared under two environmental conditions: a shrub patch located in a more open environment with decreased overstory canopy cover, and a more closed shrub patch situated more directly underneath a cottonwood (Populus fremontii) forest canopy. Despite the differences in atmospheric forcing, stand-level transpiration at both sites was similar and indicated that transpiration was rarely demand-limited. Growing season transpiration totals for seep willow were much greater than precipitation and of comparable magnitude to the overstory cottonwood transpiration. These results suggest that understory water use can be an important component of a riparian water budget, especially in regions like the western U.S. where evaporative demand is often high.

  8. A framework for profiling a lake's riparian area development potential.

    PubMed

    Jakes, Pamela J; Schlichting, Ciara; Anderson, Dorothy H

    2003-12-01

    Some of the greatest challenges for managing residential development occur at the interface between the terrestrial and aquatic ecosystems--in a lake's riparian area. Land use planners need a framework they can use to identify development hotspots, areas were the next push for development will most likely occur. Lake riparian development profiles provide a framework for linking ecological and social factors important to development. In a test of this framework in northern Minnesota, researchers identified seven constructs influencing riparian area development: current general development, current housing development, and availability, accessibility, suitability, aesthetics, and proximity to services. Profiles display a lake's value for each construct relative to the range of values for all lakes in the county. Maps, developed using indicators for several constructs, allow us to identify how the factors interact and are dispersed across the landscape. These profiles help policy makers, planners, and managers identify lakes that are potential development hotspots so they can take timely steps to manage development or control the impacts of development.

  9. Ecological Impact of LAN: San Pedro Riparian National Conservation Area

    NASA Astrophysics Data System (ADS)

    Craine, Eric Richard; Craine, Brian L.

    2015-08-01

    The San Pedro River in Southeastern Arizona is home to nearly 45% of the 900 total species of birds in the United States; millions of songbirds migrate though this unique flyway every year. As the last undammed river in the Southwest, it has been called one of the “last great places” in the US. Human activity has had striking and highly visible impacts on the San Pedro River. As a result, and to help preserve and conserve the area, much of the region has been designated the San Pedro Riparian National Conservation Area (SPRNCA). Attention has been directed to impacts of population, water depletion, and border fence barriers on the riparian environment. To date, there has been little recognition that light at night (LAN), evolving with the increased local population, could have moderating influences on the area. STEM Laboratory has pioneered techniques of coordinated airborne and ground based measurements of light at night, and has undertaken a program of characterizing LAN in this region. We conducted the first aerial baseline surveys of sky brightness in 2012. Geographic Information Systems (GIS) shapefiles allow comparison and correlation of various biological databases with the LAN data. The goal is to better understand how increased dissemination of night time lighting impacts the distributions, behavior, and life cycles of biota on this ecosystem. We discuss the baseline measurements, current data collection programs, and some of the implications for specific biological systems.

  10. CLOUD PEAK PRIMITIVE AREA AND ADJACENT AREAS, WYOMING.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Patten, Lowell L.

    1984-01-01

    The results of a mineral survey of the Cloud Peak Primitive Area and adjacent areas in Wyoming indicated little promise for the occurrence of mineral resources. There are some prospect workings, particularly in the northern part of the area, but in none of them were there indications that ore had been mined. Samples from the workings, from nearby rocks and sediments from streams that drain the area did not yield any metal values of significance. The crystalline rocks that underlie the area do not contain oil and gas or coal, products that are extracted from the younger rocks that underlie basins on both sides of the study area.

  11. CHARACTERIZATION OF LAND USE IN RIPARIAN AREAS WITHIN THE CONTENTNEA WATERSHED OF NORTH CAROLINA

    EPA Science Inventory

    Characterization of land use in riparian areas within the Contentnea watershed of North Carolina.

    Wright, C.J.,1 and S.W. Alberty.2 1U.S. Environmental Protection Agency, Athens, GA 30605 USA; 2OAO Corporation, Athens, GA 30605 USA.

    Legislation mandating riparian bu...

  12. Passive restoration potential of riparian areas invaded by giant reed (Arundo donax) in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Giant reed (Arundo donax L.) is a rhizomatous woody non-native grass that has invaded much of the riparian areas of the southwest. By forming thick impenetrable swaths along riverbanks and waterways, giant reed has driven riparian ecosystem decline and displaced native biodiversity. It’s document...

  13. Do invasive riparian Tamarix alter hydrology of riparian areas of arid and semi-arid regions under climate change scenarios?

    NASA Astrophysics Data System (ADS)

    Bhattarai, M. P.; Acharya, K.; Chen, L.

    2012-12-01

    Competitiveness of riparian invasive species, Tamarix, in arid and semi-arid riparian areas of the southwestern United States under climate change scenario (SRES A2) was investigated. Tamarix has been replacing native vegetation along the riparian corridors of these areas for the past several decades and is thought to alter water balance. Changes in depth to groundwater, soil moisture distribution and flood frequency are critical in survival and growth of a facultative phreatophyte such as Tamarix. In this study, a fully coupled 2d surface flow and 3d subsurface flow hydrologic model, HydroGeoSphere, was used to simulate surface-subsurface hydrology of the lower Virgin River basin (4500 sq. km), located in Nevada, Utah and Arizona. The hydrologic model results, depth to groundwater and soil saturation, were then applied to the species distribution model, Maxent, along with other bioclimatic parameters to asses future Tamarix distribution probability. Simulations were made for the climate scenarios of the end of 21st centry conditions. Depth to groundwater is found to be the most important predictor variable to the Maxent model. Future Tamarix distribution range is not uniform across the basin. It is likely to decrease at lower elevations and increase in some higher elevation areas.

  14. Nitrogen and Sediment Inputs to the San Pedro River Riparian Area

    NASA Astrophysics Data System (ADS)

    Conklin, M.; Huth, A. K.; Hamblen, J.; Villinski, J.; Grimm, N.; Lewis, D.; Schade, J.

    2002-05-01

    The San Pedro River in southern Arizona is the last undammed major river in the Western U.S. The riparian habitat along the upper San Pedro is under pressure due to competing water use by nearby agriculture and municipal demands. Numerous nongovernmental organizations and government agencies are cooperating to investigate the functioning of the riparian area, including water and nutrient cycling. The multi-institutional NSF Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) is using two 500-m study sites along the upper San Pedro River (one gaining and one losing-intermittent) to investigate nutrient and sediment fluxes. Sampling of over 80 shallow piezometers installed in the stream, in gravel bars and in riparian terraces (among cottonwoods and willows) showed nitrate levels were highest in the riparian terrace and gravel bars throughout the year. Nitrate levels in shallow stream piezometers were lower and more variable. Seasonal algal blooms were correlated with decreases in nitrate and organic nitrogen in the stream channel. Intensive sampling during a 300 cfs flood (July 17-18, 2001) in the intermittant-losing reach showed significant increases in nitrate levels during the storm, apparently from the gravel bars and riparian terrace. Hydrograph separation indicated a substantial fraction of the water in the river had been in contact with the river banks. During storm events, substantial sediment transport occurs, as well as scour and fill. As much of the nitrogen cycling in microbially controlled, sediment scour and fill is being monitored concomitantly with respiration measurements in a meander point bar in the losing-intermittant reach. By focusing on key processes in the shallow stream sediments, gravel bars and riparian terraces, we are establishing linkages between the different zones of the riparian area in order to characterize nitrogen uptake capacity of the riparian system.

  15. MOUNT HOOD WILDERNESS AND ADJACENT AREAS, OREGON.

    USGS Publications Warehouse

    Keith, T.E.C.; Causey, J.D.

    1984-01-01

    A mineral survey of the Mount Hood Wilderness, Oregon, was conducted. Geochemical data indicate two areas of substantiated mineral-resource potential containing weak epithermal mineralization: an area of the north side of Zigzag Mountain where vein-type lead-zinc-silver deposits occur and an area of the south side of Zigzag Mountain, where the upper part of a quartz diorite pluton has propylitic alteration associated with mineralization of copper, gold, silver, lead, and zinc in discontinuous veins. Geothermal-resource potential for low- to intermediate-temperature (less than 248 degree F) hot-water systems in the wilderness is probable in these areas. Part of the wilderness is classified as a Known Geothermal Resource Area (KGRA), which is considered to have probable geothermal-resource potential, and two parts of the wilderness have been included in geothermal lease areas.

  16. Mount Hood Wilderness and adjacent areas, Oregon

    SciTech Connect

    Keith, T.E.C.; Causey, J.D.

    1984-01-01

    A mineral survey of the Mount Hood Wilderness, Oregon, was conducted in 1980. Geochemical data indicate two areas of substantiated mineral-resource potential containing weak epithermal mineralization: an area on the north side of Zigzag Mountain, where vein-type lead-zinc-silver deposits occur and an area on the south side of Zigzag Mountain, where the upper part of a quartz diorite pluton has propylitic alteration associated with mineralization of copper, gold, silver, lead, and zinc in discontinuous veins. Geothermal-resource potential for low- to intermediate-temperature (less than 248/sup 0/F) hot-water systems in the wilderness is probable in three areas. Part of the wilderness is classified as a Known Geothermal Resource Area (KGRA), which is considered to have probable geothermal-resource potential, and two parts of the wilderness have been included in geothermal lease areas.

  17. Habitat selection by juvenile Swainson’s thrushes (Catharus ustulatus) in headwater riparian areas, northwestern Oregon, USA

    USGS Publications Warehouse

    Jenkins, Stephanie R.; Betts, Matthew G.; Huso, Manuela M.; Hagar, Joan C.

    2013-01-01

    Lower order, non-fish-bearing streams, often termed “headwater streams”, have received minimal research effort and protection priority, especially in mesic forests where distinction between riparian and upland vegetation can be subtle. Though it is generally thought that breeding bird abundance is higher in riparian zones, little is known about species distributions when birds are in their juvenile stage – a critical period in terms of population viability. Using radio telemetry, we examined factors affecting habitat selection by juvenile Swainson’s thrushes during the post-breeding period in headwater basins in the Coast Range of Oregon, USA. We tested models containing variables expected to influence the amount of food and cover (i.e., deciduous cover, coarse wood volume, and proximity to stream) as well as models containing variables that are frequently measured and manipulated in forest management (i.e., deciduous and coniferous trees separated into size classes). Juvenile Swainson’s thrushes were more likely to select locations with at least 25% cover of deciduous, mid-story vegetation and more than 2.0 m3/ha of coarse wood within 40 m of headwater streams. We conclude that despite their small and intermittent nature, headwater streams and adjacent riparian areas are selected over upland areas by Swainson’s thrush during the postfledging period in the Oregon Coast Range.

  18. Fate of Herbicides and Their Degradation Products Entering a Forested Riparian Buffer Following Herbicides Application to an Adjacent Corn Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fate of two herbicides, atrazine and metolachlor, were followed as they entered and moved through a forested riparian wetland located in the mid-Atlantic coastal plain of Maryland. The herbicides were applied as pre-emergent treatments to a 20-ha corn field directly upgradient of the riparian w...

  19. Fuel reduction management practices in riparian areas of the Western USA.

    PubMed

    Stone, Katharine R; Pilliod, David S; Dwire, Kathleen A; Rhoades, Charles C; Wollrab, Sherry P; Young, Michael K

    2010-07-01

    Two decades of uncharacteristically severe wildfires have caused government and private land managers to actively reduce hazardous fuels to lessen wildfire severity in western forests, including riparian areas. Because riparian fuel treatments are a fairly new management strategy, we set out to document their frequency and extent on federal lands in the western U.S. Seventy-four USDA Forest Service Fire Management Officers (FMOs) in 11 states were interviewed to collect information on the number and characteristics of riparian fuel reduction treatments in their management district. Just under half of the FMOs surveyed (43%) indicated that they were conducting fuel reduction treatments in riparian areas. The primary management objective listed for these projects was either fuel reduction (81%) or ecological restoration and habitat improvement (41%), though multiple management goals were common (56%). Most projects were of small extent (93% < 300 acres), occurred in the wildland-urban interface (75%), and were conducted in ways to minimize negative impacts on species and habitats. The results of this survey suggest that managers are proceeding cautiously with treatments. To facilitate project planning and implementation, managers recommended early coordination with resource specialists, such as hydrologists and fish and wildlife biologists. Well-designed monitoring of the consequences of riparian fuel treatments on fuel loads, fire risk, and ecological effects is needed to provide a scientifically-defensible basis for the continued and growing implementation of these treatments.

  20. VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA ON RIGHT, AND HOUSING AREA ON LEFT. VIEW FACING EAST/NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  1. Holding onto the Green Zone: A Youth Program for the Study and Stewardship of Community Riparian Areas. Leader Guide

    ERIC Educational Resources Information Center

    Reilly, Kate; Wooster, Betsy

    2008-01-01

    Riparian ecosystems are an exciting and dynamic subject for study. These areas are valuable lands and important wildlife habitats, and they contribute greatly to the environmental health of an area. Definitions for the term "riparian" vary, but in this curriculum, the land called the "Green Zone" lies between flowing water and upland ecosystems.…

  2. VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW FROM ATOP ADJACENT RESIDENTIAL TOWER, SHOWING RECREATION AREA AND ENTRY TO NEIGHBORHOOD. VIEW FACING SOUTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Intersection of Acacia Road and Brich Circle, Pearl City, Honolulu County, HI

  3. Carbon and nitrogen dynamics in a soil profile: Model insights and application to a restored Swiss riparian area

    NASA Astrophysics Data System (ADS)

    Brovelli, Alessandro; Batlle-Aguilar, Jordi; Luster, Jörg; Shrestha, Juna; Huber, Benjamin; Niklaus, Pascal; Barry, D. Andrew

    2010-05-01

    The key environmental importance of natural, healthy ecosystems has been progressively recognized and restoration of degraded lands towards their former natural state has become an area of active research worldwide. During restoration, environmental conditions (such as vegetation type and water availability) are manipulated to create ecological conditions suitable for the successful establishment of a target composition of species. Often, ecological restoration induces changes to adjacent ecosystems. This is the case of riparian ecosystems, and their restoration to their original undisturbed situation is likely to cause changes in nutrient cycles. For example, following the restoration of a riparian zone, microbial communities adapted to one set of environmental conditions have to acclimatize to another, and the subsequent changes in the composition of the biomass populations might induce changes in soil organic matter mineralization and soil respiration rates. Since the biogeochemical cycles are tightly interconnected, these changes can trigger nutrient storing or release, therefore inducing changes in nutrient cycles of adjacent ecosystems. Overall, the effects of the restoration activities on the hydrologic regime, soil properties and vegetation are still largely unknown and poorly understood. Within the RECORD project (http://www.cces.ethz.ch/projects/nature/Record), a large collaborative research effort undertaken to monitor and understand the changes in ecosystem functioning in riparian areas undergoing restoration, a numerical model has been developed to simulate the vertical transport of the mobile C and N components in a soil profile (model development discussed in the companion submitted abstract Batlle-Aguilar et al.). In the model, microbial decomposition of the soil organic matter drives biogeochemical transformations of C and N, while the activity of the soil biota is primarily controlled by the soil moisture content. The temporal evolution of the

  4. Prioritizing conservation potential of arid-land montane natural springs and associated riparian areas

    USGS Publications Warehouse

    Thompson, B.C.; Matusik-Rowan, P. L.; Boykin, K.G.

    2002-01-01

    Using inventory data and input from natural resource professionals, we developed a classification system that categorizes conservation potential for montane natural springs. This system contains 18 classes based on the presence of a riparian patch, wetland species, surface water, and evidence of human activity. We measured physical and biological components of 276 montane springs in the Oscura Mountains above 1450 m and the San Andres Mountains above 1300 m in southern New Mexico. Two of the 18 classes were not represented during the inventory, indicating the system applies to conditions beyond the montane springs in our study area. The class type observed most often (73 springs) had a riparian patch, perennial surface water, and human evidence. We assessed our system in relation to 13 other wetland and riparian classification systems regarding approach, area of applicability, intended users, validation, ease of use, and examination of system response. Our classification can be used to rapidly assess priority of conservation potential for isolated riparian sites, especially springs, in arid landscapes. We recommend (1) including this classification in conservation planning, (2) removing deleterious structures from high-priority sites, and (3) assessing efficiency and use of this classification scheme elsewhere. ?? 2002 Elsevier Science Ltd.

  5. GOAT ROCKS WILDERNESS AND ADJACENT ROADLESS AREAS, WASHINGTON.

    USGS Publications Warehouse

    Church, S.E.; Close, T.J.

    1984-01-01

    The Goat Rocks Wilderness and adjacent roadless areas are a rugged, highly forested, scenic area located on the crest of the Cascade Range in south-central Washington. Several mineral claims have been staked in the area. Mineral surveys were conducted. Geochemical, geophysical, and geologic investigations indicate that three areas have probable mineral-resource potential for base metals in porphyry-type deposits. Available data are not adequate to permit definition of the potential for oil and gas. There is little likelihood for the occurrence of other kinds of energy resources in the area. Evaluation of resource potential in the three areas identified as having probable mineral-resource potential could be improved by more detailed geochemical studies and geologic mapping.

  6. National Management Measures to Protect and Restore Wetlands and Riparian Areas for the Abatement of Nonpoint Source Pollution

    EPA Pesticide Factsheets

    Guidance includes technical assistance to state, local, and tribal program managers on means of reducing nonpoint source pollution of surface and ground water through the protection and restoration of wetlands and riparian areas.

  7. BIODIVERSITY MANAGEMENT APPROACHES FOR STREAM-RIPARIAN AREAS: PERSPECTIVES FOR PACIFIC NORTHWEST HEADWATER FORESTS, MICROCLIMATES, AND AMPHIBIANS

    EPA Science Inventory

    Stream-riparian areas represent a nexus of biodiversity, with disproportionate numbers of species tied to and interacting within this key habitat. New research in Pacific Northwest headwater forests, especially the characterization of microclimates and amphibian distributions, is...

  8. Does soil water saturation mobilize metals from riparian soils to adjacent surface water? A field monitoring study in a metal contaminated region.

    PubMed

    Van Laer, Liesbeth; Smolders, Erik

    2013-06-01

    In the Noorderkempen (NW Belgium), a large area (about 280 km(2)) is contaminated with cadmium (Cd) and zinc (Zn) due to historical pollution by the Zn smelters. Direct aquatic emissions of metals have diminished over time, however the surface water metal concentration largely exceeds quality standards, mainly during winter periods. Monitoring data were analyzed to reveal whether these fluctuations are related to seasonal redox reactions in associated contaminated riparian soils that drain into the rivers. A field survey was set up with soil pore-water and groundwater monitored for three years in transects of soil monitoring points perpendicular to rivers at contaminated and non-contaminated sites. Site averaged surface water concentrations of a 15 year dataset exceeded local quality standards 4 to 200-fold. Winter averaged metal concentrations significantly exceeded the corresponding summer values 1.3-1.8 (Zn) and 1.5-2.4 fold (Cd). Zinc and Cd concentrations in water were positively related to Fe and Mn but not to Ca, K or Na suggesting that redox reactions and not dilution processes are involved. In ground- and pore-water of the associated riparian soils, the concentrations of Zn fluctuate by the same order of magnitude as in surface water but were generally smaller than in the corresponding contaminated rivers. In addition, correlations of dissolved Zn with Fe and Mn were lacking. This analysis suggests that redox reactions in streams, and not in riparian soils, explain the seasonal trends of Zn and Cd in surface water. Hence, river sediments and not riparian soils may be the cause of the winter peaks of Zn and Cd in these rivers.

  9. RIPARIAN AREAS OF AN AGRICULTURAL LANDSCAPE IN WESTERN OREGON

    EPA Science Inventory

    The Willamette Valley is a productive, diversified agricultural area in western Oregon. Pastureland and grass seed fields, mostly located on poorly drained soils, account for 60% of the agricultural land in the valley. The size and character of Willamette Valley streams and ass...

  10. Spatiotemporal patterns of water table fluctuations and evapotranspiration induced by riparian vegetation in a semiarid area

    NASA Astrophysics Data System (ADS)

    Yue, Weifeng; Wang, Tiejun; Franz, Trenton E.; Chen, Xunhong

    2016-03-01

    Groundwater evapotranspiration (ETg) links various ecohydrological processes and is an important component in regional water budgets. In this study, an extensive monitoring network was established in a semiarid riparian area to investigate various controls on the spatiotemporal pattern of water table fluctuations (WTFs) and ETg induced by riparian vegetation. Along a vegetation gradient (˜1200 m), diurnal WTFs were observed during a growing season in areas covered by woody species (Populus sect. Aigeiros and Juniperus virginiana) and wet slough vegetation (Panicum virgatum and Bromus inermis) with deeper root systems; whereas, no diurnal WTFs were found in the middle section with shallower-rooted grasses (Poa pratensis and Carex sp.). The occurrence of diurnal WTFs was related to temperature-controlled plant phenology at seasonal scales and to radiation at subdaily scales. Daily ETg in the mid-growing season was calculated using the White method. The results revealed that depth to water table (DTWT) was the dominant control on ETg, followed by potential evapotranspiration (ETp). By combining the effects of DTWT and ETp, it was found that at shallower depths, ETg was more responsive to changes in ETp, due to the closer linkage of land surface processes with shallower groundwater. Finally, exponential relationships between ETg/ETp and DTWT were obtained at the study site, although those relationships varied considerably across the sites. This study demonstrates the complex interactions of WTFs and ETg with surrounding environmental variables and provides further insight into modeling ETg over different time scales and riparian vegetation.

  11. Extent And Distribution Of Montane Riparian Zone Vegetation And Representation In Protected Areas In The Sky Island Region Of The Southwestern United States

    NASA Astrophysics Data System (ADS)

    Shaw, Nicole H.

    The Sky Island region of the southwestern United States hosts some of the richest biodiversity anywhere in the world. In the mountain ranges of the Sky Islands, most vertebrate biodiversity is dependent on riparian areas for all or some of their life cycles. Riparian vegetation is threatened by human impacts and climate change. Though riparian vegetation along rivers and major perennial streams is already mapped in this region, vegetation in ephemeral and intermittent riparian areas, arguably equally important for biodiversity in the mountain ranges, has not been quantified. I developed a Random Forest classification model of riparian vegetation for all three types of riparian areas, mapped this vegetation for each of the 25 mountain ranges, described the spatial distribution and connectivity of the vegetation among and between mountain ranges, and demonstrated enhancement of regional riparian land cover classes with the new model of riparian zone vegetation. The resulting map indicates a much broader distribution of riparian zone vegetation than previous land cover mapping efforts indicate, likely due to inclusion of ephemeral and intermittent riparian types. The spatial distribution and connectivity of riparian zone vegetation varied widely within and between mountain ranges, possibly as a result of variability in environmental factors affecting aridity, temperature, water availability, landscape position, and disturbances. The model can be used with other information to augment understanding of the integrity, connectivity, and vulnerability of riparian zone vegetation in this unique and important region. To analyze the conservation status of riparian zone vegetation, I quantified its representation in protected areas. I then compared the representation relative to the overall amount of riparian zone vegetation in each mountain range. The relationships between representation of riparian zone vegetation in protected areas, degree of mountain range protection, and

  12. A Conceptual Site Model for Nature and Extent of Contamination in a Riparian-Near Shore Area - 12410

    SciTech Connect

    Morgans, Donna; Lowe, John; McCarthy, Chris; Aly, Alaa

    2012-07-01

    The 100-K decision area is located along the Columbia River and includes source Operable Units (OUs), a groundwater OU, and the adjacent surface water, saturated sediment and aquatic biota. A conceptual site model (CSM) has been developed to evaluate concentrations of non-radiological substances and radionuclides detected in soil, water and sediments in a riparian near-shore area along the Columbia River. The CSM is used to determine if potential transport pathways exist to these media from Hanford Site sources by incorporating information from the physical system, surface hydrology, subsurface hydrogeology, analytical results, and ecological evaluation into the model. Six contaminants of ecological concern, mostly metals and non-radiological inorganics, have been identified in riparian and near-shore media. With few exceptions (notably chromium and hexavalent chromium), there are ambient sources for these constituents in soil, sediment and water that are unrelated to the Hanford Site. While the CSM documented analytical and biological conditions, this paper presents results focused on analytical measurements to document the potential for these contaminants to be related to a release from the Hanford Site. The purpose for preparing this CSM was to address, on a reactor decision area basis, the potential for Hanford Site contaminants in soil or groundwater to migrate to riparian or near-shore areas at concentrations that could be of concern for ecological receptors. This CSM supplements the analysis of River Corridor-wide ecological risks presented in the ecological risk assessment of the RCBRA. The RCBRA identified on a site-wide basis some contaminants of ecological concern that warranted further evaluation. Based on the results of the further evaluation contained in this CSM, with the exception of hexavalent chromium, detected concentrations of contaminants in riparian or near-shore media are not reliably detectable at levels of ecological concern, or are not

  13. Spectral discrimination of giant reed (Arundo donax L.): A seasonal study in riparian areas

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2013-06-01

    The giant reed (Arundo donax L.) is amongst the one hundred worst invasive alien species of the world, and it is responsible for biodiversity loss and failure of ecosystem functions in riparian habitats. In this work, field spectroradiometry was used to assess the spectral separability of the giant reed from the adjacent vegetation and from the common reed, a native similar species. The study was conducted at different phenological periods and also for the giant reed stands regenerated after mechanical cutting (giant reed_RAC). A hierarchical procedure using Kruskal-Wallis test followed by Classification and Regression Trees (CART) was used to select the minimum number of optimal bands that discriminate the giant reed from the adjacent vegetation. A new approach was used to identify sets of wavelengths - wavezones - that maximize the spectral separability beyond the minimum number of optimal bands. Jeffries Matusita and Bhattacharya distance were used to evaluate the spectral separability using the minimum optimal bands and in three simulated satellite images, namely Landsat, IKONOS and SPOT. Giant reed was spectrally separable from the adjacent vegetation, both at the vegetative and the senescent period, exception made to the common reed at the vegetative period. The red edge region was repeatedly selected, although the visible region was also important to separate the giant reed from the herbaceous vegetation and the mid infrared region to the discrimination from the woody vegetation. The highest separability was obtained for the giant reed_RAC stands, due to its highly homogeneous, dense and dark-green stands. Results are discussed by relating the phenological, morphological and structural features of the giant reed stands and the adjacent vegetation with their optical traits. Weaknesses and strengths of the giant reed spectral discrimination are highlighted and implications of imagery selection for mapping purposes are argued based on present results.

  14. Role of riparian areas in atmospheric pesticide deposition and its potential effect on water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Riparian buffers are known to mitigate hydrologic losses of nutrients and other contaminants as they exit agricultural fields. The vegetation of riparian buffers can also trap atmospheric contaminants, but these pollutants can subsequently be delivered via rain to the riparian buffer floor. These ...

  15. Hydrocarbon provinces and productive trends in Libya and adjacent areas

    SciTech Connect

    Missallati, A.A. Ltd., Tripoli )

    1988-08-01

    According to the age of major reservoirs, hydrocarbon occurrences in Libya and adjacent areas can be grouped into six major systems which, according to their geographic locations, can be classified into two major hydrocarbon provinces: (1) Sirte-Pelagian basins province, with major reservoirs ranging from middle-late Mesozoic to early Tertiary, and (2) Murzog-Ghadames basins province, with major reservoirs ranging from early Paleozoic to early Mesozoic. In the Sirte-Pelagian basins province, hydrocarbons have been trapped in structural highs or in stratigraphic wedge-out against structural highs and in carbonate buildups. Here, hydrocarbon generation is characterized by the combined effect of abundant structural relief and reservoir development in the same hydrocarbon systems of the same age, providing an excellent example of hydrocarbon traps in sedimentary basins that have undergone extensive tensional fracturing in a shallow marine environment. In the Murzog-Ghadames basins province, hydrocarbons have been trapped mainly in structural highs controlled by paleostructural trends as basement arches which acted as focal points for oil migration and accumulation.

  16. Flood impact assessment on the development of Archaia Olympia riparian area in Greece.

    NASA Astrophysics Data System (ADS)

    Pasaporti, Christina; Podimata, Marianthi; Yannopoulos, Panayotis

    2013-04-01

    A long list of articles in the literature examines several issues of flood risk management and applications of flood scenarios, taking into consideration the climate changes, as well as decision making tools in flood planning. The present study tries to highlight the conversation concerning flood impacts on the development rate of a riparian area. More specifically, Archaia (Ancient) Olympia watershed was selected as a case study area, since it is considered as a region of special interest and international significance. In addition, Alfeios River, which is the longest river of Peloponnisos Peninsula, passes through the plain of Archaia Olympia. Flood risk scenarios allow scientists and practitioners to understand the adverse effects of flooding on development activities such as farming, tourism etc. and infrastructures in the area such as road and railway networks, Flokas dam and the hydroelectric power plant, bridges, settlements and other properties. Flood risks cause adverse consequences on the region of Archaia Olympia (Ancient Olympic stadium) and Natura 2000 site area. Furthermore, SWOT analysis was used in order to quantify multicriteria and socio-economic characteristics of the study area. SWOT analysis, as a planning method, indicates the development perspective by identifying the strengths, weaknesses, threads and opportunities. Subsequent steps in the process of intergraded River Management Plan of Archaia Olympia could be derived from SWOT analysis. The recognition and analysis of hydro-geomorphological influences on riparian development activities can lead to the definition of hazardous and vulnerability zones and special warning equipment. The former information combined with the use of the spatial database for the catchment area of the River Alfeios, which aims to gather multiple watershed data, could serve in preparing the Management Plan of River Basin District 01 where Alfeios R. belongs. Greece has to fulfill the obligation of implementing River

  17. PLANT INVASIONS IN RHODE ISLAND RIPARIAN ZONES

    EPA Science Inventory

    The vegetation in riparian zones provides valuable wildlife habitat while enhancing instream habitat and water quality. Forest fragmentation, sunlit edges, and nutrient additions from adjacent development may be sources of stress on riparian zones. Landscape plants may include no...

  18. Amphibian and reptile abundance in riparian and upslope areas of five forest types in western Oregon

    USGS Publications Warehouse

    Gomez, D.M.; Anthony, R.G.

    1996-01-01

    We compared species composition and relative abundance of herpetofauna between riparian and upslope habitats among 5 forest types (shrub, open sapling-pole, large sawtimber and old-growth conifer forests, and deciduous forests) in Western Oregon. Riparian- and upslope- associated species were identified based on capture frequencies from pitfall trapping. Species richness was similar among forest types but slightly greater in the shrub stands. The abundances of 3 species differed among forest types. Total captures was highest in deciduous forests, intermediate in the mature conifer forests, and lowest in the 2 young coniferous forests. Species richness was similar between stream and upslope habitats; however, captures were higher in riparian than upslope habitat. Tailed frogs (Ascaphus truei), Dunn's salamanders (Plethodon dunni), roughskin newts(Tanicha granulosa), Pacific giant salamanders (Dicamptodon tenebrosus) and red-legged frogs(Rana aurora) were captured more frequently in riparian than upslope habitats. Of these species the red-legged frog and Pacific giant salamander may depend on riparian habitat for at least part of their life requirements, while tailed frogs, Dunn's salamanders and roughskin newts appear to be riparian associated species. In addition, we found Oregon salamanders (Ensatina eschscholtzi) were associated with upslope habitats. We suggest riparian management zones should be al least 75-100 m on each side of the stream and that management for upslope/and or old forest associates may be equally as important as for riparian species.

  19. 33 CFR 162.215 - Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach. 162.215 Section 162.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 162.215 Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach. (a) The restricted area....

  20. 33 CFR 162.215 - Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach. 162.215 Section 162.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 162.215 Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach. (a) The restricted area....

  1. 33 CFR 162.215 - Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach. 162.215 Section 162.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 162.215 Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach. (a) The restricted area....

  2. 33 CFR 162.215 - Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach. 162.215 Section 162.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 162.215 Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach. (a) The restricted area....

  3. 33 CFR 162.215 - Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach. 162.215 Section 162.215 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... § 162.215 Lake Tahoe, Nev.; restricted area adjacent to Nevada Beach. (a) The restricted area....

  4. Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area

    USGS Publications Warehouse

    Mink, R.M.; Bearden, B.L.; Mancini, E.A.

    1989-01-01

    To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.

  5. Assessment of heavy metal levels in surface sediments of estuaries and adjacent coastal areas in China

    NASA Astrophysics Data System (ADS)

    Liu, Xianbin; Li, Deliang; Song, Guisheng

    2017-03-01

    This article investigates the variations of contamination levels of heavy metals such as copper, lead, chromium, cadmium, zinc, arsenic, and mercury over time in surface sediments of the Changjiang River Estuary (CRE), Yellow River Estuary (YRE), Pearl River Estuary (PRE), and their adjacent coastal areas in China. The contamination factor (CF), pollution load index (PLI), and geoaccumulation index ( I geo) are used to evaluate the quality of the surface sediments in the study areas. The results showed that the CRE, YRE, and their adjacent coastal areas were at a low risk of contamination in terms of heavy metals, while the PRE and its adjacent coastal area were at a moderate level. By comparison, the concentrations of heavy metals in the surface sediments of the YRE and its adjacent coastal area were relatively lower than those in the CRE, PRE, and their adjacent coastal areas.

  6. Assessment of heavy metal levels in surface sediments of estuaries and adjacent coastal areas in China

    NASA Astrophysics Data System (ADS)

    Liu, Xianbin; Li, Deliang; Song, Guisheng

    2016-05-01

    This article investigates the variations of contamination levels of heavy metals such as copper, lead, chromium, cadmium, zinc, arsenic, and mercury over time in surface sediments of the Changjiang River Estuary (CRE), Yellow River Estuary (YRE), Pearl River Estuary (PRE), and their adjacent coastal areas in China. The contamination factor (CF), pollution load index (PLI), and geoaccumulation index (I geo) are used to evaluate the quality of the surface sediments in the study areas. The results showed that the CRE, YRE, and their adjacent coastal areas were at a low risk of contamination in terms of heavy metals, while the PRE and its adjacent coastal area were at a moderate level. By comparison, the concentrations of heavy metals in the surface sediments of the YRE and its adjacent coastal area were relatively lower than those in the CRE, PRE, and their adjacent coastal areas.

  7. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  8. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  9. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  10. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  11. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  12. Chill-Bar Assembly For Cooling Areas Adjacent To Welds

    NASA Technical Reports Server (NTRS)

    Hoffman, David S.; Mcferrin, David C.; Coby, J. Ben, Jr.; Gangl, Kenneth J.; Dawson, Sidney G.

    1996-01-01

    Assembly of custom-shaped water-cooled chill bars developed for use during repair process in which cracks and pinholes in rocket-engine combustion chamber welded closed. Held in required relative geometric relationships by rigid framework, chill bars pressed against surface of chamber to conduct heat away from areas surrounding welds, preventing damage caused by overheating of areas not meant to be welded. Design features beneficial in other welding applications; for example, manufacture and repair of pressure vessels, chemical-processing vessels, and complexly shaped laboratory vacuum vessels.

  13. Remote sensing approach to map riparian vegetation of the Colorado River Ecosystem, Grand Canyon area, Arizona

    NASA Astrophysics Data System (ADS)

    Nguyen, U.; Glenn, E.; Nagler, P. L.; Sankey, J. B.

    2015-12-01

    Riparian zones in the southwestern U.S. are usually a mosaic of vegetation types at varying states of succession in response to past floods or droughts. Human impacts also affect riparian vegetation patterns. Human- induced changes include introduction of exotic species, diversion of water for human use, channelization of the river to protect property, and other land use changes that can lead to deterioration of the riparian ecosystem. This study explored the use of remote sensing to map an iconic stretch of the Colorado River in the Grand Canyon National Park, Arizona. The pre-dam riparian zone in the Grand Canyon was affected by annual floods from spring run-off from the watersheds of Green River, the Colorado River and the San Juan River. A pixel-based vegetation map of the riparian zone in the Grand Canyon, Arizona, was produced from high-resolution aerial imagery. The map was calibrated and validated with ground survey data. A seven-step image processing and classification procedure was developed based on a suite of vegetation indices and classification subroutines available in ENVI Image Processing and Analysis software. The result was a quantitative species level vegetation map that could be more accurate than the qualitative, polygon-based maps presently used on the Lower Colorado River. The dominant woody species in the Grand Canyon are now saltcedar, arrowweed and mesquite, reflecting stress-tolerant forms adapted to alternated flow regimes associated with the river regulation.

  14. 47 CFR 101.1421 - Coordination of adjacent area MVDDS stations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and architecture of their systems, in order to ensure that no harmful interference occurs between...) Cooperate fully and in good faith to resolve interference and transmission problems that are present on adjacent and co-channel operations in adjacent areas. (b) Harmful interference to public safety...

  15. 47 CFR 101.1421 - Coordination of adjacent area MVDDS stations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and architecture of their systems, in order to ensure that no harmful interference occurs between...) Cooperate fully and in good faith to resolve interference and transmission problems that are present on adjacent and co-channel operations in adjacent areas. (b) Harmful interference to public safety...

  16. 47 CFR 101.1421 - Coordination of adjacent area MVDDS stations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and architecture of their systems, in order to ensure that no harmful interference occurs between...) Cooperate fully and in good faith to resolve interference and transmission problems that are present on adjacent and co-channel operations in adjacent areas. (b) Harmful interference to public safety...

  17. Water resources of Okaloosa County and adjacent areas, Florida

    USGS Publications Warehouse

    Trapp, Henry; Pascale, C.A.; Foster, J.B.

    1977-01-01

    Okaloosa County, in the northwest Florida panhandle, uses the Floridan aquifer for water supply, although it also has abundant surface water and ground water in the surficial sand-and-gravel aquifer. Water levels have declined locally more than 90 feet in the upper limestone of the Floridan aquifer. The Floridan aquifer is overlain by the Pensacola clay confining bed, and the Bucatunna Clay subdivides it into two limestone units. Water in the upper limestone is generally of good quality. The lower limestone probably contains saline water. Average daily stream discharge is about 2,500 million gallons. Stream discharge does not diminish excessively during droughts, owing to high base runoff. Water levels in the Floridan aquifer will decline as long as pumping increases in the present areas of withdrawal. The decline could be alleviated by redistribution of pumping, artificial recharge, and the use of the sand-and-gravel aquifer or streams. (Woodard-USGS)

  18. Regional tectonics of Myanmar (Burma) and adjacent areas

    SciTech Connect

    Everett, J.R.; Russell, O.R.; Staskowski, R.J.; Loyd, S.P.; Tabbutt, V.M. ); Dolan, Stein, A. )

    1990-05-01

    Analysis of 38 contiguous Landsat Multispectral Scanner scenes acquired over Myanmar (Burma) reveals numerous large-scale features associated with margins of the Burman plate, previously unidentified northeast-southwest-trending discontinuities, important extensions of previously mapped fault trends, and numerous structural features that appear favorable for petroleum exploration. A mosaic of these scenes at 1:1,000,000 scale shows a large number of tectonic elements and their spatial relationships. Within the area of investigation are portions of the Indian, Burman, Lhasa, and Shan-Thai plates, and perhaps other, smaller plates. The Himalayan front and Indo-Burman Ranges manifest effects of current and recently past plate movement. The complexity of the kinematic history accounts for the diversity of structural features in the area. The last major event in this long and violent saga, which began in middle Miocene (approximately 11 Ma) time and continues to the present, is the recent change from a collisional to a right-lateral strike-slip transform margin between the Indian and Burman plates. The complexity of the structures visible is the product of multiple plate collisions, rotation of the Indian plate and parts of the Asian plate, and long-continued convergence that changed velocity and direction tbrough time. The most obvious evidence of this complexity, which is immediately apparent on geologic maps or the Landsat mosaic of the region, is the almost right-angle relationship of the folds of the Indo-Burman Ranges and the frontal thrusts and suture zones of the Himalaya. These two sets of compressive features imply maximum compressive stress axes that lie at right angles to each other. The implications are either that the orientation of the stress field changes rapidly over a short distance or that the stress field has changed through time. Both occurrences seem to be true.

  19. Transmission of foodborne zoonotic pathogens to riparian areas by grazing sheep

    PubMed Central

    Sutherland, Sara J.; Gray, Jeffrey T.; Menzies, Paula I.; Hook, Sarah E.; Millman, Suzanne T.

    2009-01-01

    The objective of this study was to determine if sheep grazing near riparian areas on pasture in Ontario are an important risk factor for the contamination of water with specific foodborne pathogens. Ten Ontario sheep farms were visited weekly for 12 wk during the summer of 2005. Samples of feces, soil, and water were collected and analyzed for the presence of Escherichia coli O157:H7, Salmonella spp., Campylobacter jejuni and C. coli, and Yersinia enterocolitica, by bacteriological identification and polymerase chain reaction (PCR). The data was analyzed as repeated measures over time using mixed models. No samples were positive for Salmonella, and no samples were confirmed positive for E. coli O157:H7 after PCR. Levels of Campylobacter were highest in the soil, but did not differ between soil where sheep grazed or camped and roadside soil that had never been grazed (P = 0.85). Levels of Yersinia were highest in water samples and were higher in soil where sheep had access (P = 0.01). The prevalence of positive Campylobacter and Yersinia samples were not associated with locations where sheep spent more time (Campylobacter P = 0.46, Yersinia P = 0.99). There was no effect of stocking density on the prevalence of Campylobacter (P = 0.30), but as the stocking density increased the levels of Yersinia increased (P = 0.04). It was concluded that although sheep transmit Yersinia to their environment, pastured sheep flocks are not major risk factors for the transmission of zoonotic pathogens into water. PMID:19436581

  20. Cattle use of perennial streams and associated riparian areas on a northeastern Oregon landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream and riparian health is a major concern for state and federal land management agencies that are charged with oversight of extensive land holdings in the mountain west of the United States. Several federal agencies in the 1980s and 1990s determined that livestock grazing had adversely impacted...

  1. STREAM TEMPERATURE SIMULATION OF FORESTED RIPARIAN AREAS: I. WATERSHED-SCALE MODEL DEVELOPMENT

    EPA Science Inventory

    To simulate stream temperatures on a watershed scale, shading dynamics of topography and riparian vegetation must be computed for estimating the amount of solar radiation that is actually absorbed by water for each stream reach. A series of computational procedures identifying th...

  2. Hydrogeochemical studies of historical mining areas in the Humboldt River basin and adjacent areas, northern Nevada

    USGS Publications Warehouse

    Nash, J. Thomas

    2005-01-01

    The study area comprises the Humboldt River Basin and adjacent areas, with emphasis on mining areas relatively close to the Humboldt River. The basin comprises about 16,840 mi2 or 10,800,000 acres. The mineral resources of the Humboldt Basin have been investigated by many scientists over the past 100 years, but only recently has our knowledge of regional geology and mine geology been applied to the understanding and evaluation of mining effects on water and environmental quality. The investigations reported here apply some of the techniques and perspectives developed in the Abandoned Mine Lands Initiative (AMLI) of the U.S. Geological Survey (USGS), a program of integrated geological-hydrological-biological-chemical studies underway in the Upper Animas River watershed in Colorado and the Boulder River watershed in, Montana. The goal of my studies of sites and districts is to determine the character of mining-related contamination that is actively or potentially a threat to water quality and to estimate the potential for natural attenuation of that contamination. These geology-based studies and recommendations differ in matters of emphasis and data collection from the biology-based assessments that are the cornerstone of environmental regulations.

  3. Summary geochemical maps, Hoover Wilderness and adjacent study area, Mono and Tuolumne counties, California

    USGS Publications Warehouse

    Chaffee, M.A.; Hill, R.H.; Sutley, S.J.

    1984-01-01

    The Hoover Wilderness and the adjacent Hoover Extension (East), Hoover Extension (West), and Cherry Creek A Roadless Areas (the adjacent study area) encompass approximately 153,900 acres (241 mi2; 623 km2) in the Inyo, Stanislaus, and Toiyabe Naitonal Forests, Mono and Tuolumne Counties, Calif. These two areas lie along and mostly east of the crest of the Sierra Nevada, along the north and east sides of Yosemite National Park. Elevations vary from a high of 12,446 ft (3,793 m) on the crest of the Sierra Nevada to a low of about 6,500 ft (1,981 m) near the Bridgeport Ranger Station. Access to the Hoover Wilderness and adjacent study area is by U.S. Highway 395, California State Highways 108 (Sonora Pass) and 120 (Tioga Pass), and by other paved and graded roads that lead off of these U.S. and State highways.

  4. Principles for Establishing Ecologically Successful Riparian Corridors

    EPA Pesticide Factsheets

    Principles for establishing riparian areas. Riparian areas are three‐dimensional ecotones of interaction that include terrestrial and aquatic ecosystems, that extend down into the groundwater, up above the canopy, outward across the floodplain.

  5. 33 CFR 334.880 - San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Commander, Naval Base, San Diego, Calif. (3) The regulations in this section shall be enforced by the... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false San Diego Harbor, Calif.; naval....880 San Diego Harbor, Calif.; naval restricted area adjacent to Point Loma. (a) The area. That...

  6. Holding onto the Green Zone: A Youth Program for the Study and Stewardship of Community Riparian Areas. Action Guide

    ERIC Educational Resources Information Center

    US Department of the Interior, 2008

    2008-01-01

    Scientists call the land along the edges of a river, stream, or lake a riparian zone. In this guide, riparian zone will be called the Green Zone. Riparian zones make up only a small part of land in the United States. But they are very important. They protect water quality and quantity, supply food and shelter for fish and wildlife, and provide…

  7. Riparian Vegetation Mapping Along the Hanford Reach

    SciTech Connect

    FOGWELL, T.W.

    2003-07-11

    During the biological survey and inventory of the Hanford Site conducted in the mid-1990s (1995 and 1996), preliminary surveys of the riparian vegetation were conducted along the Hanford Reach. These preliminary data were reported to The Nature Conservancy (TNC), but were not included in any TNC reports to DOE or stakeholders. During the latter part of FY2001, PNNL contracted with SEE Botanical, the parties that performed the original surveys in the mid 1990s, to complete the data summaries and mapping associated with the earlier survey data. Those data sets were delivered to PNNL and the riparian mapping by vegetation type for the Hanford Reach is being digitized during the first quarter of FY2002. These mapping efforts provide the information necessary to create subsequent spatial data layers to describe the riparian zone according to plant functional types (trees, shrubs, grasses, sedges, forbs). Quantification of the riparian zone by vegetation types is important to a number of DOE'S priority issues including modeling contaminant transport and uptake in the near-riverine environment and the determination of ecological risk. This work included the identification of vegetative zones along the Reach by changes in dominant plant species covering the shoreline from just to the north of the 300 Area to China Bar near Vernita. Dominant and indicator species included Agropyron dasytachyudA. smithii, Apocynum cannabinum, Aristida longiseta, Artemisia campestris ssp. borealis var scouleriana, Artemisa dracunculus, Artemisia lindleyana, Artemisia tridentata, Bromus tectorum, Chrysothamnus nauseosus, Coreopsis atkinsoniana. Eleocharis palustris, Elymus cinereus, Equisetum hyemale, Eriogonum compositum, Juniperus trichocarpa, Phalaris arundinacea, Poa compressa. Salk exigua, Scirpus acutus, Solidago occidentalis, Sporobolus asper,and Sporobolus cryptandrus. This letter report documents the data received, the processing by PNNL staff, and additional data gathered in FY2002

  8. Restoration of Riparian Areas Following the Removal of Cattle in the Northwestern Great Basin

    NASA Astrophysics Data System (ADS)

    Batchelor, Jonathan L.; Ripple, William J.; Wilson, Todd M.; Painter, Luke E.

    2015-04-01

    We assessed the effects of the elimination of livestock in riparian systems at Hart Mountain National Antelope Refuge in southeastern Oregon, 23 years after the removal of cattle grazing, using 64 photos taken before grazing was removed compared with later retake photos. Two methods were used for this assessment: (1) a qualitative visual method comparing seven cover types and processes and (2) a new quantitative method of inserting digital line transects into photos. Results indicated that channel widths and eroding banks decreased in 64 and 73 % of sites, respectively. We found a 90 % decrease in the amount of bare soil ( P < 0.001) and a 63 % decrease in exposed channel ( P < 0.001) as well as a significant increase in the cover of grasses/sedges/forbs (15 % increase, P = 0.037), rushes (389 % increase, P = 0.014), and willow (388 % increase, P < 0.001). We also assessed the accuracy of the new method of inserting digital line transects into photo pairs. An overall accuracy of 91 % (kappa 83 %) suggests that digital line transects can be a useful tool for quantifying vegetation cover from photos. Our results indicate that the removal of cattle can result in dramatic changes in riparian vegetation, even in semi-arid landscapes and without replanting or other active restoration efforts.

  9. Restoration of riparian areas following the removal of cattle in the northwestern great basin.

    PubMed

    Batchelor, Jonathan L; Ripple, William J; Wilson, Todd M; Painter, Luke E

    2015-04-01

    We assessed the effects of the elimination of livestock in riparian systems at Hart Mountain National Antelope Refuge in southeastern Oregon, 23 years after the removal of cattle grazing, using 64 photos taken before grazing was removed compared with later retake photos. Two methods were used for this assessment: (1) a qualitative visual method comparing seven cover types and processes and (2) a new quantitative method of inserting digital line transects into photos. Results indicated that channel widths and eroding banks decreased in 64 and 73% of sites, respectively. We found a 90% decrease in the amount of bare soil (P < 0.001) and a 63% decrease in exposed channel (P < 0.001) as well as a significant increase in the cover of grasses/sedges/forbs (15% increase, P = 0.037), rushes (389% increase, P = 0.014), and willow (388% increase, P < 0.001). We also assessed the accuracy of the new method of inserting digital line transects into photo pairs. An overall accuracy of 91% (kappa 83%) suggests that digital line transects can be a useful tool for quantifying vegetation cover from photos. Our results indicate that the removal of cattle can result in dramatic changes in riparian vegetation, even in semi-arid landscapes and without replanting or other active restoration efforts.

  10. [Floristic composition and distribution of the Andean subtropical riparian forests of Lules River, Tucuman, Argentina].

    PubMed

    Sirombra, Martín G; Mesa, Leticia M

    2010-03-01

    We studied the floristic composition and distribution of the riparian forest of two hydrographical systems in a subtropical Andean region. Using uni and multivariate techniques, we tested the hypotheses that a differentiable riparian forest exists, composed by native vegetation typical of the Yungas phytogeographical province, and that the distribution of vegetation varied significantly with geomorphologic characteristics. Parallel transects along the water courses were used to collect presence-absence data of vegetation in eleven sites. Detrended Correspondence Analysis defined a group of common riparian species for the studied area (Solanum riparium, Phenax laevigatus, Tipuana tipu, Cestrum parqui, Carica quercifolia, Acacia macracantha, Celtis iguanaea, Juglans australis, Pisoniella arborescens, Baccharis salicifolia, Cinnamomum porphyrium and Eugenia uniflora) and identified two reference sites. The distribution of the riparian vegetation varied significantly with the geomorphic characteristics along the studied sites. Riparian habitats were composed by native and exotic species. A distinct riparian flora, different in structure and function from adjacent terrestrial vegetation, could not be identified. Riparian species were similar to the adjacent terrestrial strata. These species would not be limited by the proximity to the river. Anthropogenic impacts were important factors regulating the introduction and increase of exotic vegetation. The lack of regulation of some activities in the zone could cause serious problems in the integrity of this ecosystem.

  11. Stratigraphic and lithologic characteristics of Pleistocene fluvial deposits in the Danube and Sava riparian area near Belgrade (Serbia)

    NASA Astrophysics Data System (ADS)

    Nenadić, D.; Gaudenyi, T.; Bogićević, K.; Tošović, R.

    2016-07-01

    The Quaternary sediments in the Danube and Sava riparian area near Belgrade have a considerable thickness. Several categories of deposits (fluvial-lacustrine, fluvial and aeolian) of Pliocene and Quaternary age have been identified. Their thickness, granulometric composition and paleontological features change depending on the distance from the recent Danube and Sava riverbeds. The Pleistocene fluvial deposits are underlain by sediments of the Late Miocene (Sarmatian and Pannonian) or the Plio-Pleistocene age, and are overlain by fluvial-palustrine deposits of the Pleistocene age and recent alluvial deposits. Pleistocene fluvial deposits that form a major part of the Quaternary sediments, have a great significance, since they are proved to be excellent collectors of ground water. Although these deposits are at lower altitudes in the area of Srem, they could be correlated with the high Danube and Morava terraces in Serbia and Drava in Croatia on the basis of their lithologic and paleontological features.

  12. [Effects of riparian ecological restoration engineering with offshore wave-elimination weir on restoration area's water quality].

    PubMed

    Tang, Hao; Zhang, Hui; Xie, Fei; Xu, Chi; Wang, Lei; Liu, Mao-Song

    2012-06-01

    Riparian ecological restoration engineering with offshore wave-elimination weir is an engineering measure with piled wave-elimination weir some meters away from the shore. This measure can dissipate waves, promote sediment deposition, and create an artificial semi-closed bay to restore vegetation in a riparian area which has hard dam and destroyed vegetation. Three habitat gradient zones, i. e., emerged vegetation zone, submerged vegetation zone, and open water area, can be formed after this engineering. In June 2010-May 2011, a field investigation was conducted on the water quality in the three zones in an ecological restoration area of Gonghu Bay, Taihu Lake. The water body inside the weir generally had lower concentrations of nitrite and nitrate but higher concentrations of ammonium and total nitrogen than the water body outside the weir. The water phosphorus concentration inside the weir was lower than that outside the weir in autumn and winter, while an opposite trend was observed in spring and summer. The coefficients of variation of the water body' s nitrite and orthophosphate concentration inside the weir decreased, and the annual maximum values of the water nitrite, nitrate, and orthophosphate concentrations inside the weir were lower than those outside the weir. On the contrary, the coefficients of variation of the water body's ammonium and total nitrogen concentrations inside the weir increased, and the annual maximum values of the water ammonium and total nitrogen concentrations inside the weir were higher than those outside the weir. To some extent, the restoration engineering could exacerbate the deterioration of the water quality indices such as ammonium and total nitrogen in the restoration area by the end of growth season

  13. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    PubMed

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  14. Does tree harvesting in riparian areas increase stream sedimentation and turbidity - world-wide experience relative to Australia.

    NASA Astrophysics Data System (ADS)

    Neary, D.; Smethurst, P.; Petrone, K.

    2009-04-01

    A typical improved-pasture property in the high-rainfall zone of Australia contains 0.5-2.0 km of waterways per 100 ha. Nationwide, some 25-30 million ha of improved pasture contains about 100,000 km of streams, of which about 75% are currently un-buffered and contributing to soil and water degradation. Farmers and natural resource managers are considering ways to enhance environmental outcomes at farm and catchment scales using stream-side buffers of trees and other perennial vegetation. Benefits of buffers include improved water quality, biodiversity, carbon sequestration and aesthetics. Lack of sound information and funding for establishing and managing buffer zones is hindering wide-scale adoption of this practice. Stream-side areas of farms are generally highly productive (wet and nutrient-rich) and contain a high biodiversity, but they are also high-risk zones for soil and water values and stock safety. Development of options based on a balance between environmental and economic outcomes would potentially promote wider adoption. Australian codes of forest practice currently discourage or prevent harvesting of trees in streamside buffers. These codes were developed exclusively for large-scale native forests and industrial-scale plantations, and were applicable to farm forestry as now required. In countries including USA and Germany trees in stream-side buffers are harvested using Best Management Practices. Trees may grow at a faster rate in riparian zones and provide a commercial return, but the impacts of tree establishment and harvesting on water yield and quality must be evaluated. However, there have been few designed experiments investigating this problem. Australia has recently initiated studies to explore the use of high-value timber species and associated vegetation in riparian zones to improve water quality, particularly suspended sediment. Preliminary information from the Yan Yan Gurt Catchment in Victoria indicate that forested riparian strips can

  15. Climatic Factors Drive Population Divergence and Demography: Insights Based on the Phylogeography of a Riparian Plant Species Endemic to the Hengduan Mountains and Adjacent Regions

    PubMed Central

    Wang, Zhi-Wei; Chen, Shao-Tian; Nie, Ze-Long; Zhang, Jian-Wen; Zhou, Zhuo; Deng, Tao; Sun, Hang

    2015-01-01

    Quaternary climatic factors have played a significant role in population divergence and demography. Here we investigated the phylogeography of Osteomeles schwerinae, a dominant riparian plant species of the hot/warm-dry river valleys of the Hengduan Mountains (HDM), Qinling Mountains (QLM) and Yunnan-Guizhou Plateau (YGP). Three chloroplast DNA (cpDNA) regions (trnD-trnT, psbD-trnT, petL-psbE), one single copy nuclear gene (glyceraldehyde 3-phosphate dehydrogenase; G3pdh), and climatic data during the Last Interglacial (LIG; c. 120–140 ka), Last Glacial Maximum (LGM; c. 21 ka), and Current (c. 1950–2000) periods were used in this study. Six cpDNA haplotypes and 15 nuclear DNA (nDNA) haplotypes were identified in the 40 populations of O. schwerinae. Spatial Analysis of Molecular Variance, median-joining networks, and Bayesian phylogenetic trees based on the cpDNA and nDNA datasets, all suggested population divergence between the QLM and HDM-YGP regions. Our climatic analysis identified significant heterogeneity of the climatic factors in the QLM and HDM-YGP regions during the aforementioned three periods. The divergence times based on cpDNA and nDNA haplotypes were estimated to be 466.4–159.4 ka and 315.8–160.3 ka, respectively, which coincide with the time of the weakening of the Asian monsoons in these regions. In addition, unimodal pairwise mismatch distribution curves, expansion times, and Ecological Niche Modeling suggested a history of population expansion (rather than contraction) during the last glaciation. Interestingly, the expansion times were found being well consistent with the intensification of the Asian monsoons during this period. We inferred that the divergence between the two main lineages is probably caused by disruption of more continuous distribution because of weakening of monsoons/less precipitation, whilst subsequent intensification of the Asian monsoons during the last glaciation facilitated the expansion of O. schwerinae

  16. Riparian and Associated Habitat Characteristics Related to Nutrient Concentrations and Biological Responses of Small Streams in Selected Agricultural Areas, United States, 2003-04

    USGS Publications Warehouse

    Zelt, Ronald B.; Munn, Mark D.

    2009-01-01

    Physical factors, including both in-stream and riparian habitat characteristics that limit biomass or otherwise regulate aquatic biological condition, have been identified by previous studies. However, linking the ecological significance of nutrient enrichment to habitat or landscape factors that could allow for improved management of streams has proved to be a challenge in many regions, including agricultural landscapes, where many ecological stressors are strong and the variability among watersheds typically is large. Riparian and associated habitat characteristics were sampled once during 2003-04 for an intensive ecological and nutrients study of small perennial streams in five contrasting agricultural landscapes across the United States to determine how biological communities and ecosystem processes respond to varying levels of nutrient enrichment. Nutrient concentrations were determined in stream water at two different sampling times per site and biological samples were collected once per site near the time of habitat characterization. Data for 141 sampling sites were compiled, representing five study areas, located in parts of the Delmarva Peninsula (Delaware and Maryland), Georgia, Indiana, Ohio, Nebraska, and Washington. This report examines the available data for riparian and associated habitat characteristics to address questions related to study-unit contrasts, spatial scale-related differences, multivariate correlation structure, and bivariate relations between selected habitat characteristics and either stream nutrient conditions or biological responses. Riparian and associated habitat characteristics were summarized and categorized into 22 groups of habitat variables, with 11 groups representing land-use and land-cover characteristics and 11 groups representing other riparian or in-stream habitat characteristics. Principal components analysis was used to identify a reduced set of habitat variables that describe most of the variability among the

  17. Some features of soil organic matter in parks and adjacent residential areas of Moscow

    NASA Astrophysics Data System (ADS)

    Prokof'eva, T. V.; Rozanova, M. S.; Poputnikov, V. O.

    2013-03-01

    The humus-accumulative horizons of soils from two natural-historical parks of Moscow and the adjacent residential areas were studied. An increase in the concentration of organic matter was observed in the soils of the residential areas. A tendency toward the formation of fulvate humus typical for southern taiga soils persisted in the low-carbonate nongleyed humus-accumulative horizons. At the same time, the transformation rate, character, and content of organic matter in the urban soils were strongly affected by the contamination, calcareous invasion, and remediation of the soils and sediments.

  18. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  19. Beaver dams and overbank floods influence groundwater-surface water interactions of a Rocky Mountain riparian area

    USGS Publications Warehouse

    Westbrook, C.J.; Cooper, D.J.; Baker, B.W.

    2006-01-01

    Overbank flooding is recognized by hydrologists as a key process that drives hydrogeomorphic and ecological dynamics in mountain valleys. Beaver create dams that some ecologists have assumed may also drive riparian hydrologic processes, but empirical evidence is lacking. We examined the influence of two in-channel beaver dams and a 10 year flood event on surface inundation, groundwater levels, and flow patterns in a broad alluvial valley during the summers of 2002-2005. We studied a 1.5 km reach of the fourth-order Colorado River in Rocky Mountain National Park (RMNP), Colorado, USA. The beaver dams and ponds greatly enhanced the depth, extent, and duration of, inundation associated with floods; they also elevate the water table during both high and low flows. Unlike previous studies we found the main effects of beaver on hydrologic processes occurred downstream of the dam rather than being confined to the near-pond area. Beaver dams on the Colorado River caused river water to move around them as surface runoff and groundwater seepage during both high- and low-flow periods. The beaver dams attenuated the expected water table decline in the drier summer months for 9 and 12 ha of the 58 ha study area. Thus we provide empirical evidence that beaver can influence hydrologic processes during the peak flow and low-flow periods on some streams, suggesting that beaver can create and maintain hydrologic regimes suitable for the formation and persistence of wetlands. Copyright 2006 by the American Geophysical Union.

  20. Summary of ground-water data, Post Headquarters and adjacent areas, White Sands Missile Range

    USGS Publications Warehouse

    Kelly, T.E.

    1973-01-01

    Geohydrologic data have been obtained from more than 100 wells and test holes that have been drilled in the Post Headquarters and adjacent areas of White Sands Missile Range. Observation-well data show that, in general, a continuous decline of the water table has occurred in the vicinity of the well field since production began in 1949. Approximately 40,000 acre-feet of water has been produced from the aquifer to date (1972). A series of maps are presented which show the changes that have occurred in the well field as the result of development.

  1. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  2. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  3. Investigation on Reflection of Tectonic Pattern in ASG EUPOS Data in the Sudetes and Adjacent Areas

    NASA Astrophysics Data System (ADS)

    Szczerbowski, Zbigniew

    2016-12-01

    The GNSS data evaluated from on observation of ASG EUPOS stations in the Sudety Mts. and in adjacent areas is analyzed by the author in the scope of disturbances in daily solutions that can be induced by tectonics stress. The daily position changes derived from GNSS data demonstrate the long or short term trends, which are affected by offsets of different nature. Author presents an analysis based on frequency of parameter - displacement vector azimuth. The aim of the analysis is to show statistical significance of observed small values of temporal displacements, which values are not normally distributed. There are "outliers" of the normal distribution of displacement azimuths, which values show a certain reproducibility, which corresponds to orientations of tectonic lines. That suggests small, short time movements along boundaries of horsts and grabens - a crustal-extension structure of the area. However derived results (values of displacements) are less than a limitation error, temporal distributions of coordinates are not random as usually data errors. So in author's opinion the spatial-temporal evolution of horizontal displacements of ASG EUPOS stations in the Sudety Mts. and in adjacent areas are determined by expressions of underlying geological structures.

  4. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  5. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  6. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  7. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  8. Integrated riparian evaluation guide: Intermountain region

    SciTech Connect

    Not Available

    1992-03-01

    Riparian areas consist of riparian ecosystems, aquatic ecosystems, and wetlands. They may be associated with lakes, reservoirs, estuaries, potholes, marshes, springs, bogs, wet meadows, and intermittent or perennial streams where free and unbound water is available. Though riparian areas constitute only a fraction of the total land area, they are more productive in terms of both plant and animal species diversity and biomass per unit area than the remainder of the land base. The guide provides an integrated approach for: Stratifying and classifying riparian areas according to their natural inherent characteristics, and their respective existing or conditions; Data collection; Evaluation of riparian areas; Future development and linkage of a riparian data base; and Preparation of a written narrative to interpret the data and suggest management applications.

  9. Floristic study of Ghasemloo (Shohada) Valley Forest reserve and adjacent area.

    PubMed

    Malekmohammadi, L; Mahmoudzadeh, A; Hassanzadeh, A

    2007-05-15

    In this survey flora of protected region of Ghasemloo valley Forest reserve and adjacent areas has been studied. The study area includes about 577 ha and is located at south of Urmia. The method which used for plant collection is the same as regional floristic studies. Collected plants were recognized and determined as families, genera and species by using of indispensable references. Alphabetical list of taxa in this region was provided on the base of families, genera and species. The life form of plant species was determined by using of Raunckier's method and chorotype of plant species was determined by indispensable references. In this research 50 family, 165 genera and 204 species were identified. The largest plant family is Compositae with 21 genera and 26 species and the largest genera is Astragalus from Papilionaceae family with 6 species. The main biological forms respectively are: Therophytes and hemichryptophytes. The most extended chorotype with 61.28% is related to Irano-Turanian.

  10. Reconnaissance of the Hot Springs Mountains and adjacent areas, Churchill County, Nevada

    SciTech Connect

    Voegtly, N.E.

    1981-01-01

    A geological reconnaissance of the Hot Springs Mountains and adjacent areas, which include parts of the Brady-Hazen and the Stillwater-Soda Lake Known Geothermal Resource Areas (KGRA's), resulted in a reinterpretation of the nature and location of some Basin and Range faults. This reconnaissance took place during June-December 1975. In addition, the late Cenozoic stratigraphy has been modified, chiefly on the basis of radiometric dates of volcanic rocks by US Geological Survey personnel and others. The Hot Springs Mountains are in the western part of the Basin and Range province, which is characterized by east-west crustal extension and associated normal faulting. In the surrounding Trinity, West Humboldt, Stillwater, and Desert Mountains, Cenozoic rocks overlie basement rocks of Paleozoic and Mesozoic age. A similar relation is inferred in the Hot Springs Mountains. Folding and faulting have taken place from the late Tertiary to the present.

  11. Riparian vegetation controls on the hydraulic geometry of streams

    NASA Astrophysics Data System (ADS)

    McBride, M.

    2010-12-01

    A synthesis of field measurements, remote observations, and numerical modeling techniques highlights the significance of riparian vegetation in determining the geometry of streams and impacting sediment transport dynamics in temperate, Piedmont regions. Specifically, forested and grassy riparian vegetation establish streams with significantly different widths and with different timescales for attaining a state of dynamic equilibrium. The interactions between riparian vegetation, channel form, and channel dynamics are scale dependent. Scale dependency arises because of variations in ratios of vegetation length scales and geomorphic scales (e.g., channel width and depth). Stream reaches with grassy vegetation experience more frequent overbank discharges, migrate more quickly, and exhibit a more classic dynamic equilibrium than forested reaches. These phenomena are relevant to current watershed management efforts that aim to reduce sediment and nutrient loads to receiving water bodies, such as the Chesapeake Bay. The reforestation of riparian buffers is a common restoration technique that intends to improve water quality, temperature regimes, and in-stream physical habitat. Passive reforestation of riparian areas along a tributary to Sleepers River in Danville, VT, USA caused an increase in channel width and cross-sectional area over a 40-year period. From a comparison of historical records and current cross-sectional dimensions, the channel widening resulted in the mobilization of approximately 85 kg/ha/yr of floodplain sediments. Long-term monitoring of suspended sediments in an adjacent watershed indicates that this sediment source may account for roughly 40 percent of the total suspended sediment load. In some instances, increased sediment loads associated with channel widening may be an unforeseen consequence that compromises riparian restoration efforts.

  12. Project Work Plan 100-N Area Strontium-90 Treatability Demonstration Project: Phytoremediation Along the 100-N Columbia River Riparian Zone

    SciTech Connect

    Ainsworth, Calvin C.

    2006-04-30

    The 100-N Area Innovative Treatment and Remediation Demonstration (ITRD) identified phyto¬remediation as a potential technology both for the removal of 90Sr from the soil of the riparian zone and as a filter for groundwater along the Columbia River. Recent greenhouse and growth chamber studies have demonstrated the viability of phytoextraction to remove 90Sr from this area’s soil/water; in conjunction with monitored natural attenuation and an apatite barrier the process would make an effective treatment for remediation of the 100-N Area 90Sr plume. All activities associated with the 100-NR-1 and 100-NR-2 Operable Units of the Hanford 100-N Area have had, and continue to have, significant regulatory and stakeholder participation. Beginning in 1998 with the ITRD process, presentations to the ITRD TAG were heavily attended by EPA, Washington State Department of Ecology, and stakeholders. In addition, three workshops have been held to receive regulatory and stakeholder feedback on monitored natural attenuation, the apatite barrier, and phytoremediation; these were held in Richland in August 2003, December 2004, and August 2005. The apatite injection treatability test plan (DOE 2005) describes phytoremediation as a technology to be evaluated during the March 2008 evaluation milestone as described in the Tri-Party Agreement change request (M-16-06-01 Change Control Form). If, during this evaluation milestone, phytoremediation is favorably evaluated it would be incorporated into the treatability test plan. The phytoremediation treatability test described in this proposal is strongly supported by the Washington State Department of Ecology.

  13. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, T.B.

    1984-01-01

    A study was conducted to evaluate water-resource problems related to abandoned lead and zinc mines in Cherokee County, and adjacent areas in Oklahoma and Missouri. Discontinuities and perforations, which were produced by mining in the confining shale west of the Pennsylvanian-Mississippian geologic contact, have created artificial groundwater recharge and discharge areas. Abandoned wells and drill holes present the greatest contamination hazard to water supplies in the deep aquifer. There is a potential for downward movement from the shallow to the deep aquifer throughout the study area, with greatest potential in Ottawa County, Oklahoma. Principal effects of abandoned mines on groundwater quality are lowered pH and increased concentrations of sulfate and trace metals of water in the mines. No conclusive evidence of lateral migration of contaminated mine water from the mines into the water-supply wells adjacent to the mines was found. Analyses of water from the deep aquifer did not indicate trace-metal contamination. The effects of abandoned mines on streamwater quality are most severe in Short Creek and Tar Creek. Increased concentrations of zinc and manganese were observed in the Spring River below Short Creek Kansas. (USGS)

  14. Landsat-faciliated vegetation classification of the Kenai National Wildlife Refuge and adjacent areas, Alaska

    USGS Publications Warehouse

    Talbot, S. S.; Shasby, M.B.; Bailey, T.N.

    1985-01-01

    A Landsat-based vegetation map was prepared for Kenai National Wildlife Refuge and adjacent lands, 2 million and 2.5 million acres respectively. The refuge lies within the middle boreal sub zone of south central Alaska. Seven major classes and sixteen subclasses were recognized: forest (closed needleleaf, needleleaf woodland, mixed); deciduous scrub (lowland and montane, subalpine); dwarf scrub (dwarf shrub tundra, lichen tundra, dwarf shrub and lichen tundra, dwarf shrub peatland, string bog/wetlands); herbaceous (graminoid meadows and marshes); scarcely vegetated areas ; water (clear, moderately turbid, highly turbid); and glaciers. The methodology employed a cluster-block technique. Sample areas were described based on a combination of helicopter-ground survey, aerial photo interpretation, and digital Landsat data. Major steps in the Landsat analysis involved: preprocessing (geometric connection), spectral class labeling of sample areas, derivation of statistical parameters for spectral classes, preliminary classification of the entree study area using a maximum-likelihood algorithm, and final classification through ancillary information such as digital elevation data. The vegetation map (scale 1:250,000) was a pioneering effort since there were no intermediate-sclae maps of the area. Representative of distinctive regional patterns, the map was suitable for use in comprehensive conservation planning and wildlife management.

  15. Sediment dynamics in restored riparian forest with different widths and agricultural surroundings

    NASA Astrophysics Data System (ADS)

    Stucchi Boschi, Raquel; Simões da Silva, Laura; Ribeiro Rodrigues, Ricardo; Cooper, Miguel

    2016-04-01

    The riparian forests are essential to maintaining the quality of water resources, aquifer recharge and biodiversity. Due to the ecological services provided by riparian forests, these areas are considered by the law as Permanent Preservation Areas, being mandatory maintenance and restoration. However, the obligation of restoration and the extent of the Permanent Preservation Areas as defined by the Brazilian Forest Code, based on water body width, elucidates the lack of accurate scientific data on the influence of the size of the riparian forest in maintaining their ecological functions, particularly regarding the retention of sediments. Studies that evaluate the ideal width of riparian forests to guarantee their ecological functions are scarce and not conclusive, especially when we consider newly restored forests, located in agricultural areas. In this study, we investigate the dynamics of erosion and sedimentation in restored riparian forests with different widths situated in agricultural areas. The two study areas are located in a Semideciduous Tropical Forest inserted in sugarcane landscapes of São Paulo state, Brazil. The installed plots had 60 and 100 m in length and the riparian forest has a width of 15, 30 and 50 m. The characteristics of the sediments inside the plots were evaluated by detailed morphological and micromorphological studies as well as physical characterization. The dynamics of deposition and the amount of deposited sediments have been assessed with graded metal stakes partially buried inside the plots. The intensity, frequency and distribution of rainfall, as well as the occurrence of extreme events, have been evaluated by data collected from rain gauges installed in the areas. We expect that smaller widths are not able to retain sediments originated from the adjacent sugarcane areas. We also believe that extreme events are responsible for generating most of the sediments. The results will be important to support the discussion about an

  16. Factors regulating benthic food chains in tropical river deltas and adjacent shelf areas

    NASA Astrophysics Data System (ADS)

    Alongi, D. M.; Robertson, A. I.

    1995-09-01

    Benthic food chains of the Amazon (Brazil) and Fly (Papua New Guinea) river deltas and adjacent shelves are compared. Abundance patterns of the major trophic groups (bacteria, meiofauna, and macroinfauna) are similar between regions, with very low densities, or the absence of benthos, within and near the deltas. For muds in the more quiescent areas, benthic abundance and productivity are highest, commonly coinciding with maximum pelagic primary production. Episodes of physical disturbance, erratic food supply, and dilution of river-derived, particulate organic matter foster the development of opportunistic benthic communities of variable diversity and low biomass, dominated by bacteria. These pioneering assemblages are the main food of penaeid shrimp, which dominate the demersal trawl fisheries of both fluvial-dominated regions.

  17. Selected ground-water information for the Pasco basin and adjacent areas, Washington, 1986-1989

    USGS Publications Warehouse

    Drost, B.W.; Schurr, K.M.; Lum, W. E.

    1989-01-01

    The U.S. Geological Survey, in cooperation with the United States Department of Energy, conducted a study of the Pasco basin and adjacent areas, Washington, in support of the Basalt Waste Isolation Project at the Hanford site, Washington. The purpose of the study was to develop a data set that would help define the groundwater-flow system of the Pasco Basin. This report contains the basic data, without interpretation, that were collected from the start of the project in February 1986 through January 1989. Information presented is from the U.S. Bureau of Reclamation, State of Washington Department of Ecology , US Army Corps of Engineers, Kennewick Irrigation District, and the Survey, and consists of well location and construction data, records of water levels in the wells, and aquifer designations for each well. The aquifer designation represents the geohydrologic unit to which the well is reported to be open. (USGS)

  18. Study of Local Seismic Events in Lithuania and Adjacent Areas Using Data from the PASSEQ Experiment

    NASA Astrophysics Data System (ADS)

    Janutyte, Ilma; Kozlovskaya, Elena; Motuza, Gediminas

    2013-05-01

    The territory of Lithuania and adjacent areas of the East European Craton have always been considered a region of low seismicity. Two recent earthquakes with magnitudes of more than 5 in the Kaliningrad District (Russian Federation) on 21 September 2004 motivated re-evaluation of the seismic hazard in Lithuania and adjacent territories. A new opportunity to study seismicity in the region is provided by the PASSEQ (Pasive Seismic Experiment) project that aimed to study the lithosphere-asthenosphere structure around the Trans-European Suture Zone. Twenty-six seismic stations of the PASSEQ temporary seismic array were installed in the territory of Lithuania. The stations recorded a number of local and regional seismic events originating from Lithuania and adjacent areas. This data can be used to answer the question of whether there exist seismically active tectonic zones in Lithuania that could be potentially hazardous for critical industrial facilities. Therefore, the aim of this paper is to find any natural tectonic seismic events in Lithuania and to obtain more general view of seismicity in the region. In order to do this, we make a manual review of the continuous data recorded by the PASSEQ seismic stations in Lithuania. From the good quality data, we select and relocate 45 local seismic events using the well-known LocSAT and VELEST location algortithms. In order to discriminate between possible natural events, underwater explosions and on-shore blasts, we analyse spatial distribution of epicenters and temporal distribution of origin times and perform both visual analysis of waveforms and spectral analysis of recordings. We show that the relocated seismic events can be grouped into five clusters (groups) according to their epicenter coordinates and origin and that several seismic events might be of tectonic origin. We also show that several events from the off-shore region in the Baltic Sea (at the coasts of the Kaliningrad District of the Russian Federation) are

  19. Factors affecting songbird nest survival in riparian forests in a Midwestern agricultural landscape

    USGS Publications Warehouse

    Peak, R.G.; Thompson, F. R.; Shaffer, T.L.

    2004-01-01

    We investigated factors affecting nest success of songbirds in riparian forest and buffers in northeastern Missouri. We used an information-theoretic approach to determine support for hypotheses concerning effects of nest-site, habitat-patch, edge, and temporal factors on nest success of songbirds in three narrow (55DS95 m) and three wide (400DS530 m) riparian forests with adjacent grasslandDSshrub buffer strips and in three narrow and three wide riparian forests without adjacent grasslandDSshrub buffer strips. We predicted that temporal effects would have the most support and that habitat-patch and edge effects would have little support, because nest predation would be great across all sites in the highly fragmented, predominantly agricultural landscape. Interval nest success was 0.404, 0.227, 0.070, and 0.186, respectively, for Gray Catbird (Dumetella carolinensis), Northern Cardinal (Cardinalis cardinalis), Indigo Bunting (Passerina cyanea), and forest interior species pooled (Acadian Flycatcher [Empidonax virescens], Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapillus], and Kentucky Warbler [Oporornis formosus]). The effect of nest stage on nest success had the most support; daily nest success for Gray Catbird and Indigo Bunting were lowest in the laying stage. We found strong support for greater nest success of Gray Catbird in riparian forests with adjacent buffer strips than in riparian forests without adjacent buffer strips. Patch width also occurred in the most supported model for Gray Catbird, but with very limited support. The null model received the most support for Northern Cardinal. Riparian forests provided breeding habitat for areas sensitive forest species and grassland-shrub nesting species. Buffer strips provided additional breeding habitat for grassland-shrub nesting species. Interval nest success for Indigo Bunting and area-sensitive forest species pooled, however, fell well below the level that is likely necessary to balance

  20. Factors affecting songbird nest survival in riparian forests in a midwestern agricultural landscape

    USGS Publications Warehouse

    Peak, R.G.; Thompson, F. R.; Shaffer, T.L.

    2004-01-01

    We investigated factors affecting nest success of songbirds in riparian forest and buffers in northeastern Missouri. We used an information-theoretic approach to determine support for hypotheses concerning effects of nest-site, habitat-patch, edge, and temporal factors on nest success of songbirds in three narrow (55-95 m) and three wide (400-530 m) riparian forests with adjacent grassland-shrub buffer strips and in three narrow and three wide riparian forests without adjacent grassland-shrub buffer strips. We predicted that temporal effects would have the most support and that habitat-patch and edge effects would have little support, because nest predation would be great across all sites in the highly fragmented, predominantly agricultural landscape. Interval nest success was 0.404, 0.227, 0.070, and 0.186, respectively, for Gray Catbird (Dumetella carolinensis), Northern Cardinal (Cardinalis cardinalis), Indigo Bunting (Passerina cyanea), and forest interior species pooled (Acadian Flycatcher [Empidonax virescens], Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapillus], and Kentucky Warbler [Oporornis formosus]). The effect of nest stage on nest success had the most support; daily nest success for Gray Catbird and Indigo Bunting were lowest in the laying stage. We found strong support for greater nest success of Gray Catbird in riparian forests with adjacent buffer strips than in riparian forests without adjacent buffer strips. Patch width also occurred in the most-supported model for Gray Catbird, but with very limited support. The null model received the most support for Northern Cardinal. Riparian forests provided breeding habitat for area-sensitive forest species and grassland-shrub nesting species. Buffer strips provided additional breeding habitat for grassland-shrub nesting species. Interval nest success for Indigo Bunting and area-sensitive forest species pooled, however, fell well below the level that is likely necessary to balance juvenile

  1. Late glacial and early Holocene Landscapes in northern New England and adjacent areas of Canada

    NASA Astrophysics Data System (ADS)

    Davis, R. B.; Jacobson, G. L.

    1985-05-01

    The landscapes of northern New England and adjacent areas of Canada changed greatly between 14,000 and 9000 yr B.P.: deglaciation occurred, sea levels and shorelines shifted, and a vegetational transition from tundra to closed forest took place. Data from 51 14C-dated sites from a range of elevations were used to map ice and sea positions, physiognomic vegetational zones, and the spread of individual tree taxa in the region. A continuum of tundra-woodland-forest passed northeastward and northward without major hesitation or reversal. An increased rate of progression from 11,000 to 10,000 yr B.P. suggests a more rapid warming than in the prior 2000-3000 yr. Elevational gradients controlled the patterns of deglaciation and vegetational change. The earliest spread of tree taxa was via the lowlands of southern Vermont and New Hampshire, and along a coastal corridor in Maine. Only after 12,000 yr B.P. did the taxa spread northward through the rest of the area. Different tree species entered the southern part of the area at different times and continued their spread at different rates. The approximate order of arrival follows: poplars (13,000-12,000 yr B.P. in the south), spruces, paper birch, and jack pine, followed by balsam fir and larch, and possibly ironwood, ash, and elm, and somewhat later by oak, maple, white pine, and finally hemlock (10,000-9000 yr B.P. in the south).

  2. Field guide to geologic excursions in southwestern Utah and adjacent areas of Arizona and Nevada

    USGS Publications Warehouse

    Lund, William R.; Lund, William R.

    2002-01-01

    This field guide contains road logs for field trips planned in conjunction with the 2002 Rocky Mountain Section meeting of the Geological Society of America held at Southern Utah University in Cedar City, Utah. There are a total of eight field trips, covering various locations and topics in southwestern Utah and adjacent areas of Arizona and Nevada. In addition, the field guide contains a road log for a set of Geological Engineering Field Camp Exercises run annually by the University of Missouri at Rolla in and around Cedar City. Two of the field trips address structural aspects of the geology in southwestern Utah and northwestern Arizona; two trips deal with ground water in the region; and along with the Field Camp Exercises, one trip, to the Grand Staircase, is designed specifically for educators. The remaining trips examine the volcanology and mineral resources of a large area in and around the Tusher Mountains in Utah; marine and brackish water strata in the Grand Staircase-Escalante National Monument; and the Pine Valley Mountains, which are cored by what may be the largest known laccolith in the world. The "Three Corners" area of Utah, Arizona, and Nevada is home to truly world-class geology, and I am confident that all of the 2002 Rocky Mountain Section meeting attendees will find a field trip suited to their interests.

  3. Mine and prospect map of the Vermilion Cliffs-Paria Canyon Instant Study Area and adjacent wilderness areas, Coconino County, Arizona, and Kane County, Utah

    USGS Publications Warehouse

    Lane, Michael

    1983-01-01

    Vermilion Cliffs-Paria Canyon Instant Study Area and adjacent wilderness areas are mostly in Coconino County Ariz., but extend into Kane County, Utah. The area studied in this report encompasses about 560 mi2 (1,450 km2). The study area includes the established Paria Canyon Primitive and Vermilion Cliffs Natural Areas between U.S. Highways 89 and 89A.

  4. How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas

    PubMed Central

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng

    2015-01-01

    We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15–20 days and an intensity of 25–30 m3/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0–5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311–320 million m3 in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world. PMID:26481290

  5. Hiawatha National Forest Riparian Inventory: A Case Study

    NASA Astrophysics Data System (ADS)

    Abood, S. A.

    2014-12-01

    Riparian areas are dynamic, transitional ecotones between aquatic and terrestrial ecosystems with well-defined vegetation and soil characteristics. Riparian areas offers wildlife habitat and stream water quality, offers bank stability and protects against erosions, provides aesthetics and recreational value, and other numerous valuable ecosystem functions. Quantifying and delineating riparian areas is an essential step in riparian monitoring, riparian management/planning and policy decisions, and in preserving its valuable ecological functions. Previous approaches to riparian areas mapping have primarily utilized fixed width buffers. However, these methodologies only take the watercourse into consideration and ignore critical geomorphology, associated vegetation and soil characteristics. Other approaches utilize remote sensing technologies such as aerial photos interpretation or satellite imagery riparian vegetation classification. Such techniques requires expert knowledge, high spatial resolution data, and expensive when mapping riparian areas on a landscape scale. The goal of this study is to develop a cost effective robust workflow to consistently map the geographic extent and composition of riparian areas within the Hiawatha National Forest boundary utilizing the Riparian Buffer Delineation Model (RBDM) v3.0 and open source geospatial data. This approach recognizes the dynamic and transitional natures of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process and the results would suggests incorporating functional variable width riparian mapping within watershed management planning to improve protection and restoration of valuable riparian functionality and biodiversity.

  6. Using monitoring, LiDAR and MODFLOW to Estimate Hyporheic Fluxes for a Dynamic Large River Riparian Area

    EPA Science Inventory

    In unrevetted reaches, the Willamette River in northwest Oregon is a dynamic anastomosing system. Riparian zones are frequently divided into multiple islands during most of the wet winter season. The dividing stream channels are mostly absent during the dry summer season. This po...

  7. Ground-water resources of southern Tangipahoa Parish and adjacent areas, Louisiana

    USGS Publications Warehouse

    Rapp, T.R.

    1994-01-01

    Groundwater resources in southern Tangipahoa Parish and adjacent areas were studied to determine their potential for development as an alternative to the Mississippi River as a water-supply source for Jefferson Parish. Eight major aquifers consisting of thick sand units that underlie the study area are, in descending order: (1) shallow, (2) upper Ponchatoula, (3) lower Ponchatoula, (4) Abita, (5) Covington, (6) Tchefuncta, (7) Hammond, and (8) Amite. A fault zone, referred to as the Baton Rouge fault, crosses southern Tangipahoa Parish. Analyses of geophysical logs indicated that the deep aquifers south of the fault zone had been displaced from 350 to 400 feet, and that the deeper aquifers were not in hydraulic connection with the flow system north of the fault. The groundwater resources of southeastern Louisiana are immense and the quality of groundwater in Tangipahoa Parish is suitable for most uses. The quality of water in these aquifers generally meets the U.S. Environmental Protection Agency's standards for public supply. The hydrologic system underlying Tangipahoa Parish and adjacent areas in 1990 supplied about 19 Mgal/d of water that was suitable for public supply. However, substantial increases in pumping from the aquifer system would result in renewed water-level declines throughout the hydrologic system until a new equilibrium is established. A test we11 in southern Tangipahoa Parish, penetrated all eight aquifers. Total thickness of freshwater sand beds penetrated by the 3003-ft test hole was more than 1900 ft. Resistivity values from an electric log of the test typically averaged 200 ohm-meters, which indicates that the water has low dissolved-solids and chloride concentrations. An analysis of the Abita aquifer at Ruddock in St. John the Baptist Parish, for two of three hypothetical well fields, indicated that for a hypothetical we11 field with a pumping rate of 112 Mgal/d, the freshwater/saltwater interface could arrive at the outer perimeter we11 in

  8. Predicting abundance of desert riparian birds: validation and calibration of the Effective Area Model.

    PubMed

    Brand, L Arriana; Noon, Barry R; Sisk, Thomas D

    2006-06-01

    Reliable prediction of the effects of landscape change on species abundance is critical to land managers who must make frequent, rapid decisions with long-term consequences. However, due to inherent temporal and spatial variability in ecological systems, previous attempts to predict species abundance in novel locations and/or time frames have been largely unsuccessful. The Effective Area Model (EAM) uses change in habitat composition and geometry coupled with response of animals to habitat edges to predict change in species abundance at a landscape scale. Our research goals were to validate EAM abundance predictions in new locations and to develop a calibration framework that enables absolute abundance predictions in novel regions or time frames. For model validation, we compared the EAM to a null model excluding edge effects in terms of accurate prediction of species abundance. The EAM outperformed the null model for 83.3% of species (N=12) for which it was possible to discern a difference when considering 50 validation sites. Likewise, the EAM outperformed the null model when considering subsets of validation sites categorized on the basis of four variables (isolation, presence of water, region, and focal habitat). Additionally, we explored a framework for producing calibrated models to decrease prediction error given inherent temporal and spatial variability in abundance. We calibrated the EAM to new locations using linear regression between observed and predicted abundance with and without additional habitat covariates. We found that model adjustments for unexplained variability in time and space, as well as variability that can be explained by incorporating additional covariates, improved EAM predictions. Calibrated EAM abundance estimates with additional site-level variables explained a significant amount of variability (P < 0.05) in observed abundance for 17 of 20 species, with R2 values >25% for 12 species, >48% for six species, and >60% for four species

  9. Ground-water hydrology of Pahvant Valley and adjacent areas, Utah

    USGS Publications Warehouse

    1990-01-01

    The primary ground-water reservoir in Pahvant Valley and adjacent areas is in the unconsolidated basin fill and interbedded basalt. Recharge in 1959 was estimated to be about 70,000 acre-feet per year and was mostly by seepage from streams, canals, and unconsumed irrigation water and by infiltration of precipitation. Discharge in 1959 was estimated to be about 109,000 acre-feet and was mostly from springs, evapotranspiration, and wells.Water-level declines of more than 50 feet occurred in some areas between 1953 and 1980 because of less-than-normal precipitation and extensive pumping for irrigation. Water levels recovered most of these declines between 1983 and 1986 because of reduced withdrawals and record quantities of precipitation.The quality of ground water in the area west of Kanosh has deteriorated since large ground-water withdrawals began in about 1953. The cause of the deterioration probably is movement of poor quality water into the area from the southwest and possibly the west during periods of large ground-water withdrawals and recycling of irrigation water. The quality of water from some wells has improved since 1983, due to increased recharge and decreased withdrawals for irrigation.Water-level declines of m:>re than 80 feet in some parts of Pahvant Valley are projected if ground-water withdrawals continue for 20 years at the 1977 rate of about 96,000 acre-feet. Rises of as much as 58 feet and declines of as much as 47 feet are projected with withdrawals of 48,000 acre-feet per year for 20 years. The elimination of recharge from the Central Utah Canal is projected to cause water-level declines of up to 8 feet near the canal.

  10. Footprint methods to separate N2O emission rates from adjacent paddock areas

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sandipan; McMillan, Andrew M. S.; Sturman, Andrew P.; Harvey, Mike J.; Laubach, Johannes

    2015-03-01

    Using micrometeorological techniques to measure greenhouse gas emissions from differently treated adjacent plots is a promising avenue to verify the effect of mitigation strategies at the field scale. In pursuing such an approach, it is crucial to accurately characterize the source area of the fluxes measured at each sampling point. Hence, a comprehensive footprint analysis method is required so that emission rates can be obtained for a specific field within a biochemically heterogeneous area. In this study, a footprint analysis method is developed to estimate the emission for an experiment where the flux of N2O is measured from several control and treated plots. The emission rate of an individual plot is estimated using an inverse footprint fraction approach where the footprint fractions are obtained from an analytical footprint model. A numerical solution for obtaining the background flux for such a multiplot measurement system is also provided. Results of the footprint analysis method are assessed, first, by comparing footprint fractions obtained from both an analytical footprint model and a "forward" simulation of a backward Lagrangian stochastic (bLs) model; and second, by comparing the emission rates of a control plot obtained from the footprint analysis method and from the "backward" simulation of the bLs model. It is found that the analytical footprint fractions compare well with the values obtained from the bLs model (correlation coefficient of 0.58 and 0.66 within p value <0.001). An average of 4.3 % of the measured fluxes is found to be contributed by sources outside the measured area and, excluding this outside area contribution to the measured flux, footprint corrected emission rates within the defined domain are found to increase by 2.1 to 5.8 % of the measured flux. Also, the proposed method of emission rate estimation is found to work well under a wide range of atmospheric stability.

  11. An Aerial Radiological Survey of the Las Vegas Strip and Adjacent Areas

    SciTech Connect

    Wasiolek, Piotr

    2009-02-01

    As proficiency training for the Radiological Mapping mission of the Aerial Measuring System (AMS), a survey team from the Remote Sensing Laboratory–Nellis (RSL-Nellis) conducted an aerial radiological survey of the Las Vegas Strip and adjacent areas on December 29, 2008. This survey was one of the bi-annual surveys carried in support of the city of Las Vegas Police Department (LVPD) before significant events on the Las Vegas Strip: e.g., the annual New Year’s Eve and July Fourth celebrations. The AMS operation and appropriate law enforcement agencies selected this area as an appropriate urban location to exercise AMS capability for mapping environmental radiation and searching for man-made radioactive sources. The surveys covered approximately 11 square miles. Each survey required a 2.5-hour-long flight, performed at an altitude of 300 ft above ground level (AGL) at a line spacing of 600 ft. Water line and test line flights are conducted over the Lake Mead and Government Wash areas to determine the non-terrestrial background contributed by aircraft, radon, and cosmic activity, and to determine the altitude-dependent air mass correction. The data were collected by the AMS data acquisition system (REDAR V) using an array of twelve 2" x 4" x 16" sodium iodide (NaI) detectors flown on-board a twin-engine Bell 412 helicopter. Gamma energy spectral data were collected second-by-second over the survey area. This spectral data allows the system to distinguish between natural terrestrial background contributions and man-made radioisotope contributions. Spectral data can also be used to identify specific man-made radioactive isotopes. Data geo-locations were determined with a Real-Time Differential Global Positioning System (RDGPS).

  12. Using Repeated LIDAR to Characterize Topographic Changes in Riparian Areas and Stream Channel Morphology in Areas Undergoing Urban Development: An Accuracy Assessment Guide for Local Watershed Managers

    EPA Science Inventory

    Urban development and the corresponding increases in impervious surfaces associated with that development have long been known to have adverse impacts upon urban riparian systems, water quality and quantity, groundwater recharge, streamflow, and aquatic ecosystem integrity. The ...

  13. 2011 Los Alamos National Laboratory Riparian Inventory Results

    SciTech Connect

    Norris, Elizabeth J.; Hansen, Leslie A.; Hathcock, Charles D.; Keller, David C.; Zemlick, Catherine M.

    2012-03-29

    A total length of 36.7 kilometers of riparian habitat were inventoried within LANL boundaries between 2007 and 2011. The following canyons and lengths of riparian habitat were surveyed and inventoried between 2007 and 2011. Water Canyon (9,669 m), Los Alamos Canyon (7,131 m), Pajarito Canyon (6,009 m), Mortandad Canyon (3,110 m), Two-Mile Canyon (2,680 m), Sandia Canyon (2,181 m), Three-Mile Canyon (1,883 m), Canyon de Valle (1,835 m), Ancho Canyon (1,143 m), Canada del Buey (700 m), Sandia Canyon (221 m), DP Canyon (159 m) and Chaquehui Canyon (50 m). Effluent Canyon, Fence Canyon and Potrillo Canyon were surveyed but no areas of riparian habitat were found. Stretches of inventoried riparian habitat were classified for prioritization of treatment, if any was recommended. High priority sites included stretches of Mortandad Canyon, LA Canyon, Pajarito Canyon, Two-Mile Canyon, Sandia Canyon and Water Canyon. Recommended treatment for high priority sites includes placement of objects into the stream channel to encourage sediment deposition, elimination of channel incision, and to expand and slow water flow across the floodplain. Additional stretches were classified as lower priority, and, for other sites it was recommended that feral cattle and exotic plants be removed to aid in riparian habitat recovery. In June 2011 the Las Conchas Wildfire burned over 150,000 acres of land in the Jemez Mountains and surrounding areas. The watersheds above LA Canyon, Water Canyon and Pajarito Canyon were burned in the Las Conchas Wildfire and flooding and habitat alteration were observed in these canyon bottoms (Wright 2011). Post fire status of lower priority areas may change to higher priority for some of the sites surveyed prior to the Las Conchas Wildfire, due to changes in vegetation cover in the adjacent upland watershed.

  14. Analyzing riparian forest cover changes along the Firniz River in the Mediterranean City of Kahramanmaras in Turkey.

    PubMed

    Akay, Abdullah E; Sivrikaya, Fatih; Gulci, Sercan

    2014-05-01

    Riparian forests adjacent to surface water are important transitional zones which maintain and enrich biodiversity and ensure the sustainability in a forest ecosystem. Also, riparian forests maintain water quality, reduce sediment delivery, enhance habitat areas for aquatic life and wildlife, and provide ecological corridors between the upland and the downstream. However, the riparian ecosystems have been degraded mainly due to human development, forest operations, and agricultural activities. In order to evaluate the impacts of these factors on riparian forests, it is necessary to estimate trends in forest cover changes. This study aims to analyze riparian forest cover changes along the Firniz River located in Mediterranean city of Kahramanmaras in Turkey. Changes in riparian forest cover from 1989 to 2010 have been determined by implementing supervised classification method on a series of Landsat TM imagery of the study area. The results indicated that the classification process applied on 1989 and 2010 images provided overall accuracy of 80.08 and 75 %, respectively. It was found that the most common land use class within the riparian zone was productive forest, followed by degraded forest, agricultural areas, and other land use classes. The results also indicated that the areas of degraded forest and forest openings increased, while productive forest and agricultural areas decreased between the years of 1989 and 2010. The amount of agricultural areas decreased due to the reduction in the population of rural people. According to these results, it can be concluded that special forest management and operation techniques should be implemented to restore the forest ecosystem in riparian areas.

  15. Hydrology and snowmelt simulation of Snyderville Basin, Park City, and adjacent areas, Summit County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.; Mason, James L.; Susong, David D.

    1998-01-01

    Increasing residential and commercial development is placing increased demands on the ground- and surface-water resources of Snyderville Basin, Park City, and adjacent areas in the southwestern corner of Summit County, Utah. Data collected during 1993-95 were used to assess the quantity and quality of the water resources in the study area.Ground water within the study area is present in consolidated rocks and unconsolidated valley fill. The complex geology makes it difficult to determine the degree of hydraulic connection between different blocks of consolidated rocks. Increased ground-water withdrawal during 1983- 95 generally has not affected ground-water levels. Ground-water withdrawal in some areas, however, caused seasonal fluctuations and a decline in ground-water levels from 1994 to 1995, despite greater-than-normal recharge in the spring of 1995.Ground water generally has a dissolved-solids concentration that ranges from 200 to 600 mg/L. Higher sulfate concentrations in water from wells and springs near Park City and in McLeod Creek and East Canyon Creek than in other parts of the study area are the result of mixing with water that discharges from the Spiro Tunnel. The presence of chloride in water from wells and springs near Park City and in streams and wells near Interstate Highway 80 is probably caused by the dissolution of applied road salt. Chlorofluorocarbon analyses indicate that even though water levels rise within a few weeks of snowmelt, the water took 15 to 40 years to move from areas of recharge to areas of discharge.Water budgets for the entire study area and for six subbasins were developed to better understand the hydrologic system. Ground-water recharge from precipitation made up about 80 percent of the ground-water recharge in the study area. Ground-water discharge to streams made up about 40 percent of the surface water in the study area and ground-water discharge to springs and mine tunnels made up about 25 percent. Increasing use of

  16. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park

    NASA Astrophysics Data System (ADS)

    Muñoz-Carpena, R.; Ritter, A.; Li, Y. C.

    2005-11-01

    The extensive eastern boundary of Everglades National Park (ENP) in south Florida (USA) is subject to one of the most expensive and ambitious environmental restoration projects in history. Understanding and predicting the water quality interactions between the shallow aquifer and surface water is a key component in meeting current environmental regulations and fine-tuning ENP wetland restoration while still maintaining flood protection for the adjacent developed areas. Dynamic factor analysis (DFA), a recent technique for the study of multivariate non-stationary time-series, was applied to study fluctuations in groundwater quality in the area. More than two years of hydrological and water quality time series (rainfall; water table depth; and soil, ground and surface water concentrations of N-NO 3-, N-NH 4+, P-PO 43-, Total P, F -and Cl -) from a small agricultural watershed adjacent to the ENP were selected for the study. The unexplained variability required for determining the concentration of each chemical in the 16 wells was greatly reduced by including in the analysis some of the observed time series as explanatory variables (rainfall, water table depth, and soil and canal water chemical concentration). DFA results showed that groundwater concentration of three of the agrochemical species studied (N-NO 3-, P-PO 43-and Total P) were affected by the same explanatory variables (water table depth, enriched topsoil, and occurrence of a leaching rainfall event, in order of decreasing relative importance). This indicates that leaching by rainfall is the main mechanism explaining concentration peaks in groundwater. In the case of N-NH 4+, in addition to leaching, groundwater concentration is governed by lateral exchange with canals. F -and Cl - are mainly affected by periods of dilution by rainfall recharge, and by exchange with the canals. The unstructured nature of the common trends found suggests that these are related to the complex spatially and temporally varying

  17. Hydrogeology of the Coconino Plateau and adjacent areas, Coconino and Yavapai Counties, Arizona

    USGS Publications Warehouse

    Bills, Donald J.; Flynn, Marilyn E.; Monroe, Stephen A.

    2007-01-01

    Two large, regional ground-water flow systems occur in the Coconino Plateau and adjacent areas: the C aquifer and the Redwall-Muav aquifer. The C aquifer occurs mainly in the eastern and southern parts of the 10,300-square-mile Coconino Plateau study area, and the Redwall-Muav aquifer underlies the entire study area. The C aquifer is a water-table aquifer for most of its occurrence with depths to water that range from a few hundred feet to more than 1,500 feet. In the western part of the Coconino Plateau study area, the C aquifer is dry except for small localized perched water-bearing zones decoupled from the C aquifer to the east. The Redwall-Muav aquifer underlies the C aquifer and ranges from at least 3,000 feet below land surface in the western part of the Coconino Plateau study area to more than 3,200 feet below land surface in the eastern part of the study area. The Redwall-Muav aquifer is a confined aquifer for most of its occurrence with hydraulic heads of several hundred to more than 500 feet above the top of the aquifer in the western part of the study area and more than 2,000 feet above the top of the aquifer in the eastern part of the study area near Flagstaff. In the eastern and northeast parts of the area, the C aquifer and the Redwall-Muav aquifer are in partial hydraulic connection through faults and other fractures. The water discharging from the two aquifers on the Coconino Plateau study area is generally of good quality for most intended uses. Water from sites in the lower Little Colorado River Canyon had high concentrations of most trace elements relative to other springs, rivers, and streams in the study area. Concentrations of barium, arsenic, uranium, and lead, and gross alpha radioactivity were greater than U.S. Environmental Protection Agency Maximum Contaminant Levels for drinking water at some sites. Ground water discharging to most springs, streams, and wells on the Coconino Plateau and in adjacent areas is a calcium magnesium

  18. Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas

    SciTech Connect

    Hackett, W.R.; Smith, R.P.

    1994-12-01

    Potential volcanic hazards are assessed, and hazard zone maps are developed for the Idaho National Engineering Laboratory (INEL) and adjacent areas. The basis of the hazards assessment and mapping is the past volcanic history of the INEL region, and the apparent similarity of INEL volcanism with equivalent, well-studied phenomena in other regions of active volcanism, particularly Hawaii and Iceland. The most significant hazards to INEL facilities are associated with basaltic volcanism, chiefly lava flows, which move slowly and mainly threaten property by inundation or burning. Related hazards are volcanic gases and tephra, and ground disturbance associated with the ascent of magma under the volcanic zones. Several volcanic zones are identified in the INEL area. These zones contain most of the volcanic vents and fissures of the region and are inferred to be the most probable sites of future INEL volcanism. Volcanic-recurrence estimates are given for each of the volcanic zones based on geochronology of the lavas, together with the results of field and petrographic investigations concerning the cogenetic relationships of INEL volcanic deposits and associated magma intrusion. Annual probabilities of basaltic volcanism within the INEL volcanic zones range from 6.2 {times} 10{sup {minus}5} per year (average 16,000-year interval between eruptions) for the axial volcanic zone near the southern INEL boundary and the Arco volcanic-rift zone near the western INEL boundary, to 1 {times} 10{sup {minus}5} per year (average 100,000-year interval between eruptions) for the Howe-East Butte volcanic rift zone, a geologically old and poorly defined feature of the central portion of INEL. Three volcanic hazard zone maps are developed for the INEL area: lava flow hazard zones, a tephra (volcanic ash) and gas hazard zone, and a ground-deformation hazard zone. The maps are useful in land-use planning, site selection, and safety analysis.

  19. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  20. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  1. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  2. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  3. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  4. Statistical summaries of streamflow in Montana and adjacent areas, water years 1900 through 2002

    USGS Publications Warehouse

    McCarthy, Peter M.

    2005-01-01

    In response to the need to have more current information about streamflow characteristics in Montana, the U.S. Geological Survey, in cooperation with the Montana Department of Environmental Quality, Confederated Salish and Kootenai Tribes, and Bureau of Land Management, conducted a study to analyze streamflow data. Updated statistical summaries of streamflow characteristics are presented for 286 streamflow-gaging sites in Montana and adjacent areas having 10 or more years of record for water years 1900 through 2002. Data include the magnitude and probability of annual low and high flow, the magnitude and probability of low flow for three seasons (March-June, July-October, and November-February), flow duration of the daily mean discharge, and the monthly and annual mean discharges. For streamflow-gaging stations where 20 percent or more of the contributing drainage basin is affected by dams or other large-scale human modification, streamflow is considered regulated. Separate streamflow characteristics are presented for the unregulated and regulated periods of record for sites with sufficient data.

  5. Geochemistry and hydrology of thermal springs in the Idaho Batholith and adjacent areas, central Idaho

    USGS Publications Warehouse

    Young, H.W.

    1985-01-01

    The occurrence of nature of thermal springs in the Idaho batholith and adjacent areas suggest a relation between structural controls and deeply circulating hot-water systems. Springs issuing from granitic rocks are associated mostly with major regional fault structures. Springs issuing from other rocks probably are related to local faulting. Individual spring flows and water temperatures are variable and range from less than 1 gallon per minute to 2,710 gallons per minute and from 20.5 degrees to 94.0 degrees Celsius. Annual spring discharge is at least 27,000 acre-feet; heat discharges convectively is estimated to be 5.0 x 107 calories per second. Thermal springs discharge relatively dilute water; dissolved solids range from 103 to 839 milligrams per liter. The chemical quality of the water suggests deep circulation of meteoric water. Estimated reservoir temperatures are generally less than 100 degrees Celsius, but temperatures for several springs exceed 150 degrees Celsius. Stable-isotope data suggest that most of the thermal water is not derived from current precipitation. Carbon-14 values indicate that thermal waters are old; apparent residence times range from 9,000 to more than 40,000 years.

  6. Generalizing riparian hydrologic function in a heterogeneous landscape, Western Boreal Plain, Alberta, Canada.

    NASA Astrophysics Data System (ADS)

    Devito, K.; Brown, S.; Hairabedian, M.; Landhäusser, S. M.; Mendoza, C. A.; Petrone, R.; Redding, R.; Riddell, J.; Silins, U.; Smerdon, B.; Snedden, J.

    2009-05-01

    The Western Boreal Plain (WBP) eco-region of western Canada is experiencing unprecedented development for forest, oil and gas resources stressing the need to assess the role and relative effectiveness of riparian areas in mitigating the impacts of land use changes on water quantity and quality. We compare findings from local scale transect studies across differing surficial geology at the Utikuma Region Study Area (URSA) to characterize the variability in hydrological and biogeochemical processes of riparian areas located on major landforms and landscape positions typical of the WBP. Within the study region, the recurring role of riparian areas on hydrological linkages from uplands to aquatic systems was removal of soil water and groundwater by vegetation and translocation of water to adjacent hillslopes regardless of groundwater function. Water table depressions at the base of hillslopes were commonly observed. The sub-humid climate and deep and heterogeneous surficial deposits result in minimal upland runoff and complex surface -groundwater interactions. Aquatic-riparian flow reversals and losing conditions (water table gradients from aquatic to upland regions) were common and perched stream, pond and wetland systems were observed in areas of contrasting soil texture. The type and seasonality of flow path and variability in riparian function were related to interactions between sub-humid climate, surficial geologic landforms (texture) and topographic position within these landforms. Riparian functions were highly variable in coarse textured outwash landforms and influenced by regional-scale flow system and seasonal freezing. Riparian interactions on fined grained lacustrine plain landscapes were largely restricted to near surface discharge and recharge flow through. In contrast, on poorly drained and mixed textured moraine landforms, riparian systems were often isolated or interacted with recharge or perched flow systems. Our findings not only point to the need

  7. Development and Evaluation of a Riparian Buffer Mapping Tool

    USGS Publications Warehouse

    Milheim, Lesley E.; Claggett, Peter R.

    2008-01-01

    Land use and land cover within riparian areas greatly affect the conditions of adjacent water features. In particular, riparian forests provide many environmental benefits, including nutrient uptake, bank stabilization, steam shading, sediment trapping, aquatic and terrestrial habitat, and stream organic matter. In contrast, residential and commercial development and associated transportation infrastructure increase pollutant and nutrient loading and change the hydrologic characteristics of the landscape, thereby affecting both water quality and habitat. Restoring riparian areas is a popular and cost effective restoration technique to improve and protect water quality. Recognizing this, the Chesapeake Executive Council committed to restoring 10,000 miles of riparian forest buffers throughout the Chesapeake Bay watershed by the year 2010. In 2006, the Chesapeake Executive Council further committed to 'using the best available...tools to identify areas where retention and expansion of forests is most needed to protect water quality'. The Chesapeake Bay watershed encompasses 64,000 square miles, including portions of six States and Washington, D.C. Therefore, the interpretation of remotely sensed imagery provides the only effective technique for comprehensively evaluating riparian forest protection and restoration opportunities throughout the watershed. Although 30-meter-resolution land use and land cover data have proved useful on a regional scale, they have not been equally successful at providing the detail required for local-scale assessment of riparian area characteristics. Use of high-resolution imagery (HRI) provides sufficient detail for local-scale assessments, although at greater cost owing to the cost of the imagery and the skill and time required to process the data. To facilitate the use of HRI for monitoring the extent of riparian forest buffers, the U.S. Forest Service and the U.S. Geological Survey Eastern Geographic Science Center funded the

  8. Comparison of some quality properties of soils around land-mined areas and adjacent agricultural fields.

    PubMed

    Ozturkmen, Ali Rıza; Kavdir, Yasemin

    2012-03-01

    When agricultural lands are no longer used for agriculture and allowed to recover its natural vegetation, soil organic carbon can accumulate in the soil. Measurements of soil organic carbon and aggregate stability changes under various forms of land use are needed for the development of sustainable systems. Therefore, comparison of soil samples taken from both agricultural and nearby area close to land-mined fields where no agricultural practices have been done since 1956 can be a good approach to evaluate the effects of tillage and agriculture on soil quality. The objective of this study was to compare tillage, cropping and no tillage effects on some soil-quality parameters. Four different locations along the Turkey-Syria border were selected to determine effects of tillage and cropping on soil quality. Each location was evaluated separately because of different soil type and treatments. Comparisons were made between non-tilled and non-cropped fallow since 1956 and adjacent restricted lands that were tilled about every 2 years but not planted (T) or adjacent lands tilled and planted with wheat and lentil (P). Three samples were taken from the depths of 0-20 and 20-40 cm each site. Soil organic carbon (SOC), pH ,electrical conductivity, water soluble Ca(++), Mg(++), CO₃⁻² and HCO₃⁻, extractable potassium (K(+)) and sodium (Na(+)), soil texture, ammonium (NH₄⁺-N) and nitrate (NO(3)-N), extractable phosphorous and soil aggregate stability were determined. While the SOC contents of continuous tillage without cropping and continuous tillage and cropping were 2.2 and 11.6 g kg(-1), respectively, it was 30 g kg(-1) in non-tilled and non-planted site. Tillage of soil without the input of any plant material resulted in loss of carbon from the soil in all sites. Soil extractable NO(3)-N contents of non-tilled and non-cropped sites were greatest among all treatments. Agricultural practices increased phosphorus and potassium contents in the soil profile. P(2)O(5

  9. Off-Stream Watering Systems and Partial Barriers as a Strategy to Maximize Cattle Production and Minimize Time Spent in the Riparian Area

    PubMed Central

    Rawluk, Ashley A.; Crow, Gary; Legesse, Getahun; Veira, Douglas M.; Bullock, Paul R.; González, Luciano A.; Dubois, Melanie; Ominski, Kim H.

    2014-01-01

    Simple Summary The implementation of off-stream waterers (OSW) may reduce the amount of time cattle spend in riparian areas, thus minimizing impacts such as removal of vegetation, soil compaction, and deterioration in water quality. Furthermore, when used with natural barriers as a partial exclusion method, these management strategies may offer a cost-effective alternative to completely excluding cattle via streambank fencing. This study was conducted to determine the impact of OSW and barriers on animal performance and watering behavior. The presence of OSW had no significant effect on cow and calf weights averaged over the grazing season. Although the results were not consistent over the periods and locations, the data provided some indication of the efficacy of the natural barriers on deterring cattle from the riparian area. Cattle watered at the OSW when available, but they did not use the OSW exclusively. The observed inconsistency may, in part, be attributed to the environmental conditions present during this field trial. Abstract A study was conducted in 2009 at two locations in Manitoba (Killarney and Souris), Canada to determine the impact of off-stream waterers (OSW) with or without natural barriers on (i) amount of time cattle spent in the 10 m buffer created within the riparian area, referred to as the riparian polygon (RP), (ii) watering location (OSW or stream), and (iii) animal performance measured as weight gain. This study was divided into three 28-day periods over the grazing season. At each location, the pasture—which ranged from 21.0 ha to 39.2 ha in size—was divided into three treatments: no OSW nor barriers (1CONT), OSW with barriers along the stream bank to deter cattle from watering at the stream (2BARR), and OSW without barriers (3NOBARR). Cattle in 2BARR spent less time in the RP in Periods 1 (p = 0.0002), 2 (p = 0.1116), and 3 (p < 0.0001) at the Killarney site compared to cattle in 3NOBARR at the same site. Cattle in 2BARR at the

  10. Geologic map of Colorado National Monument and adjacent areas, Mesa County, Colorado

    USGS Publications Warehouse

    Scott, Robert B.; Harding, Anne E.; Hood, William C.; Cole, Rex D.; Livaccari, Richard F.; Johnson, James B.; Shroba, Ralph R.; Dickerson, Robert P.

    2001-01-01

    New 1:24,000-scale geologic mapping in the Colorado National Monument Quadrangle and adjacent areas, in support of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of and data for the stratigraphy, structure, geologic hazards in the area from the Colorado River in Grand Valley onto the Uncompahgre Plateau. The plateau drops abruptly along northwest-trending structures toward the northeast 800 m to the Redlands area and the Colorado River in Grand Valley. In addition to common alluvial and colluvial deposits, surficial deposits include Holocene and late Pleistocene charcoal-bearing valley-fill deposits, late to middle Pleistocene river-gravel terrace deposits, Holocene to middle Pleistocene younger, intermediate, and old fan-alluvium deposits, late to middle Pleistocene local gravel deposits, Holocene to late Pleistocene rock-fall deposits, Holocene to middle Pleistocene young and old landslide deposits, Holocene to late Pleistocene sheetwash deposits and eolian deposits, and Holocene Cienga-type deposits. Only the lowest part of the Upper Cretaceous Mancos Shale is exposed in the map area near the Colorado River. The Upper and Lower? Cretaceous Dakota Formation and the Lower Cretaceous Burro Canyon Formation form resistant dipslopes in the Grand Valley and a prominent ridge on the plateau. Less resistant strata of the Upper Jurassic Morrison Formation consisting of the Brushy Basin, Salt Wash, and Tidwell Members form slopes on the plateau and low areas below the mountain front of the plateau. The Middle Jurassic Wanakah Formation nomenclature replaces the previously used Summerville Formation. Because an upper part of the Middle Jurassic Entrada Formation is not obviously correlated with strata found elsewhere, it is therefore not formally named; however, the lower rounded cliff former Slickrock Member is clearly present. The Lower Jurassic silica-cemented Kayenta Formation forms the cap rock for the Lower

  11. Groundwater management institutions to protect riparian habitat

    NASA Astrophysics Data System (ADS)

    Orr, Patricia; Colby, Bonnie

    2004-12-01

    Groundwater pumping affects riparian habitat when it causes the water table to drop beyond the reach of riparian plants. Riparian habitat provides services that are not directly traded in markets, as is the case with many environmental amenities. There is no direct market where one may buy or sell the mix of services provided by a riparian corridor. The objective of this article is to review groundwater management mechanisms and assess their strengths and weaknesses for preserving the ecological integrity of riparian areas threatened by groundwater pumping. Policy instruments available to those concerned with the effects of groundwater pumping on riparian areas fall into three broad categories: (1) command and control (CAC), (2) incentive-based economic instruments, and (3) cooperative/suasive strategies. The case of the San Pedro River illustrates multiple and overlapping strategies applied in an ongoing attempt to reverse accumulating damage to a riparian ecosystem. Policy makers in the United States can choose among a broad menu of policy options to protect riparian habitat from groundwater pumping. They can capitalize on the clarity of command-and-control strategies, the flexibility and less obtrusive nature of incentive-based economic strategies, and the benefits that collaborative efforts can bring in the form of mutual consideration. While collaborative problem solving and market-based instruments are important policy tools, experience indicates that a well-formulated regulatory structure to limit regional groundwater pumping is an essential component of an effective riparian protection strategy.

  12. Off-Stream Watering Systems and Partial Barriers as a Strategy to Maximize Cattle Production and Minimize Time Spent in the Riparian Area.

    PubMed

    Rawluk, Ashley A; Crow, Gary; Legesse, Getahun; Veira, Douglas M; Bullock, Paul R; González, Luciano A; Dubois, Melanie; Ominski, Kim H

    2014-10-29

    A study was conducted in 2009 at two locations in Manitoba (Killarney and Souris), Canada to determine the impact of off-stream waterers (OSW) with or without natural barriers on (i) amount of time cattle spent in the 10 m buffer created within the riparian area, referred to as the riparian polygon (RP), (ii) watering location (OSW or stream), and (iii) animal performance measured as weight gain. This study was divided into three 28-day periods over the grazing season. At each location, the pasture-which ranged from 21.0 ha to 39.2 ha in size-was divided into three treatments: no OSW nor barriers (1CONT), OSW with barriers along the stream bank to deter cattle from watering at the stream (2BARR), and OSW without barriers (3NOBARR). Cattle in 2BARR spent less time in the RP in Periods 1 (p = 0.0002), 2 (p = 0.1116), and 3 (p < 0.0001) at the Killarney site compared to cattle in 3NOBARR at the same site. Cattle in 2BARR at the Souris site spent more time in the RP in Period 1 (p < 0.0001) and less time in Period 2 (p = 0.0002) compared to cattle in 3NOBARR. Cattle did use the OSW, but not exclusively, as watering at the stream was still observed. The observed inconsistency in the effectiveness of the natural barriers on deterring cattle from the riparian area between periods and locations may be partly attributable to the environmental conditions present during this field trial as well as difference in pasture size and the ability of the established barriers to deter cattle from using the stream as a water source. Treatment had no significant effect (p > 0.05) on cow and calf weights averaged over the summer period. These results indicate that the presence of an OSW does not create significant differences in animal performance when used in extensive pasture scenarios such as those studied within the present study. Whereas the barriers did not consistently discourage watering at the stream, the results provide some indication of the efficacy of the OSW as well as the

  13. The ecology of riparian habitats of the southern California coastal region: A community profile

    SciTech Connect

    Faber, P.M.; Keller, E.; Sands, A.; Massey, B.M. , Mill Valley, CA; Keller , Santa Barbara, CA; Sands , Mill Valley, CA; Massey , Long Beach, CA )

    1989-09-01

    In the 200 years since California's settlement by Europeans, almost every river in southern California has been channelized or dammed to allow development on the floodplains, causing the loss of a highly productive ecosystem. The riparian zone occurs along streambanks where soils are fertile and water is abundant; amphibians, reptiles, birds, and mammals all move back and forth across the riparian zone from streams into adjacent wetland and upland areas. Irreversible alterations of the riparian ecosystem result from the diversion or loss of transported water to the system through diking, damming, channelization, levee building, or road construction. Clearing for crops, grazing, or golf courses is potentially reversible as long as the water supply remains unaltered. Successful restoration work requires early agreement on project goals, site-specific restoration design, correct project implementation, enforcement of permit conditions, a maintenance and management program, and long-range monitoring. 288 refs., 54 figs., 13 tabs.

  14. Water resources of the Rincon and Mesilla Valleys and adjacent areas, New Mexico

    USGS Publications Warehouse

    Wilson, Clyde A.; White, Robert R.; Orr, Brennon R.; Roybal, R. Gary

    1981-01-01

    valleys in the adjacent upland areas. Ground water moves southeastward beneath the West Mesa area, converging with ground-water flow in the southern end of the Mesilla Valley. Good hydraulic connection exists between sediments of the West Mesa and Mesilla Valley areas. Ground water in the southern end of the Jornada del Muerto moves generally to the northwest, converges with south-flowing ground water near Point of Rocks, and moves westward into Rincon Valley sediments near Rincon. A small amount of ground water flows westward from the southern end of the Jornada del Muerto across a subsurface igneous body into the Mesilla Valley. Ground-water discharge occurs throughout the Rincon and Mesilla Valleys as drain flow to the river and evapotranspiration. Dissolved-solids concentrations in the water in the flood-plain alluvium of the Rincon and Mesilla Valleys are generally greater than 1,000 milligrams per liter. A freshwater zone, with dissolved-solids concentrations less than 1,000 milligrams per liter, underlies this thin, slightly saline zone beneath much of the Mesilla Valley. This freshwater zone, occurring in the Santa Fe Group, is surrounded by saline water. Within the study area, major dissolved ions in ground water include sodium, calcium, bicarbonate, and sulfate. The Rio Grande is a gainlng stream in the northern parts of the Rincon and Mesilla Valleys and a losing stream in the southern part of the Mesilla Valley. Gains and losses result from a close interconnection with ground-water flow systems. Large surface-water irrigation allotments increase ground-water recharge. Increased recharge raises ground-water levels and improves shallow ground-water quality adjacent to these recharge areas. Shallow ground-water discharges to drains, which flow into the Rio Grande. Dissolved-solids concentrations in the Rio Grande increase by as much as 60 percent between Caballo Reservoir and the southern end of the study area.

  15. Heat flow distribution and thermal structure of the Philippine Sea Plate and its adjacent areas

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Chen, C.; Liang, Q.; Sun, S.

    2013-12-01

    Research on the present geothermal state is an important way to understand the lithospheric geodynamics. We studied the heat flow (HF) distribution and the geothermal structure of the Philippine Sea Plate (PSP) and its adjacent area (100°E~155°E, 5°S~45°N) surrounded by the East China Sea, South China Sea and the West Pacific Ocean, which is aimed to provide thermal constraints for the dynamic mechanism and tectonic evolution of the PSP. Based on the observed seafloor HF data of the study area with the latest release of CRUST1.0 crustal layered model, the lithospheric geotherm was calculated using 1D steady-state heat conduction equation. However, the obtained numerous geotherms derived from the extrapolation through heat conduction equation strongly depended on the accuracy of the measured HF data, which is limited, unevenly distributed and easily affected by local factors. Therefore, as a meaningful comparison, the temperature distributions at 25 km and 50 km depth inferred from the upper mantle shear wave velocities structure (S2.9EA) are inverted. The HF distribution shows relatively high values in Ryuku Trench and nearby Izu-Boning Trench, where the crust thicken and the mantle uplift obviously as typical transition zones. The Mariana Trench located in the east (southeast) part and the Philippine Trench in the southwest both are with low HF, which is also illustrated in the upper mantle gravity map after temperature correction. The Central Basin Ridge is with unquestionable high HF, being perpendicular to which the value decreasing. The calculated temperature maps (at depth of 25 km and 50 km) by the two methods both present that the temperature in PSP is higher than that in the Western Pacific Ocean and the west Philippine Basin is lower than the east one, which consists well with the crust age. The west half parts both of the Philippine Basin and Parece Vela Basin show low temperature, but high value in Ryuku Trench, Nankai Through, Shikoku Basin, Amami

  16. Induced seismicity caused by hydraulic fracturing in deep geothermal wells in Germany and adjacent areas

    NASA Astrophysics Data System (ADS)

    Plenefisch, Thomas; Brückner, Lisa; Ceranna, Lars; Gestermann, Nicolai; Houben, Georg; Tischner, Torsten; Wegler, Ulrich; Wellbrink, Matthias; Bönnemann, Christian; Bertram, Andreas; Kirschbaum, Bernd

    2016-04-01

    Recently, the BGR has worked out a study on the potential environmental impact caused by hydraulic fracturing or chemical stimulations in deep geothermal reservoirs in Germany and adjacent areas. The investigations and analyses are based on existing studies and information provided by operators. The two environmental impacts being essentially considered in the report are induced seismicity and possible contamination of the groundwater reservoirs which serve for drinking water supply. Altogether, in this study, information on 30 hydraulic frac operations and 26 chemical stimulations including information from neighboring countries were compiled and analyzed. Out of the hydraulic stimulations two thirds were carried out as waterfracs and one third as fracturing with proppants. Parameters used in the study to characterize the induced seismicity are maximum magnitude, number of seismic events, size of the seismically active volume, and the relation of this volume to fault zones and the cap rock, as well as, finally, the impacts at the Earth's surface. The response of the subsurface to hydraulic fracturing is variable: There are some activities, which cause perceptible seismic events, others, where no perceptible but instrumentally detected events occurred, and moreover activities without even any instrumentally detected events. A classification of seismic hazard with respect to tectonic region, geology, or depth of the layer is still difficult, since the number of hydraulic fracturing measures in deep geothermal wells is small making a statistically sound analysis impossible. However, there are some indications, that hydraulic fracturing in granite in tectonically active regions like the Upper Rhine Graben results in comparatively stronger, perceptible seismicity compared to hydraulic fracturing in the sedimentary rocks of the North German basin. The maximum magnitudes of induced earthquakes caused by hydraulic fracturing of deep geothermal wells in Germany are

  17. Anatomy of the Visual Word form Area: Adjacent Cortical Circuits and Long-Range White Matter Connections

    ERIC Educational Resources Information Center

    Yeatman, Jason D.; Rauschecker, Andreas M.; Wandell, Brian A.

    2013-01-01

    Circuitry in ventral occipital-temporal cortex is essential for seeing words. We analyze the circuitry within a specific ventral-occipital region, the visual word form area (VWFA). The VWFA is immediately adjacent to the retinotopically organized VO-1 and VO-2 visual field maps and lies medial and inferior to visual field maps within motion…

  18. Riparian vegetation structure under desertification scenarios

    NASA Astrophysics Data System (ADS)

    Rosário Fernandes, M.; Segurado, Pedro; Jauch, Eduardo; Ferreira, M. Teresa

    2015-04-01

    Riparian areas are responsible for many ecological and ecosystems services, including the filtering function, that are considered crucial to the preservation of water quality and social benefits. The main goal of this study is to quantify and understand the riparian variability under desertification scenario(s) and identify the optimal riparian indicators for water scarcity and droughts (WS&D), henceforth improving river basin management. This study was performed in the Iberian Tâmega basin, using riparian woody patches, mapped by visual interpretation on Google Earth imagery, along 130 Sampling Units of 250 m long river stretches. Eight riparian structural indicators, related with lateral dimension, weighted area and shape complexity of riparian patches were calculated using Patch Analyst extension for ArcGis 10. A set of 29 hydrological, climatic, and hydrogeomorphological variables were computed, by a water modelling system (MOHID), using monthly meteorological data between 2008 and 2014. Land-use classes were also calculated, in a 250m-buffer surrounding each sampling unit, using a classification based system on Corine Land Cover. Boosted Regression Trees identified Mean-width (MW) as the optimal riparian indicator for water scarcity and drought, followed by the Weighted Class Area (WCA) (classification accuracy =0.79 and 0.69 respectively). Average Flow and Strahler number were consistently selected, by all boosted models, as the most important explanatory variables. However, a combined effect of hidrogeomorphology and land-use can explain the high variability found in the riparian width mainly in Tâmega tributaries. Riparian patches are larger towards Tâmega river mouth although with lower shape complexity, probably related with more continuous and almost monospecific stands. Climatic, hydrological and land use scenarios, singly and combined, were used to quantify the riparian variability responding to these changes, and to assess the loss of riparian

  19. Grande Ronde Model Watershed Project; Dark Canyon Riparian Exclosure, Completion Report 2002.

    SciTech Connect

    Kuck, Todd

    2003-03-01

    The Baker Field Office, Vale District Bureau of Land Management (BLM) submitted a project proposal for funding in 2002 through the Grande Ronde Model Watershed Program (GRMWP). The project consisted of constructing two riparian exclosures to prevent livestock grazing in the riparian areas of Dark Canyon and Meadow Creek. The BLM completed the NEPA documentation and supplied the fencing materials. Funding from BPA through the GRMWP was used to complete the construction of the two exclosures. This project was completed in the fall of 2002. The project area is located in Union County, Oregon on BLM managed land adjacent to Dark Canyon and Meadow Creek, T. 3. S., R. 35 E., Section 24 and 25. Section 24 is along Dark Canyon Creek and section 25 is along Meadow Creek. Approximately 0.4 miles of stream would be protected from grazing with the construction of the two exclosures. A two person crew was hired to construct a four-strand barbed wire fence. The fence enclosed the riparian area on both sides of each creek so that no grazing would occur within the riparian area on BLM managed land. Total fence length is approximately 1.25 miles. Materials consisted of metal fence posts, barbed wire, rockjacks, fence stays, and 2 x 4's. The fence was constructed in the fall of 2002. The riparian area is effectively excluded from livestock grazing at this time. The construction of the exclosures should enhance riparian vegetation, increase bank stability, and improve riparian and in-stream habitat by exclusion of livestock in the riparian areas. Monitoring will ensure that the exclosures continues to be effective. Annual monitoring will include photo-points and compliance checks during the grazing season by BLM personnel. The BLM will submit a monitoring report, which includes the results of the annual monitoring, to the GRMWP in years 2005 and 2007. The exclosures do cross the creeks so maintenance may be needed on occasion, especially after high flow events in the creeks. Material

  20. Conodont and Radiolarian Data from the De Long Mountains Quadrangle and Adjacent Areas, Northern Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Harris, Anita G.; Blome, Charles D.; Young, Lorne E.

    2006-01-01

    INTRODUCTION This report presents biostratigraphic data from 289 collections at 189 localities in the De Long Mountains, Misheguk Mountain, and Noatak quadrangles (fig. 1); most of these data have never been previously published. The collections were made during studies of the Red Dog massive sulfide deposit in 1998?2004 and in support of regional mapping projects in 1979, 1981, 1983, and 1997?98. The collections?mostly conodonts and some radiolarians?tightly constrain the age of many stratigraphic units of Devonian through Triassic age exposed within the study area, and provide additional data on the depositional environments and thermal history of these rocks. The data are presented in a series of tables, organized by fossil type, stratigraphic unit, and location. Tables 1?12 contain conodont data, mostly from the De Long Mountains quadrangle. All of these collections were initially examined, or were reevaluated, from 1997 through 2004, and complete faunal lists are given for all samples. Table 13 lists ages and conodont color alteration indices (CAIs) of 27 collections from 24 localities in the Noatak quadrangle; updated faunal lists were not prepared for these samples. Radiolarian data?all from the De Long Mountains quadrangle?are given in table 14; these collections were analyzed between 1998 and 2003. Collection localities are shown in four maps (sheets 1, 2). Map 1 (sheet 1) shows all outcrop samples from the De Long Mountains and western Misheguk Mountain quadrangle (locs. 1-121). Maps 2?4 (sheets 1, 2) show all drill hole sample localities; samples come from the Su-Lik deposit and in and around the Anarraaq deposit (map 2, locs. 122?135), in and adjacent to the Red Dog deposits (Paalaaq, Aqqaluk, Main, and Qanaiyaq) (map 3, locs. 136?158), and from drill holes along the Port Road in the Noatak quadrangle (map 4, locs. 159?160). Map 4 (sheet 2) also shows all outcrop samples from the Noatak quadrangle (locs. 161?189). The text summarizes the lithofacies

  1. RESEARCH SHOWS IMPORTANCE OF RIPARIAN BUFFERS FOR AQUATIC HEALTH

    EPA Science Inventory

    Issue: Excess nitrogen from fertilizer, septic tanks, animal feedlots, and runoff from pavement can threaten aquatic ecosystem health. Riparian buffers -- the vegetated region adjacent to streams and wetlands -- are thought to be effective at intercepting and controlling excess ...

  2. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data

    NASA Astrophysics Data System (ADS)

    Xiang, Longwei; Wang, Hansheng; Steffen, Holger; Wu, Patrick; Jia, Lulu; Jiang, Liming; Shen, Qiang

    2016-09-01

    Understanding groundwater storage (GWS) changes is vital to the utilization and control of water resources in the Tibetan Plateau. However, well level observations are rare in this big area, and reliable hydrology models including GWS are not available. We use hydro-geodesy to quantitate GWS changes in the Tibetan Plateau and surroundings from 2003 to 2009 using a combined analysis of satellite gravity and satellite altimetry data, hydrology models as well as a model of glacial isostatic adjustment (GIA). Release-5 GRACE gravity data are jointly used in a mascon fitting method to estimate the terrestrial water storage (TWS) changes during the period, from which the hydrology contributions and the GIA effects are effectively deducted to give the estimates of GWS changes for 12 selected regions of interest. The hydrology contributions are carefully calculated from glaciers and lakes by ICESat-1 satellite altimetry data, permafrost degradation by an Active-Layer Depth (ALD) model, soil moisture and snow water equivalent by multiple hydrology models, and the GIA effects are calculated with the new ICE-6G_C (VM5a) model. Taking into account the measurement errors and the variability of the models, the uncertainties are rigorously estimated for the TWS changes, the hydrology contributions (including GWS changes) and the GIA effect. For the first time, we show explicitly separated GWS changes in the Tibetan Plateau and adjacent areas except for those to the south of the Himalayas. We find increasing trend rates for eight basins: + 2.46 ± 2.24 Gt/yr for the Jinsha River basin, + 1.77 ± 2.09 Gt/yr for the Nujiang-Lancangjiang Rivers Source Region, + 1.86 ± 1.69 Gt/yr for the Yangtze River Source Region, + 1.14 ± 1.39 Gt/yr for the Yellow River Source Region, + 1.52 ± 0.95 Gt/yr for the Qaidam basin, + 1.66 ± 1.52 Gt/yr for the central Qiangtang Nature Reserve, + 5.37 ± 2.17 Gt/yr for the Upper Indus basin and + 2.77 ± 0.99 Gt/yr for the Aksu River basin. All these

  3. Riparian Wetlands: Mapping

    EPA Science Inventory

    Riparian wetlands are critical systems that perform functions and provide services disproportionate to their extent in the landscape. Mapping wetlands allows for better planning, management, and modeling, but riparian wetlands present several challenges to effective mapping due t...

  4. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1987-01-01

    A study was conducted to evaluate water-resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the hydrogeology of the area. Lead and zinc mining has caused discontinuities and perforations in the confining shale west of the Pennsylvanian-Mississippian geologic contact (referred to as the western area), which have created artificial ground-water recharge and discharge areas. Recharge to the shallow aquifer (rocks of Mississippian age) through collapses, shafts, and drill holes in the shale has caused the formation of a ground-water 'mound' in the vicinity of the Picher Field in Kansas and Oklahoma. Discharge of mine-contaminated ground water to Tar Creek occurs in Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Mining of ore in the shallow aquifer has resulted in extensive fracturing and removal of material, which has created highly transmissive zones and voids and increased ground-water storage properties of the aquifer. In the area east of the Pennsylvanian-Mississippian geologic contact (referred to as the eastern area), fractured rock and tailings on the land surface increased the amount of water available for infiltration to the shallow aquifer; in the western area, tailings on the impermeable shale created artificial, perched aquifer systems that slowly drain to surface streams. Pumping of the deep aquifer (rocks of Cambrian and Ordovician age) by towns and industries, which developed as a result of the mining industry, has resulted in a potential for downward movement of water from the shallow aquifer. The potential is greatest in Ottawa County, Oklahoma. Because of the large volume of water that may be transported from the shallow to the deep aquifer, open drill holes or casings present the greatest contamination hazard to water supplies in the deep aquifer. Mining

  5. Assessing Anthropogenic Influence and Edge Effect Influence on Forested Riparian Buffer Spatial Configuration and Structure: An Example Using Lidar Remote Sensing Methods

    NASA Astrophysics Data System (ADS)

    Wasser, L. A.; Chasmer, L. E.

    2012-12-01

    Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse

  6. Annual ground-water discharge by evapotranspiration from areas of spring-fed riparian vegetation along the eastern margin of Death Valley, 2000-02

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; DeMeo, Guy A.

    2006-01-01

    Flow from major springs and seeps along the eastern margin of Death Valley serves as the primary local water supply and sustains much of the unique habitat in Death Valley National Park. Together, these major spring complexes constitute the terminus of the Death Valley Regional Ground-Water Flow System--one of the larger flow systems in the Southwestern United States. The Grapevine Springs complex is the least exploited for water supply and consequently contains the largest area of undisturbed riparian habitat in the park. Because few estimates exist that quantify ground-water discharge from these spring complexes, a study was initiated to better estimate the amount of ground water being discharged annually from these sensitive, spring-fed riparian areas. Results of this study can be used to establish a basis for estimating water rights and as a baseline from which to assess any future changes in ground-water discharge in the park. Evapotranspiration (ET) is estimated volumetrically as the product of ET-unit (general vegetation type) acreage and a representative ET rate. ET-unit acreage is determined from high-resolution multi-spectral imagery; and a representative ET rate is computed from data collected in the Grapevine Springs area using the Bowen-ratio solution to the energy budget, or from rates given in other ET studies in the Death Valley area. The ground-water component of ET is computed by removing the local precipitation component from the ET rate. Two different procedures, a modified soil-adjusted vegetation index using the percent reflectance of the red and near-infrared wavelengths and land-cover classification using multi-spectral imagery were used to delineate the ET units within each major spring-discharge area. On the basis of the more accurate procedure that uses the vegetation index, ET-unit acreage for the Grapevine Springs discharge area totaled about 192 acres--of which 80 acres were moderate-density vegetation and 112 acres were high

  7. Records of selected wells and lithologic logs of test holes, Hendry County and adjacent areas, Florida

    USGS Publications Warehouse

    Fish, John E.; Causaras, Carmen R.; O'Donnell, T. H.

    1983-01-01

    To provide water-resource information for Hendry County, Florida , geologic test holes were drilled in the surficial aquifer, and an extensive inventory was compiled of wells in the surficial aquifer and deep artesian aquifers. This report provides: (1) records for 788 selected wells and test holes including location , construction, water use, water level, chloride concentration, specific conductance, temperature, yield, hydrogen sulfide, and iron-staining problems; and (2) lithologic logs for 26 test holes ranging in depth from 90 to 650 feet. A few inventoried wells and two test holes are in adjacent parts of Collier or Glades Counties. (USGS)

  8. Riparian evapotranspiration in Nebraska

    USGS Publications Warehouse

    Hall, Brent M.; Rus, David L.

    2013-01-01

    With increasing demands being placed on the water resources of Nebraska, characterizing evapotranspiration (ET) from riparian vegetation has gained importance to water users and managers. This report summarizes and compares the results from several studies of the ET from cottonwood-dominated riparian forests, riparian grasslands, and common reed, Phragmites australis, in Nebraska. Reported results show that the highest seasonal ET amounts were associated with Phragmites australis, followed by riparian forests, with riparian grasslands experiencing the lowest total ET of the studied vegetation communities.

  9. Groundwater nitrate following installation of a vegetated riparian buffer.

    PubMed

    Yamada, Toshiro; Logsdon, Sally D; Tomer, Mark D; Burkart, Michael R

    2007-10-15

    Substantial questions remain about the time required for groundwater nitrate to be reduced below 10 mg L(-1) following establishment of vegetated riparian buffers. The objective of this study was to document changes in groundwater nitrate-nitrogen (NO3-N) concentrations that occurred within a few years of planting a riparian buffer. In 2000 and 2001 a buffer was planted adjacent to a first-order stream in the deep loess region of western Iowa with strips of walnut and cottonwood trees, alfalfa and brome grass, and switch grass. Non-parametric statistics showed significant declines in NO3-N concentrations in shallow groundwater following buffer establishment, especially mid 2003 and later. The dissolved oxygen generally was >5 mg L(-1) beneath the buffer, and neither NO3-N nor DO changed significantly under a non-buffered control area. These short-term changes in groundwater NO3-N provide evidence that vegetated riparian buffers may yield local water-quality benefits within a few years of planting.

  10. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes?

    PubMed Central

    Gray, Claudia L; Slade, Eleanor M; Mann, Darren J; Lewis, Owen T

    2014-01-01

    Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest-dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm-dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the

  11. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes?

    PubMed

    Gray, Claudia L; Slade, Eleanor M; Mann, Darren J; Lewis, Owen T

    2014-04-01

    Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest-dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm-dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the

  12. Methods for evaluating riparian habitats with applications to management

    USGS Publications Warehouse

    Platts, William S.; Armour, C.L.; Booth, G.D.; Bryant, M.; Bufford, J.L.; Cuplin, P.; Jensen, S.; Lienkaemper, G.W.; Minshall, G.W.; Monsen, S.T.; Nelson, R.L.; Sedell, J.R.; Tuhy, J.S.

    1987-01-01

    Riparian area planning and management is a major national issues today--something that should have been the case a century ago. A century of additive effects of land use has resulted in major impacts on many riparian stream habitats and their fisheries, wildlife, and domestic livestock use. Before scientists can evaluate the influences of various land and water uses on riparian environments, they must first understand these environments. This means being able to detect and measure with confidence the natural and artificial variation and instantaneous conditions of the riparian habitat. These conditions must then be related to the production capability of riparian habitat and any extraneous factors affecting this production potential.

  13. Anatomy of the visual word form area: adjacent cortical circuits and long-range white matter connections.

    PubMed

    Yeatman, Jason D; Rauschecker, Andreas M; Wandell, Brian A

    2013-05-01

    Circuitry in ventral occipital-temporal cortex is essential for seeing words. We analyze the circuitry within a specific ventral-occipital region, the visual word form area (VWFA). The VWFA is immediately adjacent to the retinotopically organized VO-1 and VO-2 visual field maps and lies medial and inferior to visual field maps within motion selective human cortex. Three distinct white matter fascicles pass within close proximity to the VWFA: (1) the inferior longitudinal fasciculus, (2) the inferior frontal occipital fasciculus, and (3) the vertical occipital fasciculus. The vertical occipital fasciculus terminates in or adjacent to the functionally defined VWFA voxels in every individual. The vertical occipital fasciculus projects dorsally to language and reading related cortex. The combination of functional responses from cortex and anatomical measures in the white matter provides an overview of how the written word is encoded and communicated along the ventral occipital-temporal circuitry for seeing words.

  14. Depositional history and seismic stratigraphy of Lower Cretaceous rocks in the National Petroleum Reserve in Alaska and adjacent areas

    SciTech Connect

    Molenaar, C.M.

    1989-01-01

    Lower Cretaceous rocks, which are widespread throughout the National Petroleum Reserve in Alaska (NPRA) and adjacent areas north of the Brooks Range, make up the major part of the thick sedimentary fill of the Colville basin. Much seismic and well information obtained since 1974 has aided considerably in understanding these rocks. These data include about 20,000 km of seismic lines, covering much of the NPRA with a grid spacing of 10-20 km, and 28 exploratory wells that bring the total to more than 50 wells in and adjacent to the NPRA. The purpose of this chapter is to interpret the depositional history of Lower Cretaceous rocks in the NPRA and adjacent areas on the basis of the latest seismic and well data and well data and on information from outcrops in the southern part of the Colville basin. The basin geometry and depositional history described in earlier reports are repeated here in the context of the overall Lower Cretaceous depositional history. Well data (including paleontology) and seismic data are used almost exclusively to interpret relations in the northern foothills and coastal plain areas. Surface data and some well data are used in the southern parts of the northern foothills, and surface data are used exclusively to interpret the depositional history in the southern foothills and Brooks Range. The quality of seismic data is fair to good in most of the coastal plain, where the structure is simple. In the northern foothills, tracing seismic reflections is more difficult, especially in the shallower part of the section because of structural complications in the thrust-faulted anticlines. The quality of seismic data across the structurally complex southern foothills area is inadequate to correlate stratigraphic units of the outcrop area of the southern foothills with subsurface units to the north.

  15. Cetacean biomass densities near submarine canyons compared to adjacent shelf/slope areas

    NASA Astrophysics Data System (ADS)

    Kenney, Robert D.; Winn, Howard E.

    1987-02-01

    Estimated cetacean biomass densities in areas of the northeastern U.S. continental shelf edge encompassing major submarine canyons were compared to those in neighboring shelf/slope areas. It was hypothesized that biomass-densities would prove to be higher in the canyon areas: however, the analysis demonstrated significantly lower total cetacean biomass in the canyon areas. When species were analyzed individually, only spotted dolphins ( Stenella spp.) showed a significant difference, with higher densities near the canyons. The canyons are apparently not more important as a cetacean habitat than the shelf break region generally.

  16. Favorable areas for prospecting adjacent to the Roberts Mountains thrust in southern Lander County, Nevada

    USGS Publications Warehouse

    Stewart, John Harris; McKee, Edwin H.

    1968-01-01

    Recent geologic mapping by the U.S. Geological Survey of more than 2,500 square miles of a relatively little-studied part of central Nevada has outlined four areas favorable for the discovery of metallic mineral deposits. In these areas, lower Paleozoic carbonate rocks crop out below the Roberts Mountains thrust, a widespread fault in central and north-central Nevada. These areas have a stratigraphic and structural setting similar to that of the areas where large, open-pit gold deposits have been discovered recently at Carlin and Cortez in north-central Nevada.

  17. Cadmium in the Coastal Upwelling Area Adjacent to the California Mexico Border

    NASA Astrophysics Data System (ADS)

    Segovia-Zavala, J. A.; Delgadillo-Hinojosa, F.; Alvarez-Borrego, S.

    1998-04-01

    Cadmium concentrations ([Cd]) were measured in samples from the water column of the coastal upwelling zone adjacent to the California - Mexico border. Temperature and nutrient distributions showed an intense upwelling event during our sampling. Lowest [Cd] were found at locations offshore (50 km) (0·03-0·058 nM), whereas the maximum concentrations were found inshore (0·14-0·166 nM). Both nutrients and [Cd] were enriched in coastal waters. Our inshore [Cd] values are about 25% of those reported for waters off central California. This is possibly due to the intrusion of oligotrophic waters from the eastern edge of the North Pacific Central Gyre to the Southern California Bight. Multivariate analysis indicates that high [Cd]s were associated with high phytoplankton biomass, nutrients and low temperature. Our data present no evidence of a [Cd] gradient due to the San Diego and Tijuana sewage discharges, which indicates that they maintain a very local effect.

  18. Trace element fingerprinting of cockle (Cerastoderma edule) shells can reveal harvesting location in adjacent areas

    PubMed Central

    Ricardo, Fernando; Génio, Luciana; Costa Leal, Miguel; Albuquerque, Rui; Queiroga, Henrique; Rosa, Rui; Calado, Ricardo

    2015-01-01

    Determining seafood geographic origin is critical for controlling its quality and safeguarding the interest of consumers. Here, we use trace element fingerprinting (TEF) of bivalve shells to discriminate the geographic origin of specimens. Barium (Ba), manganese (Mn), magnesium (Mg), strontium (Sr) and lead (Pb) were quantified in cockle shells (Cerastoderma edule) captured with two fishing methods (by hand and by hand-raking) and from five adjacent fishing locations within an estuarine system (Ria de Aveiro, Portugal). Results suggest no differences in TEF of cockle shells captured by hand or by hand-raking, thus confirming that metal rakes do not act as a potential source of metal contamination that could somehow bias TEF results. In contrast, significant differences were recorded among locations for all trace elements analysed. A Canonical Analysis of Principal Coordinates (CAP) revealed that 92% of the samples could be successfully classified according to their fishing location using TEF. We show that TEF can be an accurate, fast and reliable method to determine the geographic origin of bivalves, even among locations separated less than 1 km apart within the same estuarine system. Nonetheless, follow up studies are needed to determine if TEF can reliably discriminate between bivalves originating from different ecosystems. PMID:26149418

  19. Trace element fingerprinting of cockle (Cerastoderma edule) shells can reveal harvesting location in adjacent areas.

    PubMed

    Ricardo, Fernando; Génio, Luciana; Costa Leal, Miguel; Albuquerque, Rui; Queiroga, Henrique; Rosa, Rui; Calado, Ricardo

    2015-07-07

    Determining seafood geographic origin is critical for controlling its quality and safeguarding the interest of consumers. Here, we use trace element fingerprinting (TEF) of bivalve shells to discriminate the geographic origin of specimens. Barium (Ba), manganese (Mn), magnesium (Mg), strontium (Sr) and lead (Pb) were quantified in cockle shells (Cerastoderma edule) captured with two fishing methods (by hand and by hand-raking) and from five adjacent fishing locations within an estuarine system (Ria de Aveiro, Portugal). Results suggest no differences in TEF of cockle shells captured by hand or by hand-raking, thus confirming that metal rakes do not act as a potential source of metal contamination that could somehow bias TEF results. In contrast, significant differences were recorded among locations for all trace elements analysed. A Canonical Analysis of Principal Coordinates (CAP) revealed that 92% of the samples could be successfully classified according to their fishing location using TEF. We show that TEF can be an accurate, fast and reliable method to determine the geographic origin of bivalves, even among locations separated less than 1 km apart within the same estuarine system. Nonetheless, follow up studies are needed to determine if TEF can reliably discriminate between bivalves originating from different ecosystems.

  20. Hydrogeologic and Biogeochemical Controls on the Fate and Transport of Nitrate and Pesticides in the Riparian Zone of Cow Castle Creek, South Carolina

    NASA Astrophysics Data System (ADS)

    Puckett, L. J.; Hughes, W. B.

    2001-12-01

    Riparian zones often contain large amounts of organic carbon and small concentrations of dissolved oxygen (DO) resulting in reducing conditions that favor removal of nitrate through denitrification, and in some cases pesticides. We investigated the transport and fate of nitrate, several commonly used pesticides, and selected metabolites at a farm in South Carolina adjacent to Cow Castle Creek. Sixteen shallow water-table wells were installed to map the water table and ground water was sampled using 7 multi-port wells installed at depths ranging from 0.5 to 10 m along a 1-km flow system bracketing several types of land use including a cornfield, pine forest, hay field, riparian forest, and the discharge area at Cow Castle Creek. Ground-water recharge dates, based on CFC age dating, were from the mid-to-late 1970s below the riparian zone and Cow Castle Creek indicating a maximum residence time of approximately 23-years. Organic carbon under the riparian zone was as high as 0.97 percent. DO concentrations were variable with the smallest values immediately under the riparian zone. Nitrate-nitrogen concentrations varied over the site from about 28 mg/L immediately down gradient of the cornfield to below detection (<0.05 mg/L) under the hayfield. Large decreases in nitrate-nitrogen were detected at the edge of the riparian zone and immediately below it. Nitrate concentrations initially increased with depth below the riparian zone then decreased again in deeper samples while beneath Cow Castle Creek they varied from 2.8 to 4.7 mg/L. Excess nitrogen gas concentrations, presumably derived from denitrification, varied from 1.4 to 4.1 mg/L under the riparian zone. Atrazine, metolachlor and their metabolites were the most commonly detected pesticides and were generally restricted to samples collected under and adjacent to the cornfield however, there were a few detections of atrazine, simazine, chlorpyrifos, and deethyl atrazine under and adjacent to the riparian zone. Flow

  1. Regional prospectivity of Mesozoic and Tertiary in the eastern Adriatic and adjacent area

    SciTech Connect

    Scott, J.; Dolan, P.; Lunn, G. )

    1988-08-01

    Post-Hercynian deposits in the eastern Adriatic and the adjacent external zones of the Dinarides and Albanian Hellenides may be subdivided into four facies groups. (1) Permian-Lower Triassic clastics and carbonates with some evaporites, (2) Middle Triassic-lower Tertiary carbonate platform facies with associated continental margin deeper marine sequences, (3) Upper Cretaceous-lower Tertiary flysch, and (4) middle Tertiary molasse and postorogenic Neogene sediments. The Permian to lower Tertiary section was deposited during the complex Alpine cycle, while the upper Tertiary section is the product of post-Alpine deposition. This depositional history during markedly different tectonic regimes creates two groups of petroleum plays in the eastern Adriatic: (1) Alpine cycle plays in the Permian to lower Tertiary in the thrust-faulted and folded foreland of Adria and (2) post-Alpine plays in upper Tertiary postorogenic or late synorogenic basins. Around the Adriatic, the post-Alpine plays have so far proved the most successful. Major production occurs in the onshore Po basin and its extension beneath the Adriatic. Some of this production is from deep Alpine-cycle reservoirs, but the bulk is from the upper Tertiary-Quaternary. Similar horizons produce onshore and offshore the central-southern Adriatic coast of Italy. Major Tertiary production also occurs to the northeast in the Pannonian basin of Yugoslavia and Hungary from Miocene and younger sequences. Onshore Albania produces significant quantities of hydrocarbons; although data are scarce, much of this production is presumably from upper Tertiary molasse or lower Tertiary flysch.

  2. 33 CFR 334.1060 - Oakland Outer Harbor adjacent to the Oakland Army Base; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA.... Within 100 feet of the wharves, piers or shore. (b) The regulations. No persons and no vessels or...

  3. 33 CFR 334.1060 - Oakland Outer Harbor adjacent to the Oakland Army Base; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA.... Within 100 feet of the wharves, piers or shore. (b) The regulations. No persons and no vessels or...

  4. An Aerial Radiological Survey of the Yucca Mountain Project Proposed Land Withdrawal and Adjacent Areas

    SciTech Connect

    Craig Lyons, Thane Hendricks

    2006-07-01

    An aerial radiological survey of the Yucca Mountain Project (YMP) proposed land withdrawal was conducted from January to April 2006, and encompassed a total area of approximately 284 square miles (73,556 hectares). The aerial radiological survey was conducted to provide a sound technical basis and rigorous statistical approach for determining the potential presence of radiological contaminants in the Yucca Mountain proposed Land withdrawal area. The survey site included land areas currently managed by the Bureau of Land Management, the U.S. Air Force as part of the Nevada Test and Training Range or the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as part of the Nevada Test Site (NTS). The survey was flown at an approximate ground speed of 70 knots (36 meters per second), at a nominal altitude of 150 ft (46 m) above ground level, along a set of parallel flight lines spaced 250 ft (76 m) apart. The flight lines were oriented in a north-south trajectory. The survey was conducted by the DOE NNSA/NSO Remote Sensing Laboratory-Nellis, which is located in Las Vegas, Nevada. The aerial survey was conducted at the request of the DOE Office of Civilian Radioactive Waste Management. The primary contaminant of concern was identified by YMP personnel as cesium-137 ({sup 137}Cs). Due to the proposed land withdrawal area's proximity to the historical Nuclear Rocket Development Station (NRDS) facilities located on the NTS, the aerial survey system required sufficient sensitivity to discriminate between dispersed but elevated {sup 137}Cs levels from those normally encountered from worldwide fallout. As part of that process, the survey also measured and mapped the exposure-rate levels that currently existed within the survey area. The inferred aerial exposure rates of the natural terrestrial background radiation varied from less than 3 to 22 microroentgens per hour. This range of exposure rates was primarily due to the

  5. Determining Crustal Structure beneath the New Madrid Seismic Zone and Adjacent Areas: Application of a Reverberation-removal Filter

    NASA Astrophysics Data System (ADS)

    Liu, L.; Gao, S. S.; Liu, K. H.

    2015-12-01

    The New Madrid Seismic Zone (NMSZ) and some of the adjacent areas are covered by a low-velocity sedimentary sequence, giving rise to strong reverberations in the P-to-S receiver functions (RFs) and making it difficult to reliably determine crustal thickness and Poisson's ratio using the conventional H-k stacking technique. Here we apply a newly developed technique (Yu et al., 2015; doi: 10.1002/2014JB011610) to effectively remove or reduce the reverberations from the sedimentary layer to obtain more reliable results. Stacking of a total of 38528 radial RFs recorded by 343 stations in the study area shows systematic spatial variations in crustal thickness (H), Vp/Vs ratio and amplitude (R; relative to the direction P) of the converted Moho phases. Our results indicate that the upper Mississippi Embayment (ME), a broad southwest-plunging trough with the thickest sedimentary layer in the study area, is characterized by a thin crustal thickness (~32 km), while adjacent areas have relatively thicker crust (>40 km). This area also possesses relatively large Vp/Vs (>1.85) values, suggesting possible intrusion of mantle-derived mafic rocks. Most part of the Ozark Uplift is characterized by relatively small Vp/Vs (<1.79) values which indicate an overall felsic crust. In contrast to the NMSZ which is part of the Reelfoot rift, the southern Illinois Basin, which is an intracontinental sag basin, is characterized by a crust of about 45 km which is a few km thicker than the surrounding areas, and a normal Vp/Vs, suggesting sharp differences in crustal structure between rift and sag basins.

  6. Gross primary production variability associated with meteorology, physiology, leaf area, and water supply in contrasting woodland and grassland semiarid riparian ecosystems

    NASA Astrophysics Data System (ADS)

    Jenerette, G. D.; Scott, R. L.; Barron-Gafford, G. A.; Huxman, T. E.

    2009-12-01

    Understanding ecosystem-atmosphere carbon exchanges in dryland environments has been more challenging than in mesic environments, likely due to more pronounced nonlinear responses of ecosystem processes to environmental variation. To better understand diurnal to interannual variation in gross primary productivity (GPP) variability, we coupled continuous eddy-covariance derived whole ecosystem gas exchange measurements with an ecophysiologic model based on fundamental principles of diffusion, mass balance, reaction kinetics, and biochemical regulation of photosynthesis. We evaluated the coupled data-model system to describe and understand the dynamics of 3 years of growing season GPP from a riparian grassland and woodland in southern Arizona. The data-model fusion procedure skillfully reproduced the majority of daily variation GPP throughout three growing seasons. While meteorology was similar between sites, the woodland site had consistently higher GPP rates and lower variability at daily and interannual timescales relative to the grassland site. We examined the causes of this variation using a new state factor model analysis that partitioned GPP variation into four factors: meteorology, physiology, leaf area, and water supply. The largest proportion of GPP variation was associated with physiological differences. The woodland showed a greater sensitivity than the grassland to water supply, while the grassland showed a greater sensitivity to leaf area. These differences are consistent with hypotheses of woody species using resistance mechanisms, stomatal regulation, and grassland species using resilience mechanisms, leaf area regulation, in avoiding water stress and have implications for future GPP sensitivity to climate variability following wood-grass transitions.

  7. Potentiometric surface of the Floridan Aquifer, Southwest Florida Water Management District and adjacent areas, September 1978

    USGS Publications Warehouse

    Wolansky, R.M.; Mills, L.R.; Woodham, W.M.; Laughlin, C.P.

    1978-01-01

    A September 1978 potentiometric-surface map depicts the annual high water-level period of the Floridan aquifer in the Southwest Florida Management District. Potentiometric levels increased 10 to 25 feet between May 1978 and September 1978, in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk and Manatee Counties. These areas are widely affected by pumping for irrigation and have the greatest fluctuations in water-levels between the low and high water-level periods. Water-level rises in coastal, northern and southern areas of the Water Management District ranged from 0 to 10 feet. (Woodard-USGS)

  8. Potentiometric surface of Floridan aquifer, Southwest Florida Water Management District and adjacent areas, September 1977

    USGS Publications Warehouse

    Ryder, P.D.; Mills, L.R.; Laughlin, C.P.

    1978-01-01

    A potentiometric-surface map of the Southwest Florida Water Management District depicts the annual high water-level period. Potentiometric levels increased 15 to 30 feet between May 1977 and September 1977 in the citrus and farming sections of southeastern Hillsborough, northern Hardee, and southwestern Polk Counties. These areas are widely affected by pumpage for irrigation and have the greatest range in water-level fluctuations between the low and high water-level periods. Water-level rises in coastal, northern, and southern areas of the Water Management District ranged from 0 to 15 feet. (Woodard-USGS)

  9. Alcohol and Drug Use in Rural Colonias and Adjacent Urban Areas of the Texas Border

    ERIC Educational Resources Information Center

    Spence, Richard T.; Wallisch, Lynn S.

    2007-01-01

    Context: Little is known about substance use and treatment utilization in rural communities of the United States/Mexico border. Purpose: To compare substance use and need and desire for treatment in rural colonias and urban areas of the border. Methods: Interviews were conducted in 2002-2003 with a random sample of adults living in the lower Rio…

  10. Marine Riparian Vegetation Communities of Puget Sound

    DTIC Science & Technology

    2007-02-01

    important wildlife habitats and improvements in water quality. The importance of marine riparian areas typically falls into two categories...qualities. These values overlap. For example, if good water quality were not valued by society, it would likely not be considered an important func...addition to living vegetation, large woody debris (LWD), often derived from riparian forests, is an important part of estuarine and oceanic habitats

  11. Geology of the area adjacent to the Free Enterprise uranium-silver Mine, Boulder District, Jefferson County, Montana

    USGS Publications Warehouse

    Roberts, W.A.; Gude, A.J.

    1952-01-01

    Uranium minerals.occur in pods associated with cryptocrystalline silica, silver minerals, and scattered sulfide mineral grains in a hydrothermal vein that cuts quartz monzonite and alaskite at the Free Enterprise mine, 2 miles west of Boulder, Mont. The Free Enterprise vein is one of many silicified reef-like structures in this area, most of which trend about N. 60° E. The cryptocrystalline silica zones of the area are lenticular and are bordered by an altered zone where quartz monzonite is the wall rock. No alteration was noticed where alaskite is adjacent to silica zones. No uranium minerals were observed at the surface, but radioactivity anomalies were noted at 57 outcrops. Underground mining has shown that leaching by downward percolating waters has removed most of the uranium from the near-surface part of the Free Enterprise vein and probably has enriched slightly, parts of the vein and the adjacent wall rock from the bottom of the leached zone to the ground-water level. It is possible that other veins that show low to moderate radioactivity at the surface may contain significant concentrations of uranium minerals at relatively shallow depth. The quartz monzonite appears to be a more favorable host rock for the cryptocrystalline silica and associated uranium minerals than the alaskite. The alaskite occurs as vertical_dikes plug-like masses, and as irregularly shaped, gently dipping masses that are believed to have been intruded into open fractures formed during the cooling of the quartz monzonite.

  12. Benthic meiofaunal composition and community structure in the Sethukuda mangrove area and adjacent open sea, East coast of India

    NASA Astrophysics Data System (ADS)

    Thilagavathi, Balasubramanaian; Das, Bandana; Saravanakumar, Ayyappan; Raja, Kuzhanthaivel

    2011-06-01

    The ecological aspects of meiofaunal communities in the Muthupettai mangrove forest, East coast of India, has not been investigated in the last two decades. Surface water temperature ranged from 23.5 °C to 31.8 °C. Salinity varied from 24 to 34 ppt, while water pH fluctuated from 7.4 to 8.3. Dissolved oxygen concentration ranged from 3.86 to 5.33 mg/l. Meiofauna analysis in this study identified a total of 106 species from the mangrove and adjacent open sea area of Sethukuda. Among these, 56 species of foraminiferans, 20 species of nematodes, 7 species of harpacticoid copepods, 4 species of ostrocodes, and 2 species of rotifers were identified. Furthermore, a single species was identified from the following groups: ciliophora, cnidaria, gnathostomulida, insecta, propulida, bryozoa and polychaete larvae. Meiofaunal density varied between 12029 to 23493 individuals 10 cm/m2. The diversity index ranged from 3.515 to 3.680, species richness index varied from 6.384 to 8.497, and evenness index varied from 0.839 to 0876 in the mangrove area and adjacent open sea.

  13. Spatial distribution and controlling factors of sedimentary bodies in Jiaozhou Bay and Adjacent Sea Areas, Qingdao

    NASA Astrophysics Data System (ADS)

    Dong, Heping; Li, Guangxue; Li, Shuanglin; Li, Shaoquan; Li, Chun

    2011-06-01

    The distributions of thickness of unconsolidated Quaternary sedimentary layers in Jiaozhou Bay and Qingdao offshore area were studied by using 1079-km high-resolution shallow seismic profiles and drilling core data, and the factors controlling the Quaternary evolution were discussed. The results show that such thickness distributions resulted from the coactions of geologic structures and marine hydrodynamic conditions since the Holocene. The geologic structures controlled the slope deposit, proluvial and fluvial fillings since the late Pleistocene. Holocene marine hydrodynamics eroded away sediments at the bay mouth, and tides carried these eroded materials to the sides of the bay mouth and released them there, forming channel-ridge-alternating geomorphic features. During transgressive processes, the sea level rose rapidly, and insufficient sediment supply and tidal actions yielded the relict sediments in the east of Qingdao offshore area.

  14. Potentiometric surface of Floridan Aquifer, Southwest Florida Water Management District and adjacent areas, May 1979

    USGS Publications Warehouse

    Wolansky, R.M.; Mills, L.R.; Woodham, W.M.; Laughlin, C.P.

    1979-01-01

    A May 1979 potentiometric-surface map depicts the annual low water-level period. Potentiometric levels declined 4 to 21 feet between September 1978 and May 1979, in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk, northwestern DeSoto, and Manatee Counties. Water levels in these areas are widely affected by pumping for irrigation and have the greatest range in fluctuations. Water-level declines ranged from 0 to 6 feet in coastal, northern, and southern areas of the Water Management District. Generally potentiometric levels were higher than previous May levels due to heavy rains in April and May. In parts of Hillsborough, Pasco, and Pinellas Counties, May 1979 potentiometric levels were 18 feet higher than those of September 1978. (USGS)

  15. Variability of community interaction networks in marine reserves and adjacent exploited areas

    USGS Publications Warehouse

    Montano-Moctezuma, G.; Li, H.W.; Rossignol, P.A.

    2008-01-01

    Regional and small-scale local oceanographic conditions can lead to high variability in community structure even among similar habitats. Communities with identical species composition can depict distinct networks due to different levels of disturbance as well as physical and biological processes. In this study we reconstruct community networks in four different areas off the Oregon Coast by matching simulated communities with observed dynamics. We compared reserves with harvested areas. Simulations suggested that different community networks, but with the same species composition, can represent each study site. Differences were found in predator-prey interactions as well as non-predatory interactions between community members. In addition, each site can be represented as a set of models, creating alternative stages among sites. The set of alternative models that characterize each study area depicts a sequence of functional responses where each specific model or interaction structure creates different species composition patterns. Different management practices, either in the past or of the present, may lead to alternative communities. Our findings suggest that management strategies should be analyzed at a community level that considers the possible consequences of shifting from one community scenario to another. This analysis provides a novel conceptual framework to assess the consequences of different management options for ecological communities. ?? 2008 Elsevier B.V. All rights reserved.

  16. A reconnaissance of hydrogeologic conditions in Lehigh Acres and adjacent areas of Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.

    1975-01-01

    Lehigh Acres, a residential community with a population of about 13,500 and comprising an area of about 94 square miles (243 square kilometres) in the eastern part of Lee County, has been under development since 1954. Prior to development the area was poorly drained. By 1974, more than 150 miles (241 kilometres) of drainageways had been constructed to drain the area. The water-bearing formations underlying Lehigh Acres include the water-table, sandstone, lower Hawthorn, and Suwannee aquifers. The water-table aquifer is usually not more than 30 feet (9 metres) thick; it contains water of relatively good quality, except for iron and color. Water levels in this aquifer probably have been affected by construction of drainage canals. The sandstone aquifer, used extensively throughout the area as a source of water supply usually contains water of good quality although the water is hard and in places may contain concentrations of dissolved solids and iron which exceed the recommended limits of the U.S. Public Health Service and the State of Florida for drinking water. The lower Hawthorn and Suwannee aquifers, usually encountered at depths between 440 and 850 feet (135 and 262 metres), contains water with relatively high concentrations of sodium, sulfate, chloride, and dissolved solids. Three streams, the Orange River, Hickey Creek, and Bedman Creek and the canals connected to them, provide drainage of the area. Except for the Orange River, where the water is of good chemical quality, little is known of the water quality. Similarly, little information is available on stream discharge except for the Orange River where the average annual discharge was 41.1 cubic feet per second (11.6 cubic metres per second) between 1935-46. Most lakes and ponds in Lehigh Acres are hydraulically connected to the water-table aquifer such that factors which affect one also affect the other. Theoretical drawdown curves indicate that the drainage canals may affect ground-water levels to a

  17. Survey of roadside alien plants in Hawai`i Volcanoes National Park and adjacent residential areas 2001-2005

    USGS Publications Warehouse

    Bio, Keali'i F.; Pratt, Linda W.; Jacobi, James D.

    2012-01-01

    The sides of all paved roads of Hawai`i Volcanoes National Park (HAVO) were surveyed on foot in 2001 to 2005, and the roadside presence of 240 target invasive and potentially invasive alien plant species was recorded in mile-long increments. Buffer zones 5–10 miles (8–16 km) long along Highway 11 on either side of the Kīlauea and Kahuku Units of the park, as well as Wright Road that passed by the disjunct `Ōla`a Tract Unit, were included in the survey. Highway 11 is the primary road through the park and a major island thoroughfare. Three residential subdivisions adjacent to the park were similarly surveyed in 0.5–1 mile (0.8–1.6 km) intervals in 2003, and data were analyzed separately. Two roads to the east and northeast were also surveyed, but data from these disjunct areas were analyzed separately from park roads. In total, 174 of the target alien species were observed along HAVO roads and buffers, exclusive of residential areas, and the mean number of target aliens per mile surveyed was 20.6. Highway 11 and its buffer zones had the highest mean number of target alien plants per mile (26.7) of all park roads, and the Mauna Loa Strip Road had the lowest mean (11.7). Segments of Highway 11 adjacent to HAVO and Wright Road next to `Ōla`a Tract had mean numbers of target alien per mile (24–47) higher than those of any internal road. Alien plant frequencies were summarized for each road in HAVO. Fifteen new records of vascular plants for HAVO were observed and collected along park roads. An additional 28 alien plant species not known from HAVO were observed along the buffer segments of Highway 11 adjacent to the park. Within the adjacent residential subdivisions, 65 target alien plant species were sighted along roadsides. At least 15 potentially invasive species not currently found within HAVO were observed along residential roads, and several other species found there have been previously eliminated from the park or controlled to remnant populations

  18. Spatio-temporal distributions of chlorofluorocarbons and methyl iodide in the Changjiang (Yangtze River) estuary and its adjacent marine area.

    PubMed

    Yuan, Da; Yang, Gui-Peng; He, Zhen

    2016-02-15

    Temporal and spatial distribution patterns of volatile halogenated organic compounds (VHOCs), such as dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), trichlorotrifluoroethane (CFC-113), and methyl iodide (CH3I), in the Changjiang (Yangtze River) estuary and its adjacent marine area were measured during two cruises from 21 February to 10 March 2014 and from 10 to 21 July 2014. VHOC concentrations showed seasonal variation with higher values during winter. VHOC distributions evidently decreased along the freshwater plume from the river mouth to the open sea and from inshore to offshore regions. VHOC distributions were obviously influenced by the Changjiang runoff, anthropogenic inputs, and biological release of phytoplankton. The study area was a net sink for CFC-12 and CFC-11, but a net source for atmospheric CH3I during the study periods.

  19. Comparative Assessment of Soil Contamination by Lead and Heavy Metals in Riparian and Agricultural Areas (Southern Québec, Canada)

    PubMed Central

    Saint-Laurent, Diane; Hähni, Marlies; St-Laurent, Julien; Baril, Francis

    2010-01-01

    Soils contaminated with hydrocarbons (C10–C50), PAHS, lead and other heavy metals were recently found in the banks of two major rivers in southern Québec. Alluvial soils are contaminated over a distance of 100 kilometers. Eight sampling sites, including some located in agriculture areas (farm woodlots) have been selected to compare air pollution (aerosol fallout and rainout) and river pollution values. The concentrations detected in soil profiles for As, Cd and Pb vary between 3.01 to 37.88 mg kg−1 (As), 0.11 to 0.81 mg kg−1 (Cd) 12.32 to 149.13 mg kg−1 (Pb). These metallic elements are considered highly toxic and can harm wildlife and human health at high levels. The maximum concentration of Pb (149.13 mg kg−1) in soils of the riparian zone is twelve times higher than the average Pb concentration found in a natural state evaluated at 15.3 mg kg−1 (SD 17.5). Pb concentrations in soils of agricultural areas (woodland control sites) range between 12 and 22 mg kg−1, and given that these values are recorded in surrounding cultivated land, the issue of the quality of agricultural products (crops and forage) to feed livestock or destined for human consumption must be further addressed in detail. PMID:20948950

  20. Avian Diversity and Feeding Guilds in a Secondary Forest, an Oil Palm Plantation and a Paddy Field in Riparian Areas of the Kerian River Basin, Perak, Malaysia

    PubMed Central

    Azman, Nur Munira; Latip, Nurul Salmi Abdul; Sah, Shahrul Anuar Mohd; Akil, Mohd Abdul Muin Md; Shafie, Nur Juliani; Khairuddin, Nurul Liyana

    2011-01-01

    The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon’s diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds. PMID:24575217

  1. Avian diversity and feeding guilds in a secondary forest, an oil palm plantation and a paddy field in riparian areas of the kerian river basin, perak, malaysia.

    PubMed

    Azman, Nur Munira; Latip, Nurul Salmi Abdul; Sah, Shahrul Anuar Mohd; Akil, Mohd Abdul Muin Md; Shafie, Nur Juliani; Khairuddin, Nurul Liyana

    2011-12-01

    The diversity and the feeding guilds of birds in three different habitats (secondary forest, oil palm plantation and paddy field) were investigated in riparian areas of the Kerian River Basin (KRB), Perak, Malaysia. Point-count observation and mist-netting methods were used to determine bird diversity and abundance. A total of 132 species of birds from 46 families were recorded in the 3 habitats. Species diversity, measured by Shannon's diversity index, was 3.561, 3.183 and 1.042 in the secondary forest, the paddy field and the oil palm plantation, respectively. The vegetation diversity and the habitat structure were important determinants of the number of bird species occurring in an area. The relative abundance of the insectivore, insectivore-frugivore and frugivore guilds was greater in the forest than in the monoculture plantation. In contrast, the relative abundance of the carnivore, granivore and omnivore guilds was higher in the plantation. The results of the study show that the conversion of forest to either oil palm plantation or paddy fields produced a decline in bird diversity and changes in the distribution of bird feeding guilds.

  2. Geology of the Stroudsburg quadrangle and Adjacent areas, Pennsylvania--New Jersey

    USGS Publications Warehouse

    Epstein, Jack Burton

    1971-01-01

    The Stroudsburg area is within the Valley and Ridge and Great Valley physiographic provinces, Northampton and Monroe Counties, Pennsylvania, and Warren County, New Jersey. The northeast-trending subparallel valleys and ridges resulted from erosion of folded heterogeneous sedimentary rocks. These are Middle Ordovician to Middle Devonian in age and are more than 17,000 feet thick. Deposition of a thick flysch sequence (Martinsburg Formation of Ordovician age) accompanied onset of Taconic orogenesis. It was followed by deposition of a thick molasse sequence of Silurian and Early Devonian age (continental and marginal-marine clastics--Shawangunk Formation and Bloomsburg Red Beds--overlain by predominantly marginal-marine and subtidal limestone, dolomite, shale, and sandstone--Poxono Island Formation through Oriskany Group). Basin deepening and gradual shallowing occurred during Esopus through Mahantango deposition, heralding the Acadian clastic wedge exposed north of the Stroudsburg area. Interpretation of sedimentary structures and regional stratigraphic relations suggest that the Silurian and Devonian rocks were deposited in the following environments: A1luviated coastal plain (meandering and braided streams), tidal flats (supratidal and intertidal), barrier zone, and neritic zone (upper and lower). The rock stratigraphic units have been grouped into four lithotectonic units, each having a different style of deformation. Folds produced in these rocks are disharmonic, and it is believed that each rock sequence is set off from units above and below by decollements, or zones of detachment. Movement was northwest into the Appalachian basin, primarily by gravitational sliding. The contact between the Shawangunk Formation of Silurian age and Martinsburg Formation of Ordovician age, is one zone of detachment as well as an angular unconformity. Deformational effects of the Middle to Late Ordovician Taconic orogeny are elusive, but it appears that the folds and most minor

  3. 100-N Area Strontium-90 Treatability Demonstration Project: Food Chain Transfer Studies for Phytoremediation Along the 100-N Columbia River Riparian Zone

    SciTech Connect

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.

    2009-04-01

    Strontium-90 (90Sr) exceeds the U.S. Environmental Protection Agency’s drinking water standards for groundwater (8 picocuries/L) by as much as a factor of 1000 at several locations within the Hanford 100-N Area and along the 100-N Area Columbia River shoreline). Phytoextraction, a managed remediation technology in which plants or integrated plant/rhizosphere systems are employed to phytoextract and/or sequester 90Sr, is being considered as a potential remediation system along the riparian zone of the Columbia River as part of a treatment train that includes an apatite barrier to immobilize groundwater transport of 90Sr. Phytoextraction would employ coyote willow (Salix exigua) to extract 90Sr from the vadose zone soil and aquifer sediments (phytoextraction) and filter 90Sr (rhizofiltration) from the shallow groundwater along the riparian zone of the Columbia River. The stem and foliage of coyote willows accumulating 90Sr may present not only a mechanism to remove the contaminant but also can be viewed as a source of nutrition for natural herbivores, therefore becoming a potential pathway for the isotope to enter the riparian food chain. Engineered barriers such as large and small animal fencing constructed around the field plot will control the intrusion of deer, rodents, birds, and humans. These efforts, however, will have limited effect on mobile phytophagous insects. Therefore, this study was undertaken to determine the potential for food chain transfer by insects prior to placement of the remediation technology at 100-N. Insect types include direct consumers of the sap or liquid content of the plants vascular system (xylem and phloem) by aphids as well as those that would directly consume the plant foliage such as the larvae (caterpillars) of Lepidoptera species. Heavy infestations of aphids feeding on the stems and leaves of willows growing in 90Sr-contaminated soil can accumulate a small amount (~0.15 ± 0.06%) of the total label removed from the soil by

  4. Isostatic gravity map of the Point Sur 30 x 60 quadrangle and adjacent areas, California

    USGS Publications Warehouse

    Watt, J.T.; Morin, R.L.; Langenheim, V.E.

    2011-01-01

    This isostatic residual gravity map is part of a regional effort to investigate the tectonics and water resources of the central Coast Range. This map serves as a basis for modeling the shape of basins and for determining the location and geometry of faults in the area. Local spatial variations in the Earth's gravity field (after removing variations caused by instrument drift, earth-tides, latitude, elevation, terrain, and deep crustal structure), as expressed by the isostatic anomaly, reflect the distribution of densities in the mid- to upper crust, which in turn can be related to rock type. Steep gradients in the isostatic gravity field often indicate lithologic or structural boundaries. Gravity highs reflect the Mesozoic granitic and Franciscan Complex basement rocks that comprise both the northwest-trending Santa Lucia and Gabilan Ranges, whereas gravity lows in Salinas Valley and the offshore basins reflect the thick accumulations of low-density alluvial and marine sediment. Gravity lows also occur where there are thick deposits of low-density Monterey Formation in the hills southeast of Arroyo Seco (>2 km, Marion, 1986). Within the map area, isostatic residual gravity values range from approximately -60 mGal offshore in the northern part of the Sur basin to approximately 22 mGal in the Santa Lucia Range.

  5. Flood hazards in the Seattle-Tacoma urban complex and adjacent areas, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.; Nassar, E.G.

    1975-01-01

    Floods are natural hazards that have complicated man's land-use planning for as long as we have had a history. Although flood hzards are a continuing danger, the year-to-year threat cannot be accurately predicted. Also, on any one stream, the time since the last destructive flood might be so long that most people now living near the stream have not experienced such a flood. Because of the unpredictability and common infrequency of disastrous flooding, or out of ignorance about the danger, or perhaps because of an urge to gamble, man tends to focus his attention on only the advantages of the flood-prone areas, rather than the risk due to the occasional major flood. The purposes of this report are to: (1) briefly describe flood hazards in this region, including some that may be unique to the Puget Sound basin, (2) indicate the parts of the area for which flood-hazard data are available, and (3) list the main sources of hydrologic information that is useful for flood-hazard analysis in conjuction with long-range planning. This map-type report is one of a series being prepared by the U.S. Geological Survey to present basic environmental information and interpretations to assist land-use planning in the Puget Sound region.

  6. Emergency ground-water supplies in the Seattle-Tacoma urban complex and adjacent areas, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.

    1972-01-01

    Urban areas that are supplied from surface-water sources are especially vulnerable to major disruption of their water supplies. Such disruption could result from natural disasters such as earthquakes, floods, or landslides or from such other causes as dam failures fallout of radioactive material or other toxic substance from the atmosphere or other toxic substances from the atmosphere or direct introduction (either accidental or deliberate) of any substance that would render the water unfit for use. Prolonged disruption of public water supplies not only causes personal hardships but also endangers health and safety unless suitable alternative emergency supplies can be provided. The degree of hardship and danger generally increases in direct relation to the population density. Ground water because it occurs beneath protective soil and rock materials is less subject to sudden major contamination than are surface-water bodies. For this reason and also because of its widespread availability in the Puget Sound region ground water is especially desireable as a sources of emergency supplies for drinking or other uses requiring water of good quality. In much of the area existing wells would be suitable as safe sources of emergency supplies.

  7. Hydrogeology of Valley-Fill Aquifers and Adjacent Areas in Eastern Chemung County, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2015-10-19

    Water-resource potential is greatest within saturated sand and gravel in the Chemung River valley (nearly 1 mile wide), especially where induced infiltration of additional water from the Chemung River is possible. The second most favorable area is the Newtown Creek valley at the confluence of Newtown Creek with North Branch Newtown Creek east of Horseheads, N.Y. Extensive sand and gravel deposits within the Breesport, N.Y., area are largely unsaturated but may have greater saturation along the east side of Jackson Creek immediately north of Breesport. Till deposits confine sand and gravel along Newtown Creek at Erin, N.Y., and along much of the upper reach of North Branch Newtown Creek; this confining unit may limit recharge and potential well yield. The north-south oriented valleys of Baldwin and Wynkoop Creeks end at notched divides that imply input of glacial meltwater and limited sediment from outside of the present watersheds. These two valleys are relatively narrow but contain variably sorted sand and gravel, which, in places, may be capable of supplying modest-size community water systems.

  8. Gravity and Magnetic Investigations of the Mojave National Preserve and Adjacent Areas, California and Nevada

    USGS Publications Warehouse

    Langenheim, V.E.; Biehler, S.; Negrini, R.; Mickus, K.; Miller, D.M.; Miller, R.J.

    2009-01-01

    Gravity and aeromagnetic data provide the underpinnings of a hydrogeologic framework for the Mojave National Preserve by estimating the thickness of Cenozoic deposits and locating inferred structural features that influence groundwater flow. An inversion of gravity data indicates that thin (<1 km) basin deposits cover much of the Preserve, except for Ivanpah Valley and the Woods Mountains volcanic center. Localized areas of Cenozoic deposits thicker than 500 m are predicted beneath parts of Lanfair Valley, Fenner Valley, near Kelso, Soda Lake, and southeast of Baker. Along the southern margin of the Mojave National Preserve, basins greater than 1 km deep are located between the Clipper and Marble Mountains, between the Marble and Bristol Mountains, and south of the Bristol Mountains near Amboy. Both density and magnetization boundaries defined by horizontal-gradient analyses coincide locally with Cenozoic faults and can be used to extend these faults beneath cover. Magnetization boundaries also highlight the structural grain within the crystalline rocks and may serve as a proxy for fracturing, an important source of permeability within the generally impermeable basement rocks, thus mapping potential groundwater pathways through and along the mountain ranges in the study area.

  9. Surface-water features in Osceola County and adjacent areas, Florida

    USGS Publications Warehouse

    Hughes, G.H.; Frazee, James M.

    1979-01-01

    The western two-thirds of Osceola County, Fla., drains southward by way of the Kissimmee River and its tributaries; the eastern one-third drains eastward to the St. Johns River or to marshy areas that make up part of the headwaters of the St. Johns River. About 15 percent of the county is covered by several hundred lakes whose surface areas range in size from a few to several thousand acres. Much of the natural drainage has been altered by canalization or regulated by control structures. Under natural conditions streamflow is seasonal, usually high in September or October and low in May or June, in phase with the rainy season. Control structures are used to maintain lake levels within a relatively small range in stage, producing greater seasonal variations in river flow than before regulation. Dissolved-solids concentration of much of the surface water is less than 240 mg/l, in some, much less. The water typically is of calcium bicarbonate type. Color is fairly high, in water draining from swamps, where the pickup of humic acids is significant. (Kosco-USGS)

  10. Reclamation by tubewell drainage in Rechna Doab and adjacent areas, Punjab region, Pakistan

    USGS Publications Warehouse

    Malmberg, Glenn T.

    1975-01-01

    Around the turn of the century, a network of more than 40,000 miles of canals was constructed to divert water from the Indus River and its tributaries to about 23 million acres of largely unused desert in the Punjab region of Pakistan. The favorable climate and the perennial supply of irrigation water made available through the canals instituted the beginning of intensive farming. However, because of generally poor drainage and the high rate of canal leakage, the water table began to rise. As the population increased and agriculture expanded, the demand for irrigation water soon exceeded the available supply. Spreading of the canal supply to meet the expanded needs locally created shortages that prevented adequate leaching. Increased evaporation from the rising water table further contributed to the progressive accumulation of soluble salts in the soil. By the late 1930's the combined effect of waterlogging and salinity had reduced the agricultural productivity of the region to one of the lowest in the world. In 1954, after several unsuccessful projects were undertaken to reclaim affected areas and to stop the progressive encroachment of waterlogging and salinization, the Government of Pakistan in cooperation with the U.S. International Cooperation Administration undertook a study of the geology and hydrology of the Indus Plain that ultimately resulted in the formulation of a ground-water reclamation program. The principal feature of the program is the utilization of a network of deep wells spaced about a mile apart for the dual purpose of lowering the water table and for providing supplemental irrigation water. Through financial assistance and technical and engineering support principally from the United States, construction began in 1960 on the first of 18 proposed reclamation projects that eventually will include 21 million acres and more than 28,000 wells having an installed capacity of more than 100,000 cubic feet per second. An area of about 1.3 million acres

  11. Configuration of the top of the Floridan aquifer, Southwest Florida Water Management District and adjacent areas

    USGS Publications Warehouse

    Buono, A.; Rutledge, A.T.

    1978-01-01

    This map depicts the approximate top of the rock that composes the Floridan aquifer. The contours represent the elevation of the top of the Floridan aquifer to mean sea level. Rock units recognized to be part of the Floridan aquifer are limestone and dolomite ranging from middle Eocene to early Miocene. They are Lake City Limestone, Avon Park Limestone, Ocala Limestone, Suwannee Limestone, and Tampa Limestone. In this report, the top of the Floridan aquifer is a limestone defined as the first consistent rock of early Miocene age or older below which occur no clay confining beds. Although the Hawthorn formation of middle Miocene is considered part of the Floridan aquifer when it is in direct hydrologic contact with lower lying rock units, it is not considered here because of a lack of detailed delineation of areas where contact exists. (Woodard-USGS)

  12. Methods for delineating flood-prone areas in the Great Basin of Nevada and adjacent states

    USGS Publications Warehouse

    Burkham, D.E.

    1988-01-01

    The Great Basin is a region of about 210,000 square miles having no surface drainage to the ocean; it includes most of Nevada and parts of Utah, California, Oregon, Idaho, and Wyoming. The area is characterized by many parallel mountain ranges and valleys trending north-south. Stream channels usually are well defined and steep within the mountains, but on reaching the alluvial fan at the canyon mouth, they may diverge into numerous distributary channels, be discontinuous near the apex of the fan, or be deeply entrenched in the alluvial deposits. Larger rivers normally have well-defined channels to or across the valley floors, but all terminate at lakes or playas. Major floods occur in most parts of the Great Basin and result from snowmelt, frontal-storm rainfall, and localized convective rainfall. Snowmelt floods typically occur during April-June. Floods resulting from frontal rain and frontal rain on snow generally occur during November-March. Floods resulting from convective-type rainfall during localized thunderstorms occur most commonly during the summer months. Methods for delineating flood-prone areas are grouped into five general categories: Detailed, historical, analytical, physiographic, and reconnaissance. The detailed and historical methods are comprehensive methods; the analytical and physiographic are intermediate; and the reconnaissance method is only approximate. Other than the reconnaissance method, each method requires determination of a T-year discharge (the peak rate of flow during a flood with long-term average recurrence interval of T years) and T-year profile and the development of a flood-boundary map. The procedure is different, however, for each method. Appraisal of the applicability of each method included consideration of its technical soundness, limitations and uncertainties, ease of use, and costs in time and money. Of the five methods, the detailed method is probably the most accurate, though most expensive. It is applicable to

  13. Water resources of the Tulalip Indian Reservation and adjacent area, Snohomish County, Washington, 2001-03

    USGS Publications Warehouse

    Frans, Lonna M.; Kresch, David L.

    2004-01-01

    This study was undertaken to improve the understanding of water resources of the Tulalip Plateau area, with a primary emphasis on the Tulalip Indian Reservation, in order to address concerns of the Tulalip Tribes about the effects of current and future development, both on and off the Reservation, on their water resources. The drinking-water supply for the Reservation comes almost entirely from ground water, so increasing population will continue to put more pressure on this resource. The study evaluated the current state of ground- and surface-water resources and comparing results with those of studies in the 1970s and 1980s. The study included updating descriptions of the hydrologic framework and ground-water system, determining if discharge and base flow in streams and lake stage have changed significantly since the 1970s, and preparing new estimates of the water budget. The hydrogeologic framework was described using data collected from 255 wells, including their location and lithology. Data collected for the Reservation water budget included continuous and periodic streamflow measurements, micrometeorological data including daily precipitation, temperature, and solar radiation, water-use data, and atmospheric chloride deposition collected under both wet- and dry-deposition conditions to estimate ground-water recharge. The Tulalip Plateau is composed of unconsolidated sediments of Quaternary age that are mostly of glacial origin. There are three aquifers and two confining units as well as two smaller units that are only localized in extent. The Vashon recessional outwash (Qvr) is the smallest of the three aquifers and lies in the Marysville Trough on the eastern part of the study area. The primary aquifer in terms of use is the Vashon advance outwash (Qva). The Vashon till (Qvt) and the transitional beds (Qtb) act as confining units. The Vashon till overlies Qva and the transitional beds underlie Qva and separate it from the undifferentiated sediments (Qu

  14. Legal mechanisms for protecting riparian resource values

    USGS Publications Warehouse

    Lamb, Berton L.; Lord, Eric

    1992-01-01

    Riparian resources include the borders of rivers, lakes, ponds, and potholes. These border areas are very important for a number of reasons, including stream channel maintenance, flood control, aesthetics, erosion control, fish and wildlife habitat, recreation, and water quality maintenance. These diverse functions are not well protected by law or policy. We reviewed law and policies regarding endangered species habitat designation, land use planning, grazing management, water allocation, takings, and federal permits and licenses, along with the roles of federal, state, and local governments. We discuss the politics of implementing these policies, focusing on the difficulties in changing entrenched water and land use practices. Our review indicates a lack of direct attention to riparian ecosystem issues in almost all environmental and land use programs at every level of government. Protection of riparian resource values requires a means to integrate existing programs to focus on riparian zones.

  15. Paleoenvironments and hydrocarbon potential of Upper Jurassic Norphlet Formation of southwestern Alabama and adjacent coastal water area

    SciTech Connect

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-09-01

    Upper Jurassic Norphlet sediments in southwestern Alabama and the adjacent coastal water area accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama, providing a barrier for air and water circulation during Norphlet deposition. Norphlet paleogeography was dominated by a broad desert plain rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. Initiation of Norphlet sedimentation was a result of erosion of the southern Appalachians. Norphlet conglomerates were deposited in coalescing alluvial fans in proximity to an Appalachian source. The conglomeratic sandstones grade downdip into red-bed lithofacies that accumulated in distal portions of alluvial fan and wadi systems. Quartzose sandstones (Denkman Member) were deposited as dune and interdune sediments on a broad desert plain. The source of the sand was the updip and adjacent alluvial fan, plain, and wadi deposits. A marine transgression was initiated late in Denkman deposition, resulting in the reworking of previously deposited Norphlet sediments. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent with four oil and gas fields already established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist of quartzose sandstones, which are principally eolian in origin. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons.

  16. Using GIS to develop socio-economic profiles of areas adjacent to DOE facilities

    SciTech Connect

    Stewart, J.C.; Saraswatula, S.

    1994-12-31

    The objective of the research addressed in this paper is to identify and analyze the offsite effects of DOE activities at the Savannah River Site. The paper presents the socio-economic conditions of the areas surrounding the site in order to evaluate the possible effects of DOE activities. The study employed a geographic information system (GIS) in order to evaluate spatial relationships between otherwise unrelated factors. Socio-economic data used in the study are publicly available and were obtained mainly from the Bureau of the Census. The Department of Energy (DOE), currently dealing with the environmental management of a large number of sites throughout the United States, must consider the effects of its activities on surrounding populations and ensure compliance with the various federal regulations, such as the executive order on environmental justice. Environmental justice is the process of studying and achieving equal distribution of the effects of environmental pollution on populations across social and economic lines. An executive order signed by the President has directed federal agencies, including the Department of Energy, to make achieving environmental justice a part of the agency`s mission by identifying and addressing disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority and low-income populations.

  17. Hydrologic sections through Lee County and adjacent areas of Hendry and Collier counties, Florida

    USGS Publications Warehouse

    Boggess, Durward H.; Missimer, T.M.; O'Donnell, T. H.

    1981-01-01

    The freshwater underlying Lee, western Hendry, and northern Collier Counties occurs within the marine terrace sands, the Fort Thompson, Caloosahatchee, Tamiami, and Hawthorn Formations. These are, respectively, the water-table aquifer, an aquifer in the Tamiami Formation, and an aquifer in the upper part of the Hawthorn Formation. These aquifers are separated by clay, marl, and marly limestone. Wells tapping the water-table aquifer are commonly less than 50 feet deep, with yields ranging from 5 to 500 gallons per minute. The water quality in the aquifer is usually good, except for iron, which generally exceeds 1 milligram per liter, and color, which ranges from 30 to 600 Platinum-Cobalt units. Wells tapping the Tamiami aquifer range in depth from about 60 to 300 feet; most are less than 100 feet deep. Yields range from 20 to 500 gallons per minute. The water quality in the Tamiami aquifer is good, except where affected by leakage from deep artesian wells. Wells tapping the upper Hawthorn aquifer range in depth from about 100 to 300 feet. Yields range from 10 to 500 gallons per minute. The water quality from the upper Hawthorn aquifer is good, except in areas where upward leakage from the deep artesian aquifer has occurred. (USGS)

  18. High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas

    NASA Astrophysics Data System (ADS)

    Stolk, Ward; Kaban, Mikhail; Beekman, Fred; Tesauro, Magdala; Mooney, Walter D.; Cloetingh, Sierd

    2013-08-01

    We propose a new methodology to obtain crustal models in areas where data is sparse and data spreading is heterogeneous. This new method involves both interpolating the depth to the Moho discontinuity between observations and estimating a velocity-depth curve for the crust at each interpolation location. The Moho observations are interpolated using a remove-compute-restore technique, used in for instance geodesy. Observations are corrected first for Airy type isostasy. The residual observations show less variation than the original observations, making interpolation more reliable. After interpolation, the applied correction is restored to the solution, leading to the final estimate of Moho depth. The crustal velocities have been estimated by fitting a velocity-depth curve through available data at each interpolation location. Uncertainty of the model is assessed, both for the Moho and the velocity model. The method has been applied successfully to Asia. The resulting crustal model is provided in digital form and can be used in various geophysical applications, for instance in assessing rheological properties and strength profiles of the lithosphere, the correcting gravity for the crustal effects, seismic tomography and geothermal modelling.

  19. Occurrence, Distribution and Frequency of Riparian Fire in California

    NASA Astrophysics Data System (ADS)

    Bendix, J.; Commons, M. G.

    2013-12-01

    In recent years, there has been increasing attention to the role of fire as a disturbance agent in riparian ecosystems. That role seems to be quite variable, as fire has been shown to profoundly affect some riparian plant communities and their hydrogeomorphic settings, while in other instances its impact has been described as negligible. Our knowledge thus far is based on scattered field studies in a variety of locations; a systematic evaluation of the actual extent and frequency of riparian fire is lacking. In this paper, we use data from the Monitoring Trends in Burn Severity (MTBS), LANDFIRE and Fire and Resource Assessment Program (FRAP) databases to characterize the occurrence of riparian fire in California. We used the MTBS and LANDFIRE data to identify fires that had burned at varying levels of severity in areas classified as having riparian vegetation, and matched those fires with the FRAP data to obtain additional information regarding each fire (such as date of occurrence). We analyzed 21 years of data (1990-2010). During this period, an average of 1197 ha of riparian vegetation burned per year, approximately 0.12% of the total area mapped as riparian vegetation in the state. This compares to 125750 ha/year of upland vegetation, thus riparian fire accounts for 0.94% of the area burned annually in California. Statewide, the extrapolated return interval for riparian fire is 843 years, compared to 318 years for upland fire. The statewide totals are misleading, however, because there is substantial geographic variance in the occurrence of riparian (as well as upland) fire. Analysis of fire in different ecoregions of the state reveals how dramatic that variance is. In southern California ecoregions, between .82% and 1.35% of the riparian vegetation burns each year, contrasting with the Cascades and Basin and Range ecoregions, where < .05% of the riparian zone burns annually. There is also considerable regional variation in the season of burning. Overall, the

  20. 100-N Area Strontium-90 Treatability Demonstration Project: Phytoextraction Along the 100-N Columbia River Riparian Zone – Field Treatability Study

    SciTech Connect

    Fellows, Robert J.; Fruchter, Jonathan S.; Driver, Crystal J.; Ainsworth, Calvin C.

    2010-01-11

    river’s edge. Less than two weeks later (March 21), the river began the spring rise. Periodic (daily) or continuous flooding occurred at the site over the next 3 to 4 months. River levels at times were over the top of the enclosure’s fence. This same pattern was repeated for the next 2 years. It was however evident that even submerged for part, or all of the day, that the plants continued to flourish. There were no indications of herbivory or animal tracks observed within the plot although animals were present in the area. Biomass production over the three years followed a typical growth curve with a yield of about 1 kg for the first year when the trees were establishing themselves, 4 kg for the second, and over 20 kg for the third when the trees were entering the exponential phase of growth. On a metric Ton per hectare (mT/ha) basis this would be 0.2 mT/ha in 2007, 0.87 mT/ha in 2008, and 4.3 mT/ha in 2009. Growth curve extrapolation predicts 13.2 mT/ha during a fourth year and potentially 29.5 mT/ha following a fifth year. Using the observed Ca and Sr concentrations found in the plant tissues, and Sr CR’s calculated from groundwater analysis, projected biomass yields suggest the trees could prove effective in removing the contaminant from the 100-NR-2 riparian zone.

  1. Shear Wave Splitting Beneath the New Madrid Seismic Zone and Adjacent Areas

    NASA Astrophysics Data System (ADS)

    Moidaki, M.; Liu, K. H.; Gao, S. S.; Hogan, J. P.; Abdelsalam, M. G.

    2007-12-01

    Teleseismic shear-wave splitting parameters are determined at 15 permanent and portable broadband stations within and around the New Madrid seismic zone (NMSZ) in order to map the direction and strength of mantle fabrics and to explore the origin of seismic anisotropy. Both the splitting times and fast polarization directions of the fast shear-wave show significant spatial variations. The observed splitting times range from 0.7 to 1.7s with a mean value of 1.0s which is the same as the global average. The resulting fast directions range from 34 to 118 degrees from north with a mean of 65 degrees which is consistent with the motion direction of the North American plate in a hot-spot frame. Fast directions with ray-piercing points in the NMSZ are oblique to the rift axis. In the vicinity of the Ozarks Plateau, the split times range from 0.7s to 1.1s with a mean of 0.9s. The observed fast directions show a striking clockwise rotating pattern in which these change systematically from nearly N-S in the St. Francois Mountains to approximately NE-SW further north to be concordant to that of North American Craton. The area with anomalous fast directions has recently been suggested to be a downward asthenospheric flow as a result of the sinking of the Farallon slab in the lower mantle (Forte et al 2007). The observed anisotropy will be discussed in relation to the lower mantle flow, and the recently-proposed two-layer model of Marone and Romanowicz (2007).

  2. Contrasts Between Precipitation over Mediterranean Sea and Adjacent Continental Areas Based on Decadal Scale Satellite Estimates

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2007-01-01

    Most knowledge concerning the last century's climatology and climate dynamics of precipitation over the Mediterranean Sea basin is based on observations taken from rain gauges surrounding the sea itself. In turn, most of the observations come from Southern Europe, with many fewer measurements taken from widely scattered sites situated over North Africa, the Middle East, and the Balkans. This aspect of research on the Mediterranean Sea basin is apparent in a recent compilation of studies presented in book form concerning climate variability of the Mediterranean region [Lionello, P., P. Malanotte-Rizzoli, and R. Boscolo (eds.), 2006: Mediterranean Climate Variability. Elsevier, Amsterdam, 9 chapters.] In light of this missing link to over-water observations, this study (in conjunction with four companion studies by Z. Haddad, A. Mugnai, T. Nakazawa, and G. Stephens) will contrast the nature of precipitation variability directly over the Mediterranean Sea to precipitation variability over the surrounding land areas based on three decades of satellite-based precipitation estimates which have stood up well to validation scrutiny. The satellite observations are drawn from the Global Precipitation Climatology Project (GPCP) dataset extending back to 1979 and the TRMM Merged Algorithm 3b42 dataset extending back to 1998. Both datasets are mostly produced from microwave measurements, excepting the period from 1979 to mid-1987 when only infrared satellite measurements were available for the GPCP estimates. The purpose of this study is to emphasize how the salient properties of precipitation variability over land and sea across a hierarchy of space and time scales, and the salient differences in these properties, might be used in guiding short-term climate models to better predictions of future climate states under different regional temperature-change scenarios.

  3. Restoration of areas degraded by alluvial sand mining: use of soil microbiological activity and plant biomass growth to assess evolution of restored riparian vegetation.

    PubMed

    Venson, Graziela R; Marenzi, Rosemeri C; Almeida, Tito César M; Deschamps-Schmidt, Alexandre; Testolin, Renan C; Rörig, Leonardo R; Radetski, Claudemir M

    2017-03-01

    River or alluvial sand mining is causing a variety of environmental problems in the Itajaí-açú river basin in Santa Catarina State (south of Brazil). When this type of commercial activity degrades areas around rivers, environmental restoration programs need to be executed. In this context, the aim of this study was to assess the evolution of a restored riparian forest based on data on the soil microbial activity and plant biomass growth. A reference site and three sites with soil degradation were studied over a 3-year period. Five campaigns were performed to determine the hydrolysis of the soil enzyme fluorescein diacetate (FDA), and the biomass productivity was determined at the end of the studied period. The variation in the enzyme activity for the different campaigns at each site was low, but this parameter did differ significantly according to the site. Well-managed sites showed the highest biomass productivity, and this, in turn, showed a strong positive correlation with soil enzyme activity. In conclusion, soil enzyme activity could form the basis for monitoring and the early prediction of the success of vegetal restoration programs, since responses at the higher level of biological organization take longer, inhibiting the assessment of the project within an acceptable time frame.

  4. Ground water nitrate removal in subsoil of forested and mowed riparian buffer zones

    SciTech Connect

    Addy, K.L.; Gold, A.J.; Groffman, P.M.; Jacinthe, P.A.

    1999-05-01

    The authors studied two similar riparian sites in southern New England and examined ground water nitrate (NO{sub 3}{sup {minus}}-N) removal in the subsurface of mowed (i.e., herbaceous) vs. forested (i.e., woody) vegetation. Each site consisted of poorly drained, fine to medium sands and contained adjacent areas of mowed and forested vegetation. They dosed mesocosms with bromide and {sup 15}N labeled NO{sub 3}{sup {minus}}-N amended ground water to simulate the shallow ground water NO{sub 3}{sup {minus}}-N dynamics of riparian buffers zones. Mesocosms were composed of undisturbed, horizontal soil cores extracted from seasonally saturated subsoil. The authors observed substantial ground water NO{sub 3}{sup {minus}}-N removal and denitrification at all locations. Ground water NO{sub 3}{sup {minus}}-N removal rates were significantly correlated with carbon-enriched patches of organic matter. This correlation supports previous work that patches function as hotspots of microbial activity in the subsoil. Within each site, they found no significant difference in ground water NO{sub 3}{sup {minus}}-N removal rates in the subsoil of forested and mowed areas and they noted tree roots throughout the subsoil of the mowed areas. They found that ground water NO{sub 3}{sup {minus}}-N removal rates differed significantly between similar sites. They caution against ascribing specific ground water NO{sub 3}{sup {minus}}-N removal rates to different riparian aboveground vegetation types without recognizing the importance of site differences, e.g., water table dynamics, land use legacy and adjacent vegetation. Riparian zones composed of a mix of forested and mowed vegetation, common in agroforestry and suburban land uses, may remove substantial amounts of ground water NO{sub 3}{sup {minus}}-N.

  5. Ground Water in Kilauea Volcano and Adjacent Areas of Mauna Loa Volcano, Island of Hawaii

    USGS Publications Warehouse

    Takasaki, Kiyoshi J.

    1993-01-01

    About 1,000 million gallons of water per day moves toward or into ground-water bodies of Kilauea Volcano from the lavas of Mauna Loa Volcano. This movement continues only to the northern boundaries of the east and southwest rift zones of Kilauea, where a substantial quantity of ground water is deflected downslope to other ground-water bodies or to the ocean. In the western part of Kilauea, the kaoiki fault system, which parallels the southwest rift zone, may be the main barrier to ground-water movement. The diversion of the ground water is manifested in the western part of Kilauea by the presence of large springs at the shore end of the Kaoiki fault system, and in the eastern part by the apparently large flow of unheated basal ground water north of the east rift zone. Thus, recharge to ground water in the rift zones of Kilauea and to the areas to the south of the rift zones may be largely by local rainfall. Recharge from rainfall for all of Kilauea is about 1,250 million gallons per day. Beneath the upper slopes of the Kilauea rift zones, ground-water levels are 2,000 feet or more above mean sea level, or more than 1,000 feet below land surface. Ground-water levels are at these high altitudes because numerous and closely spaced dikes at depth in the upper slopes impound the ground water. In the lower slopes, because the number of dikes decreases toward the surface, the presence of a sufficient number of dikes capable of impounding ground water at altitudes substantially above sea level is unlikely. In surrounding basal ground-water reservoirs, fresh basal ground water floats on seawater and, through a transition zone of mixed freshwater and seawater, discharges into the sea. The hydraulic conductivity of the dike-free lavas ranges from about 3,000 to about 7,000 feet per day. The conductivity in the upper slopes of the rift ranges from about 5 to 30 feet per day and that of the lower slopes of the east rift zone was calculated at about 7,000 feet per day. The

  6. Seasonal trends in environmental tritium concentrations in a small forest adjacent to a radioactive waste storage area

    SciTech Connect

    Amano, Hikaru ); Garten, C.T. Jr. )

    1991-01-01

    Tritium (HTO) concentrations were studied for an entire year in a floodplain forest adjacent to a low-level radioactive solid waste storage area (SWSA No. 5) at Oak Ridge National Laboratory (ORNL) near Oak Ridge, Tennessee, USA. Tritium in soil was the principal source of HTO to the deciduous forest. Evaporation from the surface soil along with transpiration from trees leaves both contributed to HTO in the forest atmosphere. During the growing season, transpiration was the principal contributor of HTO to the forest atmosphere, while during the dormant season, the main source of atmospheric HTO was evaporation from the surface soil. Seasonal changes and the characteristics of vegetation will influence the relative importance of evaporation and transpiration as sources of atmospheric HTO near the ground in temperate deciduous forests. 8 refs., 9 figs.

  7. Seasonal trends in environmental tritium concentrations in a small forest adjacent to a radioactive waste storage area

    SciTech Connect

    Amano, H. ); Garten, C.T. Jr. . Environmental Sciences Div.)

    1992-03-01

    Tritium (HTO) concentrations were studied for an entire year in a floodplain forest adjacent to a low-level radioactive solid waste storage areas (SWSA No. 5) at Oak Ridge National Laboratory (ORNL) near Oak Ridge, Tennessee, USA. Tritium in soil was the principal source of HTO to the deciduous forest. Evaporation from the surface soil along with transpiration from tree leaves both contributed to HTO in the forest atmosphere. During the growing season, transpiration was the principal contributor of HTO to the forest atmosphere, while during he dormant season, the main source of atmospheric HTO was evaporation from the surface soil. This paper discovers seasonal changes and the characteristics of vegetation which will influence the relative importance of evaporation and transpiration as sources of atmospheric HTO near the ground in temperate deciduous forests.

  8. Linking Changes in Management and Riparian Physical Functionality to Water Quality and Aquatic Habitat

    EPA Science Inventory

    Wildlife and aquatic habitats are dependent on the development of riparian area management strategies. Land management strategies consider certain basic ecological and economic relationships. These relationships are functions of riparian and te rrestrial ecosystems, which include...

  9. Effects of Stream and Elevation Resolution on Riparian Metrics and Restoration Identification

    EPA Science Inventory

    Even though riparian areas attenuate nutrients and sediments from agricultural runoff at the field scale, best management practices and locations for restoring riparian areas should be determined at watershed scales. Riparian metrics (e.g., percent forest within 100m of stream)...

  10. Restoration Effects of the Riparian Forest on the Intertidal Fish Fauna in an Urban Area of the Amazon River

    PubMed Central

    Ferrari, Stephen F.; Vasconcelos, Huann C. G.; Mendes-Junior, Raimundo N. G.; Araújo, Andrea S.; Costa-Campos, Carlos Eduardo; Nascimento, Walace S.; Isaac, Victoria J.

    2016-01-01

    Urbanization causes environmental impacts that threaten the health of aquatic communities and alter their recovery patterns. In this study, we evaluated the diversity of intertidal fish in six areas affected by urbanization (areas with native vegetation, deforested areas, and areas in process of restoration of vegetation) along an urban waterfront in the Amazon River. 20 species were identified, representing 17 genera, 14 families, and 8 orders. The different degrees of habitat degradation had a major effect on the composition of the fish fauna; the two least affected sectors were the only ones in that all 20 species were found. Eight species were recorded in the most degraded areas. The analysis revealed two well-defined groups, coinciding with the sectors in better ecological quality and degraded areas, respectively. The native vegetation has been identified as the crucial factor to the recovery and homeostasis of the studied ecosystem, justifying its legal protection and its use in the restoration and conservation of altered and threatened environments. These results reinforce the importance of maintaining the native vegetation as well as its restoration in order to benefit of the fish populations in intertidal zones impacted by alterations resulting from inadequate urbanization. PMID:27699201

  11. Restoration Effects of the Riparian Forest on the Intertidal Fish Fauna in an Urban Area of the Amazon River.

    PubMed

    Sá-Oliveira, Júlio C; Ferrari, Stephen F; Vasconcelos, Huann C G; Mendes-Junior, Raimundo N G; Araújo, Andrea S; Costa-Campos, Carlos Eduardo; Nascimento, Walace S; Isaac, Victoria J

    2016-01-01

    Urbanization causes environmental impacts that threaten the health of aquatic communities and alter their recovery patterns. In this study, we evaluated the diversity of intertidal fish in six areas affected by urbanization (areas with native vegetation, deforested areas, and areas in process of restoration of vegetation) along an urban waterfront in the Amazon River. 20 species were identified, representing 17 genera, 14 families, and 8 orders. The different degrees of habitat degradation had a major effect on the composition of the fish fauna; the two least affected sectors were the only ones in that all 20 species were found. Eight species were recorded in the most degraded areas. The analysis revealed two well-defined groups, coinciding with the sectors in better ecological quality and degraded areas, respectively. The native vegetation has been identified as the crucial factor to the recovery and homeostasis of the studied ecosystem, justifying its legal protection and its use in the restoration and conservation of altered and threatened environments. These results reinforce the importance of maintaining the native vegetation as well as its restoration in order to benefit of the fish populations in intertidal zones impacted by alterations resulting from inadequate urbanization.

  12. Uranium deposits at Shinarump Mesa and some adjacent areas in the Temple Mountain district, Emery County, Utah

    USGS Publications Warehouse

    Wyant, Donald G.

    1953-01-01

    Deposits of uraniferous hydrocarbons are associated with carnotite in the Shinarump conglomerate of Triassic age at Shinarump Mesa and adjacent areas of the Temple Mountain district in the San Rafael Swell of Emery County, Utah. The irregular ore bodies of carnotite-bearing sandstone are genetically related to lenticular uraniferous ore bodies containing disseminated asphaltitic and humic hydrocarbon in permeable sandstones and were localized indirectly by sedimentary controls. Nearly non-uraniferous bitumen commonly permeates the sandstones in the Shinarump conglomerate and the underlying Moekopi formation in the area. The ore deposits at Temple Mountain have been altered locally by hydrothermal solutions, and in other deposits throughout the area carnotite has been transported by ground and surface water. Uraniferous asphaltite is thought to be the non-volatile residue of an original weakly uraniferous crude oil that migrated into the San Rafael anticline; the ore metals concentrated in the asphaltite as the oil was devolatilized and polymerized. Carnotite is thought to have formed from the asphaltite by ground water leaching. It is concluded that additional study of the genesis of the asphaltitic uranium ores in the San Rafael Swell, of the processes by which the hydrocarbons interact and are modified (such as heat, polymerization, and hydrogenation under the influence of alpha-ray bombardment), of petroleum source beds, and of volcanic intrusive rocks of Tertiary age are of fundamental importance in the continuing study of the uranium deposits on the Colorado Plateau.

  13. Riparian Ficus Tree Communities: The Distribution and Abundance of Riparian Fig Trees in Northern Thailand

    PubMed Central

    Pothasin, Pornwiwan; Compton, Stephen G.; Wangpakapattanawong, Prasit

    2014-01-01

    Fig trees (Ficus) are often ecologically significant keystone species because they sustain populations of the many seed-dispersing animals that feed on their fruits. They are prominent components of riparian zones where they may also contribute to bank stability as well as supporting associated animals. The diversity and distributions of riparian fig trees in deciduous and evergreen forests in Chiang Mai Province, Northern Thailand were investigated in 2010–2012. To record the diversity and abundance of riparian fig trees, we (1) calculated stem density, species richness, and diversity indices in 20×50 m randomly selected quadrats along four streams and (2) measured the distances of individual trees from four streams to determine if species exhibit distinct distribution patterns within riparian zones. A total of 1169 individuals (from c. 4 ha) were recorded in the quadrats, representing 33 Ficus species (13 monoecious and 20 dioecious) from six sub-genera and about 70% of all the species recorded from northern Thailand. All 33 species had at least some stems in close proximity to the streams, but they varied in their typical proximity, with F. squamosa Roxb. and F. ischnopoda Miq the most strictly stream-side species. The riparian forests in Northern Thailand support a rich diversity and high density of Ficus species and our results emphasise the importance of fig tree within the broader priorities of riparian area conservation. Plans to maintain or restore properly functioning riparian forests need to take into account their significance. PMID:25310189

  14. Riparian Ficus tree communities: the distribution and abundance of riparian fig trees in northern Thailand.

    PubMed

    Pothasin, Pornwiwan; Compton, Stephen G; Wangpakapattanawong, Prasit

    2014-01-01

    Fig trees (Ficus) are often ecologically significant keystone species because they sustain populations of the many seed-dispersing animals that feed on their fruits. They are prominent components of riparian zones where they may also contribute to bank stability as well as supporting associated animals. The diversity and distributions of riparian fig trees in deciduous and evergreen forests in Chiang Mai Province, Northern Thailand were investigated in 2010-2012. To record the diversity and abundance of riparian fig trees, we (1) calculated stem density, species richness, and diversity indices in 20×50 m randomly selected quadrats along four streams and (2) measured the distances of individual trees from four streams to determine if species exhibit distinct distribution patterns within riparian zones. A total of 1169 individuals (from c. 4 ha) were recorded in the quadrats, representing 33 Ficus species (13 monoecious and 20 dioecious) from six sub-genera and about 70% of all the species recorded from northern Thailand. All 33 species had at least some stems in close proximity to the streams, but they varied in their typical proximity, with F. squamosa Roxb. and F. ischnopoda Miq the most strictly stream-side species. The riparian forests in Northern Thailand support a rich diversity and high density of Ficus species and our results emphasise the importance of fig tree within the broader priorities of riparian area conservation. Plans to maintain or restore properly functioning riparian forests need to take into account their significance.

  15. Paleostress adjacent to the Alpine Fault of New Zealand - Fault, vein, and styolite data from the Doctors Dome area

    NASA Astrophysics Data System (ADS)

    Nicol, Andrew; Wise, Donald U.

    1992-11-01

    Doctors Dome, 75 km north of Christchurch, New Zealand, is an early Pleistocene to Recent structure being deformed along the southeast edge of the Pacific-Australian plate boundary. Paleostress in the area has been determined in basement rocks of the Mesozoic meta-graywacke Torlesse Supergroup which lies unconformably beneath Cretaceous and younger cover rocks. Inversion of basement fault data for the area indicates a general northwest compression with two peaks, one WNW-ESE parallel to the shortening suggested by the older vein system and the other parallel to southeast-northwest stylolite columns in the cover rocks. This direction is approximately parallel to regional indicators of contemporary deformation in and adjacent to the Alpine Fault Zone and suggests that the stress field affecting these rocks has not changed significantly since the late Pliocene-early Pleistocene. Like the San Andreas system, this compression is at a high angle to the strike of the zone as a whole, but is compatible with the direction of plate convergence and motion of the major faults. Between the overlappig ends of the Alpine Fault and the Hikurangi Subduction Zone the Alpine Fault may become subhorizontal at middle-lower crustal levels, partially decoupling the crust from underlying structures, and thus allowing oblique motion to be transferred directly onto the fault from the subduction complex, while aiding the change from subduction to continental collision.

  16. Roads in northern hardwood forests affect adjacent plant communities and soil chemistry in proportion to the maintained roadside area.

    PubMed

    Neher, Deborah A; Asmussen, David; Lovell, Sarah Taylor

    2013-04-01

    The spatial extent of the transported materials from three road types was studied in forest soil and vegetative communities in Vermont. Hypotheses were two-fold: 1) soil chemical concentrations above background environment would reflect traffic volume and road type (highway>2-lane paved>gravel), and 2) plant communities close to the road and near roads with greater traffic will be disturbance-tolerant and adept at colonization. Soil samples were gathered from 12 randomly identified transects for each of three road types classified as "highway," "two-lane paved," and "gravel." Using GIS mapping, transects were constructed perpendicular to the road, and samples were gathered at the shoulder, ditch, backslope, 10 m from the edge of the forest, and 50 m from road center. Sample locations were analyzed for a suite of soil elements and parameters, as well as percent area coverage by plant species. The main effects from roads depended on the construction modifications required for a roadway (i.e., vegetation clearing and topography modification). The cleared area defined the type of plant community and the distance that road pollutants travel. Secondarily, road presence affected soil chemistry. Metal concentrations (e.g., Pb, Cd, Cu, and Zn) correlated positively with road type. Proximity to all road types made the soils more alkaline (pH 7.7) relative to the acidic soil of the adjacent native forest (pH 5.6). Roadside microtopography had marked effects on the composition of plant communities based on the direction of water flow. Ditch areas supported wetland plant species, greater soil moisture and sulfur content, while plant communities closer to the road were characteristic of drier upland zones. The area beyond the edge of the forest did not appear to be affected chemically or physically by any of the road types, possibly due to the dense vegetation that typically develops outside of the managed right-of-way.

  17. Simulation of Soil Quality with Riparian Forests and Cultivated with Sugarcane

    NASA Astrophysics Data System (ADS)

    da Silva, Luiz Gabriel; Colato, Alexandre; Casagrande, José Carlos; Soares, Marcio Roberto; Perissatto Meneghin, Silvana

    2013-04-01

    Riparian forests are entrusted with important hydrological functions, such as riparian zone protection, filtering sediments and nutrients and mitigation of the amount of nutrients and xenobiotic molecules from the surrounding agro ecosystems. The soil was sampled in the depths of 0-0,2 and 0.2-0.4 m and its chemical (nutrient content and organic matter, cationic exchange capacity - CEC, sum of bases-SB, bases saturation, V%, and aluminum saturation, m%); physical (particle size distribution, density and porosity) and microbiological attributes (basal respiration and microbial biomass) were determined. This work aimed to study the liner method of combining data, figures of merit (FoM), weighing process and the scoring functions developed by Wymore and asses the quality of the soil (SQI) by means of chemical, physical and microbiological soil attributes, employing the additive pondered model for two areas of riparian forest at different stages of ecological succession and an adjacent area cultivated with sugar cane, located on the dam shores of Sugar Mill Saint Lucia-Araras/SP. Some hierarchical functions containing FoMs and their parameters were constructed, and from them weights were assigned to each FoM and parameter, in a way that cluster of structures with the same FoMs and parameters with different weights were formed. These clusters were used to calculate the SQI for all vegetal formations considering two types of soil (Oxisol and Podzol), in that way, the SQI was calculated for each combination of vegetation and soil. The SQIs values were usually higher in the oldest riparian forest, while the recent riparian forest showed the smallest SQI values, for both types of soil. The variation of values within a combination vegetation/soil was also different between all combinations, being that the set of values from the oldest riparian forest presented the lowest amplitude. It was also observed that the Oxisols, regardless of the vegetation, presented higher SQIs

  18. Soil nitrogen cycle processes in urban riparian zones.

    PubMed

    Groffman, Peter M; Boulware, Natalie J; Zipperer, Wayne C; Pouyat, Richard V; Band, Lawrence E; Colosimo, Mark F

    2002-11-01

    Riparian zones have been found to function as "sinks" for nitrate (NO3-), the most common groundwater pollutant in the U. S., in many areas. The vast majority of riparian research, however, has focused on agricultural watersheds. There has been little analysis of riparian zones in urban watersheds, despite the fact that urban areas are important sources of NO3- to nitrogen (N)-sensitive coastal waters in many locations. In this study, we measured stream incision, water table depths, and pools, production (mineralization, nitrification), and consumption (denitrification) of NO3- in urban soils. Samples were taken from soil profiles (0-100 cm) of three forested urban and suburban zones and one forested reference riparian zone in the Baltimore, Maryland metropolitan area. Our objectives were to determine (1) if stream incision associated with urbanization results in lower riparian water tables, and (2) if pools, production, and consumption of NO3- vary systematically with stream incision and riparian water table levels. Two of the three urban and suburban streams were more incised and all three had lower water tables in their riparian zones than the forested reference stream. Urban and suburban riparian zones had higher NO3- pools and nitrification rates than the forested reference riparian zone, which was likely due to more aerobic soil profiles, lower levels of available soil carbon, and greater N enrichment in the urban and suburban sites. At all sites, denitrification potential decreased markedly with depth in the soil profile. Lower water tables in the urban and suburban riparian zones thus inhibit interaction of groundwater-borne NO3- with near surface soils that have the highest denitrification potential. These results suggest that urban hydrologic factors can increase the production and reduce the consumption of NO3- in riparian zones, reducing their ability to function as sinks for NO3- in the landscape.

  19. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2016-10-01

    The highly dynamic processes within a hillslope-riparian-stream (HRS) continuum are known to affect streamflow generation, but are yet not fully understood. Within this study, we simulated a headwater HRS continuum in western Luxembourg with an integrated hydrologic surface subsurface model (HydroGeoSphere). The model was setup with thorough consideration of catchment-specific attributes and we performed a multicriteria model evaluation (4 years) with special focus on the temporally varying spatial patterns of surface saturation. We used a portable thermal infrared (TIR) camera to map surface saturation with a high spatial resolution and collected 20 panoramic snapshots of the riparian zone (approx. 10 m × 20 m) under different hydrologic conditions. Qualitative and quantitative comparison of the processed TIR panoramas and the corresponding model output panoramas revealed a good agreement between spatiotemporal dynamic model and field surface saturation patterns. A double logarithmic linear relationship between surface saturation extent and discharge was similar for modeled and observed data. This provided confidence in the capability of an integrated hydrologic surface subsurface model to represent temporal and spatial water flux dynamics at small (HRS continuum) scales. However, model scenarios with different parameterizations of the riparian zone showed that discharge and surface saturation were controlled by different parameters and hardly influenced each other. Surface saturation only affected very fast runoff responses with a small volumetric contribution to stream discharge, indicating that the dynamic surface saturation in the riparian zone does not necessarily imply a major control on runoff generation.

  20. Molecular characterization of sulfate-reducing bacteria community in surface sediments from the adjacent area of Changjiang Estuary

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhen, Yu; Mi, Tiezhu; He, Hui; Yu, Zhigang

    2016-02-01

    Sulfate-reducing bacteria (SRB), which obtain energy from dissimilatory sulfate reduction, play a vital role in the carbon and sulfur cycles. The dissimilatory sulfite reductase (Dsr), catalyzing the last step in the sulfate reduction pathway, has been found in all known SRB that have been tested so far. In this study, the diversity of SRB was investigated in the surface sediments from the adjacent area of Changjiang Estuary by PCR amplification, cloning and sequencing of the dissimilatory sulfite reductase beta subunit gene ( dsrB). Based on dsrB clone libraries constructed in this study, diversified SRB were found, represented by 173 unique OTUs. Certain cloned sequences were associated with Desulfobacteraceae, Desulfobulbaceae, and a large fraction (60%) of novel sequences that have deeply branched groups in the dsrB tree, indicating that novel SRB inhabit the surface sediments. In addition, correlations of the SRB assemblages with environmental factors were analyzed by the linear model-based redundancy analysis (RDA). The result revealed that temperature, salinity and the content of TOC were most closely correlated with the SRB communities. More information on SRB community was obtained by applying the utility of UniFrac to published dsrB gene sequences from this study and other 9 different kinds of marine environments. The results demonstrated that there were highly similar SRB genotypes in the marine and estuarine sediments, and that geographic positions and environmental factors influenced the SRB community distribution.

  1. Low flows and temperatures of streams in the Seattle-Tacoma urban complex and adjacent areas, Washington

    USGS Publications Warehouse

    Hidaka, F.T.

    1972-01-01

    Data on the minimum flows of streams and water temperature are necessary for the proper planning and development of the water resources of urban Seattle-Tacoma and adjacent areas. The data on low flows are needed for such purposes as (1) designing and operating municipal and industrial water-supply systems; (2) classifying streams as to their potential for waste disposal; (3) defining the amount of water available for irrigation, for maintaining streamflow as required by law or agreement, and for fish propagation; and (4) designing water-storage facilities. Data on stream temperatures are important to many water users because of the many biological, chemical, and physical properties of water that are dependent on temperature. Agricultural and domestic users as well as municipal, industrial and fishery agencies are concerned with water temperatures. In this report, low-flow data are accompanied by information on seasonal variations in water temperatures at sites selected as representing regional stream-temperature patterns. Because low flows and high water temperatures commonly occur together, they may impose constraints on various uses of the region's streams. The following discussion deals first with low-flow trends in the region, then with stream temperatures, and finally with some of the resulting constraints.

  2. Distribution of Pasiphaea japonica larvae in submarine canyons and adjacent continental slope areas in Toyama Bay, Sea of Japan

    NASA Astrophysics Data System (ADS)

    Nanjo, Nobuaki; Katayama, Satoshi

    2014-09-01

    The horizontal and vertical distribution of Pasiphaea japonica larvae, which included larval stages and postlarval or later stages, were investigated in Toyama Bay located in central Japan. The horizontal distributions in the inner part of the bay were investigated by oblique hauls from 10 m above the sea-bottom to the surface using a Remodeled NORPAC net (LNP net) in May, August, November 2005, January, March, April, July, September, December 2006, March-September, November-December 2007, and January-March 2008. The vertical distributions were investigated by concurrent horizontal hauls at the depths of 0, 50, 100, 150, 200, and 250 m using a Motoda net (MTD net) in January, March, April, July, September, and December 2006. Mean density of larvae was higher in submarine canyons which dissect the continental shelf and run to the mouth of river, than adjacent continental slope areas. Larvae densely aggregated in the canyon head. Vertical distribution of the larval stages concentrated in the depth range of 100-150 m in both daytime and nighttime, and larvae in the postlarval or later stages showed diel vertical distribution over a wider depth range than larval stages. Our results indicate the possibility of a larval aggregation in energy-rich habitats, and indicated two important roles of submarine canyons, which were larval retention and high food supply.

  3. Ecogenomic responses of benthic communities under multiple stressors along the marine and adjacent riverine areas of northern Bohai Sea, China.

    PubMed

    Xie, Yuwei; Hong, Seongjin; Kim, Seonjin; Zhang, Xiaowei; Yang, Jianghua; Giesy, John P; Wang, Tieyu; Lu, Yonglong; Yu, Hongxia; Khim, Jong Seong

    2017-04-01

    Benthic communities in the aquatic ecosystem are influenced by both natural and anthropogenic stressors. To understand the ecogenomic responses of sediment communities to the multiple stressors of polluted environments, the bacteria, protistan and metazoan communities in sediments from marine and adjacent riverine areas of North Bohai Sea were characterized by environmental DNA meta-systematics, and their associations with environmental variables were assessed by multiple statistical approaches. The bacterial communities were dominated by Firmicutes (mean 22.4%), Proteobacteria (mean 21.6%) and Actinobacteria (mean 21.5%). The protistan communities were dominated by Ochrophyta (33.7%), Cercozoa (18.9%) and Ciliophora (17.9%). Arthropoda (71.1%) dominated the metazoan communities in sediments. The structures of communities in sediments were shaped by both natural variables (spatial variability and/or salinity (presented as Na and Ca)) and anthropogenic contaminants, including DDTs, PAHs or metals (Cu, Al, Co, Cr, Cu, Fe, K, Mg, Mn, Ni and Zn). Particularly, the correlation network of multiple communities was modulated by the concentrations of Na and DDTs at the family level. Overall, environmental DNA meta-systematics can provide a powerful tool for biomonitoring, sediment quality assessment, and key stressors identification.

  4. Evidence that local land use practices influence regional climate, vegetation, and stream flow patterns in adjacent natural areas

    USGS Publications Warehouse

    Stohlgren, T.J.; Chase, T.N.; Pielke, R.A.; Kittel, T.G.F.; Baron, J.S.

    1998-01-01

    We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.

  5. Additions and corrections to the bibliography of geologic studies, Columbia Plateau (Columbia River Besalt) and adjacent Areas, in Idaho, 1980

    SciTech Connect

    Strowd, W.

    1980-01-01

    This bibliography is an update to Idaho Bureau of Mines and Geology Open-File Report 78-6, Bibliography of Geological Studies, Columbia Plateau (Columbia River Basalt Group) and adjacent areas in Idaho (also known as Rockwell Hanford Operations' contractor report RHO-BWI-C-44). To keep the original document current, this additions and corrections report was prepared for the Basalt Waste Isolation Project of Rockwell Hanford Operations. This update is supplementary; therefore, references cited in the original document have not been included here. What is included are materials that have become available since the original publication and pertinent literature that had originally been overlooked. Accompany this updated bubliography are index maps that show locations of geologic studies and geochemical petrographic, remanent paleomagnetic, and radiometric age-dated sites within the Columbia River Basalt Group field within Idaho; also identified are archeological sites, test wells, mines, quarries, and other types of excavations. References on the index maps are keyed to the bibliography and cover the Spokane, Pullman, Hamilton, Grangeville, Elk City, Baker, Boise, and Jordan Valley Army Map Service two-degree quadrangles.

  6. Analysis and simulation of ground-water flow in Lake Wales Ridge and adjacent areas of central Florida

    USGS Publications Warehouse

    Yobbi, Dann K.

    1996-01-01

    The Lake Wales Ridge is an uplands recharge area in central Florida that contains many sinkhole lakes. Below-normal rainfall and increased pumping of ground water have resulted in declines both in ground-water levels and in the water levels of many of the ridge lakes. A digital flow model was developed for a 3,526 square-mile area to help understand the current (1990) ground-water flow system and its response to future ground-water withdrawals. The ground-water flow system in the Lake Wales Ridge and adjacent area of central Florida consists of a sequence of sedimentary aquifers and confining units. The uppermost water-bearing unit of the study area is the surficial aquifer. This aquifer is generally unconfined and is composed primarily of clastic deposits. The surficial aquifer is underlain by the confined intermediate aquifer and confining units which consists of up to three water-bearing units composed of interbedded clastics and carbonate rocks. The lowermost unit of the ground- water flow system, the confined Upper Floridan aquifer, consists of a thick, hydraulically connected sequence of carbonate rocks. The Upper Floridan aquifer is about 1,200 to 1,400 feet thick and is the primary source for ground-water withdrawals in the study area. The generalized ground-water flow system of the Lake Wales Ridge is that water moves downward from the surficial aquifer to the intermediate aquifer and the Upper Floridan aquifer in the central area, primarily under the ridges, with minor amounts of water flow under the flatlands. The water flows laterally away fromn the central area, downgradient to discharge areas to the west, east, and south, and locally along valleys of major streams. Upward leakage occurs along valleys of major streams. The model was initially calibrated to the steady-state conditions representing September 1989. The resulting calibrated hydrologic parameters were then tested by simulating transient conditions for the period October 1989 through 1990. A

  7. Structural model of the lithosphere-asthenosphere system beneath the Qinghai-Tibet Plateau and its adjacent areas

    NASA Astrophysics Data System (ADS)

    Zhang, Xuemei; Teng, Jiwen; Sun, Ruomei; Romanelli, Fabio; Zhang, Zhongjie; Panza, Giuliano F.

    2014-11-01

    The deep structure of the lithosphere-asthenosphere system, as imaged from geophysical data, of the Qinghai-Tibet Plateau, the highest on the Earth, provides important clues in understanding its orogenic processes. Here we reconstruct the main features of the structure of the crust and upper mantle from surface wave tomography in the Qinghai-Tibet Plateau and its adjacent areas, in order to understand the modality of the convergence and collision process between the Indian and Eurasian plates. Based on Rayleigh waves dispersion theory, we collected long period and broad-band seismic data from the global and regional seismic networks surrounding the study area (20°N-50°N, 70°E-110°E). After applying instrument response calibration and filtering, group velocities of the fundamental mode of Rayleigh waves are measured using the frequency-time analysis (FTAN). Combining the published dispersion data, a 2-D surface-wave tomography method is applied to calculate the lateral variations of group velocity distribution at different periods, in the range from 8 s to 150 s. The Hedgehog non-linear inversion method is performed to obtain shear wave velocity (Vs) versus depth models of the crust and upper mantle for 181 cells, with size 2° × 2°. In order to identify the cellular representative models, we applied the local smoothness optimization method (LSO). Fairly detailed structural models of the lithosphere-asthenosphere system have been defined. The Vs models demonstrate the lateral variation of the thickness of the metasomatic lid between the south and north of the Bangong-Nujiang Suture (BNS) and the west and east of Tibet. The variation in thickness of the metasomatic lid may suggest that the leading edge of the subducting Indian slab reaches up to BNS.

  8. Distribution of 222Rn concentration in an inhabited area adjacent to the Aja granitic heights of Hail Province, Saudi Arabia.

    PubMed

    Kinsara, Abdulraheem Abdulrahman; Shabana, El-Said Ibrahim; Abulfaraj, Waleed Hussain; Qutub, Maher Mohammad Taher

    2015-01-01

    Radon-222 has been measured in groundwater, dwellings, and atmosphere of an inhabited area adjacent to the granitic Aja heights of Hail province, Saudi Arabia. The measurements were carried out in the field using a RAD7 instrument. Twenty-eight water samples, collected from drilled wells scattered in the region, were analyzed. Radon-222 concentration ranged from 2.5-95 kBq m(-3) with an average value of about 30.3 kBq m(-3). The higher values were found in wells drawing water from granitic aquifers. Indoor 222Rn was measured in 20 dwellings of rural areas in Hail city and other towns. Concentrations ranged from 12-125.6 Bq m(-3), with an average value of 54.6 Bq m(-3). Outdoor air 222Rn was measured at 16 sites, with values ranging from 6.2-13.3 Bq m(-3), with an average value of 10.5 Bq m(-3). The estimated average effective dose due to inhalation of 222Rn released from water was 0.08 mSv y(-1). The estimated average annual effective dose due to indoor 222Rn was 1.35 mSv, which lies below the effective dose range (3-10 mSv) given as the recommended action level. Based on the average dose rate values, the excess lifetime cancer risk values were estimated as 69.8 × 10(-4) due to indoor radon and 13.4 × 10(-4) due to outdoor radon.

  9. Estuarine phytoplankton dynamics and shift of limiting factors: A study in the Changjiang (Yangtze River) Estuary and adjacent area

    NASA Astrophysics Data System (ADS)

    Zhu, Zhuo-Yi; Ng, Wai-Man; Liu, Su-Mei; Zhang, Jing; Chen, Jay-Chung; Wu, Ying

    2009-09-01

    Environmental factors in estuaries are highly variable in terms of both spatial and temporal dimensions and hence phytoplankton biomass, as well as community structure, is dynamic. Two cruises were carried out in the Changjiang (Yangtze River) Estuary and adjacent area in spring and summer. The result of CHEMTAX calculation suggests that in spring diatoms and chlorophytes contribute equally to phytoplankton biomass, while phytoplankton community structure is mainly composed of diatoms in summer. We encountered blooms in summer with chlorophyll a (CHL a) over 10 μg l -1 off the Changjiang Estuary and they were mainly caused by diatoms (>90%). Based on the HPLC analysis of samples collected, phytoplankton pigments mainly concentrated beyond the front between 122.5°E and 123°E where nutrients and turbidity were best balanced. Euphotic depth ( Zeu, calculated from Secchi disk depth) to surface mixed layer depth ( Zmix) ratio (i.e. Zeu/ Zmix) were comparable in spring (average value 1.2) and the ratio increased to 5.2 in summer. Variation of the ratio indicates an apparent shift of light and physical conditions from spring to summer. Correspondingly, CHL a was positively related to Zeu/ Zmix ratio ( r2 = 0.83) in spring, indicating the light limitation over the whole investigation area. On the other hand, the relationship of CHL a and Zeu/ Zmix ratio became unclear when Zeu/ Zmix ratio >3 in summer. This is probably due to the combination of both light limitation before the front and nutrient limitation beyond the front. In addition, evidence was found that light condition can impact the diagnostic pigments in the Changjiang Estuary.

  10. Distribution and enantiomeric profiles of organochlorine pesticides in surface sediments from the Bering Sea, Chukchi Sea and adjacent Arctic areas.

    PubMed

    Jin, Meiqing; Fu, Jie; Xue, Bin; Zhou, Shanshan; Zhang, Lina; Li, An

    2017-03-01

    The spatial distribution, compositional profiles, and enantiomer fractions (EFs) of organochlorine pesticides (OCPs), including hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs), and chlordanes (CHLs), in the surface sediments in the Bering Sea, Chukchi Sea and adjacent areas were investigated. The total concentrations of DDTs, HCHs and CHLs varied from 0.64 to 3.17 ng/g dw, 0.19-0.65 ng/g dw, and 0.03-0.16 ng/g dw, respectively. No significant difference was observed between the Bering Sea and Chukchi Sea for most pollutants except for trans-CHL, ΣCHLs (sum of trans- and cis-chlordane) and p,p'-DDD. Concentration ratios (e.g., α-HCH/γ-HCH, o,p'-DDT/p,p'-DDT) indicated that the contamination in the studied areas may result from inputs from multiple sources (e.g., historical usage of technical HCHs as well as new input of dicofol). Chiral analysis showed great variation in the enantioselective degradation of OCPs, resulting in excess of (+)-enantiomer for α-HCH in thirty of the 32 detectable samples, preferential depletion of (-)-enantiomer for o,p'-DDT in nineteen of the 35 detectable samples, and nonracemic in most samples for trans- and cis-chlordane. The ecological risks of the individual OCPs as well as the mixture were assessed based on the calculation of toxic units (TUs), and the results showed the predominance of DDT and γ-HCH in the mixture toxicity of the sediment. Overall, the TUs of OCPs in sediments from both the Bering and Chukchi Seas are less than one, indicating low ecological risk potential.

  11. Mature and old-growth riparian forests: structure, dynamics, and effects on Adirondack stream habitats.

    PubMed

    Keeton, William S; Kraft, Clifford E; Warren, Dana R

    2007-04-01

    Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in

  12. Hydrogeology, distribution, and volume of saline groundwater in the southern midcontinent and adjacent areas of the United States

    USGS Publications Warehouse

    Osborn, Noël I.; Smith, S. Jerrod; Seger, Christian H.

    2013-01-01

    The hydrogeology, distribution, and volume of saline water in 22 aquifers in the southern midcontinent of the United States were evaluated to provide information about saline groundwater resources that may be used to reduce dependency on freshwater resources. Those aquifers underlie six States in the southern midcontinent—Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas—and adjacent areas including all or parts of Alabama, Colorado, Florida, Illinois, Kentucky, Mississippi, Nebraska, New Mexico, South Dakota, Tennessee, and Wyoming and some offshore areas of the Gulf of Mexico. Saline waters of the aquifers were evaluated by defining salinity zones; digitizing data, primarily from the Regional Aquifer-System Analysis Program of the U.S. Geological Survey; and computing the volume of saline water in storage. The distribution of saline groundwater in the southern midcontinent is substantially affected by the hydrogeology and groundwater-flow systems of the aquifers. Many of the aquifers in the southern midcontinent are underlain by one or more aquifers, resulting in vertically stacked aquifers containing groundwaters of varying salinity. Saline groundwater is affected by past and present hydrogeologic conditions. Spatial variation of groundwater salinity in the southern midcontinent is controlled primarily by locations of recharge and discharge areas, groundwater-flow paths and residence time, mixing of freshwater and saline water, and interactions with aquifer rocks and sediments. The volume calculations made for the evaluated aquifers in the southern midcontinent indicate that about 39,900 million acre-feet (acre-ft) of saline water is in storage. About 21,600 million acre-ft of the water in storage is slightly to moderately saline (1,000–10,000 milligrams per liter [mg/L] dissolved solids), and about 18,300 million acre-ft is very saline (10,000–35,000 mg/L dissolved solids). The largest volumes of saline water are in the coastal lowlands (about

  13. Changes in concentrations of a TCE plume in near- stream zones of a DNAPL contaminated area adjacent to a stream

    NASA Astrophysics Data System (ADS)

    Lee, S.; Hyun, Y.; Lee, K.

    2012-12-01

    A field investigation of a trichloroethylene (TCE) groundwater plume originating at an industrial complex and its discharges to a stream nearby showed that apparent plume attenuation occurred in the near-stream zone of a DNAPL contaminated area adjacent to a stream prior to discharging to the stream. The concentrations of TCE and cis-1,2-dichloroethene (cis-DCE) in groundwater, hyporheic water, stream water and streambed, and hydrogeology were characterized using mini-piezometers, monitoring wells, Ground Penetrating Radar (GPR) surveys, and soil coring. In the near stream zones temporal and spatial TCE plume concentration changes and mass fluxes were investigated along the flowpath of groundwater discharging to the stream. It is evident that observed concentrations of contaminants (TCE and cis-DCE) were reduced in the near-stream zone, resulting that TCE and cis-DCE were not detected in the streambed and stream water. Ground GPR surveys done in the near stream zone found that wire and water treatment pipe conduits were buried under the ground next to the stream, which could lead groundwater flow field distortion in this zone. At streambed, the GPR survey and soil coring indicated the presence of low permeable zones consisting of rotten material deposits at the top of 0.3 m ~ 0.8 m underlain by silty sands. These hydrogeological features can also attribute to no detection of contaminants in the streambed and stream water because low permeable zone is an obstacle to effective interactions between groundwater and stream water. More investigations will be carried out for comprehensive understanding of hydrological and biogeochemical processes associated with TCE plume attenuation in near stream zones and streambed in the site.

  14. Nesting ecology of Greater Sandhill Cranes (Grus canadensis tabida) in riparian and palustrine wetlands of eastern Idaho

    USGS Publications Warehouse

    McWethy, D.B.; Austin, J.E.

    2009-01-01

    Little information exists on breeding Greater Sandhill Cranes (Grus canadensis tabida) in riparian wetlands of the Intermountain West. We examined the nesting ecology of Sandhill Cranes associated with riparian and palustrine wetlands in the Henry's Fork Watershed in eastern Idaho in 2003. We located 36 active crane nests, 19 in riparian wetlands and 17 in palustrine wetlands. Nesting sites were dominated by rushes (Juncus spp.), sedges (Carex spp.), Broad-leaved Cattail (Typha latifolia) and willow (Salix spp.), and adjacent foraging areas were primarily composed of sagebrush (Artemisia spp.), cinquefoil (Potentilla spp.),Rabbitbrush (Ericameria bloomeri) bunch grasses, upland forbs, Quaking Aspen (Populus tremuloides) and cottonwood (Populus spp.). Mean water depth surrounding nests was 23 cm (SD = 22). A majority of nests (61%) were surrounded by vegetation between 3060 cm, 23% by vegetation 60 cm in height. We were able to determine the fate of 29 nests, of which 20 were successful (69%). Daily nest survival was 0.986 (95% LCI 0.963, UCI 0.995), equivalent to a Mayfield nest success of 0.654 (95% LCI 0.324, UCI 0.853). Model selection favored models with the covariates vegetation type, vegetation height, and water depth. Nest survival increased with increasing water depth surrounding nest sites. Mean water depth was higher around successful nests (30 cm, SD = 21) than unsuccessful nests (15 cm, SD 22). Further research is needed to evaluate the relative contribution of cranes nesting in palustrine and riparian wetlands distributed widely across the Intermountain West.

  15. Environmental data package for ORNL Solid Waste Storage Area Four, the adjacent intermediate-level liquid waste transfer line, and the liquid waste pilot pit area

    SciTech Connect

    Davis, E.C.; Shoun, R.R.

    1986-09-01

    The Oak Ridge National Laboratory Remedial Action Program has determined through its review of past environmental studies that Solid Waste Storage Area Four (SWSA-4) continually releases radioactivity to White Oak Creek and therefore requires application of the site stabilization and remedial actions outlined under the 3004u provisions of the Resource Conservation and Recovery Act. Under these provisions, a Remedial Investigation/Feasibility Study (RI/FS) forms the basis for determining the extent of actions. This report assembles available historical and environmental data relative to the SWSA-4 waste area grouping (WAG), which includes the 9.3-ha SWSA-4 site, the adjacent abandoned intermediate-level liquid waste transfer line, and the experimental pilot pit area. The rationale for grouping these three waste management units into the SWSA-4 WAG is the fact that they each lie in the same hydrologic unit and share a common tributary to White Oak Creek. The results of this compilation demonstrate that although a considerable number of studies have been carried out in SWSA-4, needs such as installation of water quality wells and continued monitoring and reporting of hydrologic data still exist. These needs will become even more critical as the RI/FS process proceeds and remedial measures for the site are considered. Fewer studies have been carried out to characterize the extent of contamination at the waste transfer line and the pilot pit area. Alternatives for characterizing and stabilizing these two minor components of the SWSA-4 WAG are presented; however, extensive remedial actions do not appear to be warranted.

  16. Improving riparian wetland conditions based on infiltration and drainage behavior during and after controlled flooding

    NASA Astrophysics Data System (ADS)

    Russo, Tess A.; Fisher, Andrew T.; Roche, James W.

    2012-04-01

    SummaryWe present results of an observational and modeling study of the hydrologic response of a riparian wetland to controlled flooding. The study site is located in Poopenaut Valley, Yosemite National Park (USA), adjacent to the Tuolumne River. This area is flooded periodically by releases from the Hetch Hetchy Reservoir, and was monitored during one flood sequence to assess the relative importance of inundation versus groundwater rise in establishing and maintaining riparian wetland conditions, defined on the basis of a minimum depth and duration of soil saturation, and to determine how restoration benefits might be achieved while reducing total flood discharge. Soil moisture data show how shallow soils were wetted by both inundation and a rising water table as the river hydrograph rose repeatedly during the controlled flood. The shallow groundwater aquifer under wetland areas responded quickly to conditions in the adjacent river, demonstrating a good connection between surface and subsurface regimes. The observed soil drainage response helped to calibrate a numerical model that was used to test scenarios for controlled flood releases. Modeling of this groundwater-wetland system suggests that inundation of surface soils is the most effective mechanism for developing wetland conditions, although an elevated water table helps to extend the duration of soil saturation. Achievement of wetland conditions can be achieved with a smaller total flood release, provided that repeated cycling of higher and lower river elevations is timed to benefit from the characteristic drainage behavior of wetland soils. These results are robust to modest variations in the initial water table elevation, as might result from wetter or dryer conditions prior to a flood. However, larger changes to initial water table elevation, as could be associated with long term climate change or drought conditions, would have a significant influence on wetland development. An ongoing controlled flooding

  17. Hydrologic assessment of a riparian section along Boulder Creek near Boulder, Colorado, September 1989-September 1991

    USGS Publications Warehouse

    Kimbrough, Robert

    1995-01-01

    Native woody riparian species, primarily plains cottonwood (Populus fremontii), are regenerating at less than historical rates along Boulder Creek, a regulated stream near Boulder, Colorado. Loss of native riparian habitats might cause a decline in numbers of some native wildlife species. Previous studies have indicated that streamflow regulation can adversely affect native riparian vegetation reproduction. Surface- and ground-water data were collected from September 1989 to September 1991 along a riparian section of Boulder Creek to assist ecologists in assessing woody plant-recruitment characteristics. Annual mean streamflows in Boulder Creek at Cottonwood Grove of 34.5 cubic feet per second for water year 1990 (October 1, 1989- September 30, 1990) and 34.1 cubic feet per second for water year 1991 were 53 percent less than a site on Boulder Creek about 5 miles upstream from the study area. Diversions dating from 1882 caused most of the decrease. The alluvial aquifer in the study area averaged 5 feet in thickness and consisted of gravel- to cobble-size particles derived from crystalline rock of Precambrian age. The direction of ground-water movement was similar to the direction of streamflow. Ground-water movement in the northeastern part of the grove was affected by a pond constructed at a lower elevation than the stream channel. Water levels in the alluvial aquifer adjacent to the stream pre- dominantly were affected by stream stage, whereas farther from the channel, ground-water levels were affected by other processes such as evapotrans- piration, infiltration, and recharge from urban runoff.

  18. Overview of mine drainage geochemistry at historical mines, Humboldt River basin and adjacent mining areas, Nevada. Chapter E.

    USGS Publications Warehouse

    Nash, J. Thomas; Stillings, Lisa L.

    2004-01-01

    Reconnaissance hydrogeochemical studies of the Humboldt River basin and adjacent areas of northern Nevada have identified local sources of acidic waters generated by historical mine workings and mine waste. The mine-related acidic waters are rare and generally flow less than a kilometer before being neutralized by natural processes. Where waters have a pH of less than about 3, particularly in the presence of sulfide minerals, the waters take on high to extremely high concentrations of many potentially toxic metals. The processes that create these acidic, metal-rich waters in Nevada are the same as for other parts of the world, but the scale of transport and the fate of metals are much more localized because of the ubiquitous presence of caliche soils. Acid mine drainage is rare in historical mining districts of northern Nevada, and the volume of drainage rarely exceeds about 20 gpm. My findings are in close agreement with those of Price and others (1995) who estimated that less than 0.05 percent of inactive and abandoned mines in Nevada are likely to be a concern for acid mine drainage. Most historical mining districts have no draining mines. Only in two districts (Hilltop and National) does water affected by mining flow into streams of significant size and length (more than 8 km). Water quality in even the worst cases is naturally attenuated to meet water-quality standards within about 1 km of the source. Only a few historical mines release acidic water with elevated metal concentrations to small streams that reach the Humboldt River, and these contaminants and are not detectable in the Humboldt. These reconnaissance studies offer encouraging evidence that abandoned mines in Nevada create only minimal and local water-quality problems. Natural attenuation processes are sufficient to compensate for these relatively small sources of contamination. These results may provide useful analogs for future mining in the Humboldt River basin, but attention must be given to

  19. Multiscale remote sensing analysis to monitor riparian and upland semiarid vegetation

    NASA Astrophysics Data System (ADS)

    Nguyen, Uyen

    The health of natural vegetation communities is of concern due to observed changes in the climatic-hydrological regime and land cover changes particularly in arid and semiarid regions. Monitoring vegetation at multi temporal and spatial scales can be the most informative approach for detecting change and inferring causal agents of change and remediation strategies. Riparian communities are tightly linked to annual stream hydrology, ground water elevations and sediment transport. These processes are subject to varying magnitudes of disturbance overtime and are candidates for multi-scale monitoring. My first research objective focused on the response of vegetation in the Upper San Pedro River, Arizona, to reduced base flows and climate change. I addressed the correlation between riparian vegetation and hydro-climate variables during the last three decades in one of the remaining undammed rivers in the southwestern U.S. Its riparian forest is threatened by the diminishing base flows, attributed by different studies either to increases in evapotranspiration (ET) due to conversion of grasslands to mesquite shrublands in the adjacent uplands, or to increased regional groundwater pumping to serve growing populations in surrounding urban areas and or to some interactions of those causes. Landsat 5 imagery was acquired for pre- monsoon period, when riparian trees had leafed out but before the arrival of summer monsoon rains in July. The result has showed Normalized Difference Vegetation Index (NDVI) values from both Landsat and Moderate Resolution Imaging Spectrometer (MODIS) had significant decreases which positively correlated to river flows, which decreased over the study period, and negatively correlated with air temperatures, which have increased by about 1.4°C from 1904 to the present. The predictions from other studies that decreased river flows could negatively impact the riparian forest were supported by this study. The pre-monsoon Normalized Different Vegetation

  20. Radioecology of Vertebrate Animals in the Area Adjacent to the Chernobyl Nuclear Power Plant Site in 1986-2008

    NASA Astrophysics Data System (ADS)

    Farfan, E. B.; Gashchak, S. P.; Makliuk, Y. A.; Maksymenko, A. M.; Bondarkov, M. D.; Jannik, G. T.; Marra, J. C.

    2009-12-01

    A widespread environmental contamination of the areas adjacent to the Chernobyl Nuclear Power Plant (ChNPP) site attracted a great deal of publicity to the biological consequences of the ChNPP catastrophe. However, only a few studies focused on a detailed analysis of radioactive contamination of the local wild fauna and most of them were published in Eastern European languages, making them poorly accessible for Western scientists. In addition, evaluation of this information appears difficult due to significant differences in raw data acquisition and analysis methodologies and final data presentation formats. Using an integrated approach to assessment of all available information, the International Radioecology Laboratory scientists showed that the ChNPP accident had increased the average values of the animals 137Cs and 90Sr contamination by a factor of thousands, followed by its decrease by a factor of tens, primarily resulting from a decrease in the biological accessibility of the radionuclides. However, this trend depended on many factors. Plant and bottom feeding fish species were the first to reach the maximum contamination levels. No data are available on other vertebrates, but it can be assumed that the same trend was true for all plant feeding animals and animals searching for food on the soil surface. The most significant decrease of the average values occurred during the first 3-5 years after the accident and it was the most pronounced for elks and plant and plankton feeding fish. Their diet included elements “alienated” from the major radionuclide inventory; for example, upper soil layers and bottom deposits where the fallout that had originally precipitated on plants, water and soils gradually migrated. Further radionuclide penetration into deeper layers of soils and its bonding with their mineral components intensified decontamination of the fauna. It took a while for the contamination of predatory fish and mammals (wolves) to reach the maximum

  1. Assessment of the fresh-and brackish-water resources underlying Dunedin and adjacent areas on northern Pinellas County, Florida

    USGS Publications Warehouse

    Knochenmus, L.A.; Swenson, E.S.

    1996-01-01

    The city of Dunedin is enhancing their potable ground-water resources through desalination of brackish ground water. An assessment of the fresh- and brackish-water resources in the Upper Floridan aquifer was needed to estimate the changes that may result from brackish-water development. The complex hydrogeologic framework underlying Dunedin and adjacent areas of northern Pinellas County is conceptualized as a multilayered sequence of permeable zones and confining and semiconfining units. The permeable zones contain vertically spaced, discrete, water-producing zones with differing water quality. Water levels, water-level responses, and water quality are highly variable among the different permeable zones. The Upper Floridan aquifer is best characterized as a local flow system in most of northern Pinellas County. Pumping from the Dunedin well field is probably not influencing water levels in the aquifer outside Dunedin, but has resulted in localized depressions in the potentiometric surface surrounding production-well clusters. The complex geologic layering combined with the effects of production-well distribution probably contribute to the spatial and temporal variability in chloride concentrations in the Dunedin well field. Chloride concentrations in ground water underlying the Dunedin well field vary both vertically and laterally. In general, water-quality rapidly changes below depths of 400 feet below sea level. Additionally, randomly distributed water-producing zones with higher chloride concentrations may occur at shallow, discrete intervals above 400 feet. A relation between chloride concentration and distance from St. Joseph Sound is not apparent; however, a possible relation exists between chloride concentration and production-well density. Chloride-concentration data from production wells show a consistently increasing pattern that has accelerated since the late 1980's. Chloride-concentration data from 15 observation wells show increasing trends for 6 wells

  2. Disturbance and California riparian tree establishment

    NASA Astrophysics Data System (ADS)

    Bendix, J.; Cowell, C. M.

    2010-12-01

    As is the case in many ecosystems, tree establishment in riparian corridors is often episodic, following disturbance events that clear colonization sites. In many riparian settings, flooding is the most obvious, and relevant disturbance agent. However, in Mediterranean-climate regions, fire is an equally important disturbance agent. In California, the frequency and severity of both floods and fire are expected to change with projected climate change, making an understanding of their roles key to understanding future ecological processes in California riparian environments. In this paper, we use tree-ring data from the Transverse Ranges of Southern California to explore the relative importance of fire and flood in the establishment of riparian gallery forest. We examined 42 cores of Alnus rhombifolia, Populus fremontii and Quercus agrifolia from the riparian zone adjacent to Piedra Blanca and Potrero John Creeks in California’s Transverse Ranges, and compared their establishment dates with records of fire and floods, to see how establishment related to disturbance history. Our results show some evidence for major fire having an impact, as all of the largest stems dated to the few years following the 1932 Matilija fire, which had burned all of the sites in our sample. The remainder of the record is less straightforward, although there is an establishment peak in the 1970s, which may be related to a 1975 fire that burned part of the Potrero John watershed. Of note, the establishment chronology shows no relationship to the flood record, as years of major floods do not relate to either prolific or sparse years in the tree-ring record. This record suggests that large fires may serve as a trigger for tree establishment in California riparian settings, but that they are hardly a prerequisite, as many stems germinated between fires. Indeed, ongoing regeneration is apparently independent of disturbance, given the apparent irrelevance of flooding in this regard. The result

  3. Depositional and diagenetic history and petroleum geology of the Jurassic Norphlet Formation of the Alabama coastal waters area and adjacent federal waters area

    USGS Publications Warehouse

    Kugler, R.L.; Mink, R.M.

    1999-01-01

    The discovery of deep (>20,000 ft) gas reservoirs in eolian sandstone of the Upper Jurassic Norphlet Formation in Mobile Bay and offshore Alabama in the late 1970s represents one of the most significant hydrocarbon discoveries in the nation during the past several decades. Estimated original proved gas from Norphlet reservoirs in the Alabama coastal waters and adjacent federal waters is 7.462 trillion ft3 (Tcf) (75% recovery factor). Fifteen fields have been established in the offshore Alabama area. Norphlet sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in updip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition, resulted in reworking of the upper part of the Norphlet Formation. Norphlet reservoir sandstone is arkose and subarkose, consisting of a simple assemblage of three minerals, quartz, albite, and K-feldspar. The present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex. Important authigenic minerals include carbonate phases (calcite, dolomite, Fe-dolomite, and breunnerite), feldspar (albite and K-feldspar), evaporite minerals (anhydrite and halite), clay minerals (illite and chlorite), quartz, and pyrobitumen. The abundance and distribution of these minerals varies significantly between onshore and offshore regions of Norphlet production. The lack of sufficient internal sources of components for authigenic minerals, combined with unusual chemical compositions of chloride (Mg-rich), breunnerite, and some minor authigenic minerals, suggests that Louann-derived fluids influenced Norphlet diagenesis. In offshore Alabama reservoirs, porosity is dominantly modified primary porosity. Preservation of porosity in deep Norphlet reservoirs is due

  4. Changes In Tree Species In Riparian Zones Of Urban Streams May Have Effects On Restoration And Storm Water Control Efforts

    EPA Science Inventory

    A riparian zone is the land and vegetation within and directly adjacent to surface water ecosystems, such as lakes and streams. The vegetation in riparian zones provides ecosystem services (such as reducing flooding and bank erosion and reducing levels of pollutants in streams) ...

  5. Using GIS Models to Identify Relative Nitrogen Attenuation by Riparian Buffers in the Coastal Plain of North Carolina

    EPA Science Inventory

    Riparian areas have demonstrated the ability to attenuate nutrients and provide water quality services at the field scale, but services of riparian buffers for downstream users should be assessed at watershed scales. GIS-based riparian models have been developed to connect ripari...

  6. Imaging Hydrological Processes in Headwater Riparian Seeps with Time-Lapse Electrical Resistivity.

    PubMed

    Williams, Mark R; Buda, Anthony R; Singha, Kamini; Folmar, Gordon J; Elliott, Herschel A; Schmidt, John P

    2017-01-01

    Delineating hydrologic and pedogenic factors influencing groundwater flow in riparian zones is central in understanding pathways of water and nutrient transport. In this study, we combined two-dimensional time-lapse electrical resistivity imaging (ERI) (depth of investigation approximately 2 m) with hydrometric monitoring to examine hydrological processes in the riparian area of FD-36, a small (0.4 km(2) ) agricultural headwater basin in the Valley and Ridge region of east-central Pennsylvania. We selected two contrasting study sites, including a seep with groundwater discharge and an adjacent area lacking such seepage. Both sites were underlain by a fragipan at 0.6 m. We then monitored changes in electrical resistivity, shallow groundwater, and nitrate-N concentrations as a series of storms transitioned the landscape from dry to wet conditions. Time-lapse ERI revealed different resistivity patterns between seep and non-seep areas during the study period. Notably, the seep displayed strong resistivity reductions (∼60%) along a vertically aligned region of the soil profile, which coincided with strong upward hydraulic gradients recorded in a grid of nested piezometers (0.2- and 0.6-m depth). These patterns suggested a hydraulic connection between the seep and the nitrate-rich shallow groundwater system below the fragipan, which enabled groundwater and associated nitrate-N to discharge through the fragipan to the surface. In contrast, time-lapse ERI indicated no such connections in the non-seep area, with infiltrated rainwater presumably perched above the fragipan. Results highlight the value of pairing time-lapse ERI with hydrometric and water quality monitoring to illuminate possible groundwater and nutrient flow pathways to seeps in headwater riparian areas.

  7. 33 CFR 334.530 - Canaveral Harbor adjacent to the Navy pier at Port Canaveral, Fla.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) The area. The waters of Canaveral Harbor within a line circumscribing the water approaches to the Navy... from the area during specified periods. (2) The area will be closed when a red square flag (bravo), and depending on the status of the hazardous operation, either an amber or red beacon, steady burning...

  8. 33 CFR 334.530 - Canaveral Harbor adjacent to the Navy pier at Port Canaveral, Fla.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) The area. The waters of Canaveral Harbor within a line circumscribing the water approaches to the Navy... from the area during specified periods. (2) The area will be closed when a red square flag (bravo), and depending on the status of the hazardous operation, either an amber or red beacon, steady burning...

  9. 33 CFR 334.530 - Canaveral Harbor adjacent to the Navy pier at Port Canaveral, Fla.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) The area. The waters of Canaveral Harbor within a line circumscribing the water approaches to the Navy... from the area during specified periods. (2) The area will be closed when a red square flag (bravo), and depending on the status of the hazardous operation, either an amber or red beacon, steady burning...

  10. Impacts of an Invasive Snail (Tarebia granifera) on Nutrient Cycling in Tropical Streams: The Role of Riparian Deforestation in Trinidad, West Indies

    PubMed Central

    Moslemi, Jennifer M.; Snider, Sunny B.; MacNeill, Keeley; Gilliam, James F.; Flecker, Alexander S.

    2012-01-01

    Non-native species and habitat degradation are two major catalysts of environmental change and often occur simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass- and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9 times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the biogeochemical cycling of N. PMID:22761706

  11. Food web structure of the coastal area adjacent to the Tagus estuary revealed by stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2012-01-01

    The identification of energy sources, pathways and trophic linkages among organisms is crucial for the understanding of food web dynamics. Stable isotopes were used to identify the trophic level of food web components and track the incorporation of organic matter of different origins in the coastal ecosystem adjacent to the Tagus estuary. It was shown that the river Tagus is a major source of organic carbon to this system. Also, the wide difference in δ 13C among the primary consumers allowed the identification of the pelagic and the benthic energy pathways. The maximum trophic level observed was 2.4 for Sepia officinalis. This value is indicative of a short food web. It was concluded that the diet of the upper trophic level species relies directly on the lower food web levels to a considerable extent, instead of relying mostly on intermediate trophic level species. Moreover, the δ 15N values of primary consumers were very close to that of particulate organic matter, probably due to poorly known processes occurring at the basis of the food web. This lowers the trophic length of the whole food web. Reliance on benthic affinity prey was high for all upper trophic level secondary consumers.

  12. 33 CFR 334.85 - New York Harbor, adjacent to the Stapleton Naval Station, Staten Island, New York; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND..., New York; restricted area. (a) The area. The waters of New York Harbor beginning at a point on shore....5″ N, longitude 074°03′46″ W; thence southwesterly to the shore line at latitude 40°37′24.5″...

  13. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  14. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  15. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  16. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  17. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    USGS Publications Warehouse

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  18. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths

    NASA Astrophysics Data System (ADS)

    Tiwari, T.; Lundström, J.; Kuglerová, L.; Laudon, H.; Öhman, K.; Ågren, A. M.

    2016-02-01

    Traditional approaches aiming at protecting surface waters from the negative impacts of forestry often focus on retaining fixed width buffer zones around waterways. While this method is relatively simple to design and implement, it has been criticized for ignoring the spatial heterogeneity of biogeochemical processes and biodiversity in the riparian zone. Alternatively, a variable width buffer zone adapted to site-specific hydrological conditions has been suggested to improve the protection of biogeochemical and ecological functions of the riparian zone. However, little is known about the monetary value of maintaining hydrologically adapted buffer zones compared to the traditionally used fixed width ones. In this study, we created a hydrologically adapted buffer zone by identifying wet areas and groundwater discharge hotspots in the riparian zone. The opportunity cost of the hydrologically adapted riparian buffer zones was then compared to that of the fixed width zones in a meso-scale boreal catchment to determine the most economical option of designing riparian buffers. The results show that hydrologically adapted buffer zones were cheaper per hectare than the fixed width ones when comparing the total cost. This was because the hydrologically adapted buffers included more wetlands and low productive forest areas than the fixed widths. As such, the hydrologically adapted buffer zones allows more effective protection of the parts of the riparian zones that are ecologically and biogeochemically important and more sensitive to disturbances without forest landowners incurring any additional cost than fixed width buffers.

  19. Breeding bird response to partially harvested riparian management zones

    USGS Publications Warehouse

    Chizinski, Christopher J.; Peterson, Anna; Hanowski, JoAnn; Blinn, Charles R.; Vondracek, Bruce C.; Niemi, Gerald

    2011-01-01

    We compared avian communities among three timber harvesting treatments in 45-m wide even-age riparian management zones (RMZs) placed between upland clearcuts and along one side of first- or second-order streams in northern Minnesota, USA. The RMZs had three treatments: (1) unharvested, (2) intermediate residual basal area (RBA) (targeted goal 11.5 m2/ha, realized 16.0 m2/ha), and (3) low RBA (targeted goal 5.7 m2/ha, realized 8.7 m2/ha). Surveys were conducted one year pre-harvest and three consecutive years post-harvest. There was no change in species richness, diversity, or total abundance associated with harvest but there were shifts in the types of birds within the community. In particular, White-throated Sparrows (Zonotrichia albicollis) and Chestnut-sided Warblers (Dendroica pensylvanica) increased while Ovenbirds (Seiurus aurocapilla) and Red-eyed Vireos (Vireo olivaceus) decreased. The decline of avian species associated with mature forest in the partially harvested treatments relative to controls indicates that maintaining an unharvested RMZ adjacent to an upland harvest may aid in maintaining avian species associated mature forest in Minnesota for at least three years post-harvest. However, our observations do not reflect reproductive success, which is an area for future research.

  20. Hydrology of the LC Holding coal-lease tract and adjacent areas, southwestern Utah, and potential effects of coal mining

    USGS Publications Warehouse

    Cordy, G.E.; Seiler, R.L.; Stolp, B.J.

    1993-01-01

    The U.S. Bureau of Land Management recognized a need for baseline hydrologic data and an understanding of the hydrologic system in the L.C. Holding coal-lease tract in order to determine the potential effects of mining on the water resources of the area. The potential impacts of mining on the hydrology of the area are of concern because Zion National Park is less than 3 miles from the westernmost part of the lease tract. Much of the water that passes through the Park either originates in the lease tract or traverses it. Runoff from melting snowpacks and summer thundershowers contributes most of the flow to perennial streams in the area. Base flow is sustained by spring discharge and diffuse seepage. Regional groundwater movement is southward. Most of the geologic formations in the study area contain aquifers. The water table of the regional aquifer is about 870 ft deep in the Navajo Sandstone. Groundwater issuing from the Navajo Sandstone on the east side of Zion Canyon has specific conductance values several times larger than groundwater from the west side, indicating recharge to the Navajo from the overlying strata, which contain water of larger specific conductance. Potential effects of mining in the area include: (1) increased dissolved-solids concen- trations and decreased pH values in both surface and groundwater; (2) dewatering of aquifers, causing a decrease or cessation of flow to some springs; and (3) land subsidence and associated subsidence fractures.

  1. Ecophysiological Competence of Populus alba L., Fraxinus angustifolia Vahl., and Crataegus monogyna Jacq. Used in Plantations for the Recovery of Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Manzanera, Jose A.; Martínez-Chacón, Maria F.

    2007-12-01

    In many semi-arid environments of Mediterranean ecosystems, white poplar ( Populus alba L.) is the dominant riparian tree and has been used to recover degraded areas, together with other native species, such as ash ( Fraxinus angustifolia Vahl.) and hawthorn ( Crataegus monogyna Jacq.). We addressed three main objectives: (1) to gain an improved understanding of some specific relationships between environmental parameters and leaf-level physiological factors in these riparian forest species, (2) to compare the leaf-level physiology of these riparian species to each other, and (3) to compare leaf-level responses within native riparian plots to adjacent restoration plots, in order to evaluate the competence of the plants used for the recovery of those degraded areas. We found significant differences in physiological performance between mature and young white poplars in the natural stand and among planted species. The net assimilation and transpiration rates, diameter, and height of white poplar plants were superior to those of ash and hawthorn. Ash and hawthorn showed higher water use efficiency than white poplar. White poplar also showed higher levels of stomatal conductance, behaving as a fast-growing, water-consuming species with a more active gas exchange and ecophysiological competence than the other species used for restoration purposes. In the restoration zones, the planted white poplars had higher rates of net assimilation and water use efficiency than the mature trees in the natural stand. We propose the use of white poplar for the rapid restoration of riparian vegetation in semi-arid Mediterranean environments. Ash and hawthorn can also play a role as accompanying species for the purpose of biodiversity.

  2. Subsurface-controlled geological maps for the Y-12 plant and adjacent areas of Bear Creek Valley

    SciTech Connect

    King, H.L.; Haase, C.S.

    1987-04-01

    Bear Creek Valley in the vicinity of the US Department of Energy Y-12 Plant is underlain by Middle to Late Cambrian strata of the Conasauga Group. The group consists of interbedded limestones, shales, mudstones, and siltstones, and it can be divided into six discrete formations. Bear Creek Valley is bordered on the north by Pine Ridge, which is underlain by sandstones, siltstones, and shales of the Rome Formation, and on the south by Chestnut Ridge, which is underlain by dolostones of the Knox Group. Subsurface-controlled geological maps illustrating stratigraphic data and formational contacts for the formations within the Conasauga Group have been prepared for the Y-12 Plant vicinity and selected areas in Bear Creek Valley westward from the plant. The maps are consistent with all available surface and subsurface data for areas where sufficient data exist to make map construction feasible. 13 refs.

  3. Spatio-temporal distribution and environmental risk of sedimentary heavy metals in the Yangtze River Estuary and its adjacent areas.

    PubMed

    Chen, Bin; Liu, Jian; Qiu, Jiandong; Zhang, Xilin; Wang, Shuang; Liu, Jinqing

    2016-12-01

    Twenty-five surface sediments and one sediment core sample were collected from the study area. Grain size, major elements, and heavy metals were determined. The content of fine-grained sediments (silt and clay), as well as the concentrations of major elements and heavy metals, showed seaward decreasing trends, with high content in the coastal areas of the East China Sea (ECS) and south west of Jeju Island. Low enrichment factor (EF) and geoaccumulation index (Igeo) values were found, indicating that the ecological risk of heavy metals was low. The EF values obtained from the high-resolution sedimentary records of heavy metals in the Yangtze River Estuary could be divided into Stage 1 (1950s to the late 1970s) and Stage 2 (late 1970s to the current sampling day), which coincided with economic development of the Yangtze River Basin, implementation of environmental protection, and impoundment of the Three Gorges Dam.

  4. Vegetation Evaluation and Recommendations: Dredge Material Placement Areas and Adjacent Lands, Kaskaskia River Navigation Project, New Athens to Fayetteville.

    DTIC Science & Technology

    1981-06-03

    288 pp. Mohlenbrock, R. H. 1972. The illustrated flora of Illinois: Grasses : Bromus to Paspalum . Southern Illinois University Press, Carbondale...in less satur- ated areas are Desmodium paniculatum (panicled tick trefoil), Geum canadense (white avens), Paspalum fluitans (swamp bead grass ...tall fescue), Bromus inermis (smooth brome), and Tridens flavus (purple-top) are the most abundant and important grasses in the old fields. Major

  5. Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area

    NASA Astrophysics Data System (ADS)

    Erlström, M.; Thomas, S. A.; Deeks, N.; Sivhed, U.

    1997-04-01

    Southernmost Sweden, Bornholm and the surrounding Baltic Sea region are located on a large-scale releasing bend in the dextral strike-slip system of the Tornquist Zone, with its resulting pull-apart basins. The well constrained geology of Scania and Bornholm has been combined with detailed on- and offshore borehole data and three proprietary marine seismic surveys. This in conjunction with supplementary BABEL deep seismic reflection findings allows a combined 3D interpretation of sediment/structure interactions. As a result, a regional interpretation has emerged which gives a new understanding of the interplay between structural movement on a complex strike-slip fault system (Tornquist Zone) and its intrazonal depressions (Vomb Trough and Colonus Shale Trough) as well as the sedimentation history of associated areas of sediment accumulation (Rønne and Arnager Grabens, Höllviken Halfgraben, Hanö Bay Basin and Skurup Platform). Detailed sequential litho- and seismo-stratigraphic descriptions have been possible by combination of the various data sets. This resulted in the clarification or recognition of previously unknown structural limits to sub-basins and highs in the study area. A 3D chronological (4D) model for the development of the region is proposed. This model takes into account the long-lived structural history combining elements of strike-slip, extension and inversion tectonics. The deep-seated faulting controlling these structures is integrated with the deep structure as revealed by the BABEL line in this area.

  6. Ground-Water Hydrographs and 5-Year Ground-Water-Level Changes, 1984-93, for Selected Areas In and Adjacent to New Mexico

    USGS Publications Warehouse

    Wilkins, D.W.; Garcia, Benjamin M.

    1995-01-01

    A cooperative observation-well monitoring program was begun in New Mexico in 1925 between the U.S. Geological Survey and the New Mexico State Engineer Office. The majority of the wells are located in New Mexico; however, a few are in Texas east of Curry and Roosevelt County, New Mexico, and in Colorado along the Rio Grande. The program presently includes 22 wells equipped with continuous water-level recorders and 34 monitoring areas in which selected wells are measured periodically, usually every 5 years, to record changes in ground-water levels. These monitoring areas are those where ground water is used in large quantities for irrigation, municipal, or industrial purposes. Water-level data and water-level changes computed from these data are used to determine areas of ground-water-level rises and declines. This information is necessary for management of ground-water resources in New Mexico. Included in this report are hydrographs of ground-water levels obtained from 22 wells equipped with continuous water-level recorders and maps of ground-water-level changes computed for a 5-year period in each of 34 monitoring areas. Well locations and ground-water-level data for a 5-year period are listed in tables for each monitoring area. Where available, plots of annual precipitation data for climatological stations within or adjacent to each monitoring area are included.

  7. An investigation of MAGSAT and complementary data emphasizing precambrian shields and adjacent areas of West Africa and South America

    NASA Technical Reports Server (NTRS)

    Hastings, D. A. (Principal Investigator)

    1981-01-01

    Accomplishments with regard to the mapping and analysis of MAGSAT data for the investigation of correlations between the magnetic field characteristics of South American and African shields are reported. Significant results in the interpretation of the global total-field anomalies and the anomaly patterns of Africa and South America are discussed. The central position of the Brazilian shield tends to form a negative total-field anomaly, consistent with findings for shields in equatorial Africa. Sedimentary sequences in the Amazon basin and in the Rio de Janeiro-Sao Paolo areas exhibit positive anomalies, also consistent with equatorial Africa. Results for the Caribbean Sea and Guyana regions are also described.

  8. Present and Reference Concentrations and Yields of Suspended Sediment in Streams in the Great Lakes Region and Adjacent Areas

    USGS Publications Warehouse

    Robertson, Dale M.; Saad, David A.; Heisey, Dennis M.

    2006-01-01

    In-stream suspended sediment and siltation and downstream sedimentation are common problems in surface waters throughout the United States. The most effective way to improve surface waters impaired by sediments is to reduce the contributions from human activities rather than try to reduce loadings from natural sources. Total suspended sediment/solids (TSS) concentration data were obtained from 964 streams in the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River Basins from 1951 to 2002. These data were used to estimate median concentrations, loads, yields, and volumetrically (flow) weighted (VW) concentrations where streamflow data were available. SPAtial Regression-Tree Analysis (SPARTA) was applied to land-use-adjusted (residualized) TSS data and environmental-characteristic data to determine the natural factors that best described the distribution of median and VW TSS concentrations and yields and to delineate zones with similar natural factors affecting TSS, enabling reference or natural concentrations and yields to be estimated. Soil properties (clay and organic-matter content, erodibility, and permeability), basin slope, and land use (percentage of agriculture) were the factors most strongly related to the distribution of median and VW TSS concentrations. TSS yields were most strongly related to amount of precipitation and the resulting runoff, and secondarily to the factors related to high TSS concentrations. Reference median TSS concentrations ranged from 5 to 26 milligrams per liter (mg/L), reference median annual VW TSS concentrations ranged from 10 to 168 mg/L, and reference TSS yields ranged from about 980 to 90,000 kilograms per square kilometer per year. Independent streams (streams with no overlapping drainage areas) with TSS data were ranked by how much their water quality exceeded reference concentrations and yields. Most streams exceeding reference conditions were in the central part of the study area, where agricultural activities

  9. Molecular diversity and distribution pattern of ciliates in sediments from deep-sea hydrothermal vents in the Okinawa Trough and adjacent sea areas

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Xu, Kuidong

    2016-10-01

    In comparison with the macrobenthos and prokaryotes, patterns of diversity and distribution of microbial eukaryotes in deep-sea hydrothermal vents are poorly known. The widely used high-throughput sequencing of 18S rDNA has revealed a high diversity of microeukaryotes yielded from both living organisms and buried DNA in marine sediments. More recently, cDNA surveys have been utilized to uncover the diversity of active organisms. However, both methods have never been used to evaluate the diversity of ciliates in hydrothermal vents. By using high-throughput DNA and cDNA sequencing of 18S rDNA, we evaluated the molecular diversity of ciliates, a representative group of microbial eukaryotes, from the sediments of deep-sea hydrothermal vents in the Okinawa Trough and compared it with that of an adjacent deep-sea area about 15 km away and that of an offshore area of the Yellow Sea about 500 km away. The results of DNA sequencing showed that Spirotrichea and Oligohymenophorea were the most diverse and abundant groups in all the three habitats. The proportion of sequences of Oligohymenophorea was the highest in the hydrothermal vents whereas Spirotrichea was the most diverse group at all three habitats. Plagiopyleans were found only in the hydrothermal vents but with low diversity and abundance. By contrast, the cDNA sequencing showed that Plagiopylea was the most diverse and most abundant group in the hydrothermal vents, followed by Spirotrichea in terms of diversity and Oligohymenophorea in terms of relative abundance. A novel group of ciliates, distinctly separate from the 12 known classes, was detected in the hydrothermal vents, indicating undescribed, possibly highly divergent ciliates may inhabit this environment. Statistical analyses showed that: (i) the three habitats differed significantly from one another in terms of diversity of both the rare and the total ciliate taxa, and; (ii) the adjacent deep sea was more similar to the offshore area than to the

  10. GLORIA sidescan-sonar imagery for parts of the U.S. Exclusive Economic Zone and adjacent areas

    USGS Publications Warehouse

    Paskevich, Valerie F.; Wong, Florence L.; O'Malley, John J.; Stevenson, Andrew J.; Gutmacher, Christina E.

    2011-01-01

    In 1983, President Ronald Reagan signed a Proclamation establishing the Exclusive Economic Zone (EEZ) of the United States extending its territory 200 nautical miles from the coasts of the United States, Puerto Rico, the Northern Mariana Islands, and other U.S. territories and possessions. The charter of the U.S. Geological Survey (USGS) places the primary responsibility for mapping the territories of the United States within the USGS. Upon declaration of the EEZ, the territory of the United States was enlarged by more than 13 million square kilometers, all of which are under water. The USGS EEZ-SCAN program to systematically map the EEZ began in 1984 and continued through 1991. This digital publication contains all the GLORIA sidescan imagery of the deep-water (greater than 200 meters) portion of the EEZ mapped during those 8 years of data collection. For each EEZ area, we describe the data collection surveys and provide downloads of the GLORIA data and metadata.

  11. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis

    NASA Astrophysics Data System (ADS)

    Roger, Françoise; Jolivet, Marc; Malavieille, Jacques

    2010-09-01

    The Triassic orogeny in North Tibet results from interactions between the South China, North China and Qiangtang (North Tibet) blocks during the closure of the Paleotethys ocean. It is mainly composed, from west to east, by the Bayan Har, Songpan-Garzê, and Yidun (or Litang-Batang) terranes. We focus here on the Triassic Songpan-Garzê fold belt and the actual eastern margin of the Tibetan Plateau which is one of the key areas for understanding the tectonic evolution of the Asian continent and the Tibetan Plateau. At least three major deformation phases are recognized in eastern Tibet and south-east of the South China block: a Neoproterozoic phase (1-0.75 Ga) correlated to the assembly and break-up of the Rodinia Continent, a Late Triassic compression event and finally a Tertiary deformation related to the India-Asia collision. The tectonic and geodynamic history of this part of Asia is very complex and often vigorously debated. For example the Triassic compression event in Tibet is usually associated to the Indosinian Orogeny originally defined in Vietnam but this is probably an oversimplification. Our purpose is to review the various models proposed in the literature and to synthesize the tectonic and geodynamic history of this area. We show that the Songpan-Garzê fold belt is not a typical collisional belt: the triangular shape of the closing oceanic basin as well as the huge volume of accreted sediments did not allow a complete continent-continent collision. Finally, the tectonic inheritance plays a major role in the evolution of the eastern margin of Tibet as most of the major Tertiary tectonic structures in the Longmen Shan are reactivated Paleozoic and Mesozoic faults.

  12. Assessment of macroinvertebrate communities in adjacent urban stream basins, Kansas City, Missouri, metropolitan area, 2007 through 2011

    USGS Publications Warehouse

    Christensen, Eric D.; Krempa, Heather M.

    2013-01-01

    Wastewater-treatment plant discharges during base flow, which elevated specific conductance and nutrient concentrations, combined sewer overflows, and nonpoint sources likely contributed to water-quality impairment and lower aquatic-life status at the Blue River Basin sites. Releases from upstream reservoirs to the Little Blue River likely decreased specific conductance, suspended-sediment, and dissolved constituent concentrations and may have benefitted water quality and aquatic life of main-stem sites. Chloride concentrations in base-flow samples, attributable to winter road salt application, had the highest correlation with the SUII (Spearman’s ρ equals 0.87), were negatively correlated with the SCI (Spearman’s ρ equals -0.53) and several pollution sensitive Ephemeroptera plus Plecoptera plus Trichoptera abundance and percent richness metrics, and were positively correlated with pollution tolerant Oligochaeta abundance and percent richness metrics. Study results show that the easily calculated SUII and the selected modeled multimetric indices are effective for comparing urban basins and for evaluation of water quality in the Kansas City metropolitan area.

  13. Seismic structure beneath the Gulf of Aqaba and adjacent areas based on the tomographic inversion of regional earthquake data

    NASA Astrophysics Data System (ADS)

    El Khrepy, Sami; Koulakov, Ivan; Al-Arifi, Nassir; Petrunin, Alexey G.

    2016-06-01

    We present the first 3-D model of seismic P and S velocities in the crust and uppermost mantle beneath the Gulf of Aqaba and surrounding areas based on the results of passive travel time tomography. The tomographic inversion was performed based on travel time data from ˜ 9000 regional earthquakes provided by the Egyptian National Seismological Network (ENSN), and this was complemented with data from the International Seismological Centre (ISC). The resulting P and S velocity patterns were generally consistent with each other at all depths. Beneath the northern part of the Red Sea, we observed a strong high-velocity anomaly with abrupt limits that coincide with the coastal lines. This finding may indicate the oceanic nature of the crust in the Red Sea, and it does not support the concept of gradual stretching of the continental crust. According to our results, in the middle and lower crust, the seismic anomalies beneath the Gulf of Aqaba seem to delineate a sinistral shift (˜ 100 km) in the opposite flanks of the fault zone, which is consistent with other estimates of the left-lateral displacement in the southern part of the Dead Sea Transform fault. However, no displacement structures were visible in the uppermost lithospheric mantle.

  14. Contrasting Phylogeography of Sandy vs. Rocky Supralittoral Isopods in the Megadiverse and Geologically Dynamic Gulf of California and Adjacent Areas

    PubMed Central

    Hurtado, Luis A.; Lee, Eun Jung; Mateos, Mariana

    2013-01-01

    patterns. Identification of divergent lineages of Tylos in the study area is important for conservation, as some populations are threatened by human activities. PMID:23844103

  15. Tectonic evolution of the Songpan Garzê and adjacent areas (NE Tibet) from Triassic to Present : a synthesis.

    NASA Astrophysics Data System (ADS)

    Roger, F.; Jolivet, M.; Malavieille, J.

    2009-04-01

    The 12th May 2008 Wenchuan earthquake in the Longmen Shan occurred on a large thrust fault largely inherited from an Indosinian structure itself probably controlled by an older structural heritage of the South China block continental margin. Within the whole northeast Tibet region, such a structural inheritance has had a major impact on the Tertiary deformation. It appears of primary importance to assess the pre-Tertiary tectonic evolution of the main blocks involved to understand the actual deformation in the eastern edge of Tibet. Over the past decades, the Proterozoic to Cenozoic tectonic, metamorphic and geochronologic history of the Longmen Shan and Songpan Garzê area have been largely studied. We present a synthesis of the tectonic evolution of the Songpan Garzê fold and thrust belt from Triassic to present. The Songpan-Garzê belt was formed during closure of a wide oceanic basin filled with a thick (5 to 15 km) sequence of Triassic flyschoid sediments [10]. Closure of the basin due to Triassic subduction involved strong shortening, intense folding and faulting of the Triassic series. A large-scale décollement, that presently outcrops along the eastern boundary of the belt (Danba area), allowed the growth of a wide and thick accretionary wedge [9]. It develops in the Paleozoic and Triassic series and separates the accretionary prism from an autochthonous crystalline basement [5, 12, 6] which shares many similarities with the basement of the Yangtze Craton (0.7-0.9 Ga). To the north and northwest, below the thickened Triassic series of the belt, the composition (oceanic or continental) of the basement remains unknown. During the Indosinian orogeny the emplacement of orogenic granites (220 - 150 Ma) was associated to crustal thickening [12, 13, 17, 15]. The isotopic composition of granitoids shows that their magma source were predominantly derived from melting of the proterozoic basement with varying degrees of sedimentary material and negligible mantle

  16. Rivers through time: historical changes in the riparian vegetation of the semi-arid, winter rainfall region of South Africa in response to climate and land use.

    PubMed

    Hoffman, M Timm; Rohde, Richard Frederick

    2011-01-01

    This paper examines how the riparian vegetation of perennial and ephemeral rivers systems in the semi-arid, winter rainfall region of South Africa has changed over time. Using an environmental history approach we assess the extent of change in plant cover at 32 sites using repeat photographs that cover a time span of 36-113 years. The results indicate that in the majority of sites there has been a significant increase in cover of riparian vegetation in both the channel beds and adjacent floodplain environments. The most important species to have increased in cover across the region is Acacia karroo. We interpret the findings in the context of historical changes in climate and land use practices. Damage to riparian vegetation caused by mega-herbivores probably ceased sometime during the early 19th century as did scouring events related to large floods that occurred at regular intervals from the 15th to early 20th centuries. Extensive cutting of riparian vegetation for charcoal and firewood has also declined over the last 150 years. Changes in the grazing history as well as increased abstraction and dam building along perennial rivers in the region also account for some of the changes observed in riparian vegetation during the second half of the 20th century. Predictions of climate change related to global warming anticipate increased drought events with the subsequent loss of species and habitats in the study area. The evidence presented here suggests that an awareness of the region's historical ecology should be considered more carefully in the modelling and formulation of future climate change predictions as well as in the understanding of climate change impacts over time frames of decades and centuries.

  17. Runoff water quality from manured riparian grasslands with contrasting soil drainage and simulated grazing pressure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, management of grazed riparian areas is of critical importance in terms of agricultural sustainability and environmental quality. However, the potential impacts of riparian grazing management on water quality are not well documented, particularly in the southeastern USA. The objective of ...

  18. Influence of multi-scale hydrologic controls on river network connectivity and riparian function

    EPA Science Inventory

    The ecological functions of rivers and streams and their associated riparian zones are strongly influenced by surface and subsurface hydrologic routing of water within river basins and river networks. Hydrologic attributes of the riparian area for a given stream reach are typica...

  19. MODELING VARIABLE-WIDTH RIPARIAN BUFFERS, WITH AN APPLICATION TO WOODY DEBRIS RECRUITMENT

    EPA Science Inventory

    Effective management of riparian areas in watersheds requires that reach-scale knowlege of riparian functioning be carefully "scaled up" to provide models for entire stream networks. Weller et al. (1998: Ecological Applications 8, 1156-1169) describe a useful heuristic model for...

  20. Identifying Riparian Buffer Effects on Stream 1 Nitrogen in Southeastern Coastal Plain Watersheds

    EPA Science Inventory

    Riparian areas have long demonstrated their ability to attenuate nutrients and sediments from agricultural runoff at the field scale; however, to inform effective nutrient management choices, the impact of riparian buffers on water quality services must be assessed at watershed s...

  1. Dynamic river networks as the context for evaluating riparian influence on river basin solute export

    EPA Science Inventory

    Many studies have examined the influence of riparian areas on nitrogen as water drains from hillslopes and through riparian zones at the stream reach scale. Most of these studies have been conducted along relatively small streams. However, water quality concerns typically deal wi...

  2. Examining water quality effects of riparian wetland loss and restoration scenarios in a southern ontario watershed.

    PubMed

    Yang, Wanhong; Liu, Yongbo; Ou, Chunping; Gabor, Shane

    2016-06-01

    Wetland conservation has two important tasks: The first is to halt wetland loss and the second is to conduct wetland restoration. In order to facilitate these tasks, it is important to understand the environmental degradation from wetland loss and the environmental benefits from wetland restoration. The purpose of the study is to develop SWAT based wetland modelling to examine water quality effects of riparian wetland loss and restoration scenarios in the 323-km(2) Black River watershed in southern Ontario, Canada. The SWAT based wetland modelling was set up, calibrated and validated to fit into watershed conditions. The modelling was then applied to evaluate various scenarios of wetland loss from existing 7590 ha of riparian wetlands (baseline scenario) to 100% loss, and wetland restoration up to the year 1800 condition with 11,237 ha of riparian wetlands (100% restoration). The modelling was further applied to examine 100% riparian wetland loss and restoration in three subareas of the watershed to understand spatial pattern of water quality effects. Modelling results show that in comparing to baseline condition, the sediment, total nitrogen (TN), and total phosphorus (TP) loadings increase by 251.0%, 260.5%, and 890.9% respectively for 100% riparian wetland loss, and decrease by 34.5%, 28.3%, and 37.0% respectively for 100% riparian wetland restoration. Modelling results also show that as riparian wetland loss increases, the corresponding environmental degradation worsens at accelerated rates. In contrast, as riparian wetland restoration increases, the environmental benefits improve but at decelerated rates. Particularly, the water quality effects of riparian wetland loss or restoration show considerable spatial variations. The watershed wetland modelling contributes to inform decisions on riparian wetland conservation or restoration at different rates. The results further demonstrate the importance of targeting priority areas for stopping riparian wetland loss

  3. Riparian communities associated with Pacific Northwest headwater streams: assemblages, processes, and uniqueness

    USGS Publications Warehouse

    Richardson, J.S.; Naiman, R.J.; Swanson, F.J.; Hibbs, D.E.

    2005-01-01

    Riparian areas of large streams provide important habitat to many species and control many instream processes a?? but is the same true for the margins of small streams? This review considers riparian areas alongside small streams in forested, mountainous areas of the Pacific Northwest and asks if there are fundamental ecological differences from larger streams and from other regions and if there are consequences for management from any differences. In the moist forests along many small streams of the Pacific Northwest, the contrast between the streamside and upslope forest is not as strong as that found in drier regions. Small streams typically lack floodplains, and the riparian area is often constrained by the hillslope. Nevertheless, riparian-associated organisms, some unique to headwater areas, are found along small streams. Disturbance of hillslopes and stream channels and microclimatic effects of streams on the riparian area provide great heterogeneity in processes and diversity of habitats. The tight coupling of the terrestrial riparian area with the aquatic system results from the closed canopy and high edge-to-area ratio for small streams. Riparian areas of the temperate, conifer dominated forests of the Pacific Northwest provide a unique environment. Forest management guidelines for small streams vary widely, and there has been little evaluation of the local or downstream consequences of forest practices along small streams.

  4. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.

    PubMed

    Cusell, Casper; Kooijman, Annemieke; Fernandez, Filippo; van Wirdum, Geert; Geurts, Jeroen J M; van Loon, E Emiel; Kalbitz, Karsten; Lamers, Leon P M

    2014-05-15

    vegetation requires larger areas, as long as eutrophication has not been seriously tackled.

  5. Geology, geochronology, and paleogeography of the southern Sonoma volcanic field and adjacent areas, northern San Francisco Bay region, California

    USGS Publications Warehouse

    Wagner, D.L.; Saucedo, G.J.; Clahan, K.B.; Fleck, R.J.; Langenheim, V.E.; McLaughlin, R.J.; Sarna-Wojcicki, A. M.; Allen, J.R.; Deino, A.L.

    2011-01-01

    Recent geologic mapping in the northern San Francisco Bay region (California, USA) supported by radiometric dating and tephrochronologic correlations, provides insights into the framework geology, stratigraphy, tectonic evolution, and geologic history of this part of the San Andreas transform plate boundary. There are 25 new and existing radiometric dates that define three temporally distinct volcanic packages along the north margin of San Pablo Bay, i.e., the Burdell Mountain Volcanics (11.1 Ma), the Tolay Volcanics (ca. 10-8 Ma), and the Sonoma Volcanics (ca. 8-2.5 Ma). The Burdell Mountain and the Tolay Volcanics are allochthonous, having been displaced from the Quien Sabe Volcanics and the Berkeley Hills Volcanics, respectively. Two samples from a core of the Tolay Volcanics taken from the Murphy #1 well in the Petaluma oilfield yielded ages of 8.99 ?? 0.06 and 9.13 ?? 0.06 Ma, demonstrating that volcanic rocks exposed along Tolay Creek near Sears Point previously thought to be a separate unit, the Donnell Ranch volcanics, are part of the Tolay Volcanics. Other new dates reported herein show that volcanic rocks in the Meacham Hill area and extending southwest to the Burdell Mountain fault are also part of the Tolay Volcanics. In the Sonoma volcanic field, strongly bimodal volcanic sequences are intercalated with sediments. In the Mayacmas Mountains a belt of eruptive centers youngs to the north. The youngest of these volcanic centers at Sugarloaf Ridge, which lithologically, chemically, and temporally matches the Napa Valley eruptive center, was apparently displaced 30 km to the northwest by movement along the Carneros and West Napa faults. The older parts of the Sonoma Volcanics have been displaced at least 28 km along the RodgersCreek fault since ca. 7 Ma. The Petaluma Formation also youngs to the north along the Rodgers Creek-Hayward fault and the Bennett Valley fault. The Petaluma basin formed as part of the Contra Costa basin in the Late Miocene and was

  6. Relation between fish communities and riparian zone conditions at two spatial scales

    USGS Publications Warehouse

    Lee, K.E.; Goldstein, R.M.; Hanson, P.E.

    2001-01-01

     The relation offish community composition to riparian cover at two spatial scales was compared at 18 streams in the agricultural Minnesota River Basin. The two spatial scales were: (1) local riparian zone (a 200 meter wide buffer extending 2 to 3 kilometers upstream of the sampling reach); and (2) the upstream riparian zone (a 200 m wide buffer on the mainstem and all perennial tributaries upstream of the sampling reach). Analysis of variance indicated that streams with wooded-local riparian zones had greater fish species richness (means = 20 and 15, respectively) and Index of Biotic Integrity (IBI) scores (means = 40 and 26, respectively) than streams with open-local riparian zones. Streams with wooded-upstream riparian zones tended (were not statistically significant) to have greater numbers of species (means = 19 and 15, respectively) and IBI scores (means = 33 and 28, respectively) than streams with open-upstream riparian zones. There was no significant interaction between the riparian zone conditions at the two scales. This study suggests that maintenance of wooded riparian cover along streams could be effective in maintaining or improving fish community composition in streams draining heavily agricultural areas.

  7. Hydrogeology of the Susquehanna River valley-fill aquifer system and adjacent areas in eastern Broome and southeastern Chenango Counties, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2012-01-01

    The hydrogeology of the valley-fill aquifer system along a 32-mile reach of the Susquehanna River valley and adjacent areas was evaluated in eastern Broome and southeastern Chenango Counties, New York. The surficial geology, inferred ice-marginal positions, and distribution of stratified-drift aquifers were mapped from existing data. Ice-marginal positions, which represent pauses in the retreat of glacial ice from the region, favored the accumulation of coarse-grained deposits whereas more steady or rapid ice retreat between these positions favored deposition of fine-grained lacustrine deposits with limited coarse-grained deposits at depth. Unconfined aquifers with thick saturated coarse-grained deposits are the most favorable settings for water-resource development, and three several-mile-long sections of valley were identified (mostly in Broome County) as potentially favorable: (1) the southernmost valley section, which extends from the New York–Pennsylvania border to about 1 mile north of South Windsor, (2) the valley section that rounds the west side of the umlaufberg (an isolated bedrock hill within a valley) north of Windsor, and (3) the east–west valley section at the Broome County–Chenango County border from Nineveh to East of Bettsburg (including the lower reach of the Cornell Brook valley). Fine-grained lacustrine deposits form extensive confining units between the unconfined areas, and the water-resource potential of confined aquifers is largely untested. Recharge, or replenishment, of these aquifers is dependent not only on infiltration of precipitation directly on unconfined aquifers, but perhaps more so from precipitation that falls in adjacent upland areas. Surface runoff and shallow groundwater from the valley walls flow downslope and recharge valley aquifers. Tributary streams that drain upland areas lose flow as they enter main valleys on permeable alluvial fans. This infiltrating water also recharges valley aquifers. Current (2012) use of

  8. Characterization of surface-water resources in the Great Basin National Park area and their susceptibility to ground-water withdrawals in adjacent valleys, White Pine County, Nevada

    USGS Publications Warehouse

    Elliott, Peggy E.; Beck, David A.; Prudic, David E.

    2006-01-01

    Eight drainage basins and one spring within the Great Basin National Park area were monitored continually from October 2002 to September 2004 to quantify stream discharge and assess the natural variability in flow. Mean annual discharge for the stream drainages ranged from 0 cubic feet per second at Decathon Canyon to 9.08 cubic feet per second at Baker Creek. Seasonal variability in streamflow generally was uniform throughout the network. Minimum and maximum mean monthly discharges occurred in February and June, respectively, at all but one of the perennial streamflow sites. Synoptic-discharge, specific-conductance, and water- and air-temperature measurements were collected during the spring, summer, and autumn of 2003 along selected reaches of Strawberry, Shingle, Lehman, Baker, and Snake Creeks, and Big Wash to determine areas where surface-water resources would be susceptible to ground-water withdrawals in adjacent valleys. Comparison of streamflow and water-property data to the geology along each stream indicated areas where surface-water resources likely or potentially would be susceptible to ground-water withdrawals. These areas consist of reaches where streams (1) are in contact with permeable rocks or sediments, or (2) receive water from either spring discharge or ground-water inflow.

  9. Use of a wetland index to evaluate changes in riparian vegetation after livestock exclusion

    USGS Publications Warehouse

    Coles-Ritchie, M. C.; Roberts, D.W.; Kershner, J.L.; Henderson, R.C.

    2007-01-01

    A method was developed to characterize ecological integrity of riparian sites based on the abundance of hydric species. This wetland index can be calculated with species data, or with community type data as performed here. Classified riparian community types were used to describe vegetation at 14 livestock exclosures and adjacent grazed areas. Community type wetland index values were generated and used to calculate site wetland index values. It was hypothesized that removal of livestock would result in higher wetland index values because of release from herbivory and decreased physical disturbance of vegetation, streambanks, and soil. The wetland index for exclosures was about 12% higher than grazed sites; differences were statistically significant (p < 0.01) based on paired t-tests. The increase in hydric vegetation after livestock exclusion may have contributed to the greater bank stability (p = 0.002) and smaller width-to-depth ratio (p = 0.005) in exclosures. Challenges were encountered in using community types to describe and compare site vegetation, which could be avoided with species data collection. The wetland index can be a tool to monitor sites over time, compare sites with similar environments, or compare sites for which environmental differences can be accounted.

  10. Bottom-up factors influencing riparian willow recovery in Yellowstone National Park

    USGS Publications Warehouse

    Tercek, M.T.; Stottlemyer, R.; Renkin, R.

    2010-01-01

    After the elimination of wolves (Canis lupis L.) in the 1920s, woody riparian plant communities on the northern range of Yellowstone National Park (YNP) declined an estimated 50%. After the reintroduction of wolves in 19951996, riparian willows (Salix spp.) on YNP's northern range showed significant growth for the first time since the 1920s. However, the pace of willow recovery has not been uniform. Some communities have exceeded 400 cm, while others are still at pre-1995 levels of 250 cm max. height) willow sites where willows had escaped elk (Cervus elaphus L.) browsing with "short" willow sites that could still be browsed. Unlike studies that manipulated willow height with fences and artificial dams, we examined sites that had natural growth differences in height since the reintroduction of wolves. Tall willow sites had greater water availability, more-rapid net soil nitrogen mineralization, greater snow depth, lower soil respiration rates, and cooler summer soil temperatures than nearby short willow sites. Most of these differences were measured both in herbaceous areas adjacent to the willow patches and in the willow patches themselves, suggesting that they were not effects of varying willow height recovery but were instead preexisting site differences that may have contributed to increased plant productivity. Our results agree with earlier studies in experimental plots which suggest that the varying pace of willow recovery has been influenced by abiotic limiting factors that interact with top-down reductions in willow browsing by elk. ?? 2010 Western North American Naturalist.

  11. Relationship between characteristics of gravity and magnetic anomalies and the earthquakes in the Longmenshan range and adjacent areas

    NASA Astrophysics Data System (ADS)

    Zhang, Jisheng; Gao, Rui; Zeng, Lingsen; Li, Qiusheng; Guan, Ye; He, Rizheng; Wang, Haiyan; Lu, Zhanwu

    2010-08-01

    The 2008 Wenchuan earthquake and aftershocks occurred along the northeast-trending Longmenshan fault zone in the eastern margin of the Tibetan plateau. The Tibetan plateau has the strongest negative Bouguer gravity anomaly zone in China and is surrounded by the great gravity horizontal gradient belt. The horizontal gradient belt of the observed gravity anomaly in the Longmenshan area is a part of this giant gravity gradient belt. The Longmenshan fault zone is located to the east of this belt. The horizontal gradient belt of the residual gravity anomaly, obtained by removing large effects of sedimentary basin and variations in the crustal thickness, well matches the Longmenshan fault zone. But this belt is located to the east of the horizontal gradient belt of the observed gravity anomalies. The deviation of the two horizontal gradient belts increases from the southwest to the northeast with a maximum of about 40-50 km. A significant difference in density exists in the lower crust and the uppermost mantle between the Songpan-Ganzê block and the Sichuan basin block. The Songpan-Ganzê block is less dense than the Sichuan basin block in the lower crust as well as in the uppermost mantle. The boundary between the two blocks is located to the west of the Wenchuan-Maoxian, Yinxiu-Beichuan, and Anxian-Guanxian faults approximately. The fault plane crosses the lower crust and uppermost mantle. The rigid Sichuan basin block acts as a resistant for the pushing from the Songpan-Ganzê block. Far-field effects of the collision between the Indian and Eurasian plates, might lead to thrust of some brittle layers in the upper crust along the detachment, in the middle crust of the Songpan-Ganzê block. When movement on a large and deep crustal mega-thrust occurs, earthquakes strike the Longmen Shan margin of the Tibetan Plateau. In the Guanxian-Beichuan segment in the southern Longmenshan fault zone, push from the Songpan-Ganzê block is perpendicular to the density boundary

  12. Defended territories of an aggressive damselfish contain lower juvenile coral density than adjacent non-defended areas on Kenyan lagoon patch reefs

    NASA Astrophysics Data System (ADS)

    Gordon, T. A. C.; Cowburn, B.; Sluka, R. D.

    2015-03-01

    Jewel damselfish, Plectroglyphidodon lacrymatus, aggressively defend small territories on coral reefs in which they cultivate lawns of edible macroalgae. Pairwise frequency counts showed that juvenile coral density was lower inside damselfish territories than that in adjacent non-defended areas on lagoon patch reefs in Kenya. These differences in coral density decreased as coral size increased. Direct farming effects of the damselfish and indirect inhibitory effects from higher algal densities inside territories are both thought to be potentially responsible for the results attained herein. Damselfish territories can occupy a large proportion of a coral reef; territorial behaviour in fish may have greater impacts on reef structure, in particular the resilience and growth rate of juvenile corals, than previously appreciated.

  13. Responses to riparian restoration in the Spring Creek watershed, Central Pennsylvania

    USGS Publications Warehouse

    Carline, R.F.; Walsh, M.C.

    2007-01-01

    Riparian treatments, consisting of 3- to 4-m buffer strips, stream bank stabilization, and rock-lined stream crossings, were installed in two streams with livestock grazing to reduce sediment loading and stream bank erosion. Cedar Run and Slab Cabin Run, the treatment streams, and Spring Creek, an adjacent reference stream without riparian grazing, were monitored prior to (1991-1992) and 3-5 years after (2001-2003) riparian buffer installation to assess channel morphology, stream substrate composition, suspended sediments, and macroinvertebrate communities. Few changes were found in channel widths and depths, but channel-structuring flow events were rare in the drought period after restoration. Stream bank vegetation increased from 50% or less to 100% in nearly all formerly grazed riparian buffers. The proportion of fine sediments in stream substrates decreased in Cedar Run but not in Slab Cabin Run. After riparian treatments, suspended sediments during base flow and storm flow decreased 47-87% in both streams. Macroinvertebrate diversity did not improve after restoration in either treated stream. Relative to Spring Creek, macroinvertebrate densities increased in both treated streams by the end of the posttreatment sampling period. Despite drought conditions that may have altered physical and biological effects of riparian treatments, goals of the riparian restoration to minimize erosion and sedimentation were met. A relatively narrow grass buffer along 2.4 km of each stream was effective in improving water quality, stream substrates, and some biological metrics. ?? 2007 Society for Ecological Restoration International.

  14. Prescribed fires as ecological surrogates for wildfires: A stream and riparian perspective

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.

    2010-01-01

    Forest managers use prescribed fire to reduce wildfire risk and to provide resource benefits, yet little information is available on whether prescribed fires can function as ecological surrogates for wildfire in fire-prone landscapes. Information on impacts and benefits of this management tool on stream and riparian ecosystems is particularly lacking. We used a beyond-BACI (Before, After, Control, Impact) design to investigate the effects of a prescribed fire on a stream ecosystem and compared these findings to similar data collected after wildfire. For 3 years after prescribed fire treatment, we found no detectable changes in periphyton, macroinvertebrates, amphibians, fish, and riparian and stream habitats compared to data collected over the same time period in four unburned reference streams. Based on changes in fuels, plant and litter cover, and tree scorching, this prescribed fire was typical of those being implemented in ponderosa pine forests throughout the western U.S. However, we found that the extent and severity of riparian vegetation burned was substantially lower after prescribed fire compared to nearby wildfires. The early-season prescribed fire did not mimic the riparian or in-stream ecological effects observed following a nearby wildfire, even in catchments with burn extents similar to the prescribed fire. Little information exists on the effects of long-term fire exclusion from riparian forests, but a "prescribed fire regime" of repeatedly burning upland forests while excluding fire in adjacent riparian forests may eliminate an important natural disturbance from riparian and stream habitats.

  15. Groundwater-surface water interaction in the riparian zone of an incised channel, Walnut Creek, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Li, Z.; Zhang, Y.-K.

    2006-01-01

    Riparian zones of many incised channels in agricultural regions are cropped to the channel edge leaving them unvegetated for large portions of the year. In this study we evaluated surface and groundwater interaction in the riparian zone of an incised stream during a spring high flow period using detailed stream stage and hydraulic head data from six wells, and water quality sampling to determine whether the riparian zone can be a source of nitrate pollution to streams. Study results indicated that bank storage of stream water from Walnut Creek during a large storm water runoff event was limited to a narrow 1.6 m zone immediately adjacent to the channel. Nitrate concentrations in riparian groundwater were highest near the incised stream where the unsaturated zone was thickest. Nitrate and dissolved oxygen concentrations and nitrate-chloride ratios increased during a spring recharge period then decreased in the latter portion of the study. We used MODFLOW and MT3DMS to evaluate dilution and denitrification processes that would contribute to decreasing nitrate concentrations in riparian groundwater over time. MT3DMS model simulations were improved with a denitrification rate of 0.02 1/d assigned to the floodplain sediments implying that denitrification plays an important role in reducing nitrate concentrations in groundwater. We conclude that riparian zones of incised channels can potentially be a source of nitrate to streams during spring recharge periods when the near-stream riparian zone is largely unvegetated. ?? 2005 Elsevier B.V. All rights reserved.

  16. From Sewers to Salix and Tailpipes to Typha: Riparian Plants Reflect Anthropogenic Nitrogen Sources Across Montane to Urban Gradients

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Hale, R. L.; Baker, M. A.; Bowling, D. R.; Ehleringer, J. R.

    2014-12-01

    Urban and suburban streams typically receive anthropogenic nitrogen (N) from multiple sources, and their identification and partitioning is a prerequisite for effective water quality management. However, stream N fluxes and sources are often highly variable, limiting the utility of water samples for source identification. Nitrate in perennial streams can provide an important N source for riparian vegetation in semi-arid environments. Thus, riparian plant tissue may integrate the stable isotope composition (δ15N) of stream nitrate over longer timescales and assist in source identification. Here, we tested whether δ15N of riparian plant leaves could provide an effective indicator of spatial variation in N sources across land use gradients spanning wildland to urban ecosystems in Salt Lake City, Utah, and the surrounding Wasatch Range Megapolitan Area. We found that leaf δ15N varied systematically within and among eight streams and rivers (n = 378 leaf samples) consistent with spatial land use variations. Plants from a suburban stream adjacent to homes with septic systems (δ15N = 5.1‰) were highly enriched relative to similar species from an adjacent undeveloped stream (δ15N = -0.7 ‰), suggesting an important contribution of enriched human fecal N to the suburban stream. Plants from a montane stream in a largely undeveloped recreational canyon that permitted off-leash dogs (δ15N = 1.8 ‰) were enriched relative to an adjacent canyon with similar land use that strictly prohibited dogs but had comparable vehicle traffic (δ15N = -0.7 ‰), suggesting the contribution of dog waste to stream N. Plants from urban stream reaches were enriched by 1.3 - 2.8 ‰ relative to upstream wildland reaches, and δ15N increased by 0.2 ‰ per km in the urban streams. Mechanisms leading to this urban enrichment could include leaky municipal sewers, atmospheric N deposition, and/or increased rates of N cycling and gaseous losses. Overall, our results demonstrate the potential

  17. Spatio-temporal distribution and sources of Pb identified by stable isotopic ratios in sediments from the Yangtze River Estuary and adjacent areas.

    PubMed

    Chen, Bin; Liu, Jian; Hu, Limin; Liu, Ming; Wang, Liang; Zhang, Xilin; Fan, Dejiang

    2017-02-15

    To understand the spatio-temporal distribution and sources of Pb in the sediments of the Yangtze River Estuary and its adjacent areas, 25 surface sediments and 1 sediment core were collected from the study areas. The concentrations of Al and Pb of these sediments exhibit a decreasing trend from the nearshore towards the offshore, with higher concentrations in the coastal areas of the East China Sea (ECS) and southwest of Jeju Island. According to the stable isotopic ratios of Pb, in combination with the elemental ratios and clay mineral data, it is inferred that sedimentary Pb in the surface sediments of the coastal areas of the ECS may come primarily from the Yangtze River, while the Pb southwest of Jeju Island is probably derived from both the Yangtze and Yellow Rivers. The particulate Pb derived from the Yangtze River was possibly dispersed along two paths: the path southward along the coastline of the ECS and the path eastward associated with the Changjiang Diluted Water (CDW), which crosses the shelf of the ECS towards the area southeast of Jeju Island. Although the Yangtze River Basin witnessed rapid economic development during the period from the late 1970s to the middle 1990s, the influence of human activity on Pb concentration remained weak in the Yangtze River Estuary. Since the early 2000s, however, sedimentary Pb has been significantly increasing in the coastal mud areas of the ECS due to the increasing influence of human activity, such as the increase in atmospheric emission of anthropogenic Pb in China, construction of the Three Gorges Dam (TGD), and the construction of smaller dams in the upper reaches of the Yangtze River. Coal combustion and the smelting of non-ferrous metals are possible anthropogenic sources for the sedimentary Pb in the Yangtze River Estuary.

  18. A GIS-based methodology to quantitatively define an Adjacent Protected Area in a shallow karst cavity: the case of Altamira cave.

    PubMed

    Elez, J; Cuezva, S; Fernandez-Cortes, A; Garcia-Anton, E; Benavente, D; Cañaveras, J C; Sanchez-Moral, S

    2013-03-30

    Different types of land use are usually present in the areas adjacent to many shallow karst cavities. Over time, the increasing amount of potentially harmful matter and energy, of mainly anthropic origin or influence, that reaches the interior of a shallow karst cavity can modify the hypogeal ecosystem and increase the risk of damage to the Palaeolithic rock art often preserved within the cavity. This study proposes a new Protected Area status based on the geological processes that control these matter and energy fluxes into the Altamira cave karst system. Analysis of the geological characteristics of the shallow karst system shows that direct and lateral infiltration, internal water circulation, ventilation, gas exchange and transmission of vibrations are the processes that control these matter and energy fluxes into the cave. This study applies a comprehensive methodological approach based on Geographic Information Systems (GIS) to establish the area of influence of each transfer process. The stratigraphic and structural characteristics of the interior of the cave were determined using 3D Laser Scanning topography combined with classical field work, data gathering, cartography and a porosity-permeability analysis of host rock samples. As a result, it was possible to determine the hydrogeological behavior of the cave. In addition, by mapping and modeling the surface parameters it was possible to identify the main features restricting hydrological behavior and hence direct and lateral infiltration into the cave. These surface parameters included the shape of the drainage network and a geomorphological and structural characterization via digital terrain models. Geological and geomorphological maps and models integrated into the GIS environment defined the areas involved in gas exchange and ventilation processes. Likewise, areas that could potentially transmit vibrations directly into the cave were identified. This study shows that it is possible to define a

  19. Effects of brush management on the hydrologic budget and water quality in and adjacent to Honey Creek State Natural Area, Comal County, Texas, 2001--10

    USGS Publications Warehouse

    Banta, J. Ryan; Slattery, Richard N.

    2012-01-01

    Woody vegetation, including ashe juniper (Juniperus ashei), has encroached on some areas in central Texas that were historically oak grassland savannah. Encroachment of woody vegetation is generally attributed to overgrazing and fire suppression. Removing the ashe juniper and allowing native grasses to reestablish in the area as a brush management conservation practice (hereinafter referred to as "brush management") might change the hydrology in the watershed. These hydrologic changes might include changes to surface-water runoff, evapotranspiration, or groundwater recharge. The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local partners, examined the hydrologic effects of brush management in two adjacent watersheds in Comal County, Tex. Hydrologic data were collected in the watersheds for 3-4 years (pre-treatment) depending on the type of data, after which brush management occurred on one watershed (treatment watershed) and the other was left in its original condition (reference watershed). Hydrologic data were collected in the study area for another 6 years (post-treatment). These hydrologic data included rainfall, streamflow, evapotranspiration, and water quality. Groundwater recharge was not directly measured, but potential groundwater recharge was calculated by using a simplified mass balance approach. This fact sheet summarizes highlights of the study from the USGS Scientific Investigations Report on which it is based.

  20. Differences in the ectoparasite fauna between micromammals captured in natural and adjacent residential areas are better explained by sex and season than by type of habitat.

    PubMed

    Cevidanes, Aitor; Proboste, Tatiana; Chirife, Andrea D; Millán, Javier

    2016-06-01

    We compared the ectoparasite fauna in 608 micromammals (chiefly 472 wood mice Apodemus sylvaticus, 63 Algerian mice Mus spretus, and 51 greater white-toothed shrews Crocidura russula) captured in natural and adjacent residential areas in spring and autumn during three consecutive years in four areas in periurban Barcelona (NE Spain). We found little support for an association of urbanization with differences in infestation by ectoparasites. Prevalence of Rhipicephalus sp. tick in wood mice and shrews was significantly higher in residential than in natural habitats, and the opposite was found for the flea Ctenophtalmus andorrensis catalanensis in shrews. Marked differences in the prevalence of the flea Leptopsylla taschenbergi amitina in wood mice between seasons were observed in natural but not in residential habitats, probably due to enhanced flea survival probabilities in the latter. However, as a rule, males were more frequently and heavily infested than females, and the prevalence was higher in autumn than in spring. Our results suggest that the ectoparasite fauna of periurban micromammals is shaped more by other factors than by habitat modification. People living in residential areas are at risk of contact with the arthropods borne by non-commensal micromammals and the pathogens transmitted by them.

  1. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land.

    PubMed

    Fortier, Julien; Truax, Benoit; Gagnon, Daniel; Lambert, France

    2015-05-01

    In many temperate agricultural areas, riparian forests have been converted to cultivated land, and only narrow strips of herbaceous vegetation now buffer many farm streams. The afforestation of these riparian zones has the potential to increase carbon (C) storage in agricultural landscapes by creating a new biomass sink for atmospheric CO2. Occurring at the same time, the storage of nitrogen (N) and phosphorus (P) in plant biomass, is an important water quality function that may greatly vary with types of riparian vegetation. The objectives of this study were (1) to compare C, N and P storage in aboveground, belowground and detrital biomass for three types of riparian vegetation cover (9-year-old hybrid poplar buffers, herbaceous buffers and natural woodlots) across four agricultural sites and (2) to determine potential vegetation cover effects on soil nutrient supply rate in the riparian zone. Site level comparisons suggest that 9-year-old poplar buffers have stored 9-31 times more biomass C, 4-10 times more biomass N, and 3-7 times more biomass P than adjacent non managed herbaceous buffers, with the largest differences observed on the more fertile sites. The conversion of these herbaceous buffers to poplar buffers could respectively increase C, N and P storage in biomass by 3.2-11.9 t/ha/yr, 32-124 kg/ha/yr and 3.2-15.6 kg/ha/yr, over 9 years. Soil NO3 and P supply rates during the summer were respectively 57% and 66% lower in poplar buffers than in adjacent herbaceous buffers, potentially reflecting differences in nutrient storage and cycling between the two buffer types. Biomass C ranged 49-160 t/ha in woodlots, 33-110 t/ha in poplar buffers and 3-4 t/ha in herbaceous buffers. Similar biomass C stocks were found in the most productive poplar buffer and three of the four woodlots studied. Given their large and varied biomass C stocks, conservation of older riparian woodlots is equally important for C balance management in farmland. In addition, the

  2. Water relations of riparian plants from warm desert regions

    USGS Publications Warehouse

    Smith, S.D.; Devitt, Dale A.; Cleverly, James R.; Busch, David E.

    1998-01-01

    Riparian plants have been classified as 'drought avoiders' due to their access to an abundant subsurface water supply. Recent water-relations research that tracks water sources of riparian plants using the stable isotopes of water suggests that many plants of the riparian zone use ground water rather than stream water, and not all riparian plants are obligate phreatophytes (dependent on ground water as a moisture source) but may occasionally be dependent of unsaturated soil moisture sources. A more thorough understanding of riparian plant-water relations must include water-source dynamics and how those dynamics vary over both space and time. Many rivers in the desert Southwest have been invaded by the exotic shrub Tamarix ramosissima (saltcedar). Our studies of Tamarix invasion into habitats formerly dominated by native riparian forests of primarily Populus and Salix have shown that Tamarix successfully invades these habitats because of its (1) greater tolerance to water stress and salinity, (2) status as a facultative, rather than obligate, phreatophyte and, therefore, its ability to recover from droughts and periods of ground-water drawdown, and (3) superior regrowth after fire. Analysis of water- loss rates indicate that Tamarix-dominated stands can have extremely high evapotranspiration rates when water tables are high but not necessarily when water tables are lower. Tamarix has leaf-level transpiration rates that are comparable to native species, whereas sap-flow rates per unit sapwood area are higher than in natives, suggesting that Tamarix maintains higher leaf area than can natives, probably due to its greater water stress tolerance. Tamarix desiccates and salinizes floodplains, due to its salt exudation and high transpiration rates, and may also accelerate fire cycles, thus predisposing these ecosystems to further loss of native taxa. Riparian species on regulated rivers can be exposed to seasonal water stress due to depression of floodplain water tables

  3. Subsurface geology and porosity distribution, Madison Limestone and underlying formations, Powder River basin, northeastern Wyoming and southeastern Montana and adjacent areas

    USGS Publications Warehouse

    Peterson, James A.

    1978-01-01

    To evaluate the Madison Limestone and associated rocks as potential sources for water supplies in the Powder River Basin and adjacent areas, an understanding of the geologic framework of these units, their lithologic facies patterns, the distribution of porosity zones, and the relation between porosity development and stratigraphic facies is necessary. Regionally the Madison is mainly a fossiliferous limestone. However, in broad areas of the eastern Rocky Mountains and western Great Plains, dolomite is a dominant constituent and in places the Madison is almost entirely dolomite. Within these areas maximum porosity development is found and it seems to be related to the coarser crystalline dolomite facies. The porosity development is associated with tabular and fairly continuous crystalline dolomite beds separated by non-porous limestones. The maximum porosity development in the Bighorn Dolomite, as in the Madison, is directly associated with the occurrence of a more coarsely crystalline sucrosic dolomite facies. Well data indicate, however, that where the Bighorn is present in the deeper parts of the Powder River Basin, it may be dominated by a finer crystalline dolomite facies of low porosity. The 'Winnipeg Sandstone' is a clean, generally well-sorted, medium-grained sandstone. It shows good porosity development in parts of the northern Powder River Basin and northwestern South Dakota. Because the sandstone is silica-cemented and quartzitic in areas of deep burial, good porosity is expected only where it is no deeper than a few thousand feet. The Flathead Sandstone is a predominantly quartzose, slightly feldspathic sandstone, commonly cemented with iron oxide. Like the 'Winnipeg Sandstone,' it too is silica-cemented and quartzitic in many places so that its porosity is poor in areas of deep burial. Illustrations in this report show the thickness, percent dolomite, and porosity-feet for the Bighorn Dolomite and the Madison Limestone and its subdivisions. The

  4. Rapid riparian buffer width and quality analysis using lidar in South Carolina

    NASA Astrophysics Data System (ADS)

    Akturk, Emre

    The importance of protecting water quality and aquatic resources are increasing because of harmful human impacts within and around waterways. Establishing or restoring functional riparian areas protect water quality and are a good mechanism to conserve aquatic systems, plants, and wildlife. Laser-based remote sensing technology offers a high resolution approach to both characterize and document changes in riparian buffer zones (RBZs). The objectives of this study were to build a model to calculate riparian buffer width on both sides of a stream using a LiDAR-derived slope variable, to classify riparian buffers and determine their quality, and to evaluate the appropriateness of using LiDAR in riparian buffer assessment. For this purpose, RBZs were delineated for Hunnicutt and King Creek, which are located in Oconee and Pickens counties, in South Carolina. Results show that LiDAR was effective in delineating required riparian buffer widths based on the topography slope of upstream areas, and to calculate the ratio of tree cover in those riparian buffer zones to qualify them. Furthermore, the riparian buffer assessment model that was created in this research has potential for use in different sites and different studies.

  5. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    NASA Astrophysics Data System (ADS)

    Peter, S.; Rechsteiner, R.; Lehmann, M. F.; Brankatschk, R.; Vogt, T.; Diem, S.; Wehrli, B.; Tockner, K.; Durisch-Kaiser, E.

    2012-06-01

    For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N) can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, on nitrate (NO3-) removal from infiltrating river water in a restored and a still channelized section of the River Thur, Switzerland. Functional genes of denitrification (nirS and nosZ) were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3- concentration (>50 %) was observed in the willow bush zone, but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3- pool (by up to 22 ‰ for δ15N and up to 12 ‰ for δ18O) provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3- removal by plant uptake. Particularly in the willow bush zone, during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3- concentration with a rate of ~21 μmol N l-1 d-1. Nitrogen removal in the forest zone was not sensitive to flood pluses, and overall NO3- removal rates were lower (~6 μmol l-1 d-1). Hence, discharge-modulated vegetation-soil-groundwater coupling was found to be a~key driver for riparian NO3- removal. We estimated that, despite higher rates in the fairly constrained willow bush hot spot, total NO3- removal from the groundwater is lower than in the extended forest area. Overall, the aquifer in the restored section was more effective and removed ~20 % more NO3- than the channelized section.

  6. Nitrate removal in a restored riparian groundwater system: functioning and importance of individual riparian zones

    NASA Astrophysics Data System (ADS)

    Peter, S.; Rechsteiner, R.; Lehmann, M. F.; Brankatschk, R.; Vogt, T.; Diem, S.; Wehrli, B.; Tockner, K.; Durisch-Kaiser, E.

    2012-11-01

    For the design and the assessment of river restoration projects, it is important to know to what extent the elimination of reactive nitrogen (N) can be improved in the riparian groundwater. We investigated the effectiveness of different riparian zones, characterized by a riparian vegetation succession, for nitrate (NO3-) removal from infiltrating river water in a restored and a still channelized section of the river Thur, Switzerland. Functional genes of denitrification (nirS and nosZ) were relatively abundant in groundwater from willow bush and mixed forest dominated zones, where oxygen concentrations remained low compared to the main channel and other riparian zones. After flood events, a substantial decline in NO3- concentration (> 50%) was observed in the willow bush zone but not in the other riparian zones closer to the river. In addition, the characteristic enrichment of 15N and 18O in the residual NO3- pool (by up to 22‰ for δ15N and up to 12‰ for δ18O) provides qualitative evidence that the willow bush and forest zones were sites of active denitrification and, to a lesser extent, NO3- removal by plant uptake. Particularly in the willow bush zone during a period of water table elevation after a flooding event, substantial input of organic carbon into the groundwater occurred, thereby fostering post-flood denitrification activity that reduced NO3- concentration with a rate of ~21 μmol N l-1 d-1. Nitrogen removal in the forest zone was not sensitive to flood pulses, and overall NO3- removal rates were lower (~6 μmol l-1 d-1). Hence, discharge-modulated vegetation-soil-groundwater coupling was found to be a key driver for riparian NO3- removal. We estimated that, despite higher rates in the fairly constrained willow bush hot spot, total NO3- removal from the groundwater is lower than in the extended forest area. Overall, the aquifer in the restored section was more effective and removed ~20% more NO3- than the channelized section.

  7. Distribution and source recognition of polycyclic aromatic hydrocarbons in the sediments of Hsin-ta Harbour and adjacent coastal areas, Taiwan.

    PubMed

    Fang, Meng-Der; Lee, Chon-Lin; Yu, Chia-Shun

    2003-08-01

    Thirty-three sediment samples from Hsin-ta Harbour and neighboring coastal areas were analyzed by GC-MS for polycyclic aromatic hydrocarbons (PAHs). Total concentrations of 30 analyzed parental and alkylated PAHs ( summation operator PAH) varied from 98.1 to 3382 ng/g dry weight. MP/P (methylphenanthrenes/phenanthrene) values larger than 2 coincided with very low P/A (phenanthrene/anthracene) values at inner harbour stations, revealing that a significant portion of low molecular weight PAHs are probably from petrogenic pollution sources, specifically, illegal disposal of used motor oil. The 4,6-dimethyldibenzothiophene/3,6-dimethylphenanthrene (4,6-C(2)D/3,6-C(2)P) ratio is found to be more useful than the MP/P ratio in tracing petrogenic PAHs from the inner harbour area to the adjacent coastal environment. In addition, according to hierarchical cluster analysis, collected sediments cluster in three major groups, Off-shore Group, Near-shore Group and Inner Harbour Group. Three diagnostic ratios, 4,6-C(2)D/3,6-C(2)P, PER/ summation operator PAH (perylene to summation operator PAH) and BaA/CHR (benzo(a)anthracene/chrysene), representing petrogenic, biogenic and pyrogenic origins, are found to be effective in differentiating and characterizing sediments among the groups in this study. Enrichment of pyrogenic and petrogenic PAHs in sediments collected exhibits mixing or dilution, spatially, by biogenic (or natural) PAHs.

  8. Mapping of lithologic and structural units using multispectral imagery. [Afar-Triangle/Ethiopia and adjacent areas (Ethiopian Plateau, Somali Plateau, and parts of Yemen and Saudi Arabia)

    NASA Technical Reports Server (NTRS)

    Kronberg, P. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. ERTS-1 MSS imagery covering the Afar-Triangle/Ethiopia and adjacent regions (Ethiopian Plateau, Somali Plateau, and parts of Yemen and Saudi Arabi) was applied to the mapping of lithologic and structural units of the test area at a scale 1:1,000,000. Results of the geological evaluation of the ERTS-1 imagery of the Afar have proven the usefullness of this type of satellite data for regional geological mapping. Evaluation of the ERTS images also resulted in new aspects of the structural setting and tectonic development of the Afar-Triangle, where three large rift systems, the oceanic rifts of the Red Sea and Gulf of Aden and the continental East African rift system, seem to meet each other. Surface structures mapped by ERTS do not indicate that the oceanic rift of the Gulf of Aden (Sheba Ridge) continues into the area of continental crust west of the Gulf of Tadjura. ERTS data show that the Wonji fault belt of the African rift system does not enter or cut through the central Afar. The Aysha-Horst is not a Horst but an autochthonous spur of the Somali Plateau.

  9. Geology of the Cape Mendocino, Eureka, Garberville, and Southwestern Part of the Hayfork 30 x 60 Minute Quadrangles and Adjacent Offshore Area, Northern California

    USGS Publications Warehouse

    McLaughlin, Robert J.; Ellen, S.D.; Blake, M.C.; Jayko, Angela S.; Irwin, W.P.; Aalto, K.R.; Carver, G.A.; Clarke, S.H.; Barnes, J.B.; Cecil, J.D.; Cyr, K.A.

    2000-01-01

    Introduction These geologic maps and accompanying structure sections depict the geology and structure of much of northwestern California and the adjacent continental margin. The map area includes the Mendocino triple junction, which is the juncture of the North American continental plate with two plates of the Pacific ocean basin. The map area also encompasses major geographic and geologic provinces of northwestern California. The maps incorporate much previously unpublished geologic mapping done between 1980 and 1995, as well as published mapping done between about 1950 and 1978. To construct structure sections to mid-crustal depths, we integrate the surface geology with interpretations of crustal structure based on seismicity, gravity and aeromagnetic data, offshore structure, and seismic reflection and refraction data. In addition to describing major geologic and structural features of northwestern California, the geologic maps have the potential to address a number of societally relevant issues, including hazards from earthquakes, landslides, and floods and problems related to timber harvest, wildlife habitat, and changing land use. All of these topics will continue to be of interest in the region, as changing land uses and population density interact with natural conditions. In these interactions, it is critical that the policies and practices affecting man and the environment integrate an adequate understanding of the geology. This digital map database, compiled from previously published and unpublished data, and new mapping by the authors, represents the general distribution of bedrock and surficial deposits in the mapped area. Together with the accompanying text file (ceghmf.ps, ceghmf.pdf, ceghmf.txt), it provides current information on the geologic structure and stratigraphy of the area covered. The database delineates map units that are identified by general age and lithology following the stratigraphic nomenclature of the U.S. Geological Survey. The

  10. Nitrogen uptake and turnover in riparian woody vegetation.

    PubMed

    Chambers, Chris; Marshall, John D; Danehy, Robert J

    2004-06-01

    The nutrient balance of streams and adjacent riparian ecosystems may be modified by the elimination of anadromous fish runs and perhaps by forest fertilization. To better understand nitrogen (N) dynamics within stream and riparian ecosystems we fertilized two streams and their adjacent riparian corridors in central Idaho. On each stream two nitrogen doses were applied to a swathe approximately 35 m wide centered on the stream. The fertilizer N was enriched in 15N to 18 per thousand. This enrichment is light relative to many previous labeling studies, yet sufficient to yield a traceable signal in riparian and stream biota. This paper reports pre-treatment differences in delta15N and the first-year N response to fertilizer within the riparian woody plant community. Future papers will describe the transfer of allochthonous litter N to the stream and its subsequent processing by stream biota. Pre-treatment delta15N differed between the two creeks (P=0.0002), possibly due to residual salmon nitrogen in one of the creeks. Pre-treatment delta15N of current-year needles was enriched compared to leaf litter, which was in turn enriched compared to needles aged 4 years and older. We conclude that fractionation due to retranslocation occurs in at least two phases. The first phase, which optimizes allocation of N in younger needle age classes, is distinctly different from the second, which conserves N prior to abscission. The delta15N difference between creeks was eliminated by the fertilization (P=0.42). In the two dominant conifer species, Abies lasiocarpa and Picea engelmannii, most fertilizer N was found in the current-year foliage; little was found in older needles and none was detected in litter (P=0.53). The only N-fixing shrub species, Alnus incana, took up only a small amount of fertilizer N [mean percent N derived from fertilizer (%Ndff) 5.0+/-1.6% (SE)]. Far more fertilizer N was taken up by other deciduous shrubs (mean %Ndff=33.9+/-4.5%). Fertilizer N made up 25

  11. Geology, hydrogeology, and potential of intrinsic bioremediation at the National Park Service Dockside II site and adjacent areas, Charleston, South Carolina, 1993-94

    USGS Publications Warehouse

    Campbell, B.G.; Petkewich, M.D.; Landmeyer, J.E.; Chapelle, F.H.

    1996-01-01

    A long history of industrial and commercial use of the National Park Service property and adjacent properties located in downtown Charleston, South Carolina, has caused extensive contamination of the shallow subsurface soils and water-table aquifer. The National Park Service property is located adjacent to a former manufactured-gas plant site, which is the major source of the contamination. Contamination of this shallow water-table aquifer is of concern because shallow ground water discharges to the Cooper River and contains contaminants, which may affect adjacent wildlife or human populations. The geology of the National Park Service property above the Ashley Formation of the Cooper Group consists of two Quaternary lithostratigraphic marine units, the Wando Formation and Holocene deposits, overlain by artificial fill. The Wando Formation overlies the Ashley Formation, a sandy calcareous clay, and consists of soft, organic clay overlain by gray sand. The Holocene deposits are composed of clayey to silty sand and soft organic-rich clay. The artificial fill, which was placed at the site to create dry land where salt marsh existed previously, is composed of sand, silt, and various scrap materials. The shallow hydrogeology of the National Park Service property overlying the Ashley Formation can be subdivided into two sandy aquifers separated by a leaky, black, organic-rich clay. The unconfined upper surficial aquifer is primarily artificial fill. The lower surficial aquifer consists of the Wando sand unit and is confined by the leaky organic-rich clay. Aquifer tests performed on the wells screened in these aquifers resulted in hydraulic conductivities from 0.1 to 10 feet per day for the upper surficial aquifer, and 16 feet per day for the lower surficial aquifer. Vertical hydraulic gradients at the site are typically low. A downward gradient from the upper surficial aquifer to the lower surficial aquifer occurs throughout most of the year. A brick-lined storm

  12. Using the Normalized Differential Wetness Index to Scale Leaf Area Index, Create Three-Dimensional Classification Maps, and Scale Seasonal Evapotranspiration Depletions in Canopies Along the Middle Rio Grande Riparian CorridorCorridor

    NASA Astrophysics Data System (ADS)

    McDonnell, D. E.; Cleverly, J. R.; Dahm, C. N.; Coonrod, J. A.

    2005-12-01

    This research creates temporally and spatially explicit data layers of vegetation, leaf area index (LAI), three dimensional (3D) vegetation classification maps, and seasonal evapotranspiration (ET) depletions along the middle Rio Grande riparian corridor. The first part of this work produces two dimensional (2D) classification maps of native and non-native canopy vegetation using temporal patterns and the decision tree classifier in ENVI 4.0 (Research Systems Inc. Boulder, Colorado). The second part of this work correlates the normalized differential wetness index (NDWI) with field measurements of plant area index (PAI), stem area index (SAI), and leaf area index (LAI) using the LAI-2000 Plant Canopy Analyzer (PCA) (LICOR Inc., Lincoln, Nebraska). SAI is measured in winter to capture only branches and stems. PAI is measured during the growing season. Field measurements taken within 10 days of image capture dates provide adequate correlations though the closer the dates the better the correlation. LAI represents the surface area of active green leafy vegetation. NDWI correlates with both PAI and estimated LAI in both Tamarisk chinensis and Populus deltoides ssp. Wislizeni sites better than the more traditional normalized differential vegetation index (NDVI). This study also suggests that winter PCA measurements approximate SAI which should be subtracted from PAI in woody vegetation like T. chinensis and Salix exigua stands. The results show that correcting for leaf geometry by multiplying T. chinensis areas with cylindrical cladophylls by pi and the remaining flat leaf vegetation by two yields the best relationship between NDWI and total LAI. The 2Dclassification maps can be placed on top of relief maps of LAI to produce 3D classification maps. The final part of this research scales ET from four 3D eddy covariance towers located in two T. chinensis and two P. deltoides study sites. ET is regressed with LAI, percent daylight (PD), and average hourly incoming net

  13. Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network.

    PubMed

    Kuglerová, Lenka; Jansson, Roland; Agren, Anneli; Laudon, Hjalmar; Malm-Renöfält, Birgitta

    2014-03-01

    Riparian vegetation research has traditionally focused on channel-related processes because riparian areas are situated on the edge of aquatic ecosystems and are therefore greatly affected by the flow regime of streams and rivers. However, due to their low topographic position in the landscape, riparian areas receive significant inputs of water and nutrients from uplands. These inputs may be important for riparian vegetation, but their role for riparian plant diversity is poorly known. We studied the relationship between the influx of groundwater (GW) from upland areas and riparian plant diversity and composition along a stream size gradient, ranging from small basins lacking permanent streams to a seventh-order river in northern Sweden. We selected riparian sites with and without GW discharge using a hydrological model describing GW flow accumulation to test the hypothesis that riparian sites with GW discharge harbor plant communities with higher species richness. We further investigated several environmental factors to detect habitat differences between sites differing in GW discharge conditions. Vascular plant species richness was between 15% and 20% higher, depending on the spatial scale sampled, at riparian sites with GW discharge in comparison to non-discharge sites, a pattern that was consistent across all stream sizes. The elevated species richness was best explained by higher soil pH and higher nitrogen availability (manifested as lower soil C/N ratio), conditions which were positively correlated with GW discharge. Base cations and possibly nitrogen transported by groundwater may therefore act as a terrestrial subsidy of riparian vegetation. The stable isotopes 15N and 13C were depleted in soils from GW discharge compared to non-discharge sites, suggesting that GW inputs might also affect nitrogen and carbon dynamics in riparian soils. Despite the fact that many flows of water and nutrients reaching streams are filtered through riparian zones, the

  14. Distribution of cattle grazing in a northeastern Oregon riparian pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock grazing of a northeastern Oregon riparian pasture was monitored using high-frequency GPS tracking of cattle and high-resolution aerial photography. Tracking collars recorded positions, velocity, date, and time at 1-sec intervals. Areas where animals rested and moved were identified and re...

  15. Riparian invasive alters stream nitrogen dynamics.

    NASA Astrophysics Data System (ADS)

    Mineau, M.; Baxter, C.; Marcarelli, A.; Minshall, G.

    2008-12-01

    Invasive species may be most likely to have strong effects on the ecosystem they invade when they contribute a new function such as nitrogen (N) fixation. Russian olive (Eleagnus angustifolia) is a non-native invasive tree which is rapidly spreading along riparian corridors in the American West. Russian olive is a nitrogen fixing plant due to a symbiotic relationship with Actinomycetes and is invading systems that frequently lack a strong native N fixer. The contribution of reactive N by these invasive riparian plants to soils may also be altering N cycling and processing in the adjacent streams. We measured nutrient limitation via periphyton growth on nutrient diffusing substrates and nitrate uptake using short term nitrate additions in Deep Creek, ID. Measurements were made in three reaches along a Russian olive invasion gradient, with an upstream reference reach that has no Russian olive and two downstream invaded reaches, one with moderate density and one with high density. Periphyton growth in Deep Creek was significantly N limited in the reference reach while the moderately invaded reach showed no significant limitation and the highly invaded reach was significantly P limited. The nitrate uptake velocity (Vf) for both of the invaded reaches was an order of magnitude less than the reference reach, implying that biological demand for nitrate is significantly less in the invaded reaches than the reference. Considering the current extent of Russian olive invasion and its continued rapid spread, possible alteration of N cycling in waterways may have important implications for the management of both this invasive species and management of nutrient pollution in waters of the western U.S.

  16. Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

    USGS Publications Warehouse

    Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.

    2007-01-01

    peripheral zones, whereas older, typically more reduced ground water tends to discharge closer to the center of the river corridor. Such distributions of redox state reflect ground-water movement and geochemical evolution at the aquifer-scale. Redox state of ground water undergoes additional modification as ground water nears discharge points in or adjacent to rivers, where riparian zone processes can be important. Lateral erosion of river systems away from the center of the flood plain can decrease or even eliminate interactions between ground water and reducing riparian zone sediments. Thus, ground water redox patterns in near-river sediments appear to reflect the position of a river within the riparian zone/aquifer continuum. Spatial heterogeneity of redox conditions near the river/aquifer boundary (that is, near the riverbed) makes it difficult to extrapolate transect-scale findings to a precise delineation of the oxic-suboxic boundary in the near-river environment of the entire study area. However, the understanding of relations between near-river redox state and proximity to riparian zone edges provides a basis for applying these results to the study-area scale, and could help guide management efforts such as nitrogen-reduction actions or establishment of Total Maximum Daily Load criteria. Coupling the ground-water redox-based understanding of river vulnerability with ground-water particle-tracking-based characterization of connections between upgradient recharge areas and receiving rivers demonstrates one means of linking effects of potential nitrate loads at the beginning of ground-water flow paths with river vulnerability.

  17. Turbines and terrestrial vertebrates: variation in tortoise survivorship between a wind energy facility and an adjacent undisturbed wildland area in the desert southwest (USA)

    USGS Publications Warehouse

    Agha, Mickey; Lovich, Jeffrey E.; Ennen, Joshua R.; Augustine, Benjamin J.; Arundel, Terry; Murphy, Mason O.; Meyer-Wilkins, Kathie; Bjurlin, Curtis; Delaney, David F.; Briggs, Jessica; Austin, Meaghan; Madrak, Sheila V.; Price, Steven J.

    2015-01-01

    With the recent increase in utility-scale wind energy development, researchers have become increasingly concerned how this activity will affect wildlife and their habitat. To understand the potential impacts of wind energy facilities (WEF) post-construction (i.e., operation and maintenance) on wildlife, we compared differences in activity centers and survivorship of Agassiz's desert tortoises (Gopherus agassizii) inside or near a WEF to neighboring tortoises living near a wilderness area (NWA) and farther from the WEF. We found that the size of tortoise activity centers varied, but not significantly so, between the WEF (6.25 ± 2.13 ha) and adjacent NWA (4.13 ± 1.23 ha). However, apparent survival did differ significantly between the habitat types: over the 18 year study period apparent annual survival estimates were 0.96 ± 0.01 for WEF tortoises and 0.92 ± 0.02 for tortoises in the NWA. High annual survival suggests that operation and maintenance of the WEF has not caused considerable declines in the adult population over the past two decades. Low traffic volume, enhanced resource availability and decreased predator populations may influence annual survivorship at this WEF. Further research on these proximate mechanisms and population recruitment would be useful for mitigating and managing post-development impacts of utility scale wind energy on long-lived terrestrial vertebrates.

  18. Comparing maps of mean monthly surface temperature and precipitation for Alaska and adjacent areas of Canada produced by two different methods

    USGS Publications Warehouse

    Simpson, James J.; Hufford, Gary L.; Daly, Christopher; Berg, Jared S.; Fleming, Michael D.

    2005-01-01

    Maps of mean monthly surface temperature and precipitation for Alaska and adjacent areas of Canada, produced by Oregon State University's Spatial Climate Analysis Service (SCAS) and the Alaska Geospatial Data Clearinghouse (AGDC), were analyzed. Because both sets of maps are generally available and in use by the community, there is a need to document differences between the processes and input data sets used by the two groups to produce their respective set of maps and to identify similarities and differences between the two sets of maps and possible reasons for the differences. These differences do not affect the observed large-scale patterns of seasonal and annual variability. Alaska is divided into interior and coastal zones, with consistent but different variability, separated by a transition region. The transition region has high interannual variability but low long-term mean variability. Both data sets support the four major ecosystems and ecosystem transition zone identified in our earlier work. Differences between the two sets of maps do occur, however, on the regional scale; they reflect differences in physiographic domains and in the treatment of these domains by the two groups (AGDC, SCAS). These differences also provide guidance for an improved observational network for Alaska. On the basis of validation with independent in situ data, we conclude that the data set produced by SCAS provides the best spatial coverage of Alaskan long-term mean monthly surface temperature and precipitation currently available. ?? The Arctic Institute of North America.

  19. Natural Parasitism in Fruit Fly (Diptera: Tephritidae) Populations in Disturbed Areas Adjacent to Commercial Mango Orchards in Chiapas and Veracruz, Mexico.

    PubMed

    Montoya, Pablo; Ayala, Amanda; López, Patricia; Cancino, Jorge; Cabrera, Héctor; Cruz, Jassmin; Martinez, Ana Mabel; Figueroa, Isaac; Liedo, Pablo

    2016-04-01

    To determine the natural parasitism in fruit fly populations in disturbed areas adjacent to commercial mango orchards in the states of Chiapas and Veracruz, Mexico, we recorded over one year the fruit fly-host associations, fly infestation, and parasitism rates in backyard orchards and patches of native vegetation. We also investigated the relationship between fruit size, level of larval infestation, and percent of parasitism, and attempted to determine the presence of superparasitism. The most recurrent species in trap catches was Anastrepha obliqua (Macquart), followed by Anastrepha ludens (Loew), in both study zones. The fruit infestation rates were higher in Chiapas than in Veracruz, with A. obliqua again being the most conspicuous species emerging from collected fruits. The diversity of parasitoids species attacking fruit fly larvae was greater in Chiapas, with a predominance of Doryctobracon areolatus (Szépligeti) in both sites, although the exotic Diachasmimorpha longicaudata (Ashmead) was well established in Chiapas. Fruit size was positively correlated with the number of larvae per fruit, but this relationship was not observed in the level of parasitism. The number of oviposition scars was not related to the number of immature parasitoids inside the pupa of D. areolatus emerging from plum fruits. Mass releases of Di. longicaudata seem not to affect the presence or prevalence of the native species. Our findings open new research scenarios on the role and impact of native parasitoid species attacking Anastrepha flies that can contribute to the development of sound strategies for using these species in projects for augmentative biological control.

  20. Turbines and Terrestrial Vertebrates: Variation in Tortoise Survivorship Between a Wind Energy Facility and an Adjacent Undisturbed Wildland Area in the Desert Southwest (USA)

    NASA Astrophysics Data System (ADS)

    Agha, Mickey; Lovich, Jeffrey E.; Ennen, Joshua R.; Augustine, Benjamin; Arundel, Terence R.; Murphy, Mason O.; Meyer-Wilkins, Kathie; Bjurlin, Curtis; Delaney, David; Briggs, Jessica; Austin, Meaghan; Madrak, Sheila V.; Price, Steven J.

    2015-08-01

    With the recent increase in utility-scale wind energy development, researchers have become increasingly concerned how this activity will affect wildlife and their habitat. To understand the potential impacts of wind energy facilities (WEF) post-construction (i.e., operation and maintenance) on wildlife, we compared differences in activity centers and survivorship of Agassiz's desert tortoises ( Gopherus agassizii) inside or near a WEF to neighboring tortoises living near a wilderness area (NWA) and farther from the WEF. We found that the size of tortoise activity centers varied, but not significantly so, between the WEF (6.25 ± 2.13 ha) and adjacent NWA (4.13 ± 1.23 ha). However, apparent survival did differ significantly between the habitat types: over the 18-year study period apparent annual survival estimates were 0.96 ± 0.01 for WEF tortoises and 0.92 ± 0.02 for tortoises in the NWA. High annual survival suggests that operation and maintenance of the WEF has not caused considerable declines in the adult population over the past two decades. Low traffic volume, enhanced resource availability, and decreased predator populations may influence annual survivorship at this WEF. Further research on these proximate mechanisms and population recruitment would be useful for mitigating and managing post-development impacts of utility-scale wind energy on long-lived terrestrial vertebrates.

  1. Turbines and Terrestrial Vertebrates: Variation in Tortoise Survivorship Between a Wind Energy Facility and an Adjacent Undisturbed Wildland Area in the Desert Southwest (USA).

    PubMed

    Agha, Mickey; Lovich, Jeffrey E; Ennen, Joshua R; Augustine, Benjamin; Arundel, Terence R; Murphy, Mason O; Meyer-Wilkins, Kathie; Bjurlin, Curtis; Delaney, David; Briggs, Jessica; Austin, Meaghan; Madrak, Sheila V; Price, Steven J

    2015-08-01

    With the recent increase in utility-scale wind energy development, researchers have become increasingly concerned how this activity will affect wildlife and their habitat. To understand the potential impacts of wind energy facilities (WEF) post-construction (i.e., operation and maintenance) on wildlife, we compared differences in activity centers and survivorship of Agassiz's desert tortoises (Gopherus agassizii) inside or near a WEF to neighboring tortoises living near a wilderness area (NWA) and farther from the WEF. We found that the size of tortoise activity centers varied, but not significantly so, between the WEF (6.25 ± 2.13 ha) and adjacent NWA (4.13 ± 1.23 ha). However, apparent survival did differ significantly between the habitat types: over the 18-year study period apparent annual survival estimates were 0.96 ± 0.01 for WEF tortoises and 0.92 ± 0.02 for tortoises in the NWA. High annual survival suggests that operation and maintenance of the WEF has not caused considerable declines in the adult population over the past two decades. Low traffic volume, enhanced resource availability, and decreased predator populations may influence annual survivorship at this WEF. Further research on these proximate mechanisms and population recruitment would be useful for mitigating and managing post-development impacts of utility-scale wind energy on long-lived terrestrial vertebrates.

  2. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China.

    PubMed

    Zheng, Binghui; Wang, Liping; Lei, Kun; Nan, Bingxu

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) contamination was investigated in concurrently sampled surface water, suspended particulate matter (SPM) and sediment of Daliao River estuary and the adjacent area, China. The total concentrations of PAHs ranged from 71.12 to 4255.43 ng/L in water, from 1969.95 to 11612.21 ng/L in SPM, and from 374.84 to 11588.85 ng/g dry weight (dw) in sediment. Although the 2-3 ring PAHs were main PAH congeners in water and SPM, the 4-6 ring PAHs were also detected and their distribution was site-specific, indicating a very recent PAHs input around the area since they were hydrophobic. The PAHs pollution was identified as mixed combustion and petroleum sources. Based on species sensitivity distribution (SSD), the ecological risk in SPM from 82% stations was found to be higher obviously than that in water. The risk in water was basically ranked as medium, while the risk in SPM was ranked as high. Analysis with sediment quality guidelines (SQGs) indicated that negative eco-risk occasionally occurred in about 50% stations, while negative eco-risk frequently occurred in about 3% stations only caused by Phenanthrene(Phe) and Dibenzo(a,h)anthracene(DBA). Here freshwater acute effects data together with saltwater data were used for SSD model. And this method could quickly give the rational risk information, and achieved our objective that compared the spatial difference of risk levels among three compartments. The results confirmed that the use of freshwater acute effects data from the ECOTOX database together with saltwater effects data is acceptable for risk assessment purposes in estuary.

  3. Tectonic structure of Dokdo and adjacent area in the northeastern part of the Ulleung Basin of the East Sea using geophysical data

    NASA Astrophysics Data System (ADS)

    Kim, C.; Jeong, E.; Park, C.; Kwon, B.; Park, G.; Park, J.

    2008-12-01

    The northeastern part of the Ulleung Basin in the East Sea is composed of volcanic islands (Ulleungdo and Dokdo), seamounts (the Anyongbok Seamount, the Simheungtaek and the Isabu Tablemounts), and a deep pathway (Korea Gap). To understand tectonic structure and geophysical characteristics of Dokdo and adjacent area, We analysed geophysical potential data of KORDI(Korea Ocean Research and Development Institute), KIGAM(Korea Institute of Geoscience and Mineral Resources), and NORI(National Oceanographic Research Institute of Korea) around the Dokdo volcanic body except Ulleung Do because of empty data of its large island. Also, we eliminate the effect of water and sediments from the free-air gravity data to process 3D Moho depth inversion. 3D tectonic structure modelling of the study area was developed using Moho depth inversion result and sediment thickness data of NGDC(National Geophysical Data Center). The free-air gravity anomalies of the study area generally reflect bathymetric effects. Although the Dokdo seamounts have a similar topographic size, the decrease of free-air anomaly toward Isabu suggest that Isabu is oldest among the seaounts and have high degree of isostatic compensation. High Bouguer anomalies in the central part of the Ulleung Basin gradually decreases toward the Oki Bank. This feature suggests that the crust/mantle boundary is shallow in the central part of the Ulleung Basin. The complex magnetic pattern of Dokdo suggests that it might have erupted several times during its formation. The magnetic anomaly amplitude of Isabu is much smaller than that of Dokdo. Such low magnetic anomalies are attributed to a secondary change caused by the metamorphism or weathering of ferromagnetic minerals of the seamount during a long period of time after its formation. Analytic signals show high anomalous zones over volcanoes. Also, there are high analytic signal values in Korea Gap indicating magmatic intrusion in thick sediments. The power spectrum analysis

  4. A STRATEGY FOR INTEGRATED ECOLOGICAL RESTORATION OF RIPARIAN BUFFERS IN THE MID-ATLANTIC REGION

    EPA Science Inventory

    Increased sediments, nutrients, and other contaminants in the Mid-Atlantic region contribute to environmental problems ranging from stream degradation to possibly Pfiesteria attacks in Chesapeake Bay. Restoring riparian areas - the filters between terrestrial watersheds and aquat...

  5. DEVELOPMENT OF AN INDEX OF ALIEN SPECIES INVASIVENESS: AN AID TO ASSESSING RIPARIAN VEGETATION CONDITION

    EPA Science Inventory

    Many riparian areas are invaded by alien plant species that negatively affect native species composition, community dynamics and ecosystem properties. We sampled vegetation along reaches of 31 low order streams in eastern Oregon, and characterized species assemblages at patch an...

  6. Riparian erosion vulnerability model based on environmental features.

    PubMed

    Botero-Acosta, Alejandra; Chu, Maria L; Guzman, Jorge A; Starks, Patrick J; Moriasi, Daniel N

    2017-03-16

    Riparian erosion is one of the major causes of sediment and contaminant load to streams, degradation of riparian wildlife habitats, and land loss hazards. Land and soil management practices are implemented as conservation and restoration measures to mitigate the environmental problems brought about by riparian erosion. This, however, requires the identification of vulnerable areas to soil erosion. Because of the complex interactions between the different mechanisms that govern soil erosion and the inherent uncertainties involved in quantifying these processes, assessing erosion vulnerability at the watershed scale is challenging. The main objective of this study was to develop a methodology to identify areas along the riparian zone that are susceptible to erosion. The methodology was developed by integrating the physically-based watershed model MIKE-SHE, to simulate water movement, and a habitat suitability model, MaxEnt, to quantify the probability of presences of elevation changes (i.e., erosion) across the watershed. The presences of elevation changes were estimated based on two LiDAR-based elevation datasets taken in 2009 and 2012. The changes in elevation were grouped into four categories: low (0.5 - 0.7 m), medium (0.7 - 1.0 m), high (1.0 - 1.7 m) and very high (1.7 - 5.9 m), considering each category as a studied "species". The categories' locations were then used as "species location" map in MaxEnt. The environmental features used as constraints to the presence of erosion were land cover, soil, stream power index, overland flow, lateral inflow, and discharge. The modeling framework was evaluated in the Fort Cobb Reservoir Experimental watershed in southcentral Oklahoma. Results showed that the most vulnerable areas for erosion were located at the upper riparian zones of the Cobb and Lake sub-watersheds. The main waterways of these sub-watersheds were also found to be prone to streambank erosion. Approximatively 80% of the riparian zone (streambank

  7. Arthropod prey for riparian associated birds in headwater forests of the Oregon Coast Range

    USGS Publications Warehouse

    Hagar, Joan C.; Li, Judith; Sobota, Janel; Jenkins, Stephanie

    2012-01-01

    Headwater riparian areas occupy a large proportion of the land base in Pacific Northwest forests, and thus are ecologically and economically important. Although a primary goal of management along small headwater streams is the protection of aquatic resources, streamside habitat also is important for many terrestrial wildlife species. However, mechanisms underlying the riparian associations of some terrestrial species have not been well studied, particularly for headwater drainages. We investigated the diets of and food availability for four bird species associated with riparian habitats in montane coastal forests of western Oregon, USA. We examined variation in the availability of arthropod prey as a function of distance from stream. Specifically, we tested the hypotheses that (1) emergent aquatic insects were a food source for insectivorous birds in headwater riparian areas, and (2) the abundances of aquatic and terrestrial arthropod prey did not differ between streamside and upland areas during the bird breeding season. We found that although adult aquatic insects were available for consumption throughout the study period, they represented a relatively small proportion of available prey abundance and biomass and were present in only 1% of the diet samples from only one of the four riparian-associated bird species. Nonetheless, arthropod prey, comprised primarily of insects of terrestrial origin, was more abundant in streamside than upland samples. We conclude that food resources for birds in headwater riparian areas are primarily associated with terrestrial vegetation, and that bird distributions along the gradient from streamside to upland may be related to variation in arthropod prey availability. Because distinct vegetation may distinguish riparian from upland habitats for riparian-associated birds and their terrestrial arthropod prey, we suggest that understory communities be considered when defining management zones for riparian habitat.

  8. The surrounding landscape influences the diversity of leaf-litter ants in riparian cloud forest remnants

    PubMed Central

    Valenzuela-González, Jorge E.; Escobar-Sarria, Federico; López-Barrera, Fabiola; Castaño-Meneses, Gabriela

    2017-01-01

    Riparian vegetation is a distinctive and ecologically important element of landscapes worldwide. However, the relative influence of the surrounding landscape on the conservation of the biodiversity of riparian remnants in human-modified tropical landscapes is poorly understood. We studied the surrounding landscape to evaluate its influence on leaf-litter-ant alpha and beta diversity in riparian remnants in the tropical montane cloud forest region of central Veracruz, Mexico. Sampling was carried out in 12 sites with riparian vegetation during both rainy (2011) and dry (2012) seasons. Ten leaf-litter samples were collected along a 100-m transect per site and processed with Berlese-Tullgren funnels and Winkler sacks. Using remotely-sensed and ground-collected data, we characterized the landscape around each site according to nine land cover types and computed metrics of landscape composition and configuration. We collected a total of 8,684 ant individuals belonging to 53 species, 22 genera, 11 tribes, and 7 subfamilies. Species richness and the diversity of Shannon and Simpson increased significantly in remnants immersed in landscapes with a high percentage of riparian land cover and a low percentage of land covers with areas reforested with Pinus, cattle pastures, and human settlements and infrastructure. The composition of ant assemblages was a function of the percentage of riparian land cover in the landscape. This study found evidence that leaf-litter ants, a highly specialized guild of arthropods, are mainly impacted by landscape composition and the configuration of the focal remnant. Maintaining or improving the surrounding landscape quality of riparian vegetation remnants can stimulate the movement of biodiversity among forest and riparian remnants and foster the provision of ecosystem services by these ecosystems. Effective outcomes may be achieved by considering scientific knowledge during the early stages of riparian policy formulation, in addition to

  9. Riparian vegetation controls on braided stream dynamics

    NASA Astrophysics Data System (ADS)

    Gran, Karen; Paola, Chris

    2001-12-01

    Riparian vegetation can significantly influence the morphology of a river, affecting channel geometry and flow dynamics. To examine the effects of riparian vegetation on gravel bed braided streams, we conducted a series of physical experiments at the St. Anthony Falls Laboratory with varying densities of bar and bank vegetation. Water discharge, sediment discharge, and grain size were held constant between runs. For each run, we allowed a braided system to develop, then seeded the flume with alfalfa (Medicago sativa), allowed the seeds to grow, and then continued the run. We collected data on water depth, surface velocity, and bed elevation throughout each run using image-based techniques designed to collect data over a large spatial area with minimal disturbance to the flow. Our results show that the influence of vegetation on overall river patterns varied systematically with the spatial density of plant stems. Vegetation reduced the number of active channels and increased bank stability, leading to lower lateral migration rates, narrower and deeper channels, and increased channel relief. These effects increased with vegetation density. Vegetation influenced flow dynamics, increasing the variance of flow direction in vegetated runs and increasing scour depths through strong downwelling where the flow collided with relatively resistant banks. This oblique bank collision also provides a new mechanism for producing secondary flows. We found it to be more important than the classical curvature-driven mechanism in vegetated runs.

  10. Nd isotopic variation of Paleozoic-Mesozoic granitoids from the Da Hinggan Mountains and adjacent areas, NE Asia: Implications for the architecture and growth of continental crust

    NASA Astrophysics Data System (ADS)

    Yang, Qidi; Wang, Tao; Guo, Lei; Tong, Ying; Zhang, Lei; Zhang, Jianjun; Hou, Zengqian

    2017-02-01

    There is a long-standing controversy regarding the tectonic division, composition and structure of the continental crust in the Da Hinggan Mountains and adjacent areas, which are mainly part of the southeastern Central Asian Orogenic Belt (CAOB). This paper approaches these issues via neodymium isotopic mapping of Paleozoic-Mesozoic (480 to 100 Ma) granitoids. On the basis of 943 published and 8 new whole-rock Nd isotopic data, the study area can be divided into four Nd isotopic provinces (I, II, III and IV). Province I (the youngest crust, Nd model ages (TDM) = 0.8-0.2 Ga) is a remarkable region of Phanerozoic crustal growth, which may reflect a major zone for closures of the Paleo-Asian Ocean. Province II (slightly juvenile crust, TDM = 1.0-0.8 Ga), the largest Nd isotopic province in the southeastern CAOB, is considered to reflect the recycling of the initial crustal material produced during the early stage (Early Neoproterozoic) evolution of the Paleo-Asian Ocean. Province III (slightly old crust, TDM = 1.6-1.1 Ga) is characterized by ancient crustal blocks, such as the central Mongolian, Erguna, Dariganga and Hutag Uul-Xilinhot blocks, which represent micro-continents and Precambrian basements in the southeastern CAOB. Several parts of Province III are located along the northern margin of the North China Craton (NCC), which is interpreted as a destroyed cratonic margin during the Paleozoic and Mesozoic. Province IV (the oldest crust, TDM = 2.9-1.6 Ga) mainly occurs within the NCC and reflects its typical Precambrian nature. These mapping results indicate that the boundary between Provinces II and III (the northern margin of the NCC) along the Solonker-Xar Moron Fault can be regarded as the lithospheric boundary between the CAOB and NCC. Provinces I and II account for 20% and 44% of the area of the southeastern CAOB, respectively, and therefore the ratio of continental growth is 64% from the Neoproterozoic to the Mesozoic, which is typical for this part of the

  11. Effects of brush management on the hydrologic budget and water quality in and adjacent to Honey Creek State Natural Area, Comal County, Texas, 2001-10

    USGS Publications Warehouse

    Banta, J. Ryan; Slattery, Richard N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service, the Edwards Region Grazing Lands Conservation Initiative, the Texas State Soil and Water Conservation Board, the San Antonio River Authority, the Edwards Aquifer Authority, Texas Parks and Wildlife, the Guadalupe Blanco River Authority, and the San Antonio Water System, evaluated the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in and adjacent to the Honey Creek State Natural Area in Comal County, Tex. By removing the ashe juniper and allowing native grasses to reestablish in the area as a brush management conservation practice, the hydrology in the watershed might change. Using a simplified mass balance approach of the hydrologic cycle, the incoming rainfall was distributed to surface water runoff, evapotranspiration, or groundwater recharge. After hydrologic data were collected in adjacent watersheds for 3 years, brush management occurred on the treatment watershed while the reference watershed was left in its original condition. Hydrologic data were collected for another 6 years. Hydrologic data include rainfall, streamflow, evapotranspiration, and water quality. Groundwater recharge was not directly measured but potential groundwater recharge was calculated using a simplified mass balance approach. The resulting hydrologic datasets were examined for differences between the watersheds and between pre- and post-treatment periods to assess the effects of brush management. The streamflow to rainfall relation (expressed as event unit runoff to event rainfall relation) did not change between the watersheds during pre- and post-treatment periods. The daily evapotranspiration rates at the reference watershed and treatment watershed sites exhibited a seasonal cycle during the pre- and post-treatment periods, with intra- and interannual variability. Statistical analyses indicate the mean

  12. Natural radionuclides in lichens, mosses and ferns in a thermal power plant and in an adjacent coal mine area in southern Brazil.

    PubMed

    Galhardi, Juliana Aparecida; García-Tenorio, Rafael; Díaz Francés, Inmaculada; Bonotto, Daniel Marcos; Marcelli, Marcelo Pinto

    2017-02-01

    The radio-elements (234)U, (235)U, (238)U, (230)Th, (232)Th and (210)Po were characterized in lichens, mosses and ferns species sampled in an adjacent coal mine area at Figueira City, Paraná State, Brazil, due to their importance for the assessment of human exposure related to the natural radioactivity. The coal is geologically associated with a uranium deposit and has been used as a fossil fuel in a thermal power plant in the city. Samples were initially prepared at LABIDRO (Isotopes and Hydrochemistry Laboratory), UNESP, Rio Claro (SP), Brazil. Then, alpha-spectrometry after several radiochemical steps was used at the Applied Nuclear Physics Laboratories, University of Seville, Seville, Spain, for measuring the activity concentration of the radionuclides. It was (210)Po the radionuclide that most bio-accumulates in the organisms, reaching the highest levels in mosses. The ferns species were less sensitive as bio-monitor than the mosses and lichens, considering polonium in relation to other radionuclides. Fruticose lichens exhibited lower polonium content than the foliose lichens sampled in the same site. Besides biological features, environmental characteristics also modify the radio-elements absorption by lichens and mosses like the type of vegetation covering these organisms, their substrate, the prevailing wind direction, elevation and climatic conditions. Only (210)Po and (238)U correlated in ferns and in soil and rock materials, being particulate emissions from the coal-fired power plant the most probable U-source in the region. Thus, the biomonitors used were able to detect atmospheric contamination by the radionuclides monitored.

  13. Temporal and spatial variations of abundance of phycocyanin- and phycoerythrin-rich Synechococcus in Pearl River Estuary and adjacent coastal area

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Chai, Chao; Wang, Jifang; Zhang, Ling; Cen, Jingyi; Lu, Songhui

    2016-10-01

    Three surveys were carried out in Pearl River Estuary and adjacent coastal area in May, August, and November, 2013, to investigate the temporal and spatial variations of abundance of phycoerythrin-rich Synechococcus (PE-rich SYN) and phycocyanin-rich Synechococcus (PC-rich SYN). The effects of environmental factors on the alternation of the different Synechococcus groups were also elucidated. PE-rich SYN was detected in three surveys, whereas PC-rich SYN was detected in May and August, but not in November. The highest abundances of PE-rich SYN and PC-rich SYN were recorded in August and May, with mean values of 74.17×103 and 189.92×103 cells mL-1, respectively. From May to November, the relative abundance of PE-rich SYN increased, whereas that of PC-rich SYN declined. PE-rich and PC-rich SYN presented similar horizontal distributions with high abundance in the southern estuary in May, and in the western estuary in August. The abundances of PE-rich and PC-rich SYN were high at 27-32°C and salinity of 10-20. PC-rich SYN was not detected at < 24°C, and PC:PE-rich SYN decreased in abundance with salinity increase. When less than 20 mg L-1, suspended particulate matter (SPM) was helpful for Synechococcus growth. PE-rich SYN decreased in abundance when the concentration of dissolved inorganic nitrogen increased in May and November, and the concentration of phosphate increased in November. However, PC-rich SYN abundance and nutrients showed no correlation. Principal component analysis and regression analysis indicated that PE-rich SYN significantly correlated with the principal components that were affected by environmental factors.

  14. [Spatial distribution and pollution assessment of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area, China ].

    PubMed

    Zhang, Lei; Qin, Yan-wen; Ma, Ying-qun; Zhao, Yan-min; Shi, Yao

    2014-09-01

    The aim of this article was to explore the pollution level of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area. The contents and spatial distribution of As, Cd, Cr, Cu, Ph and Zn in surface water, suspended solids and surface sediments were analyzed respectively. The integrated pollution index and geoaccumulation index were used to evaluate the contamination degree of heavy metals in surface water and surface sediments respectively. The results indicated that the contents of heavy metals in surface water was in the order of Pb < Cu < Cd < Cr < As < Zn. The heavy metal contents in surface water increased from river to sea. Compared with the contents of heavy metals in surface water of the typical domestic estuary in China, the overall contents of heavy metals in surface water were at a higher level. The contents of heavy metals in suspended solids was in the order of Cd < Cu < As < Cr

  15. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-58) - Asotin Creek Channel, Floodplain and Riparian Restoration (2001)

    SciTech Connect

    Yarde, Richard

    2001-08-07

    BPA proposes to fund an instream and riparian habitat improvement project within the Asotin Creek watershed. This portion of the ongoing restoration program within the Asotin Creek watershed is comprised of the Hendrickson instream and riparian project and the George Creek instream and riparian project. These proposed projects include improving instream and riparian habitat, reestablishing geomorphic stability and enhancing the riparian plant community, by planting riparian vegetation, fencing cattle out of the riparian area, placement of large woody debris and constructing a stream channel within the unstable George Creek. The proposal calls for the removal of up to 300 feet of existing dikes and the placement of up to 10 rock weirs and 40 J-hook veins. Instream work would also include 4,300 feet of constructed meanders and 1,000 feet of constructed oxbow lakes and sediment berms.

  16. Modeling and classifying variable width riparian zones utilizing digital elevation models, flood height data, digital soil data and National Wetlands Inventory: A new approach for riparian zone delineation

    NASA Astrophysics Data System (ADS)

    Abood, Sinan A.

    Riparian zones are dynamic, transitional ecosystems between aquatic and terrestrial ecosystems with well defined vegetation and soil characteristics. Development of an all-encompassing definition for riparian ecotones, because of their high variability, is challenging. However, there are two primary factors that all riparian ecotones are dependent on: the watercourse and its associated floodplain. Previous approaches to riparian boundary delineation have utilized fixed width buffers, but this methodology has proven to be inadequate as it only takes the watercourse into consideration and ignores critical geomorphology, associated vegetation and soil characteristics. Our approach offers advantages over other previously used methods by utilizing: the geospatial modeling capabilities of ArcMap GIS; a better sampling technique along the water course that can distinguish the 50-year flood plain, which is the optimal hydrologic descriptor of riparian ecotones; the Soil Survey Database (SSURGO) and National Wetland Inventory (NWI) databases to distinguish contiguous areas beyond the 50-year plain; and land use/cover characteristics associated with the delineated riparian zones. The model utilizes spatial data readily available from Federal and State agencies and geospatial clearinghouses. An accuracy assessment was performed to assess the impact of varying the 50-year flood height, changing the DEM spatial resolution (1, 3, 5 and 10m), and positional inaccuracies with the National Hydrography Dataset (NHD) streams layer on the boundary placement of the delineated variable width riparian ecotones area. The result of this study is a robust and automated GIS based model attached to ESRI ArcMap software to delineate and classify variable-width riparian ecotones.

  17. Riparian responses to extreme climate and land-use change scenarios.

    PubMed

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems.

  18. Maximizing benefits from riparian revegetation efforts: local- and landscape-level determinants of avian response.

    PubMed

    Gardali, Thomas; Holmes, Aaron L

    2011-07-01

    With limited financial resources available for habitat restoration, information that ensures and/or accelerates success is needed to economize effort and maximize benefit. In the Central Valley of California USA, riparian habitat has been lost or degraded, contributing to the decline of riparian-associated birds and other wildlife. Active restoration of riparian plant communities in this region has been demonstrated to increase local population sizes and species diversity of landbirds. To evaluate factors related to variation in the rate at which bird abundance increased after restoration, we examined bird abundance as a function of local (restoration design elements) and landscape (proportion of riparian vegetation in the landscape and riparian patch density) metrics at 17 restoration projects within five project areas along the Sacramento River. We developed a priori model sets for seven species of birds and used an information theoretic approach to identify factors associated with the rate at which bird abundance increased after restoration. For six of seven species investigated, the model with the most support contained a variable for the amount of riparian forest in the surrounding landscape. Three of seven bird species were positively correlated with the number of tree species planted and three of seven were positively correlated with the planting densities of particular tree species. Our results indicate that restoration success can be enhanced by selecting sites near existing riparian habitat and planting multiple tree species. Hence, given limited resources, efforts to restore riparian habitat for birds should focus on landscape-scale site selection in areas with high proportions of existing riparian vegetation.

  19. Comparison of bird community indices for riparian restoration planning and monitoring

    USGS Publications Warehouse

    Young, Jock S.; Ammon, Elisabeth M.; Weisburg, Peter J.; Dilts, Thomas E.; Newton, Wesley E.; Wong-Kone, Diane C.; Heki, Lisa G.

    2013-01-01

    The use of a bird community index that characterizes ecosystem integrity is very attractive to conservation planners and habitat managers, particularly in the absence of any single focal species. In riparian areas of the western USA, several attempts at arriving at a community index signifying a functioning riparian bird community have been made previously, mostly resorting to expert opinions or national conservation rankings for species weights. Because extensive local and regional bird monitoring data were available for Nevada, we were able to develop three different indices that were derived empirically, rather than from expert opinion. We formally examined the use of three species weighting schemes in comparison with simple species richness, using different definitions of riparian species assemblage size, for the purpose of predicting community response to changes in vegetation structure from riparian restoration. For the three indices, species were weighted according to the following criteria: (1) the degree of riparian habitat specialization based on regional data, (2) the relative conservation ranking of landbird species, and (3) the degree to which a species is under-represented compared to the regional species pool for riparian areas. To evaluate the usefulness of these indices for habitat restoration planning and monitoring, we modeled them using habitat variables that are expected to respond to riparian restoration efforts, using data from 64 sampling sites in the Walker River Basin in Nevada and California. We found that none of the species-weighting schemes performed any better as an index for evaluating overall habitat condition than using species richness alone as a community index. Based on our findings, the use of a fairly complete list of 30–35 riparian specialists appears to be the best indicator group for predicting the response of bird communities to the restoration of riparian vegetation.

  20. Maximizing Benefits from Riparian Revegetation Efforts: Local- and Landscape-Level Determinants of Avian Response

    NASA Astrophysics Data System (ADS)

    Gardali, Thomas; Holmes, Aaron L.

    2011-07-01

    With limited financial resources available for habitat restoration, information that ensures and/or accelerates success is needed to economize effort and maximize benefit. In the Central Valley of California USA, riparian habitat has been lost or degraded, contributing to the decline of riparian-associated birds and other wildlife. Active restoration of riparian plant communities in this region has been demonstrated to increase local population sizes and species diversity of landbirds. To evaluate factors related to variation in the rate at which bird abundance increased after restoration, we examined bird abundance as a function of local (restoration design elements) and landscape (proportion of riparian vegetation in the landscape and riparian patch density) metrics at 17 restoration projects within five project areas along the Sacramento River. We developed a priori model sets for seven species of birds and used an information theoretic approach to identify factors associated with the rate at which bird abundance increased after restoration. For six of seven species investigated, the model with the most support contained a variable for the amount of riparian forest in the surrounding landscape. Three of seven bird species were positively correlated with the number of tree species planted and three of seven were positively correlated with the planting densities of particular tree species. Our results indicate that restoration success can be enhanced by selecting sites near existing riparian habitat and planting multiple tree species. Hence, given limited resources, efforts to restore riparian habitat for birds should focus on landscape-scale site selection in areas with high proportions of existing riparian vegetation.

  1. Woody riparian vegetation response to different alluvial water table regimes

    USGS Publications Warehouse

    Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    2000-01-01

    Woody riparian vegetation in western North American riparian ecosystems is commonly dependent on alluvial groundwater. Various natural and anthropogenic mechanisms can cause groundwater declines that stress riparian vegetation, but little quantitative information exists on the nature of plant response to different magnitudes, rates, and durations of groundwater decline. We observed groundwater dynamics and the response of Populus Fremontii, Salix gooddingii, and Tamarix ramosissima saplings at 3 sites between 1995 and 1997 along the Bill Williams River, Arizona. At a site where the lowest observed groundwater level in 1996 (-1.97 m) was 1.11 m lower than in 1995 (-0.86 m), 92-100% of Populus and Salix saplings died, whereas 0-13% of the Tamarix stems died. A site with greater absolute water table depths in 1996 (-2.55 m), but less change from the 1995 condition (0.55 m), showed less Populus and Salix mortality and increased basal area. Excavations of sapling roots suggest that root distribution is related to groundwater history. Therefore, a decline in water table relative to the condition under which roots developed may strand plant roots where they cannot obtain sufficient moisture. Plant response is likely mediated by other factors such as soil texture and stratigraphy, availability of precipitation-derived soil moisture, and physiological and morphological adaptations to water stress, and tree age. An understanding of the relationships between water table declines and plant response may enable land and water managers to avoid activities that are likely to stress desirable riparian vegetation.

  2. Assessing the extent and diversity of riparian ecosystems in Sonora, Mexico

    USGS Publications Warehouse

    Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.

    2009-01-01

    Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum-Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread. ?? 2008 Springer Science + Business Media BV.

  3. Geostatistical modeling of riparian forest microclimate and its implications for sampling

    USGS Publications Warehouse

    Eskelson, B.N.I.; Anderson, P.D.; Hagar, J.C.; Temesgen, H.

    2011-01-01

    Predictive models of microclimate under various site conditions in forested headwater stream - riparian areas are poorly developed, and sampling designs for characterizing underlying riparian microclimate gradients are sparse. We used riparian microclimate data collected at eight headwater streams in the Oregon Coast Range to compare ordinary kriging (OK), universal kriging (UK), and kriging with external drift (KED) for point prediction of mean maximum air temperature (Tair). Several topographic and forest structure characteristics were considered as site-specific parameters. Height above stream and distance to stream were the most important covariates in the KED models, which outperformed OK and UK in terms of root mean square error. Sample patterns were optimized based on the kriging variance and the weighted means of shortest distance criterion using the simulated annealing algorithm. The optimized sample patterns outperformed systematic sample patterns in terms of mean kriging variance mainly for small sample sizes. These findings suggest methods for increasing efficiency of microclimate monitoring in riparian areas.

  4. Groundwater and surface-water resources in the Bureau of Land Management Moab Master Leasing Plan area and adjacent areas, Grand and San Juan Counties, Utah, and Mesa and Montrose Counties, Colorado

    USGS Publications Warehouse

    Masbruch, Melissa D.; Shope, Christopher L.

    2014-01-01

    The Bureau of Land Management (BLM) Canyon Country District Office is preparing a leasing plan known as the Moab Master Leasing Plan (Moab MLP) for oil, gas, and potash mineral rights in an area encompassing 946,469 acres in southeastern Utah. The BLM has identified water resources as being potentially affected by oil, gas, and potash development and has requested that the U.S. Geological Survey prepare a summary of existing water-resources information for the Moab MLP area. This report includes a summary and synthesis of previous and ongoing investigations conducted in the Moab MLP and adjacent areas in Utah and Colorado from the early 1930s through the late 2000s.Eight principal aquifers and six confining units were identified within the study area. Permeability is a function of both the primary permeability from interstitial pore connectivity and secondary permeability created by karst features or faults and fractures. Vertical hydraulic connection generally is restricted to strongly folded and fractured zones, which are concentrated along steeply dipping monoclines and in narrow regions encompassing igneous and salt intrusive masses. Several studies have identified both an upper and lower aquifer system separated by the Pennsylvanian age Paradox Member of the Hermosa Formation evaporite, which is considered a confining unit and is present throughout large parts of the study area.Surface-water resources of the study area are dominated by the Colorado River. Several perennial and ephemeral or intermittent tributaries join the Colorado River as it flows from northeast to southwest across the study area. An annual spring snowmelt and runoff event dominates the hydrology of streams draining mountainous parts of the study area, and most perennial streams in the study area are snowmelt-dominated. A bimodal distribution is observed in hydrographs from some sites with a late-spring snowmelt-runoff peak followed by smaller peaks of shorter duration during the late summer

  5. Geologic framework of pre-Cretaceous rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico

    USGS Publications Warehouse

    Condon, Steven M.

    1992-01-01

    This report is a discussion and summary of Jurassic and older rocks in the Southern Ute Indian Reservation and adjacent areas, southwestern Colorado and northwestern New Mexico, and is based on analysis of geophysical logs and observations of outcrops. The Reservation, which is located in the northern San Juan Basin, has been the site of deposition of sediments for much of the Phanerozoic. Geologic times represented on the Reservation are the Precambrian, Cambrian, Devonian, Mississippian, Pennsylvanian, Permian, Triassic, Jurassic, Cretaceous, Tertiary, and Quaternary. Rocks of Ordovician and Silurian age have not been reported in this region. Thicknesses of pre-Cretaceous sedimentary rocks range from about 750 feet (229 meters) on the Archuleta arch, east of the Reservation, to more than 8,300 feet (2,530 meters) just northwest of the Reservation. About 5,500 feet (1,676 meters) of pre-Cretaceous sedimentary rocks occur in the central part of the Reservation, near Ignacio. At Ignacio the top of the Jurassic lies at a depth of 7,600 feet (2,316 meters) below the surface, which is composed of Tertiary rocks. As much as 2,500 feet (762 meters) of Tertiary rocks occur in the area. More than 10,000 feet (3,048 meters) of Cretaceous and younger rocks, and 15,600 feet (4,755 meters) of all Phanerozoic sedimentary rocks occur in the vicinity of the Reservation. In the early Paleozoic the area that includes the Southern Ute Reservation was on the stable western shelf of the craton. During this time sediments that compose the following shallow-marine clastic and carbonate rocks were deposited: the Upper Cambrian Ignacio Quartzite (0-150 feet; 0-46 meters), Upper Devonian Elbert Formation (50-200 feet; 15-61 meters), Upper Devonian Ouray Limestone (10-75 feet; 3-23 meters), and Mississippian Leadville Limestone (0-250 feet; 0-76 meters). Mixed carbonate and clastic deposition, which was punctuated by a unique episode of deposition of evaporite sediments, continued through

  6. Innovative interdisciplinary approaches in catchment hydrology: on the potential for diatoms and thermal infrared imagery for documenting spatio-temporal dynamics and connectivity of saturated areas in the hillslope-riparian zone-stream system

    NASA Astrophysics Data System (ADS)

    Pfister, L.; Martínez-Carreras, N.; Wetzel, C.; Ector, L.; Frentress, J.; McDonnell, J. J.

    2012-04-01

    years, our research activities have been focusing on the exploration of new research avenues for untapping new insights on inherent hydrological processes, guiding water source and flowpaths. Here, we will present the most recent results obtained to date from interdisciplinary proof-of-concept studies carried out in the Weierbach experimental watershed. New research avenues, such as the introduction of terrestrial diatom tracing in flood waves, will hopefully contribute to reduce uncertainties in the determination of the onset/cessation of surface runoff and connectivity in the hillslope-riparian zone-stream system. Likewise, thermal infrared imaging has shown considerable potential for tracing surface water flowpaths, connectivity, as well as saturated area dynamics.

  7. Effect of emergent aquatic insects on bat foraging in a riparian forest.

    PubMed

    Fukui, Dai; Murakami, Masashi; Nakano, Shigeru; Aoi, Toshiki

    2006-11-01

    1. Riparian zones serve several ecological functions for bats. They provide a source of prey and likely provide favourable structural habitats and shelter from predators. Many studies have shown that bats use the space above streams, ponds or riparian vegetation as feeding habitat. These studies, however, have never distinguished between the effects of habitat structure and prey availability on the foraging activities of bats. Such effects can only be distinguished by an experimental approach. We predicted that bat activity along a stream is influenced by the number of emerged aquatic insects. 2. We evaluated the response of terrestrial consumers, insectivorous bats, to changes in the abundance of emergent aquatic insects by conducting a manipulative field experiment. In a deciduous riparian forest in Japan, aquatic insect flux from the stream to the riparian zone was controlled with an insect-proof cover over a 1.2 km stream reach. 3. We estimated the abundance of emergent aquatic and flying terrestrial arthropods near the treatment and control reaches using Malaise traps. The foraging activity of bats was evaluated in both treatment and control reaches using ultrasonic detectors. 4. The insect-proof cover effectively reduced the flux of emergent aquatic insects to the riparian zone adjacent to the treatment reach. Adjacent to the control reach, adult aquatic insect biomass was highest in spring, and then decreased gradually. Terrestrial insect biomass increased gradually during the summer at both treatment and control reaches. 5. Foraging activity of bats was correlated with insect abundance. In spring, foraging activity of bats at the control reach was significantly greater than at the treatment reach, and increased at both sites with increasing terrestrial insect abundance. 6. Our result suggests that the flux of aquatic insects emerging from streams is one of the most important factors affecting the distribution of riparian-foraging bats. As is the case with

  8. Characterizing Controls of Riparian Width for Mountain Streams in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Polvi, L. E.; Wohl, E. E.

    2007-12-01

    High variability of mountain streams causes riparian width to vary greatly from changes in drainage, valley and channel characteristics. GIS- based models for predicting flood-prone width, valley bottoms, or riparian zones may not accurately reflect processes at the reach scale, therefore field verification and reach-specific studies are needed. Management of riparian areas often designates a generalized width, which may under- or over-estimate the true riparian width. This study examines correlations between potential control variables and riparian zone width in the Colorado Front Range. Results from this study will be used to predict the riparian zone as a proxy for flood-prone width in the semi-arid Colorado Front Range. We hypothesize that local controls interact with large- scale controls to determine floodplain processes. Large-scale controls identified are elevation, which reflects hydroclimatology and glacial history, gradient and drainage area. Local controls are entrenchment, the ratio of the valley width to channel width, connectedness, defined as the distance from the channel to valley edge, presence of colluvium, and vegetation type, affecting roughness during flooding and bank stability. We chose twenty reaches based on elevation, connectedness, gradient and drainage area using a GIS base map in anthropogenically undisturbed areas of the Colorado Front Range, which included the Cache la Poudre and North St. Vrain drainages. Riparian width was defined using a three-tiered approach: evidence of fluvial processes and presence of riparian vegetation, compared with the Q100 stage. A longitudinal and two valley and channel cross-section surveys were completed at each stream reach to determine valley and channel geometry and bed gradient. Preliminary results show significant positive correlations between drainage area, entrenchment, and connectedness and riparian width, and negative correlations between gradient and riparian width, supporting the hypothesis

  9. Riparian seed dispersal: transport and depositional processes

    NASA Astrophysics Data System (ADS)

    Cunnings, A.; Johnson, E. A.; Martin, Y. E.

    2012-04-01

    Riparian tree population dynamics are linked to the physical processes controlled by the hydrogeomorphic setting. In particular, fluvial seed dispersal is influenced by a combination of factors including the hydrology, fluvial geomorphology, and seed dispersal traits. This study examines the influence of stream flow patterns on the transportation and deposition of buoyant seeds by applying a one dimensional transport model. Conceptually, the model separates the stream into two components: the main channel and transient storage /deposition zones. The hydrologic processes are governed by an advection-dispersion equation and numerically solved using the Crank-Nicolson method. Additional terms in the equation allow for model variation in the flow regime (lateral inflow and outflow) and the incorporation of a transient storage/deposition component where seeds may be detained. The model parameters are based on a bedrock-gravel bed river with pool-riffle morphology where we conducted field experimentation in Coastal Northern California. The riparian zone of the study reach is inhabited by White Alder (Alnus rhombifolia) which disperses buoyant seeds in late winter/early spring coinciding with the latter part of the wet, Mediterranean climate. Artificial seeds with similar characteristic traits of buoyancy, density and Bond Number to White Alder seeds were used to quantify transport times and identify storage areas. The model output captures a greater number of seeds during a receding hydrograph due to the increase in transient storage. Typically, this is found in shallow stream margins where the flow is divergent such as areas with back-eddies. In the field, this is associated with the ends of gravel bars or riffles where flow expansion causes secondary flows. The results demonstrate the importance of transient storage for seed transport and depositional processes and emphasize the need for improved measurement techniques, in lieu of empirical coefficients, to advance the

  10. Diversity of Riparian Plants among and within Species Shapes River Communities

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  11. Diversity of Riparian Plants among and within Species Shapes River Communities.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-01-01

    Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to

  12. RIP-ET: A riparian evapotranspiration package for MODFLOW-2005

    USGS Publications Warehouse

    Maddock, Thomas; Baird, Kathryn J.; Hanson, R.T.; Schmid, Wolfgang; Ajami, Hoori

    2012-01-01

    A new evapotranspiration package for the U.S. Geological Survey's groundwater-flow model, MODFLOW, is documented. The Riparian Evapotranspiration Package (RIP-ET) provides flexibility in simulating riparian and wetland transpiration not provided by the Evapotranspiration (EVT) or Segmented Function Evapotranspiration (ETS1) Packages for MODFLOW 2005. This report describes how the RIP-ET package was conceptualized and provides input instructions, listings and explanations of the source code, and an example. Traditional approaches to modeling evapotranspiration (ET) processes assume a piecewise linear relationship between ET flux and hydraulic head. The RIP-ET replaces this traditional relationship with a segmented, nonlinear dimensionless curve that reflects the eco-physiology of riparian and wetland ecosystems. Evapotranspiration losses from these ecosystems are dependent not only on hydraulic head, but on the plant types present. User-defined plant functional groups (PFGs) are used to elucidate the interaction between plant transpiration and groundwater conditions. Five generalized plant functional groups based on transpiration rates, plant rooting depth, and water tolerance ranges are presented: obligate wetland, shallow-rooted riparian, deep-rooted riparian, transitional riparian and bare ground/open water. Plant functional groups can be further divided into subgroups (PFSGs) based on plant size, density or other characteristics. The RIP-ET allows for partial habitat coverage and mixtures of plant functional subgroups to be present in a single model cell. RIP-ET also distinguishes between plant transpiration and bare-ground evaporation. Habitat areas are designated by polygons; each polygon can contain a mixture of PFSGs and bare ground, and is assigned a surface elevation. This process requires a determination of fractional coverage for each of the plant functional subgroups present in a polygon to account for the mixture of coverage types and resulting

  13. Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis

    PubMed Central

    Tetzlaff, Doerthe; Birkel, Christian; Dick, Jonathan; Soulsby, Chris

    2016-01-01

    Abstract Mixing of waters within riparian zones has been identified as an important influence on runoff generation and water quality. Improved understanding of the controls on the spatial and temporal variability of water sources and how they mix in riparian zones is therefore of both fundamental and applied interest. In this study, we have combined topographic indices derived from a high‐resolution Digital Elevation Model (DEM) with repeated spatially high‐resolution synoptic sampling of multiple tracers to investigate such dynamics of source water mixing. We use geostatistics to estimate concentrations of three different tracers (deuterium, alkalinity, and dissolved organic carbon) across an extended riparian zone in a headwater catchment in NE Scotland, to identify spatial and temporal influences on mixing of source waters. The various biogeochemical tracers and stable isotopes helped constrain the sources of runoff and their temporal dynamics. Results show that spatial variability in all three tracers was evident in all sampling campaigns, but more pronounced in warmer dryer periods. The extent of mixing areas within the riparian area reflected strong hydroclimatic controls and showed large degrees of expansion and contraction that was not strongly related to topographic indices. The integrated approach of using multiple tracers, geospatial statistics, and topographic analysis allowed us to classify three main riparian source areas and mixing zones. This study underlines the importance of the riparian zones for mixing soil water and groundwater and introduces a novel approach how this mixing can be quantified and the effect on the downstream chemistry be assessed. PMID:27478256

  14. Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis

    NASA Astrophysics Data System (ADS)

    Lessels, Jason S.; Tetzlaff, Doerthe; Birkel, Christian; Dick, Jonathan; Soulsby, Chris

    2016-01-01

    Mixing of waters within riparian zones has been identified as an important influence on runoff generation and water quality. Improved understanding of the controls on the spatial and temporal variability of water sources and how they mix in riparian zones is therefore of both fundamental and applied interest. In this study, we have combined topographic indices derived from a high-resolution Digital Elevation Model (DEM) with repeated spatially high-resolution synoptic sampling of multiple tracers to investigate such dynamics of source water mixing. We use geostatistics to estimate concentrations of three different tracers (deuterium, alkalinity, and dissolved organic carbon) across an extended riparian zone in a headwater catchment in NE Scotland, to identify spatial and temporal influences on mixing of source waters. The various biogeochemical tracers and stable isotopes helped constrain the sources of runoff and their temporal dynamics. Results show that spatial variability in all three tracers was evident in all sampling campaigns, but more pronounced in warmer dryer periods. The extent of mixing areas within the riparian area reflected strong hydroclimatic controls and showed large degrees of expansion and contraction that was not strongly related to topographic indices. The integrated approach of using multiple tracers, geospatial statistics, and topographic analysis allowed us to classify three main riparian source areas and mixing zones. This study underlines the importance of the riparian zones for mixing soil water and groundwater and introduces a novel approach how this mixing can be quantified and the effect on the downstream chemistry be assessed.

  15. Water sources and mixing in riparian wetlands revealed by tracers and geospatial analysis.

    PubMed

    Lessels, Jason S; Tetzlaff, Doerthe; Birkel, Christian; Dick, Jonathan; Soulsby, Chris

    2016-01-01

    Mixing of waters within riparian zones has been identified as an important influence on runoff generation and water quality. Improved understanding of the controls on the spatial and temporal variability of water sources and how they mix in riparian zones is therefore of both fundamental and applied interest. In this study, we have combined topographic indices derived from a high-resolution Digital Elevation Model (DEM) with repeated spatially high-resolution synoptic sampling of multiple tracers to investigate such dynamics of source water mixing. We use geostatistics to estimate concentrations of three different tracers (deuterium, alkalinity, and dissolved organic carbon) across an extended riparian zone in a headwater catchment in NE Scotland, to identify spatial and temporal influences on mixing of source waters. The various biogeochemical tracers and stable isotopes helped constrain the sources of runoff and their temporal dynamics. Results show that spatial variability in all three tracers was evident in all sampling campaigns, but more pronounced in warmer dryer periods. The extent of mixing areas within the riparian area reflected strong hydroclimatic controls and showed large degrees of expansion and contraction that was not strongly related to topographic indices. The integrated approach of using multiple tracers, geospatial statistics, and topographic analysis allowed us to classify three main riparian source areas and mixing zones. This study underlines the importance of the riparian zones for mixing soil water and groundwater and introduces a novel approach how this mixing can be quantified and the effect on the downstream chemistry be assessed.

  16. Riparian restoration framework for the Upper Gila River, Arizona

    USGS Publications Warehouse

    Orr, Bruce K.; Leverich, Glen L.; Diggory, Zooey E.; Dudley, Tom L.; Hatten, James R.; Hultine, Kevin R.; Johnson, Matthew P.; Orr, Devyn A.

    2014-01-01

    This technical report summarizes the methods and results of a comprehensive riparian restoration planning effort for the Gila Valley Restoration Planning Area, an approximately 53-mile portion of the upper Gila River in Arizona (Figure 1-1). This planning effort has developed a Restoration Framework intended to deliver science-based guidance on suitable riparian restoration actions within the ecologically sensitive river corridor. The framework development was conducted by a restoration science team, led by Stillwater Sciences with contributions from researchers at the Desert Botanical Garden (DBG), Northern Arizona University (NAU), University of California at Santa Barbara (UCSB), and U.S. Geological Survey (USGS). All work was coordinated by the Gila Watershed Partnership of Arizona (GWP), whose broader Upper Gila River Project Area is depicted in Figure 1-1, with funding from the Walton Family Foundation’s Freshwater Initiative Program.

  17. Nitrate removal effectiveness of a riparian buffer along a small agricultural stream in western Oregon.

    PubMed

    Wigington, P J; Griffith, S M; Field, J A; Baham, J E; Horwath, W R; Owen, J; Davis, J H; Rain, S C; Steiner, J J

    2003-01-01

    The Willamette Valley of Oregon has extensive areas of poorly drained, commercial grass seed lands. Little is know about the ability of riparian areas in these settings to reduce nitrate in water draining from grass seed fields. We established two study sites with similar soils and hydrology but contrasting riparian vegetation along an intermittent stream that drains perennial ryegrass (Lolium perenne L.) fields in the Willamette Valley of western Oregon. We installed a series of nested piezometers along three transects at each site to examine NO3-N in shallow ground water in grass seed fields and riparian areas. Results showed that a noncultivated riparian zone comprised of grasses and herbaceous vegetation significantly reduced NO3-N concentrations of shallow ground water moving from grass seed fields. Darcy's law-based estimates of shallow ground water flow through riparian zone A/E horizons revealed that this water flowpath could account for only a very small percentage of the streamflow. Even though there is great potential for NO3-N to be reduced as water moves through the noncultivated riparian zone with grass-herbaceous vegetation, the potential was not fully realized because only a small proportion of the stream flow interacts with riparian zone soils. Consequently, effective NO3-N water quality management in poorly drained landscapes similar to the study watershed is primarily dependent on implementation of sound agricultural practices within grass seed fields and is less influenced by riparian zone vegetation. Wise fertilizer application rates and timing are key management tools to reduce export of NO3-N in stream waters.

  18. Riparian buffer transpiration and watershed scale impacts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Forested riparian buffers are prevalent throughout the Southeastern Coastal Plain Region of the United States (US). Because they make up a significant portion of the regional landscape, transpiration within these riparian buffers is believed to have an important impact on the hydrologic budget of r...

  19. RESEARCH NEEDS IN RIPARIAN BUFFER RESTORATION

    EPA Science Inventory

    Riparian buffer restorations are used as management tools to produce favorable water quality impacts; moreover, the basis for riparian buffers as an instrument of water quality restoration rests on a relatively firm foundation. However, the extent to which buffers can restore rip...

  20. Revised hydrogeologic framework of the Floridan aquifer system in the northern coastal area of Georgia and adjacent parts of South Carolina

    USGS Publications Warehouse

    Williams, Lester J.; Gill, Harold E.

    2010-01-01

    The hydrogeologic framework for the Floridan aquifer system has been revised for eight northern coastal counties in Georgia and five coastal counties in South Carolina by incorporating new borehole geophysical and flowmeter log data collected during previous investigations. Selected well logs were compiled and analyzed to determine the vertical and horizontal continuity of permeable zones that make up the Upper and Lower Floridan aquifers and to define more precisely the thickness of confining beds that separate these aquifers. The updated framework generally conforms to the original framework established by the U.S. Geological Survey in the 1980s except for adjustments made to the internal boundaries of the Upper and Lower Floridan aquifers and the individual permeable zones that compose these aquifers. The revised boundaries of the Floridan aquifer system were mapped by taking into account results from local studies and regional correlations of geologic and hydrogeologic units. Because the revised framework does not match the previous regional framework along all edges, additional work will be needed to expand the framework into adjacent areas. The Floridan aquifer system in the northern coastal region of Georgia and parts of South Carolina can be divided into the Upper and Lower Floridan aquifers, which are separated by a middle confining unit of relatively lower permeability. The Upper Floridan aquifer includes permeable and hydraulically connected carbonate rocks of Oligocene and upper Eocene age that represent the most transmissive part of the aquifer system. The middle confining unit consists of low permeability carbonate rocks that lie within the lower part of the upper Eocene in Beaufort and Jasper Counties, South Carolina, and within the upper to middle parts of the middle Eocene elsewhere. Locally, the middle confining unit contains thin zones that have moderate to high permeability and can produce water to wells that tap them. The Lower Floridan aquifer

  1. Mercury Speciation and Bioaccumulation In Riparian and Upland Food Webs of the White Mountains Region, New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Rodenhouse, N.; Gebauer, R.; Lowe, W.; McFarland, K.; Bank, M. S.

    2015-12-01

    The soils and foods webs associated with mid to high elevation, forested, headwater streams are potential hotspots for mercury methylation and bioaccumulation but are not well studied. We tested the hypothesis that spatial variation in mercury bioaccumulation in upland taxa associated with headwater streams can be explained by variation in soil conditions promoting Hg methylation such as soil moisture, pH, and sulfur and organic matter content. We sampled at high (c. 700m) and mid elevation (c. 500m) in northern hardwood forest adjacent to and away from (75m) replicate headwater streams in the Hubbard Brook and Jeffers Brook watersheds of the White Mountains region, New Hampshire, USA. These forested watersheds differed primarily in soil calcium content and pH. We measured and assessed spatial variation in total Hg (THg) and methyl Hg (MeHg) concentrations in soils, insects, spiders, salamanders and birds. We also tested whether trophic position, as determined by nitrogen stable isotopes, was a major predictor of Hg bioaccumulation across these riparian and upland forest taxa. We found elevated levels of THg in all measured components of the food web, and conditions for methylation were better in the upland forest sites compared to the riparian sites located adjacent to headwater streams. Both THg and MeHg in biota were positively correlated with trophic position as indicated by 15N enrichment. In fact, trophic position was a better predictor of THg and MeHg content than spatial location, but the spatial patterning of bioaccumulation differed among taxa. Our data show that that significant Hg bioaccumulation and biomagnification can occur in soils and food webs of mid to high elevation temperate deciduous forests of the Northeast. They also suggest that mercury methylation in forested watersheds is a widespread phenomenon and not limited to areas with high soil moisture, such as lotic environments.

  2. Influence of planting grass filter strips on the structure and function of riparian habitats of agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grass filter strips are strips of cool or warm season grasses planted adjacent to agricultural streams to reduce nutrient, pesticide, and sediment input. This conservation practice is the most frequently planted riparian buffer type in the United States. Previous studies have not evaluated how gra...

  3. Grassland birds associated with agricultural riparian practices in southwestern Wisconsin

    USGS Publications Warehouse

    Renfrew, R.B.; Ribic, C.A.

    2001-01-01

    Rotational grazing has been proposed as a Best Management Practice (BMP) for minimizing runoff in Wisconsin agricultural riparian areas. The influence of this land management practice on grassland birds has not been evaluated in relation to more traditional agricultural land management systems in Midwestern riparian areas. This study compared the grassland bird community in riparian areas in Wisconsin that were rotationally grazed to 2 common land use practices along streams in Wisconsin: continuously grazed pastures and rowcrop fields with 10-m-wide ungrazed buffer strips located along the stream. We calculated total number of birds, the Berger-Parker Index of Dominance, and number of birds ha-1 for each site. Vegetation variables used were height-density, litter depth, and percent bare ground. Bird species richness, species dominance, and density did not differ among land use types. In contrast, grassland bird species of management concern [Savannah Sparrow (Passerculus sandwichensis Gmelin), Eastern Meadowlark (Sturnella magna L.), and Bobolink (Dolichonyx oryzivorus L.)] were found on continuous and rotational pastures but very rarely or never occurred on buffer strips. Contrary to previous research, however, rotationally grazed pastures did not support more of these species than continuously grazed pastures. Bird density was related to vegetation structure, with higher densities found on sites with deeper litter. Within the pasture land use types, there were no consistent differences between species richness and density near the stream (10 m).

  4. Coupling groundwater and riparian vegetation models to assess effects of reservoir releases

    USGS Publications Warehouse

    Springer, A.E.; Wright, J.M.; Shafroth, P.B.; Stromberg, J.C.; Patten, D.T.

    1999-01-01

    Although riparian areas in the arid southwestern United States are critical for maintaining species diversity, their extent and health have been declining since Euro-American settlement. The purpose of this study was to develop a methodology to evaluate the potential for riparian vegetation restoration and groundwater recharge. A numerical groundwater flow model was coupled with a conceptual riparian vegetation model to predict hydrologic conditions favorable to maintaining riparian vegetation downstream of a reservoir. A Geographic Information System (GIS) was used for this one-way coupling. Constant and seasonally varying releases from the dam were simulated using volumes anticipated to be permitted by a regional water supplier. Simulations indicated that seasonally variable releases would produce surface flow 5.4-8.5 km below the dam in a previously dry reach. Using depth to groundwater simulations from the numerical flow model with conceptual models of depths to water necessary for maintenance of riparian vegetation, the GIS analysis predicted a 5- to 6.5-fold increase in the area capable of sustaining riparian vegetation.

  5. Dairy farm impacts of fencing riparian land: pasture production and farm productivity.

    PubMed

    Aarons, Sharon R; Melland, Alice R; Dorling, Lianne

    2013-11-30

    Dairy farmers are encouraged to restrict stock access by fencing riparian zones to reduce stream pollution and improve biodiversity. Many farmers are reluctant to create fenced riparian zones because of the perceived loss of productive pasture. Anecdotal reports indicate that pasture production in fenced areas is especially valued during summer months when water stress is likely to limit pasture growth in other areas of the farm. We measured pasture production, botanical composition, soil moisture, and fertility in Riparian (within 20 m of the riverbank), Flat (greater than 20 but less than 50 m from the riverbank), and Hill (elevated) areas on three commercial dairy farms from October 2006 to November 2007 in south eastern Australia. Riparian and Flat areas produced significantly more pasture, with on average approximately 25% more dry matter per ha grown in these areas compared with Hill paddocks. Percentage ryegrass was 14% lower on Hill slopes compared with Riparian and Flat areas and was compensated for by only a 5% increase in other grass species. Significant seasonal effects were observed with the difference in pasture production between Hill, and Riparian and Flat areas most pronounced in summer, due to soil moisture limitations on Hill paddocks. To examine potential productivity impacts of this lost pasture, we used a questionnaire-based survey to interview the farmers regarding their farm and riparian management activities. The additional pasture that would have been available if the riverbanks were not fenced to their current widths ranged from 6.2 to 27.2 t DM for the 2006/2007 year and would have been grown on 0.4-3.4% of their milking area. If this pasture was harvested instead of grazed, the farmers could have saved between $2000 and $8000 of their purchased fodder costs in that year. By fencing their riparian areas to 20 m for biodiversity benefits, between 2.2% and 9.8% of their milking area would be out of production amounting to about $16

  6. Role of the riparian zone in controlling the distribution and fate of agricultural nitrogen near a small stream in southern Ontario

    NASA Astrophysics Data System (ADS)

    Cey, Edwin E.; Rudolph, David L.; Aravena, Ramon; Parkin, Gary

    1999-04-01

    Uncultivated riparian areas can play an important role in reducing nutrient loading to streams in agricultural watersheds. Groundwater flow and geochemistry were monitored in the riparian zone of a small agricultural watershed in southern Ontario. Hydraulic and geochemical measurements were taken along a transect of monitoring wells extending across the riparian area into an agricultural field. Chloride and nitrate concentrations in groundwater samples collected from the agricultural field were much higher than in samples from the riparian area. A sharp decline in both nitrate and chloride concentrations was observed near the field-riparian zone boundary. It appears that increased recharge within the riparian zone, as compared to the artificially drained field, caused nitrate-rich groundwater from the field to be diverted downward beneath the riparian zone, thus limiting the input of agrochemicals to the riparian area and consequently protecting the stream from potential contamination. Geochemical data also indicated that nitrate was attenuated in the downward moving groundwater. Patterns of dissolved oxygen concentrations and redox potential in the subsurface coincided with the pattern defined by groundwater nitrate. These patterns indicated that conditions within the riparian zone and at depth near the field-riparian zone boundary were conducive to denitrification. A linear relation between the δ 15N and δ 18O values of nitrate from the monitored transect also supported denitrification as the primary nitrate removal mechanism. This study provides a new conceptual model of how riparian zones may prevent nitrate contamination of streams, and highlights the need for a complete understanding of both groundwater flow and geochemistry in riparian environments.

  7. Predicting the impact of water demand and river flow regulation over riparian vegetation through mathematical modeling

    NASA Astrophysics Data System (ADS)

    Garcia-Arias, A.; Pons, C.; Frances, F.

    2013-12-01

    The vegetation of the riversides is a main part of the complex riparian ecosystems and has an important role maintaining the fluvial ecosystems. Biotic and abiotic interactions between the river and the riverbank are essential for the subsistence and the development of both ecosystems. In semi-arid Mediterranean areas, the riparian vegetation growth and distribution is especially controlled by the water accessibility, determining the limit between the lush riparian bands and the sparse upland. Human intervention can alter the river hydrology determining the riparian vegetation wellbeing and its distribution and, in consequence, affecting both riparian and fluvial ecosystems. Predictive models are necessary decision support tools for adequate river management and restoration initiatives. In this context, the RibAV model is useful to predict the impact of water demand and river flow regulation on the riparian vegetation. RibAV is able to reproduce the vegetation performance on the riverside allowing the scenarios analysis in terms of vegetation distribution and wellbeing. In this research several flow regulation and water demand scenarios are proposed and the impacts over three plant functional types (PFTs) are analyzed. The PFTs group the herbaceous riparian plants, the woody riparian plants and the terrestrial vegetation. The study site is the Terde reach at the Mijares River, a 539m length reach located in a semi-arid Mediterranean area in Spain. The scenarios represent river flow alterations required to attend different human demands. These demands encompass different seasonality, magnitude and location. The seasonality is represented as hydroelectric (constant all over the year), urban (increased during the summer period) and agricultural demands (monthly seasonality). The magnitude is varied considering the 20%, the 40% and the 80% of the mean daily flow. Two locations are considered, upstream or downstream the study site. To attend the demands located

  8. A riparian wildlife habitat evaluation scheme developed using GIS.

    PubMed

    Iverson, L R; Szafoni, D L; Baum, S E; Cook, E A

    2001-11-01

    To evaluate riparian habitat for wildlife, we used a geographic information system (GIS) that prioritized individual streams (for acquisition or management) by habitat ranking. We demonstrate this methodology for the Vermilion River basin in east-central Illinois, USA. Three data sets were used to evaluate land cover encompassing 300 m on either side of the streams: (1) the US Geological Survey's land use and land cover information (LUDA), (2) land cover manually digitized from the National High Altitude Photography (NHAP) program, and (3) Landsat Thematic Mapper (TM) data classified into land cover. Each of 30 tributaries in the study area was ranked for habitat according to the data contained in each data set, and results were compared. Habitat ranking schemes were devised and analysis performed for three species guilds: forest, grassland, and mixed successional species. TM and NHAP each differentiated habitat scores (for forest, grassland, and mixed successional guilds) among tributaries in a similar and suitable way, while LUDA was not suitable, due to the coarse resolution of the data. Overall, it was shown that the methodology is suitable to rank streams based on riparian habitat quality. Even though more work is needed to test and verify the method, the project has shown the potential for such techniques to assist in evaluating, tracking, and improving the management of riparian wildlife resources. The method can easily be applied over large areas such as states if TM-based land cover and stream data are available.

  9. Riparian vegetation in South-western Europe: drivers of change across space and time (Invited)

    NASA Astrophysics Data System (ADS)

    Aguiar, F. C.; Ferriera, M.

    2010-12-01

    Riparian ecosystems of Mediterranean Europe have been largely disturbed for millennia due to human-driven alterations. Land-use, deforestation, water diversion and river regulation have been the major causes of change of riparian and freshwater ecosystems. Riparian vegetation in this region has particular features due to a large climatic and environmental variation; from the climatic harshness and the flash-flow hydrological regime of southern rivers to high-altitude permanent rivers of the north regions. Riparia is a fundamental element of the Mediterranean landscape by a number of ecological values, and economic and societal benefits, and they are usually seen as “linear oasis” embedded in the complex landscape matrix. We face a huge challenge in understanding the distribution trends of the riparian species assemblages in those diverse biogeographic regions and the varying effects of the multi-scaled drivers of change. I will review the main studies that have explored the patterns of variation of riparian plant assemblages across space and time in South-Western Europe, including its longitudinal and lateral dimension. Structural community features and plant functional traits, that can be described and quantified, are ecological expressions of both natural and human disturbances, and comparatively less understood than floral composition patterns, and many studies suggest that they are more reactive to disturbance. Linkages of taxonomic and functional trait variation will also be addressed, focusing in the influence of environment at various scale levels. Effects of human disturbances, particularly the alien plant invasions and the losses of biodiversity and connectivity will be tackled. These studies provided evidence of shifts in species composition and in structural complexity, as well as in individual and community responses to wetting and drying due to regulation and to physical disturbances of riverbanks. The intensive agriculture in adjacent lands is a

  10. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  11. Riparian shading and groundwater enhance growth potential for smallmouth bass in Ozark streams.

    PubMed

    Whitledge, Gregory W; Rabeni, Charles F; Annis, Gust; Sowa, Scott P

    2006-08-01

    focused in areas strongly influenced by groundwater. Restoring riparian shading along spring-fed warmwater streams will likely benefit adult smallmouth bass growth and may ultimately influence population sizes.

  12. Impacts of stream flow and climate variability on native and invasive woody species in a riparian ecosystem of a semi-arid region of the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Skolaut, K.; Awada, T.; Cherubini, P.; Schapaugh, A.; Huddle, J.

    2012-04-01

    Riparian ecosystems support diverse plant communities that exert direct and indirect biological, physical and chemical influence on, and are influenced by, adjacent water through both above and below-ground interactions. Historically, riparian areas of the northern Great Plains (United States) have been dominated by the native Populus deltoides (eastern cottonwood). This species relies on regular floods for regeneration and groundwater access for success. Over the past sixty years, changes in flow management and agricultural practices, coupled with climate variability and drought, have altered stream flow and caused a dramatic decline in stream water yields and levels of groundwater. These and other biotic factors have promoted the expansion of the upland native woody species Juniperus virginiana (eastern redcedar), and the invasion of the non-native (introduced) Elaeagnus angustifolia (Russian olive) into riparian ecosystems. This invasion has further altered the water balance in the system and exasperated the problem of water scarcity with negative feedback on ecosystem services and growth of native woody species. The ability of P. deltoides to re-establish and grow is of concern for natural resource managers. The study utilizes tree ring analysis of annual growth rates and stable isotope ratios of 13C and 18O to determine 1) the response P. deltoides and invasive J. virginiana and E. angustifulia have to climate variation and stream flow regulation, and 2) the impacts of the two invasive species on the growth of native P. deltoides. Preliminary results have shown that P. deltoids annual growth rate (using basal area increment growth) continually declined over the last 40 yrs, while that of E. angustifolia steadily increased. Growth of both P. deltoides and J. virginiana displayed greater dependence on climatic factors than E. angustifolia. Ecological and hydrological significance of the results will be presented.

  13. RIPARIAN CHARACTERIZATION USING SUB-PIXEL ANALYSIS OF LANDSAT TM IMAGERY FOR USE IN ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    Landuse/land cover and riparian corridor characterization for 7 major watersheds in western Ohio was accomplished using sub-pixel analysis and traditional classification techniques. Areas
    representing forest, woodland, shrub, and herbaceous vegetation were delineated using a ...

  14. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream riparian zones are often thought of as areas that provide natural remediation for groundwater contaminants, especially agricultural nitrogen (N). While denitrification and vegetative uptake tend to be efficient N removal processes in slow moving shallow groundwater, these mechanisms decrease ...

  15. Assessing Risks of Shallow Riparian Groundwater Quality Near an Oil Sands Tailings Pond.

    PubMed

    Roy, J W; Bickerton, G; Frank, R A; Grapentine, L; Hewitt, L M

    2016-07-01

    The potential discharge of groundwater contaminated by oil sands process-affected water (OSPW) is a concern for aquatic ecosystems near tailings ponds. Groundwater in the area, but unaffected by OSPW, may contain similar compounds, complicating the assessment of potential ecological impacts. In this study, 177 shallow groundwater samples were collected from riparian areas along the Athabasca River and tributaries proximate to oil sands developments. For "pond-site" samples (71; adjacent to study tailings pond), Canadian aquatic life guidelines were exceeded for 11 of 20 assessed compounds. However, "non-pond" samples (54; not near any tailings pond) provided similar exceedances. Statistical analyses indicate that pond-site and non-pond samples were indistinguishable for all but seven parameters assessed, including salts, many trace metals, and fluorescence profiles of aromatic naphthenic acids (ANA). This suggests that, regarding the tested parameters, groundwater adjacent to the study tailings pond generally poses no greater ecological risk than other nearby groundwaters at this time. Multivariate analyses applied to the groundwater data set separated into 11 smaller zones support this conclusion, but show some variation between zones. Geological and potential OSPW influences could not be distinguished based on major ions and metals concentrations. However, similarities in indicator parameters, namely ANA, F, Mo, Se, and Na-Cl ratio, were noted between a small subset of samples from two pond-site zones and two OSPW samples and two shallow groundwater samples documented as likely OSPW affected. This indicator-based screening suggests that OSPW-affected groundwater may be reaching Athabasca River sediments at a few locations.

  16. Recovery times of riparian vegetation

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2016-04-01

    Riparian vegetation is a key element in a number of processes that determine the eco-geomorphological features of the river landscape. Depending on the river water stage fluctuations, vegetation biomass randomly switches between growth and decay phases, and its biomass exhibits relevant temporal variations. A full understanding of vegetation dynamics is therefore only possible if the hydrological stochastic forcing is considered. In this vein, we focus on the recovery time of vegetation, namely the typical time taken by vegetation to recover a health state starting from a low biomass value (induced, for instance, by an intense flood). The minimalistic stochastic modeling approach is used for describing vegetation dynamics (i.e., the noise-driven alternation of growth and decay phases). The recovery time of biomass is then evaluated according to the theory of the mean first passage time in systems driven by dichotomous noise. The effect of the main hydrological and biological parameters on the vegetation recovery was studied, and the dynamics along the riparian transect was described in details. The effect of climate change and human interventions (e.g., river damming) was also investigated. We found that: (i) the oscillations of the river stage delay the recovery process (up to one order of magnitude, with respect to undisturbed conditions); (ii) hydrological/biological alterations (due to climate change, damming, exotic species invasion) modify the timescales of the recovery. The result provided can be a useful tool for the management of the river. They open the way to the estimation of: (i) the recovery time of vegetation after devastating floods, clear cutting or fires and; (ii) the timescale of the vegetation response to hydrological and biological alterations.

  17. The Role of Legacy Effects and Reactive Amendments on Phosphorus Retention Within Riparian Zones

    NASA Astrophysics Data System (ADS)

    Surridge, B.; Habibiandehkordi, R.; Quinton, J.

    2014-12-01

    Undisturbed riparian zones, including river floodplains and field buffer strips, can significantly reduce phosphorus (P) export associated with agricultural production. However, riparian zones are frequently disturbed, including through conversion to agricultural land. Restoring disturbed riparian zones is promoted widely within agri-environment schemes. However, restoration presents significant challenges, two of which are considered in this paper: understanding the impacts of restoration on legacy P within riparian zone soils; and maximising the efficacy of riparian zones for removal of all P fractions, including the more immediately bioavailable soluble P fractions. Firstly, we examine changes in porewater soluble P concentration following re-wetting of a river floodplain in Norfolk, UK, using laboratory mesocosms and in-situ field monitoring. Substantial release of P from sediment to porewater was observed following re-wetting (porewater soluble P concentration exceeded 6.5 mg P L-1), probably associated with reductive-dissolution of iron-bound P within floodplain sediments. Export of soluble P from porewater into adjacent receiving waters was observed following both natural hydrological events and management of the hydrological regime within the floodplain. Secondly, we examine how retention of soluble P with grass buffer strips can be enhanced through application of reactive industrial by-products, focussing on ochre and aluminium-based water treatment residuals. Application of these by-products to buffer strips increased removal of soluble P from surface runoff by over 50% compared to non-amended buffer strips. The long-term effectiveness of reactive amendments is also considered, using repeated runoff events under field conditions. Taken together, the research offers new insights into riparian zone P biogeochemistry within agricultural landscapes.

  18. Monitoring and mapping selected riparian habitat along the lower Snake River

    SciTech Connect

    Downs, J. L; Tiller, B. L; Witter, M.; Mazaika, R.

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  19. Effects of anthropogenic fragmentation and livestock grazing on western riparian bird communities

    USGS Publications Warehouse

    Tewksbury, J.J.; Black, A.E.; Nur, N.; Saab, V.A.; Logan, B.D.; Dobkin, D.S.

    2002-01-01

    Deciduous vegetation along streams and rivers provides breeding habitat to more bird species than any other plant community in the West, yet many riparian areas are heavily grazed by cattle and surrounded by increasingly developed landscapes. The combination of cattle grazing and landscape alteration (habitat loss and fragmentation) are thought to be critical factors affecting the richness and composition of breeding bird communities. Here, we examine the influence of land use and cattle grazing on deciduous riparian bird communities across seven riparian systems in five western states: Montana, Idaho, Nevada, Oregon and California. These riparian systems are embedded in landscapes ranging from nearly pristine to almost completely agricultural. We conducted landscape analysis at two spatial scales: local landscapes (all land within 500 m of each survey location) and regional landscapes (all land within 5 km of each survey location). Despite the large differences among riparian systems, we found a number of consistent effects of landscape change and grazing. Of the 87 species with at least 15 detections on two or more rivers, 44 species were less common in grazed sites, in heavily settled or agricultural landscapes, or in areas with little deciduous riparian habitat. The Veery (Catharus fuscescens), Song Sparrow (Melospiza melodia), Red-naped Sapsucker (Sphyrapicus nuchalis), Fox Sparrow (Passerella iliaca), and American Redstart (Setophaga ruticilla) were all less common under at least three of these conditions. In contrast, 33 species were significantly more common in one or more of these conditions. Sites surrounded by greater deciduous habitat had higher overall avian abundance and 22 species had significantly higher individual abundances in areas with more deciduous habitat. Yet, areas with more agriculture at the regional scale also had higher total avian abundance, due in large part to greater abundance of European Starling (Sturnus vulgaris), American Robin

  20. Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part II. Water temperature and chemistry

    SciTech Connect

    Klauk, R.H.; Davis, D.A.

    1984-12-01

    Geothermal reconnaissance techniques have identified five areas in Utah County warranting further investigation for low-temperature geothermal resources. One area in northern Utah Valley is along Utah Lake fault zone and includes Saratoga Hot Springs. Water temperatures within this area range from 21 to 43/sup 0/C. Common ion analyses as well as B and Li concentrations indicate waters sampled in this area are anomalous when compared to other samples from the same aquifer. Two other areas in southern Utah Valley also coincide with the Utah Lake fault zone. Common ion analyses, trace element concentrations, and C1/HCO/sub 3/ ratios distinguish these areas from all other waters in this valley. Temperatures within these southern areas range from 21 to 32/sup 0/C. All three thermal areas are possibly the result of deep circulation of meteoric water being warmed and subsequently migrating upward within the Utah Lake fault zone. The Castilla Hot Springs area has been expanded by this study to include a spring located 3 mi further up Spanish Fork Canyon near the Thistle earthflow. A temperature of 50/sup 0/C was recorded for this spring and chemistry is similar to Castilla. In Goshen Valley, the fifth geothermal area identified, measured temperatures range from 20 to 27/sup 0/C for some wells and springs. Chemical analyses, however, do not discern the location of low-temperature geothermal reservoirs. 18 refs., 7 figs., 5 tabs.

  1. Indicators: Lakeshore Habitat/Riparian Vegetative Cover

    EPA Pesticide Factsheets

    Riparian and lakeshore vegetative cover consist of the vegetation corridor alongside streams, rivers, and lakes. Vegetative cover refers to overhanging or submerged tree limbs, shrubs, and other plants growing along the shore of the waterbody.

  2. Structure and composition of altered riparian forests in an agricultural Amazonian landscape.

    PubMed

    Nagy, R Chelsea; Porder, Stephen; Neill, Christopher; Brando, Paulo; Quintino, Raimundo Mota; do Nascimento, Sebastiâo Aviz

    2015-09-01

    Deforestation and fragmentation influence the microclimate, vegetation structure, and composition of remaining patches of tropical forest. In the southern Amazon, at the frontier of cropland expansion, forests are converted and fragmented in a pattern that leaves standing riparian forests whose dimensions are mandated by the Brazilian National Forest Code. These altered riparian forests share many characteristics of well-studied upland forest fragments, but differ because they remain connected to larger areas of forest downstream, and because they may experience wetter soil conditions because reduction of forest cover in the surrounding watershed raises groundwater levels and increases stream runoff. We compared forest regeneration, structure, composition, and diversity in four areas of intact riparian forest and four areas each of narrow, medium, and wide altered riparian forests that have been surrounded by agriculture since the early 1980s. We found that seedling abundance was reduced by as much as 64% and sapling abundance was reduced by as much as 67% in altered compared to intact riparian forests. The most pronounced differences between altered and intact forest occurred near forest edges and within the narrowest sections of altered riparian forests. Woody plant species composition differed and diversity was reduced in altered forests compared to intact riparian forests. However, despite being fragmented for several decades, large woody plant biomass and carbon storage, the number of live or dead large woody plants, mortality rates, and the size distribution of woody plants did not differ significantly between altered and intact riparian forests. Thus, even in these relatively narrow forests with high edge: area ratios, we saw no evidence of the increases in mortality and declines in biomass that have been found in other tropical forest fragment studies. However, because of the changes in both species community and reduced regeneration, it is unclear how long

  3. Urbanization and nutrient retention in freshwater riparian wetlands

    USGS Publications Warehouse

    Hogan, D.M.; Walbridge, M.R.

    2007-01-01

    Urbanization can degrade water quality and alter watershed hydrology, with profound effects on the structure and function of both riparian wetlands (RWs) and aquatic ecosystems downstream. We used freshwater RWs in Fairfax County, Virginia, USA, as a model system to examine: (1) the effects of increasing urbanization (indexed by the percentage of impervious surface cover [%ISC] in the surrounding watershed) on nitrogen (N) and phosphorus (P) concentrations in surface soils and plant tissues, soil P saturation, and soil iron (Fe) chemistry; and (2) relationships between RW soil and plant nutrient chemistries vs. the physical and biotic integrity of adjacent streams. Soil total P and NaOH-extractable P (representing P bound to aluminum [Al] and Fe hydrous oxides) varied significantly but nonlinearly with %ISC (r2 = 0.69 and 0.57, respectively); a similar pattern was found for soil P saturation but not for soil total N. Relationships were best described by second-order polynomial equations. Riparian wetlands appear to receive greater P loads in moderately (8.6-13.3% ISC) than in highly (25.1-29.1% ISC) urbanized watersheds. These observations are consistent with alterations in watershed hydrology that occur with increasing urbanization, directing water and nutrient flows away from natural RWs. Significant increases in total and crystalline soil Fe (r 2 = 0.57 and 0.53, respectively) and decreases in relative soil Fe crystallinity with increasing %ISC suggest the mobilization and deposition of terrestrial sediments in RWs, likely due to construction activities in the surrounding watershed. Increases in RW plant tissue nutrient concentrations and %ISC in the surrounding watershed were negatively correlated with standard indices of the physical and biotic integrity of adjacent streams. In combination, these data suggest that nutrient and sediment inputs associated with urbanization and storm-water management are important variables that affect wetland ecosystem services

  4. Riparian vegetation and its water use during 1995 along the Mojave River, Southern California

    USGS Publications Warehouse

    Lines, Gregory C.; Bilhorn, Thomas W.

    1996-01-01

    The extent and areal density of riparian vegetation, including both phreatophytes and hydrophytes, were mapped along the 100-mile main stem of the Mojave River during 1995. Mapping was aided by vertical false-color infrared and low-level oblique photographs. However, positive identification of plant species and plant physiological stress required field examination. The consumptive use of ground water and surface water by different areal densities of riparian plant communities along the main stem of the Mojave River was estimated using water-use data from a select group of studies in the southwestern United States. In the Alto subarea of the Mojave basin management area, consumptive water use during 1995 by riparian vegetation was estimated to be about 5,000 acre-feet upstream from the Lower Narrows and about 6,000 acre-feet downstream in the transition zone. In the Centro and Baja subareas, consumptive water use was estimated to be about 3,000 acre-feet and 2,000 acre-feet, respectively, during 1995. Consumptive water use by riparian vegetation in the Afton area, downstream from the Baja subarea, was estimated to be about 600 acre-feet during 1995. Consumptive water use by riparian vegetation during 1995 is considered representative of "normal" hydrologic conditions along the Mojave River. Barring major changes in the areal extent and density of riparian vegetation, the 1995 consumptive-use estimates should be fairly representative of riparian vegetation water use during most years. Annual consumptive use, however, could vary from the 1995 estimates as much as plus or minus 50 percent because of extreme hydrologic conditions (periods of high water table following extraordinarily large runoff in the Mojave River or periods of extended drought).

  5. Hydrogeology of the Ramapo River-Woodbury Creek valley-fill aquifer system and adjacent areas in eastern Orange County, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2015-01-01

    Valley-fill aquifers are modest resources within the area, as indicated by the common practice of completing supply wells in the underlying bedrock rather than the overlying glacial deposits. Groundwater turbidity problems curtail use of the resource. However, additional groundwater resources have been identified by test drilling, and there are remaining untested areas. New groundwater supplies that stress localized aquifer areas will alter the groundwater flow system. Considerations include potential water-quality degradation from nearby land use(s) and, where withdrawals induce infiltration of surface-water, balancing withdrawals with flow requirements for downstream users or for maintenance of stream ecological health.

  6. Germination timing and rate of locally collected western wheatgrass and smooth brome grass: the role of collection site and light sensitivity along a riparian corridor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ecological integrity of riparian areas is reduced by biological plant invaders like smooth brome grass (Bromus inermis). Smooth brome actively invades recently disturbed riparian zones by its high seed production and fast seedling establishment. Restoring native perennial grasses to these regio...

  7. The geology and petroleum potential of the North Afghan platform and adjacent areas (northern Afghanistan, with parts of southern Turkmenistan, Uzbekistan and Tajikistan)

    NASA Astrophysics Data System (ADS)

    Brookfield, Michael E.; Hashmat, Ajruddin

    2001-10-01

    The North Afghan platform has a pre-Jurassic basement unconformably overlain by a Jurassic to Paleogene oil- and gas-bearing sedimentary rock platform cover, unconformably overlain by Neogene syn- and post-orogenic continental clastics. The pre-Jurassic basement has four units: (1) An ?Ordovician to Lower Devonian passive margin succession developed on oceanic crust. (2) An Upper Devonian to Lower Carboniferous (Tournaisian) magmatic arc succession developed on the passive margin. (3) A Lower Carboniferous (?Visean) to Permian rift-passive margin succession. (4) A Triassic continental magmatic arc succession. The Mesozoic-Palaeogene cover has three units: (1) A ?Late Triassic to Middle Jurassic rift succession is dominated by variable continental clastics. Thick, coarse, lenticular coal-bearing clastics were deposited by braided and meandering streams in linear grabens, while bauxites formed on the adjacent horsts. (2) A Middle to Upper Jurassic transgressive-regressive succession consists of mixed continental and marine Bathonian to Lower Kimmeridgian clastics and carbonates overlain by regressive Upper Kimmeridgian-Tithonian evaporite-bearing clastics. (3) A Cretaceous succession consists of Lower Cretaceous red beds with evaporites, resting unconformably on Jurassic and older deposits, overlain (usually unconformably) by Cenomanian to Maastrichtian shallow marine limestones, which form a fairly uniform transgressive succession across most of Afghanistan. (4) A Palaeogene succession rests on the Upper Cretaceous limestones, with a minor break marked by bauxite in places. Thin Palaeocene to Upper Eocene limestones with gypsum are overlain by thin conglomerates, which pass up into shales with a restricted brackish-water ?Upper Oligocene-?Lower Miocene marine fauna. The Neogene succession consists of a variable thickness of coarse continental sediments derived from the rising Pamir mountains and adjacent ranges. Almost all the deformation of the North Afghan

  8. Water information bulletin No. 30: geothermal investigations in Idaho. Part 11. Geological, hydrological, geochemical and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho

    SciTech Connect

    Mitchell, J.C.

    1981-12-01

    The area under study included approximately 925 sq km (357 sq mi) of the Nampa-Caldwell portion of Canyon County, an area within the central portion of the western Snake River Plain immediately west of Boise, Idaho. Geologic mapping, hydrologic, geochemical, geophysical, including detailed gravity and aeromagnetic surveys, were run to acquire needed data. In addition, existing magnetotelluric and reflection seismic data were purchased and reinterpreted in light of newly acquired data.

  9. Patterns of Distribution of Macro-fauna in Different Types of Estuarine, Soft Sediment Habitats Adjacent to Urban and Non-urban Areas

    NASA Astrophysics Data System (ADS)

    Lindegarth, M.; Hoskin, M.

    2001-02-01

    Urban development typically creates a large number of potentially interacting disturbances that may cause impacts on assemblages of animals and plans in estuarine habitats. We tested predictions from the general model that intertidal areas exposed to different types of disturbances have different types of assemblages of benthic macrofauna. Different parts of the Port Hacking Estuary (New South Wales, Australia) are exposed to varying degrees of disturbance by human activities. We predicted that the average structure of assemblages of intertidal animals, and patterns of variability would differ between urban and non-urban areas of Port Hacking. Consistent with previous observations from the literature, there were differences in average structure between urban and non-urban sandy areas. Qualitative differences between abundances of individual taxa in urban and non-urban areas were generally not consistent with previous observations. Differences between assemblages in urban and non-urban areas were not observed in muddy sediments, nor in sediments among mangroves and seagrass. No significant differences in variability was observed between urban and non-urban areas. Two general models may be proposed to explain the observed differences in response to urbanization in different habitats: (1) animals are exposed to different levels or combinations of disturbances in different habitats; or (2) assemblages of animals differ in sensitivity to disturbances among habitats.

  10. Modeled riparian stream shading: Agreement with field measurements and sensitivity to riparian conditions

    NASA Astrophysics Data System (ADS)

    Li, Guoyuan; Jackson, C. Rhett; Kraseski, Kristin A.

    2012-03-01

    SummaryShading by riparian vegetation and streambanks reduces incident solar radiation on channels, and accurate estimation of riparian shading through the sun's daily arc is a critical aspect of water temperature and dissolved oxygen modeling. However, riparian trees exhibit complex shapes, often leaning and growing branches preferentially over channels to utilize the light resource. As a result, riparian vegetation cast complex shadows with significant variability at the scale of meters. Water quality models necessarily simplify factors affecting shading at the expense of accuracy. All models must make simplifying assumptions about tree geometry. Reach-based models must average channel azimuth and riparian conditions over each reach, and GIS models must also accept errors in the channel-riparian relationships caused by the DEM grid detail. We detail minor improvements to existing shade models and create a model (SHADE2) that calculates shading ratio (%) by riparian canopy at any time and location for given stream characteristics including stream azimuth, stream width, canopy height, canopy overhang, and height of maximum canopy overhang. Sensitivity of simulated shade to these variables is explored. We also present a new field photographic technique for quantifying shade and use this technique to provide data to test the SHADE2 algorithm. Twenty-four independent shade measurements were made in eight channels with mature hardwood riparian trees at different times of the summer and at different times of the day. Agreement between measured and modeled shade was excellent, with r2 of 0.90.

  11. Linking stream flow and groundwater to avian habitat in a desert riparian system.

    PubMed

    Merritt, David M; Bateman, Heather L

    2012-10-01

    Increasing human populations have resulted in aggressive water development in arid regions. This development typically results in altered stream flow regimes, reduced annual flow volumes, changes in fluvial disturbance regimes, changes in groundwater levels, and subsequent shifts in ecological patterns and processes. Balancing human demands for water with environmental requirements to maintain functioning ecosystems requires quantitative linkages between water in streams and ecosystem attributes. Streams in the Sonoran Desert provide important habitat for vertebrate species, including resident and migratory birds. Habitat structure, food, and nest-building materials, which are concentrated in riparian areas, are provided directly or indirectly by vegetation. We measured riparian vegetation, groundwater and surface water, habitat structure, and bird occurrence along Cherry Creek, a perennial tributary of the Salt River in central Arizona, USA. The purpose of this work was to develop an integrated model of groundwater-vegetation-habitat structure and bird occurrence by: (1) characterizing structural and provisioning attributes of riparian vegetation through developing a bird habitat index (BHI), (2) validating the utility of our BHI through relating it to measured bird community composition, (3) determining the riparian plant species that best explain the variability in BHI, (4) developing predictive models that link important riparian species to fluvial disturbance and groundwater availability along an arid-land stream, and (5) simulating the effects of changes in flow regime and groundwater levels and determining their consequences for riparian bird communities. Riparian forest and shrubland vegetation cover types were correctly classified in 83% of observations as a function of fluvial disturbance and depth to water table. Groundwater decline and decreased magnitude of fluvial disturbance caused significant shifts in riparian cover types from riparian forest to

  12. Productivity of ephemeral headwater riparian forests impacted by sedimentation in the southeastern United States coastal plain.

    PubMed

    Jolley, Rachel L; Lockaby, B Graeme; Cavalcanti, Guadalupe G

    2009-01-01

    Riparian forests serve an essential function in improving water quality through the filtering of sediments and nutrients from surface runoff. However, little is known about the impact of sediment deposition on productivity of riparian forests. Sediment inputs may act as a subsidy to forest productivity by providing additional nutrients for plant uptake or may act as a stress by creating anoxic soil conditions. This study determined how sediment deposition affected riparian forests along ephemeral headwater streams at Ft. Benning, Georgia, USA. Above- and belowground productivity, leaf-area index (LAI), and standing crop biomass for fine roots, shrubs, and trees were compared along a gradient of present sedimentation rates in 17 riparian forests. Annual litterfall production was determined from monthly collections using 0.25- m(2) traps; woody biomass was determined from annual diameter at breast height (DBH) measurements using species-specific allometric equations; fine root productivity was determined using sequential coring; LAI was measured by expanding specific leaf area by annual litterfall production; and shrub biomass was determined using species-specific biomass equations based on height and root collar diameter. Significant declines in litterfall, woody biomass production, fine root production, LAI, and shrub biomass were found with as little as 0.1 to 0.4 cm yr(-2) sedimentation. We conclude that the levels of sedimentation in this study do not subsidize growth in ephemeral headwater riparian forests but instead create a stress similar to that found under flooded conditions.

  13. Reflectivity patterns in the Variscan mountain belts and adjacent areas: an attempt for a pattern recognition and correlation to tectonic units

    NASA Astrophysics Data System (ADS)

    Meissner, R.; Wever, Th.; Sadowiak, P.; Dekorp Research Group

    1990-02-01

    The Seismic reflection profiles of DEKORP (DEutsches KOntinentales ReflexionsSeismisches Programm) in the Federal Republic of Germany to date have been limited to areas of the Variscan orogeny. Nevertheless, the character of their reflections differs considerably and may be correlated to certain Variscan and post-Variscan developments. Lower crust lamellae develop in areas of high heat flow, mostly associated with post-Variscan extensional processes; "crocodile" and nappe tectonics are best preserved in the cores and at the flanks of older massifs which were incorporated into the Variscan orogeny. So far poor reflectivity has been observed only in the area of the London-Brabant Massif which was not involved in any of the Phanerozoic orogenies.

  14. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems

    USGS Publications Warehouse

    Kraus, Johanna M.; Gibson, Polly P.; Walters, David M.; Mills, Marc A.

    2016-01-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems.However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI,USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r2> 0.78) and had similar mean ΣPCB concentrations when averaged acrossall years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa lesseffective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2016;9999:1–9. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  15. Mapping Evapotranspiration Units in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Smith, J. LaRue; Laczniak, Randell J.; Moreo, Michael T.; Welborn, Toby L.

    2007-01-01

    Accurate estimates of ground-water discharge are crucial in the development of a water budget for the Basin and Range carbonate-rock aquifer system study area. One common method used throughout the southwestern United States is to estimate ground-water discharge from evapotranspiration (ET). ET is a process by which water from the Earth's surface is transferred to the atmosphere. The volume of water lost to the atmosphere by ET can be computed as the product of the ET rate and the acreage of vegetation, open water, and moist soil through which ET occurs. The procedure used in the study groups areas of similar vegetation, water, and soil conditions into different ET units, assigns an average annual ET rate to each unit, and computes annual ET from each ET unit within the outer extent of potential areas of ground-water discharge. Data sets and the procedures used to delineate the ET-unit map used to estimate ground-water discharge from the study area and a qualitative assessment of the accuracy of the map are described in this report.

  16. Digital geologic map data for the Ozark National Scenic Riverways and adjacent areas along the Current River and Jacks Fork, Missouri

    USGS Publications Warehouse

    Weary, David J.; Orndorff, Randall C.; Harrison, Richard W.; Weems, Robert E.

    2016-09-23

    The geology of the Ozark National Scenic Riverways (ONSR) in southern Missouri has been mapped at 1:24,000 scale. This endeavor was achieved through the combined efforts of U.S. Geological Survey and Missouri Geological Survey individual quadrangle mapping and additional fieldwork by the authors of this report. Geologic data covering the area of the ONSR and a 1-mile (1.6-kilometer) buffer zone surrounding the park, as well as geologic data from a few key adjoining areas, have been compiled into a single, seamless geographic information system database. The intent is to provide base geologic information for natural science research and land management in the park and surrounding areas. The data are served online at ScienceBase (https://www.sciencebase.gov/catalog/), where they are provided in Environmental Systems Research Institute (ESRI) file geodatabase format, and are accompanied by metadata files. These data can be accessed at: http://dx.doi.org/10.5066/F7CJ8BKB. Additional detailed geologic information about the ONSR and surrounding areas is available in the separate 1:24,000-scale quadrangle maps and in a 1:100,000-scale map and report on the regional geology.

  17. Little Rock and El Dorado 1/sup 0/ x 2/sup 0/ NTMS quadrangles and adjacent areas, Arkansas: data report (abbreviated)

    SciTech Connect

    Steel, K.F.; Cook, J.R.

    1981-07-01

    This abbreviated data report presents results of ground water and stream sediment reconnaissance in the National Topographic Map Series Little Rock 1/sup 0/ x 2/sup 0/ quadrangle (Cleveland, Dallas, and Howard Counties do not have stream sediment analyses); the El Dorado 1/sup 0/ x 2/sup 0/ quadrangle (only Clark County has stream sediment analyses); the western part (Lonoke and Jefferson Counties) of Helena 1/sup 0/ x 2/sup 0/ quadrangle; the southern part (Franklin, Logan, Yell, Perry, Faulkner, and Lonoke Counties) of Russellville 1/sup 0/ x 2/sup 0/ quadrangle; and the southwestern corner (Ashley County) of the Greenwood 1/sup 0/ x 2/sup 0/ quadrangle. Stream samples were collected at 943 sites in the Little Rock quadrangle, 806 sites in the El Dorado quadrangle, 121 sites in the Helena area, 292 sites in the Russellville area, and 77 in the Greenwood area. Ground water samples were collected at 1211 sites in the Little Rock quadrangle, 1369 sites in the El Dorado quadrangle, 186 sites in the Helena area, 470 sites in the Russellville area, and 138 sites in the Greenwood area. Stream sediment and stream water samples were collected from small streams at nominal density of one site per 21 square kilometers in rural areas. Ground water samples were collected at a nominal density of one site per 13 square kilometers. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 8 other elements in ground water. Field measurements and observations are reported for each site. Uranium concentrations in the sediments ranged from less than 0.1 ppM to 23.5 ppM with a mean of 1.7 ppM. The ground water uranium mean concentration is 0.113 ppB, and the uranium concentrations range from less than 0.002 ppB to 15.875 ppB. High ground water uranium values in the Ouachita Mountain region of the Little Rock quadrangle appear to be associated with Ordovician black shale units.

  18. Geologic map of the Bartlett Springs Fault Zone in the vicinity of Lake Pillsbury and adjacent areas of Mendocino, Lake, and Glenn Counties, California

    USGS Publications Warehouse

    Ohlin, Henry N.; McLaughlin, Robert J.; Moring, Barry C.; Sawyer, Thomas L.

    2010-01-01

    The Lake Pillsbury area lies in the eastern part of the northern California Coast Ranges, along the east side of the transform boundary between the Pacific and North American plates (fig. 1). The Bartlett Springs Fault Zone is a northwest-trending zone of faulting associated with this eastern part of the transform boundary. It is presently active, based on surface creep (Svarc and others, 2008), geomorphic expression, offset of Holocene units (Lienkaemper and Brown, 2009), and microseismicity (Bolt and Oakeshott, 1982; Dehlinger and Bolt, 1984; DePolo and Ohlin, 1984). Faults associated with the Bartlett Springs Fault Zone at Lake Pillsbury are steeply dipping and offset older low to steeply dipping faults separating folded and imbricated Mesozoic terranes of the Franciscan Complex and interleaved rocks of the Coast Range Ophiolite and Great Valley Sequence. Parts of this area were mapped in the late 1970s and 1980s by several investigators who were focused on structural relations in the Franciscan Complex (Lehman, 1978; Jordan, 1975; Layman, 1977; Etter, 1979). In the 1980s the U.S. Geological Survey (USGS) mapped a large part of the area as part of a mineral resource appraisal of two U.S. Forest Service Roadless areas. For evaluating mineral resource potential, the USGS mapping was published at a scale of 1:62,500 as a generalized geologic summary map without a topographic base (Ohlin and others, 1983; Ohlin and Spear, 1984). The previously unpublished mapping with topographic base is presented here at a scale of 1:30,000, compiled with other mapping in the vicinity of Lake Pillsbury. The mapping provides a geologic framework for ongoing investigations to evaluate potential earthquake hazards and structure of the Bartlett Springs Fault Zone. This geologic map includes part of Mendocino National Forest (the Elk Creek Roadless Area) in Mendocino, Glenn, and Lake Counties and is traversed by several U.S. Forest Service Routes, including M1 and M6 (fig. 2). The study

  19. Estimation of groundwater use for a groundwater-flow model of the Lake Michigan Basin and adjacent areas, 1864-2005

    USGS Publications Warehouse

    Buchwald, Cheryl A.; Luukkonen, Carol L.; Rachol, Cynthia M.

    2010-01-01

    The U.S. Geological Survey, at the request of Congress, is assessing the availability and use of the Nation's water resources to help characterize how much water is available now, how water availability is changing, and how much water can be expected to be available in the future. The Great Lakes Basin Pilot project of the U.S. Geological Survey national assessment of water availability and use focused on the Great Lakes Basin and included detailed studies of the processes governing water availability in the Great Lakes Basin. One of these studies included the development of a groundwater-flow model of the Lake Michigan Basin. This report describes the compilation and estimation of the groundwater withdrawals in those areas in Wisconsin, Michigan, Indiana, and Illinois that were needed for the Lake Michigan Basin study groundwater-flow model. These data were aggregated for 12 model time intervals spanning 1864 to 2005 and were summarized by model area, model subregion, category of water use, aquifer system, aquifer type, and hydrogeologic unit model layer. The types and availability of information on groundwater withdrawals vary considerably among states because water-use programs often differ in the types of data collected and in the methods and frequency of data collection. As a consequence, the methods used to estimate and verify the data also vary. Additionally, because of the different sources of data and different terminologies applied for the purposes of this report, the water-use data published in this report may differ from water-use data presented in other reports. These data represent only a partial estimate of groundwater use in each state because estimates were compiled only for areas in Wisconsin, Michigan, Indiana, and Illinois within the Lake Michigan Basin model area. Groundwater-withdrawal data were compiled for both nearfield and farfield model areas in Wisconsin and Illinois, whereas these data were compiled primarily for the nearfield model

  20. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    Water-level altitude contours and groundwater ages indicate the potential for a long flow path from southwest to northeast between northern Spring and Deep Creek Valleys through Tippett Valley. Although information gathered during this study is insufficient to conclude whether or not groundwater travels along this interbasin flow path, dissolved sulfate and chloride data indicate that a small fraction of the lower altitude, northern Deep Creek Valley discharge may be sourced from these areas. Despite the uncertainty due to limited data collection points, a hydraulic connection between northern Spring Valley, Tippett Valley, and Deep Creek Valley appears likely, and potential regional effects resulting from future groundwater withdrawals in northern Spring Valley warrant ongoing monitoring of groundwater levels across this area.

  1. Representational overlap of adjacent fingers in multiple areas of human primary somatosensory cortex depends on electrical stimulus intensity: an fMRI study.

    PubMed

    Krause, T; Kurth, R; Ruben, J; Schwiemann, J; Villringer, K; Deuchert, M; Moosmann, M; Brandt, S; Wolf, K; Curio, G; Villringer, A

    2001-04-27

    Functional magnetic resonance imaging (fMRI) was used to examine the influence of non-painful electrical stimulus intensity on the BOLD response in human primary somatosensory cortex (SI). In ten healthy subjects, index and middle finger of the right hand were stimulated separately at two different stimulus intensities. The activated volume of single finger representations as well as the volume of representational overlap of the two activations increased following an increase in stimulus intensity. This effect was seen in two different subdivisions of SI, one in the depth of the central sulcus, presumably corresponding to Brodmann area (BA) 3b, and one on the crown of the postcentral gyrus, presumably corresponding to BA 1/2. Relative overlap (ratio of overlap volume to volume of individual finger representation) was larger in BA 1/2 than in BA 3b. Additionally, in both areas relative overlap increased significantly from low to high stimulus intensity. Relative overlap did not change when different correlation thresholds were employed arguing against an unspecific 'spillover effect'. Analysis of signal intensity time courses indicated that the response difference to high versus low stimulus strength was not present during the initial seconds of stimulation, during which both led to a similar signal intensity increase. Only during the following maintenance level of the response did the response to high stimulus intensity reach a significantly higher plateau level than the one due to low intensity stimulation, an effect which was present in both areas, BA 3b and BA 1/2, respectively.

  2. Seasonal estimates of riparian evapotranspiration using remote and in situ measurements

    USGS Publications Warehouse

    Goodrich, D.C.; Scott, R.; Qi, J.; Goff, B.; Unkrich, C.L.; Moran, M.S.; Williams, D.; Schaeffer, S.; Snyder, K.; MacNish, R.; Maddock, T.; Pool, D.; Chehbouni, A.; Cooper, D.I.; Eichinger, W.E.; Shuttleworth, W.J.; Kerr, Y.; Marsett, R.; Ni, W.

    2000-01-01

    In many semi-arid basins during extended periods when surface snowmelt or storm runoff is absent, groundwater constitutes the primary water source for human habitation, agriculture and riparian ecosystems. Utilizing regional groundwater models in the management of these water resources requires accurate estimates of basin boundary conditions. A critical groundwater boundary condition that is closely coupled to atmospheric processes and is typically known with little certainty is seasonal riparian evapotranspiration ET). This quantity can often be a significant factor in the basin water balance in semi-arid regions yet is very difficult to estimate over a large area. Better understanding and quantification of seasonal, large-area riparian ET is a primary objective of the Semi-Arid Land-Surface-Atmosphere (SALSA) Program. To address this objective, a series of interdisciplinary experimental Campaigns were conducted in 1997 in the San Pedro Basin in southeastern Arizona. The riparian system in this basin is primarily made up of three vegetation communities: mesquite (Prosopis velutina), sacaton grasses (Sporobolus wrightii), and a cottonwood (Populus fremontii)/willow (Salix goodingii) forest gallery. Micrometeorological measurement techniques were used to estimate ET from the mesquite and grasses. These techniques could not be utilized to estimate fluxes from the cottonwood/willow (C/W) forest gallery due to the height (20-30 m) and non-uniform linear nature of the forest gallery. Short-term (2-4 days) sap flux measurements were made to estimate canopy transpiration over several periods of the riparian growing season. Simultaneous remote sensing measurements were used to spatially extrapolate tree and stand measurements. Scaled C/W stand level sap flux estimates were utilized to calibrate a Penman-Monteith model to enable temporal extrapolation between Synoptic measurement periods. With this model and set of measurements, seasonal riparian vegetation water use

  3. Improving riparian wetland conditions through evaluation of infiltration and drainage behavior during and after a controlled flood event

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Fisher, A. T.; Roche, J. W.

    2009-12-01

    We are conducting an observational and modeling study of a riparian wetland system adjacent to the Tuolumne River, downstream of the Hetch Hetchy Reservoir in Yosemite National Park. The study area is located along the bottom of Poopenaut Valley, a 25 hectare region that contains a diverse mixture of soil, vegetation, and wetland types. The Hetch Hetchy reservoir is part of a water supply system for 2.4 million residents in the San Francisco Bay area. Spring and summer releases of excess water from the reservoir can benefit riparian wetlands within the Poopenaut Valley, but little is known about how shallow wetland soils in the valley respond to rapid inundation and exposure associated with a controlled flood hydrograph. Instruments were deployed within wetlands, along and adjacent to a 300-m stretch of the Tuolumne River in the Poopenaut Valley, to assess soil and shallow wetland response to a controlled flood in Spring 2009. Instruments included stream stage recorders, shallow piezometers, water content sensors, and vertical thermal probe arrays used to assess streambed seepage. Instruments were arranged in vertical clusters along profiles oriented perpendicular and parallel to the river channel. The controlled flood lasted for about four weeks, and increased channel discharge from about 4 cms to a peak near 225 cms, with typical flood discharge of 30 cms. Water content sensors show the influence of soil inundation and penetration of a wetting front within the upper 1 m of soil. Piezometers show a water table response to shallow ground water recharge. Thermal probes show river water seeping into the streambed at the upstream end of the instrumented stretch, and returning to the channel at the downstream end of the stretch, prior to the flood. During the flood event, stream seepage was downward at both locations. We are completing soil grain size analyses in preparation for numerical modeling of unsaturated-saturated conditions to assess controls on the

  4. Statistical evaluation of effects of riparian buffers on nitrate and ground water quality

    USGS Publications Warehouse

    Spruill, T.B.

    2000-01-01

    A study was conducted to statistically evaluate the effectiveness of riparian buffers for decreasing nitrate concentrations in ground water and for affecting other chemical constituents. Values for pH, specific conductance, alkalinity, dissolved organic carbon (DOC), silica, ammonium, phosphorus, iron, and manganese at 28 sites in the Contentnea Creek Basin were significantly higher (p 20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dssolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (20 yr) discharging ground water draining areas with riparian buffers compared with areas without riparian buffers. No differences in chloride, nitrate nitrogen, calcium, sodium, and dissolved oxygen concentrations in old ground water between buffer and nonbuffer areas were detected. Comparison of samples of young (<20 yr) discharging ground water samples from buffer and nonbuffer areas indicated significantly higher specific conductance, calcium, chloride, and nitrate nitrogen in nonbuffer areas. Riparian buffers along streams can affect the composition of the hyporheic zone by providing a source of organic carbon to the streambed, which creates reducing geochemical conditions that consequently can affect the chemical quality of old ground water discharging through it. Buffer zones between agricultural fields and streams facilitate dilution of conservative chemical constituents in young ground water that originate from fertilizer applications and also allow denitrification in ground water by providing an adequate source of organic carbon generated by vegetation in the buffer zone. Based on the median chloride and nitrate values for young ground water in the Contentnea Creek Basin, nitrate was 95% lower in buffer areas compared with nonbuffer areas, with a 30 to 35% reduction

  5. MULTISTAGE CHARACTERIZATION OF RIPARIAN PATCHES IN THE ARID SOUTHWEST

    EPA Science Inventory

    Some ecologically critical riparian ecosystems in the and Southwest are spatially and temporally discontinuous making their location and/or condition difficult to distinguish when studying the desert landscape. When conditions permit, riparian patches in the desert are distinct b...

  6. ASSESSING ARID RIPARIAN LANDSCAPES USING REMOTE SENSING: THE FIRST STEP

    EPA Science Inventory

    Riparian ecosystems are of great value in the Southwest yet they are also extremely fragile and susceptible to natural and anthropogenic disturbances. Riparian ecosystems establish in patterns per the hydrologic and geomorphologic processes that dictate terrestrial plant success...

  7. VEGETATION CHARACTERIZATION OF THREE CONTRASTING RIPARIAN SITES, WILLAMETTE VALLEY, OR

    EPA Science Inventory

    Much of the native riparian vegetation of the Willamette Valley, Oregon, has been replaced with agricultural crops or invasive non-native plant species. Detailed information about current Willamette Valley riparian vegetation is generally lacking. Plant species composition data...

  8. RIPARIAN RESTORATION: CURRENT STATUS AND THE REACH TO THE FUTURE

    EPA Science Inventory

    Nine articles in the special issure of Restoration Ecology addressing the subject of site selection for riparian restoration activities were critically examined for this review. The approaches described make significant and original contributions to the field of riparian restorat...

  9. Irrigated Acreage Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welborn, Toby L.; Moreo, Michael T.

    2007-01-01

    Accurate delineations of irrigated acreage are needed for the development of water-use estimates and in determining water-budget calculations for the Basin and Range carbonate-rock aquifer system (BARCAS) study. Irrigated acreage is estimated routinely for only a few basins in the study area. Satellite imagery from the Landsat Thematic Mapper and Enhanced Thematic Mapper platforms were used to delineate irrigated acreage on a field-by-field basis for the entire study area. Six hundred and forty-three fields were delineated. The water source, irrigation system, crop type, and field activity for 2005 were identified and verified through field reconnaissance. These data were integrated in a geodatabase and analyzed to develop estimates of irrigated acreage for the 2000, 2002, and 2005 growing seasons by hydrographic area and subbasin. Estimated average annual potential evapotranspiration and average annual precipitation also were estimated for each field.The geodatabase was analyzed to determine the spatial distribution of field locations, the total amount of irrigated acreage by potential irrigation water source, by irrigation system, and by crop type. Irrigated acreage in 2005 totaled nearly 32,000 acres ranging from less than 200 acres in Butte, Cave, Jakes, Long, and Tippett Valleys to 9,300 acres in Snake Valley. Irrigated acreage increased about 20 percent between 2000 and 2005 and increased the most in Snake and White River Valleys. Ground-water supplies as much as 80 percent of irrigation water during dry years. Almost 90 percent of the irrigated acreage was planted with alfalfa.

  10. 3D crustal seismic velocity model for the Gulf of Cadiz and adjacent areas (SW Iberia margin) based on seismic reflection and refraction profiles

    NASA Astrophysics Data System (ADS)

    Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa

    2016-04-01

    The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative

  11. Reforestation sites show similar and nested AMF communities to an adjacent pristine forest in a tropical mountain area of South Ecuador.

    PubMed

    Haug, Ingeborg; Setaro, Sabrina; Suárez, Juan Pablo

    2013-01-01

    Arbuscular mycorrhizae are important for growth and survival of tropical trees. We studied the community of arbuscular mycorrhizal fungi in a tropical mountain rain forest and in neighbouring reforestation plots in the area of Reserva Biológica San Francisco (South Ecuador). The arbuscular mycorrhizal fungi were analysed with molecular methods sequencing part of the 18 S rDNA. The sequences were classified as Operational Taxonomic Units (OTUs). We found high fungal species richness with OTUs belonging to Glomerales, Diversisporales and Archaeosporales. Despite intensive sampling, the rarefaction curves are still unsaturated for the pristine forest and the reforestation plots. The communities consisted of few frequent and many rare species. No specific interactions are recognizable. The plant individuals are associated with one to ten arbuscular mycorrhizal fungi and mostly with one to four. The fungal compositions associated with single plant individuals show a great variability and variety within one plant species. Planted and naturally occurring plants show high similarities in their fungal communities. Pristine forest and reforestation plots showed similar richness, similar diversity and a significantly nested structure of plant-AMF community. The results indicate that small-scale fragmentation presently found in this area has not destroyed the natural AMF community, at least yet. Thus, the regeneration potential of natural forest vegetation at the tested sites is not inhibited by a lack of appropriate mycobionts.

  12. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    USGS Publications Warehouse

    Paxton, E.H.; Theimer, T.C.; Sogge, M.K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a wellstudied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment. ?? The Cooper Ornithological Society 2011.

  13. Tamarisk biocontrol using tamarisk beetles: Potential consequences for riparian birds in the southwestern United States

    USGS Publications Warehouse

    Paxton, Eben H.; Theimer, Tad C.; Sogge, Mark K.

    2011-01-01

    The tamarisk beetle (Diorhabda spp.), a non-native biocontrol agent, has been introduced to eradicate tamarisk (Tamarix spp.), a genus of non-native tree that has become a dominant component of riparian woodlands in the southwestern United States. Tamarisk beetles have the potential to spread widely and defoliate large expanses of tamarisk habitat, but the effects of such a widespread loss of riparian vegetation on birds remains unknown. We reviewed literature on the effects of other defoliating insects on birds to investigate the potential for tamarisk beetles to affect birds positively or negatively by changing food abundance and vegetation structure. We then combined data on the temporal patterns of tamarisk defoliation by beetles with nest productivity of a well-studied riparian obligate, the Southwestern Willow Flycatcher (Empidonax traillii extimus), to simulate the potential demographic consequences of beetle defoliation on breeding riparian birds in both the short and long term. Our results highlight that the effects of tamarisk biocontrol on birds will likely vary by species and population, depending upon its sensitivity to seasonal defoliation by beetles and net loss of riparian habitat due to tamarisk mortality. Species with restricted distributions that include areas dominated by tamarisk may be negatively affected both in the short and long term. The rate of regeneration and/or restoration of native cottonwoods (Populus spp.) and willows (Salix spp.) relative to the rate of tamarisk loss will be critical in determining the long-term effect of this large-scale ecological experiment.

  14. RIPGIS-NET: a GIS tool for riparian groundwater evapotranspiration in MODFLOW.

    PubMed

    Ajami, Hoori; Maddock, Thomas; Meixner, Thomas; Hogan, James F; Guertin, D Phillip

    2012-01-01

    RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results.

  15. Body condition of the deep water demersal resources at two adjacent oligotrophic areas of the western Mediterranean and the influence of the environmental features

    NASA Astrophysics Data System (ADS)

    Rueda, L.; Moranta, J.; Abelló, P.; Balbín, R.; Barberá, C.; Fernández de Puelles, M. L.; Olivar, M. P.; Ordines, F.; Ramón, M.; Torres, A. P.; Valls, M.; Massutí, E.

    2014-10-01

    Body condition indices not only are often used as reliable indicators of the nutritional status of individuals but also can they be utilized to provide insights regarding food availability and habitat quality. The aim of this study was to evaluate the connection between the body condition of the demersal species and the environmental features in the water column (i.e. the hydrographic conditions and the potential trophic resources) in two proximate areas, the north and south regions of the Balearic Islands (western Mediterranean), viz., the Balearic sub-basin (BsB) and the Algerian sub-basin (AsB), respectively, with different geomorphological and hydrodynamic features. Body condition indices were calculated for individuals of 21 demersal species including 11 teleosts, 4 elasmobranchs, 3 cephalopods and 3 crustaceans, which represented > 70-77% of the deep water resources, captured by bottom trawling. The morphometric indices, viz., Relative Condition Index (Kn) and Standardised Residuals (SR) from the length-weight relationship, were used. The results for each one of the 21 species indicated a significantly better condition in terms of Kn and SR in the BsB, for 7 and 9 species, respectively. In addition, a general model, including the 21 species together, showed better body condition in the BsB, and during the summer. The spatial and temporal differences in the body condition are discussed in the context of the environmental variables characterising both the study areas, which showed significant variations, for some of the hydrographic features (chlorophyll a, dissolved oxygen, salinity, potential density and temperature), as well as for some of the potential trophic resources (mesopelagic and epibenthic fauna). These findings suggest an environmental effect on the body condition of the deep-water resources in the Balearic Islands, one of the most oligotrophic areas of the western Mediterranean, and reveal more suitable environmental conditions for these species

  16. Hydrogeochemistry of Groundwater as Part of the Greenland Analogue Project in an Area of Continuous Permafrost Adjacent to the Greenland Ice Sheet, Kangerlussuaq, West Greenland

    NASA Astrophysics Data System (ADS)

    Henkemans, E.; Frape, S.; Ruskeeniemi, T.; Claesson-Liljedahl, L.; Lehtinen, A.; Annable, W. K.

    2011-12-01

    Studying groundwater in areas of continuous permafrost is often limited to studies of springs and open pingos (eg. Pollard et al. 1999 and Allen et al. 1976). Boreholes in such locations are expensive, risky and logistically challenging (eg. Stotler et al. 2011) resulting in a limited understanding of the interaction between continental scale ice sheets and groundwater. Continental ice sheet models are often coupled to groundwater flow systems; however, there is a lack of modern field data with which to compare the results of models and their treatment of groundwater flow systems under the influence of glaciation. The Greenland Analogue Project (GAP) aims to eliminate some of the uncertainties in modeling ice sheets by using the Greenland ice sheet as a modern analogue for past glaciations. Since 2009, 3 boreholes have been drilled, 2 of which contain sampling systems. DH-GAP01 is a 191 m deep borehole drilled at an angle into a talik and has been sampled and studied since 2009. DH-GAP04 is a 632 m deep, angled borehole that intersects the groundwater flow system directly beneath Isunguata Sermia and is producing preliminary groundwater samples. Additional information on groundwater in the Kangerlussuaq area comes from a spring located directly in front of the Leverett ice lobe. Geochemical and isotopic (δ18O, δ2H, δ37Cl, 87Sr/86Sr, and δ34S and δ18O of SO4) tools are used to interpret geochemical processes acting on groundwaters and provide insight into groundwater flow. Analyses of δ18O and δ2H in groundwaters from DH-GAP01 show the borehole waters fall along the Global Meteoric Water Line (GMWL). Evaporation is an important process affecting the δ18O-δ2H of surface waters in the region causing lakes to plot along a local evaporation line (Leng and Anderson, 2003). The waters from the Leverett spring plot to the right of the GMWL as possibly a mixture of groundwater and surface evaporated fluids. However, both the waters from DH-GAP01 and the Leverett

  17. Simulation of ground-water flow and the movement of saline water in the Hueco Bolson aquifer, El Paso, Texas, and adjacent areas

    USGS Publications Warehouse

    Groschen, George E.

    1994-01-01

    Results of the projected withdrawal simulations from 1984-2000 indicate that the general historical trend of saline-water movement probably will continue. The saline water in the Rio Grande alluvium is the major source of saline-water intrusion into the freshwater zone throughout the historical period and into the future on the basis of simulation results. Some saline water probably will continue to move downward from the Rio Grande alluvium to the freshwater below. Injection of treated sewage effluent into some wells will create a small zone of freshwater containing slightly increased amounts of dissolved solids in the northern area of the Texas part of the Hueco bolson aquifer. Many factors, such as well interference, pumping schedules, and other factors not specifically represented in the regional simulation, can substantially affect dissolved-solids concentrations at individual wells.

  18. Stratigraphic cross section of measured sections and drill holes of the Neslan Formation and adjacent formations, Book Cliffs Area, Colorado and Utah

    USGS Publications Warehouse

    Kirshbaum, Mark A.; Spear, Brianne D.

    2012-01-01

    This study updates a stratigraphic cross section published as plate 2 in Kirschbaum and Hettinger (2004) Digital Data Series 69-G (http://pubs.usgs.gov/dds/dds-069/dds-069-g/). The datum is a marine/tidal ravinement surface within the Cozzette Sandstone Member of the Iles Formation and the Thompson Canyon Sandstone and Sulphur Canyon Sandstone Beds of the Neslen Formation. One of the cores shown was included on the original cross section, and new core descriptions have been added to the upper part of the cored interval. A new core description (S178) is included in this report. Cores are stored in the U.S. Geological Survey Core Research Facility at the Denver Federal Center, Colorado. The following information has also been added to help define the stratigraphic framework: 1) At least five claystones interpreted as altered volcanic ashes have been identified and may give future workers a correlation tool within the largely continental section. 2) Thickness and general geometry of the Sego Sandstone, Buck Tongue of the Mancos Shale, and Castlegate Sandstone have been added to provide additional stratigraphic context. 3) The geometry in the Sego Sandstone, Buck Tongue of the Mancos Shale, and Castlegate Sandstone has been added to provide additional stratigraphic context. 4) Ammonite collections are from Gill and Hail. The zone of Didymoceras nebrascense projected into the East Salt Wash area is based on correlation of the flooding surface at the base of the Cozzette Member to this point as shown in Kirschbaum and Hettinger. 5) A leaf locality of the Denver Museum of Nature and Science is shown in its approximate stratigraphic position near Thompson Canyon. 6) A dinosaur locality of the Natural History Museum of Utah is shown in the Horse Canyon area measured section at the stratigraphic position where it was extracted.

  19. Stratigraphic contrasts and tectonic relationships between Carboniferous successions in the Trans-Alaska Crustal Transect corridor and adjacent areas, northern Alaska

    USGS Publications Warehouse

    Dumoulin, J.A.; Watts, K.F.; Harris, A.G.

    1997-01-01

    The Carboniferous succession along the Trans-Alaska Crustal Transect (TACT) corridor in the Atigun Gorge area of the central Brooks Range consists of the Kayak Shale (Kinderhookian) and the Lisburne Group (Kinderhookian through Chesterian). The Kayak Shale is at least 210 m thick; it is chiefly black, noncalcareous shale with several limestone beds of pelmatozoan-bryozoan packstone and formed in an open-marine setting. The Lisburne Group is a carbonate rock succession about 650 m thick and consists mainly of skeletal packstone, wackestone, and mudstone which contain locally abundant calcispheres, ostracodes, algae, and sponge spicules; it accumulated largely in a shallow water platform environment with restricted circulation. This restriction was probably produced by a coeval belt of skeletal sand shoals recognized 70 km to the west in the Shainin Lake area. Significant and apparently abrupt shifts in the age and lithofacies of Carboniferous strata occur across the central and eastern Brooks Range. These shifts are most marked in a zone roughly coincident with what is interpreted by many workers to be the leading edge of the Endicott Mountains allochthon. Notable lithologic contrasts are also observed, however, between sections in the northern and southern parts of the Endicott Mountains allochthon. This suggests that considerable tectonic shortening has taken place within the allochthon, as well as between it and parautochthonous rocks to the northeast. The Carboniferous section near Mount Doonerak is more similar in age and lithofacies to coeval sections in the central Brooks Range that are considered allochthonous than to parautochthonous sections to the northeast. Copyright 1997 by the American Geophysical Union.

  20. Stratigraphic contrasts and tectonic relationships between Carboniferous successions in the Trans-Alaska Crustal Transect corridor and adjacent areas, northern Alaska

    NASA Astrophysics Data System (ADS)

    Dumoulin, Julie A.; Watts, Keith F.; Harris, Anita G.

    1997-01-01

    The Carboniferous succession along the Trans-Alaska Crustal Transect (TACT) corridor in the Atigun Gorge area of the central Brooks Range consists of the Kayak Shale (Kinderhookian) and the Lisburne Group (Kinderhookian through Chesterian). The Kayak Shale is at least 210 m thick; it is chiefly black, noncalcareous shale with several limestone beds of pelmatozoan-bryozoan packstone and formed in an open-marine setting. The Lisburne Group is a carbonate rock succession about 650 m thick and consists mainly of skeletal packstone, wackestone, and milestone which contain locally abundant calcispheres, ostracodes, algae, and sponge spicules; it accumulated largely in a shallow water platform environment with restricted circulation. This restriction was probably produced by a coeval belt of skeletal sand shoals recognized 70 km to the west in the Shainin Lake area. Significant and apparently abrupt shifts in the age and lithofacies of Carboniferous strata occur across the central and eastern Brooks Range. These shifts are most marked in a zone roughly coincident with what is interpreted by many workers to be the leading edge of the Endicott Mountains allochthon. Notable lithologie contrasts are also observed, however, between sections in the northern and southern parts of the Endicott Mountains allochthon. This suggests that considerable tectonic shortening has taken place within the allochthon, as well as between it and parautochthonous rocks to the northeast. The Carboniferous section near Mount Doonerak is more similar in age and lithofacies to coeval sections in the central Brooks Range that are considered allochthonous than to parautochthonous sections to the northeast.

  1. Modelling hydropeaking effects on the riparian aquifer

    NASA Astrophysics Data System (ADS)

    Siviglia, Annunziato; Zanol, Marco; Bellin, Alberto; Stecca, Guglielmo; Zolezzi, Guido

    2010-05-01

    Hydropower operations result in sharp water level and temperature fluctuations downstream the river section where water is released intermittently according to the pattern of hydropower generation. It has been widely recognized that these peaking flows cause severe degradation of the affected river reaches, but their biological effects and hydraulic behaviour have been studied mainly referring to the main channel. Field evidence (Sawyer et al., 2009, Loheide & Lundqvist, 2009) demonstrate that surface water level oscillations are associated with significant mass exchanges between the stream and its riparian aquifer that may have relevant, still largely unexplored, biogeochemical implications. The purpose of this study is to develop a simplified modelling approach to predict the effects of hydropeaking on subsurface flow into the riparian region. We propose a simplified model for surface - subsurface flow exchange where instream hydropeaking is assigned as boundary condition and that solves the unsteady, dimensionless 1D Boussinesq equations for the saturated zone of the riparian aquifer. This allows to quantify the lateral extent of the riparian region affected by hydropeaking oscillations. In particular, with this model we analyzed the temporal variations in the daily mass and thermal exchanges between the channel and the riparian aquifer, and identified the controlling factors. The role of longitudinal variations in channel morphology as well as of seasonal aquifer variations and land cover can also be examined through the proposed modelling framework. Sawyer, A.H., Cardenas, M.B., Bomar, A., and Mackey, M. 2009. Impact of dam operations on hyporheic exchange in the riparian zone of a regulated river. Hydrol. Process, DOI: 10.1002/hyp.7324 Loheide, S. P., II, and J. D. Lundquist (2009), Snowmelt-induced diel fluxes through the hyporheic zone, Water Resour. Res., 45, W07404, doi:10.1029/2008WR007329.

  2. A TECHNIQUE FOR ESTIMATING ROOT PRODUCTION IN RIPARIAN SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Below-ground plant biomass plays a critical role in the maintenance of riparian ecosystems. Despite this importance, below-ground dynamics of riparian plant species are not commonly investigated, in part due to difficulties of sampling in a below-ground riparian environment. We investigated the fi...

  3. The role of near-stream riparian zones in the hydrology of steep upland catchments

    USGS Publications Warehouse

    McDonnell, Jeffery J.; McGlynn, B.L.; Kendall, K.; Shanley, J.; Kendall, C.

    1998-01-01

    Surface and subsurface waters were monitored and sampled at various topographic positions in a 40.5-ha headwater catchment to test several hypotheses of runoff generation and stream chemical and isotopic evolution during snowmelt. Transmissivity feedback was observed on the hillslopes during the melt period. Groundwater levels and stream DOC were highly correlated with stream discharge. Hysteresis in the groundwater-streamflow relation suggests that localized water flux from the riparian areas controlled the rising limb and main peak response of the melt hydrograph, whilst hillslope drainage controlled the timing and volume of the falling limb. Lateral flow from upslope positions was detected in the riparian zone.

  4. Nitrate and dissolved nitrous oxide in groundwater within cropped fields and riparian buffers

    NASA Astrophysics Data System (ADS)

    Kim, D.-G.; Isenhart, T. M.; Parkin, T. B.; Schultz, R. C.; Loynachan, T. E.

    2009-01-01

    Transport and fate of dissolved nitrous oxide (N2O) in groundwater and its significance to nitrogen dynamics within agro-ecosystems are poorly known in spite of significant potential of N2O to global warming and ozone depletion. Increasing denitrification in riparian buffers may trade a reduction in nitrate (NO3-) transport to surface waters for increased N2O emissions resulting from denitrification-produced N2O dissolved in groundwater being emitted into the air when groundwater flows into a stream or a river. This study quantifies the transport and fate of NO3- and dissolved N2O moving from crop fields through riparian buffers, assesses whether groundwater exported from crop fields and riparian buffers is a significant source of dissolved N2O emissions, and evaluates the Intergovernmental Panel on Climate Change (IPCC) methodology to estimate dissolved N2O emission. We measured concentrations of NO3-; chloride (Cl-); pH; dissolved N2O, dissolved oxygen (DO), and organic carbon (DOC) in groundwater under a multi-species riparian buffer, a cool-season grass filter, and adjacent crop fields located in the Bear Creek watershed in central Iowa, USA. In both the multi-species riparian buffer and the cool-season grass filter, concentrations of dissolved N2O in the groundwater did not change as it passed through the sites, even when the concentrations of groundwater NO3- were decreased by 50% and 59%, respectively, over the same periods. The fraction of N lost to leaching and runoff (0.05) and the modified N2O emission factor, [ratio of dissolved N2O flux to N input (0.00002)] determined for the cropped fields indicate that the current IPCC methodology overestimates dissolved N2O flux in the sites. A low ratio between dissolved N2O flux and soil N2O emission (0.0003) was estimated in the cropped fields. These results suggest that the riparian buffers established adjacent to crop fields for water quality functions (enhanced denitrification) decreased NO3- and were not a

  5. Spatial and temporal variations and controlling factors of sediment accumulation in the Yangtze River estuary and its adjacent sea area in the Holocene, especially in the Early Holocene

    NASA Astrophysics Data System (ADS)

    Feng, Zhibing; Liu, Baohua; Zhao, Yuexia; Li, Xishuang; Jiang, Li; Si, Shaokun

    2016-08-01

    The sub-bottom and collected borehole data provide insight into the transport and accumulation processes of the Yangtze-derived sediment in the study area since ~11 kyr BP. Five seismic units were identified according to six major acoustic surfaces. The sedimentary strata consist of fluvial, estuarine and deltaic systems from the bottom up, characterized by two different trends in sediment accumulation rates, i.e., low-high-low, and high-low-high. On the inner shelf of the East China Sea, the terrain with trough and ridge was formed by the Early Holocene transgression strata (formed in ~10 to 12 kyr BP) scoured by the later rectilinear tidal current due to postglacial sea-level transgression, and the sharply protruding seismic units are interpreted to be bedrocks outcropping on the seafloor. An analysis of the sedimentary characteristics in the boreholes and such factors as difference in accumulation rates, and tectonic subsidence led us to conclude that the paleo-coastline was located not far away from and to the east of Core ZK09 at ~9 kyr BP, and the southern bank of the Yangtze River estuary was located to the south of Core ZK09. At ~9 kyr BP, the Yangtze-derived sediments were transported eastwards along the southern bank of the Yangtze River and the barrier due to the influence of the paleo-coastal current from the north, the direction of the Yangtze-derived sediment transport was split on the northeast of the Zhoushan archipelago, and the sediments covered the terrain with trough and ridge. During the high sea level period (7 kyr BP-present), the eastward migration of paleo-coastline had resulted in the increase in accumulation rate. We also conclude that the sharp increase in accumulation rate near the Yangtze River estuary after ~2 kyr BP was not primarily caused by human activities. The position shifts of the estuary caused by the paleo-coastline migration and sea level oscillations since the Holocene is the main cause controlling the Yangtze

  6. Status report on the geology of the Lawrence Livermore National Laboratory site and adjacent areas. Volume I. Text and appendices A-E

    SciTech Connect

    Carpenter, D.W.; Puchlik, K.P.; Ramirez, A.L.; Wagoner, J.L.; Knauss, K.G.; Kasameyer, P.W.

    1980-10-01

    In April, 1979, geoscience personnel at Lawrence Livermore National Laboratory (LLNL) initiated comprehensive geologic, seismologic, and hydrologic investigations of the LLNL site and nearby areas. These investigations have two objectives: 1. to obtain data for use in preparing a Final Environmental Impact Report for LLNL, pursuant to the National Environmental Policy Act; 2. to obtain data for use in improving the determination of a design basis earthquake for structural analysis of LLNL facilities. The first phases of these investigations have been completed. Work completed to date includes a comprehensive literature review, analyses of three sets of aerial photographs, reconnaissance geophysical surveys, examination of existing LLNL site borehole data, and the logging of seven exploratory trenches, segments of two sewer trenches, a deep building foundation excavation, a road cut, and an enlarged creek bank exposure. One absolute age date has been obtained by the /sup 14/C method and several dates of pedogenic carbonate formation have been obtained by the /sup 230/Th//sup 234/U method. A seismic monitoring network has been established, and planning for a site hydrologic monitoring program and strong motion instrument network has been completed. The seismologic and hydrologic investigations are beyond the scope of this report and will be discussed separately in future documents.

  7. Maps showing formation temperatures and configurations of the tops of the Minnelusa Formation and the Madison Limestone, Powder River basin, Wyoming, Montana, and adjacent areas

    USGS Publications Warehouse

    Head, William J.; Kilty, Kevin Thomas; Knottek, Richard K.

    1978-01-01

    This report is part of a study to describe the hydrogeologic framework needed to evaluate the water resources of the Paleozoic age aquifers in the Northern Great Plains coal region. Preliminary studies by the U.S. Geological Survey and State agencies in Wyoming, Montana, and South Dakota have indicated that these aquifers might provide a significant percentage of the water requirements for coal development. Geologic and water-temperature data for the Minnelusa Formation of Permian and Pennsylvanian age and for the Madison Limestone (Group where it is subdivided) of Mississippian and locally late Devonian age , and their equivalents, were compiled and interpreted. Maps were produced showing the altitude and ground-water temperatures of the top of these formations. The altitude (configuration) maps show the depth and position of the formations throughout the area. Temperature maps can be used to calculate changes in the viscosity of water caused by large temperature differences. The viscosity differences will be useful in adjusting calculated transmissivity aquifer values (the rate at which water can be transmitted through an aquifer). (Woodard-USGS)

  8. Assessing water quality at large geographic scales: Relations among land use, water physicochemistry, riparian condition, and fish community structure

    USGS Publications Warehouse

    Meador, M.R.; Goldstein, R.M.

    2003-01-01

    Data collected from 172 sites in 20 major river basins between 1993 and 1995 as part of the US Geological Survey's National Water-Quality Assessment Program were analyzed to assess relations among basinwide land use (agriculture, forest, urban, range), water physicochemistry, riparian condition, and fish community structure. A multimetric approach was used to develop regionally referenced indices of fish community and riparian condition. Across large geographic areas, decreased riparian condition was associated with water-quality constituents indicative of nonpoint source inputs-total nitrogen and suspended sediment and basin-wide urban land use. Decreased fish community condition was associated with increases in total dissolved solids and rangeland use and decreases in riparian condition and agricultural land use. Fish community condition was relatively high even in areas where agricultural land use was relatively high (>50% of the basin). Although agricultural land use can have deleterious effects on fish communities, the results of this study suggest that other factors also may be important, including practices that regulate the delivery of nutrients, suspended sediments, and total dissolved solids into streams. Across large geographic scales, measures of water physicochemistry may be better indicators of fish community condition than basinwide land use. Whereas numerous studies have indicated that riparian restorations are successful in specific cases, this analysis suggests the universal importance of riparian zones to the maintenance and restoration of diverse fish communities in streams.

  9. Potential effects of groundwater pumping on water levels, phreatophytes, and spring discharges in Spring and Snake Valleys, White Pine County, Nevada, and adjacent areas in Nevada and Utah

    USGS Publications Warehouse

    Halford, Keith J.; Plume, Russell W.

    2011-01-01

    Assessing hydrologic effects of developing groundwater supplies in Snake Valley required numerical, groundwater-flow models to estimate the timing and magnitude of capture from streams, springs, wetlands, and phreatophytes. Estimating general water-table decline also required groundwater simulation. The hydraulic conductivity of basin fill and transmissivity of basement-rock distributions in Spring and Snake Valleys were refined by calibrating a steady state, three-dimensional, MODFLOW model of the carbonate-rock province to predevelopment conditions. Hydraulic properties and boundary conditions were defined primarily from the Regional Aquifer-System Analysis (RASA) model except in Spring and Snake Valleys. This locally refined model was referred to as the Great Basin National Park calibration (GBNP-C) model. Groundwater discharges from phreatophyte areas and springs in Spring and Snake Valleys were simulated as specified discharges in the GBNP-C model. These discharges equaled mapped rates and measured discharges, respectively. Recharge, hydraulic conductivity, and transmissivity were distributed throughout Spring and Snake Valleys with pilot points and interpolated to model cells with kriging in geologically similar areas. Transmissivity of the basement rocks was estimated because thickness is correlated poorly with transmissivity. Transmissivity estimates were constrained by aquifer-test results in basin-fill and carbonate-rock aquifers. Recharge, hydraulic conductivity, and transmissivity distributions of the GBNP-C model were estimated by minimizing a weighted composite, sum-of-squares objective function that included measurement and Tikhonov regularization observations. Tikhonov regularization observations were equations that defined preferred relations between the pilot points. Measured water levels, water levels that were simulated with RASA, depth-to-water beneath distributed groundwater and spring discharges, land-surface altitudes, spring discharge at

  10. Mapping the hydraulic connection between a coalbed and adjacent aquifer: example of the coal-seam gas resource area, north Galilee Basin, Australia

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenjiao; Mariethoz, Gregoire; Schrank, Christoph; Cox, Malcolm; Timms, Wendy

    2016-12-01

    Coal-seam gas production requires groundwater extraction from coal-bearing formations to reduce the hydraulic pressure and improve gas recovery. In layered sedimentary basins, the coalbeds are often separated from freshwater aquifers by low-permeability aquitards. However, hydraulic connection between the coalbed and aquifers is possible due to the heterogeneity in the aquitard such as the existence of conductive faults or sandy channel deposits. For coal-seam gas extraction operations, it is desirable to identify areas in a basin where the probability of hydraulic connection between the coalbed and aquifers is low in order to avoid unnecessary loss of groundwater from aquifers and gas production problems. A connection indicator, the groundwater age indictor (GAI), is proposed, to quantify the degree of hydraulic connection. The spatial distribution of GAI can indicate the optimum positions for gas/water extraction in the coalbed. Depressurizing the coalbed at locations with a low GAI would result in little or no interaction with the aquifer when compared to the other positions. The concept of GAI is validated on synthetic cases and is then applied to the north Galilee Basin, Australia, to assess the degree of hydraulic connection between the Aramac Coal Measure and the water-bearing formations in the Great Artesian Basin, which are separated by an aquitard, the Betts Creek Beds. It is found that the GAI is higher in the western part of the basin, indicating a higher risk to depressurization of the coalbed in this region due to the strong hydraulic connection between the coalbed and the overlying aquifer.

  11. Near-Surface Geologic Units Exposed Along Ares Vallis and in Adjacent Areas: A Potential Source of Sediment at the Mars Pathfinder Landing Site

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1997-01-01

    A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals.

  12. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2015

    USGS Publications Warehouse

    Beman, Joseph E.; Bryant, Christina F.

    2016-10-27

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is hydrologically defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift between San Acacia to the south and Cochiti Lake to the north. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began treatment and distribution of surface water from the Rio Grande through the San Juan-Chama Drinking Water Project. A 20-percent population increase in the basin from 1990 to 2000 and a 22-percent population increase from 2000 to 2010 may have resulted in an increased demand for water in areas within the basin.An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the Albuquerque Basin. In 1983, this network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly. The network currently (2015) consists of 124 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the ABCWUA, currently (2015) measures and reports water levels from the 124 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 124 sites through water year 2015 (October 1, 2014, through September 30, 2015).

  13. MANAGING AND RESTORING UPLAND RIPARIAN MEADOWS IN THE CENTRAL GREAT BASIN

    EPA Science Inventory

    Riparian meadow ecosystems in upland watersheds are of local and regional importance in the Great Basin. Covering only 1-3% of the total land area, these ecosystems contain a disproportionally large percentage of the region's biodiversity. Stream incision, due to natural and anth...

  14. Phytoplankton and nutrient distributions in a front-eddy area adjacent to the coastal upwelling zone off Concepcion (Chile): implications for ecosystem productivity.

    NASA Astrophysics Data System (ADS)

    Morales, Carmen; Anabalón, Valeria; Hormazábal, Samuel; Cornejo, Marcela; Bento, Joaquim; Silva, Nelson

    2016-04-01

    The impact that sub-mesoscale (1-10 km) to mesocale (50-100 km) oceanographic variability has on plankton and nutrient distributions (horizontal and vertical) in the coastal upwelling and transition zones off Concepcion was the focus of this study. Satellite time-series data (wind, sea-surface temperature (SST), and altimetry) were used to understand the dynamic context of in situ data derived from a short-term front survey (3 d) during the upwelling period (3-6 February, 2014). The survey included two transects perpendicular to the coast, covering the shelf and shelf-break areas just north of Punta Lavapie, a main upwelling center (˜37° S). Wind and SST time-series data indicated that the survey was undertaken just after a moderate upwelling event (end of January) which lead to a relaxation phase during early February. A submesoscale thermal front was detected previous to and during the survey and results from an eddy tracking algorithm based on altimetry data indicated that this front (F1) was flanked on its oceanic side by an anticyclonic, mesoscale eddy (M1), which was ˜25 d old at the sampling time. M1 strengthened the thermal gradient of F1 by bringing warmer oceanic water nearer to the colder coastal upwelling zone. The distributions of hydrographic variables and nutrients in the water column (<300 m depth) also denoted these two features. Phytoplankton biomass (Chl-a) and diatom abundance were highest in the surface layer (<20 m depth) between the coast and F1, with primary maxima in the latter, whereas they were highest at the subsurface (20-40 m depth) towards M1 and associated with secondary maxima. The distribution of dominant diatoms in the top layer (<100 m depth) indicated that both coastal and oceanic species were aggregated at F1 and in M1. These results suggest that the front-eddy interaction creates a complex field of submesoscale processes in the top layer, including vertical nutrient injections and lateral stirring, which contributes to the

  15. How do riparian woody seedlings survive seasonal drought?

    PubMed

    Stella, John C; Battles, John J

    2010-11-01

    In semi-arid regions, a major population limitation for riparian trees is seedling desiccation during the dry season that follows annual spring floods. We investigated the stress response of first-year pioneer riparian seedlings to experimental water table declines (0, 1 and 3 cm day(-1)), focusing on the three dominant cottonwood and willows (family Salicaceae) in California's San Joaquin Basin. We analyzed growth and belowground allocation response to water stress, and used logistic regression to determine if these traits had an influence on individual survival. The models indicate that high root growth (>3 mm day(-1)) and low shoot:root ratios (<1.5 g g(-1)) strongly predicted survival, but there was no evidence that plants increased belowground allocation in response to drawdown. Leaf δ(13)C values shifted most for the best-surviving species (net change of +3.5 per mil from -30.0 ± 0.3 control values for Goodding's willow, Salix gooddingii), implying an important role of increased water-use efficiency for surviving water stress. Both S. gooddingii and sandbar willow (S. exigua) reduced leaf size from controls, whereas Fremont cottonwood (Populus fremontii) sustained a 29% reduction in specific leaf area (from 13.4 to 9.6 m(2) kg(-1)). The functional responses exhibited by Goodding's willow, the more drought-tolerant species, may play a role in its greater relative abundance in dry regions such as the San Joaquin Basin. This study highlights the potential for a shift in riparian forest composition. Under a future drier climate regime or under reduced regulated river flows, our results suggest that willow establishment will be favored over cottonwood.

  16. Fifteenmile Creek Riparian Buffers Project, Annual Report 2002-2003.

    SciTech Connect

    Graves, Ron

    2004-02-01

    This project implements riparian buffer systems in the Mid-Columbia, addressing limiting factors identified in the Fifteenmile Subbasin Summary, June 30, 2000. The project is providing the technical planning support needed to implement at least 36 riparian buffer system contracts on approximately 872 acres covering an estimated 40 miles of anadromous fish streams over a three year period. During this second year of the project, 11 buffer contracts were implemented on 10.9 miles of stream. Buffer widths averaged 132 ft. on each side of the stream. Implementation included prescribed plantings, fencing, and related practices. Actual implementation costs, lease payments, and maintenance costs are borne by existing USDA programs: Conservation Reserve and Conservation Reserve Enhancement Programs. The lease period of each contract may vary between 10 to 15 years. During this year the average was 14.6 years. The total value of contracts established this year is $666,121 compared with $71,115 in Bonneville Power Administration (BPA) contract costs to provide the technical support needed to get the contracts implemented. This project provides technical staffing to conduct assessments and develop plans to help keep pace with the growing backlog of potential riparian buffer projects. Word of mouth from satisfied customers has brought in many new sign-ups during the year. In addition, specific outreach efforts targeting the orchard areas of the county began to bear fruit with orchardists sign-ups as the project year ended. Progress this second year of project includes only work accomplished in the Fifteenmile subbasin. A similar but separate effort to implement buffers in the Columbia Plateau Province was initiated during the year under project number 2002-019-00. This project supports RPA 150 and 153 as required under the Federal Hydropower System biological opinion.

  17. Riparian Planting Projects Completed within Asotin Creek Watershed : 2000-2002 Asotin Creek Riparian Final Report of Accomplishments.

    SciTech Connect

    Johnson, B. J.

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for threatened and endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for threatened salmonids since 1994. The Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00 teamed BPA and the Governor's Salmon Recovery Funding to plant

  18. Structure and diversity of phyllostomid bat assemblages on riparian corridors in a human-dominated tropical landscape

    PubMed Central

    de la Peña-Cuéllar, Erika; Benítez-Malvido, Julieta; Avila-Cabadilla, Luis Daniel; Martínez-Ramos, Miguel; Estrada, Alejandro

    2015-01-01

    Tropical forests around the world have been lost, mainly because of agricultural activities. Linear elements like riparian vegetation in fragmented tropical landscapes help maintain the native flora and fauna. Information about the role of riparian corridors as a reservoir of bat species, however, is scanty. We assessed the value of riparian corridors on the conservation of phyllostomid bat assemblage in an agricultural landscape of southern Mexico. For 2 years (2011–2013), mist-netting at ground level was carried out twice during the dry season (December to May) and twice during the wet season (June to November) in different habitats: (1) riparian corridors in mature forest, (2) riparian corridors in pasture, (3) continuous forest away from riparian vegetation, and (4) open pastures. Each habitat was replicated three times. To determine the influence of vegetation structure on bat assemblages, all trees (≥10 cm dbh) were sampled in all habitats. Overall, 1752 individuals belonging to 28 species of Phyllostomidae were captured with Sternodermatinae being the most rich and abundant subfamily. Riparian corridors in mature forest and pastures had the greatest species richness and shared 65% of all species. Open pastures had the lowest richness and abundance of bats with no Phyllostominae species recorded. Six of the 18 species recorded could be considered as habitat indicators. There was a positive relationship between bat species composition and tree basal area. Our findings suggest that contrary to our expectations, bats with generalist habits and naturally abundant could be useful detector taxa of habitat modification, rather than bats strongly associated with undisturbed forest. Also in human-dominated landscapes, the maintenance of habitat elements such as large trees in riparian corridors can serve as reservoirs for bat species, especially for those that are strongly associated with undisturbed forest. PMID:25750716

  19. Structure and diversity of phyllostomid bat assemblages on riparian corridors in a human-dominated tropical landscape.

    PubMed

    de la Peña-Cuéllar, Erika; Benítez-Malvido, Julieta; Avila-Cabadilla, Luis Daniel; Martínez-Ramos, Miguel; Estrada, Alejandro

    2015-02-01

    Tropical forests around the world have been lost, mainly because of agricultural activities. Linear elements like riparian vegetation in fragmented tropical landscapes help maintain the native flora and fauna. Information about the role of riparian corridors as a reservoir of bat species, however, is scanty. We assessed the value of riparian corridors on the conservation of phyllostomid bat assemblage in an agricultural landscape of southern Mexico. For 2 years (2011-2013), mist-netting at ground level was carried out twice during the dry season (December to May) and twice during the wet season (June to November) in different habitats: (1) riparian corridors in mature forest, (2) riparian corridors in pasture, (3) continuous forest away from riparian vegetation, and (4) open pastures. Each habitat was replicated three times. To determine the influence of vegetation structure on bat assemblages, all trees (≥10 cm dbh) were sampled in all habitats. Overall, 1752 individuals belonging to 28 species of Phyllostomidae were captured with Sternodermatinae being the most rich and abundant subfamily. Riparian corridors in mature forest and pastures had the greatest species richness and shared 65% of all species. Open pastures had the lowest richness and abundance of bats with no Phyllostominae species recorded. Six of the 18 species recorded could be considered as habitat indicators. There was a positive relationship between bat species composition and tree basal area. Our findings suggest that contrary to our expectations, bats with generalist habits and naturally abundant could be useful detector taxa of habitat modification, rather than bats strongly associated with undisturbed forest. Also in human-dominated landscapes, the maintenance of habitat elements such as large trees in riparian corridors can serve as reservoirs for bat species, especially for those that are strongly associated with undisturbed forest.

  20. Geography of spring landbird migration through riparian habitats in southwestern North America

    USGS Publications Warehouse

    Skagen, S.K.; Kelly, J.F.; van Riper, Charles; Hutto, R.L.; Finch, D.M.; Krueper, D.J.; Melcher, C.P.

    2005-01-01

    Migration stopover resources, particularly riparian habitats, are critically important to landbirds migrating across the arid southwestern region of North America. To explore the effects of species biogeography and habitat affinity on spring migration patterns, we synthesized existing bird abundance and capture data collected in riparian habitats of the borderlands region of the U.S. and Mexico. We determined the importance of geographic factors (longitude and latitude) in explaining variation in abundances and capture rates of 32 long-distance and three short-distance migrant species. Abundances and capture rates of 12 and 11 species, respectively, increased with increasing longitude, and four speciesa?? abundance and capture rates decreased with increasing longitude. Riparian associates, but not nonriparian species, were more abundant in western sites. Their abundance patterns were only weakly influenced by species biogeography in contrast, biogeography did influence abundance patterns of nonriparian birds, suggesting that they choose the shortest, most direct route between wintering and breeding areas. We hypothesize that riparian obligate birds may, to some degree, adjust their migration routes to maximize time spent in high-quality riparian zones, but they are able to find suitable habitat opportunistically when crossing more hostile landscapes. In contrast, nonriparian birds adhere more closely to a hierarchical model in which the migratory route is determined by biogeographic constraints. Conservation of riparian habitats is necessary to meet future habitat stopover requirements of many western Neotropical migrant birds. We advocate a coordinated research effort to further elucidate patterns of distribution and habitat use so that conservation activities can be focused effectively.

  1. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  2. Controls on nutrients across a prairie stream watershed: land use and riparian cover effects.

    PubMed

    Dodds, Walter K; Oakes, Robert M

    2006-05-01

    Nutrient inputs generally are increased by human-induced land use changes and can lead to eutrophication and impairment of surface waters. Understanding the scale at which land use influences nutrient loading is necessary for the development of management practices and policies that improve water quality. The authors assessed the relationships between land use and stream nutrients in a prairie watershed dominated by intermittent stream flow in the first-order higher elevation reaches. Total nitrogen, nitrate, and phosphorus concentrations were greater in tributaries occupying the lower portions of the watershed, closely mirroring the increased density of row crop agriculture from headwaters to lower-elevation alluvial areas. Land cover classified at three spatial scales in each sub-basin above sampling sites (riparian in the entire catchment, catchment land cover, and riparian across the 2 km upstream) was highly correlated with variation in both total nitrogen (r(2) = 53%, 52%, and 49%, respectively) and nitrate (r(2) = 69%, 65%, and 56%, respectively) concentrations among sites. However, phosphorus concentrations were not significantly associated with riparian or catchment land cover classes at any spatial scale. Separating land use from riparian cover in the entire watershed was difficult, but riparian cover was most closely correlated with in-stream nutrient concentrations. By controlling for land cover, a significant correlation of riparian cover for the 2 km above the sampling site with in-stream nutrient concentrations could be established. Surprisingly, land use in the entire watershed, including small intermittent streams, had a large influence on average downstream water quality although the headwater streams were not flowing for a substantial portion of the year. This suggests that nutrient criteria may not be met only by managing permanently flowing streams.

  3. [Richness and abundance of birds in riparian forest belts of varied breadths at the Sesesmiles river microwatershed, Copan, Honduras].

    PubMed

    Arcos, Inty T; Jiménez, Francisco; Harvey, Célia A; Casanoves, Fernando

    2008-03-01

    Richness and abundance of birds in riparian forest belts of varied breadths at the Sesesmiles river microwatershed, Copan, Honduras. Riparian forests protect many species of plants and animals. We studied bird communities in riparian forest belts of the Sesesmiles river microwatershed, Copan, Honduras (140 degrees 43' 12" - 140 degrees 58' 35" N, 88 degrees 53' 23" - 89 degrees 14' 17" W). The main goal was to explore the effects of belt breadth on the richness and abundance of avian species visiting these forests. We selected 20 belts, and randomly established 30 observation points to monitor bird presence in the dry (March-April 2005) and rainy (June-July 2005) season (N= 60 observations). A total of 1,294 birds belonging to 145 species were recorded. Bird diversity was significantly correlated to the breadth of the riparian belts, with a greater number of species and individuals in belts 50 m wide or wider. Insectivorous and nectarivorous birds were the most abundant guilds. All bird species identified depend to some degree on riparian forests and are affected by belt breadth. Riparian belts over 50 m should be kept or established in order to conserve bird populations within agricultural and fragmented landscapes in similar tropical areas.

  4. Influences of watershed, riparian-corridor, and reach-scale characteristics on aquatic biota in agricultural watersheds

    USGS Publications Warehouse

    Stewart, J.S.; Wang, L.; Lyons, J.; Horwatich, J.A.; Bannerman, R.

    2001-01-01

    Multivariate analyses and correlations revealed strong relations between watershed and riparian-corridor land cover, and reach-scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2. Watershed land cover was summarized from satellite-derived data for the area outside a 30-m buffer. Riparian land cover was interpreted from digital orthophotos within 10-, 10- to 20-, and 20- to 30-m buffers. Reach-scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream-quality indicators revealed significant relations at the watershed, riparian-corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian-corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach-scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.

  5. Responses of riparian cottonwoods to alluvial water table declines

    USGS Publications Warehouse

    Scott, M.L.; Shafroth, P.B.; Auble, G.T.

    1999-01-01

    Human demands for surface and shallow alluvial groundwater have contributed to the loss, fragmentation, and simplification of riparian ecosystems. Populus species typically dominate riparian ecosystems throughout arid and semiarid regions of North American and efforts to minimize loss of riparian Populus requires an integrated understanding of the role of surface and groundwater dynamics in the establishment of new, and maintenance of existing, stands. In a controlled, whole-stand field experiment, we quantified responses of Populus morphology, growth, and mortality to water stress resulting from sustained water table decline following in-channel sand mining along an ephemeral sandbed stream in eastern Colorado, USA. We measured live crown volume, radial stem growth, annual branch increment, and mortality of 689 live Populus deltoides subsp. monilifera stems over four years in conjunction with localized water table declines. Measurements began one year prior to mining and included trees in both affected and unaffected areas. Populus demonstrated a threshold response to water table declines in medium alluvial sands; sustained declines ???1 m produced leaf desiccation and branch dieback within three weeks and significant declines in live crown volume, stem growth, and 88% mortality over a three-year period. Declines in live Crown volume proved to be a significant leading indicator of mortality in the following year. A logistic regression of tree survival probability against the prior year's live crown volume was significant (-2 log likelihood = 270, ??2 with 1 df = 232, P < 0.0001) and trees with absolute declines in live crown volume of ???30 during one year had survival probabilities <0.5 in the following year. In contrast, more gradual water table declines of ~0.5 m had no measurable effect on mortality, stem growth, or live crown volume and produced significant declines only in annual branch growth increments. Developing quantitative information on the timing and

  6. Seismotectonic Map of Afghanistan and Adjacent Areas

    USGS Publications Warehouse

    Wheeler, Russell L.; Rukstales, Kenneth S.

    2007-01-01

    Introduction This map is part of an assessment of Afghanistan's geology, natural resources, and natural hazards. One of the natural hazards is from earthquake shaking. One of the tools required to address the shaking hazard is a probabilistic seismic-hazard map, which was made separately. The information on this seismotectonic map has been used in the design and computation of the hazard map. A seismotectonic map like this one shows geological, seismological, and other information that previously had been scattered among many sources. The compilation can show spatial relations that might not have been seen by comparing the original sources, and it can suggest hypotheses that might not have occurred to persons who studied those scattered sources. The main map shows faults and earthquakes of Afghanistan. Plate convergence drives the deformations that cause the earthquakes. Accordingly, smaller maps and text explain the modern plate-tectonic setting of Afghanistan and its evolution, and relate both to patterns of faults and earthquakes.

  7. Application of the Basin Characterization Model to Estimate In-Place Recharge and Runoff Potential in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.

    2007-01-01

    A regional-scale water-balance model was used to estimate recharge and runoff potential and support U.S. Geological Survey efforts to develop a better understanding of water availability for the Basin and Range carbonate-rock aquifer system (BARCAS) study in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The water-balance model, or Basin Characterization Model (BCM), was used to estimate regional ground-water recharge for the 13 hydrographic areas in the study area. The BCM calculates recharge by using a distributed-parameter, water-balance method and monthly climatic boundary conditions. The BCM requires geographic information system coverages of soil, geology, and topographic information with monthly time-varying climatic conditions of air temperature and precipitation. Potential evapotranspiration, snow accumulation, and snowmelt are distributed spatially with process models. When combined with surface properties of soil-water storage and saturated hydraulic conductivity of bedrock and alluvium, the potential water available for in-place recharge and runoff is calculated using monthly time steps using a grid scale of 866 feet (270 meters). The BCM was used with monthly climatic inputs from 1970 to 2004, and results were averaged to provide an estimate of the average annual recharge for the BARCAS study area. The model estimates 526,000 acre-feet of potential in-place recharge and approximately 398,000 acre-feet of potential runoff. Assuming 15 percent of the runoff becomes recharge, the model estimates average annual ground-water recharge for the BARCAS area of about 586,000 acre-feet. When precipitation is extrapolated to the long-term climatic record (1895-2006), average annual recharge is estimated to be 530,000 acre-feet, or about 9 percent less than the recharge estimated for 1970-2004.

  8. Implications of hydrologic connectivity between hillslopes and riparian zones on streamflow composition.

    PubMed

    von Freyberg, Jana; Radny, Dirk; Gall, Heather E; Schirmer, Mario

    2014-11-15

    Hydrological responses in mountainous headwater catchments are often highly non-linear with a distinct threshold-related behavior, which is associated to steep hillslopes, shallow soils and strong climatic variability. A holistic understanding of the dominant physical processes that control streamflow generation and non-linearity is required in order to assess potential negative effects of agricultural land use and water management in those areas. Therefore, streamflow generation in a small pre-Alpine headwater catchment (Upper Rietholzbach (URHB), ~1km(2)) was analyzed over a 2-year period by means of rainfall-response analysis and water quality data under explicit consideration of the joint behaviors of climate forcing and shallow groundwater dynamics. The runoff coefficients indicate that only a small fraction of the total catchment area (1-26%) generates streamflow during rainfall events. Hereby, the valley bottom areas (riparian zones) were the most important event-water source whereas only the lower parts of the hillslopes became hydrologically connected to the river network with higher antecedent moisture conditions. However, a distinct threshold-like behavior could not be observed, suggesting a more continuous shift from a riparian-zone to a more hillslope-dominated streamflow hydrograph. Regular manure application on the hillslopes in combinations with lateral hillslope groundwater flux and long groundwater residence times in the riparian zones resulted in a higher mineralization (e.g., total phosphorous) and significant denitrification in the valley bottom area. Despite the important role of the riparian zones for event-flow generation in the URHB, their nutrient buffer capacity is expected to be small due to the low permeability of the local subsurface material. The findings of this integrated analysis are summarized in a conceptual framework describing the hydrological functioning of hillslopes and riparian zones in the URHB.

  9. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States

    NASA Astrophysics Data System (ADS)

    Webb, Robert H.; Leake, Stanley A.

    2006-04-01

    Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.

  10. Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States

    USGS Publications Warehouse

    Webb, R.H.; Leake, S.A.

    2006-01-01

    Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.

  11. Elevated stream inorganic nitrogen impacts on a dominant riparian tree species: Results from an experimental riparian stream system

    NASA Astrophysics Data System (ADS)

    Hultine, K. R.; Jackson, T. L.; Burtch, K. G.; Schaeffer, S. M.; Ehleringer, J. R.

    2008-12-01

    The release of inorganic nitrogen from intensive agricultural practices and urbanization has resulted in significant alterations of the aquatic nitrogen cycle in riparian ecosystems. Nevertheless, impacts of stream nitrogen inputs on the terrestrial nitrogen cycle and the water and carbon cycles are unclear. Information on terrestrial ecosystem responses to stream N loading is largely absent in part because of the difficulty in controlling for temporal and spatial variation in streamflow, geomorphology, climate, and vegetation. To address these issues, we constructed a dual-plot artificial stream riparian system within a 10-year-old plantation of a dominant riparian tree species, box elder (Acer negundo). The dual-plot design allowed for different concentrations of stream inorganic nitrogen between plots while controlling for ecohydrologic and geohydrologic variability. The system was used to investigate elevated inorganic stream nitrogen impacts on water use patterns, above-ground productivity, and leaf chemistry of streamside box elder trees over two consecutive growing seasons (2006 and 2007). One plot received inorganic soluble fertilizer that brought the NO3 concentration of stream water from 5 μmol l-1 to about 100 μmol l-1, while the second plot received no additional nitrogen. Relative stem sap flux density (Js) did not vary between plots until near the conclusion of the 2006 growing season, when trees in the fertilized plot showed a steep upswing in Js relative to trees in the control plot. Sap flux in 2007 increased consistently by 0.4% day-1 in the fertilized plot relative to the control plot over a 75-day period, before leveling off near the conclusion of the growing season. At the onset of the experiment, leaf nitrogen per unit mass and leaf nitrogen per unit area were significantly higher in the control plot, and leaf C:N ratios were lower. In 2007, however, differences in leaf chemistry disappeared, suggesting that leaf nitrogen increased in the

  12. Nitrogen fate across topographic gradients, from headwaters to riparian zones

    NASA Astrophysics Data System (ADS)

    Bock, E. M.; Fuka, D. R.; Easton, Z. M.

    2013-12-01

    Identifying where nitrogen transforming microbial process occur within the landscape is critical to understanding nitrogen dynamics on a regional to global scale. Although the connection between topography and the activity of soil nitrifiers and denitrifiers has been studied at the landscape scale, hillslope scale relationships are needed as a predictive tool to incorporate process-based nitrogen flux, as N2 and N2O emissions, into variable source hydrologic models, for predicting stream nutrient concentrations and ultimately catchment export. This study examines denitrification and N2O emission along topographic gradients, determined from direct measurement of dissolved N2 and N2O in soil water samples and measured from soil cores in situ. Additionally, denitrifying enzyme activity and microbial respiration, taken as the evolution of CO2, are recorded as indicators of potential microbial activity. Three transects are monitored from a hummocky pasture downslope through a riparian zone, where soil moisture conditions are dynamic, allowing the quantification of topographic controls under different soil moisture regimes. Previous studies have shown that topographic controls increase denitrification downslope because of enhanced down gradient