Science.gov

Sample records for adjacent trophic levels

  1. Estimating trophic levels and trophic magnification factors using Bayesian inference.

    PubMed

    Starrfelt, Jostein; Borgå, Katrine; Ruus, Anders; Fjeld, Eirik

    2013-10-15

    Food web biomagnification is increasingly assessed by estimating trophic magnification factors (TMF) where solvent (often lipid) normalized contaminant concentration is regressed onto the trophic level, and TMFs are represented by the slope of the relationship. In TMF regressions, the uncertainty in the contaminant concentrations is appreciated, whereas the trophic levels are assumed independent and not associated with variability or uncertainty pertaining to e.g. quantification. In reality, the trophic levels may vary due to measurement error in stable isotopes of nitrogen (δ(15)N) of each sample, in δ(15)N in selected reference baseline trophic level, and in the enrichment factor of δ(15)N between two trophic levels (ΔN), which are all needed to calculate trophic levels. The present study used a Markov Chain Monte Carlo method, with knowledge about the food web structure, which resulted in a dramatic increase in the precision in the TMF estimates. This also lead to a better understanding of the uncertainties in bioaccumulation measures; instead of using point estimates of TMF, the uncertainty can be quantified (i.e., TMF >1, namely positive biomagnification, with an estimated X % probability).

  2. Trophic levels and trophic tangles: the prevalence of omnivory in real food webs.

    PubMed

    Thompson, Ross M; Hemberg, Martin; Starzomski, Brian M; Shurin, Jonathan B

    2007-03-01

    The concept of trophic levels is one of the oldest in ecology and informs our understanding of energy flow and top-down control within food webs, but it has been criticized for ignoring omnivory. We tested whether trophic levels were apparent in 58 real food webs in four habitat types by examining patterns of trophic position. A large proportion of taxa (64.4%) occupied integer trophic positions, suggesting that discrete trophic levels do exist. Importantly however, the majority of those trophic positions were aggregated around integer values of 0 and 1, representing plants and herbivores. For the majority of the real food webs considered here, secondary consumers were no more likely to occupy an integer trophic position than in randomized food webs. This means that, above the herbivore trophic level, food webs are better characterized as a tangled web of omnivores. Omnivory was most common in marine systems, rarest in streams, and intermediate in lakes and terrestrial food webs. Trophic-level-based concepts such as trophic cascades may apply to systems with short food chains, but they become less valid as food chains lengthen.

  3. Direct and indirect trophic effects of predator depletion on basal trophic levels.

    PubMed

    Chen, Huili; Hagerty, Steven; Crotty, Sinead M; Bertness, Mark D

    2016-02-01

    Human population growth and development have heavily degraded coastal ecosystems with cascading impacts across multiple trophic levels. Understanding both the direct and indirect trophic effects of human activities is important for coastal conservation. In New England, recreational overfishing has triggered a regional trophic cascade. Predator depletion releases the herbivorous purple marsh crab from consumer control and leads to overgrazing of marsh cordgrass and salt marsh die-off. The direct and indirect trophic effects of predator depletion on basal trophic levels, however, are not understood. Using observational and experimental data, we examined the hypotheses that (1) direct trophic effects of predator depletion decrease meiofaunal abundance by releasing deposit feeding fiddler crabs from consumer control, and/or (2) indirect trophic effects of predator depletion increase meiofaunal abundance by releasing blue carbon via the erosion of centuries of accreted marsh peat. Experimental deposit feeder removal led to 23% higher meiofaunal density at die-off than at healthy sites, while reciprocally transplanting sediment from die-off and healthy sites revealed that carbon-rich die-off sediment increased meiofauna density by over 164%: six times stronger than direct trophic effects. Recovering sites had both carbon-rich sediment and reduced deposit feeding leading to higher meiofauna densities than both die-off and healthy sites. This suggests that consequences of the trophic downgrading of coastal habitats can be driven by both direct and indirect trophic mechanisms that may vary in direction and magnitude, making their elucidation dependent on experimental manipulations.

  4. Habitat fragmentation differentially affects trophic levels and alters behavior in a multi-trophic marine system.

    PubMed

    Rielly-Carroll, Elizabeth; Freestone, Amy L

    2017-03-01

    Seagrass, an important subtidal marine ecosystem, is being lost at a rate of 110 km(2) year(-1), leading to fragmented seagrass seascapes. Habitat fragmentation is predicted to affect trophic levels differently, with higher trophic levels being more sensitive, stressing the importance of a multi-trophic perspective. Utilizing the trophic relationship between the blue crab (Callinectes sapidus) and hard clam (Mercenaria mercenaria), where adult blue crabs prey on juvenile blue crabs, and juvenile blue crabs prey on small hard clams, we examined whether predation rates, abundance, and behavior of predators and prey differed between continuous and fragmented seagrass in a multi-trophic context at two sites in Barnegat Bay, NJ. We tested the hypothesis that fragmented habitats would differentially affect trophic levels within a tri-trophic system, and our results supported this hypothesis. Densities of adult blue crabs were higher in fragmented than continuous habitats. Densities of juvenile blue crabs, the primary predator of hard clams, were lower in fragmented habitats than continuous, potentially due to increased predation by adult blue crabs. Clams experienced lower predation and burrowed to a shallower depth in fragmented habitats than in continuous habitat, likely due in part to the low densities of juvenile blue crabs, their primary predator. Our results suggest that while trophic levels are differentially affected, the impact of habitat fragmentation may be stronger on intermediate rather than top trophic levels in some marine systems.

  5. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host-parasitoid food chain.

    PubMed

    Sanders, Dirk; Moser, Andrea; Newton, Jason; van Veen, F J Frank

    2016-03-16

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host-parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary-secondary-tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ(15)N increased with trophic level, with trophic discrimination factors (Δ(15)N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host-parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems.

  6. Resource utilization and trophic position of nematodes and harpacticoid copepods in and adjacent to Zostera noltii beds

    NASA Astrophysics Data System (ADS)

    Vafeiadou, A.-M.; Materatski, P.; Adão, H.; De Troch, M.; Moens, T.

    2014-01-01

    This study examines the resource use and trophic position of nematodes and harpacticoid copepods at the genus/species level in an estuarine food web in Zostera noltii beds and in adjacent bare sediments, using the natural abundance of stable carbon and nitrogen isotopes. Microphytobenthos is among the main resources of most taxa, but seagrass-associated resources (i.e. seagrass detritus and epiphytes) also contribute to meiobenthos nutrition, with seagrass detritus being available also in deeper sediments and in unvegetated patches close to seagrass beds. A predominant dependence on chemoautotrophic bacteria was demonstrated for the nematode genus Terschellingia and the copepod family Cletodidae. A predatory feeding mode is illustrated for Paracomesoma and other Comesomatidae, which were previously considered first-level consumers (deposit feeders) according to their buccal morphology. The considerable variation found in both resource use and trophic level among nematode genera from the same feeding type, and even among congeneric nematode species, shows that interpretation of nematode feeding ecology based purely on mouth morphology should be avoided.

  7. Resource utilization and trophic position of nematodes and harpacticoid copepods in and adjacent to Zostera noltii beds

    NASA Astrophysics Data System (ADS)

    Vafeiadou, A.-M.; Materatski, P.; Adão, H.; De Troch, M.; Moens, T.

    2014-07-01

    This study examines the resource use and trophic position of nematodes and harpacticoid copepods at the genus/species level in an estuarine food web in Zostera noltii beds and in adjacent bare sediments using the natural abundance of stable carbon and nitrogen isotopes. Microphytobenthos and/or epiphytes are among the main resources of most taxa, but seagrass detritus and sediment particulate organic matter contribute as well to meiobenthos nutrition, which are also available in deeper sediment layers and in unvegetated patches close to seagrass beds. A predominant dependence on chemoautotrophic bacteria was demonstrated for the nematode genus Terschellingia and the copepod family Cletodidae. A predatory feeding mode is illustrated for Paracomesoma and other Comesomatidae, which were previously considered first-level consumers (deposit feeders) according to their buccal morphology. The considerable variation found in both resource use and trophic level among nematode genera from the same feeding type, and even among congeneric nematode species, shows that the interpretation of nematode feeding ecology based purely on mouth morphology should be avoided.

  8. Trophic assimilation efficiency markedly increases at higher trophic levels in four-level host–parasitoid food chain

    PubMed Central

    Moser, Andrea; van Veen, F. J. Frank

    2016-01-01

    Trophic assimilation efficiency (conversion of resource biomass into consumer biomass) is thought to be a limiting factor for food chain length in natural communities. In host–parasitoid systems, which account for the majority of terrestrial consumer interactions, a high trophic assimilation efficiency may be expected at higher trophic levels because of the close match of resource composition of host tissue and the consumer's resource requirements, which would allow for longer food chains. We measured efficiency of biomass transfer along an aphid-primary–secondary–tertiary parasitoid food chain and used stable isotope analysis to confirm trophic levels. We show high efficiency in biomass transfer along the food chain. From the third to the fourth trophic level, the proportion of host biomass transferred was 45%, 65% and 73%, respectively, for three secondary parasitoid species. For two parasitoid species that can act at the fourth and fifth trophic levels, we show markedly increased trophic assimilation efficiencies at the higher trophic level, which increased from 45 to 63% and 73 to 93%, respectively. In common with other food chains, δ15N increased with trophic level, with trophic discrimination factors (Δ15N) 1.34 and 1.49‰ from primary parasitoids to endoparasitic and ectoparasitic secondary parasitoids, respectively, and 0.78‰ from secondary to tertiary parasitoids. Owing to the extraordinarily high efficiency of hyperparasitoids, cryptic higher trophic levels may exist in host–parasitoid communities, which could alter our understanding of the dynamics and drivers of community structure of these important systems. PMID:26962141

  9. Rain forest promotes trophic interactions and diversity of trap-nesting Hymenoptera in adjacent agroforestry.

    PubMed

    Klein, Alexandra-Maria; Steffan-Dewenter, Ingolf; Tscharntke, Teja

    2006-03-01

    1. Human alteration of natural ecosystems to agroecosystems continues to accelerate in tropical countries. The resulting world-wide decline of rain forest causes a mosaic landscape, comprising simple and complex agroecosystems and patchily distributed rain forest fragments of different quality. Landscape context and agricultural management can be expected to affect both species diversity and ecosystem services by trophic interactions. 2. In Central Sulawesi, Indonesia, 24 agroforestry systems, differing in the distance to the nearest natural forest (0-1415 m), light intensity (37.5-899.6 W/m(-2)) and number of vascular plant species (7-40 species) were studied. Ten standardized trap nests for bees and wasps, made from reed and knotweed internodes, were exposed in each study site. Occupied nests were collected every month, over a period totalling 15 months. 3. A total of 13,617 brood cells were reared to produce adults of 14 trap-nesting species and 25 natural enemy species, which were mostly parasitoids. The total number of species was affected negatively by increasing distance from forest and increased with light intensity of agroforestry systems. The parasitoids in particular appeared to benefit from nearby forests. Over a 500-m distance, the number of parasitoid species decreased from eight to five, and parasitism rates from 12% to 4%. 4. The results show that diversity and parasitism, as a higher trophic interaction and ecosystem service, are enhanced by (i) improved connectivity of agroecosystems with natural habitats such as agroforestry adjacent to rain forest and (ii) management practices to increase light availability in agroforestry, which also enhances richness of flowering plants in the understorey.

  10. Determination of fish trophic levels in an estuarine system

    NASA Astrophysics Data System (ADS)

    Pasquaud, S.; Pillet, M.; David, V.; Sautour, B.; Elie, P.

    2010-01-01

    The concept of trophic level is particularly relevant in order to improve knowledge of the structure and the functioning of an ecosystem. A precise estimation of fish trophic levels based on nitrogen isotopic signatures in environments as complex and fluctuant as estuaries requires a good description of the pelagic and benthic trophic chains and a knowledge of organic matter sources at the bottom. In this study these points are considered in the case of the Gironde estuary (south west France, Europe). To obtain a good picture of the food web, fish stomach content analyses and a bibliographic synthesis of the prey feeding ecology were carried out. Fish trophic levels were calculated from these results and δ 15N data. The feeding link investigation enabled us to identify qualitatively and quantitatively the different preys consumed by each fish group studied, to distinguish the prey feeding on benthos from those feeding on pelagos and to characterize the different nutritive pools at the base of the system. Among the species studied, only Liza ramada and the flatfish ( Platichthys flesus and Solea solea) depend mainly on benthic trophic compartments. All the other fish groups depend on several trophic (benthic and/or pelagic) sources. These results enabled us to correct the calculation of fish trophic levels which are coherent with their feeding ecology data obtained from the nitrogen isotopic integrative period. The present work shows that trophic positions are linked with the feeding ecology of fish species and vary according to individual size. Ecological data also allow the correction of the isotopic data by eliminating absurd results and showing the complementarity of the two methods. This work is the first to consider source variability in the fish food web. This is an indispensable step for trophic studies in a dynamic environment. The investigation of matter fluxes and recycling processes at the food web base would provide a useful improvement in future

  11. Adjacent-level arthroplasty following cervical fusion.

    PubMed

    Rajakumar, Deshpande V; Hari, Akshay; Krishna, Murali; Konar, Subhas; Sharma, Ankit

    2017-02-01

    OBJECTIVE Adjacent-level disc degeneration following cervical fusion has been well reported. This condition poses a major treatment dilemma when it becomes symptomatic. The potential application of cervical arthroplasty to preserve motion in the affected segment is not well documented, with few studies in the literature. The authors present their initial experience of analyzing clinical and radiological results in such patients who were treated with arthroplasty for new or persistent arm and/or neck symptoms related to neural compression due to adjacent-segment disease after anterior cervical discectomy and fusion (ACDF). METHODS During a 5-year period, 11 patients who had undergone ACDF anterior cervical discectomy and fusion (ACDF) and subsequently developed recurrent neck or arm pain related to adjacent-level cervical disc disease were treated with cervical arthroplasty at the authors' institution. A total of 15 devices were implanted (range of treated levels per patient: 1-3). Clinical evaluation was performed both before and after surgery, using a visual analog scale (VAS) for pain and the Neck Disability Index (NDI). Radiological outcomes were analyzed using pre- and postoperative flexion/extension lateral radiographs measuring Cobb angle (overall C2-7 sagittal alignment), functional spinal unit (FSU) angle, and range of motion (ROM). RESULTS There were no major perioperative complications or device-related failures. Statistically significant results, obtained in all cases, were reflected by an improvement in VAS scores for neck/arm pain and NDI scores for neck pain. Radiologically, statistically significant increases in the overall lordosis (as measured by Cobb angle) and ROM at the treated disc level were observed. Three patients were lost to follow-up within the first year after arthroplasty. In the remaining 8 cases, the duration of follow-up ranged from 1 to 3 years. None of these 8 patients required surgery for the same vertebral level during the follow

  12. Shift in trophic level of Mediterranean mariculture species.

    PubMed

    Tsikliras, Athanassios C; Stergiou, Konstantinos I; Adamopoulos, Nikolaos; Pauly, Daniel; Mente, Eleni

    2014-08-01

    The mean trophic level of the farmed fish species in the Mediterranean has been increasing. We examined the farming-up hypothesis (i.e., the increase in the production of high-trophic-level species) in the Mediterranean by determining the trophic level of the aquafeeds (i.e., what the fish are fed) of 5 species of farmed marine fishes: common dentex (Dentex dentex), common pandora (Pagellus erythrinus), European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), and red porgy (Pagrus sp.). The mean trophic level of aquafeed used in mariculture from 1950 to 2011 was higher (3.93) than the prey farmed fish consume in the wild (3.72) and increased at a faster rate (0.48/decade) compared with that based on their diets in the wild (0.43/decade). Future expected replacement of the fishmeal and oil in aquafeeds by plant materials may reverse the farming-up trend, although there are a number of concerns regarding operational, nutritional, environmental, and economic issues. The farming-up reversal can be achieved in an ecologically friendly manner by facilitating the mariculture of low-trophic-level fishes and by promoting high efficiency in the use of living marine resources in aquafeeds.

  13. Influence of climate change and trophic coupling across four trophic levels in the Celtic Sea.

    PubMed

    Lauria, Valentina; Attrill, Martin J; Pinnegar, John K; Brown, Andrew; Edwards, Martin; Votier, Stephen C

    2012-01-01

    Climate change has had profound effects upon marine ecosystems, impacting across all trophic levels from plankton to apex predators. Determining the impacts of climate change on marine ecosystems requires understanding the direct effects on all trophic levels as well as indirect effects mediated by trophic coupling. The aim of this study was to investigate the effects of climate change on the pelagic food web in the Celtic Sea, a productive shelf region in the Northeast Atlantic. Using long-term data, we examined possible direct and indirect 'bottom-up' climate effects across four trophic levels: phytoplankton, zooplankton, mid-trophic level fish and seabirds. During the period 1986-2007, although there was no temporal trend in the North Atlantic Oscillation index (NAO), the decadal mean Sea Surface Temperature (SST) in the Celtic Sea increased by 0.66 ± 0.02 °C. Despite this, there was only a weak signal of climate change in the Celtic Sea food web. Changes in plankton community structure were found, however this was not related to SST or NAO. A negative relationship occurred between herring abundance (0- and 1-group) and spring SST (0-group: p = 0.02, slope = -0.305 ± 0.125; 1-group: p = 0.04, slope = -0.410 ± 0.193). Seabird demographics showed complex species-specific responses. There was evidence of direct effects of spring NAO (on black-legged kittiwake population growth rate: p = 0.03, slope = 0.0314 ± 0.014) as well as indirect bottom-up effects of lagged spring SST (on razorbill breeding success: p = 0.01, slope = -0.144 ± 0.05). Negative relationships between breeding success and population growth rate of razorbills and common guillemots may be explained by interactions between mid-trophic level fish. Our findings show that the impacts of climate change on the Celtic Sea ecosystem is not as marked as in nearby regions (e.g. the North Sea), emphasizing the need for more research at regional scales.

  14. Richness-Productivity Relationships Between Trophic Levels in a Detritus-Based System: Significance of Abundance and Trophic Linkage.

    EPA Science Inventory

    Most theoretical and empirical studies of productivity–species richness relationships fail to consider linkages among trophic levels. We quantified productivity–richness relationships in detritus-based, water-filled tree-hole communities for two trophic levels: invertebrate consu...

  15. Richness-productivity relationships between trophic levels in a detritus-based system: significance of abundance and trophic linkage.

    PubMed

    Yee, Donald A; Yee, Susan Harrell; Kneitel, Jamie M; Juliano, Steven A

    2007-11-01

    Most theoretical and empirical studies of productivity-species richness relationships fail to consider linkages among trophic levels. We quantified productivity-richness relationships in detritus-based, water-filled tree-hole communities for two trophic levels: invertebrate consumers and the protozoans on which they feed. By analogy to theory for biomass partitioning among trophic levels, we predicted that consumer control would result in richness of protozoans in the lower trophic level being unaffected by increases in productivity, whereas richness of invertebrate consumers would increase with productivity. Our data were consistent with this prediction: consumer richness increased linearly, but protozoan richness was unrelated to changes in productivity. The productivity-richness relationships for all taxa combined were not necessarily consistent with relationships within each trophic level. We used path analysis to investigate the mechanisms that may produce the observed responses of trophic levels to changes in productivity. We tested the importance of the direct effect of productivity on richness and the indirect effect of productivity mediated by effects on total abundance. For protozoans, only direct effects of productivity on richness were important, but both direct and indirect effects of productivity on richness were important for invertebrates. Protozoan richness was strongly affected by top-down impacts of abundance of invertebrates. These results are consistent with theory on biomass partitioning among trophic levels and suggest a strong link between richness and abundance within and between trophic levels. Understanding how trophic level interactions determine productivity-richness relationships will likely be necessary in order for us to achieve a comprehensive understanding of the determinants of diversity.

  16. Divergent trophic levels in two cryptic sibling bat species.

    PubMed

    Siemers, Björn M; Greif, Stefan; Borissov, Ivailo; Voigt-Heucke, Silke L; Voigt, Christian C

    2011-05-01

    Changes in dietary preferences in animal species play a pivotal role in niche specialization. Here, we investigate how divergence of foraging behaviour affects the trophic position of animals and thereby their role for ecosystem processes. As a model, we used two closely related bat species, Myotis myotis and M. blythii oxygnathus, that are morphologically very similar and share the same roosts, but show clear behavioural divergence in habitat selection and foraging. Based on previous dietary studies on synanthropic populations in Central Europe, we hypothesised that M. myotis would mainly prey on predatory arthropods (i.e., secondary consumers) while M. blythii oxygnathus would eat herbivorous insects (i.e., primary consumers). We thus expected that the sibling bats would be at different trophic levels. We first conducted a validation experiment with captive bats in the laboratory and measured isotopic discrimination, i.e., the stepwise enrichment of heavy in relation to light isotopes between consumer and diet, in insectivorous bats for the first time. We then tested our trophic level hypothesis in the field at an ancient site of natural coexistence for the two species (Bulgaria, south-eastern Europe) using stable isotope analyses. As predicted, secondary consumer arthropods (carabid beetles; Coleoptera) were more enriched in (15)N than primary consumer arthropods (tettigoniids; Orthoptera), and accordingly wing tissue of M. myotis was more enriched in (15)N than tissue of M. blythii oxygnathus. According to a Bayesian mixing model, M. blythii oxygnathus indeed fed almost exclusively on primary consumers (98%), while M. myotis ate a mix of secondary (50%), but also, and to a considerable extent, primary consumers (50%). Our study highlights that morphologically almost identical, sympatric sibling species may forage at divergent trophic levels, and, thus may have different effects on ecosystem processes.

  17. Phenological sensitivity to climate across taxa and trophic levels.

    PubMed

    Thackeray, Stephen J; Henrys, Peter A; Hemming, Deborah; Bell, James R; Botham, Marc S; Burthe, Sarah; Helaouet, Pierre; Johns, David G; Jones, Ian D; Leech, David I; Mackay, Eleanor B; Massimino, Dario; Atkinson, Sian; Bacon, Philip J; Brereton, Tom M; Carvalho, Laurence; Clutton-Brock, Tim H; Duck, Callan; Edwards, Martin; Elliott, J Malcolm; Hall, Stephen J G; Harrington, Richard; Pearce-Higgins, James W; Høye, Toke T; Kruuk, Loeske E B; Pemberton, Josephine M; Sparks, Tim H; Thompson, Paul M; White, Ian; Winfield, Ian J; Wanless, Sarah

    2016-07-14

    Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).

  18. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats.

    PubMed

    Lefcheck, Jonathan S; Byrnes, Jarrett E K; Isbell, Forest; Gamfeldt, Lars; Griffin, John N; Eisenhauer, Nico; Hensel, Marc J S; Hector, Andy; Cardinale, Bradley J; Duffy, J Emmett

    2015-04-24

    The importance of biodiversity for the integrated functioning of ecosystems remains unclear because most evidence comes from analyses of biodiversity's effect on individual functions. Here we show that the effects of biodiversity on ecosystem function become more important as more functions are considered. We present the first systematic investigation of biodiversity's effect on ecosystem multifunctionality across multiple taxa, trophic levels and habitats using a comprehensive database of 94 manipulations of species richness. We show that species-rich communities maintained multiple functions at higher levels than depauperate ones. These effects were stronger for herbivore biodiversity than for plant biodiversity, and were remarkably consistent across aquatic and terrestrial habitats. Despite observed tradeoffs, the overall effect of biodiversity on multifunctionality grew stronger as more functions were considered. These results indicate that prior research has underestimated the importance of biodiversity for ecosystem functioning by focusing on individual functions and taxonomic groups.

  19. Ecosystem Responses To Plant Phenology Across Scales And Trophic Levels

    NASA Astrophysics Data System (ADS)

    Stoner, D.; Sexton, J. O.; Nagol, J. R.; Ironside, K.; Choate, D.; Longshore, K.; Edwards, T., Jr.

    2015-12-01

    Plant phenology in arid and semi-arid ecoregions is constrained by water availability and governs the life history characteristics of primary and secondary consumers. We related the behavior, demography, and distribution of mammalian herbivores and their principal predator to remotely sensed vegetation and climatological indices across the western United States for the period 2000-2014. Across scales, terrain and topographic position moderates the effects of climatological drought on primary productivity, resulting in differential susceptibility among plant functional types to water stress. At broad scales, herbivores tie parturition to moist sites during the period of maximum increase in local forage production. Consequently, juvenile mortality is highest in regions of extreme phenological variability. Although decoupled from primary production by one or more trophic levels, carnivore home range size and density is negatively correlated to plant productivity and growing season length. At the finest scales, predation influences the behavior of herbivore prey through compromised habitat selection, in which maternal females trade nutritional benefits of high plant biomass for reduced mortality risk associated with increased visibility. Climate projections for the western United States predict warming combined with shifts in the timing and form of precipitation. Our analyses suggest that these changes will propagate through trophic levels as increased phenological variability and shifts in plant distributions, larger consumer home ranges, altered migration behavior, and generally higher volatility in wildlife populations. Combined with expansion and intensification of human land use across the region, these changes will likely have economic implications stemming from increased human-wildlife conflict (e.g., crop damage, vehicle collisions) and changes in wildlife-related tourism.

  20. Trophic level responses differ as climate warms in Ireland

    NASA Astrophysics Data System (ADS)

    Donnelly, Alison; Yu, Rong; Liu, Lingling

    2015-08-01

    Effective ecosystem functioning relies on successful species interaction. However, this delicate balance may be disrupted if species do not respond to environmental change at a similar rate. Here we examine trends in the timing of spring phenophases of groups of species occupying three trophic levels as a potential indicator of ecosystem response to climate warming in Ireland. The data sets were of varying length (1976-2009) and from varying locations: (1) timing of leaf unfolding and May Shoot of a range of broadleaf and conifer tree species, (2) first appearance dates of a range of moth species, and (3) first arrival dates of a range of spring migrant birds. All three groups revealed a statistically significant ( P<0.01 and P<0.001) advance in spring phenology that was driven by rising spring temperature ( P<0.05; 0.45 °C /decade). However, the rate of advance was greater for moths (1.8 days/year), followed by birds (0.37 days/year) and trees (0.29 days/year). In addition, the length of time between (1) moth emergence and leaf unfolding and (2) moth emergence and bird arrival decreased significantly ( P<0.05 and P<0.001, respectively), indicating a decrease in the timing between food supply and demand. These differing trophic level response rates demonstrate the potential for a mismatch in the timing of interdependent phenophases as temperatures rise. Even though these data were not specifically collected to examine climate warming impacts, we conclude that such data may be used as an early warning indicator and as a means to monitor the potential for future ecosystem disruption to occur as climate warms.

  1. Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas.

    PubMed

    Soler, German A; Edgar, Graham J; Thomson, Russell J; Kininmonth, Stuart; Campbell, Stuart J; Dawson, Terence P; Barrett, Neville S; Bernard, Anthony T F; Galván, David E; Willis, Trevor J; Alexander, Timothy J; Stuart-Smith, Rick D

    2015-01-01

    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing.

  2. Reef Fishes at All Trophic Levels Respond Positively to Effective Marine Protected Areas

    PubMed Central

    Soler, German A.; Edgar, Graham J.; Thomson, Russell J.; Kininmonth, Stuart; Campbell, Stuart J.; Dawson, Terence P.; Barrett, Neville S.; Bernard, Anthony T. F.; Galván, David E.; Willis, Trevor J.; Alexander, Timothy J.; Stuart-Smith, Rick D.

    2015-01-01

    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing. PMID:26461104

  3. Levels of chlorinated, brominated, and perfluorinated contaminants in birds of prey spanning multiple trophic levels.

    PubMed

    Yordy, Jennifer E; Rossman, Sam; Ostrom, Peggy H; Reiner, Jessica L; Bargnesi, Keely; Hughes, Stacy; Elliot, James D

    2013-04-01

    Birds of prey occupy high trophic levels and can consequently bioaccumulate high levels of environmental contaminants. To evaluate exposure to past- and current-use pollutants, we measured legacy contaminants (i.e., polychlorinated biphenyls [PCBs]; organochlorine pesticides, e.g., DDT), contaminants of emerging concern (polybrominated diphenyl ethers [PBDEs]; perfluorinated compounds [PFCs]), and stable isotopes (δ(13)C, δ(15)N) in 26 birds of prey (10 species) from coastal South Carolina (USA) sampled in 2009 and 2010. Nitrogen isotope ratios (δ(15)N) ranged from 5.2% to 13.7%, indicating the birds of prey spanned two to three trophic levels. Legacy contaminant levels were highly variable but generally comparable to levels reported previously for birds of prey in the southeast US, suggesting exposure has not declined substantially over the past 40 yr. Despite their status as newly emerging environmental contaminants, PFC levels were within the same order of magnitude as legacy contaminants. Although PBDEs were less prevalent, levels were among the greatest observed in wildlife to date (∑PBDEs max. 200 μg/g lipid). Relative contaminant profiles also varied between birds of prey utilizing low and high trophic levels; specifically PFCs contributed to a larger proportion of the contaminant burden in birds utilizing high trophic levels, whereas the legacy pesticide mirex was a larger contributor in low-trophic-level birds, indicating that relative exposure is in part dependent on foraging ecology. This study demonstrates that birds of prey continue to face exposure to legacy contaminants as well as newly emerging contaminants at levels of concern.

  4. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality.

    PubMed

    Soliveres, Santiago; van der Plas, Fons; Manning, Peter; Prati, Daniel; Gossner, Martin M; Renner, Swen C; Alt, Fabian; Arndt, Hartmut; Baumgartner, Vanessa; Binkenstein, Julia; Birkhofer, Klaus; Blaser, Stefan; Blüthgen, Nico; Boch, Steffen; Böhm, Stefan; Börschig, Carmen; Buscot, Francois; Diekötter, Tim; Heinze, Johannes; Hölzel, Norbert; Jung, Kirsten; Klaus, Valentin H; Kleinebecker, Till; Klemmer, Sandra; Krauss, Jochen; Lange, Markus; Morris, E Kathryn; Müller, Jörg; Oelmann, Yvonne; Overmann, Jörg; Pašalić, Esther; Rillig, Matthias C; Schaefer, H Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Sikorski, Johannes; Socher, Stephanie A; Solly, Emily F; Sonnemann, Ilja; Sorkau, Elisabeth; Steckel, Juliane; Steffan-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Türke, Manfred; Venter, Paul C; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Wolters, Volkmar; Wubet, Tesfaye; Wurst, Susanne; Fischer, Markus; Allan, Eric

    2016-08-25

    Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services

  5. Arthropod food webs become increasingly lipid-limited at higher trophic levels.

    PubMed

    Wilder, Shawn M; Norris, Michael; Lee, Raymond W; Raubenheimer, David; Simpson, Stephen J

    2013-07-01

    Understanding why food chains are relatively short in length has been an area of research and debate for decades. We tested if progressive changes in the nutritional content of arthropods with trophic position limit the availability of a key nutrient, lipid, for carnivores. Arthropods at higher trophic levels had progressively less lipid and more protein in their bodies compared with arthropods at lower trophic levels. The nutrients present in arthropod bodies were directly related to the nutrients that predators extracted when feeding on those arthropods. As a consequence, nutrient assimilation shifted from lipid-biased to protein-biased as arthropods ascended trophic levels from herbivores to secondary carnivores. Successive changes in the nutritional consequences of predation may ultimately set an upper limit on the number of trophic levels in arthropod communities. Further work is needed to examine the influence of lipid and other nutrients on food web traits in a range of ecosystems.

  6. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass.

    PubMed

    Deraison, Hélène; Badenhausser, Isabelle; Loeuille, Nicolas; Scherber, Christoph; Gross, Nicolas

    2015-12-01

    Understanding the consequences of trophic interactions for ecosystem functioning is challenging, as contrasting effects of species and functional diversity can be expected across trophic levels. We experimentally manipulated functional identity and diversity of grassland insect herbivores and tested their impact on plant community biomass. Herbivore resource acquisition traits, i.e. mandible strength and the diversity of mandibular traits, had more important effects on plant biomass than body size. Higher herbivore functional diversity increased overall impact on plant biomass due to feeding niche complementarity. Higher plant functional diversity limited biomass pre-emption by herbivores. The functional diversity within and across trophic levels therefore regulates the impact of functionally contrasting consumers on primary producers. By experimentally manipulating the functional diversity across trophic levels, our study illustrates how trait-based approaches constitute a promising way to tackle existing links between trophic interactions and ecosystem functioning.

  7. Quantitative gradient of subsidies reveals a threshold in community-level trophic cascades.

    PubMed

    Klemmer, Amanda J; Richardson, John S

    2013-09-01

    Evidence varies on how subsidies affect trophic cascades within recipient food webs. This could be due to complex nonlinearities being masked by single-level manipulations (presence/absence) of subsidies in past studies. We predicted that trophic cascade strength would increase nonlinearly across a gradient of subsidies. We set out to reveal these complex, nonlinear relationships through manipulating a quantitative gradient of detrital subsidies to lake benthic food webs along with the presence/absence of trout. Contrary to our prediction, we found that trophic cascades only occurred at low subsidy levels, disappearing as subsidies increased. This threshold in trophic cascade strength may be due to an increase in intermediate predators in the absence of top predators, as well as changes in the proportion of armored vs. un-armored primary consumers. Future studies on the effect of subsidies on trophic cascade strength need to incorporate naturally occurring gradients to reveal the complex direct and indirect interactions within food webs.

  8. Taxonomic and trophic-level differences in the climate sensitivity of seasonal events

    NASA Astrophysics Data System (ADS)

    Høye, T. T.; Thackeray, S.; Henrys, P. A.; Hemming, D.; Bell, J. R.; Botham, M. S.; Burthe, S.; Helaouet, P.; Johns, D.; Jones, I. D.; Leech, D. I.; Mackay, E. B.; Massimino, D.; Atkinson, S.; Bacon, P. J.; Brereton, T. M.; Carvalho, L.; Clutton-Brock, T. H.; Duck, C.; Edwards, M.; Elliott, J. M.; Hall, S.; Harrington, R.; Pearce-Higgins, J. W.; Kruuk, L. E.; Pemberton, J. M.; Sparks, T. H.; Thompson, P. M.; White, I.; Winfield, I. J.; Wanless, S.

    2015-12-01

    Among-species differences in phenological responses to climate change are of sufficient magnitude to desynchronise key ecological interactions, threatening ecosystem function and services. To assess these threats, it is vital to quantify the relative impact of climate change on species at different trophic levels. Here we apply a novel Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, quantifying among-species variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms sharing taxonomic affinities or trophic position. Despite this, we detected a systematic difference in the direction and magnitude, but not seasonal timing, of phenological climate sensitivity among trophic levels. Secondary consumers showed consistently lower climate sensitivity than other groups and are projected to lag behind phenological changes at lower trophic levels, potentially making them at higher risk of disconnection with seasonal resources.

  9. Eating up the world’s food web and the human trophic level

    PubMed Central

    Bonhommeau, Sylvain; Dubroca, Laurent; Le Pape, Olivier; Barde, Julien; Kaplan, David M.; Chassot, Emmanuel; Nieblas, Anne-Elise

    2013-01-01

    Trophic levels are critical for synthesizing species’ diets, depicting energy pathways, understanding food web dynamics and ecosystem functioning, and monitoring ecosystem health. Specifically, trophic levels describe the position of species in a food web, from primary producers to apex predators (range, 1–5). Small differences in trophic level can reflect large differences in diet. Although trophic levels are among the most basic information collected for animals in ecosystems, a human trophic level (HTL) has never been defined. Here, we find a global HTL of 2.21, i.e., the trophic level of anchoveta. This value has increased with time, consistent with the global trend toward diets higher in meat. National HTLs ranging between 2.04 and 2.57 reflect a broad diversity of diet, although cluster analysis of countries with similar dietary trends reveals only five major groups. We find significant links between socio-economic and environmental indicators and global dietary trends. We demonstrate that the HTL is a synthetic index to monitor human diets and provides a baseline to compare diets between countries. PMID:24297882

  10. Eating up the world's food web and the human trophic level.

    PubMed

    Bonhommeau, Sylvain; Dubroca, Laurent; Le Pape, Olivier; Barde, Julien; Kaplan, David M; Chassot, Emmanuel; Nieblas, Anne-Elise

    2013-12-17

    Trophic levels are critical for synthesizing species' diets, depicting energy pathways, understanding food web dynamics and ecosystem functioning, and monitoring ecosystem health. Specifically, trophic levels describe the position of species in a food web, from primary producers to apex predators (range, 1-5). Small differences in trophic level can reflect large differences in diet. Although trophic levels are among the most basic information collected for animals in ecosystems, a human trophic level (HTL) has never been defined. Here, we find a global HTL of 2.21, i.e., the trophic level of anchoveta. This value has increased with time, consistent with the global trend toward diets higher in meat. National HTLs ranging between 2.04 and 2.57 reflect a broad diversity of diet, although cluster analysis of countries with similar dietary trends reveals only five major groups. We find significant links between socio-economic and environmental indicators and global dietary trends. We demonstrate that the HTL is a synthetic index to monitor human diets and provides a baseline to compare diets between countries.

  11. A freshwater predator hit twice by the effects of warming across trophic levels.

    PubMed

    Jonsson, Tomas; Setzer, Malin

    2015-01-14

    Many ecological responses to climate change have been documented. However, due to indirect effects, some responses can be complex and difficult to predict. For example, our understanding of effects on consumers involving responses on several trophic levels is limited. Here, combining the knowledge of trophic interactions in the EU's fourth largest lake with long-term climate and catch data, we analyse potential drivers of change in this system's apex predator. We show that warm winters correlate with later poor catches of great Arctic charr (Salvelinus umbla), and that in recent years predator-prey cycles involving this species have disappeared. The likely mechanisms are trophic mismatches directly and indirectly affecting two stages of charr, the fry and the juveniles, respectively. Our study illustrates how a long-lived consumer may be subjected to double jeopardy from the effects of warming across trophic levels, and that a food web approach can aid in disentangling the chain of mechanisms responsible.

  12. Examining predator-prey body size, trophic level and body mass across marine and terrestrial mammals.

    PubMed

    Tucker, Marlee A; Rogers, Tracey L

    2014-12-22

    Predator-prey relationships and trophic levels are indicators of community structure, and are important for monitoring ecosystem changes. Mammals colonized the marine environment on seven separate occasions, which resulted in differences in species' physiology, morphology and behaviour. It is likely that these changes have had a major effect upon predator-prey relationships and trophic position; however, the effect of environment is yet to be clarified. We compiled a dataset, based on the literature, to explore the relationship between body mass, trophic level and predator-prey ratio across terrestrial (n = 51) and marine (n = 56) mammals. We did not find the expected positive relationship between trophic level and body mass, but we did find that marine carnivores sit 1.3 trophic levels higher than terrestrial carnivores. Also, marine mammals are largely carnivorous and have significantly larger predator-prey ratios compared with their terrestrial counterparts. We propose that primary productivity, and its availability, is important for mammalian trophic structure and body size. Also, energy flow and community structure in the marine environment are influenced by differences in energy efficiency and increased food web stability. Enhancing our knowledge of feeding ecology in mammals has the potential to provide insights into the structure and functioning of marine and terrestrial communities.

  13. ATLSS: Across trophic level system simulation for the freshwater areas of the Everglades

    SciTech Connect

    Martin, F.D. ); Deangelis, D.L.; Gross, L.J. )

    1994-06-01

    The Everglades of South Florida are characterized by complex patterns of spatial heterogeneity and temporal variability, with water flow being the major factor controlling the trophic dynamics of the system. A key objective of modeling studies is to compare the future effects of alternate hydrologic scenarios on the biotic components of the system. Due to the varying scales at which trophic interactions occur, and the importance of population structure and individual behavior for population prediction in higher trophic level organisms, use of a single modeling approach is not appropriate. We will describe a scheme to integrate three approaches for different trophic levels of the system: (1) process models for lower trophic levels (including benthic insects, periphyton and zooplankton), (2) structured population models for five functional groups of fish and macroinvertebrates, and (3) individual-based models for large consumers (wood storks, great blue herons, white ibis, American alligators, white-tailed deer, and Florida panther). These are integrated across the freshwater landscape of the Everglades and coupled to GIS maps for cover type. Spatial scales of resolution for the models are as small as 100 m, with the capability to vary this based upon the scale of available input data. The system is then coupled to a hydrology model, and used to assess the effects of alternative proposed restoration scenarios on trophic structure.

  14. Effects of lower trophic level biomass and water temperature on fish communities: A modelling study

    NASA Astrophysics Data System (ADS)

    Guiet, Jérôme; Aumont, Olivier; Poggiale, Jean-Christophe; Maury, Olivier

    2016-08-01

    Physical and biogeochemical changes of the oceans have complex influences on fish communities. Variations of resource and temperature affect metabolic rates at the individual level, biomass fluxes at the species level, and trophic structure as well as diversity at the community level. We use a Dynamic Energy Budget-, trait-based model of the consumers' community size-spectrum to assess the effects of lower trophic level biomass and water temperature on communities at steady state. First, we look at the stressors separately in idealized simulations, varying one while the second remains constant. A multi-domain response is observed. Linked to the number of trophic levels sustained in the consumers' community, the regimes highlighted present similar properties when lower trophic level biomass is increased or temperature decreased. These trophic-length domains correspond to different efficiencies of the transfer of biomass from small to large individuals. They are characterized by different sensitivities of fish communities to environmental changes. Moreover, differences in the scaling of individuals' metabolism and prey assimilation with temperature lead to a shrinking of fish communities with warming. In a second step, we look at the impact of simultaneous variations of stressors along a mean latitudinal gradient of lower trophic level biomass and temperature. The model explains known observed features of global marine ecosystems such as the fact that larger species compose fish communities when latitude increases. The structure, diversity and metabolic properties of fish communities obtained with the model at different latitudes are interpreted in light of the different trophic-length domains characterized in the idealized experiments. From the equator to the poles, the structure of consumers' communities is predicted to be heterogeneous, with variable sensitivities to environmental changes.

  15. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels

    PubMed Central

    Liu, Han; Guo, Xianwu; Gooneratne, Ravi; Lai, Ruifang; Zeng, Cong; Zhan, Fanbin; Wang, Weimin

    2016-01-01

    Vertebrate gut microbiome often underpins the metabolic capability and provides many beneficial effects on their hosts. However, little was known about how host trophic level influences fish gut microbiota and metabolic activity. In this study, more than 985,000 quality-filtered sequences from 24 16S rRNA libraries were obtained and the results revealed distinct compositions and diversities of gut microbiota in four trophic categories. PCoA test showed that gut bacterial communities of carnivorous and herbivorous fishes formed distinctly different clusters in PCoA space. Although fish in different trophic levels shared a large size of OTUs comprising a core microbiota community, at the genus level a strong distinction existed. Cellulose-degrading bacteria Clostridium, Citrobacter and Leptotrichia were dominant in the herbivorous, while Cetobacterium and protease-producing bacteria Halomonas were dominant in the carnivorous. PICRUSt predictions of metagenome function revealed that fishes in different trophic levels affected the metabolic capacity of their gut microbiota. Moreover, cellulase and amylase activities in herbivorous fishes were significantly higher than in the carnivorous, while trypsin activity in the carnivorous was much higher than in the herbivorous. These results indicated that host trophic level influenced the structure and composition of gut microbiota, metabolic capacity and gut content enzyme activity. PMID:27072196

  16. Ontogenetic, spatial and temporal variation in trophic level and diet of Chukchi Sea fishes

    NASA Astrophysics Data System (ADS)

    Marsh, Jennifer M.; Mueter, Franz J.; Iken, Katrin; Danielson, Seth

    2017-01-01

    Climate warming and increasing development are expected to alter the ecosystem of the Chukchi Sea, including its fish communities. As a component of the Arctic Ecosystem Integrated Survey, we assessed the ontogenetic, spatial and temporal variability of the trophic level and diet of key fish species in the Chukchi Sea using N and C stable isotopes. During August and September of 2012 and 2013, 16 common fish species and two primary, invertebrate consumers were collected from surface, midwater and bottom trawls within the eastern Chukchi Sea. Linear mixed-effects models were used to detect possible variation in the relationship between body length and either δ13C or δ15N values among water masses and years for 13 fish species with an emphasis on Arctic cod (Boreogadus saida). We also examined the fish community isotopic niche space, trophic redundancy, and trophic separation within each water mass as measures of resiliency of the fish food web. Ontogenetic shifts in trophic level and diet were observed for most species and these changes tended to vary by water mass. As they increased in length, most fish species relied more on benthic prey with the exception of three forage fish species (walleye pollock, Gadus chalcogrammus, capelin, Mallotus villosus, and Pacific sandlance, Ammodytes hexapterus). Species that exhibited interannual differences in diet and trophic level were feeding at lower trophic levels and consumed a more pelagic diet in 2012 when zooplankton densities were higher. Fish communities occupied different isotopic niche spaces depending on water mass association. In more northerly Arctic waters, the fish community occupied the smallest isotopic niche space and relied heavily on a limited range of intermediate δ13C prey, whereas in warmer, nutrient-rich Bering Chukchi Summer Water, pelagic prey was important. In the warmest, Pacific-derived coastal water, fish consumed both benthic and pelagic prey. Examining how spatial gradients in trophic

  17. Phylogenetic diversity and co-evolutionary signals among trophic levels change across a habitat edge.

    PubMed

    Peralta, Guadalupe; Frost, Carol M; Didham, Raphael K; Varsani, Arvind; Tylianakis, Jason M

    2015-03-01

    Incorporating the evolutionary history of species into community ecology enhances understanding of community composition, ecosystem functioning and responses to environmental changes. Phylogenetic history might partly explain the impact of fragmentation and land-use change on assemblages of interacting organisms and even determine potential cascading effects across trophic levels. However, it remains unclear whether phylogenetic diversity of basal resources is reflected at higher trophic levels in the food web. In particular, phylogenetic determinants of community structure have never been incorporated into habitat edge studies, even though edges are recognized as key factors affecting communities in fragmented landscapes. Here, we test whether phylogenetic diversity at different trophic levels (plants, herbivores and parasitoids) and signals of co-evolution (i.e. phylogenetic congruence) among interacting trophic levels change across an edge gradient between native and plantation forests. To ascertain whether there is a signal of co-evolution across trophic levels, we test whether related consumer species generally feed on related resource species. We found differences across trophic levels in how their phylogenetic diversity responded to the habitat edge gradient. Plant and native parasitoid phylogenetic diversity changed markedly across habitats, while phylogenetic variability of herbivores (which were predominantly native) did not change across habitats, though phylogenetic evenness declined in plantation interiors. Related herbivore species did not appear to feed disproportionately on related plant species (i.e. there was no signal of co-evolution) even when considering only native species, potentially due to the high trophic generality of herbivores. However, related native parasitoid species tended to feed on related herbivore species, suggesting the presence of a co-evolutionary signal at higher trophic levels. Moreover, this signal was stronger in

  18. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels.

    PubMed

    Dickman, Elizabeth M; Newell, Jennifer M; González, María J; Vanni, Michael J

    2008-11-25

    The efficiency of energy transfer through food chains [food chain efficiency (FCE)] is an important ecosystem function. It has been hypothesized that FCE across multiple trophic levels is constrained by the efficiency at which herbivores use plant energy, which depends on plant nutritional quality. Furthermore, the number of trophic levels may also constrain FCE, because herbivores are less efficient in using plant production when they are constrained by carnivores. These hypotheses have not been tested experimentally in food chains with 3 or more trophic levels. In a field experiment manipulating light, nutrients, and food-chain length, we show that FCE is constrained by algal food quality and food-chain length. FCE across 3 trophic levels (phytoplankton to carnivorous fish) was highest under low light and high nutrients, where algal quality was best as indicated by taxonomic composition and nutrient stoichiometry. In 3-level systems, FCE was constrained by the efficiency at which both herbivores and carnivores converted food into production; a strong nutrient effect on carnivore efficiency suggests a carryover effect of algal quality across 3 trophic levels. Energy transfer efficiency from algae to herbivores was also higher in 2-level systems (without carnivores) than in 3-level systems. Our results support the hypothesis that FCE is strongly constrained by light, nutrients, and food-chain length and suggest that carryover effects across multiple trophic levels are important. Because many environmental perturbations affect light, nutrients, and food-chain length, and many ecological services are mediated by FCE, it will be important to apply these findings to various ecosystem types.

  19. Fatty acid compositions and trophic relationships of shelled molluscs from the Kuril-Kamchatka Trench and the adjacent abyssal plain

    NASA Astrophysics Data System (ADS)

    Kharlamenko, Vladimir I.; Würzberg, Laura; Peters, Janna; Borisovets, Evgeny E.

    2015-01-01

    Fatty acid (FA) compositions of 12 species of shelled molluscs (gastropods, bivalves, and scaphopods) from the Kuril-Kamchatka Trench and the adjacent abyssal plain were studied. According to the results of multivariate statistical analysis, molluscs were divided into three groups. Group I consisted of three scaphopod species, the bivalve Nucula profundorum and the gastropod Solariella delicata. FA compositions of this group were characterized by high levels of 20:4(n-6). We suggest that the FA pattern found in scaphopods with high values of 20:4(n-6) is most likely typical for that of benthic organisms feeding preferentially on foraminiferans. Group II included the bivalves Neilonella politissima, Bentharca asperula, and Rhinoclama filatovae. Bivalves from the second group had elevated concentrations of 22:6(n-3), and the ratio of 20:4(n-6) to 20:5(n-3) was lower than 1. Bivalves from the second group had elevated concentrations of 22:6(n-3). We propose that high concentrations of this FA can be used as a specific marker for a carnivorous feeding mode of deep-sea benthic invertebrates. The bivalve Bathyspinula calcarella as well as the scaphopod Polyschides sakuraii could not unambiguously be assigned to one group. Within the similarity analysis they rather clustered together with the foraminiferans feeders (group I), but forming an own subgroup. In the PCA on the other hand, P. sakuraii showed a position close to the other bivalves, while B. calcarella had an intermediate position between all three groups. Group III consisted of the gastropods Tacita holoserica and Paracteocina sp., which contained high concentrations of 20:5(n-3) and 22:5(n-3). Both are known to exhibit a carnivorous/scavenging feeding strategy. The very low content of DHA in both species is on first sight not consistent with the suggested carnivorous feeding behavior. A characteristic feature of Paracteocina sp. and T. holoserica was a high level of 22:5(n-3), and HUFA ratios indicate that DHA

  20. Landscape complexity differentially benefits generalist fourth, over specialized third, trophic level natural enemies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The differential loss of higher trophic levels in the face of natural habitat loss can result in the disruption of important ecosystem services such as pollination and biological control. Landscape- level conservation biological control aims to mitigate these negative impacts by conserving or resto...

  1. Trophic Level Stability-Inducing Effects of Predaceous Early Juvenile Fish in an Estuarine Mesocosm Study

    PubMed Central

    Wasserman, Ryan J.; Noyon, Margaux; Avery, Trevor S.; Froneman, P. William

    2013-01-01

    Background Classically, estuarine planktonic research has focussed largely on the physico-chemical drivers of community assemblages leaving a paucity of information on important biological interactions. Methodology/Principal Findings Within the context of trophic cascades, various treatments using in situ mesocosms were established in a closed estuary to highlight the importance of predation in stabilizing estuarine plankton abundances. Through either the removal (filtration) or addition of certain planktonic groups, five different trophic systems were established. These treatments contained varied numbers of trophic levels and thus different “predators” at the top of the food chain. The abundances of zooplankton (copepod and polychaete), ciliate, micro-flagellate, nano-flagellate and bacteria were investigated in each treatment, over time. The reference treatment containing apex zooplanktivores (early juvenile mullet) and plankton at natural densities mimicked a natural, stable state of an estuary. Proportional variability (PV) and coefficient of variation (CV) of temporal abundances were calculated for each taxon and showed that apex predators in this experimental ecosystem, when compared to the other systems, induced stability. The presence of these predators therefore had consequences for multiple trophic levels, consistent with trophic cascade theory. Conclusions/Significance PV and CV proved useful indices for comparing stability. Apex predators exerted a stabilizing pressure through feeding on copepods and polychaetes which cascaded through the ciliates, micro-flagellates, nano-flagellates and bacteria. When compared with treatments without apex predators, the role of predation in structuring planktonic communities in closed estuaries was highlighted. PMID:23565294

  2. Body size, trophic level, and the use of fish as transmission routes by parasites.

    PubMed

    Poulin, R; Leung, T L F

    2011-07-01

    Within food webs, trophically transmitted helminth parasites use predator-prey links for their own transfer from intermediate prey hosts, in which they occur as larval or juvenile stages, to predatory definitive hosts, in which they reach maturity. In large taxa that can be used as intermediate and/or definitive hosts, such as fish, a host species' position within a trophic network should determine whether its parasite fauna consists mostly of adult or larval helminths, since vulnerability to predation determines an animal's role in predator-prey links. Using a large database on the helminth parasites of 303 fish species, we tested whether the proportion of parasite species in a host that occur as larval or juvenile stages is best explained by their trophic level or by their body size. Independent of fish phylogeny or habitat, only fish body length emerged as a significant predictor of the proportion of parasites in a host that occur as larval stages from our multivariate analyses. On average, the proportion of larval helminth taxa in fish shorter than 20 cm was twice as high as that for fish over 100 cm in length. This is consistent with the prediction that small fishes, being more vulnerable to predation, make better hosts for larval parasites. However, trophic level and body length are strongly correlated among fish species, and they may have separate though confounded effects on the parasite fauna exploiting a given species. Helminths show varying levels of host specificity toward their intermediate host when the latter is the downstream host involved in trophic transmission toward an upstream definitive host. Given this broad physiological compatibility of many helminths with fish hosts, our results indicate that fish body length, as a proxy for vulnerability to predators, is a better predictor of their use by helminth larvae than their trophic level based on diet content.

  3. Multi-level trophic cascades in a heavily exploited open marine ecosystem.

    PubMed

    Casini, Michele; Lövgren, Johan; Hjelm, Joakim; Cardinale, Massimiliano; Molinero, Juan-Carlos; Kornilovs, Georgs

    2008-08-07

    Anthropogenic disturbances intertwined with climatic changes can have a large impact on the upper trophic levels of marine ecosystems, which may cascade down the food web. So far it has been difficult to demonstrate multi-level trophic cascades in pelagic marine environments. Using field data collected during a 33-year period, we show for the first time a four-level community-wide trophic cascade in the open Baltic Sea. The dramatic reduction of the cod (Gadus morhua) population directly affected its main prey, the zooplanktivorous sprat (Sprattus sprattus), and indirectly the summer biomass of zooplankton and phytoplankton (top-down processes). Bottom-up processes and climate-hydrological forces had a weaker influence on sprat and zooplankton, whereas phytoplankton variation was explained solely by top-down mechanisms. Our results suggest that in order to dampen the occasionally harmful algal blooms of the Baltic, effort should be addressed not only to control anthropogenic nutrient inputs but also to preserve structure and functioning of higher trophic levels.

  4. Effects of bisphenol A on different trophic levels in a lotic experimental ecosystem.

    PubMed

    de Kermoysan, Goulwen; Joachim, Sandrine; Baudoin, Patrick; Lonjaret, Matthieu; Tebby, Cleo; Lesaulnier, François; Lestremau, François; Chatellier, Claudine; Akrour, Zhira; Pheron, Edlyn; Porcher, Jean-Marc; Péry, Alexandre R R; Beaudouin, Rémy

    2013-11-15

    Bisphenol A (BPA) is commonly used by manufacturers and can be found in many aquatic ecosystems. Data relative to BPA ecotoxicity are only available for studies in laboratory conditions on macro-invertebrates and fish. There is thus a lack of information for other trophic levels such as macrophytes. Moreover, the impacts of BPA within an ecosystem context, i.e. with populations from different trophic levels studied at long term in environmental conditions, have never been assessed. We carried out a long-term lotic mesocosm study in 20 m long channels under three exposure concentrations of BPA (nominal concentrations of 0, 1, 10 and 100 μg/L) delivered continuously for 165 days. Three trophic levels were followed: macrophytes, macro-invertebrates (with a focus on Radix balthica) and fish (Gasterosteus aculeatus). Significant effects were shown at 100 μg/L BPA on the three trophic levels. BPA had a direct impact on macrophyte community structure, direct and indirect impacts on macro-invertebrates and on fish population structure. Gonad morphology of fish was affected at 1 and 10 μg/L of BPA, respectively for female and male sticklebacks. In addition to these ecotoxicity data, our results suggest that fish are good integrators of the responses of other communities (including macro-invertebrates and macrophytes) in mesocosm systems.

  5. Habitat fragmentation and species loss across three interacting trophic levels: effects of life-history and food-web traits.

    PubMed

    Cagnolo, Luciano; Valladares, Graciela; Salvo, Adriana; Cabido, Marcelo; Zak, Marcelo

    2009-10-01

    Not all species are likely to be equally affected by habitat fragmentation; thus, we evaluated the effects of size of forest remnants on trophically linked communities of plants, leaf-mining insects, and their parasitoids. We explored the possibility of differential vulnerability to habitat area reduction in relation to species-specific and food-web traits by comparing species-area regression slopes. Moreover, we searched for a synergistic effect of these traits and of trophic level. We collected mined leaves and recorded plant, leaf miner, and parasitoid species interactions in five 100-m2 transects in 19 Chaco Serrano woodland remnants in central Argentina. Species were classified into extreme categories according to body size, natural abundance, trophic breadth, and trophic level. Species-area slopes differed between groups with extreme values of natural abundance or trophic specialization. Nevertheless, synergistic effects of life-history and food-web traits were only found for trophic level and trophic breadth: area-related species loss was highest for specialist parasitoids. It has been suggested that species position within interaction webs could determine their vulnerability to extinction. Our results provide evidence that food-web parameters, such as trophic level and trophic breadth, affect species sensitivity to habitat fragmentation.

  6. Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: A review.

    PubMed

    Rocha, Thiago Lopes; Mestre, Nélia C; Sabóia-Morais, Simone Maria Teixeira; Bebianno, Maria João

    2017-01-01

    Despite the wide application of quantum dots (QDs) in electronics, pharmacy and nanomedicine, limited data is available on their environmental health risk. To advance our current understanding of the environmental impact of these engineered nanomaterials, the aim of this review is to give a detailed insight on the existing information concerning the behaviour, transformation and fate of QDs in the aquatic environment, as well as on its mode of action (MoA), ecotoxicity, trophic transfer and biomagnification at various trophic levels (micro-organisms, aquatic invertebrates and vertebrates). Data show that several types of Cd-based QDs, even at low concentrations (trophic levels is highly dependent on its physico-chemical properties, environmental conditions, concentration and exposure time, as well as, species, while UV irradiation increases its toxicity. The state of the art regarding the MoA of QDs according to taxonomic groups is summarised and illustrated. Accumulation and trophic transfer of QDs was observed in freshwater and seawater species, while limited biomagnification and detoxification processes were detected. Finally, current knowledge gaps are discussed and recommendations for future research identified. Overall, the knowledge available indicates that in order to develop sustainable nanotechnologies there is an urgent need to develop Cd-free QDs and new "core-shell-conjugate" QD structures.

  7. PCBs and DDE, but not PBDEs, increase with trophic level and marine input in nestling bald eagles.

    PubMed

    Elliott, Kyle Hamish; Cesh, Lillian S; Dooley, Jessica A; Letcher, Robert J; Elliott, John E

    2009-06-01

    Concentrations of persistent contaminants often vary widely among individuals within a population. We hypothesized that such variation was caused mainly by differences in diet (biomagnification) and in coastal systems by the tendency of marine systems to act as contaminant sinks. We examined the relationship between contaminant concentrations and stable isotope ratios in nestling plasma from an apex predator with a particularly broad diet. Our study included freshwater, estuarine, inshore and pelagic breeding sites. Bald eagles (Haliaeetus leucocephalus) at the pelagic marine sites showed high trophic level and marine input, eagles at the freshwater sites showed low trophic level and marine input, and eagles at the estuarine and inshore marine sites had intermediate values. The relationship between trophic level and marine input may reflect longer food chains in pelagic compared to terrestrial ecosystems. summation operator PCBs and DDE concentrations generally increased with trophic level and marine input, with the exception of the freshwater sites, while summation operator PBDEs, hydroxylated-PBDEs and hydroxylated-PCBs increased with marine input, but were independent of trophic level. The relationships for summation operator PCBs and DDE were often slightly stronger with marine input than trophic level, suggesting that oceanographic processes may be more important than trophic level. At freshwater locations, spatial variation may be more important than trophic level due to the heterogeneity of contaminant profiles between feeding locations (lakes, rivers, agricultural fields). Adults had similar isotopic composition to their chicks but higher contamination. Based on nests where prey composition was determined independently, isotopic enrichment values for nestling plasma were 1.6+/-0.1 (delta(15)N) and -0.4+/-0.2 (delta(13)C). We conclude that trophic level and marine influence are significant factors influencing PCB and DDE concentrations in eagles. However

  8. Influence of a chlor-alkali superfund site on mercury bioaccumulation in periphyton and low-trophic level fauna.

    PubMed

    Buckman, Kate L; Marvin-DiPasquale, Mark; Taylor, Vivien F; Chalmers, Ann; Broadley, Hannah J; Agee, Jennifer; Jackson, Brian P; Chen, Celia Y

    2015-07-01

    In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10-40× increase, mean ± standard deviation [SD]: 20.1 ± 24.8 ng g(-1) dry wt) and total mercury (THg; 10-30× increase, mean ± SD: 2045 ± 2669 ng g(-1) dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3-7× on average) relative to the reference (THg mean ± SD: 33.5 ± 9.33 ng g(-1) dry wt; MeHg mean ± SD: 0.52 ± 0.21 ng g(-1) dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L(-1)) and dissolved (0.76 ng L(-1)) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2-9 ng g(-1) d(-1) dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g(-1) d(-1) dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration.

  9. INFLUENCE OF A CHLOR-ALKALI SUPERFUND SITE ON MERCURY BIOACCUMULATION IN PERIPHYTON AND LOW-TROPHIC LEVEL FAUNA

    PubMed Central

    Buckman, Kate L.; Marvin-DiPasquale, Mark; Taylor, Vivien F.; Chalmers, Ann; Broadley, Hannah J.; Agee, Jennifer; Jackson, Brian P.; Chen, Celia Y.

    2015-01-01

    In Berlin, NH, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US EPA Superfund site and source of mercury (Hg) to the river. A study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40x increase, mean±sd: 20.1±24.8 ng g−1 DW) and total mercury (THg, 10–30x increase, mean±sd: 2045±2669 ng g−1 DW) compared to all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7x on average) relative to the reference (THg mean±sd: 33.5±9.33 ng g−1 DW; MeHg mean±sd: 0.52±0.21 ng g−1 DW). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L−1) and dissolved (0.76 ng L−1) fractions were 5-fold higher than at the reference sites, and 2–5-fold higher than downstream. Methylmercury production potential (MPP) of periphyton material was highest (2–9 ng g−1 d−1 DW) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g−1 d−1 DW). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies and shiners showed a weak positive relationship with porewater MeHg concentration. PMID:25732794

  10. Impacts of fishing low-trophic level species on marine ecosystems.

    PubMed

    Smith, Anthony D M; Brown, Christopher J; Bulman, Catherine M; Fulton, Elizabeth A; Johnson, Penny; Kaplan, Isaac C; Lozano-Montes, Hector; Mackinson, Steven; Marzloff, Martin; Shannon, Lynne J; Shin, Yunne-Jai; Tam, Jorge

    2011-08-26

    Low-trophic level species account for more than 30% of global fisheries production and contribute substantially to global food security. We used a range of ecosystem models to explore the effects of fishing low-trophic level species on marine ecosystems, including marine mammals and seabirds, and on other commercially important species. In five well-studied ecosystems, we found that fishing these species at conventional maximum sustainable yield (MSY) levels can have large impacts on other parts of the ecosystem, particularly when they constitute a high proportion of the biomass in the ecosystem or are highly connected in the food web. Halving exploitation rates would result in much lower impacts on marine ecosystems while still achieving 80% of MSY.

  11. Application of indicator kriging to the complementary use of bioindicators at three trophic levels.

    PubMed

    Figueira, Rui; Tavares, Paula C; Palma, Luís; Beja, Pedro; Sérgio, Cecília

    2009-10-01

    The use of biological indicators is widespread in environmental monitoring, although it has long been recognised that each bioindicator is generally associated with a range of potential limitations and shortcomings. To circumvent this problem, this study adopted the complementary use of bioindicators representing different trophic levels and providing different type of information, in an innovative approach to integrate knowledge and to estimate the overall health state of ecosystems. The approach is illustrated using mercury contamination in primary producers (mosses), primary consumers (domestic pigeons and red-legged partridges) and top predators (Bonelli's eagles) in southern Portugal. Indicator kriging geostatistics was used to identify the areas where mercury concentration was higher than the median for each species, and to produce an index that combines mercury contamination across trophic levels. Spatial patterns of mercury contamination were consistent across species. The combined index provided a new level of information useful in incorporating measures of overall environmental contamination into pollution studies.

  12. Food web structure and trophic levels in polyculture rice-crab fields

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Zhao, Wen; Li, Wenkuan; Zhao, Yuansong; Zhang, Peng; Zhang, Chen

    2015-05-01

    Stable carbon and nitrogen isotopes were used to investigate nutrient pathways and trophic relationships from the rice-crab system in Panjin, Liaoning Province, China. Values of δ13C ranged from -27.38‰±0.44‰ to -18.34‰±0.26‰ and δ15N ranged from 1.10‰±0.88‰ to 9.33‰±0.57‰. Pseudorasbora parva (Stone moroko) had the highest δ13C and δ15N values. The lowest δ13C values were obtained for the macrophytes and the lowest δ15N value was found in sediments. Stable carbon and nitrogen isotopes were used to determine the contribution of different food items to the diets of crabs. The δ13C results indicated that the Pseudorasbora parva made the greatest contribution to the diet of Eriocheir sinensis (Chinese mitten crab), while the δ15N results indicated that most food items contributed more than 10% to the diet of the crab. There were three trophic levels identified in the system (Levels 0-2). The crab Eriocheir sinensis, fish Pseudorasbora parva and Misgurnus anguillicaudatus (Oriental weatherfish), and the oligochaete Limnodrilus hoffmeisteri (Limnodrilus worm), were at the second level, zooplankton were at the first level and suspended particulate matter and macrophytes were at trophic position 0.

  13. Effect of silver nanoparticles on marine organisms belonging to different trophic levels.

    PubMed

    Gambardella, Chiara; Costa, Elisa; Piazza, Veronica; Fabbrocini, Adele; Magi, Emanuele; Faimali, Marco; Garaventa, Francesca

    2015-10-01

    Silver nanoparticles (Ag-NPs) are increasingly used in a wide range of consumer products and such an extensive use raises questions about their safety and environmental toxicity. We investigated the potential toxicity of Ag-NPs in the marine ecosystem by analyzing the effects on several organisms belonging to different trophic levels. Algae (Dunaliella tertiolecta, Skeletonema costatum), cnidaria (Aurelia aurita jellyfish), crustaceans (Amphibalanus amphitrite and Artemia salina) and echinoderms (Paracentrotus lividus) were exposed to Ag-NPs and different end-points were evaluated: algal growth, ephyra jellyfish immobilization and frequency of pulsations, crustaceans mortality and swimming behavior, and sea urchin sperm motility. Results showed that all the end-points were able to underline a dose-dependent effect. Jellyfish were the most sensitive species, followed by barnacles, sea urchins, green algae, diatoms and brine shrimps. In conclusion, Ag-NPs exposure can influence different trophic levels within the marine ecosystem.

  14. Correlated biogeographic variation of magnesium across trophic levels in a terrestrial food chain.

    PubMed

    Sun, Xiao; Kay, Adam D; Kang, Hongzhang; Small, Gaston E; Liu, Guofang; Zhou, Xuan; Yin, Shan; Liu, Chunjiang

    2013-01-01

    Using samples from eastern China (c. 25 - 41° N and 99 - 123° E) and from a common garden experiment, we investigate how Mg concentration varies with climate across multiple trophic levels. In soils, plant tissue (Oriental oak leaves and acorns), and a specialist acorn predator (the weevil Curculio davidi), Mg concentration increased significantly with different slopes from south to north, and generally decreased with both mean annual temperature (MAT) and precipitation (MAP). In addition, soil, leaf, acorn and weevil Mg showed different strengths of association and sensitivity with climatic factors, suggesting that distinct mechanisms may drive patterns of Mg variation at different trophic levels. Our findings provide a first step toward determining whether anticipated changes in temperature and precipitation due to climate change will have important consequences for the bioavailability and distribution of Mg in food chain.

  15. Correlated Biogeographic Variation of Magnesium across Trophic Levels in a Terrestrial Food Chain

    PubMed Central

    Sun, Xiao; Kay, Adam D.; Kang, Hongzhang; Small, Gaston E.; Liu, Guofang; Zhou, Xuan; Yin, Shan; Liu, Chunjiang

    2013-01-01

    Using samples from eastern China (c. 25 – 41° N and 99 – 123° E) and from a common garden experiment, we investigate how Mg concentration varies with climate across multiple trophic levels. In soils, plant tissue (Oriental oak leaves and acorns), and a specialist acorn predator (the weevil Curculio davidi), Mg concentration increased significantly with different slopes from south to north, and generally decreased with both mean annual temperature (MAT) and precipitation (MAP). In addition, soil, leaf, acorn and weevil Mg showed different strengths of association and sensitivity with climatic factors, suggesting that distinct mechanisms may drive patterns of Mg variation at different trophic levels. Our findings provide a first step toward determining whether anticipated changes in temperature and precipitation due to climate change will have important consequences for the bioavailability and distribution of Mg in food chain. PMID:24223807

  16. Assessing cadmium distribution applying neutron radiography in moss trophical levels, located in Szarvasko, Hungary.

    PubMed

    Varga, János; Korösi, Ferenc; Balaskó, Márton; Naár, Zoltán

    2004-10-01

    The measuring station of the 10 MW VVR-SM research reactor at the Budapest Neutron Centre (Hungary) was used to perform dynamic neutron radiography (DNR), which was, to our best knowledge, the first time, in a Tortella tortuosa biotope. In the conducted study, two trophical levels, moss and spider Thomisidae sp. juv., were examined. Cadmium penetration routes, distribution and accumulation zones were visualized in the leafy gametophyte life cycle of Tortella tortuosa and in the organs of the spider.

  17. [Plant responses to elevated atmospheric carbon dioxide and transmission to other trophic levels]. Final report

    SciTech Connect

    Lincoln, D.E.

    1995-10-01

    This program investigated how host plant responses to elevated atmospheric carbon dioxide may be transmitted to other trophic levels, especially leaf eating insects, and alter consumption of leaves and impare their function. Study results included the following findings: increased carbon dioxide to plants alters feeding by insect herbivores; leaves produced under higher carbon conditions contain proportionally less nitrogen; insect herbivores may have decreased reproduction under elevated carbon dioxide.

  18. Stepping in Elton's footprints: a general scaling model for body masses and trophic levels across ecosystems.

    PubMed

    Riede, Jens O; Brose, Ulrich; Ebenman, Bo; Jacob, Ute; Thompson, Ross; Townsend, Colin R; Jonsson, Tomas

    2011-02-01

    Despite growing awareness of the significance of body-size and predator-prey body-mass ratios for the stability of ecological networks, our understanding of their distribution within ecosystems is incomplete. Here, we study the relationships between predator and prey size, body-mass ratios and predator trophic levels using body-mass estimates of 1313 predators (invertebrates, ectotherm and endotherm vertebrates) from 35 food-webs (marine, stream, lake and terrestrial). Across all ecosystem and predator types, except for streams (which appear to have a different size structure in their predator-prey interactions), we find that (1) geometric mean prey mass increases with predator mass with a power-law exponent greater than unity and (2) predator size increases with trophic level. Consistent with our theoretical derivations, we show that the quantitative nature of these relationships implies systematic decreases in predator-prey body-mass ratios with the trophic level of the predator. Thus, predators are, on an average, more similar in size to their prey at the top of food-webs than that closer to the base. These findings contradict the traditional Eltonian paradigm and have implications for our understanding of body-mass constraints on food-web topology, community dynamics and stability.

  19. Hemiparasitic plant impacts animal and plant communities across four trophic levels.

    PubMed

    Hartley, S E; Green, P; Massey, F P; Press, M C P; Stewart, J A; John, E A

    2015-09-01

    Understanding the impact of species on community structure is a fundamental question in ecology. There is a growing body of evidence that suggests that both subdominant species and parasites can have disproportionately large effects on other organisms. Here we report those impacts for a species that is both subdominant and parasitic, the hemiparasite Rhinanthus minor. While the impact of parasitic angiosperms on their hosts and, to a lesser degree, coexisting plant species, has been well characterized, much less is known about their effects on higher trophic levels: We experimentally manipulated field densities of the hemiparasite Rhinanthus minor in a species-rich grassland, comparing the plant and invertebrate communities in plots where it was removed, present at natural densities, or present at enhanced densities. Plots with natural and enhanced densities of R. minor had lower plant biomass than plots without the hemiparasite, but enhanced densities almost doubled the abundance of invertebrates within the plots across all trophic levels, with effects evident in herbivores, predators, and detritivores. The hemiparasite R. minor, despite being a subdominant and transient component within plant communities that it inhabits, has profound effects on four different trophic levels. These effects persist beyond the life of the hemiparasite, emphasizing its role as a keystone species in grassland communities.

  20. Environmental forcing on life history strategies: Evidence for multi-trophic level responses at ocean basin scales

    NASA Astrophysics Data System (ADS)

    Suryan, Robert M.; Saba, Vincent S.; Wallace, Bryan P.; Hatch, Scott A.; Frederiksen, Morten; Wanless, Sarah

    2009-04-01

    Variation in life history traits of organisms is thought to reflect adaptations to environmental forcing occurring from bottom-up and top-down processes. Such variation occurs not only among, but also within species, indicating demographic plasticity in response to environmental conditions. From a broad literature review, we present evidence for ocean basin- and large marine ecosystem-scale variation in intra-specific life history traits, with similar responses occurring among trophic levels from relatively short-lived secondary producers to very long-lived apex predators. Between North Atlantic and North Pacific Ocean basins, for example, species in the Eastern Pacific exhibited either later maturation, lower fecundity, and/or greater annual survival than conspecifics in the Western Atlantic. Parallel variations in life histories among trophic levels also occur in adjacent seas and between eastern vs. western ocean boundaries. For example, zooplankton and seabird species in cooler Barents Sea waters exhibit lower fecundity or greater annual survival than conspecifics in the Northeast Atlantic. Sea turtles exhibit a larger size and a greater reproductive output in the Western Pacific vs. Eastern Pacific. These examples provide evidence for food-web-wide modifications in life history strategies in response to environmental forcing. We hypothesize that such dichotomies result from frequency and amplitude shifts in resource availability over varying temporal and spatial scales. We review data that supports three primary mechanisms by which environmental forcing affects life history strategies: (1) food-web structure; (2) climate variability affecting the quantity and seasonality of primary productivity; (3) bottom-up vs. top-down forcing. These proposed mechanisms provide a framework for comparisons of ecosystem function among oceanic regions (or regimes) and are essential in modeling ecosystem response to climate change, as well as for creating dynamic ecosystem

  1. Environmental forcing on life history strategies: Evidence for multi-trophic level responses at ocean basin scales

    USGS Publications Warehouse

    Suryan, Robert M.; Saba, Vincent S.; Wallace, Bryan P.; Hatch, Scott A.; Frederiksen, Morten; Wanless, Sarah

    2009-01-01

    Variation in life history traits of organisms is thought to reflect adaptations to environmental forcing occurring from bottom-up and top-down processes. Such variation occurs not only among, but also within species, indicating demographic plasticity in response to environmental conditions. From a broad literature review, we present evidence for ocean basin- and large marine ecosystem-scale variation in intra-specific life history traits, with similar responses occurring among trophic levels from relatively short-lived secondary producers to very long-lived apex predators. Between North Atlantic and North Pacific Ocean basins, for example, species in the Eastern Pacific exhibited either later maturation, lower fecundity, and/or greater annual survival than conspecifics in the Western Atlantic. Parallel variations in life histories among trophic levels also occur in adjacent seas and between eastern vs. western ocean boundaries. For example, zooplankton and seabird species in cooler Barents Sea waters exhibit lower fecundity or greater annual survival than conspecifics in the Northeast Atlantic. Sea turtles exhibit a larger size and a greater reproductive output in the Western Pacific vs. Eastern Pacific. These examples provide evidence for food-web-wide modifications in life history strategies in response to environmental forcing. We hypothesize that such dichotomies result from frequency and amplitude shifts in resource availability over varying temporal and spatial scales. We review data that supports three primary mechanisms by which environmental forcing affects life history strategies: (1) food-web structure; (2) climate variability affecting the quantity and seasonality of primary productivity; (3) bottom-up vs. top-down forcing. These proposed mechanisms provide a framework for comparisons of ecosystem function among oceanic regions (or regimes) and are essential in modeling ecosystem response to climate change, as well as for creating dynamic ecosystem

  2. Seed banks and their implications of rivers with different trophic levels in Chaohu Lake Basin, China.

    PubMed

    Cui, Naxin; Wu, Juan; Zhong, Fei; Yang, Lihua; Xiang, Dongfang; Cheng, Shuiping; Zhou, Qi

    2015-02-01

    The seed banks of three rivers, with different trophic levels in Chaohu Lake Basin, China, were investigated to explore the dynamics of seed bank under the pressure of eutrophication. A total of 60 species from 25 family 43 genera were identified from the seed banks of the three rivers. In the eutrophic Paihe River, the species richness and mean seed density were the highest, followed by the oligotrophic Hangbuhe River and the hypereutrophic Nanfeihe River. Various compositions of three functional group assemblage of hydro-ecotypes were found in different rivers. The dominant and endemic species were aquatic, wetland, and terrestrial species in Hangbuhe River, Paihe River, and Nanfeihe River, respectively. The shift trend of seed bank in three rivers probably presented past vegetation dynamics under the trophic process in the rivers of Chaohu Lake Basin. Seed bank in the river bed might be quickly assessed by its trophic level. Additionally, it might imply that the seed bank with more aquatic species in the oligotrophic river would be a potential seed resource for vegetation restoration of severely degraded river ecosystems.

  3. Fungal phyllosphere communities are altered by indirect interactions among trophic levels.

    PubMed

    Perez, Jose L; French, J Victor; Summy, Kenneth R; Baines, Anita Davelos; Little, Christopher R

    2009-05-01

    Trophic interactions involving predators, herbivores, and plants have been described in terrestrial systems. However, there is almost no information on the effect of trophic interactions on microbial phyllosphere community abundance, diversity, or structure. In this study, the interaction between a parasitoid, an insect herbivore, and the fungal phyllosphere community is examined. Parasitoid wasps have an indirect negative impact on fungal community diversity. On the citrus phyllosphere, the exotic wasp species, Amitus hesperidum and Encarsia opulenta, may parasitize the citrus blackfly (Aleurocanthus woglumi). If parasitism levels are low, the blackfly may produce significant amounts of honeydew secretions on the surface of the leaf. Honeydew deposition provides a carbon-rich substrate for the development of fungal growth persisting as sooty mold on the leaves. Leaves from sooty mold-infested grapefruit (Citrus paradisi) trees were collected from multiple orchards in south Texas. The effect of different levels of exotic parasite activity, citrus blackfly, and sooty mold infestation on phyllosphere mycobiota community structure and diversity was examined. Our results suggest the presence of the parasitoid may lead to a top-down trophic cascade affecting phyllosphere fungal community diversity and structure. Additionally, persistent sooty mold deposits that have classically been referred to as Capnodium citri (and related asexual morphological forms) actually comprise a myriad of fungal species including many saprophytes and potential fruit and foliar pathogens of citrus.

  4. Possible shift in macaque trophic level following a century of biodiversity loss in Singapore.

    PubMed

    Gibson, Luke

    2011-07-01

    Biodiversity loss in tropical forests is a major problem in conservation biology, and nowhere is this more dire than in Southeast Asia. Deforestation and the associated loss of species may trigger shifts in habitat and feeding preferences of persisting species. In this study, I compared the habitat use and diet of long-tailed macaque (Macaca fascicularis) populations in Singapore from two time periods: museum specimens originally collected between 1893 and 1944, and living macaques sampled in 2009. I collected hair and used stable carbon and nitrogen isotope analysis to identify temporal changes in dietary source and trophic position, respectively. δ(13)C ratios were virtually identical, suggesting that macaques foraged in similar habitats during both time periods. However, δ(15)N ratios decreased considerably over time, suggesting that macaques today feed at a lower trophic level than previously. This decline in trophic level may be because of the disappearance or decline of other species that compete with macaques for fruit. This study highlights the effect of biodiversity loss on persisting species in degraded habitats of Southeast Asia, and improves our understanding of how species will adapt to further human-driven changes in tropical forest habitats.

  5. A meta-analysis of home range studies in the context of trophic levels: Implications for policy-based conservation

    PubMed Central

    Diepstraten, Rianne; Jessen, Tyler

    2017-01-01

    Home ranges have been widely-used as ecological tools, though using home range estimates in decision-support for conservation biology is a relatively new idea. However, trophic levels are rarely taken into consideration when estimating home range. This lapse could present issues when interpreting past studies, especially in policy-based conservation. The objectives of this study were to survey the current literature, to critically analyse published articles with home range analyses, and to compare home range size by species’ trophic level. We predicted that animals residing in higher trophic levels would have significantly larger home ranges than animals occupying lower trophic levels. We found that terrestrial carnivores had larger home ranges than terrestrial herbivores, though terrestrial mesocarnivores had the largest home ranges. We also found that aquatic herbivores had larger home ranges than both aquatic carnivores and aquatic mesocarnivores. Our results are important to consider for planning and management sectors, to avoid the implementation of ineffective conservation policies. PMID:28267759

  6. A meta-analysis of home range studies in the context of trophic levels: Implications for policy-based conservation.

    PubMed

    Fauvelle, Catherine; Diepstraten, Rianne; Jessen, Tyler

    2017-01-01

    Home ranges have been widely-used as ecological tools, though using home range estimates in decision-support for conservation biology is a relatively new idea. However, trophic levels are rarely taken into consideration when estimating home range. This lapse could present issues when interpreting past studies, especially in policy-based conservation. The objectives of this study were to survey the current literature, to critically analyse published articles with home range analyses, and to compare home range size by species' trophic level. We predicted that animals residing in higher trophic levels would have significantly larger home ranges than animals occupying lower trophic levels. We found that terrestrial carnivores had larger home ranges than terrestrial herbivores, though terrestrial mesocarnivores had the largest home ranges. We also found that aquatic herbivores had larger home ranges than both aquatic carnivores and aquatic mesocarnivores. Our results are important to consider for planning and management sectors, to avoid the implementation of ineffective conservation policies.

  7. Trophic groups and modules: two levels of group detection in food webs

    PubMed Central

    Gauzens, Benoit; Thébault, Elisa; Lacroix, Gérard; Legendre, Stéphane

    2015-01-01

    Within food webs, species can be partitioned into groups according to various criteria. Two notions have received particular attention: trophic groups (TGs), which have been used for decades in the ecological literature, and more recently, modules. The relationship between these two group concepts remains unknown in empirical food webs. While recent developments in network theory have led to efficient methods for detecting modules in food webs, the determination of TGs (groups of species that are functionally similar) is largely based on subjective expert knowledge. We develop a novel algorithm for TG detection. We apply this method to empirical food webs and show that aggregation into TGs allows for the simplification of food webs while preserving their information content. Furthermore, we reveal a two-level hierarchical structure where modules partition food webs into large bottom–top trophic pathways, whereas TGs further partition these pathways into groups of species with similar trophic connections. This provides new perspectives for the study of dynamical and functional consequences of food-web structure, bridging topological and dynamical analysis. TGs have a clear ecological meaning and are found to provide a trade-off between network complexity and information loss. PMID:25878127

  8. Trophic groups and modules: two levels of group detection in food webs.

    PubMed

    Gauzens, Benoit; Thébault, Elisa; Lacroix, Gérard; Legendre, Stéphane

    2015-05-06

    Within food webs, species can be partitioned into groups according to various criteria. Two notions have received particular attention: trophic groups (TGs), which have been used for decades in the ecological literature, and more recently, modules. The relationship between these two group concepts remains unknown in empirical food webs. While recent developments in network theory have led to efficient methods for detecting modules in food webs, the determination of TGs (groups of species that are functionally similar) is largely based on subjective expert knowledge. We develop a novel algorithm for TG detection. We apply this method to empirical food webs and show that aggregation into TGs allows for the simplification of food webs while preserving their information content. Furthermore, we reveal a two-level hierarchical structure where modules partition food webs into large bottom-top trophic pathways, whereas TGs further partition these pathways into groups of species with similar trophic connections. This provides new perspectives for the study of dynamical and functional consequences of food-web structure, bridging topological and dynamical analysis. TGs have a clear ecological meaning and are found to provide a trade-off between network complexity and information loss.

  9. Predator-prey dynamics driven by feedback between functionally diverse trophic levels.

    PubMed

    Tirok, Katrin; Bauer, Barbara; Wirtz, Kai; Gaedke, Ursula

    2011-01-01

    Neglecting the naturally existing functional diversity of communities and the resulting potential to respond to altered conditions may strongly reduce the realism and predictive power of ecological models. We therefore propose and study a predator-prey model that describes mutual feedback via species shifts in both predator and prey, using a dynamic trait approach. Species compositions of the two trophic levels were described by mean functional traits--prey edibility and predator food-selectivity--and functional diversities by the variances. Altered edibility triggered shifts in food-selectivity so that consumers continuously respond to the present prey composition, and vice versa. This trait-mediated feedback mechanism resulted in a complex dynamic behavior with ongoing oscillations in the mean trait values, reflecting continuous reorganization of the trophic levels. The feedback was only possible if sufficient functional diversity was present in both trophic levels. Functional diversity was internally maintained on the prey level as no niche existed in our system, which was ideal under any composition of the predator level due to the trade-offs between edibility, growth and carrying capacity. The predators were only subject to one trade-off between food-selectivity and grazing ability and in the absence of immigration, one predator type became abundant, i.e., functional diversity declined to zero. In the lack of functional diversity the system showed the same dynamics as conventional models of predator-prey interactions ignoring the potential for shifts in species composition. This way, our study identified the crucial role of trade-offs and their shape in physiological and ecological traits for preserving diversity.

  10. Forest fragmentation reduces parasitism via species loss at multiple trophic levels.

    PubMed

    Fenoglio, Maria Silvina; Srivastava, Diane; Valladares, Graciela; Cagnolo, Luciano; Salvo, Adriana

    2012-11-01

    Although there is accumulating evidence from artificially assembled communities that reductions of species diversity result in diminished ecosystem functioning, it is not yet clear how real-world changes in diversity affect the flow of energy between trophic levels in multi-trophic contexts. In central Argentina, forest fragmentation has led to species loss of plants, herbivore and parasitoid insects, decline in trophic processes (herbivory and parasitism), and food web contraction. Here we examine if and how loss of parasitoid species following fragmentation causes decreased parasitism rates, by analyzing food webs of leaf miners and parasitoids from 19 forest fragments of decreasing size. We asked three questions: Do reductions in parasitoid richness following fragmentation directly or indirectly affect parasitism rate? Are changes in community parasitism rate driven by changes in the parasitism rate of individual leaf miner species, or changes in leaf miner composition, or both? Which traits of species determine the effects of food web change on parasitism rates? We found that habitat loss initiated a bottom-up cascade of extinctions from plants to leaf miners to parasitoids, with reductions in parasitoid richness ultimately driving decreases in parasitism rates. This relationship between parasitoid richness and parasitism depended on changes in the relative abundance (but not occurrence) of leaf miners such that parasitoid-rich fragments were dominated by leaf miner species that supported high rates of parasitism. Surprisingly, we found that only a small subset of species in the food web could account for much of the increase in parasitism with parasitoid richness: lepidopteran miners that attained exceptionally high densities in some fragments and their largely specialist parasitoids. How specialized a parasitoid is, and the relative abundance of leaf miners, had important effects on the diversity-parasitism rate relationship, but not other leaf miner traits

  11. Can upwelling signals be detected in intertidal fishes of different trophic levels?

    PubMed

    Pulgar, J; Poblete, E; Alvarez, M; Morales, J P; Aranda, B; Aldana, M; Pulgar, V M

    2013-11-01

    For intertidal fishes belonging to three species, the herbivore Scartichthys viridis (Blenniidae), the omnivore Girella laevifrons (Kyphosidae) and the carnivore Graus nigra (Kyphosidae), mass and body size relationships were higher in individuals from an upwelling zone compared with those from a non-upwelling zone. RNA:DNA were higher in the herbivores and omnivores from the upwelling zone. Higher biomass and RNA:DNA in the upwelling intertidal fishes may be a consequence of an increased exposure to higher nutrient availability, suggesting that increased physiological conditioning in vertebrates from upwelling areas can be detected and measured using intertidal fishes of different trophic levels.

  12. Effects of predatory ants on lower trophic levels across a gradient of coffee management complexity.

    PubMed

    Philpott, S M; Perfecto, I; Vandermeer, J

    2008-05-01

    1. Ants are important predators in agricultural systems, and have complex and often strong effects on lower trophic levels. Agricultural intensification reduces habitat complexity, food web diversity and structure, and affects predator communities. Theory predicts that strong top-down cascades are less likely to occur as habitat and food web complexity decrease. 2. To examine relationships between habitat complexity and predator effects, we excluded ants from coffee plants in coffee agroecosystems varying in vegetation complexity. Specifically, we studied the effects of eliminating ants on arthropod assemblages, herbivory, damage by the coffee berry borer and coffee yields in four sites differing in management intensification. We also sampled ant assemblages in each management type to see whether changes in ant assemblages relate to any observed changes in top-down effects. 3. Removing ants did not change total arthropod densities, herbivory, coffee berry borer damage or coffee yields. Ants did affect densities of some arthropod orders, but did not affect densities of different feeding groups. The effects of ants on lower trophic levels did not change with coffee management intensity. 4. Diversity and activity of ants on experimental plants did not change with coffee intensification, but the ant species composition differed. 5. Although variation in habitat complexity may affect trophic cascades, manipulating predatory ants across a range of coffee agroecosystems varying in management intensity did not result in differing effects on arthropod assemblages, herbivory, coffee berry borer attack or coffee yields. Thus, there is no clear pattern that top-down effects of ants in coffee agroecosystems intensify or dampen with decreased habitat complexity.

  13. Influence of a chlor-alkali superfund site on mercury bioaccumulation in periphyton and low-trophic level fauna

    USGS Publications Warehouse

    Buckman, Kate L.; Marvin-DiPasquale, Mark C.; Taylor, Vivien F.; Chalmers, Ann T.; Broadley, Hannah J.; Agee, Jennifer L.; Jackson, Brian P.; Chen, Celia Y.

    2015-01-01

    In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40× increase, mean ± standard deviation [SD]: 20.1 ± 24.8 ng g–1 dry wt) and total mercury (THg; 10–30× increase, mean ± SD: 2045 ± 2669 ng g–1 dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7× on average) relative to the reference (THg mean ± SD: 33.5 ± 9.33 ng g–1 dry wt; MeHg mean ± SD: 0.52 ± 0.21 ng g–1 dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L–1) and dissolved (0.76 ng L–1) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2–9 ng g–1 d–1 dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g–1 d–1 dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration.

  14. Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels.

    PubMed

    Spooner, Daniel E; Vaughn, Caryn C; Galbraith, Heather S

    2012-02-01

    Changing environments can have divergent effects on biodiversity-ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species' trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments.

  15. Complex dynamics in a three-level trophic system with intraspecies interaction.

    PubMed

    Peet, Alison B; Deutsch, Peter A; Peacock-López, Enrique

    2005-02-21

    In this paper, we present a three-level trophic food chain, including intraspecies interaction. In contrast with other analyses, we consider the effect on the third trophic level by the first-level parameters. The model shows complex, as well as, chaotic oscillations. Bifurcation diagrams show period doubling route to chaos and crises. Also from the forward and backwards sections of the bifurcation diagrams, we find hysteresis. This result implies the coexistence of attractors for the same parameter values. In particular, we consider the coexistence of a chaotic and a P1 attractors. Our results show that the regulation in the food chain is not exclusive to either a food-prey or prey-predator interaction, but to a more subtle food-prey-predator interaction, where, for some parameter values, a food-prey or a prey-predator regulation may dominate the system's dynamics. Finally, we consider the impact of the intraspecies interaction in the overall dynamics of the food chain.

  16. Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels

    USGS Publications Warehouse

    Spooner, D.E.; Vaughn, C.C.; Galbraith, H.S.

    2012-01-01

    Changing environments can have divergent effects on biodiversity-ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species' trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments. ?? 2011 Springer-Verlag.

  17. Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems.

    PubMed

    Atwood, Trisha B; Hammill, Edd; Richardson, John S

    2014-11-01

    Concern over accelerating rates of species invasions and losses have initiated investigations into how local and global changes to predator abundance mediate trophic cascades that influence CO2 fluxes of aquatic ecosystems. However, to date, no studies have investigated how species additions or losses at other consumer trophic levels influence the CO2 flux of aquatic ecosystems. In this study, we added a large predatory stonefly, detritivorous stonefly, or grazer tadpole to experimental stream food webs and over a 70-day period quantified their effects on community composition, leaf litter decomposition, chlorophyll-a concentrations, and stream CO2 emissions. In general, streams where the large grazer or large detritivore were added showed no change in total invertebrate biomass, leaf litter loss, chlorophyll-a concentrations, or stream CO2 emissions compared with controls; although we did observe a spike in CO2 emissions in the large grazer treatment following a substantial reduction in chlorophyll-a concentrations on day 28. However, the large grazer and large detritivore altered the community composition of streams by reducing the densities of other grazer and detritivore taxa, respectively, compared with controls. Conversely, the addition of the large predator created trophic cascades that reduced total invertebrate biomass and increased primary producer biomass. The cascading effects of the predator additions on the food web ultimately led to decreased CO2 emissions from stream channels by up to 95%. Our results suggest that stream ecosystem processes were more influenced by changes in large predator abundance than large grazer or detritivore abundance, because of a lack of functionally similar large predators. Our study demonstrates that the presence/absence of species with unique functional roles may have consequences for the exchange of CO2 between the ecosystem and the atmosphere.

  18. Assessment of heavy metal levels in surface sediments of estuaries and adjacent coastal areas in China

    NASA Astrophysics Data System (ADS)

    Liu, Xianbin; Li, Deliang; Song, Guisheng

    2017-03-01

    This article investigates the variations of contamination levels of heavy metals such as copper, lead, chromium, cadmium, zinc, arsenic, and mercury over time in surface sediments of the Changjiang River Estuary (CRE), Yellow River Estuary (YRE), Pearl River Estuary (PRE), and their adjacent coastal areas in China. The contamination factor (CF), pollution load index (PLI), and geoaccumulation index ( I geo) are used to evaluate the quality of the surface sediments in the study areas. The results showed that the CRE, YRE, and their adjacent coastal areas were at a low risk of contamination in terms of heavy metals, while the PRE and its adjacent coastal area were at a moderate level. By comparison, the concentrations of heavy metals in the surface sediments of the YRE and its adjacent coastal area were relatively lower than those in the CRE, PRE, and their adjacent coastal areas.

  19. Assessment of heavy metal levels in surface sediments of estuaries and adjacent coastal areas in China

    NASA Astrophysics Data System (ADS)

    Liu, Xianbin; Li, Deliang; Song, Guisheng

    2016-05-01

    This article investigates the variations of contamination levels of heavy metals such as copper, lead, chromium, cadmium, zinc, arsenic, and mercury over time in surface sediments of the Changjiang River Estuary (CRE), Yellow River Estuary (YRE), Pearl River Estuary (PRE), and their adjacent coastal areas in China. The contamination factor (CF), pollution load index (PLI), and geoaccumulation index (I geo) are used to evaluate the quality of the surface sediments in the study areas. The results showed that the CRE, YRE, and their adjacent coastal areas were at a low risk of contamination in terms of heavy metals, while the PRE and its adjacent coastal area were at a moderate level. By comparison, the concentrations of heavy metals in the surface sediments of the YRE and its adjacent coastal area were relatively lower than those in the CRE, PRE, and their adjacent coastal areas.

  20. Plant Volatiles Induced by Herbivore Egg Deposition Affect Insects of Different Trophic Levels

    PubMed Central

    Fatouros, Nina E.; Lucas-Barbosa, Dani; Weldegergis, Berhane T.; Pashalidou, Foteini G.; van Loon, Joop J. A.; Dicke, Marcel; Harvey, Jeffrey A.; Gols, Rieta; Huigens, Martinus E.

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant’s volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels. PMID:22912893

  1. Ecosystem functions across trophic levels are linked to functional and phylogenetic diversity.

    PubMed

    Thompson, Patrick L; Davies, T Jonathan; Gonzalez, Andrew

    2015-01-01

    In experimental systems, it has been shown that biodiversity indices based on traits or phylogeny can outperform species richness as predictors of plant ecosystem function. However, it is unclear whether this pattern extends to the function of food webs in natural ecosystems. Here we tested whether zooplankton functional and phylogenetic diversity explains the functioning of 23 natural pond communities. We used two measures of ecosystem function: (1) zooplankton community biomass and (2) phytoplankton abundance (Chl a). We tested for diversity-ecosystem function relationships within and across trophic levels. We found a strong correlation between zooplankton diversity and ecosystem function, whereas local environmental conditions were less important. Further, the positive diversity-ecosystem function relationships were more pronounced for measures of functional and phylogenetic diversity than for species richness. Zooplankton and phytoplankton biomass were best predicted by different indices, suggesting that the two functions are dependent upon different aspects of diversity. Zooplankton community biomass was best predicted by zooplankton trait-based functional richness, while phytoplankton abundance was best predicted by zooplankton phylogenetic diversity. Our results suggest that the positive relationship between diversity and ecosystem function can extend across trophic levels in natural environments, and that greater insight into variation in ecosystem function can be gained by combining functional and phylogenetic diversity measures.

  2. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels.

    PubMed

    Fatouros, Nina E; Lucas-Barbosa, Dani; Weldegergis, Berhane T; Pashalidou, Foteini G; van Loon, Joop J A; Dicke, Marcel; Harvey, Jeffrey A; Gols, Rieta; Huigens, Martinus E

    2012-01-01

    Plants release volatiles induced by herbivore feeding that may affect the diversity and composition of plant-associated arthropod communities. However, the specificity and role of plant volatiles induced during the early phase of attack, i.e. egg deposition by herbivorous insects, and their consequences on insects of different trophic levels remain poorly explored. In olfactometer and wind tunnel set-ups, we investigated behavioural responses of a specialist cabbage butterfly (Pieris brassicae) and two of its parasitic wasps (Trichogramma brassicae and Cotesia glomerata) to volatiles of a wild crucifer (Brassica nigra) induced by oviposition of the specialist butterfly and an additional generalist moth (Mamestra brassicae). Gravid butterflies were repelled by volatiles from plants induced by cabbage white butterfly eggs, probably as a means of avoiding competition, whereas both parasitic wasp species were attracted. In contrast, volatiles from plants induced by eggs of the generalist moth did neither repel nor attract any of the tested community members. Analysis of the plant's volatile metabolomic profile by gas chromatography-mass spectrometry and the structure of the plant-egg interface by scanning electron microscopy confirmed that the plant responds differently to egg deposition by the two lepidopteran species. Our findings imply that prior to actual feeding damage, egg deposition can induce specific plant responses that significantly influence various members of higher trophic levels.

  3. Food-web dynamics and trophic-level interactions in a multispecies community of freshwater unionids

    USGS Publications Warehouse

    Nichols, S.J.; Garling, D.

    2000-01-01

    We compared feeding habits and trophic-level relationships of unionid species in a detritus-dominated river and an alga-dominated lake using biochemical analyses, gut contents, and stable-isotope ratios. The δ13C ratios for algae and other food-web components show that all unionids from both the river and the lake used bacterial carbons, not algal carbons, as their main dietary source, in spite of positive selection and concentration of diatoms and green algae from the water column in the gut and mantle cavity. Algae did provide key nutrients such as vitamins A and D and phytosterols that were bioaccumulated in the tissues of all species. The δ15N ratios for the multispecies unionid community in the Huron River indicated some differences in nitrogen enrichment between species, the greatest enrichment being found in Pyganadon grandis. These δ15N ratios indicate that unionids may not always feed as primary consumers or omnivores. Stable-isotope data were critical for delineating diets and trophic-level interactions of this group of filter-feeders. Further refinements in identifying bacterial and picoplankton components of the fine particulate organic matter are needed to complete our understanding of resource partitioning between multispecies unionid populations.

  4. From cryptic herbivore to predator: stable isotopes reveal consistent variability in trophic levels in an ant population.

    PubMed

    Roeder, Karl A; Kaspari, Michael

    2017-02-01

    Populations may collectively exhibit a broad diet because individuals have large diet breadths and/or because subpopulations of specialists co-occur. In social insect populations, the diet of the genetic individual, the colony, may similarly arise because workers are diet generalists or castes of specialists. We used elemental and isotopic methods to explore how the invasive red imported fire ant, Solenopsis invicta, achieves its status as a trophic generalist. In one 0.5-ha old field, 31 S. invicta colonies ranged from 1°-consumer to 2°-predator (δ(15) N's 0.35-7.38‰), a range comparable to that shown in sampled ant communities. Moreover, a colony's trophic rank was stable despite δ(15) N fluctuating 2.98‰ over the year. Colonies that fed at higher trophic levels were not larger, but consumed more C3 -based resources. Individual worker mass, however, did increase with δ(15) N (r(2)  = 0.29, P < 0.001). The ninefold variation in worker mass within a colony generated trophic variance approximately 15% of the population of colonies. Combined, we show how intraspecific trait variation contributes to the trophic breadth of S. invicta, and suggest mechanisms that further explain how their trophic signature varies across space, but remains stable over time.

  5. Environmental heterogeneity patterns and assessment of trophic levels in two Mediterranean lagoons: Orbetello and Varano, Italy.

    PubMed

    Specchiulli, Antonietta; Focardi, Silvia; Renzi, Monia; Scirocco, Tommaso; Cilenti, Lucrezia; Breber, Paolo; Bastianoni, Simone

    2008-09-01

    The management of coastal lagoons is of particular interest due to their high economical importance. In spite of their great productivity, coastal lagoons are often impacted by human pressure which produces water eutrophication. The aim of this paper is to assess the trophic state of the two Mediterranean lagoons taking into account chemical-physical parameters, nutrient concentrations and biological parameters. Two Italian lagoons, Orbetello and Varano (respectively located in Tyrrhenian and Adriatic coast, Italy) were studied between May 2003 and April 2005. Both these systems receive treated urban outflows, agricultural effluents and rivers freshwater inputs. Field collected data showed that studied lagoons were characterized by different human and natural pressures. Orbetello showed the highest water eutrophication, highlighted by the trophic index values, while Varano showed lower eutrophication levels except for the summertime. The values of physical, chemical and biological parameters measured in Orbetello and Varano lagoons indicate that a wide spatial and seasonal gradient of the water characteristics was established during the study period, but in particular in winter. This gradient, typical of estuarine systems, was essentially due to the mixing of freshwater, seawater and anthropogenic inputs. Orbetello lagoon seemed much more affected by the urban impact and the fish-farming activities than Varano lagoon, but the latter showed a greater agriculture activities impact as showed by the remote sensing images.

  6. Mercury concentration in the feathers of birds from various trophic levels in Fereydunkenar International wetland (Iran).

    PubMed

    Ahmadpour, Mousa; Lan-Hai, Li; Ahmadpour, Mohsen; Hoseini, Seyed Hamid; Mashrofeh, Abdolreza; Binkowski, Łukasz J

    2016-12-01

    Mercury (Hg) is one of the main global pollutants that may biomagnify in food nets, especially in wetlands. Birds may be useful in the biomonitoring of Hg in such habitats and may even serve in vivo samples. This paper examined Hg concentration in the feathers of seven bird species foraging on Fereydunkenar International wetland (in 2013). Mean Hg concentrations found ranged from 0.005 ± 0.002 μg g(-1) d.w. (dry weight) (Common hoopoe) to 0.38 ± 0.047 μg g(-1) d.w. (Greylag goose). Significant differences in Hg concentrations were noted between bird species as well as between trophic levels (one-way ANOVAs, p < 0.001). The decrease in mean Hg concentration in feathers was as follows: Greylag goose > Northern pintail ≥ Gadwall ≥ Mallard > Eurasian bittern ≥ Little bittern > Common hoopoe. The position in the trophic chain significantly influenced Hg concentrations, which were the highest in omnivorous species. Hg concentrations may also depend on migration routes and breeding habitats, but the evaluation of the exposure exceeds the ambit of this paper. The Hg concentrations found generally were low, lower than the safe thresholds reported in the literature.

  7. The impact of floral resources and omnivory on a four trophic level food web.

    PubMed

    Jonsson, M; Wratten, S D; Robinson, K A; Sam, S A

    2009-06-01

    Omnivory is common among arthropods, but little is known about how availability of plant resources and prey affects interactions between species operating at the third and fourth trophic level. We used laboratory and field cage experiments to investigate how the provision of flowers affects an omnivorous lacewing, Micromus tasmaniae (Hemerobiidae) and its parasitoid Anacharis zealandica (Figitidae). The adult lacewing is a true omnivore that feeds on both floral resources and aphids, whereas the parasitoid is a life-history omnivore, feeding on lacewing larvae in the larval stage and floral nectar as an adult. We showed that the effect of floral resources (buckwheat) on lacewing oviposition depends on prey (aphid) density, having a positive effect only at low prey density and that buckwheat substantially increases the longevity of the adult parasitoid. In field cages, we tested how provision of flowering buckwheat affects the dynamics of a four trophic level system, comprising parasitoids, lacewings, pea aphids and alfalfa. We found that provision of buckwheat decreased the density of lacewings in the first phase of the experiment when the density of aphids was high. This effect was probably caused by increased rate of parasitism by the parasitoid, which benefits from the presence of buckwheat. Towards the end of the experiment when the aphid populations had declined to low levels, the effect of buckwheat on lacewing density became positive, probably because lacewings were starving in the no-buckwheat treatment. Although presence of buckwheat flowers did not affect aphid populations in the field cages, these findings highlight the need to consider multitrophic interactions when proposing provision of floral resources as a technique for sustainable pest management.

  8. Nematode and mercury content in freshwater fish belonging to different trophic levels.

    PubMed

    Olivero-Verbel, Jesus; Caballero-Gallardo, Karina

    2013-06-01

    Fish are a protein source for many people in Colombia. However, environmental pollution of some aquatic ecosystems may pose health risks to humans. The aim of this study was to assess the levels of total mercury (T-Hg) in muscle and their relationship with nematode infections in fish from Dique Channel, a freshwater ecosystem located Northern Colombia. Eight hundred ninety fish specimens belonging to 13 different species were collected. T-Hg concentration was measured using atomic absorption spectroscopy, previous electrothermal atomization. Nematodes were identified as Contracaecum sp. Species such as Hoplias malabaricus and Sorubim cuspicaudus presented the highest values for Hg and parasite infection (0.09 ± 0.01, 0.12 ± 0.02 μg/g; prevalence 100, 100 %, respectively), whereas the lowest were detected in Prochilodus magdalenae (0.02 ± 0.002 μg/g; 0 %). Pooled data revealed a high correlation between trophic level and parasite abundance (ρ = 0.771; P = 0.002) as well as with T-Hg (ρ = 0.786; P < 0.001). The overall correlation between parasite abundance and T-Hg was moderately to low but positive (ρ = 0.217; P < 0.001). However, when individual species were considered, pair relationships between parasite abundance, morphometric parameters, and Hg concentration, varied between positive and negative values. These data suggest the presence of nematodes is determined by the trophic level of the fish species, similarly to what occurs with Hg. Moreover, the co-occurrence of these two stressors involves different types of interactions with morphometric variables that are species-specific. These observations open new doors to the understanding of the interaction between chemical pollutants and organisms.

  9. Stable Isotope Composition of Fatty Acids in Organisms of Different Trophic Levels in the Yenisei River

    PubMed Central

    Gladyshev, Michail I.; Sushchik, Nadezhda N.; Kalachova, Galina S.; Makhutova, Olesia N.

    2012-01-01

    We studied four-link food chain, periphytic microalgae and water moss (producers), trichopteran larvae (consumers I), gammarids (omnivorous – consumers II) and Siberian grayling (consumers III) at a littoral site of the Yenisei River on the basis of three years monthly sampling. Analysis of bulk carbon stable isotopes and compound specific isotope analysis of fatty acids (FA) were done. As found, there was a gradual depletion in 13C contents of fatty acids, including essential FA upward the food chain. In all the trophic levels a parabolic dependence of δ13C values of fatty acids on their degree of unsaturation/chain length occurred, with 18:2n-6 and 18:3n-3 in its lowest point. The pattern in the δ13C differences between individual fatty acids was quite similar to that reported in literature for marine pelagic food webs. Hypotheses on isotope fractionation were suggested to explain the findings. PMID:22470513

  10. Microcystin Bioaccumulation in Freshwater Fish at Different Trophic Levels from the Eutrophic Lake Chaohu, China.

    PubMed

    Jiang, Yan; Yang, Yunmeng; Wu, Yuling; Tao, Jianbin; Cheng, Bo

    2017-02-17

    The spatial and temporal variations of microcystins (MCs) in fishes with different trophic levels were studied monthly in Lake Chaohu in 2014. MCs content in muscle was highest in phytoplanktivorous Hypophthalmichthys molitrix (H. molitrix), followed by omnivorous Carassius auratus (C. auratus), and was lowest in herbivorous Parabramis pekinensis (P. pekinensis) and carnivorous Coilia ectenes (C. ectenes). MCs concentration in liver was highest in C. auratus, followed by H. molitrix, and was lowest in P. pekinensis and C. ectene. The main uptake routes of MCs for C. auratus and H. molitrix were via the diet. The mechanism to counteract MCs had not been well developed in C. ectenes. H. molitrix and C. auratus from the western region as they had higher mean concentrations of MCs than fishes from the eastern region. The estimated daily intakes of MCs in 45.4% of muscle samples were higher than the provisional tolerable daily intake set by WHO.

  11. Zinc Isotope Ratios as Indicators of Diet and Trophic Level in Arctic Marine Mammals.

    PubMed

    Jaouen, Klervia; Szpak, Paul; Richards, Michael P

    2016-01-01

    Carbon and nitrogen stable isotope ratios of bone collagen are an established method for dietary reconstruction, but this method is limited by the protein preservation. Zinc (Zn) is found in bioapatite and the isotopic compositions of this element constitute a very promising dietary indicator. The extent of fractionation of Zn isotopes in marine environments, however, remains unknown. We report here on the measurement of zinc, carbon and nitrogen isotopes in 47 marine mammals from the archaeological site of Arvik in the Canadian Arctic. We undertook this study to test and demonstrate the utility of Zn isotopes in recent mammal bone minerals as a dietary indicator by comparing them to other isotopic dietary tracers. We found a correlation between δ66Zn values and trophic level for most species, with the exception of walruses, which may be caused by their large seasonal movements. δ6Zn values can therefore be used as a dietary indicator in marine ecosystems for both modern and recent mammals.

  12. Toxicity evaluation of natural samples from the vicinity of rice fields using two trophic levels.

    PubMed

    Marques, Catarina R; Pereira, Ruth; Gonçalves, Fernando

    2011-09-01

    An ecotoxicological screening of environmental samples collected in the vicinity of rice fields followed a combination of physical and chemical measurements and chronic bioassays with two freshwater trophic levels (microalgae: Pseudokirchneriella subcapitata and Chlorella vulgaris; daphnids: Daphnia longispina and Daphnia magna). As so, water and sediment/soil elutriate samples were obtained from three sites: (1) in a canal reach crossing a protected wetland upstream, (2) in a canal reach surrounded by rice fields and (3) in a rice paddy. The sampling was performed before and during the rice culture. During the rice cropping, the whole system quality decreased comparatively to the situation before that period (e.g. nutrient overload, the presence of pesticides in elutriates from sites L2 and L3). This was reinforced by a significant inhibition of both microalgae growth, especially under elutriates. Contrary, the life-history traits of daphnids were significantly stimulated with increasing concentrations of water and elutriates, for both sampling periods.

  13. Interactions between trophic levels in upwelling and non-upwelling regions during summer monsoon

    NASA Astrophysics Data System (ADS)

    Malik, A.; Fernandes, C. E. G.; Gonsalves, M.-J. B. D.; Subina, N. S.; Mamatha, S. S.; Krishna, K.; Varik, S.; Kumari, R.; Gauns, M.; Cejoice, R. P.; Pandey, S. S.; Jineesh, V. K.; Kamaleson, A. S.; Vijayan, V.; Mukherjee, I.; Subramanyan, S.; Nair, S.; Ingole, B.; LokaBharathi, P. A.

    2015-01-01

    Coastal upwelling is a regular phenomenon occurring along the southwest coast of India during summer monsoon (May-September). We hypothesize that there could be a shift in environmental parameters along with changes in the network of interactions between bacteria, phytoplankton, and zooplankton in upwelling and non-upwelling regions. During cruise # 267 on FORV Sagar Sampada, water samples were analysed for environmental and biological parameters from two transects, one upwelling region off Trivandrum (TVM) (8°26‧N, 76°20‧E-8°30‧N, 76°50‧E), and the other non-upwelling region off Calicut (CLT) (11°11‧N, 75°30‧E-11°14‧N,74°54‧E), about 230 nmi to the north. Meteorological, hydrological, and nutrient profiles confirmed upwelling off TVM. Bacteria, phytoplankton and zooplankton significantly responded. Primary and bacterial productivity enhanced together with increase in the percentage of viable bacteria (TVC). Pearson's correlation analysis pointed out the differences in bacterial interactions with other trophic levels at both transects. TVC played a prominent role in trophic interactions off TVM by depending on phytoplankton for substrate (r = 0.754). This contrasted with CLT where total counts (TC) played an important role. However, most interrelationships were less pronounced. Principal component analysis (PCA) confirmed the correlation analysis and further showed that the factor loadings of the biotic and abiotic parameters differed in strength and direction in the two regions. More importantly, the processes of mineralization by bacteria and uptake by phytoplankton are obviously more coupled off TVM as evidenced by the clustering of the related parameters in the PCA biplot. Canonical correspondence analysis also complements these findings and demonstrated that the abiotic factors influenced phytoplankton and bacteria similarly at TVM but differently at CLT. The impact on the trophic interrelationships is evident by the close association

  14. Biomechanics of Artificial Disc Replacements Adjacent to a 2-Level Fusion in 4-Level Hybrid Constructs: An In Vitro Investigation

    PubMed Central

    Liao, Zhenhua; Fogel, Guy R.; Wei, Na; Gu, Hongsheng; Liu, Weiqiang

    2015-01-01

    Background The ideal procedure for multilevel cervical degenerative disc diseases remains controversial. Recent studies on hybrid surgery combining anterior cervical discectomy and fusion (ACDF) and artificial cervical disc replacement (ACDR) for 2-level and 3-level constructs have been reported in the literature. The purpose of this study was to estimate the biomechanics of 3 kinds of 4-level hybrid constructs, which are more likely to be used clinically compared to 4-level arthrodesis. Material/Methods Eighteen human cadaveric spines (C2–T1) were evaluated in different testing conditions: intact, with 3 kinds of 4-level hybrid constructs (hybrid C3–4 ACDR+C4–6 ACDF+C6–7ACDR; hybrid C3–5ACDF+C5–6ACDR+C6–7ACDR; hybrid C3–4ACDR+C4–5ACDR+C5–7ACDF); and 4-level fusion. Results Four-level fusion resulted in significant decrease in the C3–C7 ROM compared with the intact spine. The 3 different 4-level hybrid treatment groups caused only slight change at the instrumented levels compared to intact except for flexion. At the adjacent levels, 4-level fusion resulted in significant increase of contribution of both upper and lower adjacent levels. However, for the 3 hybrid constructs, significant changes of motion increase far lower than 4P at adjacent levels were only noted in partial loading conditions. No destabilizing effect or hypermobility were observed in any 4-level hybrid construct. Conclusions Four-level fusion significantly eliminated motion within the construct and increased motion at the adjacent segments. For all 3 different 4-level hybrid constructs, ACDR normalized motion of the index segment and adjacent segments with no significant hypermobility. Compared with the 4-level ACDF condition, the artificial discs in 4-level hybrid constructs had biomechanical advantages compared to fusion in normalizing adjacent level motion. PMID:26694835

  15. Are wolves saving Yellowstone's aspen? A landscape-level test of a behaviorally mediated trophic cascade.

    PubMed

    Kauffman, Matthew J; Brodie, Jedediah F; Jules, Erik S

    2010-09-01

    Behaviorally mediated trophic cascades (BMTCs) occur when the fear of predation among herbivores enhances plant productivity. Based primarily on systems involving small-bodied predators, BMTCs have been proposed as both strong and ubiquitous in natural ecosystems. Recently, however, synthetic work has suggested that the existence of BMTCs may be mediated by predator hunting mode, whereby passive (sit-and-wait) predators have much stronger effects than active (coursing) predators. One BMTC that has been proposed for a wide-ranging active predator system involves the reintroduction of wolves (Canis lupus) to Yellowstone National Park, USA, which is thought to be leading to a recovery of trembling aspen (Populus tremuloides) by causing elk (Cervus elaphus) to avoid foraging in risky areas. Although this BMTC has been generally accepted and highly popularized, it has never been adequately tested. We assessed whether wolves influence aspen by obtaining detailed demographic data on aspen Stands using tree rings and by monitoring browsing levels in experimental elk exclosures arrayed across a gradient of predation risk for three years. Our study demonstrates that the historical failure of aspen to regenerate varied widely among stands (last recruitment year ranged from 1892 to 1956), and our data do not indicate an abrupt cessation of recruitment. This pattern of recruitment failure appears more consistent with a gradual increase in elk numbers rather than a rapid behavioral shift in elk foraging following wolf extirpation. In addition, our estimates of relative survivorship of young browsable aspen indicate that aspen are not currently recovering in Yellowstone, even in the presence of a large wolf population. Finally, in an experimental test of the BMTC hypothesis we found that the impacts of elk browsing on aspen demography are not diminished in sites where elk are at higher risk of predation by wolves. These findings suggest the need to further evaluate how trophic

  16. Are wolves saving Yellowstone's aspen? A landscape-level test of a behaviorally mediated trophic cascade

    USGS Publications Warehouse

    Kauffman, Matthew J.; Brodie, Jedediah F.; Jules, Erik S.

    2010-01-01

    Behaviorally mediated trophic cascades (BMTCs) occur when the fear of predation among herbivores enhances plant productivity. Based primarily on systems involving small-bodied predators, BMTCs have been proposed as both strong and ubiquitous in natural ecosystems. Recently, however, synthetic work has suggested that the existence of BMTCs may be mediated by predator hunting mode, whereby passive (sit-and-wait) predators have much stronger effects than active (coursing) predators. One BMTC that has been proposed for a wide-ranging active predator system involves the reintroduction of wolves (Canis lupus) to Yellowstone National Park, USA, which is thought to be leading to a recovery of trembling aspen (Populus tremuloides) by causing elk (Cervus elaphus) to avoid foraging in risky areas. Although this BMTC has been generally accepted and highly popularized, it has never been adequately tested. We assessed whether wolves influence aspen by obtaining detailed demographic data on aspen stands using tree rings and by monitoring browsing levels in experimental elk exclosures arrayed across a gradient of predation risk for three years. Our study demonstrates that the historical failure of aspen to regenerate varied widely among stands (last recruitment year ranged from 1892 to 1956), and our data do not indicate an abrupt cessation of recruitment. This pattern of recruitment failure appears more consistent with a gradual increase in elk numbers rather than a rapid behavioral shift in elk foraging following wolf extirpation. In addition, our estimates of relative survivorship of young browsable aspen indicate that aspen are not currently recovering in Yellowstone, even in the presence of a large wolf population. Finally, in an experimental test of the BMTC hypothesis we found that the impacts of elk browsing on aspen demography are not diminished in sites where elk are at higher risk of predation by wolves. These findings suggest the need to further evaluate how trophic

  17. Perfluorinated compounds: levels, trophic web enrichments and human dietary intakes in transitional water ecosystems.

    PubMed

    Renzi, Monia; Guerranti, Cristiana; Giovani, Andrea; Perra, Guido; Focardi, Silvano E

    2013-11-15

    The results of a study on levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), analyzed in terms of HPLC-ESI-MS in water, sediment, macrophyte, bivalve, crustacean and fish samples, are reported here. The aim of the research is to define, for the first time, PFOA/S levels in a heavily human-stressed transitional water ecosystem (Orbetello lagoon, Italy) and evaluate trophic web enrichments and human dietary intakes. The results obtained show that: (i) levels significantly higher than those reported in the literature were found in mussels, clams and crabs; (ii) the river is a significant pollution source; (iii) although absolute levels are relatively low, macroalgae proliferation contributes to redistribute pollutants from river-affected areas throughout the entire lagoon basin; (iv) to the best of our current knowledge, water-filtering species considered in this study are the most exposed to PFOA/S pollution; (v) human daily dietary intakes of PFOA/S through Slow Food-endorsed product consumption are below maximum tolerable levels suggested by the EFSA.

  18. Behavior of mercury in bio-systems. II. Depuration of /sup 203/Hg/sup 2 +/ in various trophic levels

    SciTech Connect

    Hamdy, M.K.; Prabhu, N.V.

    1984-01-01

    Using radiotracer techniques, the depuration rates for methylmercury at three trophic levels in an aquatic ecosystem are examined. Bacteria (decomposers), mosquito larvae (primary consumers), and fish (secondary consumers) were studied. Results indicated that depuration rates for mercury were temperature dependent - the rate of depuration increased with increase in temperature (up to 45/sup 0/C)

  19. Percutaneous ethanol embolization and cement augmentation of aggressive vertebral hemangiomas at two adjacent vertebral levels.

    PubMed

    Cianfoni, Alessandro; Massari, Francesco; Dani, Genta; Lena, Jonathan R; Rumboldt, Zoran; Vandergrift, William A; Bonaldi, Giuseppe

    2014-10-01

    This report describes a case of successful percutaneous direct-puncture ethanol embolization, followed by vertebroplasty, of an aggressive vertebral hemangioma (VH) involving two adjacent thoracic vertebral levels. In this case, the 78-year-old male patient presented with a 6-month history of progressive paraparesis due to spinal cord compression by a T8-T9 VH with an extensive epidural component. Follow-up demonstrated epidural component shrinkage with complete regression of symptoms at 3 months. This case suggests that exclusive percutaneous treatment may be considered for symptomatic VH even when two adjacent vertebral levels are affected.

  20. Tabu search approaches for the multi-level warehouse layout problem with adjacency constraints

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; Lai, K. K.

    2010-08-01

    A new multi-level warehouse layout problem, the multi-level warehouse layout problem with adjacency constraints (MLWLPAC), is investigated. The same item type is required to be located in adjacent cells, and horizontal and vertical unit travel costs are product dependent. An integer programming model is proposed to formulate the problem, which is NP hard. Along with a cube-per-order index policy based heuristic, the standard tabu search (TS), greedy TS, and dynamic neighbourhood based TS are presented to solve the problem. The computational results show that the proposed approaches can reduce the transportation cost significantly.

  1. Effects of chemical elements in the trophic levels of natural salt marshes.

    PubMed

    Kamiński, Piotr; Barczak, Tadeusz; Bennewicz, Janina; Jerzak, Leszek; Bogdzińska, Maria; Aleksandrowicz, Oleg; Koim-Puchowska, Beata; Szady-Grad, Małgorzata; Klawe, Jacek J; Woźniak, Alina

    2016-06-01

    The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water-soil-plants-invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The

  2. Hydrogeological features conditioning trophic levels of quarry lakes in western Po plain (north-western Italy)

    NASA Astrophysics Data System (ADS)

    De Luca, Domenico Antonio; Castagna, Sara; Lasagna, Manuela

    2013-04-01

    Quarry lakes occur in plains areas due to the extraction of alluvial sand and gravel used for grout and concrete in the construction industry. Excavation depths can reach and intersect the groundwater surface, thus creating a lake. Because of the need to optimize efficiency, the number of active open pit mines has increased in recent years; consequently, the global number of pit lakes will increase in coming decades (Castendyk and Eary 2009; Klapper and Geller 2001; Castro and Moore 2000). Similar to natural lakes, pit lakes are subject to eutrophication process, both during and after quarrying activity; during mining activity, the eutrophic level is strongly controlled by the excavation method. In the Piedmont territory (north-western Italy) there are 70 active quarry lakes, corresponding to approximately 0.1% of the entire plain area. Quarry lakes, located primarily along the main rivers occur in alluvial deposits of the plain area and have average depths between 20 and 30 m (maximum of 60 m deep) and surface areas between 3 and 30 hectares (Castagna 2008). The present study describes the trophic status of 23 active quarry lakes in the Piedmont plain that were evaluated by applying classifications from scientific literature. Currently, the majority of the studied quarry lakes may be defined as mesotrophic or eutrophic according to the trophic state classifications. Based on historic data, lake trophic levels have increased over time, during active mining. At the end of mining activity, further deterioration of water quality was expected, especially for smaller lakes with minimal oxygen stratification and higher levels of nutrients and algal growth. In addition, the paper focuses on the pit lake water quality and pit dimension; From an environmental perspective the excavation of quarry lakes with an appreciable size will likely result in a better safeguard of water quality and enhanced possibilities for lake end use after the cessation of mining. Piedmont quarry

  3. Effect of zink oxyde nanoparticles on the test function of water organisms of different trophic levels

    NASA Astrophysics Data System (ADS)

    Morgalev, Yu; Morgaleva, T.; Gosteva, I.; Morgalev, S.; Kulizhskiy, S.; Astafurova, T.

    2015-11-01

    The toxicity of zinc oxide nanoparticles (nZnO) with particle size Δ50 = 20 nm was evaluated according to the degree of toxicity of the aqueous disperse system (DS) with biological testing methods using a set of test organisms representing the major trophic levels.We observed the influence of the concentration degree of nZnO on toxic effects level on the fluorescence of the bacterial biosensor "Ekolyum-13", the chemotactic response of ciliates Paramecium caudatum, the rate of growth of unicellular algae Chlorella vulgaris Bayer, mortality of entomostracans Daphnia magna Straus and fish Danio rerio. The detected values of L(E)C50 are: for biosensor "Ekolyum-13" - 0.30 mg/L, for ciliates Paramecium caudatum - 0.14 mg/L, for Chlorella vulgaris Bayer - 0.17 mg/L and for Daphnia magna Straus - 0.52 mg/L. No toxicity of nZnO was detected in relation to fish Danio rerio, L(E)C50 > 100 mg/L. In assessing the maximum effect of nZnO according to GHS and EU Directive 93/67/ EEC, it is assigned to dangerous substances with a high degree of toxicity "Acute toxicity 1".

  4. Assessing the Health of Puget Sound's Pelagic Food Web at Multiple Trophic Levels

    NASA Astrophysics Data System (ADS)

    Rhodes, L. D.; Greene, C. M.; Rice, C. A.; Hall, J. E.; Baxter, A. E.; Naman, S. M.; Chamberlin, J.

    2012-12-01

    Puget Sound is an estuarine fjord in the northwestern United State surrounded by variable upland uses, ranging from industrial and urban to agricultural to forested lands. The quality of Puget Sound's ecosystem is under scrutiny because of the biological resources that depend on its function. In 2011, we undertook a study of the Sound's pelagic food web that measured water quality, microbial parameters, and abundance of higher trophic levels including gelatinous zooplankton, forage fish, and salmon. More than 75 sites spanning the latitudinal expanse of Puget Sound and the range of developed and agricultural land uses were sampled monthly from April to October. Strong relationships between water quality and microbial parameters suggest that microbes may modulate water quality indicators, such as dissolved inorganic nitrogen and pH, and that land use may be an influential factor. Basins within Puget Sound exhibit distinct biological profiles at the microbial and macrobiotic levels, emphasizing that Puget Sound is not a homogenous water body and suggesting that informative food web indicators may vary across the basins.

  5. Isotopes reveal fluctuation in trophic levels of estuarine organisms, in space and time

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Salgado, J. P.; Mendonça, V.; Cabral, H.; Costa, M. J.

    2012-08-01

    The estimation of the trophic level (TL) occupied by organisms in estuarine food webs, based on isotopic analysis, is generally done only for one season or averaged among seasons and sites. This does not allow the observation of possible alterations of TL in time and space. As estuaries are highly dynamic environments, it is plausible that the TLs of many of its organisms are not static, like usually portrayed in food web diagrams, but fluctuate in space and time. The TLs of marine juvenile fish, resident fish, shrimp, polychaetes, bivalves and amphipods were determined isotopically, in the Tagus estuary. Sampling was carried out in two nursery areas at each season. Significant changes in TL were observed, in space and time, for the vast majority of the organisms. A drop in TL in summer was observed for various species. The high availability of microalgae and macroalgae in summer may be the cause for this drop, which mainly affects low TL omnivores. These omnivores may opportunistically increase the proportion of primary producers in their diet, thus lowering their mean TL. Such an effect seems to cascade to secondary consumers, like Solea senegalensis and Pomatoschistus microps, which also presented a drop in TL in summer. This study also revealed that organisms that have been considered to be mainly primary consumers, like Liza ramada, and Scrobicularia plana, can actually assume considerably higher TLs seasonally, placing them as secondary consumers.

  6. Higher Trophic Levels Overwhelm Climate Change Impacts on Terrestrial Ecosystem Functioning

    PubMed Central

    Pelini, Shannon L.; Maran, Audrey M.; Chen, Angus R.; Kaseman, Justine; Crowther, Thomas W.

    2015-01-01

    Forest floor food webs play pivotal roles in carbon cycling, but they are rarely considered in models of carbon fluxes, including soil carbon dioxide emissions (respiration), under climatic warming. The indirect effects of invertebrates on heterotrophic (microbial and invertebrate) respiration through interactions with microbial communities are significant and will be altered by warming. However, the interactive effects of invertebrates and warming on heterotrophic respiration in the field are poorly understood. In this study we combined field and common garden laboratory approaches to examine relationships between warming, forest floor food web structure, and heterotrophic respiration. We found that soil animals can overwhelm the effects of warming (to 5 degrees Celsius above ambient) on heterotrophic respiration. In particular, the presence of higher trophic levels and burrowing detritivores strongly determined heterotrophic respiration rates in temperate forest soils. These effects were, however, context-dependent, with greater effects in a lower-latitude site. Without isolating and including the significant impact of invertebrates, climate models will be incomplete, hindering well-informed policy decisions. PMID:26292214

  7. Toxic effect of commercial detergents on organisms from different trophic levels.

    PubMed

    Sobrino-Figueroa, A

    2016-10-18

    The toxic effects of four powder detergents: two laundry detergents (A and B), one household detergent (C), one dishwashing detergent (D), and the surfactant alkylbenzene sulfonate (LAS) were analyzed in this study on organisms from different trophic levels (microalgae, cladocerans, ostracods, amphipods, macrophytes, and fish). LC50 and EC50 values obtained in the toxicity bioassays varied between 0.019 and 116.9 mg L(-1). The sensitivity of the organisms to the detergents was (from most sensitive to least sensitive) Ostracods > microalgae > amphipods > cladocerans > fishes > macrophytes. The toxicity of the commercial products (from most toxic to least toxic) was LAS > D (dishwashing detergent) > A (laundry detergent) > B (laundry detergent) > C (household detergent). When comparing the sensitivity of organisms that inhabit temperate zones (T = 18 °C) to those that are found in tropical zones (T > 25 °C), it was clear that the species that inhabit the tropics are more sensitive to detergents.

  8. Assimilation of benzene carbon through multiple trophic levels traced by different stable isotope probing methodologies.

    PubMed

    Bastida, Felipe; Jechalke, Sven; Bombach, Petra; Franchini, Alessandro G; Seifert, Jana; von Bergen, Martin; Vogt, Carsten; Richnow, Hans H

    2011-08-01

    The flow of benzene carbon along a food chain consisting of bacteria and eukaryotes, including larvae (Diptera: Chironomidae), was evaluated by total lipid fatty acids (TLFAs)-, amino acid- and protein-stable isotope probing (SIP). A coconut-fibre textile, colonized by a benzene-degrading biofilm, was sampled in a system established for the remediation of benzene, toluene, ethylbenzene and xylenes (BTEX)-polluted groundwater and incubated with (12)C- and [(13)C(6)]-benzene (>99 at.%) in a batch-scale experiment for 2-8 days. After 8 days, Chironomus sp. larvae were added to study carbon flow to higher trophic levels. Gas chromatography-combustion-isotope ratio monitoring mass spectrometry of TLFA showed increased isotope ratios in the (13)C-benzene-incubated biofilm. A higher (13)C-enrichment was observed in TLFAs, indicative of Gram-negative bacteria than for Gram-positive. Fatty acid indicators of eukaryotes showed significant (13)C-incorporation, but to a lower extent than bacterial indicators. Fatty acids extracted from larvae feeding on (13)C-biofilm reached an isotopic ratio of 1.55 at.%, illustrating that the larvae feed, to some extent, on labelled biomass. No (13)C-incorporation was detectable in larval proteins after their separation by sodium-dodecyl sulphate-polyacrylamide gel electrophoresis and analysis by nano-liquid-chromatography-mass spectrometry. The flow of benzene-derived carbon could be traced in a food web consisting of bacteria and eukaryotes.

  9. Higher Trophic Levels Overwhelm Climate Change Impacts on Terrestrial Ecosystem Functioning.

    PubMed

    Pelini, Shannon L; Maran, Audrey M; Chen, Angus R; Kaseman, Justine; Crowther, Thomas W

    2015-01-01

    Forest floor food webs play pivotal roles in carbon cycling, but they are rarely considered in models of carbon fluxes, including soil carbon dioxide emissions (respiration), under climatic warming. The indirect effects of invertebrates on heterotrophic (microbial and invertebrate) respiration through interactions with microbial communities are significant and will be altered by warming. However, the interactive effects of invertebrates and warming on heterotrophic respiration in the field are poorly understood. In this study we combined field and common garden laboratory approaches to examine relationships between warming, forest floor food web structure, and heterotrophic respiration. We found that soil animals can overwhelm the effects of warming (to 5 degrees Celsius above ambient) on heterotrophic respiration. In particular, the presence of higher trophic levels and burrowing detritivores strongly determined heterotrophic respiration rates in temperate forest soils. These effects were, however, context-dependent, with greater effects in a lower-latitude site. Without isolating and including the significant impact of invertebrates, climate models will be incomplete, hindering well-informed policy decisions.

  10. Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds.

    PubMed

    Alhashemi, Azam Sadat Hosseini; Karbassi, Abdolreza R; Kiabi, Bahram Hassanzadeh; Monavari, Seyed Masoud; Nabavi, Seyed Mohammad Bagher; Sekhavatjou, Mohammad Sadegh

    2011-09-01

    Present study investigates relationships between total and bioaccessibility of trace elements (Cd, Co, Cr, Cu, Mn, NI, Pb, V, and Zn) concentrations in sediment and their bioaccumulation in species in Shadegan wetland in southwest of Iran. Bioavailability factor (BAF) and translocation factor (TF) were calculated in plants and trophic transfer factor (TTF) was determined in bird species. For this purpose, sampling of sediments, aquatic plants including Phragmites australis, Typha australis, Scripus maritimus and two bird species encircling Porphyrio porphyrio and globally threatened Marmaronetta angustirostris were carried out during winter 2009. Result of chemical analysis show that bioaccessibility concentrations of Mn (8.31 mg/kg), V (1.33 mg/kg), and Pb (1.03 mg/kg) are higher than other metals. The uptake trend of trace elements in plant decreases as root > stem > leaf. Accumulation levels of trace elements in different tissues of P. porphyrio and M. angustirostris are almost identical and considerable. Accumulation and toxicity of Cd in birds is more than plants. In addition, BAF of V, Pb, and Cr indicates high accumulation by plants and great pollution rate in the area of study. In S. maritimus TF for Mn, Cu, Pb, and V are high whereas in T. australis, Cu and Pb posses the highest TF. Also Cr, Co, Mn, Ni, and Zn have higher TF from stem to leaf than root to stem in P. australis. Finally, TTFs were compared in various bird species.

  11. Tungsten toxicity, bioaccumulation, and compartmentalization into organisms representing two trophic levels.

    PubMed

    Kennedy, Alan J; Johnson, David R; Seiter, Jennifer M; Lindsay, James H; Boyd, Robert E; Bednar, Anthony J; Allison, Paul G

    2012-09-04

    Metallic tungsten has civil and military applications and was considered a green alternative to lead. Recent reports of contamination in drinking water and soil have raised scrutiny and suspended some applications. This investigation employed the cabbage Brassica oleracae and snail Otala lactea as models to determine the toxicological implications of sodium tungstate and an aged tungsten powder-spiked soil containing monomeric and polymeric tungstates. Aged soil bioassays indicated cabbage growth was impaired at 436 mg of W/kg, while snail survival was not impacted up to 3793 mg of W/kg. In a dermal exposure, sodium tungstate was more toxic to the snail, with a lethal median concentration of 859 mg of W/kg. While the snail significantly bioaccumulated tungsten, predominately in the hepatopancreas, cabbage leaves bioaccumulated much higher concentrations. Synchrotron-based mapping indicated the highest levels of W were in the veins of cabbage leaves. Our results suggest snails consuming contaminated cabbage accumulated higher tungsten concentrations relative to the concentrations directly bioaccumulated from soil, indicating the importance of robust trophic transfer investigations. Finally, synchrotron mapping provided evidence of tungsten in the inner layer of the snail shell, suggesting potential use of snail shells as a biomonitoring tool for metal contamination.

  12. Zinc Isotope Ratios as Indicators of Diet and Trophic Level in Arctic Marine Mammals

    PubMed Central

    Jaouen, Klervia; Szpak, Paul; Richards, Michael P.

    2016-01-01

    Carbon and nitrogen stable isotope ratios of bone collagen are an established method for dietary reconstruction, but this method is limited by the protein preservation. Zinc (Zn) is found in bioapatite and the isotopic compositions of this element constitute a very promising dietary indicator. The extent of fractionation of Zn isotopes in marine environments, however, remains unknown. We report here on the measurement of zinc, carbon and nitrogen isotopes in 47 marine mammals from the archaeological site of Arvik in the Canadian Arctic. We undertook this study to test and demonstrate the utility of Zn isotopes in recent mammal bone minerals as a dietary indicator by comparing them to other isotopic dietary tracers. We found a correlation between δ66Zn values and trophic level for most species, with the exception of walruses, which may be caused by their large seasonal movements. δ6Zn values can therefore be used as a dietary indicator in marine ecosystems for both modern and recent mammals. PMID:27010907

  13. Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels

    NASA Astrophysics Data System (ADS)

    Larguinho, Miguel; Correia, Daniela; Diniz, Mário S.; Baptista, Pedro V.

    2014-08-01

    This work reports a one-way flow bioaccumulation of gold nanoparticles (AuNPs) in aquatic organisms between two trophic levels. First, Dunaliella salina cells were exposed to citrate-capped AuNPs at different concentrations and during distinct exposure periods to assess internalization and behavior. Afterward, D. salina was incubated with both citrate-capped and functionalized (PEGylated) AuNPs for 24 h and later fed to Mytilus galloprovincialis. Analysis was carried out to assess Au content, histological differences and oxidative stress. These algae were fed to the model organism M. galloprovincialis (Mediterranean mussel) as it is considered of major importance for assessing toxic effects and bioaccumulation of different pollutants in aquatic environments. Elemental Au analysis revealed an uptake of about 76 % of the initial amount of AuNPs (and 36 % for PEGylated AuNPs) in microalgae. Mussel gills and digestive gland showed variable Au content in individuals fed with D. salina previously exposed to AuNPs. No significant morphological alterations were observed in D. salina or mussel digestive glands. Glutathione-s-transferase activity and total antioxidant capacity were assessed as oxidative stress biomarkers showing that AuNPs are not prone to trigger the induction of defenses against oxidative stress.

  14. Baseline levels and trophic transfer of persistent organic pollutants in sediments and biota from the Congo River Basin (DR Congo).

    PubMed

    Verhaert, Vera; Covaci, Adrian; Bouillon, Steven; Abrantes, Katya; Musibono, Dieudonné; Bervoets, Lieven; Verheyen, Erik; Blust, Ronny

    2013-09-01

    The present study aimed to evaluate the occurrence of persistent organic pollutants (POPs: (PCBs, PBDEs, DDTs, HCHs, CHLs and HCB) in sediments and biota from the middle Congo River Basin (CRB) and to investigate their trophic transfer through the aquatic food web using nitrogen stable isotope ratios. To our knowledge, no data on levels of POPs in sediment and biota from the CRB are present in the literature, and studies on trophic transfer and biomagnification profiles of POPs using δ(15)N are scarce in tropical regions. POP levels in the sediment and biota were low, with exception of total PCB levels found in fish from the Itimbiri River (1.4 to 44ng/g ww). Compared to concentrations found in fish from pristine to relatively industrial developed areas, the ∑PCB levels in fish from the Itimbiri were high, indicating the presence of a local PCB contamination source in this catchment. Based on minimum risk level criteria formulated by ATSDR, the consumption of PCB contaminated fish from the Itimbiri river poses a potential risk for humans. The POP levels in biota were not significantly related to the POP levels in sediments, and the BSAF concept (Biota-Sediment Accumulation Factor) was found to be a poor predictor of the bioavailability and bioaccumulation of environmental pollutants in the present study. With increasing trophic levels, a significant increase in PCB 95, 101, 110, 138, 146, 149, 153, 174, 180 & 187 and p,p'-DDT in Itimbiri and BDE 47 & 99 in Itimbiri, Aruwimi & Lomami river basins was observed. Trophic magnification factors were higher than 1, indicating that biomagnification occurs through the tropical food web.

  15. The relationship between perfluorinated chemical levels in the feathers and livers of birds from different trophic levels.

    PubMed

    Meyer, Johan; Jaspers, Veerle L B; Eens, Marcel; de Coen, Wim

    2009-11-01

    Although feathers have been used successfully for monitoring heavy metals and organic pollutants, there are currently no data available on the use of feathers as indicators of perfluorinated chemical (PFC) exposure in birds. Also, no study has evaluated PFC levels in birds with different diets from different habitats. In the current study we investigated the PFC exposure of five different bird species from the same geographic region in Belgium, using both feathers and liver tissue. The highest mean liver perfluorooctane sulfonate (PFOS) levels were found in the Grey Heron (476 ng/g ww) followed by the Herring Gull (292 ng/g ww) and Eurasian Sparrowhawk (236 ng/g ww), whereas the Eurasian Magpie (17 ng/g ww) and the Eurasian Collared Dove (12 ng/g ww) had the lowest levels. The PFOS levels in the feathers showed a different pattern. The Grey Heron had the highest feather PFOS levels (247 ng/g dw), the Eurasian Sparrowhawk (102 ng/g dw) had the second highest feather PFOS levels, followed by the Herring Gull (79 ng/g dw) and the Eurasian Collared Dove (48 ng/g dw), and the lowest levels were found in the Eurasian Magpie (31 ng/g dw). Overall, there was a significant positive correlation (Pearson, R=0.622, p<0.01) between the feather and liver PFOS levels, indicating that feathers could be an alternative bioindicator for PFOS exposure in birds. However, caution should be taken as there was no significant correlation between the PFOS levels in the feathers and livers of the individual species. In general, birds from a higher trophic level had higher PFC levels in their tissues. This indicates that diet plays a role in PFC exposure in birds and confirms the bioaccumulation potential of PFC.

  16. Correlation of sea level falls interpreted from atoll stratigraphy with turbidites in adjacent basins

    SciTech Connect

    Lincoln, J.M. )

    1990-05-01

    Past sea levels can be derived from any atoll subsurface sediments deposited at or near sea level by determining the ages of deposition and correcting the present depths to the sediments for subsidence of the underlying edifice since the times of deposition. A sea level curve constructed by this method consists of discontinuous segments, each corresponding to a period of rising relative sea level and deposition of a discrete sedimentary package. Discontinuities in the sea level curve derived by this method correspond to relative sea level falls and stratigraphic hiatuses in the atoll subsurface. During intervals of relative sea level fall an atoll emerges to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence without depositing sediments on top of the atoll. Furthermore, subaerial erosion may remove a substantial part of the depositional record of previous sea level fluctuations. For these reasons the authors must look to the adjacent basins to complement the incomplete record of sea level change recorded beneath atolls. During lowstands of sea level, faunas originally deposited near sea level on an atoll may be eroded and redeposited as turbidites in deep adjacent basins. Three such turbidites penetrated during deep-sea drilling at Sites 462 and 315 in the central Pacific correlate well with a late Tertiary sea level curve based on biostratigraphic ages and {sup 87}Sr/{sup 86}Sr chronostratigraphy for core from Enewetak Atoll in the northern Marshall Islands. Further drilling of the archipelagic aprons adjacent to atolls will improve the sea level history that may be inferred from atoll stratigraphy.

  17. The Effects of Single-Level Instrumented Lumbar Laminectomy on Adjacent Spinal Biomechanics

    PubMed Central

    Bisschop, Arno; Holewijn, Roderick M.; Kingma, Idsart; Stadhouder, Agnita; Vergroesen, Pieter-Paul A.; van der Veen, Albert J.; van Dieën, Jaap H.; van Royen, Barend J.

    2014-01-01

    Study Design Biomechanical study. Objective Posterior instrumentation is used to stabilize the spine after a lumbar laminectomy. However, the effects on the adjacent segmental stability are unknown. Therefore, we studied the range of motion (ROM) and stiffness of treated lumbar spinal segments and cranial segments after a laminectomy and after posterior instrumentation in flexion and extension (FE), lateral bending (LB), and axial rotation (AR). These outcomes might help to better understand adjacent segment disease (ASD), which is reported cranial to the level on which posterior instrumentation is applied. Methods We obtained 12 cadaveric human lumbar spines. Spines were axially loaded with 250 N for 1 hour. Thereafter, 10 consecutive load cycles (4 Nm) were applied in FE, LB, and AR. Subsequently, a laminectomy was performed either at L2 or at L4. Thereafter, load-deformation tests were repeated, after similar preloading. Finally, posterior instrumentation was added to the level treated with a laminectomy before testing was repeated. The ROM and stiffness of the treated, the cranial adjacent, and the control segments were calculated from the load-displacement data. Repeated-measures analyses of variance used the spinal level as the between-subject factor and a laminectomy or instrumentation as the within-subject factors. Results After the laminectomy, the ROM increased (+19.4%) and the stiffness decreased (−18.0%) in AR. The ROM in AR of the adjacent segments also increased (+11.0%). The ROM of treated segments after instrumentation decreased in FE (−74.3%), LB (−71.6%), and AR (−59.8%). In the adjacent segments after instrumentation, only the ROM in LB was changed (−12.9%). Conclusions The present findings do not substantiate a biomechanical pathway toward or explanation for ASD. PMID:25649753

  18. Modeling Microbial Dynamics in Aquifers Considering the Interaction Between the Higher Trophic Levels

    NASA Astrophysics Data System (ADS)

    Bajracharya, B. M.; Cirpka, O. A.; Lu, C.

    2014-12-01

    Models of microbial dynamics coupled to solute transport in aquifers typically require the introduction of a bacterial carrying capacity term to prevent excessive microbial growth close to substrate-injection boundaries. The factors controlling this carrying capacity, however, are not fully understood. Most explanations for the occurrence of a carrying capacity discussed are based on the assumption of a bottom-up control of groundwater ecosystems. An alternative explanation is based on top-down control. Our model considers substrate, bacteria and higher trophic levels, such as grazers or bacteriophages. The dissolved substrate is transported with water flow whereas the biomasses of bacteria and grazers are considered essentially immobile. The one-dimensional reactive transport model also accounts for substrate dispersion and a random walk of grazers influenced by the bacteria concentration. The grazers grow on the bacteria, leading to a negative feedback on the bacteria concentration which may limit the turnover of the substrate. A single retentostat model with Monod kinetics of bacterial growth and a second-order grazing shows that the system oscillates but approaches a stable steady state with non-zero concentrations of substrate, bacteria, and grazers. The steady-state concentration of the bacteria biomass is independent of the substrate concentration in the inflow. When coupling several retentostats in a series to mimic a groundwater column, the steady-state bacteria concentrations remain at a constant level over a significant travel distance. The results show that grazing is a possible explanation of the carrying capacity, provided that there is enough substrate to sustain bacteria and grazers.

  19. Bioconcentration and biomagnification of polybrominated diphenyl ethers (PBDEs) through lower-trophic-level coastal marine food web.

    PubMed

    Mizukawa, Kaoruko; Takada, Hideshige; Takeuchi, Ichiro; Ikemoto, Tokutaka; Omori, Koji; Tsuchiya, Kotaro

    2009-08-01

    Bivalves, crabs, fishes, seawater, and sediment collected from the inner part of Tokyo Bay, Japan, were measured for 20 polybrominated diphenyl ether (PBDE) and 5 polychlorinated biphenyl (PCB) congeners. To determine the trophic levels of the organisms, carbon and nitrogen stable isotope ratios (delta(13)C and delta(15)N) were also measured. Bioconcentration factors of PBDE and PCB congeners increased as the octanol-water partition coefficient (K(ow)) rose to log K(ow)=7, above which they decreased again. Biomagnification of PCBs and several PBDE congeners (BDE47, 99, 100, 153 and 154) up the trophic ladder was confirmed by a positive correlation between their concentrations and delta(15)N. Other PBDE congeners showed a negative or no correlation, suggesting their biotransformation through metabolism. The more hydrophobic congeners of both PBDEs (Br=2-6) and PCBs (Cl=6-9) were biomagnified more. It thus appears that PBDEs are less biomagnified than PCBs.

  20. Parallel structure among environmental gradients and three trophic levels in a subarctic estuary

    USGS Publications Warehouse

    Speckman, S.G.; Piatt, J.F.; Minte-Vera, C. V.; Parrish, J.K.

    2005-01-01

    1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.

  1. Trophic state in Voyageurs National Park lakes before and after implementation of a revised water-level management plan

    USGS Publications Warehouse

    Christensen, Victoria G.; Maki, Ryan P.

    2015-01-01

    We compiled Secchi depth, total phosphorus, and chlorophyll a (Chla) data from Voyageurs National Park lakes and compared datasets before and after a new water-level management plan was implemented in January 2000. Average Secchi depth transparency improved (from 1.9 to 2.1 m, p = 0.020) between 1977-1999 and 2000-2011 in Kabetogama Lake for August samples only and remained unchanged in Rainy, Namakan, and Sand Point Lakes, and Black Bay in Rainy Lake. Average open-water season Chla concentration decreased in Black Bay (from an average of 13 to 6.0 μg/l, p = 0.001) and Kabetogama Lake (from 9.9 to 6.2 μg/l, p = 0.006) between 1977-1999 and 2000-2011. Trophic state index decreased significantly in Black Bay from 59 to 51 (p = 0.006) and in Kabetogama Lake from 57 to 50 (p = 0.006) between 1977-1999 and 2000-2011. Trophic state indices based on Chla indicated that after 2000, Sand Point, Namakan, and Rainy Lakes remained oligotrophic, whereas eutrophication has decreased in Kabetogama Lake and Black Bay. Although nutrient inputs from inflows and internal sources are still sufficient to produce annual cyanobacterial blooms and may inhibit designated water uses, trophic state has decreased for Kabetogama Lake and Black Bay and there has been no decline in lake ecosystem health since the implementation of the revised water-level management plan.

  2. A Comparative Analysis of Feeding and Trophic Level Ecology in Stingrays (Rajiformes; Myliobatoidei) and Electric Rays (Rajiformes: Torpedinoidei)

    PubMed Central

    Jacobsen, Ian P.; Bennett, Mike B.

    2013-01-01

    Standardised diets and trophic level (TL) estimates were calculated for 75 ray species from the suborders Myliobatoidei (67 spp.) and Torpedinoidei (8 spp.). Decapod crustaceans (31.71±3.92%) and teleost fishes (16.45±3.43%) made the largest contribution to the standardised diet of the Myliobatoidei. Teleost fishes (37.40±16.09%) and polychaete worms (31.96±14.22%) were the most prominent prey categories in the standardised diet of the suborder Torpedinoidei. Cluster analysis identified nine major trophic guilds the largest of which were decapod crustaceans (24 species), teleost fishes (11 species) and molluscs (11 species). Trophic level estimates for rays ranged from 3.10 for Potamotrygon falkneri to 4.24 for Gymnura australis, Torpedo marmorata and T. nobiliana. Secondary consumers with a TL <4.00 represented 84% of the species examined, with the remaining 12 species (16%) classified as tertiary consumers (TL ≥4.00). Tertiary consumers included electric rays (Torpedo, 3 spp. and Hypnos, 1 sp.), butterfly rays (Gymnura, 4 spp.), stingrays (2 spp.) and Potamotrygonid stingrays (2 spp.). Feeding strategies were identified as the primary factor of influence with respect to Myliobatoidei and Torpedinoidei TL estimates with inter-family comparisons providing the greatest insight into Myliobatoidei and Torpedinoidei relationships. PMID:23936503

  3. Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams.

    PubMed

    Jardine, Timothy D; Kidd, Karen A; O' Driscoll, Nelson

    2013-05-15

    Biomagnification processes and the factors that govern them, including those for mercury (Hg), are poorly understood in streams. Total and methyl Hg concentrations and relative trophic position (using δ(15)N) were analyzed in biofilm and invertebrates from 21 streams in New Brunswick, Canada to assess food web biomagnification leading to the common minnow blacknose dace (Rhinichthys atratulus), a species known to have Hg concentrations that are higher in low pH waters. Biomagnification slopes within stream food webs measured using Hg vs. δ(15)N or corresponding trophic levels (TL) differed depending on the chemical species analyzed, with total Hg exhibiting increases of 1.3-2.5 per TL (mean slope of total Hg vs. δ(15)N=0.14±0.06 S.D., range=0.06-0.20) and methyl Hg showing a more pronounced increase of 2.8 to 6.0 per TL (mean slope of methyl Hg vs. δ(15)N=0.30±0.08 S.D., range=0.22-0.39). While Hg biomagnification slopes through the entire food web (Trophic Magnification Factors, TMFs) were not influenced by water chemistry (pH), dietary concentrations of methyl Hg strongly influenced biomagnification factors (BMFs) for consumer-diet pairs within the food web at lower trophic levels, and BMFs between dace and predatory invertebrates were significantly higher in low pH waters. These analyses, coupled with observations of higher Hg in primary producers in streams with low pH, suggest that pH influences both baseline concentrations and biomagnification of Hg in these systems. Because higher Hg concentrations in the diets of primary consumers and predatory insects in lower pH waters led to lower BMFs, these feeding groups showed insignificant relationships between Hg and pH; thus, altered BMFs associated with dietary concentrations can dampen the effects of environmental conditions on Hg concentrations.

  4. Levels of polybrominated diphenyl ether (PBDE) flame retardants in animals representing different trophic levels of the North Sea food Web.

    PubMed

    Boon, Jan P; Lewis, Wilma E; Tjoen-A-Choy, Michael R; Allchin, Colin R; Law, Robin J; De Boer, Jacob; Ten Hallers-Tjabbes, Cato C; Zegers, Bart N

    2002-10-01

    The levels of individual PBDE congeners were investigated in the invertebrate species whelk (Buccinum undatum), seastar (Asterias rubens), and hermit crab (Pagurus bernhardus), the gadoid fish species whiting (Merlangius merlangus) and cod (Gadus morhua), and the marine mammal species harbor seal (Phoca vitulina) and harbor porpoise (Phocoena phocoena). These species are all important representatives of different trophic levels of the North Sea food web. All six major PBDE congeners detected (BDEs 28, 47, 99, 100, 153, and 154) are most prevalent in the commercial Penta-BDE formulation. There is no evidence for the occurrence of the Octa-BDE formulation in the North Sea food web, since its dominant congener, BDE183, was never detected. BDE209, the main congener (> 97%) in the Deca-BDE formulation, was detected only in a minority of the samples and always in concentrations around the limit of detection. Since BDE209 is often the major BDE congener in sediments from the area, the main reason for its low concentrations in biota from the North Sea seems to be a relatively low bioaccumulation potential. This can either be due to a low uptake rate of the very large molecule or a relatively rapid excretion after biotransformation. Since all invertebrates investigated are sentinel species, they are highly representative for the area of capture. The highest lipid-normalized concentrations of PBDEs in the invertebrates occurred near the mouth of the river Tees at the East coast of the UK. The geographical distribution of the PBDEs can be explained by the residual currents in the area. The direction of these currents differs between the summer and the winter season as a result of the presence or absence of vertical summer stratification of the deeper waters north of the Dogger Bank. Summer stratification results in the development of a density-driven bottom water current formed after the onset of vertical stratification of the water column in May leaving the UK coast near

  5. Trophic calculations reveal the mechanism of population-level variation in mercury concentrations between marine ecosystems: case studies of two polar seabirds.

    PubMed

    Brasso, Rebecka L; Polito, Michael J

    2013-10-15

    The incorporation of quantitative trophic level analysis in ecotoxicological studies provides explanatory power to identify the factors, trophic or environmental, driving population-level variation in mercury exposure at large geographic scales. In the Antarctic marine ecosystem, mercury concentrations and stable isotope values in Adélie penguins (Pygoscelis adeliae) were compared between the Antarctic Peninsula and the Ross Sea. Correcting tissue δ(15)N values for baseline δ(15)N values revealed population-level differences in trophic position which contributes to differences in mercury. Data from Thick-billed murres (Uria lomvia) were synthesized from published values from Baffin Bay and Svalbard to demonstrate the utility of baseline δ(15)N values in identifying differences in environmental mercury exposure independent of diet. Here, we demonstrate the importance of calculating population-specific trophic level data to uncover the source of variation in mercury concentrations between geographically distinct populations of marine predators.

  6. Measurement of outdoor noise levels adjacent to K-25 facility, ORGDP

    SciTech Connect

    Rodman, C.W.

    1981-08-27

    In order to obtain baseline data on environmental sound for a report on the expected environmental effects of constructing an incinerator adjacent to the ORGDP, an abbreviated measurement program was carried out. Ten measurement locations were selected for the measurements, six being representative of the ORGDP fenceline, and four representative of the surrounding area. Measurements consisted of short-term octave-band measurements and one-half hour A-weighted exceedance levels. It had been previously determined that the influence of the K-25 plant on the noise environment tends to stabilize the minimum sound level in such a way that nighttime measurements would not be needed.

  7. Effects of trophic level and metamorphosis on discrimination of hydrogen isotopes in a plant-herbivore system

    USGS Publications Warehouse

    Peters, Jacob M.; Wolf, Nathan; Stricker, Craig A.; Collier, Timothy R.; del Rio, Martinez Carlos

    2012-01-01

    The use of stable isotopes in ecological studies requires that we know the magnitude of discrimination factors between consumer and element sources. The causes of variation in discrimination factors for carbon and nitrogen have been relatively well studied. In contrast, the discrimination factors for hydrogen have rarely been measured. We grew cabbage looper caterpillars (Trichoplusia ni) on cabbage (Brassica oleracea) plants irrigated with four treatments of deuterium-enriched water (δD = -131, -88, -48, and -2‰, respectively), allowing some of them to reach adulthood as moths. Tissue δD values of plants, caterpillars, and moths were linearly correlated with the isotopic composition of irrigation water. However, the slope of these relationships was less than 1, and hence, discrimination factors depended on the δD value of irrigation water. We hypothesize that this dependence is an artifact of growing plants in an environment with a common atmospheric δD value. Both caterpillars and moths were significantly enriched in deuterium relative to plants by ~45‰ and 23‰ respectively, but the moths had lower tissue to plant discrimination factors than did the caterpillars. If the trophic enrichment documented here is universal, δD values must be accounted for in geographic assignment studies. The isotopic value of carbon was transferred more or less faithfully across trophic levels, but δ15N values increased from plants to insects and we observed significant non-trophic 15N enrichment in the metamorphosis from larvae to adult.

  8. Response in the trophic state of stratified lakes to changes in hydrology and water level: potential effects of climate change

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2011-01-01

    To determine how climate-induced changes in hydrology and water level may affect the trophic state (productivity) of stratified lakes, two relatively pristine dimictic temperate lakes in Wisconsin, USA, were examined. Both are closed-basin lakes that experience changes in water level and degradation in water quality during periods of high water. One, a seepage lake with no inlets or outlets, has a small drainage basin and hydrology dominated by precipitation and groundwater exchange causing small changes in water and phosphorus (P) loading, which resulted in small changes in water level, P concentrations, and productivity. The other, a terminal lake with inlets but no outlets, has a large drainage basin and hydrology dominated by runoff causing large changes in water and P loading, which resulted in large changes in water level, P concentrations, and productivity. Eutrophication models accurately predicted the effects of changes in hydrology, P loading, and water level on their trophic state. If climate changes, larger changes in hydrology and water levels than previously observed could occur. If this causes increased water and P loading, stratified (dimictic and monomictic) lakes are expected to experience higher water levels and become more eutrophic, especially those with large developed drainage basins.

  9. Trophic classification of selected Colorado lakes

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.; Boland, D. H. P.

    1979-01-01

    Multispectral scanner data, acquired over several Colorado lakes using LANDSAT-1 and aircraft, were used in conjunction with contact-sensed water quality data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators. Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state.

  10. Spontaneous Regression of Herniated Lumbar Disc with New Disc Protrusion in the Adjacent Level

    PubMed Central

    Gürcan, Serkan

    2016-01-01

    Spontaneous regression of herniated lumbar discs was reported occasionally. The mechanisms proposed for regression of disc herniation are still incomplete. This paper describes and discusses a case of spontaneous regression of herniated lumbar discs with a new disc protrusion in the adjacent level. A 41-year-old man was admitted with radiating pain and numbness in the left lower extremity with a left posterolateral disc extrusion at L5-S1 level. He was admitted to hospital with low back pain due to disc herniation caudally immigrating at L4-5 level three years ago. He refused the surgical intervention that was offered and was treated conservatively at that time. He had no neurological deficit and a history of spontaneous regression of the extruded lumbar disc; so, a conservative therapy, including bed rest, physical therapy, nonsteroidal anti-inflammatory drugs, and analgesics, was advised. In conclusion, herniated lumbar disc fragments may regress spontaneously. Reports are prone to advise conservative treatment for extruded or sequestrated lumbar disc herniations. However, these patients should be followed up closely; new herniation at adjacent/different level may occur. Furthermore, it is important to know which herniated disk should be removed and which should be treated conservatively, because disc herniation may cause serious complications as muscle weakness and cauda equine syndrome. PMID:27429818

  11. Human Disruption of Coral Reef Trophic Structure.

    PubMed

    Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Cinner, Joshua E; Huchery, Cindy; Holmes, Thomas H

    2017-01-23

    The distribution of biomass among trophic levels provides a theoretical basis for understanding energy flow and the hierarchical structure of animal communities. In the absence of energy subsidies [1], bottom-heavy trophic pyramids are expected to predominate, based on energy transfer efficiency [2] and empirical evidence from multiple ecosystems [3]. However, the predicted pyramid of biomass distribution among trophic levels may be disrupted through trophic replacement by alternative organisms in the ecosystem, trophic cascades, and humans preferentially impacting specific trophic levels [4-6]. Using empirical data spanning >250 coral reefs, we show how trophic pyramid shape varies given human-mediated gradients along two orders of magnitude in reef fish biomass. Mean trophic level of the assemblage increased modestly with decreasing biomass, contrary to predictions of fishing down the food web [7]. The mean trophic level pattern is explained by trophic replacement of herbivorous fish by sea urchins at low biomass and the accumulation of slow-growing, large-bodied, herbivorous fish at high biomass. Further, at high biomass, particularly where fishers are not selectively removing higher trophic level individuals, a concave trophic distribution emerges. The concave trophic distribution implies a more direct link between lower and upper trophic levels, which may confer greater energy efficiency. This trophic distribution emerges when community biomass exceeds ∼650 kg/ha, suggesting that fisheries for upper trophic level species will only be supported under lightly fished scenarios.

  12. Analyzing trophic transfer of metals in stream food webs using nitrogen isotopes.

    PubMed

    Quinn, Margaret R; Feng, Xiahong; Folt, Carol L; Chamberlain, C Page

    2003-12-30

    This study examines detrimental effects of acid mine drainage (AMD) on stream invertebrate communities and tests for a direct relationship between trophic position and accumulation of three metals (Fe, Cu, Zn) by stream invertebrates in situ. On two dates in each of seven stream sites, we measured food chain length, mean trophic level, taxa richness, and trophic position of stream macroinvertebrates comprising the food webs using stable nitrogen isotope ratios. Metals in tissue of representatives of 35 taxa were measured by ICP-OES. Our results are the first direct comparison of uptake of these metals in stream invertebrate taxa according to trophic position as identified by delta15N. As predicted, metal concentrations were generally greater in water and insects from sites adjacent to mining activity and invertebrate taxa richness was significantly lower. Taxa richness increased with distance away from contaminated headwaters. Despite reductions in diversity at sites nearest AMD, food chain length and mean trophic level did not differ between streams. The relationship between trophic position and metal accumulation differed considerably among metals. Specifically, Fe declined (biodilution) and Zn increased (biomagnification) with trophic level, but trophic position had no effect on Cu levels in these insects. Our results highlight fundamental differences in trophic transfer of specific metals through aquatic food webs and identify ecologically important impacts of AMD on stream invertebrates.

  13. Heavy metals in aquatic organisms of different trophic levels and their potential human health risk in Bohai Bay, China.

    PubMed

    Zhang, Yan; Lu, Xueqiang; Wang, Naili; Xin, Meinan; Geng, Shiwei; Jia, Jing; Meng, Qinghui

    2016-09-01

    Fourteen aquatic organism samples were collected from Bohai Bay, and concentrations of five heavy metals were measured to evaluate the pollution levels in aquatic organisms and the potential risk to human health. The concentrations of Zn and Cu were much higher than those of Cd, Cr, and Pb in all the organisms. In general, the heavy metal concentration levels were in the order phytoplankton < zooplankton < fish < shrimp < shellfish. Heavy metal concentrations in higher trophic-level aquatic organisms in Bohai Bay were compared to those in the organisms from other worldwide coastal waters. The concentration levels of most heavy metals were higher than the 75th percentile, except that Pb concentration was between the 25th and 50th percentiles. The calculated bioconcentration factors (BCF) of Cr, Cu, and Pb for phytoplankton were less than 100, indicating no accumulation in primary producers. The bioaccumulation factor (BAF) of Pb for zooplankton was the highest, indicating significant Pb accumulation in zooplankton. For higher trophic-level aquatic organisms, the order of BAF values was fish < shrimp < shellfish for most metals except for Pb. The human health risk assessment suggests that strict abatement measures of heavy metals must be taken to decrease the health risk caused by consuming aquatic products.

  14. Trophic states of creeks and their relationship to changes in water level in Xixi National Wetland Park, China.

    PubMed

    Li, Yufeng; Liu, Hongyu; Hao, Jingfeng; Zheng, Nan; Cao, Xiao

    2012-04-01

    Urban wetland parks are a new type of urban park that have developed rapidly in recent years and have caught the attention of multiple governmental departments. The objective of this paper was to describe the trophic states of creeks and their relationship to water levels in an urban wetland park in Xixi, China. The study was based on temporal and spatial data collected monthly between March 2009 and March 2010. The results indicated that: (1) water quality significantly changed from upstream to downstream in study creeks. From upstream to downstream, water quality of creeks I and III improved; however, the water quality of creek IV and V declined; (2) trophic states in Xixi creeks differed according to seasons. Overall, the nutrition in creeks was measured at the slight eutrophication level. Nutrition was highest in summer and lowest in winter; (3) the relationship between water quality and water level differed dramatically between creeks. Water quality and water level in creek I was significantly negatively correlated, while no obvious trends were observed in other creeks. In order to improve water quality in creeks, the valid technique is to strengthen the management of inflowing water quality and then control water levels.

  15. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system.

    PubMed

    Scharler, U M; Ulanowicz, R E; Fogel, M L; Wooller, M J; Jacobson-Meyers, M E; Lovelock, C E; Feller, I C; Frischer, M; Lee, R; McKee, K; Romero, I C; Schmit, J P; Shearer, C

    2015-11-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  16. Evaluation of marine subareas of Europe using life history parameters and trophic levels of selected fish populations.

    PubMed

    Jayasinghe, R P Prabath K; Amarasinghe, Upali S; Newton, Alice

    2015-12-01

    European marine waters include four regional seas that provide valuable ecosystem services to humans, including fish and other seafood. However, these marine environments are threatened by pressures from multiple anthropogenic activities and climate change. The European Marine Strategy Framework Directive (MSFD) was adopted in 2008 to achieve good environmental status (GEnS) in European Seas by year 2020, using an Ecosystem Approach. GEnS is to be assessed using 11 descriptors and up to 56 indicators. In the present analysis two descriptors namely "commercially exploited fish and shellfish populations" and "food webs" were used to evaluate the status of subareas of FAO 27 area. Data on life history parameters, trophic levels and fisheries related data of cod, haddock, saithe, herring, plaice, whiting, hake and sprat were obtained from the FishBase online database and advisory reports of International Council for the Exploration of the Sea (ICES). Subareas inhabited by r and K strategists were identified using interrelationships of life history parameters of commercially important fish stocks. Mean trophic level (MTL) of fish community each subarea was calculated and subareas with species of high and low trophic level were identified. The Fish in Balance (FiB) index was computed for each subarea and recent trends of FiB indices were analysed. The overall environmental status of each subarea was evaluated considering life history trends, MTL and FiB Index. The analysis showed that subareas I, II, V, VIII and IX were assessed as "good" whereas subareas III, IV, VI and VII were assessed as "poor". The subareas assessed as "good" were subject to lower environmental pressures, (less fishing pressure, less eutrophication and more water circulation), while the areas with "poor" environment experienced excessive fishing pressure, eutrophication and disturbed seabed. The evaluation was based on two qualitative descriptors ("commercially exploited fish and shellfish

  17. Variable nutrient stoichiometry (carbon:nitrogen:phosphorus) across trophic levels determines community and ecosystem properties in an oligotrophic mangrove system

    USGS Publications Warehouse

    Scharler, U.M.; Ulanowicz, Robert E.; Fogel, M.L.; Wooller, M.J.; Jacobson-Meyers, M.E.; Lovelock, C.E.; Feller, I.C.; Frischer, M.; Lee, R.; Mckee, Karen L.; Romero, I.C.; Schmit, J.P.; Shearer, C.

    2015-01-01

    Our study investigated the carbon:nitrogen:phosphorus (C:N:P) stoichiometry of mangrove island of the Mesoamerican Barrier Reef (Twin Cays, Belize). The C:N:P of abiotic and biotic components of this oligotrophic ecosystem was measured and served to build networks of nutrient flows for three distinct mangrove forest zones (tall seaward fringing forest, inland dwarf forests and a transitional zone). Between forest zones, the stoichiometry of primary producers, heterotrophs and abiotic components did not change significantly, but there was a significant difference in C:N:P, and C, N, and P biomass, between the functional groups mangrove trees, other primary producers, heterotrophs, and abiotic components. C:N:P decreased with increasing trophic level. Nutrient recycling in the food webs was highest for P, and high transfer efficiencies between trophic levels of P and N also indicated an overall shortage of these nutrients when compared to C. Heterotrophs were sometimes, but not always, limited by the same nutrient as the primary producers. Mangrove trees and the primary tree consumers were P limited, whereas the invertebrates consuming leaf litter and detritus were N limited. Most compartments were limited by P or N (not by C), and the relative depletion rate of food sources was fastest for P. P transfers thus constituted a bottleneck of nutrient transfer on Twin Cays. This is the first comprehensive ecosystem study of nutrient transfers in a mangrove ecosystem, illustrating some mechanisms (e.g. recycling rates, transfer efficiencies) which oligotrophic systems use in order to build up biomass and food webs spanning various trophic levels.

  18. PBDEs and other POPs in urban birds of prey partly explained by trophic level and carbon source.

    PubMed

    Elliott, John E; Brogan, Jason; Lee, Sandi L; Drouillard, Ken G; Elliott, Kyle H

    2015-08-15

    As urban sprawl and agricultural intensification continue to invade prime wildlife habitat, some animals, even apex predators, are managing to adapt to this new environment. Chemical pollution is one of many stressors that wildlife encounter in urban environments. Predators are particularly sensitive to persistent chemical pollutants because they feed at a high trophic level where such pollution is biomagnified. To examine levels of pollution in urban birds of prey in the Lower Mainland region of British Columbia, Canada, we analyzed persistent organic contaminants in adult birds found dead of trauma injury. The hepatic geometric mean concentration of sum polybrominated diphenyl ethers (∑PBDEs) in 13 Cooper's hawks (Accipiter cooperii) from Greater Vancouver was 1873 ng/g (lipid weight) with one bird reaching 197,000n g/g lipid weight, the highest exposure reported to date for a wild bird. Concentrations of ∑PBDEs, ∑PCBs (polychlorinated biphenyls) and, surprisingly, cyclodiene insecticides were greatest in the urban environment while those of DDE (1,1-dichloroethylene bis[p-chlorophenyl) were highest in a region of intensive agriculture. The level of most chlorinated and brominated contaminants increased with trophic level (δ(15)N). The concentrations of some contaminants, PBDEs in particular, in these birds of prey may have some toxicological consequences. Apex predators in urban environments continue to be exposed to elevated concentrations of legacy pollutants as well as more recent brominated pollutants.

  19. The influence of trophic level and feeding location of the levels of organochlorine contaminants in seabird eggs as revealed by stable carbon and nitrogen isotope analysis

    SciTech Connect

    Hobson, K.; Jarman, W.M.; Bott, J.A.; Bacon, C.E.; Sydeman, W.

    1994-12-31

    Seabird eggs have been used extensively to assay contaminants in marine food webs, but links to trophic level or feeding location have remained poorly understood due to limitations inherent in conventional dietary studies. Stable-isotope analysis of bird eggs may be used to infer trophic position and feeding location of adult seabirds and can be readily correlated with measurements of egg contaminant levels. The authors measured stable-carbon ({delta}{sup 13}C) and nitrogen ({delta}{sup 15}N) isotope abundance, and organochlorine contaminants (DDTs, PCBs, chlordanes, etc.) in eggs from Cassin`s Auklet (Ptychoramphus aleutica), Common Murre (Uria aalge), Pigeon Guillemot (Cepphus columba). Rhinoceros Auklet (Cerorhinca monocerata), Pelagic Cormorant (Phalacrocorax pelagicus), Brandt`s Cormorant (Phalacrocorax penicillatus), and Western Gull (Larus) from Southeast Farallon Island together with rockfish (Sebastes spp.), anchovy (Engraulis spp.), and euphausiid prey from the Gulf of the Farallones. Consistent with its planktivorous diet and pelagic feeding habits, Cassin`s Auklet showed the lowest mean {delta}{sup 15}N value and the least enriched {delta}{sup 13}C values. Measures of trophic level and foraging location were constructed for all other seabirds relative to these isotopic endpoints. Contaminant levels in the eggs and fish will be interpreted in light of the stable-isotope results.

  20. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.).

    PubMed

    Farrell, Paul; Nelson, Kathryn

    2013-06-01

    This study investigated the trophic transfer of microplastic from mussels to crabs. Mussels (Mytilus edulis) were exposed to 0.5 μm fluorescent polystyrene microspheres, then fed to crabs (Carcinus maenas). Tissue samples were then taken at intervals up to 21 days. The number of microspheres in the haemolymph of the crabs was highest at 24 h (15 033 ml(-1) ± SE 3146), and was almost gone after 21 days (267 ml(-1) ± SE 120). The maximum amount of microspheres in the haemolymph was 0.04% of the amount to which the mussels were exposed. Microspheres were also found in the stomach, hepatopancreas, ovary and gills of the crabs, in decreasing numbers over the trial period. This study is the first to show 'natural' trophic transfer of microplastic, and its translocation to haemolymph and tissues of a crab. This has implications for the health of marine organisms, the wider food web and humans.

  1. Bioconcentration of polybrominated diphenyl ethers and organochlorine pesticides in algae is an important contaminant route to higher trophic levels.

    PubMed

    Qiu, Yao-Wen; Zeng, Eddy Y; Qiu, Hanlin; Yu, Kefu; Cai, Shuqun

    2017-02-01

    Persistent organic pollutants (POPs) present in water may be bioconcentrated in phytoplankton and further transferred into higher trophic levels. In the present study, seawater, sediment, phytoplankton and macroalgae (Ulva lactuca L.) samples were collected from two estuarine bays in South China and analyzed for 24 polybrominated diphenyl ethers (PBDEs) and 22 organochlorine pesticides (OCPs). The concentrations of PBDE congeners except BDE-209 were low in both phytoplankton and Ulva. BDE-209 was the predominant congener in phytoplankton and Ulva, accounting for 89.5% and 86.6% of the total average concentrations of PBDEs (48.5 and 4.1ngg(-1)dw), respectively. The average concentrations of DDTs, HCHs and 1-chloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDMU) in phytoplankton were 398, 241 and 11.3ngg(-1)dw, respectively, while those of DDTs and HCHs in Ulva were 8.4 and 33.1ngg(-1)dw. The levels of both PBDEs and OCPs were an order of magnitude higher in phytoplankton than in Ulva, indicating that phytoplankton with larger surface areas have higher uptake efficiency for POPs than Ulva. Bioconcentration factors (BCFs) of DDT and PBDE in phytoplankton from the two bays were in the range of 10(5)-10(6), suggesting that bioconcentration may be one of the key sources of POPs and algae can be an important route for POPs to move toward higher trophic levels.

  2. Mercury concentrations in fish from Lake Mead, USA, related to fish size, condition, trophic level, location, and consumption risk.

    PubMed

    Cizdziel, J V; Hinners, T A; Pollard, J E; Heithmar, E M; Cross, C L

    2002-10-01

    Total mercury (Hg) concentrations were determined in the skeletal muscle of 339 fish collected during the fall of 1998 and spring of 1999 from Lake Mead, USA, the nation's largest human-made reservoir. Five species of fish representing a range of trophic levels and the lake's principal game fishes were studied. Hg generally increased with trophic level and fish size. Median Hg concentrations (ng/g wet mass) were 277 in striped bass, 168 in channel catfish, 160 in largemouth bass, 75 in bluegill, and 8 in blue tilapia. Overall, fish from Las Vegas Bay and Boulder Basin had the lowest Hg concentrations, possibly a result of biodilution in this biologically productive area. In general, fish-mercury advisories might include a warning about consuming fillet from emaciated fish, based on the finding that Hg concentrations in 59 striped bass (captured during a scarce-food season) correlated inversely ( r = -0.89, p < 0.001) with a fish nutritional-status factor. This is consistent with starvation-concentration, whereby Hg in fish muscle is lost at a slower rate than the muscle mass. The median concentration found for 139 striped bass corresponds to a recommended risk-based consumption limit of three 8-oz. (227-g) meals per month for a 70-kg adult. Finally, this paper serves as a useful archive for future research and long-term studies of Hg in Lake Mead fish.

  3. Acute to chronic ratios in aquatic toxicity--variation across trophic levels and relationship with chemical structure.

    PubMed

    Ahlers, Jan; Riedhammer, Caroline; Vogliano, Michaela; Ebert, Ralf-Uwe; Kühne, Ralph; Schüürmann, Gerrit

    2006-11-01

    For fish, daphnids, and algae, acute to chronic ratios (ACRs) have been determined from experimental data regarding new and existing chemicals. Only test results in accord with the European Union Technical Guidance Document (TGD) and validated by authorities were considered. Whereas the median ACRs of 10.5 (fish), 7.0 (daphnids), and 5.4 (algae) are well below the ACR safety factor of 100 as implied by the TGD, individual ACRs vary considerably and go up to 4400. The results suggest that a safety factor of 100 is not protective for all chemicals and trophic levels. Neither a correlation between ACR and baseline toxicity as modeled through the logarithmic octanol-water partition coefficient nor an ACR correlation across trophic levels exists. Narcosis is associated with a preference for a low ACR; nevertheless, low ACRs are frequently obtained for nonnarcotics. Analysis of chemical structures led to the derivation of structural alerts to identify compounds with a significantly increased potential for a high ACR, which may prove to be useful in setting test priorities. At present, however, life-cycle tests are the only way to conservatively predict long-term toxicity.

  4. Spatial variations in feeding habits and trophic levels of two small pelagic fish species in the central Mediterranean Sea.

    PubMed

    Rumolo, P; Bonanno, A; Barra, M; Fanelli, E; Calabrò, M; Genovese, S; Ferreri, R; Mazzola, S; Basilone, G

    2016-04-01

    Trophic ecology of adults of European sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) was examined and compared among various regions of central Mediterranean Sea. Carbon and nitrogen stable isotope analyses (δ(13)C and δ(15)N) were adopted as a tool to determine changes in feeding behaviour of adults of sardines and anchovies. In the study period (summer) a clear geographical pattern was recognized in the isotopic composition of both species, with an increasing trend northward. The highest variations in isotopic signal were linked to the geographical positions of the samples and, especially, between pairs of areas: South Sicily/South Campania and Gulf of Gaeta/South Elba. Higher isotope values were found in the anchovies and sardines caught in northern Tyrrhenian Sea, while lower values were mostly estimated in the southern region. Higher carbon and nitrogen isotopes may reflect a more coastal behaviour of both species, being (13)C-enriched source from benthic primary producers in addition to phytoplankton. Variations in the nitrogen isotope ratio may reflect not only differences in the trophic level of prey species, but also variations in the baseline level of food webs. Our results support the hypothesis that feeding behaviour of both species is directly or indirectly influenced by local factors, or by resource partitioning based on zooplankton size. Findings can supply knowledge needed for improving fish stock management and promoting plans able to take into account also local ecosystem analysis.

  5. Mercury accumulation by lower trophic-level organisms in lentic systems within the Guadalupe River watershed, California

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Moon, Gerald E.; Husby, Peter; Lincoff, Andrew; Carter, James L.; Croteau, Marie-Noële

    2005-01-01

    The water columns of four reservoirs (Almaden, Calero, Guadalupe and Lexington Reservoirs) and an abandoned quarry pit filled by Alamitos Creek drainage for recreational purposes (Lake Almaden) were sampled on September 14 and 15, 2004 to provide the first measurements of mercury accumulation by phytoplankton and zooplankton in lentic systems (bodies of standing water, as in lakes and reservoirs) within the Guadalupe River watershed, California. Because of widespread interest in ecosystem effects associated with historic mercury mining within and downgradient of the Guadalupe Riverwatershed, transfer of mercury to lower trophic-level organisms was examined. The propensity of mercury to bioaccumulate, particularly in phytoplankton and zooplankton at the base of the food web, motivated this attempt to provide information in support of developing trophic-transfer and solute-transport models for the watershed, and hence in support of subsequent evaluation of load-allocation strategies. Both total mercury and methylmercury were examined in these organisms. During a single sampling event, replicate samples from the reservoir water column were collected and processed for dissolved-total mercury, dissolved-methylmercury, phytoplankton mercury speciation, phytoplankton taxonomy and biomass, zooplankton mercury speciation, and zooplankton taxonomy and biomass. The timing of this sampling event was coordinated with sampling and analysis of fish from these five water bodies, during a period of the year when vertical stratification in the reservoirs generates a primary source of methylmercury to the watershed. Ancillary data, including dissolved organic carbon and trace-metal concentrations as well as vertical profiles of temperature, dissolved oxygen, specific conductance and pH, were gathered to provide a water-quality framework from which to compare the results for mercury. This work, in support of the Guadalupe River Mercury Total Maximum Daily Load (TMDL) Study, provides

  6. Evaluation of the toxicity of superfine materials to change the physiological functions of aquatic organisms of different trophic levels

    NASA Astrophysics Data System (ADS)

    Morgalev, S.; Morgaleva, T.; Gosteva, I.; Morgalev, Yu

    2015-11-01

    We assessed ecological and biological effects caused by the physical and chemical properties of nanomaterials on the basis of the laboratory researches into water test-organisms of different trophic levels. We studied the physiological functions of water organisms on adding into the environment superfine materials of various chemical nature and structural characteristics: metallic nanoparticles of nikel (nNi), argentum (nAg), platinum (nPt), aurum (nAu), binary NPs (powder of titanium dioxide - nTiO2, aluminum oxide - nAl2O3, zink oxide - nZnO, silicon nitride - nSi3N4, silicon carbide (nSiC) and carbon nanotubes (BT-50, MCD- material). We observed the dependence of developing the complex of unfavourable biological effects in water plants and entomostracans’ organisms on the physical and chemical properties of superfine materials. We determined the values of NOEC, L(E)C20 and L(E)C50 for aquatic organisms of various regular groups. We found out the most vulnerable elements of the communities’ trophic structure and the possibility of a breakdown in the water ecosystem food pyramid.

  7. A comprehensive assessment of mercury exposure in penguin populations throughout the Southern Hemisphere: Using trophic calculations to identify sources of population-level variation.

    PubMed

    Brasso, Rebecka L; Chiaradia, André; Polito, Michael J; Raya Rey, Andrea; Emslie, Steven D

    2015-08-15

    The wide geographic distribution of penguins (Order Sphenisciformes) throughout the Southern Hemisphere provided a unique opportunity to use a single taxonomic group as biomonitors of mercury among geographically distinct marine ecosystems. Mercury concentrations were compared among ten species of penguins representing 26 geographically distinct breeding populations. Mercury concentrations were relatively low (⩽2.00ppm) in feathers from 18/26 populations considered. Population-level differences in trophic level explained variation in mercury concentrations among Little, King, and Gentoo penguin populations. However, Southern Rockhopper and Magellanic penguins breeding on Staten Island, Tierra del Fuego, had the highest mercury concentrations relative to their conspecifics despite foraging at a lower trophic level. The concurrent use of stable isotope and mercury data allowed us to document penguin populations at the greatest risk of exposure to harmful concentrations of mercury as a result of foraging at a high trophic level or in geographic 'hot spots' of mercury availability.

  8. Lumbar Facet Joint Motion in Patients with Degenerative Disc Disease at Affected and Adjacent Levels

    PubMed Central

    Li, Weishi; Wang, Shaobai; Xia, Qun; Passias, Peter; Kozanek, Michal; Wood, Kirkham; Li, Guoan

    2013-01-01

    Study Design Controlled laboratory study. Objective To evaluate the effect of lumbar degenerative disc diseases (DDDs) on motion of the facet joints during functional weight-bearing activities. Summary of Background Data It has been suggested that DDD adversely affects the biomechanical behavior of the facet joints. Altered facet joint motion, in turn, has been thought to associate with various types of lumbar spine pathology including facet degeneration, neural impingement, and DDD progression. However, to date, no data have been reported on the motion patterns of the lumbar facet joint in DDD patients. Methods Ten symptomatic patients of DDD at L4–S1 were studied. Each participant underwent magnetic resonance images to obtain three-dimensional models of the lumbar vertebrae (L2–S1) and dual fluoroscopic imaging during three characteristic trunk motions: left-right torsion, left-right bending, and flexion-extension. In vivo positions of the vertebrae were reproduced by matching the three-dimensional models of the vertebrae to their outlines on the fluoroscopic images. The kinematics of the facet joints and the ranges of motion (ROMs) were compared with a group of healthy participants reported in a previous study. Results In facet joints of the DDD patients, there was no predominant axis of rotation and no difference in ROMs was found between the different levels. During left-right torsion, the ROMs were similar between the DDD patients and the healthy participants. During left-right bending, the rotation around mediolateral axis at L4–L5, in the DDD patients, was significantly larger than that of the healthy participants. During flexion-extension, the rotations around anterioposterior axis at L4–L5 and around craniocaudal axis at the adjacent level (L3–L4), in the DDD patients, were also significantly larger, whereas the rotation around mediolateral axis at both L2–L3 and L3–L4 levels in the DDD patients were significantly smaller than those of the

  9. Effects of soybean resistance on variability in life history traits of the higher trophic level parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae).

    PubMed

    Li, X; Li, B; Xing, G; Meng, L

    2017-02-01

    To extrapolate the influence of plant cultivars varying in resistance levels to hosts on parasitoid life history traits, we estimated variation in parasitoid developmental and reproductive performances as a function of resistance in soybean cultivars, which were randomly chosen from a line of resistant genotypes. Our study showed that the parasitoid Meteorus pulchricornis varied widely in offspring survival and lifetime fecundity, but varied slightly in development time and adult body size, in response to the soybean cultivars that varied in resistance to the host Spodoptera litura. Furthermore, the variability in survival and lifetime fecundity was different between attacking the 2nd and the 4th instar host larvae, varying more in survival but less in lifetime fecundity when attacking the 4th than 2nd instar larvae. Our study provides further evidence supporting that plant resistance to herbivorous hosts have variable effects on different life history traits of higher trophic level parasitoids.

  10. Lower trophic levels and detrital biomass control the Bay of Biscay continental shelf food web: Implications for ecosystem management

    NASA Astrophysics Data System (ADS)

    Lassalle, G.; Lobry, J.; Le Loc'h, F.; Bustamante, P.; Certain, G.; Delmas, D.; Dupuy, C.; Hily, C.; Labry, C.; Le Pape, O.; Marquis, E.; Petitgas, P.; Pusineri, C.; Ridoux, V.; Spitz, J.; Niquil, N.

    2011-12-01

    The Bay of Biscay (North-East Atlantic) has long been subjected to intense direct and indirect human activities that lead to the excessive degradation and sometimes overexploitation of natural resources. Fisheries management is gradually moving away from single-species assessments to more holistic, multi-species approaches that better respond to the reality of ecosystem processes. Quantitative modelling methods such as Ecopath with Ecosim can be useful tools for planning, implementing and evaluating ecosystem-based fisheries management strategies. The aim of this study was therefore to model the energy fluxes within the food web of this highly pressured ecosystem and to extract practical information required in the diagnosis of ecosystem state/health. A well-described model comprising 30 living and two non-living compartments was successfully constructed with data of local origin, for the Bay of Biscay continental shelf. The same level of aggregation was applied to primary producers, mid-trophic-levels and top-predators boxes. The model was even more general as it encompassed the entire continuum of marine habitats, from benthic to pelagic domains. Output values for most ecosystem attributes indicated a relatively mature and stable ecosystem, with a large proportion of its energy flow originating from detritus. Ecological network analysis also provided evidence that bottom-up processes play a significant role in the population dynamics of upper-trophic-levels and in the global structuring of this marine ecosystem. Finally, a novel metric based on ecosystem production depicted an ecosystem not far from being overexploited. This finding being not entirely consistent over indicators, further analyses based on dynamic simulations are required.

  11. Assessment of contaminant levels and trophic relations at a World Heritage Site by measurements in a characteristic shorebird species

    SciTech Connect

    Schwemmer, Philipp; Covaci, Adrian; Das, Krishna; Lepoint, Gilles; Adler, Sven; Garthe, Stefan

    2015-01-15

    The River Elbe is responsible for influxes of contaminants into the Wadden Sea World Heritage Site. We investigated levels of polychlorinated biphenyls (PCBs), oxychlordane (OxC), hexachlorobenzene (HCB), hexachlorocyclohexanes (α-, β-, γ-HCHs), dichlorodiphenyltrichloroethane (DDT) and its metabolites, and polybrominated diphenyl ethers (PBDEs) in blood and feathers from Eurasian oystercatchers (Haematopus ostralegus; n=28) at the Elbe and compared it with a non-riverine site about 90 km further north. (1) Mean levels of all contaminants in feathers and serum were significantly higher at the river (∑PCBs: 27.6 ng/g feather, 37.0 ng/ml serum; ∑DDTs: 5.3 ng/g feather, 4.4 ng/ml serum) compared with the non-riverine site (∑PCBs: 6.5 ng/g feather, 1.2 ng/ml serum; ∑DDTs: 1.4 ng/g feather, 0.5 ng/ml serum). Mean ∑HCH and HCB levels were <1.8 ng/g in feather and <1.8 ng/ml in serum at both sites. (2) Levels of most detectable compounds in serum and feathers were significantly related, but levels were not consistently higher in either tissue. (3) There was no significant relationship between trophic level in individual oystercatchers (expressed as δ15N) or the degree of terrestrial feeding (expressed as δ13C) and contaminant loads. (4) PBDEs were not detected in significant amounts at either site. The results of this study indicate that the outflow from one of Europe′s largest river systems is associated with significant historical contamination, reflected by the accumulation of contaminants in body tissues in a coastal benthivore predator. - Highlights: • Contaminants in Oystercatchers from the Elbe river and a non-riverine site were measured. • Mean levels of contaminants were higher at the river than at the non-riverine site. • Levels of most contaminants in serum and feathers were significantly related. • No relationship between trophic level (δ15N) and contaminant level was found. • One of Europe′s largest river systems is associated

  12. Feeding habits and trophic level of the Panama grunt Pomadasys panamensis, an important bycatch species from the shrimp trawl fishery in the Gulf of California

    SciTech Connect

    Rodriguez-Preciado, Jose A.; Amezcua-Martinez, Felipe; Bellgraph, Brian J.; Madrid-Vera, Juan

    2014-10-14

    The Panama grunt is an abundant and commercially important species in the SE Gulf of California, but the research undertaken on this species is scarce despite its ecological and economic importance. We studied the feeding habits of Panama grunt through stomach content analyses as a first step towards understanding the biology of this species in the study area. Our results show that the Panama grunt is a benthic predator throughout its life cycle and feeds mainly on infaunal crustaceans. Diet differences were not found according to size, diet or season. Shannon diversity index results indicate that Panama grunt have a limited trophic niche breadth with a diet dominated by a limited number of taxa. The estimated trophic level of this species is 3.59. Overall, the Panama grunt is a carnivorous fish occupying the intermediate levels of the trophic pyramid.

  13. Isotopic niche variation in a higher trophic level ectotherm: highlighting the role of succulent plants in desert food webs.

    PubMed

    Delibes, Miguel; Blazquez, Ma Carmen; Fedriani, Jose Maria; Granados, Arsenio; Soriano, Laura; Delgado, Antonio

    2015-01-01

    Stable isotope analysis of animal tissues allows description of isotopic niches, whose axes in an n-dimensional space are the isotopic ratios, compared to a standard, of different isotope systems (e.g. δ(13)C, δ(15)N). Isotopic niches are informative about where an animal, population or species lives and about what it consumes. Here we describe inter- and intrapopulation isotopic niche (bidimensional δ(13)C-δ(15)N space) of the Orange-throated whiptail (Aspidoscelis hyperythra), an arthropodivorous small lizard, in ten localities of Baja California Sur (Mexico). These localities range from extreme arid to subtropical conditions. Between 13 and 20 individuals were sampled at each locality and 1 cm of tail-tip was collected for isotope analysis. As expected, interpopulation niche width variation was much larger than intrapopulation one. Besides, isotopic variation was not related to age, sex or individual size of lizards. This suggests geographic variation of the isotopic niche was related to changes in the basal resources that fuel the trophic web at each locality. The position of Bayesian isotope ellipses in the δ-space indicated that whiptails in more arid localities were enriched in 13C, suggesting most of the carbon they ingested came from CAM succulent plants (cacti, agaves) and in minor degree in C4 grasses. Contrarily, whiptails in subtropical areas were depleted in 13C, as they received more carbon from C3 scrubs and trees. Localities closer to sea-level tended to be enriched in 15N, but a clear influence of marine subsidies was detected only at individual level. The study contributes to identify the origin and pathways through which energy flows across the trophic webs of North American deserts.

  14. Isotopic Niche Variation in a Higher Trophic Level Ectotherm: Highlighting the Role of Succulent Plants in Desert Food Webs

    PubMed Central

    Delibes, Miguel; Blazquez, Ma Carmen; Fedriani, Jose Maria; Granados, Arsenio; Soriano, Laura; Delgado, Antonio

    2015-01-01

    Stable isotope analysis of animal tissues allows description of isotopic niches, whose axes in an n-dimensional space are the isotopic ratios, compared to a standard, of different isotope systems (e.g. δ13C, δ15N). Isotopic niches are informative about where an animal, population or species lives and about what it consumes. Here we describe inter- and intrapopulation isotopic niche (bidimensional δ13C-δ15N space) of the Orange-throated whiptail (Aspidoscelis hyperythra), an arthropodivorous small lizard, in ten localities of Baja California Sur (Mexico). These localities range from extreme arid to subtropical conditions. Between 13 and 20 individuals were sampled at each locality and 1 cm of tail-tip was collected for isotope analysis. As expected, interpopulation niche width variation was much larger than intrapopulation one. Besides, isotopic variation was not related to age, sex or individual size of lizards. This suggests geographic variation of the isotopic niche was related to changes in the basal resources that fuel the trophic web at each locality. The position of Bayesian isotope ellipses in the δ-space indicated that whiptails in more arid localities were enriched in 13C, suggesting most of the carbon they ingested came from CAM succulent plants (cacti, agaves) and in minor degree in C4 grasses. Contrarily, whiptails in subtropical areas were depleted in 13C, as they received more carbon from C3 scrubs and trees. Localities closer to sea-level tended to be enriched in 15N, but a clear influence of marine subsidies was detected only at individual level. The study contributes to identify the origin and pathways through which energy flows across the trophic webs of North American deserts. PMID:25973609

  15. Acidification in the Adirondacks: defining the biota in trophic levels of 30 chemically diverse acid-impacted lakes.

    PubMed

    Nierzwicki-Bauer, Sandra A; Boylen, Charles W; Eichler, Lawrence W; Harrison, James P; Sutherland, James W; Shaw, William; Daniels, Robert A; Charles, Donald F; Acker, Frank W; Sullivan, Timothy J; Momen, Bahram; Bukaveckas, Paul

    2010-08-01

    The Adirondack Mountains in New York State have a varied surficial geology and chemically diverse surface waters that are among the most impacted by acid deposition in the U.S. No single Adirondack investigation has been comprehensive in defining the effects of acidification on species diversity, from bacteria through fish, essential for understanding the full impact of acidification on biota. Baseline midsummer chemistry and community composition are presented for a group of chemically diverse Adirondack lakes. Species richness of all trophic levels except bacteria is significantly correlated with lake acid-base chemistry. The loss of taxa observed per unit pH was similar: bacterial genera (2.50), bacterial classes (1.43), phytoplankton (3.97), rotifers (3.56), crustaceans (1.75), macrophytes (3.96), and fish (3.72). Specific pH criteria were applied to the communities to define and identify acid-tolerant (pH<5.0), acid-resistant (pH 5.0-5.6), and acid-sensitive (pH>5.6) species which could serve as indicators. Acid-tolerant and acid-sensitive categories are at end-points along the pH scale, significantly different at P<0.05; the acid-resistant category is the range of pH between these end-points, where community changes continually occur as the ecosystem moves in one direction or another. The biota acid tolerance classification (batc) system described herein provides a clear distinction between the taxonomic groups identified in these subcategories and can be used to evaluate the impact of acid deposition on different trophic levels of biological communities.

  16. Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean

    NASA Astrophysics Data System (ADS)

    Yool, A.; Popova, E. E.; Coward, A. C.; Bernie, D.; Anderson, T. R.

    2013-02-01

    Most future projections forecast significant and ongoing climate change during the 21st century, but with the severity of impacts dependent on efforts to restrain or reorganise human activity to limit carbon dioxide (CO2) emissions. A major sink for atmospheric CO2, and a key source of biological resources, the World Ocean is widely anticipated to undergo profound physical and - via ocean acidification - chemical changes as direct and indirect results of these emissions. Given strong biophysical coupling, the marine biota is also expected to experience strong changes in response to this anthropogenic forcing. Here we examine the large-scale response of ocean biogeochemistry to climate and acidification impacts during the 21st century for Representative Concentration Pathways (RCPs) 2.6 and 8.5 using an intermediate complexity global ecosystem model, Medusa-2.0. The primary impact of future change lies in stratification-led declines in the availability of key nutrients in surface waters, which in turn leads to a global decrease (1990s vs. 2090s) in ocean productivity (-6.3%). This impact has knock-on consequences for the abundances of the low trophic level biogeochemical actors modelled by Medusa-2.0 (-5.8%), and these would be expected to similarly impact higher trophic level elements such as fisheries. Related impacts are found in the flux of organic material to seafloor communities (-40.7% at 1000 m), and in the volume of ocean suboxic zones (+12.5%). A sensitivity analysis removing an acidification feedback on calcification finds that change in this process significantly impacts benthic communities, suggesting that a better understanding of the OA-sensitivity of calcifying organisms, and their role in ballasting sinking organic carbon, may significantly improve forecasting of these ecosystems. For all processes, there is geographical variability in change, and changes are much more pronounced under RCP 8.5 than the RCP 2.6 scenario.

  17. Soil Microarthropods and Their Relationship to Higher Trophic Levels in the Pedregal de San Angel Ecological Reserve, Mexico

    PubMed Central

    Callejas-Chavero, Alicia; Castaño-Meneses, Gabriela; Razo-González, María; Pérez-Velázquez, Daniela; Palacios-Vargas, José G.; Flores-Martínez, Arturo

    2015-01-01

    Soil fauna is essential for ecosystem dynamics as it is involved in biogeochemical processes, promotes nutrient availability, and affects the animal communities associated with plants. In this study, we examine the possible relationship between the soil microarthropod community on foliage production and quality of the shrub Pittocaulon praecox. We also examine the arthropods associated to its foliage, particularly the size of the main herbivores and of their natural enemies, at two sites with contrasting vegetation cover and productivity. The diversity of soil microarthropods was assessed from soil samples collected monthly under P. praecox individuals over 13 mo. Specimens collected were identified to species or morphospecies. Shrub foliage productivity was evaluated through the amount of litter produced. Resource quality was assessed by the mean content (percentage by weight) of N, C, S, and P of 30 leaves from each shrub. The mean size of herbivores and their natural enemies were determined by measuring 20 adult specimens of each of the most abundant species. We found a higher species richness of soil microarthropods and foliar arthropods in the open site, although the diversity of foliage arthropods was lower in the closed site. Shrubs growing in the closed site tend to produce more, larger, and nutritionally poorer (lower nitrogen content) leaves than open site. Herbivores and their natural enemies were also larger in the closed site. We found a significant positive relationship between the diversity and species richness of foliar arthropods and the nitrogen content of leaves. In general, species richness and diversity of both the foliar and soil fauna, as well as the size of organisms belonging to higher trophic levels, were affected by vegetation cover and primary productivity at each site. These findings highlight the need to simultaneously consider at least four trophic levels (soil organisms, plants, herbivores, and natural enemies) to better understand

  18. Mean trophic level of coastal fisheries landings in the Persian Gulf (Hormuzgan Province), 2002-2011

    NASA Astrophysics Data System (ADS)

    Razzaghi, Marzieh; Mashjoor, Sakineh; Kamrani, Ehsan

    2016-06-01

    Fishing activities can alter the structure of marine food webs by the selective removal of some species. The changes in the marine food webs of the Hormuzgan waters of the Persian Gulf, Iran were assessed, based on estimates of the mean trophic index (MTI) and Fishing in Balance index (FiB), and on landing profile of the exploited marine community (49 species) during the period, 2002-2011. The total landings (Y t) (R=0.88, P<0.001) increased gradually while the Y t of carnivores has slightly declined, and the Y t of herbivores, detritivores and omnivores has increased. Consequently, the MTI significantly decreased (R =-0.69, P<0.05) at a rate of 0.11 during this decade. The MTI showed a decreasing trend, which indicates exploitation of marine resources. The FiB index also showed a downward trend and negative values from 2002 to 2009, which may be associated with unbalanced structure in the fisheries, but an upward trend from 2009 to 2011. The time variation of the landing profile showed two periods with significant diff erences in their species composition (R=0.88; P =0.005), and based on analysis of similarity, species have been identified as discriminator species, namely Thunnus albacores and Benthosema pterotum. Results indicate that changes in MTI reflected changes in the Hormuzgan landing structure. The examination of the MTI, FBI, and landing profile (LP) temporal pattern suggests that the status of fishery resources in Hormuzgan inshore waters is overexploited, and provides evidence of the probability that a fishing down process is occurring in this area, and that this trend may continue in the long-term. Therefore, environmental fisheries management and conservation programs should be prioritized for these valuable resources.

  19. Heated relations: temperature-mediated shifts in consumption across trophic levels.

    PubMed

    Seifert, Linda I; de Castro, Francisco; Marquart, Arnim; Gaedke, Ursula; Weithoff, Guntram; Vos, Matthijs

    2014-01-01

    A rise in temperature will intensify the feeding links involving ectotherms in food webs. However, it is unclear how the effects will quantitatively differ between the plant-herbivore and herbivore-carnivore interface. To test how warming could differentially affect rates of herbivory and carnivory, we studied trophic interaction strength in a food chain comprised of green algae, herbivorous rotifers and carnivorous rotifers at 10, 15, 20 and 25°C. We found significant warming-induced changes in feeding by both herbivorous and carnivorous rotifers, but these responses occurred at different parts of the entire temperature gradient. The strongest response of the per capita herbivore's ingestion rate occurred due to an increase in temperature from 15 to 20°C (1.9 fold: from 834 to 1611 algal cells per h(-1)) and of the per capita carnivore's ingestion rate from 20 to 25°C (1.6 fold: from 1.5 to 2.5 prey h(-1)). Handling time, an important component of a consumer's functional response, significantly decreased from 15 to 20°C in herbivorous rotifers. In contrast, it decreased from 20 to 25°C in carnivorous rotifers. Attack rates significantly and strongly increased from 10 to 25°C in the herbivorous animals, but not at all in the carnivores. Our results exemplify how the relative forces of top-down control exerted by herbivores and carnivores may strongly shift under global warming. But warming, and its magnitude, are not the only issue: If our results would prove to be representative, shifts in ectotherm interactions will quantitatively differ when a 5°C increase starts out from a low, intermediate or high initial temperature. This would imply that warming could have different effects on the relative forces of carnivory and herbivory in habitats differing in average temperature, as would exist at different altitudes and latitudes.

  20. Replacing fish meal by food waste to produce lower trophic level fish containing acceptable levels of polycyclic aromatic hydrocarbons: Health risk assessments.

    PubMed

    Cheng, Zhang; Mo, Wing-Yin; Lam, Cheung-Lung; Choi, Wai-Ming; Wong, Ming-Hung

    2015-08-01

    This study aimed at using different types of food wastes (mainly containing cereal [food waste A] and meat meal [food waste B]) as major sources of protein to replace the fish meal used in fish feeds to produce quality fish. The traditional fish farming model used to culture low trophic level fish included: bighead, (Hypophthalmichthys nobilis), grass carp, (Ctenopharyngodon idellus), and mud carp, (Cirrhinus molitorella) of omnivorous chain. The results indicated that grass carp and bighead carp fed with food waste feeds were relatively free of PAHs. The results of health risk assessment showed that the fish fed with food waste feeds were safe for consumption from the PAHs perspective.

  1. Fertilizer addition lessens the flux of microbial carbon to higher trophic levels in soil food webs of grassland.

    PubMed

    Lemanski, Kathleen; Scheu, Stefan

    2014-10-01

    Roots and root-derived C compounds are increasingly recognised as important resources for soil animal food webs. We used (13)C-labelled glucose as a model C compound representing root exudates to follow the incorporation of root-derived C into the soil animal food web of a temperate grassland over a period of 52 weeks. We investigated variations in glucose C incorporation with fertilizer addition and sward composition, i.e. variations in plant functional groups. The approach allowed the differentiation of trophic chains based on primary decomposers feeding on litter and phytophagous species feeding on roots (i.e. not incorporating glucose C) from those based on secondary decomposers feeding on microorganisms (thereby assimilating glucose C). Each of the studied soil animal species incorporated glucose C, indicating that the majority of grassland soil animal species rely on microorganisms as food resources with microorganisms being fuelled by root exudates. However, incorporation of glucose C into soil animal species varied markedly with species identity, suggesting that detritivorous microarthropods complement each other in channelling microbial C through soil food webs. Fertilizer addition markedly reduced the concentration of glucose C in most soil animal species as well as the absolute transfer of glucose C into oribatid mites as major secondary decomposers. The results suggest that fertilizer addition shifts the basis of the decomposer food web towards the use of unlabelled resources, presumably roots, i.e. towards a herbivore system, thereby lessening the link between microorganisms and microbial grazers and hampering the propagation of microbial C to higher trophic levels.

  2. StabilimaxNZ® versus simulated fusion: evaluation of adjacent-level effects

    PubMed Central

    Henderson, Gweneth; James, Yue; Timm, Jens Peter

    2007-01-01

    Rationale behind motion preservation devices is to eliminate the accelerated adjacent-level effects (ALE) associated with spinal fusion. We evaluated multidirectional flexibilities and ALEs of StabilimaxNZ® and simulated fusion applied to a decompressed spine. StabilimaxNZ® was applied at L4–L5 after creating a decompression (laminectomy of L4 plus bilateral medial facetectomy at L4–L5). Multidirectional Flexibility and Hybrid tests were performed on six fresh cadaveric human specimens (T12–S1). Decompression increased average flexion–extension rotation to 124.0% of the intact. StabilimaxNZ® and simulated fusion decreased the motion to 62.4 and 23.8% of intact, respectively. In lateral bending, corresponding increase was 121.6% and decreases were 57.5 and 11.9%. In torsion, corresponding increase was 132.7%, and decreases were 36.3% for fusion, and none for StabilimaxNZ® ALE was defined as percentage increase over the intact. The ALE at L3–4 was 15.3% for StabilimaxNZ® versus 33.4% for fusion, while at L5–S1 the ALE were 5.0% vs. 11.3%, respectively. In lateral bending, the corresponding ALE values were 3.0% vs. 19.1%, and 11.3% vs. 35.8%, respectively. In torsion, the corresponding values were 3.7% vs. 20.6%, and 4.0% vs. 33.5%, respectively. In conclusion, this in vitro study using Flexibility and Hybrid test methods showed that StabilimaxNZ® stabilized the decompressed spinal level effectively in sagittal and frontal planes, while allowing a good portion of the normal rotation, and concurrently it did not produce significant ALEs as compared to the fusion. However, it did not stabilize the decompressed specimen in torsion. PMID:17924151

  3. Tri-trophic level Impact of Host Plant Linamarin and Lotaustralin on Tetranychus urticae (Mesostigmata: Tetranychidae) and its predator Phytoseiulus persimilis (Prostigmata: Phytoseiidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of linamarin and lotaustralin content in the leaves of Phaseolus lunatus L. on the second and third trophic levels was studied in Tetranychus urticae (Koch) and its predator Phytoseiulus persimilis Athias-Henriot. Chemical analyzes showed that the content of linamarin was higher in termin...

  4. Root length and alveolar bone level of impacted canines and adjacent teeth after orthodontic traction: a long-term evaluation

    PubMed Central

    da SILVA, Aldir Cordeiro; CAPISTRANO, Anderson; de ALMEIDA-PEDRIN, Renata Rodrigues; CARDOSO, Maurício de Almeida; CONTI, Ana Cláudia de Castro Ferreira; CAPELOZZA, Leopoldino

    2017-01-01

    Abstract Objective The aim of this retrospective study was to evaluate the long-term effects of orthodontic traction on root length and alveolar bone level in impacted canines and adjacent teeth. Material and Methods Sample consisted of 16 patients (nine males and seven females), mean initial age 11 years and 8 months presenting with unilaterally maxillary impacted canines, palatally displaced, treated with the same surgical and orthodontic approach. Teeth from the impacted-canine side were assigned as Group I (GI), and contralateral teeth as control, Group II (GII). The mean age of patients at the end of orthodontic treatment was 14 years and 2 months and the mean post-treatment time was 5 years and 11 months. Both contralateral erupted maxillary canines and adjacent teeth served as control. Root length and alveolar bone level (buccal and palatal) were evaluated on cone-beam computed tomography (CBCT) images. The comparison of root length and alveolar bone level changes between groups were assessed by applying paired t-test, at a significance level of 5% (p<0.05). Results There were no statistically significant differences in root length and buccal and palatal bone levels of canines and adjacent teeth among groups. Conclusions Impacted canine treatment by closed-eruption technique associated with canine crown perforation, has a minimal effect on root length and buccal and palatal alveolar bone level in both canine and adjacent teeth, demonstrating that this treatment protocol has a good long-term prognosis. PMID:28198979

  5. Ecotoxicological effects of sediments from Mar Piccolo, South Italy: toxicity testing with organisms from different trophic levels.

    PubMed

    Costa, Elisa; Piazza, Veronica; Gambardella, Chiara; Moresco, Roberto; Prato, Ermelinda; Biandolino, Francesca; Cassin, Daniele; Botter, Margherita; Maurizio, Daniela; D'Adamo, Raffaele; Fabbrocini, Adele; Faimali, Marco; Garaventa, Francesca

    2016-07-01

    The Mar Piccolo of Taranto (Ionian Sea, Southern Italy) is a semi-enclosed and strongly polluted basin. For decades, it has been subjected to different anthropogenic impacts. These stressors caused severe sediments contamination with high concentration of different pollutants (PAHs, PCB, heavy metals). In order to assess the current status of sediments contamination, an ecotoxicological investigation combined with chemical analysis (heavy metals, PAH, and PCB) has been performed. In order to derive ecologically relevant conclusions, a multiorganisms and multiend-points approach has been applied, exposing organisms from different trophic levels to elutriate and whole sediment. The battery of bioassays consists of a microalgal growth inhibition test (Dunaliella tertiolecta), acute and sublethal assays (end-points: mortality, immobilization and swimming speed alteration) on crustaceans larvae and juveniles, and rotifers (Amphibalanus amphitrite, Artemia salina, Corophium insidiosum and Brachionus plicatilis), and embryotoxicity test on echinoderms (Paracentrotus lividus). Considering the high levels of sediment contamination highlighted from chemical analysis, an unexpected very low toxic effect was observed, even considering the sublethal end-point (larval swimming speed alteration). The results of this study suggest a very complex contaminants dynamic in the Mar Piccolo sediments that, despite a strong level of contamination, seems to not affect in a proportional manner the biological compartment.

  6. Four-trophic level food webs reveal the cascading impacts of an invasive plant targeted for biocontrol.

    PubMed

    López-Núñez, Francisco A; Heleno, Ruben H; Ribeiro, Sérgio; Marchante, Hélia; Marchante, Elizabete

    2017-03-01

    Biological invasions are a major threat to biodiversity and as such understanding their impacts is a research priority. Ecological networks provide a valuable tool to explore such impacts at the community level, and can be particularly insightful for planning and monitoring biocontrol programmes, including the potential for their seldom evaluated indirect non-target effects. Acacia longifolia is among the worst invasive species in Portugal, and has been recently targeted for biocontrol by a highly specific gall-wasp. Here we use an ambitious replicated network approach to: (1) identify the mechanisms by which direct and indirect impacts of A. longifolia can cascade from plants to higher trophic levels, including gallers, their parasitoids and inquilines; (2) reveal the structure of the interaction networks between plants, gallers, parasitoids and inquilines before the biocontrol; and (3) explore the potential for indirect interactions among gallers, including those established with the biocontrol agent, via apparent competition. Over a 15-month period, we collected 31,737 galls from native plants and identified all emerging insects, quantifying the interactions between 219 plant-, 49 galler-, 65 parasitoid- and 87 inquiline-species-one of the largest ecological networks to date. No galls were found on any of the 16 alien plant species. Invasion by A. longifolia caused an alarming simplification of plant communities, with cascading effects to higher trophic levels, namely: a decline of overall gall biomass, and on the richness, abundance and biomass of galler insects, their parasitoids, and inquilines. Correspondingly, we detected a significant decline in the richness of interactions between plants and galls. The invasion tended to increase overall interaction evenness by promoting the local extinction of the native plants that sustained more gall species. However, highly idiosyncratic responses hindered the detection of further consistent changes in network

  7. Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean

    NASA Astrophysics Data System (ADS)

    Yool, A.; Popova, E. E.; Coward, A. C.; Bernie, D.; Anderson, T. R.

    2013-09-01

    Most future projections forecast significant and ongoing climate change during the 21st century, but with the severity of impacts dependent on efforts to restrain or reorganise human activity to limit carbon dioxide (CO2) emissions. A major sink for atmospheric CO2, and a key source of biological resources, the World Ocean is widely anticipated to undergo profound physical and - via ocean acidification - chemical changes as direct and indirect results of these emissions. Given strong biophysical coupling, the marine biota is also expected to experience strong changes in response to this anthropogenic forcing. Here we examine the large-scale response of ocean biogeochemistry to climate and acidification impacts during the 21st century for Representative Concentration Pathways (RCPs) 2.6 and 8.5 using an intermediate complexity global ecosystem model, MEDUSA-2.0. The primary impact of future change lies in stratification-led declines in the availability of key nutrients in surface waters, which in turn leads to a global decrease (1990s vs. 2090s) in ocean productivity (-6.3%). This impact has knock-on consequences for the abundance of the low trophic level biogeochemical actors modelled by MEDUSA-2.0 (-5.8%), and these would be expected to similarly impact higher trophic level elements such as fisheries. Related impacts are found in the flux of organic material to seafloor communities (-40.7% at 1000 m), and in the volume of ocean suboxic zones (+12.5%). A sensitivity analysis removing an acidification feedback on calcification finds that change in this process significantly impacts benthic communities, suggesting that a~better understanding of the OA-sensitivity of calcifying organisms, and their role in ballasting sinking organic carbon, may significantly improve forecasting of these ecosystems. For all processes, there is geographical variability in change - for instance, productivity declines -21% in the Atlantic and increases +59% in the Arctic - and changes are

  8. Behavioural and physiological responses of limpet prey to a seastar predator and their transmission to basal trophic levels.

    PubMed

    Manzur, Tatiana; Vidal, Francisco; Pantoja, José F; Fernández, Miriam; Navarrete, Sergio A

    2014-07-01

    Besides the well-documented behavioural changes induced by predators on prey, predator-induced stress can also include a suite of biochemical, neurological and metabolic changes that may represent important energetic costs and have long-lasting effects on individuals and on the demography of prey populations. The rapid transmission of prey behavioural changes to lower trophic levels, usually associated with alteration of feeding rates, can substantially change and even reverse direction over the long term as prey cope with the energetic costs associated with predation-induced stress. It is therefore critical to evaluate different aspects and assess the costs of non-consumptive predator effects on prey. We investigated the behavioural and physiological responses of an herbivorous limpet, Fissurella limbata, to the presence of chemical cues and direct non-lethal contact by the common seastar predator, Heliaster helianthus. We also evaluated whether the limpets feeding behaviour was modified by the predator and whether this translated into positive or negative effects on biomass of the green alga, Ulva sp. Our experimental results show the presence of Heliaster led to increased movement activity, increased distances travelled, changes in time budget over different environmental conditions and increased feeding rate in the keyhole limpets. Moreover, additional experiments showed that, beyond the increased metabolic rate associated with limpet increased activity, predator chemical cues heighten metabolic rate as part of the induced stress response. Changes in individual movement and displacement distances observed through the 9-day experiment can be interpreted as part of the escape response exhibited by limpets to reduce the risk of being captured by the predator. Increased limpet feeding rate on algae can be visualized as a way individuals compensate for the elevated energetic costs of movement and heightened metabolic rates produced by the predator-induced stress

  9. Adjacent-Level Hypermobility and Instrumented-Level Fatigue Loosening With Titanium and PEEK Rods for a Pedicle Screw System: An In Vitro Study.

    PubMed

    Agarwal, Aakas; Ingels, Marcel; Kodigudla, Manoj; Momeni, Narjes; Goel, Vijay; Agarwal, Anand K

    2016-05-01

    Adjacent-level disease is a common iatrogenic complication seen among patients undergoing spinal fusion for low back pain. This is attributed to the postsurgical differences in stiffness between the spinal levels, which result in abnormal forces, stress shielding, and hypermobility at the adjacent levels. In addition, as most patients undergoing these surgeries are osteoporotic, screw loosening at the index level is a complication that commonly accompanies adjacent-level disease. Recent studies indicate that a rod with lower rigidity than that of titanium may help to overcome these detrimental effects at the adjacent level. The present study was conducted in vitro using 12 L1-S1 specimens divided into groups of six, with each group instrumented with either titanium rods or PEEK (polyetheretherketone) rods. The test protocol included subjecting intact specimens to pure moments of 10 Nm in extension and flexion using an FS20 Biomechanical Spine Test System (Applied Test Systems) followed by hybrid moments on the instrumented specimens to achieve the same L1-S1 motion as that of the intact specimens. During the protocol's later phase, the L4-L5 units from each specimen were segmented for cyclic loading followed by postfatigue kinematic analysis to highlight the differences in motion pre- and postfatigue. The objectives included the in vitro comparison of (1) the adjacent-level motion before and after instrumentation with PEEK and titanium rods and (2) the pre- and postfatigue motion at the instrumented level with PEEK and titanium rods. The results showed that the adjacent levels above the instrumentation caused increased flexion and extension with both PEEK and titanium rods. The postfatigue kinematic data showed that the motion at the instrumented level (L4-L5) increased significantly in both flexion and extension compared to prefatigue motion in titanium groups. However, there was no significant difference in motion between the pre- and postfatigue data in the PEEK

  10. ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels

    NASA Astrophysics Data System (ADS)

    Butenschön, M.; Clark, J.; Aldridge, J. N.; Allen, J. I.; Artioli, Y.; Blackford, J.; Bruggeman, J.; Cazenave, P.; Ciavatta, S.; Kay, S.; Lessin, G.; van Leeuwen, S.; van der Molen, J.; de Mora, L.; Polimene, L.; Sailley, S.; Stephens, N.; Torres, R.

    2015-08-01

    The ERSEM model is one of the most established ecosystem models for the lower trophic levels of the marine food-web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North-Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic part of the marine ecosystem, including the microbial food-web, the carbonate system and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case-studies of mesocosm type simulations, water column implementations and a brief example of a full-scale application for the North-West European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.

  11. Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels.

    PubMed

    Wang, Zhuang; Quik, Joris T K; Song, Lan; Van Den Brandhof, Evert-Jan; Wouterse, Marja; Peijnenburg, Willie J G M

    2015-06-01

    The present study investigated how humic substances (HS) modify the aquatic toxicity of silver nanoparticles (AgNPs) as these particles agglomerate in water and interact with HS. An alga species (Raphidocelis subcapitata), a cladoceran species (Chydorus sphaericus), and a freshwater fish larva (Danio rerio), representing organisms of different trophic levels, were exposed to colloids of the polyvinylpyrrolidone-coated AgNPs in the presence and absence of HS. Results show that the presence of HS alleviated the aquatic toxicity of the AgNP colloids to all the organisms in a dose-dependent manner. The particle size distribution of the AgNPs' colloidal particles shifted to lower values due to the presence of HS, implying that the decrease in the toxicity of the AgNP colloids cannot be explained by the variation of agglomeration size. The surface charge of the AgNPs was found to be more negative in the presence of high concentrations of HS, suggesting an electrostatic barrier by which HS might limit interactions between particles and algae cells; indeed, this effect reduced the algae toxicity. Observations on silver ions (Ag(+)) release show that HS inhibit AgNP dissolution, depending on the concentrations of HS. When toxic effects were expressed as a function of each Ag-species, toxicity of the free Ag(+) was found to be much higher than that of the agglomerated particles.

  12. ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels

    NASA Astrophysics Data System (ADS)

    Butenschön, Momme; Clark, James; Aldridge, John N.; Icarus Allen, Julian; Artioli, Yuri; Blackford, Jeremy; Bruggeman, Jorn; Cazenave, Pierre; Ciavatta, Stefano; Kay, Susan; Lessin, Gennadi; van Leeuwen, Sonja; van der Molen, Johan; de Mora, Lee; Polimene, Luca; Sailley, Sevrine; Stephens, Nicholas; Torres, Ricardo

    2016-04-01

    The European Regional Seas Ecosystem Model (ERSEM) is one of the most established ecosystem models for the lower trophic levels of the marine food web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic parts of the marine ecosystem, including the microbial food web, the carbonate system, and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case studies of mesocosm-type simulations, water column implementations, and a brief example of a full-scale application for the north-western European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.

  13. Response of organic carbon burial to trophic level changes in a shallow eutrophic lake in SE China.

    PubMed

    Wu, Pengbao; Gao, Chao; Chen, Furong; Yu, Shiyong

    2016-08-01

    Lakes are an important component of terrestrial carbon cycling. As the trend of eutrophication in many lakes continues, the mechanisms of organic carbon (OC) burial remain unclear. This paper aims to understand the distribution of OC and the effect of trophic level changes on OC burial in Chaohu Lake, a shallow eutrophic lake located in the lower reaches of the Yangtze River, SE China. Two hundred and one surface sediment samples (0-20cm) and 53 subsurface samples (150-200cm) from the lake were collected. The OC accumulation rates (OCARs) are relatively low, with an average of 10.01g/m(2)/year in the surface sediments. The spatial distribution of the OCARs is similar to that of allochthonous OC. The difference in total phosphate (TP) content between the surface and subsurface sediments (ΔTP) is significantly correlated with the autochthonous OC, suggesting that TP loading is a critical limiting nutrient for the lake's primary productivity. It is concluded that allochthonous OC is the dominant source of total OC in surface sediments compared to autochthonous OC. The primary productivity of Lake Chaohu increased due to increasing nutrient loading. However, the autochthonous OC contributed 11% of the total OC in the surface sediments. This could be ascribed to strong mineralization in the water column or surface sediments.

  14. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels

    NASA Astrophysics Data System (ADS)

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W.; Riebesell, Ulf; Gao, Kunshan

    2015-10-01

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46-212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130-160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28-48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  15. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels.

    PubMed

    Jin, Peng; Wang, Tifeng; Liu, Nana; Dupont, Sam; Beardall, John; Boyd, Philip W; Riebesell, Ulf; Gao, Kunshan

    2015-10-27

    Increasing atmospheric CO2 concentrations are causing ocean acidification (OA), altering carbonate chemistry with consequences for marine organisms. Here we show that OA increases by 46-212% the production of phenolic compounds in phytoplankton grown under the elevated CO2 concentrations projected for the end of this century, compared with the ambient CO2 level. At the same time, mitochondrial respiration rate is enhanced under elevated CO2 concentrations by 130-160% in a single species or mixed phytoplankton assemblage. When fed with phytoplankton cells grown under OA, zooplankton assemblages have significantly higher phenolic compound content, by about 28-48%. The functional consequences of the increased accumulation of toxic phenolic compounds in primary and secondary producers have the potential to have profound consequences for marine ecosystem and seafood quality, with the possibility that fishery industries could be influenced as a result of progressive ocean changes.

  16. Climate change affects low trophic level marine consumers: warming decreases copepod size and abundance.

    PubMed

    Garzke, Jessica; Ismar, Stefanie M H; Sommer, Ulrich

    2015-03-01

    Concern about climate change has re-ignited interest in universal ecological responses to temperature variations: (1) biogeographical shifts, (2) phenology changes, and (3) size shifts. In this study we used copepods as model organisms to study size responses to temperature because of their central role in the pelagic food web and because of the ontogenetic length constancy between molts, which facilitates the definition of size of distinct developmental stages. In order to test the expected temperature-induced shifts towards smaller body size and lower abundances under warming conditions, a mesocosm experiment using plankton from the Baltic Sea at three temperature levels (ambient, ambient +4 °C, ambient -4 °C) was performed in summer 2010. Overall copepod and copepodit abundances, copepod size at all life stages, and adult copepod size in particular, showed significant temperature effects. As expected, zooplankton peak abundance was lower in warm than in ambient treatments. Copepod size-at-immature stage significantly increased in cold treatments, while adult size significantly decreased in warm treatments.

  17. Changes in contaminant distributions with trophic level in a marine food chain study

    SciTech Connect

    Pruell, R.J.; Johnson, M.W.; Taplin, B.K.; McGovern, D.G.; Montmarquet, B.T.

    1994-12-31

    A laboratory study was designed to investigate the transfer of chlorinated organic contaminants from sediments to marine biota in a simplified marine food chain. Sediments collected from the Passaic River, NJ, which contained high concentrations of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), PCBs and chlorinated pesticides, were used as the contamination source. Polychaete worms (Nereis virens) were exposed to Passaic River sediment for 70 days to allow steady-state concentrations to be achieved and then these organisms were fed to a crustacean, the American lobster (Homarus americanus). Contaminant distributions were altered significantly as they passed from sediments to polychaetes and then to the lobster. PCDDs and PCDFs containing four or five chlorines were accumulated by the polychaetes and lobster; however, the highly chlorinated congeners were not accumulated. PCB patterns in lobsters indicated that these organisms metabolized many PCB congeners. Coplanar PCBs did not appear to be metabolized and therefore became enriched relative to total PCB levels in the lobsters. Lobsters also greatly altered the ratios of chlordane and DDT series compounds relative to those in the sediments and polychaetes.

  18. Biomonitoring of contaminants in birds from two trophic levels in the North Pacific.

    PubMed

    Rocque, Deborah A; Winker, Kevin

    2004-03-01

    The presence and accumulation of persistent contaminants at high latitudes from long-range transport is an important environmental issue. Atmospheric transport has been identified as the source of pollutants in several arctic ecosystems and has the potential to severely impact high-latitude populations. Elevated levels of contaminants in Aleutian Island avifauna have been documented, but the great distance from potential industrial sources and the region's complex military history have confounded identification of contaminant origins. We sampled bird species across the natural longitudinal transect of the Aleutian Archipelago to test three contaminant source hypotheses. We detected patterns in some polychlorinated biphenyl congeners and mercury that indicate abandoned military installations as likely local point sources. Carbon isotopes were distinct among island groups, enabling us to rule out transfer through migratory prey species as a contaminant source. The long-range transport hypothesis was supported by significant west-to-east declines in contaminant concentrations for most detected organochlorines and some trace metals. Although relatively low at present, concentrations may increase in Aleutian fauna as Asian industrialization increases and emitted contaminants are atmospherically transported into the region, necessitating continued monitoring in this unique ecosystem.

  19. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes.

    PubMed

    Ghosh, Manosij; Bandyopadhyay, Maumita; Mukherjee, Anita

    2010-11-01

    The environmental fate and behaviour of titanium dioxide (TiO(2)) nanoparticles is a rapidly expanding area of research. There is a paucity of information regarding toxic effect of TiO(2) nanoparticles in plants and to certain extent in humans. The present study focuses on the effect of exposure of TiO(2) nanoparticles in two trophic levels, plant and human lymphocytes. The genotoxicity of TiO(2) nanoparticles was evaluated using classical genotoxic endpoints, comet assay and DNA laddering technique. DNA damaging potential of TiO(2) nanoparticles in Allium cepa and Nicotiana tabacum as representative of plant system could be confirmed in the comet assay and DNA laddering experiments. In Allium micronuclei and chromosomal aberrations correlated with the reduction in root growth. We detected increased level of malondialdehyde (MDA) concentration at 4mM (0.9 μM) treatment dose of TiO(2) nanoparticles in Allium cepa. This indicated that lipid peroxidation could be involved as one of the mechanism leading to DNA damage. A comparative study of the cytotoxic and genotoxic potential of TiO(2) nanoparticles and bulk TiO(2) particles in human lymphocytes also reveal interesting results. While TiO(2) nanoparticles were found to be genotoxic at a low dose of 0.25 mM followed by a decrease in extent of DNA damage at higher concentrations; bulk TiO(2) particles reveal a more or less dose dependent effect, genotoxic only at dose 1.25 mM and above. The study thus confirms the genotoxic potential of TiO(2) nanoparticles in both plant and human lymphocytes.

  20. The comparative uptake and interaction of several radionuclides in the trophic levels surrounding the Los Alamos Meson Physics Facility (LAMPF) waste water ponds

    SciTech Connect

    Brooks, G.H. Jr.

    1989-08-01

    A study was undertaken to examine the uptake, distribution, and interaction of five activation products (Co-57, Be-7, Cs-134, Rb-83, and Mn-54) within the biotic and abiotic components surrounding the waste treatment lagoons of the Los Alamos Meson Physics Facility (LAMPF). The study attempted to ascertain where, and what specific interactions were taking place among the isotopes and the biotic/abiotic components. A statistical approach, utilizing Multivariate Analysis of Variance (MANOVA), was conducted testing the radioisotopic concentrations by (1) the trophic levels (TROPLVL) in each position sampled on the grid, (2) where sampled on the grid (TRAN), (3) where sampled with-in each grid line (PLOT), and (4) the side with which sampled (SIDE). This provided both the dependent and independent variables that would be tested. The Null Hypothesis (Ho) tested the difference in the mean values of the isotopes within/between each of the four independent variables. The Rb-83 statistic indicated an accumulation within the TRAN and PLOT variables within the sampled area. The Co-57 test statistic provided a value which indicated that accumulation of this isotope within TROPLVL was taking place. Mn-54 test values indicated that accumulation was also taking place at the higher trophic levels within the PLOT, TRAN, and SIDE positions. Cs-134 was found to accumulate to third level in this trophic level structure (TROPLVL-(vegetation)), and then decrease from there. The Be-7 component provided no variance from known compartmental transfers. 210 refs., 17 figs., 4 tabs.

  1. Population growth, trophic level, and reproductive biology of two congeneric archer fishes (Toxotes chatareus, Hamilton 1822 and Toxotes jaculatrix, Pallas 1767) inhabiting Malaysian coastal waters.

    PubMed

    Simon, K D; Bakar, Y; Samat, A; Zaidi, C C; Aziz, A; Mazlan, A G

    2009-12-01

    Population growth, trophic level, and some aspects of reproductive biology of two congeneric archer fish species, Toxotes chatareus and Toxotes jaculatrix, collected from Johor coastal waters, Malaysia, were studied. Growth pattern by length-weight relationship (W=aL(b)) for the sexes differed, and exhibited positive allometric growth (male, female and combined sexes of T. chatareus; female and combined sexes of T. jaculatrix) and isometric growth (male samples of T. jaculatrix only). Trophic levels of both species were analyzed based on 128 specimens. The results show that, in both species, crustaceans and insects were the most abundant prey items, and among crustaceans the red clawed crab Sesarma bidens and Formicidae family insects were the most represented taxa. The estimated mean trophic levels for T. chatareus and T. jaculatrix were 3.422+/-0.009 and 3.420+/-0.020, respectively, indicating that they are largely carnivores. Fecundity of T. chatareus ranged from 38 354 to 147 185 eggs for females with total length ranging from 14.5 to 22.5 cm and total body weight from 48.7 to 270.2 g, and T. jaculatrix 25 251 to 150 456 eggs for females with total length ranging from 12.2 to 23.0 cm and total body weight from 25.7 to 275.0 g. Differences in values of gonadosomatic and hepatosomatic indexes calculated for both species in this study may have resulted from uneven sample size ranges.

  2. The ecological module of BOATS-1.0: a bioenergetically constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    Carozza, David Anthony; Bianchi, Daniele; Galbraith, Eric Douglas

    2016-04-01

    Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modelling fish biomass at the global scale. The ecological model is designed to be used on an Earth-system model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how they change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modelling efforts, while retaining reasonably realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for

  3. The ecological module of BOATS-1.0: a bioenergetically-constrained model of marine upper trophic levels suitable for studies of fisheries and ocean biogeochemistry

    NASA Astrophysics Data System (ADS)

    Carozza, D. A.; Bianchi, D.; Galbraith, E. D.

    2015-12-01

    Environmental change and the exploitation of marine resources have had profound impacts on marine communities, with potential implications for ocean biogeochemistry and food security. In order to study such global-scale problems, it is helpful to have computationally efficient numerical models that predict the first-order features of fish biomass production as a function of the environment, based on empirical and mechanistic understandings of marine ecosystems. Here we describe the ecological module of the BiOeconomic mArine Trophic Size-spectrum (BOATS) model, which takes an Earth-system approach to modeling fish biomass at the global scale. The ecological model is designed to be used on an Earth System model grid, and determines size spectra of fish biomass by explicitly resolving life history as a function of local temperature and net primary production. Biomass production is limited by the availability of photosynthetic energy to upper trophic levels, following empirical trophic efficiency scalings, and by well-established empirical temperature-dependent growth rates. Natural mortality is calculated using an empirical size-based relationship, while reproduction and recruitment depend on both the food availability to larvae from net primary production and the production of eggs by mature adult fish. We describe predicted biomass spectra and compare them to observations, and conduct a sensitivity study to determine how the change as a function of net primary production and temperature. The model relies on a limited number of parameters compared to similar modeling efforts, while retaining realistic representations of biological and ecological processes, and is computationally efficient, allowing extensive parameter-space analyses even when implemented globally. As such, it enables the exploration of the linkages between ocean biogeochemistry, climate, and upper trophic levels at the global scale, as well as a representation of fish biomass for idealized studies

  4. Impacts of silicon-based grass defences across trophic levels under both current and future atmospheric CO2 scenarios.

    PubMed

    Ryalls, James M W; Hartley, Susan E; Johnson, Scott N

    2017-03-01

    Silicon (Si) has important functional roles in plants, including resistance against herbivores. Environmental change, such as increasing atmospheric concentrations of CO2, may alter allocation to Si defences in grasses, potentially changing the feeding behaviour and performance of herbivores, which may in turn impact on higher trophic groups. Using Si-treated and untreated grasses (Phalaris aquatica) maintained under ambient (400 ppm) and elevated (640 and 800 ppm) CO2 concentrations, we show that Si reduced feeding by crickets (Acheta domesticus), resulting in smaller body mass. This, in turn, reduced predatory behaviour by praying mantids (Tenodera sinensis), which consequently performed worse. Despite elevated CO2 decreasing Si concentrations in P. aquatica, this reduction was not large enough to affect the feeding behaviour of crickets or their predator. Our results suggest that Si-based defences in plants have adverse impacts on both primary and secondary trophic taxa, and these are not likely to decline under future climate change scenarios.

  5. Lepidoptera Larvae as an Indicator of Multi-trophic Level Responses to Changing Seasonality in an Arctic Tundra Ecosystem

    NASA Astrophysics Data System (ADS)

    Daly, K. M.; Steltzer, H.; Boelman, N.; Weintraub, M. N.; Darrouzet-Nardi, A.; Wallenstein, M. D.; Sullivan, P.; Gough, L.; Rich, M.; Hendrix, C.; Kielland, K.; Philip, K.; Doak, P.; Ferris, C.; Sikes, D.

    2011-12-01

    Earlier snowmelt and warming temperatures in the Arctic will impact multiple trophic levels through the timing and availability of food resources. Lepidoptera are a vital link within the ecosystem; their roles include pollinator, parasitized host for other pollinating insects, and essential food source for migrating birds and their fledglings. Multiple environmental cues including temperature initiate plant growth, and in turn, trigger the emergence of Lepidoptera and the migrations of birds. If snowmelt is accelerated and temperature is increased, it is expected that the Lepidoptera larvae will respond to early plant growth by increasing their abundance within areas that have accelerated snowmelt and warmer conditions. In May of 2011 in a moist acidic tussock tundra system, we accelerated snowmelt by 15 days through the use of radiation-absorbing fabric and warmed air and soil temperatures using open-top chambers, individually and in combination. Every 1-2 days from May 27th to July 8th, 2 minute searches were performed for Lepidoptera larvae in all treatments; when an animal was found, their micro-habitat, surface temperature, behavior, food source, and time of day were noted. The length, body and head width were measured, and the animals were examined for braconid wasp and tachinid fly parasites. Lepidoptera larvae collected in pitfall traps from May 26th to July 7th were also examined and measured. Total density of parasitized larvae accounted for 54% of observed specimens and 50% of pitfall specimens, indicating that Lepidoptera larvae serve an integral role as a host for other pollinators. Total larvae density was highest within the accelerated snowmelt plots compared to the control plots; 66% of observed live specimens and 63% of pitfall specimens were found within the accelerated snowmelt plots. Ninety percent of the total observed animals were found within the open-top warming chambers. Peak density of animals occurred at Solar Noon between 14:00 -15

  6. Food web structure of the coastal area adjacent to the Tagus estuary revealed by stable isotope analysis

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Máguas, C.; Cabral, H. N.; Costa, M. J.

    2012-01-01

    The identification of energy sources, pathways and trophic linkages among organisms is crucial for the understanding of food web dynamics. Stable isotopes were used to identify the trophic level of food web components and track the incorporation of organic matter of different origins in the coastal ecosystem adjacent to the Tagus estuary. It was shown that the river Tagus is a major source of organic carbon to this system. Also, the wide difference in δ 13C among the primary consumers allowed the identification of the pelagic and the benthic energy pathways. The maximum trophic level observed was 2.4 for Sepia officinalis. This value is indicative of a short food web. It was concluded that the diet of the upper trophic level species relies directly on the lower food web levels to a considerable extent, instead of relying mostly on intermediate trophic level species. Moreover, the δ 15N values of primary consumers were very close to that of particulate organic matter, probably due to poorly known processes occurring at the basis of the food web. This lowers the trophic length of the whole food web. Reliance on benthic affinity prey was high for all upper trophic level secondary consumers.

  7. Replacing fish meal by food waste in feed pellets to culture lower trophic level fish containing acceptable levels of organochlorine pesticides: health risk assessments.

    PubMed

    Cheng, Zhang; Mo, Wing-Yin; Man, Yu-Bon; Nie, Xiang-Ping; Li, Kai-Bing; Wong, Ming-Hung

    2014-12-01

    The present study used food waste (collected from local hotels and restaurants) feed pellets in polyculture of low-trophic level fish [bighead (Aristichtys nobilis), grass carp (Ctenopharyngodon idellus), and mud carp (Cirrhina molitorella)] aiming at producing safe and quality products for local consumption. The results indicated that grass carp (hexachlorocyclohexanes (HCHs) <0.03; dichlorodiphenyltrichloroethanes (DDTs) 1.42-3.34 ng/g ww) and bighead carp (HCHs<0.03; DDTs 1.55-2.56 ng/g ww) fed with food waste feed pellets were relatively free of organochlorine pesticides (OCPs). The experimental ponds (water and sediment) were relatively free of OCPs, lowering the possibility of biomagnification of OCPs in the food chains within the ponds. The raw concentrations of OCPs extracted from the fish were not in the bioavailable form, which would ultimately reach bloodstream and exert adverse effects on human body. Health risk assessments based on digestible concentrations are commonly regarded as a more accurate method. The results of health risk assessments based on raw and digestible concentrations showed that the fish fed with food waste feed pellets were safe for consumption from the OCP perspective.

  8. Historical change and future scenarios of sea level rise in Macau and adjacent waters

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Huang, Gang; Zhou, Wen; Chen, Wen

    2016-04-01

    Against a background of climate change, Macau is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macau, both historical and, especially, possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macau is now rising at an accelerated rate: 1.35 mm yr-1 over 1925-2010 and jumping to 4.2 mm yr-1 over 1970-2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macau contributes little to local sea level change. In the future, the rate of SLR in Macau will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8-12, 22-51 and 35-118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the +8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario the increase in sea level by 2100 will reach 65-118 cm—double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21st century but begin to diverge thereafter.

  9. [Trophic chains in soil].

    PubMed

    Goncharov, A A; Tiunov, A V

    2013-01-01

    Trophic links of soil animals are extensively diverse but also flexible. Moreover, feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. Better knowledge on the main sources of energy utilized by soil animals is needed for understanding functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteria- and fungi-based channels seems to be an over-simplification. The regulation of the litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems.

  10. Food wastes as fish feeds for polyculture of low-trophic-level fish: bioaccumulation and health risk assessments of heavy metals in the cultured fish.

    PubMed

    Cheng, Zhang; Lam, Cheung-Lung; Mo, Wing-Yin; Nie, Xiang-Ping; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung

    2016-04-01

    The major purpose of this study was to use different types of food wastes which serve as the major sources of protein to replace the fish meal used in fish feeds to produce quality fish. Two types of food waste-based feed pellets FW A (with cereals) and FW B (with cereals and meat products) and the commercial feed Jinfeng® were used to culture fingerlings of three low-trophic-level fish species: bighead carp, grass carp, and mud carp (in the ratio of 1:3:1) for 1 year period in the Sha Tau Kok Organic Farm in Hong Kong. Heavy metal concentrations in all of the fish species fed with food waste pellets and commercial pellets in Sha Tau Kok fish ponds were all below the local and international maximum permissible levels in food. Health risk assessments indicated that human consumption of the fish fed with food waste feed pellets was safe for the Hong Kong residents. The present results revealed that recycling of food waste for cultivating low-trophic-level fish (mainly herbivores and detritus feeders) is feasible, and at the same time will ease the disposal pressure of food waste, a common problem of densely populated cities like Hong Kong.

  11. The body size dependence of trophic cascades.

    PubMed

    DeLong, John P; Gilbert, Benjamin; Shurin, Jonathan B; Savage, Van M; Barton, Brandon T; Clements, Christopher F; Dell, Anthony I; Greig, Hamish S; Harley, Christopher D G; Kratina, Pavel; McCann, Kevin S; Tunney, Tyler D; Vasseur, David A; O'Connor, Mary I

    2015-03-01

    Trophic cascades are indirect positive effects of predators on resources via control of intermediate consumers. Larger-bodied predators appear to induce stronger trophic cascades (a greater rebound of resource density toward carrying capacity), but how this happens is unknown because we lack a clear depiction of how the strength of trophic cascades is determined. Using consumer resource models, we first show that the strength of a trophic cascade has an upper limit set by the interaction strength between the basal trophic group and its consumer and that this limit is approached as the interaction strength between the consumer and its predator increases. We then express the strength of a trophic cascade explicitly in terms of predator body size and use two independent parameter sets to calculate how the strength of a trophic cascade depends on predator size. Both parameter sets predict a positive effect of predator size on the strength of a trophic cascade, driven mostly by the body size dependence of the interaction strength between the first two trophic levels. Our results support previous empirical findings and suggest that the loss of larger predators will have greater consequences on trophic control and biomass structure in food webs than the loss of smaller predators.

  12. Trophic transfer of lead through a model marine four-level food chain: Tetraselmis suecica, Artemia franciscana, Litopenaeus vannamei, and Haemulon scudderi.

    PubMed

    Soto-Jiménez, M F; Arellano-Fiore, C; Rocha-Velarde, R; Jara-Marini, M E; Ruelas-Inzunza, J; Páez-Osuna, F

    2011-08-01

    The objective of this investigation was to assess the transfer of lead (Pb) along an experimental, four-level food chain: Tetraselmis suecica (phytoplankton) → Artemia franciscana (crustacean, brine shrimp) → Litopenaeus vannamei (crustacean, white shrimp) → Haemulon scudderi (fish, grunt). T. suecica was exposed to a sublethal dose of Pb in solution and then used as the base of a marine food chain. Significant differences in Pb concentrations were found between exposed organisms of the different trophic levels and the control. Particularly, Pb concentrations in fish of the simulated trophic chain were two-to three times higher in the exposed specimens than in the control. Levels of Pb in phytoplankton showed a substantial increase with respect to the solution (level I), with bioconcentration factors averaging from 930 to 3630. In contrast, a strong decrease in Pb concentration from phytoplankton to zooplankton (level II) and from zooplankton to shrimp tissues (level III) was evidenced by bioaccumulation factors <1. Despite the decrease in the assimilation efficiency of metal transfer observed in these two predators, Pb concentration in the grunt fish (level IV) was higher than in the shrimp (level III) (bioaccumulation factor >1.0). Some of the added Pb is transferred from the phytoplankton along the food chain, thus producing a net accumulation of Pb mainly in fish and, to a lesser extent, in shrimp tissues. Because Pb is one of the most pervasive contaminants in coastal ecosystems, its transference by way of diet and potential net accumulation in higher predators is of ecologic importance for marine life. In addition, because shrimp and adult Haemulon scudderi are commercially important resources, this issue is of particular relevance to the safety of marine products.

  13. Zebra mussel filter feeding and food-limited production of Daphnia: Recent changes in lower trophic level dynamics of Oneida Lake, New York, U.S.A.

    USGS Publications Warehouse

    Horgan, M.J.; Mills, E.L.

    1999-01-01

    Exotic zebra mussels can alter lower trophic level dynamics in lakes that they colonize by consuming large quantities of phytoplankton. We simulated the indirect effects of zebra mussel grazing on Daphnia by artificially reducing phytoplankton concentration for in situ Daphnia reproduction experiments. The response of Daphnia reproduction to reduced phytoplankton was evaluated for both the in situ experiments and field observations in Oneida Lake, New York, U.S.A. Oneida Lake has had an abundant population of zebra mussels since 1992. Our experiments revealed that fecundity of individuals from two species of Daphnia was positively related to phytoplankton concentration during the spring clearwater phase, although there was no discernible effect of food concentration on fecundity in summer cyanobacteria-dominated assemblages. The experimental results suggest that Daphnia fecundity responds to chlorophyll a concentrations < 2 ??g l-1. The years since zebra mussels became abundant in Oneida Lake have been characterized by high water clarity, low chlorophyll concentrations, long clearwater phases, and low Daphnia biomass compared with the previous 17 years. The food web effects of zebra mussel grazing are complex and it will take more years for impacts at higher trophic levels to develop and be identified.

  14. Population-Level Metrics of Trophic Structure Based on Stable Isotopes and Their Application to Invasion Ecology

    PubMed Central

    Jackson, Michelle C.; Donohue, Ian; Jackson, Andrew L.; Britton, J. Robert; Harper, David M.; Grey, Jonathan

    2012-01-01

    Biological invasions are a significant driver of human-induced global change and many ecosystems sustain sympatric invaders. Interactions occurring among these invaders have important implications for ecosystem structure and functioning, yet they are poorly understood. Here we apply newly developed metrics derived from stable isotope data to provide quantitative measures of trophic diversity within populations or species. We then use these to test the hypothesis that sympatric invaders belonging to the same functional feeding group occupy a smaller isotopic niche than their allopatric counterparts. Two introduced, globally important, benthic omnivores, Louisiana swamp crayfish (Procambarus clarkii) and carp (Cyprinus carpio), are sympatric in Lake Naivasha, Kenya. We applied our metrics to an 8-year data set encompassing the establishment of carp in the lake. We found a strong asymmetric interaction between the two invasive populations, as indicated by inverse correlations between carp abundance and measures of crayfish trophic diversity. Lack of isotopic niche overlap between carp and crayfish in the majority of years indicated a predominantly indirect interaction. We suggest that carp-induced habitat alteration reduced the diversity of crayfish prey, resulting in a reduction in the dietary niche of crayfish. Stable isotopes provide an integrated signal of diet over space and time, offering an appropriate scale for the study of population niches, but few isotope studies have retained the often insightful information revealed by variability among individuals in isotope values. Our population metrics incorporate such variation, are robust to the vagaries of sample size and are a useful additional tool to reveal subtle dietary interactions among species. Although we have demonstrated their applicability specifically using a detailed temporal dataset of species invasion in a lake, they have a wide array of potential ecological applications. PMID:22363724

  15. Trophic hierarchies illuminated via amino acid isotopic analysis.

    PubMed

    Steffan, Shawn A; Chikaraishi, Yoshito; Horton, David R; Ohkouchi, Naohiko; Singleton, Merritt E; Miliczky, Eugene; Hogg, David B; Jones, Vincent P

    2013-01-01

    Food web ecologists have long sought to characterize the trophic niches of animals using stable isotopic analysis. However, distilling trophic position from isotopic composition has been difficult, largely because of the variability associated with trophic discrimination factors (inter-trophic isotopic fractionation and routing). We circumvented much of this variability using compound-specific isotopic analysis (CSIA). We examined the (15)N signatures of amino acids extracted from organisms reared in pure culture at four discrete trophic levels, across two model communities. We calculated the degree of enrichment at each trophic level and found there was a consistent trophic discrimination factor (~7.6‰). The constancy of the CSIA-derived discrimination factor permitted unprecedented accuracy in the measurement of animal trophic position. Conversely, trophic position estimates generated via bulk-(15)N analysis significantly underestimated trophic position, particularly among higher-order consumers. We then examined the trophic hierarchy of a free-roaming arthropod community, revealing the highest trophic position (5.07) and longest food chain ever reported using CSIA. High accuracy in trophic position estimation brings trophic function into sharper focus, providing greater resolution to the analysis of food webs.

  16. Trophic Hierarchies Illuminated via Amino Acid Isotopic Analysis

    PubMed Central

    Steffan, Shawn A.; Chikaraishi, Yoshito; Horton, David R.; Ohkouchi, Naohiko; Singleton, Merritt E.; Miliczky, Eugene; Hogg, David B.; Jones, Vincent P.

    2013-01-01

    Food web ecologists have long sought to characterize the trophic niches of animals using stable isotopic analysis. However, distilling trophic position from isotopic composition has been difficult, largely because of the variability associated with trophic discrimination factors (inter-trophic isotopic fractionation and routing). We circumvented much of this variability using compound-specific isotopic analysis (CSIA). We examined the 15N signatures of amino acids extracted from organisms reared in pure culture at four discrete trophic levels, across two model communities. We calculated the degree of enrichment at each trophic level and found there was a consistent trophic discrimination factor (~7.6‰). The constancy of the CSIA-derived discrimination factor permitted unprecedented accuracy in the measurement of animal trophic position. Conversely, trophic position estimates generated via bulk-15N analysis significantly underestimated trophic position, particularly among higher-order consumers. We then examined the trophic hierarchy of a free-roaming arthropod community, revealing the highest trophic position (5.07) and longest food chain ever reported using CSIA. High accuracy in trophic position estimation brings trophic function into sharper focus, providing greater resolution to the analysis of food webs. PMID:24086703

  17. Respective contributions of diet and medium to the bioaccumulation of pharmaceutical compounds in the first levels of an aquatic trophic web.

    PubMed

    Orias, Frédéric; Simon, Laurent; Perrodin, Yves

    2015-12-01

    Nowadays, pharmaceuticals (PCs) are ubiquitous in aquatic ecosystems. It is known that these compounds have ecotoxic effects on aquatic organisms at low concentrations. Moreover, some of them can bioaccumulate inside organisms or trophic webs exposed at environmental concentrations and amplify ecotoxic impacts. PCs can bioaccumulate in two ways: exposure to a medium (e.g., respiration, diffusion, etc.) and/or through the dietary route. Here, we try to assess the respective contributions of these two forms of contamination of the first two levels of an aquatic trophic web. We exposed Daphnia magna for 5 days to 0, 5, and 50 μg/L (15)N-tamoxifen and then fed them with control and contaminated diets. We used an isotopic method to measure the tamoxifen content inside the daphnids after several minutes' exposure and every day before and after feeding. We found that tamoxifen is very bioaccumulative inside daphnids (BCF up to 12,000) and that the dietary route has a significant impact on contamination by tamoxifen (BAF up to 22,000), especially at low concentrations in medium.

  18. Couplerlib: a metadata-driven library for the integration of multiple models of higher and lower trophic level marine systems with inexact functional group matching

    NASA Astrophysics Data System (ADS)

    Beecham, Jonathan; Bruggeman, Jorn; Aldridge, John; Mackinson, Steven

    2016-03-01

    End-to-end modelling is a rapidly developing strategy for modelling in marine systems science and management. However, problems remain in the area of data matching and sub-model compatibility. A mechanism and novel interfacing system (Couplerlib) is presented whereby a physical-biogeochemical model (General Ocean Turbulence Model-European Regional Seas Ecosystem Model, GOTM-ERSEM) that predicts dynamics of the lower trophic level (LTL) organisms in marine ecosystems is coupled to a dynamic ecosystem model (Ecosim), which predicts food-web interactions among higher trophic level (HTL) organisms. Coupling is achieved by means of a bespoke interface, which handles the system incompatibilities between the models and a more generic Couplerlib library, which uses metadata descriptions in extensible mark-up language (XML) to marshal data between groups, paying attention to functional group mappings and compatibility of units between models. In addition, within Couplerlib, models can be coupled across networks by means of socket mechanisms. As a demonstration of this approach, a food-web model (Ecopath with Ecosim, EwE) and a physical-biogeochemical model (GOTM-ERSEM) representing the North Sea ecosystem were joined with Couplerlib. The output from GOTM-ERSEM varies between years, depending on oceanographic and meteorological conditions. Although inter-annual variability was clearly present, there was always the tendency for an annual cycle consisting of a peak of diatoms in spring, followed by (less nutritious) flagellates and dinoflagellates through the summer, resulting in an early summer peak in the mesozooplankton biomass. Pelagic productivity, predicted by the LTL model, was highly seasonal with little winter food for the higher trophic levels. The Ecosim model was originally based on the assumption of constant annual inputs of energy and, consequently, when coupled, pelagic species suffered population losses over the winter months. By contrast, benthic populations

  19. From plankton to top predators: bottom-up control of a marine food web across four trophic levels.

    PubMed

    Frederiksen, Morten; Edwards, Martin; Richardson, Anthony J; Halliday, Nicholas C; Wanless, Sarah

    2006-11-01

    1. Abundant mid-trophic pelagic fish often play a central role in marine ecosystems, both as links between zooplankton and top predators and as important fishery targets. In the North Sea, the lesser sandeel occupies this position, being the main prey of many bird, mammal and fish predators and the target of a major industrial fishery. However, since 2003, sandeel landings have decreased by > 50%, and many sandeel-dependent seabirds experienced breeding failures in 2004. 2. Despite the major economic implications, current understanding of the regulation of key constituents of this ecosystem is poor. Sandeel abundance may be regulated 'bottom-up' by food abundance, often thought to be under climatic control, or 'top-down' by natural or fishery predation. We tested predictions from these two hypotheses by combining unique long-term data sets (1973-2003) on seabird breeding productivity from the Isle of May, SE Scotland, and plankton and fish larvae from the Continuous Plankton Recorder survey. We also tested whether seabird breeding productivity was more tightly linked to sandeel biomass or quality (size) of individual fish. 3. The biomass of larval sandeels increased two- to threefold over the study period and was positively associated with proxies of the abundance of their plankton prey. Breeding productivity of four seabirds bringing multiple prey items to their offspring was positively related to sandeel larval biomass with a 1-year lag, indicating dependence on 1-year-old fish, but in one species bringing individual fish it was strongly associated with the size of adult sandeels. 4. These links are consistent with bottom-up ecosystem regulation and, with evidence from previous studies, indicate how climate-driven changes in plankton communities can affect top predators and potentially human fisheries through the dynamics of key mid-trophic fish. However, the failing recruitment to adult sandeel stocks and the exceptionally low seabird breeding productivity in

  20. Influence of taxa, trophic level, and location on bioaccumulation of toxic metals in bird's feathers: a preliminary biomonitoring study using multiple bird species from Pakistan.

    PubMed

    Abbasi, Naeem Akhtar; Jaspers, Veerle Leontina Bernard; Chaudhry, Muhammad Jamshed Iqbal; Ali, Sakhawat; Malik, Riffat Naseem

    2015-02-01

    Increasing concentrations of heavy metals in the environment and their effects on ecosystems and biota is still an imminent threat, particularly in developing parts of the globe. The aim of the present study was to screen the heavy metal concentrations in multiple bird species across Pakistan and to preliminary evaluate the influence of taxa, trophic level, and geographical location on heavy metal accumulation in various bird species. For this purpose, we measured the concentration of 9 heavy metals (Pb, Cd, Cr, Ni, Co, Cu, Fe, Zn and Mn) in feathers of 48 bird species from different localities in Pakistan. Species exhibited heterogeneous levels of heavy metals in feathers with marked inter and intra specific variations. Mean concentrations of studied metals in feathers followed the trend Fe>Zn>Cu>Pb>Mn>Cr>Ni>Co>Cd. Species belonging to closely related taxa (families) showed comparable metal concentrations in their feathers, inferring potential phylogenetic similarities in metal exposure or accumulation. In general, concentrations of metals were greatest in carnivorous species followed by omnivorous and insectivorous birds, and granivores showing minimal levels (p<0.000). Furthermore, concentrations of metals varied significantly between locations (p<0.000) exhibiting highest concentrations in Punjab province and Baluchistan, probably due to higher industrial and agricultural activity and runoff, respectively. With certain limitation, influence of trophic level, taxonomic affiliation and sampling location of birds on toxic metal accumulation was also statistically corroborated through principal component analysis (PCA). This study highlights that despite restricted emissions, heavy metals persist in the local environment and may pose elevated risks for the studied bird species in Pakistan.

  1. Effects of Withdrawals on Ground-Water Levels in Southern Maryland and the Adjacent Eastern Shore, 1980-2005

    USGS Publications Warehouse

    Soeder, Daniel J.; Raffensperger, Jeff P.; Nardi, Mark R.

    2007-01-01

    Ground water is the primary source of water supply in most areas of Maryland?s Atlantic Coastal Plain, including Southern Maryland. The counties in this area are experiencing some of the most rapid growth and development in the State, resulting in an increased demand for ground-water production. The cooperative, basic water-data program of the U.S. Geological Survey and the Maryland Geological Survey has collected long-term observations of ground-water levels in Southern Maryland and parts of the Eastern Shore for many decades. Additional water-level observations were made by both agencies beginning in the 1970s, under the Power Plant Research Program of the Maryland Department of Natural Resources. These long-term water levels commonly show significant declines over several decades, which are attributed to ground-water withdrawals. Ground-water-level trends since 1980 in major Coastal Plain aquifers such as the Piney Point-Nanjemoy, Aquia, Magothy, upper Patapsco, lower Patapsco, and Patuxent were compared to water use and withdrawal data. Potentiometric surface maps show that most of the declines in ground-water levels can be directly related to effects from major pumping centers. There is also evidence that deep drawdowns in some pumped aquifers may be causing declines in adjacent, unpumped aquifers. Water-level hydrographs of many wells in Southern Maryland show linear declines in levels year after year, instead of the gradual leveling-off that would be expected as the aquifers equilibrate with pumping. A continual increase in the volumes of water being withdrawn from the aquifers is one explanation for why they are not reaching equilibrium. Although reported ground-water production in Southern Maryland has increased somewhat over the past several decades, the reported increases are often not large enough to account for the observed water-level declines. Numerical modeling simulations indicate that a steady, annual increase in the number of small wells could

  2. Modelling exposure of oceanic higher trophic-level consumers to polychlorinated biphenyls: pollution 'hotspots' in relation to mass mortality events of marine mammals.

    PubMed

    Handoh, Itsuki C; Kawai, Toru

    2014-08-30

    Marine mammals in the past mass mortality events may have been susceptible to infection because their immune systems were suppressed through the bioaccumulation of environmental pollutants such as polychlorinated biphenyls (PCBs). We compiled mortality event data sets of 33 marine mammal species, and employed a Finely-Advanced Transboundary Environmental model (FATE) to model the exposure of the global fish community to PCB congeners, in order to define critical exposure levels (CELs) of PCBs above which mass mortality events are likely to occur. Our modelling approach enabled us to describe the mass mortality events in the context of exposure of higher-trophic consumers to PCBs and to identify marine pollution 'hotspots' such as the Mediterranean Sea and north-western European coasts. We demonstrated that the CELs can be applied to quantify a chemical pollution Planetary Boundary, under which a safe operating space for marine mammals and humanity can exist.

  3. Bioaccumulation of five pharmaceuticals at multiple trophic levels in an aquatic food web - Insights from a field experiment.

    PubMed

    Lagesson, A; Fahlman, J; Brodin, T; Fick, J; Jonsson, M; Byström, P; Klaminder, J

    2016-10-15

    Pharmaceuticals derived from manufacturing and human consumption contaminate surface waters worldwide. To what extent such pharmaceutical contamination accumulates and disperses over time in different compartments of aquatic food webs is not well known. In this study we assess to what extent five pharmaceuticals (diphenhydramine, oxazepam, trimethoprim, diclofenac, and hydroxyzine) are taken up by fish (European perch) and four aquatic invertebrate taxa (damselfly larvae, mayfly larvae, waterlouse, and ramshorn snail), by tracing their bioconcentrations over several months in a semi-natural large-scale (pond) system. The results suggest both significant differences among drugs in their capacity to bioaccumulate and differences among species in uptake. While no support for in situ uptake of diclofenac and trimethoprim was found, oxazepam, diphenhydramine, and hydroxyzine were detected in all analyzed species. Here, the highest bioaccumulation factor (tissue:water ratio) was found for hydroxyzine. In the food web, the highest concentrations were found in the benthic species ramshorn snail and waterlouse, indicating that bottom-living organism at lower trophic positions are the prime receivers of the pharmaceuticals. In general, concentrations in the biota decreased over time in response to decreasing water concentrations. However, two interesting exceptions to this trend were noted. First, mayfly larvae (primarily grazers) showed peak concentrations (a fourfold increase) of oxazepam, diphenhydramine, and hydroxyzine about 30days after initial addition of pharmaceuticals. Second, perch (top-predator) showed an increase in concentrations of oxazepam throughout the study period. Our results show that drugs can remain bioavailable for aquatic organism for long time periods (weeks to months) and even re-enter the food web at a later time. As such, for an understanding of accumulation and dispersion of pharmaceuticals in aquatic food webs, detailed ecological knowledge is

  4. Recovery of African wild dogs suppresses prey but does not trigger a trophic cascade.

    PubMed

    Ford, Adam T; Goheen, Jacob R; Augustine, David J; Kinnaird, Margaret F; O'Brien, Timothy G; Palmer, Todd M; Pringle, Robert M; Woodroffe, Rosie

    2015-10-01

    Increasingly, the restoration of large carnivores is proposed as a means through which to restore community structure and ecosystem function via trophic cascades. After a decades-long absence, African wild dogs (Lycaon pictus) recolonized the Laikipia Plateau in central Kenya, which we hypothesized would trigger a trophic cascade via suppression of their primary prey (dik-dik, Madoqua guentheri) and the subsequent relaxation of browsing pressure on trees. We tested the trophic-cascade hypothesis using (1) a 14-year time series of wild dog abundance; (2) surveys of dik-dik population densities conducted before and after wild dog recovery; and (3) two separate, replicated, herbivore-exclusion experiments initiated before and after wild dog recovery. The dik-dik population declined by 33% following wild dog recovery, which is best explained by wild dog predation. Dik-dik browsing suppressed tree abundance, but the strength of suppression did not differ between before and after wild dog recovery. Despite strong, top-down limitation between adjacent trophic levels (carnivore-herbivore and herbivore-plant), a trophic cascade did not occur, possibly because of a time lag in indirect effects, variation in rainfall, and foraging by herbivores other than dik-dik. Our ability to reject the trophic-cascade hypothesis required two important approaches: (1) temporally replicated herbivore exclusions, separately established before and after wild dog recovery; and (2) evaluating multiple drivers of variation in the abundance of dik-dik and trees. While the restoration of large carnivores is often a conservation priority, our results suggest that indirect effects are mediated by ecological context, and that trophic cascades are not a foregone conclusion of such recoveries.

  5. Radioactive contamination of arthropods from different trophic levels in hilly and mountainous areas after the Fukushima Daiichi nuclear power plant accident.

    PubMed

    Tanaka, Sota; Hatakeyama, Kaho; Takahashi, Sentaro; Adati, Tarô

    2016-11-01

    In order to understand the influence of the Fukushima Daiichi nuclear power plant accident on the ecosystem in hilly and mountainous areas of Fukushima Prefecture, chronological changes in the levels of radiocesium in arthropod species were investigated. From 2012 to 2014, arthropods from different trophic levels were sampled and the air radiation dose rates at the sampling sites were analyzed. The air radiation dose rates showed a significant and constant reduction over the 2 years at the sampling sites in Fukushima. The median radiocesium concentration ((134)Cs + (137)Cs) detected in the rice grasshopper, Oxya yezoensis, and the Emma field cricket, Teleogryllus emma, dropped continuously to 0.080 and 0.078 Bq/g fresh weight, respectively, in 2014. In contrast, no significant reduction in radioactive contamination was observed in the Jorô spider, Nephila clavata, in which the level remained at 0.204 Bq/g in 2014. A significant positive correlation between radiocesium concentration and the air radiation dose rate was observed in the rice grasshopper, the Emma field cricket and the Jorô spider. The highest correlation coefficient (ρ = 0.946) was measured in the grasshopper.

  6. High breast milk levels of polychlorinated biphenyls (PCBs) among four women living adjacent to a PCB-contaminated waste site.

    PubMed Central

    Korrick, S A; Altshul, L

    1998-01-01

    As a consequence of contamination by effluents from local electronics manufacturing facilities, the New Bedford Harbor and estuary in southeastern Massachusetts is among the sites in the United States that are considered the most highly contaminated by polychlorinated biphenyls (PCBs). Since 1993, measures of intrauterine PCB exposure have been obtained for a sample of New Bedford area infants. Among 122 mother-infant pairs, we identified four milk samples with total PCB levels that were significantly higher than the rest, with estimated total PCBs ranging from 1,100 to 2,400 ng/g milk fat compared with an overall mean of 320 ng/g milk fat for the 122 women. The congener profile and history of one case was consistent with past occupational PCB exposures. Otherwise, the source of PCB exposures in these cases was difficult to specify. Environmental exposures including those from fish consumption were likely, whereas residence adjacent to a PCB-contaminated site was considered an unlikely exposure source. In all four cases, the infants were full-term, healthy newborns. Because the developing nervous system is believed to be particularly susceptible to PCBs (for example, prenatal PCB exposures have been associated with prematurity, decrements in birth weight and gestation time, and behavioral and developmental deficits in later infancy and childhood, including decrements in IQ), it is critical to ascertain if breast-feeding is a health risk for the women's infants. Despite the potential for large postnatal PCB exposures via breast milk, there is limited evidence of significant developmental toxicity associated with the transmission of moderate PCB concentrations through breast milk. Breast-feeding is associated with substantial health benefits including better cognitive skills among breast-fed compared with formula-fed infants. We conclude, based on evidence from other studies, that the benefits of breast-feeding probably outweigh any risk from PCB exposures via breast

  7. [Assessment of ecosystem energy flow and carrying capacity of swimming crab enhancement in the Yellow River estuary and adjacent waters].

    PubMed

    Lin Qun; Wang, Jun; Li, Zhong-yi; Wu, Qiang

    2015-11-01

    Stock enhancement is increasingly proved to be an important measure of the fishery resources conservation, and the assessment of carrying capacity is the decisive factor of the effects of stock enhancement. Meanwhile, the variations in the energy flow patterns of releasing species and ecosystem were the basis for assessing carrying capacity of stock enhancement. So, in the present study, based on the survey data collected from the Yellow River estuary and adjacent waters during 2012-2013, three Ecopath mass-balance models were established in June, August and October, and the variations in ecosystem energy flow in these months were analyzed, as well as the assessment of carrying capacity of swimming crab enhancement. The energy flow mainly concentrated on trophic level I-III in Yellow River estuary and adjacent waters, and was relatively less on trophic level IV or above. The system flow proportion on the trophic level I was the highest in June, and was the lowest in August. The highest system flow proportion on the trophic level II was found in August, and the lowest in June. The relative and absolute energy flow of swimming crab mainly concentrated on the trophic level III, and the mean trophic level of swimming crab among June, August and October were 3.28. Surplus production was relatively higher in Yellow River estuary and adjacent waters, the highest value was found in June, and the lowest value in August. The ratios of total primary production/total respiration (TPP/TR) were 5.49, 2.47 and 3.01 in June, August and October, respectively, and the ratios of total primary production/total biomass (TPP/B) were 47.61, 33.30 and 29.78, respectively. Combined with the low Finn' s cycling index (FCI: 0.03-0.06), these changes indicated that the Yellow River estuary ecosystem was at an early development stage with higher vulnerability. The energy conversion efficiency of system was from 7.3% to 11.5%, the mean trophic levels of the catch were 3.23, 2.97 and 2.82 in

  8. Distribution and bioaccumulation of heavy metals in aquatic organisms of different trophic levels and potential health risk assessment from Taihu lake, China.

    PubMed

    Tao, Yu; Yuan, Zhang; Xiaona, Hu; Wei, Meng

    2012-07-01

    Aquatic organisms of different trophic levels were taken from Taihu lake. Heavy metals (Cu, Zn, Cr, Ni, Cd, Pb) were measured in phytoplankton, zooplankton, in two species of zoobenthos, and in eight fish species, as well as in the water column and bottom sediments. Results showed that the concentration of Cu and Zn for all organisms was much higher than for other metals, and Cd was the lowest in all species. Generally, heavy metal concentrations in phytoplankton were higher than in zooplankton. In zoobenthos, the concentration in Bellamya sp.(human edible snail) was higher than that in Corbiculidae (bivalve). Metal concentrations had no significant difference between fish species but tended to be higher in predator fish such as Coilia ectenes and Erythroculter ilishaeformis than in herbivorous fish. The level of measured metals in Taihu fish was moderate-low compared with that of fresh water fishes from international results. Spatially, metal concentrations in organisms were higher in the north and west Taihu lake but lower in south and east lake and this appears to be related to river inputs that are heavily influenced by anthropogenic activities. The bio-concentration factor (BCF) for all aquatic organisms in the food chain indicated that it was generally highest in planktons, followed by zoobenthos, and lowest in fish. Health risk assessment and comparison with national and international standards showed that consumption of aquatic products from the lake was generally safe but fishermen were a higher risk group especially through dietary intake of Bellamya sp.

  9. Toxic Identification and Evaluation of Androgen Receptor Antagonistic Activities in Acid-Treated Liver Extracts of High-Trophic Level Wild Animals from Japan.

    PubMed

    Misaki, Kentaro; Suzuki, Go; Tue, Nguyen Minh; Takahashi, Shin; Someya, Masayuki; Takigami, Hidetaka; Tajima, Yuko; Yamada, Tadasu K; Amano, Masao; Isobe, Tomohiko; Tanabe, Shinsuke

    2015-10-06

    Sulfuric acid-treated liver extracts of representative high-trophic level Japanese animals were analyzed by toxic identification and evaluation (TIE) with chemically activated luciferase expression (CALUX) and chemical analysis to elucidate androgen receptor (AR) antagonistic activities and potential contributions of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). The activities were detected in striped dolphins (n = 5), Stejneger's beaked whales (n = 6), golden eagle (n = 1), and Steller's sea eagle (n = 1) with CALUX-flutamide equivalents (FluEQs) as follow: 38 (20-52), 47 (21-96), 5.0, and 80 μg FluEQ/g-lipid, respectively. The AR antagonism was detected in limited number of specimens at lower levels for finless porpoise, raccoon dog, and common cormorant. Theoretical activities (Theo-FluEQs) were calculated using the concentration of OCPs and PCBs and their IC25-based relative potency (REP) values. These total contribution to CALUX-FluEQ was 126%, 84%, 53%, 55%, and 44% for striped dolphin, Steller's sea eagle, Stejneger's beaked whale, finless porpoise, and golden eagle, respectively, and the main contributor was p,p'-DDE. However, most of the activities for raccoon dog (7.6%) and common cormorant (17%) could not be explained by OCPs and PCBs. This suggests other unknown compounds could function as AR antagonists in these terrestrial species.

  10. Effects of fluctuating river-pool stages on ground-water levels in the adjacent alluvial aquifer in the lower Arkansas River, Arkansas

    USGS Publications Warehouse

    Freiwald, D.A.; Grosz, G.D.

    1988-01-01

    The U.S. Geological Survey conducted a study in cooperation with the U.S. Army Corps of Engineers to determine the effect of fluctuating the lower Arkansas River. A network of 41 wells was used to delineate 4 cross sections adjacent to river pools 2 and 5 of the McClellan-Kerr Arkansas River Navigation System to examine groundwater levels at various distances from the river. The hydraulic gradient of water levels in the alluvial aquifer along these cross sections indicates that the river is losing water to the adjacent aquifer. The effect on groundwater levels in the alluvial aquifer caused by pool-stage fluctuations was most pronounced at distances less than about 2 miles from the Arkansas River. At distances greater than about 2 miles, the changes in groundwater levels probably were the result of water levels rising in the aquifer since the heavy summer irrigation withdrawals have ceased. An equation useful for estimating the distribution of head change an aquifer in response to river-pool-stage changes, was applied to the study area to estimate the effect of a 1-foot rise in pool stage on water levels in the adjacent alluvial aquifer after equilibrium conditions have been established. The theoretical head change (rise) in the aquifer was estimated to range from 1-foot at the Arkansas River to 0.57 foot at a distance of 5 miles away from the river. (USGS)

  11. Trophic diversity in two grassland ecosystems.

    PubMed

    Pearson, Clark V; Dyer, Lee A

    2006-01-01

    The roles of consumers (top-down forces) versus resources (bottom-up forces) as determinants of alpha diversity in a community are not well studied. Numerous community ecology models and empirical studies have provided a framework for understanding how density at various trophic levels responds to variation in the relative strength of top-down and bottom-up forces. The resulting trophic theory can be applied to understanding variation in insect diversity at different trophic levels. The objective of this research was to elucidate the strengths of direct and indirect interactions between plants and entire arthropod communities to determine the effects of trophic interactions on arthropod diversity. Grassland plant and insect diversity was measured in July 2001 to document patterns of diversity at multiple trophic levels. The study site includes riparian grasslands in North-Central Colorado on the Carpenter Ranch, owned and managed by The Nature Conservancy. This pastureland consists of sites with different management regimes: unmanaged pasture intermixed along riparian forest, and cattle grazed pasture with flood irrigation. Plant abundance and richness were higher on the grazed-irrigated pasture versus the unmanaged field. Path analysis revealed strong effects of herbivore diversity on diversity of other trophic levels. For the managed fields, top-down forces were important, with increases in enemy diversity depressing herbivore diversity, which in turn depressed plant abundance. For the unmanaged fields, bottom-up forces dominated, with increases in plant diversity causing increased herbivore diversity, which in turn increased enemy diversity. These results support hypotheses from other empirical studies, demonstrating that changes in diversity of a single trophic level can cascade to effect diversity at other, nonadjacent trophic levels.

  12. Temporal characterization of mercury accumulation at different trophic levels and implications for metal biomagnification along a coastal food web.

    PubMed

    Cardoso, P G; Pereira, E; Duarte, A C; Azeiteiro, U M

    2014-10-15

    The main goal of this study was to assess temporal mercury variations along an estuarine food web to evaluate the mercury contamination level of the system and the risks that humans are exposed to, due to mercury biomagnification. The highest mercury concentrations in the sediments and primary producers (macrophytes) were observed during winter sampling. Instead, the highest mercury concentrations in the water, suspended particulate matter as well as in the zooplanktonic and suprabenthic communities were observed during summer sampling. Evidences of mercury biomagnification along the food web were corroborated by the positive biomagnification factors, particularly for omnivorous macrobenthic species. Comparing the mercury levels at distinct components with several environmental quality criteria it suggests that sediments, water and edible species (e.g., bivalve Scrobicularia plana and the crustacean Carcinus maenas) presented higher mercury levels than the values accepted by legislation which represent a matter of concern for the environment and human health.

  13. Trophic and Non-Trophic Interactions in a Biodiversity Experiment Assessed by Next-Generation Sequencing

    PubMed Central

    Tiede, Julia; Wemheuer, Bernd; Traugott, Michael; Daniel, Rolf; Tscharntke, Teja; Ebeling, Anne; Scherber, Christoph

    2016-01-01

    Plant diversity affects species richness and abundance of taxa at higher trophic levels. However, plant diversity effects on omnivores (feeding on multiple trophic levels) and their trophic and non-trophic interactions are not yet studied because appropriate methods were lacking. A promising approach is the DNA-based analysis of gut contents using next generation sequencing (NGS) technologies. Here, we integrate NGS-based analysis into the framework of a biodiversity experiment where plant taxonomic and functional diversity were manipulated to directly assess environmental interactions involving the omnivorous ground beetle Pterostichus melanarius. Beetle regurgitates were used for NGS-based analysis with universal 18S rDNA primers for eukaryotes. We detected a wide range of taxa with the NGS approach in regurgitates, including organisms representing trophic, phoretic, parasitic, and neutral interactions with P. melanarius. Our findings suggest that the frequency of (i) trophic interactions increased with plant diversity and vegetation cover; (ii) intraguild predation increased with vegetation cover, and (iii) neutral interactions with organisms such as fungi and protists increased with vegetation cover. Experimentally manipulated plant diversity likely affects multitrophic interactions involving omnivorous consumers. Our study therefore shows that trophic and non-trophic interactions can be assessed via NGS to address fundamental questions in biodiversity research. PMID:26859146

  14. METAL LEVELS IN EGGS OF WATERBIRDS IN THE NEW YORK HARBOR (USA): TROPHIC RELATIONSHIPS AND POSSIBLE RISK TO HUMAN CONSUMERS

    PubMed Central

    Burger, Joanna; Elbin, Susan

    2015-01-01

    Health professionals are interested in evaluating the risks that heavy metals pose to eco-receptors and humans. The objective of this study was to examine levels of mercury (Hg), lead (Pb), cadmium (Cd), and other contaminants in waterbirds nesting in the New York harbor in 2012 to determine (1) whether there were species and locational differences, and (2) whether consumption of eggs posed a health risk to predators or humans. For arsenic (As), Pb, Hg, and selenium (Se), species contributed more to variations in levels than location; for Cd and chromium (Cr), location was more significant. Mean metal levels differed among species for all metals, except Cd. Highest levels were As (great black-backed gulls, Larus marinus), Cr (great egret, Ardea alba), Pb (Canada goose, Branta canadensis), and Hg and Se (black-crowned night heron, Nycticorax nycticorax). There were significant locational differences only for herring gulls (Larus argentatus); significant differences were found for all metals. Levels of Hg and Pb may be sufficiently high in eggs of some species to produce adverse effects in predators that eat them. The proportion of samples above 0.3 ppm Hg (U.S. Environmental Protection Agency [EPA] freshwater criteria for freshwater fish), the contaminant of health concern, ranged from 0% (Canada goose, great egret), to 14 and 27% in gulls, to 50% (black-crowned night heron). Some herring gull, great black-backed gull, and black-crowned night heron eggs had 0.5 ppm or higher Hg. Thus, human consumption of eggs may pose a risk to fetuses and young children. PMID:25424617

  15. Improving the reliability of aquatic toxicity testing of hydrophobic chemicals via equilibrium passive dosing - A multiple trophic level case study on bromochlorophene.

    PubMed

    Stibany, Felix; Ewald, Franziska; Miller, Ina; Hollert, Henner; Schäffer, Andreas

    2017-01-28

    The main objective of the present study was to improve the reliability and practicability of aquatic toxicity testing of hydrophobic chemicals based upon the model substance bromochlorophene (BCP). Therefore, we adapted a passive dosing format to test the toxicity of BCP at different concentrations and in multiple test systems with aquatic organisms of various trophic levels. At the same time, the method allowed for the accurate determination of exposure concentrations (i.e., in the presence of exposed organisms; Ctest) and freely dissolved concentrations (i.e., without organisms present; Cfree) of BCP in all tested media. We report on the joint adaptation of three ecotoxicity tests - algal growth inhibition, Daphnia magna immobilization, and fish-embryo toxicity - to a silicone O-ring based equilibrium passive dosing format. Effect concentrations derived by passive dosing methods were compared with corresponding effect concentrations derived by standard co-solvent setups. The passive dosing format led to EC50-values in the lower μgL(-1) range for algae, daphnids, and fish embryos, whereas increased effect concentrations were measured in the co-solvent setups for algae and daphnids. This effect once more shows that passive dosing might offer advantages over standard methods like co-solvent setups when it comes to a reliable risk assessment of hydrophobic substances. The presented passive dosing setup offers a facilitated, practical, and repeatable way to test hydrophobic chemicals on their toxicity to aquatic organisms, and is an ideal basis for the detailed investigation of this important group of chemicals.

  16. Ecotoxicological evaluation of four UV filters using marine organisms from different trophic levels Isochrysis galbana, Mytilus galloprovincialis, Paracentrotus lividus, and Siriella armata.

    PubMed

    Paredes, E; Perez, S; Rodil, R; Quintana, J B; Beiras, R

    2014-06-01

    Due to the concern about the negative effects of exposure to sunlight, combinations of UV filters like 4-Methylbenzylidene-camphor (4-MBC), Benzophenone-3 (BP-3), Benzophenone-4 (BP-4) and 2-Ethylhexyl-4-methoxycinnamate (EHMC) are being introduced in all kind of cosmetic formulas. These chemicals are acquiring a concerning status due to their increasingly common use and the potential risk for the environment. The aim of this study is to assess the behaviour of these compounds in seawater, the toxicity to marine organisms from three trophic levels including autotrophs (Isochrysis galbana), herbivores (Mytilus galloprovincialis and Paracentrotus lividus) and carnivores (Siriella armata), and set a preliminary assessment of potential ecological risk of UV filters in coastal ecosystems. In general, EC50 results show that both EHMC and 4-MBC are the most toxic for our test species, followed by BP-3 and finally BP-4. The most affected species by the presence of these UV filters are the microalgae I. galbana, which showed toxicity thresholds in the range of μg L(-1) units, followed by S. armata>P. Lividus>M. galloprovincialis. The UV filter concentrations measured in the sampled beach water were in the range of tens or even hundreds of ng L(-1). The resulting risk quotients showed appreciable environmental risk in coastal environments for BP-3 and 4-MBC.

  17. Damped trophic cascades driven by fishing in model marine ecosystems.

    PubMed

    Andersen, K H; Pedersen, M

    2010-03-07

    The largest perturbation on upper trophic levels of many marine ecosystems stems from fishing. The reaction of the ecosystem goes beyond the trophic levels directly targeted by the fishery. This reaction has been described either as a change in slope of the overall size spectrum or as a trophic cascade triggered by the removal of top predators. Here we use a novel size- and trait-based model to explore how marine ecosystems might react to perturbations from different types of fishing pressure. The model explicitly resolves the whole life history of fish, from larvae to adults. The results show that fishing does not change the overall slope of the size spectrum, but depletes the largest individuals and induces trophic cascades. A trophic cascade can propagate both up and down in trophic levels driven by a combination of changes in predation mortality and food limitation. The cascade is damped as it comes further away from the perturbed trophic level. Fishing on several trophic levels leads to a disappearance of the signature of the trophic cascade. Differences in fishing patterns among ecosystems might influence whether a trophic cascade is observed.

  18. Polybrominated diphenyl ethers (PBDEs) in biota representing different trophic levels of the Hudson River, New York: from 1999 to 2005.

    PubMed

    Xia, Kang; Luo, Ming Bo; Lusk, Christina; Armbrust, Kevin; Skinner, Lawrence; Sloan, Ronald

    2008-06-15

    It has been hypothesized that a principal route of human exposure to polybrominated diphenyl ethers (PBDEs), used as flame retardants, is through fish consumption. Between 1999 and 2005 PBDE-47, -99, -100, -153, and -154 were analyzed in 3797 biological samples of 33 species of the Hudson River, New York. Approximately 98.4% of the samples contained PBDEs between 0.5 and 37 169 ng g(-1) lipid, with a median concentration of 772 ng g(-1) lipid. Yearly median sigmaPBDE concentrations fluctuated. Samples from river miles 112 and 153 contained higher sigmaPBDEs than those from other locations of the river. The 7-year median sigmaPBDE concentrations were the highest in large carnivorous fishes and the lowest in insects. The median abundance of congener PBDE-47 decreased from 80% to 63% with decreasing levels of sigmaPBDEs in the samples, while an increase from 2% to 23% was observed for PBDE-99. The median abundance of other congeners did not change with concentrations of sigmaPBDEs. Positive-, negative-, and no-correlation between sigmaPBDE concentrations and fish weight were observed for different species and for the same species from different locations of the river. The sources of PBDE contamination, diet, metabolic activity, and sediment chemistry might affect the levels of PBDEs in a fish.

  19. Salmon carcasses increase stream productivity more than inorganic fertilizer pellets: A test on multiple trophic levels in streamside experimental channels

    USGS Publications Warehouse

    Wipfli, Mark S.; Hudson, John P.; Caouette, John P.; Mitchell, N.L.; Lessard, Joanna L.; Heintz, Ron A.; Chaloner, D.T.

    2010-01-01

    Inorganic nutrient amendments to streams are viewed as possible restoration strategies for re-establishing nutrients and stream productivity throughout the western coast of North America, where salmon runs and associated marine-derived nutrient subsidies have declined. In a mesocosm experiment, we examined the short-term (6 weeks) comparative effects of artificial nutrient pellets and salmon carcasses, alone (low and high amounts) and in combination, on stream food webs. Response variables included dissolved nutrient concentrations, biofilm ash-free dry mass (AFDM) and chlorophyll-alevels, macroinvertebrate density, growth and body condition of juvenile coho salmon Oncorhynchus kisutch, and whole-body lipid content of invertebrates and juvenile coho salmon. Most of the response variables were significantly influenced by carcass treatment; the only response variable significantly influenced by fertilizer pellet treatment was soluble reactive phosphorus (SRP) concentration. Ammonium-nitrogen concentration was the only response variable affected by both (low and high) levels of carcass treatment; all others showed no significant response to the two carcass treatment levels. Significant treatment × time interactions were observed for all responses except nitrate; for most responses, significant treatment effects were detected at certain time periods and not others. For example, significantly higher SRP concentrations were recorded earlier in the experiment, whereas significant fish responses were observed later. These results provide evidence that inorganic nutrient additions do not have the same ecological effects in streams as do salmon carcasses, potentially because inorganic nutrient additions lack carbon-based biochemicals and macromolecules that are sequestered directly or indirectly by consumers. Salmon carcasses, preferably deposited naturally during spawning migrations, appear to be far superior to inorganic nutrient amendments for sustaining and restoring

  20. Adjacent Segment Disease in a Patient With Klippel-Feil Syndrome and Radiculopathy: Surgical Treatment With Two-Level Disc Replacement

    PubMed Central

    Reyes-Sánchez, Alejandro; Rosales-Olivares, Luis Miguel

    2007-01-01

    Klippel-Feil syndrome (KFS) is a complex congenital condition characterized by improper segmentation of cervical motion segments that could contribute to undesirable adjacent segment degeneration. KFS patients have a strong tendency to present with disease in the adjacent segments. When this condition is present, anterior decompression followed by total disc replacement can be performed safely and can lead to good clinical results. This treatment has theoretical advantages compared with anterior decompression and fusion. Comparative studies and long-term follow-up are needed. Complications associated with fusion include loss of a motion segment, disc height loss, subsidence of the graft, progressive degenerative changes at the adjacent level, graft-related complications, and graft-site complications. Such new technologies as motion preservation spine arthroplasty represent attempts to avoid these complications. Here we present a case report of a 62-year-old female patient with type I congenital fusion at the C5–6 level, with a history of neck pain and right radiculopathy at C5–7. X-rays and MRI show evidence of adjacent segment degeneration at levels above and below congenital fusion. The patient's preoperative visual analog score (VAS) for neck pain was 7 out of a possible 10, her score for right upper extremity pain was 8 out of 10, and her Neck Disability Index (NDI) was 32%. Surgical treatment consisted of anterior decompression and total disc replacement at both levels. At 1-year follow-up, the patient's VAS for neck pain was 2 out of 10, her VAS score for right upper extremity pain was 1 of 10, and her NDI was 9%. PMID:25802590

  1. Adjacent segment disease in a patient with klippel-feil syndrome and radiculopathy: surgical treatment with two-level disc replacement.

    PubMed

    Reyes-Sánchez, Alejandro; Zárate-Kalfópulos, Barón; Rosales-Olivares, Luis Miguel

    2007-01-01

    Klippel-Feil syndrome (KFS) is a complex congenital condition characterized by improper segmentation of cervical motion segments that could contribute to undesirable adjacent segment degeneration. KFS patients have a strong tendency to present with disease in the adjacent segments. When this condition is present, anterior decompression followed by total disc replacement can be performed safely and can lead to good clinical results. This treatment has theoretical advantages compared with anterior decompression and fusion. Comparative studies and long-term follow-up are needed. Complications associated with fusion include loss of a motion segment, disc height loss, subsidence of the graft, progressive degenerative changes at the adjacent level, graft-related complications, and graft-site complications. Such new technologies as motion preservation spine arthroplasty represent attempts to avoid these complications. Here we present a case report of a 62-year-old female patient with type I congenital fusion at the C5-6 level, with a history of neck pain and right radiculopathy at C5-7. X-rays and MRI show evidence of adjacent segment degeneration at levels above and below congenital fusion. The patient's preoperative visual analog score (VAS) for neck pain was 7 out of a possible 10, her score for right upper extremity pain was 8 out of 10, and her Neck Disability Index (NDI) was 32%. Surgical treatment consisted of anterior decompression and total disc replacement at both levels. At 1-year follow-up, the patient's VAS for neck pain was 2 out of 10, her VAS score for right upper extremity pain was 1 of 10, and her NDI was 9%.

  2. Effects on the function of three trophic levels in marine plankton communities under stress from the antifouling compound zinc pyrithione.

    PubMed

    Hjorth, M; Dahllöf, I; Forbes, V E

    2006-04-20

    This study aimed to investigate functional responses of natural marine planktonic communities to stress from the antifouling compound zinc pyrithione (ZPT). Isotope labelling techniques (14C) were applied to study bacterial incorporation of leucine, photosynthetic activity of phytoplankton and grazing of labelled prey by zooplankton communities for 6 days after exposures to nominal concentrations of 0, 5, 25, 50 nM ZPT in a mesocosm experiment in Isefjord, Denmark. Significant direct effects were visible on chlorophyll a concentrations, which decreased in all exposed communities, to between 48 and 36% of control concentrations on Day 3, 1 day after the last exposure. Phytoplankton activities were also significantly affected on Day 3 with activities between 9 and 26% of control levels, as was zooplankton activities in the 25 and 50 nM exposures. In the 50 nM exposure the total community zooplankton activity was reduced to 25+/-4%, and per individual to 46+/-11% of control levels. Bacterial communities showed positive indirect effects with high activities (up to 183+/-40%) due to higher amounts of available substrate from algal death. Pollution induced community tolerance analyses performed on phytoplankton and bacterial communities at the end of the experiment indicated a development of increased tolerance for phytoplankton in the 50 nM exposed communities, whereas there were no changes in tolerance in the bacterial communities. Multivariate analysis of the integrated functional response by the plankton communities revealed a significant difference (p<0.05) between exposed communities compared to controls in the first 3 days after last exposure and in the end of the experiment. The study provides evidence of diverse effects on the functions of marine plankton communities under stress from a pollutant. Direct effects lead to cascading indirect effects throughout the community, eventually causing different developments. Continuous exposure to ZPT could lead to severe

  3. Mercury concentrations in breast feathers of three upper trophic level marine predators from the western Aleutian Islands, Alaska

    USGS Publications Warehouse

    Kaler, Robb S.A.; Kenney, Leah A.; Bond, Alexander L.; Eagles-Smith, Collin A.

    2014-01-01

    Mercury (Hg) is a toxic element distributed globally through atmospheric transport. Agattu Island, located in the western Aleutian Islands, Alaska, has no history of point-sources of Hg contamination. We provide baseline levels of total mercury (THg) concentrations in breast feathers of three birds that breed on the island. Geometric mean THg concentrations in feathers of fork-tailed storm-petrels (Oceanodroma furcata; 6703 ± 1635, ng/g fresh weight [fw]) were higher than all other species, including snowy owl (Bubo scandiacus; 2105 ± 1631, ng/g fw), a raptor with a diet composed largely of storm-petrels at Agattu Island. There were no significant differences in mean THg concentrations of breast feathers among adult Kittlitz’s murrelet (Brachyramphus brevirostris; 1658 ± 1276, ng/g fw) and chicks (1475 ± 671, ng/g fw) and snowy owls. The observed THg concentrations in fork-tailed storm-petrel feathers emphasizes the need for further study of Hg pollution in the western Aleutian Islands.

  4. A trophic position model of pelagic food webs: Impact on contaminant bioaccumulation in lake trout

    SciTech Connect

    Zanden, M.J.V.; Rasmussen, J.B.

    1996-11-01

    To test how well use of discrete trophic levels represents pelagic trophic structure, dietary data from > 200 lake trout and pelagic forage fish populations was compiled and calculated a continuous (fractional) measure of trophic position for each population. Lake trout trophic position, which ranged from 3.0 to 4.6, explained 85% of the between-lake variability in mean PCB levels in lake trout muscle tissue, providing a significant improvement over the use of discrete trophic levels as a predictor of contaminant levels. Having demonstrated the utility of trophic position, a generalized {open_quotes}trophic position model{close_quotes} of lake trout food webs was developed. This approach eliminates minor trophic linkages, calculates a fractional measure of each species` trophic position, and aggregates species of similar trophic position into trophic guilds. This {open_quotes}realized{close_quotes} model represents trophic structure in terms of mass transfer and accounts for the complexity and omnivory that characterize aquatic food webs. In our trophic position model, smelt (a species of pelagic forage fish) were designated a trophic guild separate from other pelagic forage fish, due to their elevated trophic position. Separate consideration of smelt was supported by elevated lake trout trophic position, PCB, and Hg levels in lakes containing smelt. Consideration of omnivory caused biomagnification factors (BMFs) to be many times higher than BMFs that ignored omnivory. These omnivory-corrected BMF estimates appeared to be more consistent with values calculated using stable nitrogen isotopes ({delta}{sup 15}N), an alternative continuous measure of trophic position. {delta}{sup 15}N, an alternative continuous measure of trophic position. {delta}{sup 15}N provided trophic position estimates that generally corresponded with our diet-derived estimates. 186 refs., 7 figs., 3 tabs.

  5. Trophic cascades across ecosystems.

    PubMed

    Knight, Tiffany M; McCoy, Michael W; Chase, Jonathan M; McCoy, Krista A; Holt, Robert D

    2005-10-06

    Predation can be intense, creating strong direct and indirect effects throughout food webs. In addition, ecologists increasingly recognize that fluxes of organisms across ecosystem boundaries can have major consequences for community dynamics. Species with complex life histories often shift habitats during their life cycles and provide potent conduits coupling ecosystems. Thus, local interactions that affect predator abundance in one ecosystem (for example a larval habitat) may have reverberating effects in another (for example an adult habitat). Here we show that fish indirectly facilitate terrestrial plant reproduction through cascading trophic interactions across ecosystem boundaries. Fish reduce larval dragonfly abundances in ponds, leading to fewer adult dragonflies nearby. Adult dragonflies consume insect pollinators and alter their foraging behaviour. As a result, plants near ponds with fish receive more pollinator visits and are less pollen limited than plants near fish-free ponds. Our results confirm that strong species interactions can reverberate across ecosystems, and emphasize the importance of landscape-level processes in driving local species interactions.

  6. The trophic fingerprint of marine fisheries.

    PubMed

    Branch, Trevor A; Watson, Reg; Fulton, Elizabeth A; Jennings, Simon; McGilliard, Carey R; Pablico, Grace T; Ricard, Daniel; Tracey, Sean R

    2010-11-18

    Biodiversity indicators provide a vital window on the state of the planet, guiding policy development and management. The most widely adopted marine indicator is mean trophic level (MTL) from catches, intended to detect shifts from high-trophic-level predators to low-trophic-level invertebrates and plankton-feeders. This indicator underpins reported trends in human impacts, declining when predators collapse ("fishing down marine food webs") and when low-trophic-level fisheries expand ("fishing through marine food webs"). The assumption is that catch MTL measures changes in ecosystem MTL and biodiversity. Here we combine model predictions with global assessments of MTL from catches, trawl surveys and fisheries stock assessments and find that catch MTL does not reliably predict changes in marine ecosystems. Instead, catch MTL trends often diverge from ecosystem MTL trends obtained from surveys and assessments. In contrast to previous findings of rapid declines in catch MTL, we observe recent increases in catch, survey and assessment MTL. However, catches from most trophic levels are rising, which can intensify fishery collapses even when MTL trends are stable or increasing. To detect fishing impacts on marine biodiversity, we recommend greater efforts to measure true abundance trends for marine species, especially those most vulnerable to fishing.

  7. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ (13)C and δ (15)N).

    PubMed

    Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and

  8. Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem

    DTIC Science & Technology

    2012-09-30

    marine organisms over multiple trophic levels , and (2) natural and anthropogenic variability in ecosystem structure and trophic interactions...framework consists of a lower trophic level ecosystem model (NEMURO) embedded in a regional ocean circulation model (ROMS), and both coupled with a multi...to better understand and characterize biological “hotspots” (i.e., the aggregation of multiple marine organisms over multiple trophic levels ) off the

  9. Water-quality, water-level, and lake-bottom-sediment data collected from the defense fuel supply point and adjacent properties, Hanahan, South Carolina, 1990-96

    USGS Publications Warehouse

    Petkewich, M.D.; Vroblesky, D.A.; Robertson, J.F.; Bradley, P.M.

    1997-01-01

    A 9-year scientific investigation to determine the potential for biore-mediation of ground-water contamination and to monitor the effectiveness of an engineered bioremediation system located at the Defense Fuel Supply Point and adjacent properties in Hanahan, S.C., has culminated in the collection of abundant water-quality and water-level data.This report presents the analytical results of the study that monitored the changes in surface- and ground-water quality and water-table elevations in the study area from December 1990 to January 1996. This report also presents analytical results of lake-bottom sediments collected in the study area.

  10. Spatial and seasonal variations in the trophic spectrum of demersal fish assemblages in Jiaozhou Bay, China

    NASA Astrophysics Data System (ADS)

    Han, Dongyan; Xue, Ying; Ren, Yiping; Ma, Qiuyun

    2015-07-01

    Trophic structure of fish communities is fundamental for ecosystem-based fisheries management, and trophic spectrum classifies fishes by their positions in food web, which provides a simple summary on the trophic structure and ecosystem function. In this study, both fish biomass and abundance trophic spectra were constructed to study the spatial and seasonal variations in the trophic structure of demersal fish assemblages in Jiaozhou Bay, China. Data were collected from four seasonal bottom trawl surveys in Jiaozhou Bay from February to November in 2011. Trophic levels (TLs) of fishes were determined by nitrogen stable isotope analysis. This study indicated that most of these trophic spectra had a single peak at trophic level (TL) of 3.4-3.7, suggesting that demersal fish assemblages of Jiaozhou Bay were dominated by secondary consumers (eg. Pholis fangi and Amblychaeturichthys hexanema). The spatial and seasonal variations of trophic spectra of Jiaozhou Bay reflected the influence of fish reproduction, fishing pressure and migration of fishes. Two-way analysis of variance (ANOVA) showed that seasonal variations in trophic spectra in Jiaozhou Bay were significant ( P<0.05), but variations among different areas were not significant ( P>0.05). The trophic spectrum has been proved to be a useful tool to monitor the trophic structure of fish assemblages. This study highlighted the comprehensive application of fish biomass and abundance trophic spectra in the study on trophic structure of fish assemblages.

  11. Ground-Water Hydrographs and 5-Year Ground-Water-Level Changes, 1984-93, for Selected Areas In and Adjacent to New Mexico

    USGS Publications Warehouse

    Wilkins, D.W.; Garcia, Benjamin M.

    1995-01-01

    A cooperative observation-well monitoring program was begun in New Mexico in 1925 between the U.S. Geological Survey and the New Mexico State Engineer Office. The majority of the wells are located in New Mexico; however, a few are in Texas east of Curry and Roosevelt County, New Mexico, and in Colorado along the Rio Grande. The program presently includes 22 wells equipped with continuous water-level recorders and 34 monitoring areas in which selected wells are measured periodically, usually every 5 years, to record changes in ground-water levels. These monitoring areas are those where ground water is used in large quantities for irrigation, municipal, or industrial purposes. Water-level data and water-level changes computed from these data are used to determine areas of ground-water-level rises and declines. This information is necessary for management of ground-water resources in New Mexico. Included in this report are hydrographs of ground-water levels obtained from 22 wells equipped with continuous water-level recorders and maps of ground-water-level changes computed for a 5-year period in each of 34 monitoring areas. Well locations and ground-water-level data for a 5-year period are listed in tables for each monitoring area. Where available, plots of annual precipitation data for climatological stations within or adjacent to each monitoring area are included.

  12. Trophic shift, not collapse

    USGS Publications Warehouse

    Madenjian, Charles P.; Rutherford, Edward S.; Stow, Craig A.; Roseman, Edward F.; He, Ji X.

    2013-01-01

    scientists who are closely monitoring Lake Huron’s food web, we believe that the ongoing changes are more accurately characterized as a trophic shift in which benthic pathways have become more prominent. While decreases in abundance have occurred for some species, others are experiencing improved reproduction resulting in the restoration of several important native species.

  13. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  14. Path-based network unfolding: A solution for the problem of mixed trophic and non-trophic processes in trophic dynamic analysis

    PubMed

    Whipple

    1998-02-07

    The purpose of this paper is to describe a quantitative method of trophic dynamic analysis derived from a systems ecology theoretical foundation. This method was devised to provide a solution for the problem of how to deal with mixed trophic and non-trophic processes in cyclic ecosystem networks, a problem that has vexed trophic ecology since Lindeman first presented a formal concept of trophic dynamics in 1942. The author's initial attempt to solve this problem was presented in Whipple & Patten (1993, J. theor. Biol. 163, 393-411). The path-based network unfolding method described in this paper provides a quantitative method for conducting trophic dynamic analysis of cyclic ecosystems containing non-living storages and non-trophic flows to produce a true energy-transformation trophic macrochain. This method solves the "trophic-level inflation" problem described in Whipple & Patten (193, J. theor. Biol. 163, 393-411). The results of the analysis of an oyster reef ecosystem model demonstrate that the dual trophic macrochain produced by path-based network unfolding may be used to compare the relative contribution of grazing and detrital sub-webs to the trophic dynamics of ecosystems. It was found that the standing stock and flow contribution of the detrital sub-web was quantitatively dominant in the oyster reef ecosystem model. This method might be used to compare the contribution of grazing and detrital sub-webs for models of different ecosystem types. Because a true energy transformation trophic chain is produced, the progressive efficiency concept of the Lindeman-Hutchinson paradigm may be applied in comparative trophic analyses of ecosystems. In comparing the oyster reef model results of three quantitative trophic analysis methods, the path-based network unfolding method was found to produce a trophic macrochain with progressive efficiencies intermediate between those produced by the original Higashi et al. method and the Burns et al. unfolding analysis of a

  15. Attachment Levels and Crevicular Depths at the Distal of Mandibular Second Molars Following Removal of Adjacent Third Molars.

    DTIC Science & Technology

    1981-02-01

    k AAD-AD95 500 ARMY INST OF DENTAL RESEARCH WASHINGTON OC F/G 6/5-7 TACHMENT LEVELS AND CREVICULAR DEPTHS AT THE DISTAL OF MANDIB--E1CCU)I FEB Al W H... Dental ResearchA&WOKUINMBR C Walter Reed Army Medical Center 6Z 35l62775A82YOO 007 Washington, DC 20012 10 1 CONTROLLING OFFICE NAME AND ADDRESS - RPR...Resident in Periodontics, United States Army Institute of Dental Research, Walter Reed Army Medical Center, Washington, DC Director, Periodontics Residency

  16. Using stable isotopes to determine seabird trophic relationships

    USGS Publications Warehouse

    Hobson, Keith A.; Piatt, John F.; Pitocchelli, Jay

    1994-01-01

    1. The stable isotopes of nitrogen (δ15N) and carbon (δ13C) were analysed in 22 species of marine birds from coastal waters of the northeast Pacific Ocean. Analyses confirm that stable nitrogen isotopes can predict seabird trophic positions.2. Based on δ15N analyses, seabird trophic-level inferences generally agree with those of conventional dietary studies, but suggest that lower trophic-level organisms are more important to several seabirds than was recognized previously.3. Stable-carbon isotope analysis may be a good indicator of inshore vs. offshore feeding preference.4. In general, stable-isotope analysis to determine trophic level offers many advantages over conventional dietary approaches since trophic inferences are based on time-integrated estimates of assimilated and not just ingested foods, and isotopic abundance represents a continuous variable that is amenable to statistical analysis.

  17. Trophic classification of Colorado lakes utilizing contact data, Landsat and aircraft-acquired multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Boland, D. H. P.; Blackwell, R. J.

    1978-01-01

    Multispectral scanner data, acquired over several Colorado lakes using Landsat-1 and aircraft, were used in conjunction with National Eutrophication Survey contact-sensed data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators (chlorophyll a, inverse of Secchi disk transparency, conductivity, total phosphorous, total organic nitrogen, algal assay yield). Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators (chlorophyll a, Secchi disk transparency, total organic nitrogen), and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state. Multispectral scanner data acquired from satellite and aircraft platforms can be used to advantage in lake monitoring and survey programs.

  18. Seasonal variations in fish delta13C and delta15N in two West African reservoirs, Sélingué and Manantali (Mali): modifications of trophic links in relation to water level.

    PubMed

    Perga, Marie-Elodie; Arfi, Robert; Gerdeaux, Daniel

    2005-06-01

    Most regions in the tropics undergo high seasonal precipitation that produces cyclic patterns of riverine discharge, resulting in periods characterized by low and high water levels. Many chemical and bio-logical factors are affected by this hydrologic seasonality, and it therefore appeared to be very likely that aquatic food webs would also differ during the low and high water periods. Available carbon sources for fish are thought to be less varied during low water periods, but flooding during high water periods could bring fish into contact with a greater abundance and diversity of food sources such as terrestrial plants or the biofilms that grow on submerged terrestrial plants. At low water levels, higher fish densities may lead to more piscivory and less omnivory when compared with the high water periods. Therefore, trophic links within the fish communities may then be modified by water level changes in tropical reservoirs. To address this prediction, we performed stable isotope analyses of the most common species in Sélingué and Manantali, two large reservoirs in Mali (West Africa). Allochthonous and littoral carbon sources were shown to support fish production to a significant extent, even during low water periods. However, the allochthonous or littoral carbon contributions that sustained the top-predators production were indeed greater during the high water periods as expected. The expected higher omnivory in the high water period might have shortened the food chain when compared with the low water period. Some carnivorous fish species were shown to feed at lower trophic levels during high water periods in both reservoirs, but this was not a general pattern. Flooding did not, therefore, necessarily result in a shorter food chain when water levels were high.

  19. Trophic status evaluation of TVA reservoirs

    SciTech Connect

    Placke, J.F.

    1983-10-01

    TVA tributary and mainstem reservoirs show generalized differences in morphometry, hydraulics, nutrient loads, and response to nutrient concentrations. Neither type of reservoir is strictly comparable to the natural lakes on which classical eutrophication studies have been based. The majority of published trophic state indices and standards (e.g., hypolimnetic dissolved oxygen depletion, Secchi depth, areas nutrient loading rates, in-reservoir phosphorus concentrations) are inappropriate for evaluation of some or all TVA reservoirs. No single trophic potential or trophic response variable summarizes the mechanisms and manifestations of eutrophication sufficiently to be used as a sole criterion for judging or regulating TVA reservoir water quality. Relative multivariate trophic state indices were developed for mainstem and tributary reservoirs. Ranking of the mainstem reservoirs is based on chlorophyll, macrophyte coverage, hydraulic retention time, reservoir area less than five feet deep, annual pool elevation drawdown, and Secchi depth. Based on available data, the rank from least eutrophic to most eutrophic is: Pickwick, Kentucky, Chickamauga, Nickajack, Wilson, Fort Loudoun, Watts Bar, Wheeler, and Guntersville Reservoirs. Ranking of the tributary reservoirs is based on chlorophyll, total phosphorus and total nitrogen weighted by the N:P ratio, and bio-available inorganic carbon levels. The rank from least eutrophic to most eutrophic is: Hiwassee, Blue Ridge, Chatuge, Norris and Fontana, Watauga, South Holston, Tims Ford, Cherokee, Douglas, and Boone Reservoirs. 130 references, 18 figures, 30 tables.

  20. Spatial variability of nutrients (N, P) in a deep, temperate lake with a low trophic level supported by global navigation satellite systems, geographic information system and geostatistics.

    PubMed

    Łopata, Michał; Popielarczyk, Dariusz; Templin, Tomasz; Dunalska, Julita; Wiśniewski, Grzegorz; Bigaj, Izabela; Szymański, Daniel

    2014-01-01

    We investigated changes in the spatial distribution of phosphorus (P) and nitrogen (N) in the deep, mesotrophic Lake Hańcza. The raw data collection, supported by global navigation satellite system (GNSS) positioning, was conducted on 79 sampling points. A geostatistical method (kriging) was applied in spatial interpolation. Despite the relatively small area of the lake (3.04 km(2)), compact shape (shore development index of 2.04) and low horizontal exchange of water (retention time 11.4 years), chemical gradients in the surface waters were found. The largest variation concerns the main biogenic element - phosphorus. The average value was 0.032 at the extreme values of 0.019 to 0.265 mg L(-1) (coefficient of variation 87%). Smaller differences are related to nitrogen compounds (0.452-1.424 mg L(-1) with an average value of 0.583 mg L(-1), the coefficient of variation 20%). The parts of the lake which are fed with tributaries are the richest in phosphorus. The water quality of the oligo-mesotrophic Lake Hańcza has been deteriorating in recent years. Our results indicate that inferences about trends in the evolution of examined lake trophic status should be based on an analysis of the data, taking into account the local variation in water chemistry.

  1. Levels of iron, silver, zinc, and lead in oranges and avocados from two gold-rich towns compared with levels in an adjacent gold-deficient town

    SciTech Connect

    Golow, A.A.; Laryea, J.N. )

    1994-09-01

    Fruits such as oranges and avocados are important sources of drinks and food in the Ghanaian Society. If such fruits contain various types of metals they may augument the types and amounts of them in the human body. The metals in fruits may depend on what is in the soils from which they are grown. If the soils contain toxic metals like lead, mercury and cadmium then the consumers may be poisoned as happened in the [open quotes]Ouchi - ouchi[close quotes], disease in Japan and similar episodes. In the area under study, the Geological Survey indicates the presence of 2.5 ppm of lead, 10 - 20 ppm of copper and less than 15 ppm of nickel. Silver, not reported in commercial amounts, is a byproduct of gold productions at Obuasi. Since copper and nickel are presented in the area traces of silver will certainly occur. In the same manner zinc is usually associated with lead as sulphide of zinc blend trace amounts of it are likely to occur in the area. Of the four metals measured, iron and zinc essential for citrus. The extractable iron and zinc in the area of study were 90 and 1.8 mg/kg, levels on the low side for the healthy growth of crops. The investigation reported here is the comparison of the levels of some metals in oranges and avocados from farms in Obuasi and Konongo with those from farms in Kumasi City. This is a part of a project aimed at finding out differences in the metal contents of various food crops grown in various regions of the country. Konongo and Obuasi have soils which are rich in gold but Kumasi city, which is not too distant from these towns, does not have gold in its soil. 18 refs., 1 tab.

  2. "Trophic overyielding": phytoplankton diversity promotes zooplankton productivity.

    PubMed

    Striebel, Maren; Singer, Gabriel; Stibor, Herwig; Andersen, Tom

    2012-12-01

    Diversity-productivity relationships at the primary producer level have been extensively studied, especially for terrestrial systems. Here, we explore whether the diversity of aquatic primary producers (phytoplankton) has effects on higher trophic levels (zooplankton). We investigated the effect of phytoplankton diversity on an artificial zooplankton community in a laboratory experiment where phytoplankton biomass and elemental composition (carbon-to-phosphorus ratio) were kept constant. Phytoplankton diversity increased the means of both zooplankton growth rate and abundance while suppressing their variability, and sustained higher zooplankton diversity. Likely explanations include resource complementarity effects among phytoplankton species as food entities, as well as niche complementarity effects among Daphnia species as competitors. By affecting the productivity as well as the variability of the next trophic level, biodiversity of primary producers may have far-reaching consequences in aquatic food webs.

  3. Trophic state assessment of Bhindawas Lake, Haryana, India.

    PubMed

    Saluja, Ridhi; Garg, J K

    2017-01-01

    Trophic state allows for identification of problems and pressures that an ecosystem faces as well as demarcation of remedial measures. This study focuses on spatial and temporal variations in the trophic state and detection of possible causes of its divergence in Bhindawas Lake, India. The trophic state of the lake undulated between eutrophic and hyper-eutrophic state throughout the study period. Higher phosphorus concentration within the lake ecosystem is the dominant causal factor for its eutrophic state. The influence of other water quality parameters has also been analyzed using Spearman's coefficient of correlation. Deviations between trophic state index (TSI)-chlorophyll-a (Chl-a), TSI-total phosphorus (TP), and TSI-Secchi depth (SD) pointed out that the lake is principally phosphorus limited, and its trophic status is influenced by non-algal turbidity to a large extent. Spatial analysis of trophic levels in geographic information system (GIS) helped in identification of pollution sources and chemical attributes affecting the trophic state of the lake. This study provides a rationale for further investigation of nutrient and sediment loading into the lake system and development of sustainable management and conservation strategy identifying suitable measures ascertaining the ecosystem integrity.

  4. Impacts of Intensive Logging on the Trophic Organisation of Ant Communities in a Biodiversity Hotspot

    PubMed Central

    Woodcock, Paul; Edwards, David P.; Newton, Rob J.; Vun Khen, Chey; Bottrell, Simon H.; Hamer, Keith C.

    2013-01-01

    Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging

  5. Impacts of intensive logging on the trophic organisation of ant communities in a biodiversity hotspot.

    PubMed

    Woodcock, Paul; Edwards, David P; Newton, Rob J; Vun Khen, Chey; Bottrell, Simon H; Hamer, Keith C

    2013-01-01

    Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging

  6. Environmental data package for ORNL Solid Waste Storage Area Four, the adjacent intermediate-level liquid waste transfer line, and the liquid waste pilot pit area

    SciTech Connect

    Davis, E.C.; Shoun, R.R.

    1986-09-01

    The Oak Ridge National Laboratory Remedial Action Program has determined through its review of past environmental studies that Solid Waste Storage Area Four (SWSA-4) continually releases radioactivity to White Oak Creek and therefore requires application of the site stabilization and remedial actions outlined under the 3004u provisions of the Resource Conservation and Recovery Act. Under these provisions, a Remedial Investigation/Feasibility Study (RI/FS) forms the basis for determining the extent of actions. This report assembles available historical and environmental data relative to the SWSA-4 waste area grouping (WAG), which includes the 9.3-ha SWSA-4 site, the adjacent abandoned intermediate-level liquid waste transfer line, and the experimental pilot pit area. The rationale for grouping these three waste management units into the SWSA-4 WAG is the fact that they each lie in the same hydrologic unit and share a common tributary to White Oak Creek. The results of this compilation demonstrate that although a considerable number of studies have been carried out in SWSA-4, needs such as installation of water quality wells and continued monitoring and reporting of hydrologic data still exist. These needs will become even more critical as the RI/FS process proceeds and remedial measures for the site are considered. Fewer studies have been carried out to characterize the extent of contamination at the waste transfer line and the pilot pit area. Alternatives for characterizing and stabilizing these two minor components of the SWSA-4 WAG are presented; however, extensive remedial actions do not appear to be warranted.

  7. Effects of closure of an urban level I trauma centre on adjacent hospitals and local injury mortality: a retrospective, observational study

    PubMed Central

    Crandall, Marie; Sharp, Douglas; Wei, Xiong; Nathens, Avery; Hsia, Renee Y

    2016-01-01

    Objective To determine the association of the Martin Luther King Jr Hospital (MLK) closure on the distribution of admissions on adjacent trauma centres, and injury mortality rates in these centres and within the county. Design Observational, retrospective study. Setting Non-public patient-level data from the state of California were obtained for all trauma patients from 1999 to 2009. Geospatial analysis was used to visualise the redistribution of trauma patients to other hospitals after MLK closed. Variance of observed to expected injury mortality using multivariate logistic regression was estimated for the study period. Participants A total of 37 131 trauma patients were admitted to the five major south Los Angeles trauma centres from the MLK service area between 1999 and 2009. Main outcome measures (1) Number and type of trauma admissions to trauma centres in closest proximity to MLK; (2) inhospital injury mortality of trauma patients after the trauma centre closure. Results During and after the MLK closure, trauma admissions increased at three of the four nearby hospitals, particularly admissions for gunshot wounds (GSWs). This redistribution of patient load was accompanied by a dramatic change in the payer mix for surrounding hospitals; one hospital's share of uninsured more than tripled from 12.9% in 1999 to 44.6% by 2009. Overall trauma mortality did not significantly change, but GSW mortality steadily and significantly increased after the closure from 5.0% in 2007 to 7.5% in 2009. Conclusions Though local hospitals experienced a dramatic increase in trauma patient volume, overall mortality for trauma patients did not significantly change after MLK closed. PMID:27165650

  8. Inputs of anthropogenic nitrogen influence isotopic composition and trophic structure in SE Australian estuaries.

    PubMed

    Mazumder, Debashish; Saintilan, Neil; Alderson, Brendan; Hollins, Suzanne

    2015-11-15

    Urban development in coastal settings has increased the input of nitrogen into estuaries globally, in many cases changing the composition of estuarine ecosystems. By focussing on three adjacent estuaries with a gradient of anthropogenic N loadings, we used stable isotopes of N and C to test for changes due to increased anthropogenic N input on the structure of some key trophic linkages in estuaries. We found a consistent enrichment in δ(15)N corresponding to increased anthropogenic N at the three ecosystem levels studied: fine benthic organic matter, grazing invertebrate, and planktivorous fish. The degree of enrichment in δ(15)N between fine benthic organic matter and the grapsid crab Parasesarma erythrodactyla was identical across the three sites. The glassfish Ambassis jacksoniensis showed lower levels of enrichment compared to basal food sources at the higher N-loaded sites, suggesting a possible effect of anthropogenic N in decreasing food-chain length in these estuaries.

  9. The biogeography of trophic cascades on US oyster reefs.

    PubMed

    Kimbro, David L; Byers, James E; Grabowski, Jonathan H; Hughes, A Randall; Piehler, Michael F

    2014-07-01

    Predators can indirectly benefit prey populations by suppressing mid-trophic level consumers, but often the strength and outcome of trophic cascades are uncertain. We manipulated oyster reef communities to test the generality of potential causal factors across a 1000-km region. Densities of oyster consumers were weakly influenced by predators at all sites. In contrast, consumer foraging behaviour in the presence of predators varied considerably, and these behavioural effects altered the trophic cascade across space. Variability in the behavioural cascade was linked to regional gradients in oyster recruitment to and sediment accumulation on reefs. Specifically, asynchronous gradients in these factors influenced whether the benefits of suppressed consumer foraging on oyster recruits exceeded costs of sediment accumulation resulting from decreased consumer activity. Thus, although predation on consumers remains consistent, predator influences on behaviour do not; rather, they interact with environmental gradients to cause biogeographic variability in the net strength of trophic cascades.

  10. Interplay of causation between suppliers and consumers in evolutionary trophic dynamics.

    PubMed

    Takahara, Y; Ono, N

    1997-01-01

    Natural selection, conceived as the process of small causes making small effects on the level of molecular evolutionary dynamics of a population, can yield global effects on the level of evolutionary trophic dynamics of populations, including those of mass extinctions. Occurrence of mass extinctions is due to the interplay of causation between suppliers and consumers in trophic dynamics. If the case of supplier causation is available such that resource exploitation by consumers on the upper trophic level follows in time resource presentation by suppliers on the lower, instead of resource exploitation followed by resource presentation, mass extinctions could be a norm of the evolutionary trophic dynamics.

  11. Habitat loss, trophic collapse, and the decline of ecosystem services.

    PubMed

    Dobson, Andrew; Lodge, David; Alder, Jackie; Cumming, Graeme S; Keymer, Juan; McGlade, Jacquie; Mooney, Hal; Rusak, James A; Sala, Osvaldo; Wolters, Volkmar; Wall, Diana; Winfree, Rachel; Xenopoulos, Marguerite A

    2006-08-01

    The provisioning of sustaining goods and services that we obtain from natural ecosystems is a strong economic justification for the conservation of biological diversity. Understanding the relationship between these goods and services and changes in the size, arrangement, and quality of natural habitats is a fundamental challenge of natural resource management. In this paper, we describe a new approach to assessing the implications of habitat loss for loss of ecosystem services by examining how the provision of different ecosystem services is dominated by species from different trophic levels. We then develop a mathematical model that illustrates how declines in habitat quality and quantity lead to sequential losses of trophic diversity. The model suggests that declines in the provisioning of services will initially be slow but will then accelerate as species from higher trophic levels are lost at faster rates. Comparison of these patterns with empirical examples of ecosystem collapse (and assembly) suggest similar patterns occur in natural systems impacted by anthropogenic change. In general, ecosystem goods and services provided by species in the upper trophic levels will be lost before those provided by species lower in the food chain. The decrease in terrestrial food chain length predicted by the model parallels that observed in the oceans following overexploitation. The large area requirements of higher trophic levels make them as susceptible to extinction as they are in marine systems where they are systematically exploited. Whereas the traditional species-area curve suggests that 50% of species are driven extinct by an order-of-magnitude decline in habitat abundance, this magnitude of loss may represent the loss of an entire trophic level and all the ecosystem services performed by the species on this trophic level.

  12. Microbes are trophic analogs of animals

    PubMed Central

    Steffan, Shawn A.; Chikaraishi, Yoshito; Currie, Cameron R.; Horn, Heidi; Gaines-Day, Hannah R.; Pauli, Jonathan N.; Zalapa, Juan E.; Ohkouchi, Naohiko

    2015-01-01

    In most ecosystems, microbes are the dominant consumers, commandeering much of the heterotrophic biomass circulating through food webs. Characterizing functional diversity within the microbiome, therefore, is critical to understanding ecosystem functioning, particularly in an era of global biodiversity loss. Using isotopic fingerprinting, we investigated the trophic positions of a broad diversity of heterotrophic organisms. Specifically, we examined the naturally occurring stable isotopes of nitrogen (15N:14N) within amino acids extracted from proteobacteria, actinomycetes, ascomycetes, and basidiomycetes, as well as from vertebrate and invertebrate macrofauna (crustaceans, fish, insects, and mammals). Here, we report that patterns of intertrophic 15N-discrimination were remarkably similar among bacteria, fungi, and animals, which permitted unambiguous measurement of consumer trophic position, independent of phylogeny or ecosystem type. The observed similarities among bacterial, fungal, and animal consumers suggest that within a trophic hierarchy, microbiota are equivalent to, and can be interdigitated with, macrobiota. To further test the universality of this finding, we examined Neotropical fungus gardens, communities in which bacteria, fungi, and animals are entwined in an ancient, quadripartite symbiosis. We reveal that this symbiosis is a discrete four-level food chain, wherein bacteria function as the apex carnivores, animals and fungi are meso-consumers, and the sole herbivores are fungi. Together, our findings demonstrate that bacteria, fungi, and animals can be integrated within a food chain, effectively uniting the macro- and microbiome in food web ecology and facilitating greater inclusion of the microbiome in studies of functional diversity. PMID:26598691

  13. Microbes are trophic analogs of animals.

    PubMed

    Steffan, Shawn A; Chikaraishi, Yoshito; Currie, Cameron R; Horn, Heidi; Gaines-Day, Hannah R; Pauli, Jonathan N; Zalapa, Juan E; Ohkouchi, Naohiko

    2015-12-08

    In most ecosystems, microbes are the dominant consumers, commandeering much of the heterotrophic biomass circulating through food webs. Characterizing functional diversity within the microbiome, therefore, is critical to understanding ecosystem functioning, particularly in an era of global biodiversity loss. Using isotopic fingerprinting, we investigated the trophic positions of a broad diversity of heterotrophic organisms. Specifically, we examined the naturally occurring stable isotopes of nitrogen ((15)N:(14)N) within amino acids extracted from proteobacteria, actinomycetes, ascomycetes, and basidiomycetes, as well as from vertebrate and invertebrate macrofauna (crustaceans, fish, insects, and mammals). Here, we report that patterns of intertrophic (15)N-discrimination were remarkably similar among bacteria, fungi, and animals, which permitted unambiguous measurement of consumer trophic position, independent of phylogeny or ecosystem type. The observed similarities among bacterial, fungal, and animal consumers suggest that within a trophic hierarchy, microbiota are equivalent to, and can be interdigitated with, macrobiota. To further test the universality of this finding, we examined Neotropical fungus gardens, communities in which bacteria, fungi, and animals are entwined in an ancient, quadripartite symbiosis. We reveal that this symbiosis is a discrete four-level food chain, wherein bacteria function as the apex carnivores, animals and fungi are meso-consumers, and the sole herbivores are fungi. Together, our findings demonstrate that bacteria, fungi, and animals can be integrated within a food chain, effectively uniting the macro- and microbiome in food web ecology and facilitating greater inclusion of the microbiome in studies of functional diversity.

  14. Competition among penguins and cetaceans reveals trophic cascades in the western Ross Sea, Antarctica.

    PubMed

    Ainley, David G; Ballard, Grant; Dugger, Katie M

    2006-08-01

    An apparent trophic cascade that appears during summer in the western Ross Sea, Antarctica, explains why the Antarctic silverfish (Pleuragramma antarcticum) there becomes cannibalistic; its principal prey, crystal krill (Euphausia crystallorophias) becomes scarce; and the diatom community is minimally grazed compared to adjacent areas. The krill is the major grazer of diatoms. On the basis of fieldwork at Ross Island, we suggest that the cascade results from foraging by unusually numerous Adélie Penguins (Pygoscelis adeliae), minke whales (Balaenoptera bonaerensis), and fish-eating killer whales (Orcinus orca). These species and other top predators apparently deplete the krill and silverfish. In drawing our conclusions, we were aided by two "natural experiments." In one "experiment," large, grounded icebergs altered the seasonal pattern of change in regional sea-ice cover, but not the seasonal change in penguin diet and foraging behavior that was also detected during the pre-iceberg era. In the other "experiment," a short-term polynya (opening in the ice) brought penguins and whales together in a confined area, this time altering both penguin diet and foraging behavior. We conclude that the foraging of penguins and whales, and not a formerly hypothesized seasonal decrease in sea-ice cover, explains (1) the annual switch in the penguins' prey from krill to silverfish, (2) the subsequent lengthening of penguin foraging trips, and (3) a marked decline of cetaceans in the area later in the season. Reduction in the middle-trophic-level prey is expressed in the relaxed grazing pressure on phytoplankton.

  15. Trophic structure of pelagic species in the northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Albo-Puigserver, Marta; Navarro, Joan; Coll, Marta; Layman, Craig A.; Palomera, Isabel

    2016-11-01

    Ecological knowledge of food web interactions within pelagic marine communities is often limited, impairing our capabilities to manage these ecologically and economically important marine fish species. Here we used stable isotope analyses to investigate trophic interactions in the pelagic ecosystem of the northwestern Mediterranean Sea during 2012 and 2013. Our results suggest that European sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, are consumers located at relatively low levels of the pelagic food web. Unexpectedly, the round sardinella, Sardinella aurita, appeared to be located at a higher trophic level than the other small pelagic fish species, although previous studies found similarity in their diets. Isotope data suggested that trophic niches of species within the genera Trachurus spp. and Scomber spp., were distinct. Atlantic bonito Sarda sarda, European hake Merluccius merluccius and European squid Loligo vulgaris, appeared to feed at higher trophic levels than other species. Despite some intraspecific seasonal variability for some species, community trophic structure appeared relatively stable through the year. These data provide an important step for developing models of food web dynamics in the northwestern Mediterranean Sea.

  16. Individuals in food webs: the relationships between trophic position, omnivory and among-individual diet variation.

    PubMed

    Svanbäck, Richard; Quevedo, Mario; Olsson, Jens; Eklöv, Peter

    2015-05-01

    Among-individual diet variation is common in natural populations and may occur at any trophic level within a food web. Yet, little is known about its variation among trophic levels and how such variation could affect phenotypic divergence within populations. In this study we investigate the relationships between trophic position (the population's range and average) and among-individual diet variation. We test for diet variation among individuals and across size classes of Eurasian perch (Perca fluviatilis), a widespread predatory freshwater fish that undergoes ontogenetic niche shifts. Second, we investigate among-individual diet variation within fish and invertebrate populations in two different lake communities using stable isotopes. Third, we test potential evolutionary implications of population trophic position by assessing the relationship between the proportion of piscivorous perch (populations of higher trophic position) and the degree of phenotypic divergence between littoral and pelagic perch sub-populations. We show that among-individual diet variation is highest at intermediate trophic positions, and that this high degree of among-individual variation likely causes an increase in the range of trophic positions among individuals. We also found that phenotypic divergence was negatively related to trophic position in a population. This study thus shows that trophic position is related to and may be important for among-individual diet variation as well as to phenotypic divergence within populations.

  17. Risk Factors Associated with Adjacent and Remote- Level Pathologic Vertebral Compression Fracture Following Balloon Kyphoplasty: 2-Year Follow-Up Comparison Versus Conservative Treatment.

    PubMed

    Faloon, Michael J; Ruoff, Mark; Deshpande, Chetan; Hohman, Donald; Dunn, Conor; Beckloff, Nicholas; Patel, Dipak V

    2015-01-01

    Vertebral compression fractures are a significant source of morbidity and mortality among patients of all age groups. These fractures result in both acute and chronic pain. Patients who sustain such fractures are known to suffer from more comorbidities and have a higher mortality rate compared with healthy people in the same age group. In recent years, balloon kyphoplasty has become a popular method for treating vertebral compression fractures. However, as longer-term follow-up becomes available, the effects of cement augmentation on adjacent spinal segments require investigation. Here, we have performed a retrospective chart review of 258 consecutive patients with pathologic vertebral compression fractures secondary to osteoporosis, treated by either conservative measures or balloon kyphoplasty with polymethylmethacrylate cement augmentation. Multivariate analysis of patient comorbidities was performed to assess the risks associated with subsequent adjacent and remote compression fracture at a minimum of 2 years follow-up. A total of 258 patients had 361 vertebral compression fractures. A total of 121 patients were treated nonoperatively and 137 underwent balloon kyphoplasty with polymethylmethacrylate cement augmentation. The mean follow-up for both cohorts was 2.7 years (range, 2-6 years). The kyphoplasty cohort was significantly older than the nonoperative cohort (mean age, 78.5 versus 74.2 years; p = 0.02), had 24 more patients with diabetes mellitus (37 versus 13; p = 0.05), and had 34 more patients with a history of smoking (50 versus 16; p = 0.05). However, the kyphoplasty cohort had less patients with a history of non-steroidal anti-inflammatory drug (NSAID) use (45 versus 71; p = 0.07). There were no demographic differences between groups in patients with secondary fractures. Nonoperative treatment was identified as a statistically significant independent risk factor for subsequent vertebral compression fracture [odds ratio (OR), 2.28]. Univariate

  18. Application of food waste based diets in polyculture of low trophic level fish: effects on fish growth, water quality and plankton density.

    PubMed

    Mo, Wing Yin; Cheng, Zhang; Choi, Wai Ming; Man, Yu Bon; Liu, Yihui; Wong, Ming Hung

    2014-08-30

    Food waste was collected from local hotels and fish feed pellets were produced for a 6 months long field feeding trial. Three types of fish feed pellets (control diet: Jinfeng® 613 formulated feed, contains mainly fish meal, plant product and fish oil; Diet A: food waste based diet without meat and 53% cereal; Diet B: food waste based diet with 25% meat and 28% cereal) were used in polyculture fish ponds to investigate the growth of fish (grass carp, bighead and mud carp), changes in water quality and plankton density. No significant differences in the levels of nitrogen and phosphorous compounds of water body were observed between 3 fish ponds after the half-year feeding trial, while pond receiving Diet A had the highest density of plankton. The food waste combination of Diet B seems to be a better formulation in terms of the overall performance on fish growth.

  19. [Plant responses to elevated atmospheric carbon dioxide and transmission to other trophic levels]. Progress report, May 1991, DOE Grant DE-FG09-84ER60255

    SciTech Connect

    Lincoln, D.E.

    1991-05-01

    Experiments were performed to determine the effects of carbon dioxide on plants and on the insects feeding on these plants. Current progress is reported for the following experiments: Response of a Specialist-Feeding Insect Herbivore to Carbon Dioxide Induced Changes in Its Hostplant; Growth and Reproduction of Grasshoppers Feeding on a C{sub 4} Grass Under Elevated Carbon Dioxide; Elevated Carbon Dioxide and Temperature Effects on Growth and Defense of Big Sagebrush; Sagebrush and Grasshopper Responses to Atmospheric Carbon Dioxide Concentration; Biomass Allocation Patterns of Defoliated Sagebrush Grown Under Two Levels of Carbon Dioxide; and Sagebrush Carbon Allocation Patterns and Grasshopper Nutrition: The Influence of Carbon Dioxide Enrichment and Soil Mineral Limitation.

  20. Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a Neotropical stream.

    PubMed

    Small, Gaston E; Pringle, Catherine M

    2010-03-01

    A central tenet of ecological stoichiometry is that consumer elemental composition is relatively independent of food resource nutrient content. Although the P content of some invertebrate consumer taxa can increase as a consequence of P-enriched food resources, little is known about how ecosystem nutrient loading can affect the elemental composition of entire consumer assemblages. Here we examine the potential for P enrichment across invertebrate consumer assemblages in response to chronic high P loading. We measured elemental ratios in invertebrate consumers and basal food resources in a series of streams in lowland Costa Rica that range widely in P levels (2-135 microg l(-1) soluble reactive P). Streams with high P levels receive natural long-term (over millennia) inputs of solute-rich groundwater while low-P streams do not receive these solute-rich groundwater inputs. P content of leaf litter and epilithon increased fourfold across the natural P gradient, exceeding basal resource P content values reported in the literature from other nutrient-rich streams. Invertebrate consumers from the high-P study stream were elevated twofold in P content across multiple taxonomic and functional feeding groups, including predators. Our results strongly support the hypothesis that elevated P content in consumers feeding on P-enriched food resources is a consequence of deviation from strict homeostasis. In contrast to prior studies, we found that between-stream variation in P content of a given taxon greatly exceeded within-stream variation among different taxa, suggesting that environment may be as important as phylogeny in controlling consumer stoichiometry. Relaxing the assumption of strict homeostasis presents challenges and opportunities for advancing our understanding of how nutrient limitation affects consumer growth. Moreover, our findings may provide a window into the future of how chronic anthropogenic nutrient loading can alter stoichiometric relationships in food

  1. From neurons to epidemics: How trophic coherence affects spreading processes

    NASA Astrophysics Data System (ADS)

    Klaise, Janis; Johnson, Samuel

    2016-06-01

    Trophic coherence, a measure of the extent to which the nodes of a directed network are organised in levels, has recently been shown to be closely related to many structural and dynamical aspects of complex systems, including graph eigenspectra, the prevalence or absence of feedback cycles, and linear stability. Furthermore, non-trivial trophic structures have been observed in networks of neurons, species, genes, metabolites, cellular signalling, concatenated words, P2P users, and world trade. Here, we consider two simple yet apparently quite different dynamical models—one a susceptible-infected-susceptible epidemic model adapted to include complex contagion and the other an Amari-Hopfield neural network—and show that in both cases the related spreading processes are modulated in similar ways by the trophic coherence of the underlying networks. To do this, we propose a network assembly model which can generate structures with tunable trophic coherence, limiting in either perfectly stratified networks or random graphs. We find that trophic coherence can exert a qualitative change in spreading behaviour, determining whether a pulse of activity will percolate through the entire network or remain confined to a subset of nodes, and whether such activity will quickly die out or endure indefinitely. These results could be important for our understanding of phenomena such as epidemics, rumours, shocks to ecosystems, neuronal avalanches, and many other spreading processes.

  2. The influence of productivity and width of littoral zone on the trophic position of a large-bodied omnivore.

    PubMed

    Stenroth, Patrik; Holmqvist, Niklas; Nyström, Per; Berglund, Olof; Larsson, Per; Granéli, Wilhelm

    2008-06-01

    Omnivory is common in many food webs. Omnivores in different habitats can potentially change their feeding behaviour and alter their trophic position and role according to habitat conditions. Here we examine the trophic level and diet of the omnivorous signal crayfish (Pacifastacus leniusculus) in gradients of trophic status and lake size, both of which have been previously suggested to affect trophic position of predators separately or combined as productive space. We found the trophic position of omnivorous crayfish to be positively correlated with lake trophic status, but found no evidence for any influence of lake size or productive space on crayfish trophic position. The higher trophic position of crayfish in eutrophic lakes was largely caused by a shift in crayfish diet and not by an increase in trophic links in basal parts of the food web. Hence, our results support the "productivity hypothesis," suggesting that food chains can be longer in more productive systems. Furthermore, stable isotope data indicated that larger crayfish are more predatory than smaller crayfish in lakes with wider littoral zones. Wider littoral zones promoted the development of intrapopulation differences in trophic position whereas narrow littoral zones did not. Hence, differences in habitat quality between and within lakes seem to influence the trophic positions of omnivorous crayfish.

  3. Evolution of complex life cycles in trophically transmitted helminths. I. Host incorporation and trophic ascent.

    PubMed

    Parker, G A; Ball, M A; Chubb, J C

    2015-02-01

    Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free-living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one-host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed.

  4. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors.

    PubMed

    Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio

    2016-06-01

    Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials.

  5. Genetic analysis of interacting trophic levels in a stressed pinyon-juniper community: A model for examining community responses to a rapid and recent environmental changes. Final report, May 1, 1994--April 30, 1997

    SciTech Connect

    Keim, P.; Whithmam, T.; Cobb, N.; Gehring, C.

    1998-05-01

    The goals of this project were to examine the genetic component of a pinyon-juniper woodland that had recently experienced a dramatic environmental change. The environmental change was increased temperature and decreased water associated with the volcanic cinder field at Sunset Crater National Monument. In all of these experiments we have used adjacent soil sites as controls for the effects of the stressed locations. We have examined mycorrhizal colonization and diversity in order to understand this important component in community {open_quotes}adaptation{close_quotes} to climate change. We have examined genetic diversity in the pinyon pine populations to determine what level of genetic differentiation has occurred between stressed and nonstressed locations. In addition, we have recently expanded our environmental parameters to include elevated CO{sub 2} on mycorrhizal performance and diversity.

  6. Trophic downgrading of planet Earth.

    PubMed

    Estes, James A; Terborgh, John; Brashares, Justin S; Power, Mary E; Berger, Joel; Bond, William J; Carpenter, Stephen R; Essington, Timothy E; Holt, Robert D; Jackson, Jeremy B C; Marquis, Robert J; Oksanen, Lauri; Oksanen, Tarja; Paine, Robert T; Pikitch, Ellen K; Ripple, William J; Sandin, Stuart A; Scheffer, Marten; Schoener, Thomas W; Shurin, Jonathan B; Sinclair, Anthony R E; Soulé, Michael E; Virtanen, Risto; Wardle, David A

    2011-07-15

    Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind's most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading on process, function, and resilience in global ecosystems.

  7. The trophic classification of lakes using ERTS multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.; Boland, D. H.

    1975-01-01

    Lake classification methods based on the use of ERTS data are described. Preliminary classification results obtained by multispectral and digital image processing techniques indicate satisfactory correlation between ERTS data and EPA-supplied water analysis. Techniques for determining lake trophic levels using ERTS data are examined, and data obtained for 20 lakes are discussed.

  8. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2014

    USGS Publications Warehouse

    Beman, Joseph E.

    2015-10-21

    An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. The network currently (2014) consists of 125 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, currently (2014) measures and reports water levels from the 125 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 125 sites through water year 2014 (October 1, 2013, to September 30, 2014).

  9. Mesoscale Eddies Are Oases for Higher Trophic Marine Life

    PubMed Central

    Godø, Olav R.; Samuelsen, Annette; Macaulay, Gavin J.; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A.

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life. PMID:22272294

  10. Mesoscale eddies are oases for higher trophic marine life.

    PubMed

    Godø, Olav R; Samuelsen, Annette; Macaulay, Gavin J; Patel, Ruben; Hjøllo, Solfrid Sætre; Horne, John; Kaartvedt, Stein; Johannessen, Johnny A

    2012-01-01

    Mesoscale eddies stimulate biological production in the ocean, but knowledge of energy transfers to higher trophic levels within eddies remains fragmented and not quantified. Increasing the knowledge base is constrained by the inability of traditional sampling methods to adequately sample biological processes at the spatio-temporal scales at which they occur. By combining satellite and acoustic observations over spatial scales of 10 s of km horizontally and 100 s of m vertically, supported by hydrographical and biological sampling we show that anticyclonic eddies shape distribution and density of marine life from the surface to bathyal depths. Fish feed along density structures of eddies, demonstrating that eddies catalyze energy transfer across trophic levels. Eddies create attractive pelagic habitats, analogous to oases in the desert, for higher trophic level aquatic organisms through enhanced 3-D motion that accumulates and redistributes biomass, contributing to overall bioproduction in the ocean. Integrating multidisciplinary observation methodologies promoted a new understanding of biophysical interaction in mesoscale eddies. Our findings emphasize the impact of eddies on the patchiness of biomass in the sea and demonstrate that they provide rich feeding habitat for higher trophic marine life.

  11. Molecular trophic markers in marine food webs and their potential use for coral ecology.

    PubMed

    Leal, Miguel Costa; Ferrier-Pagès, Christine

    2016-10-01

    Notable advances in ecological genomics have been driven by high-throughput sequencing technology and taxonomically broad sequence repositories that allow us to accurately assess species interactions with great taxonomic resolution. The use of DNA as a marker for ingested food is particularly relevant to address predator-prey interactions and disentangle complex marine food webs. DNA-based methods benefit from reductionist molecular approaches to address ecosystem scale processes, such as community structure and energy flow across trophic levels, among others. Here we review how molecular trophic markers have been used to better understand trophic interactions in the marine environment and their advantages and limitations. We focus on animal groups where research has been focused, such as marine mammals, seabirds, fishes, pelagic invertebrates and benthic invertebrates, and use case studies to illustrate how DNA-based methods unraveled food-web interactions. The potential of molecular trophic markers for disentangling the complex trophic ecology of corals is also discussed.

  12. Geologic and hydrologic data collected during 1976-1983 at the Sheffield low-level radioactive waste disposal site and adjacent areas, Sheffield, Illinois

    USGS Publications Warehouse

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.

  13. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2012

    USGS Publications Warehouse

    Beman, Joseph E.

    2013-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25-40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. A population increase of about 20 percent in the basin from 1990 to 2000 and a 22 percent increase from 2000 to 2010 resulted in an increased demand for water. An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2012), the network consists of 126 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (ABCWUA), currently (2012) measures and reports water levels from the 126 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 126 sites through water year 2012.

  14. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2013

    USGS Publications Warehouse

    Beman, Joseph E.

    2014-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when treatment and distribution of surface water from the Rio Grande began. A population increase of about 20 percent in the basin from 1990 to 2000 and a 22-percent increase from 2000 to 2010 resulted in an increased demand for water. An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2013), the network consists of 123 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, currently (2013) measures and reports water levels from the 123 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 123 sites through water year 2013.

  15. A heuristic model for potential geomorphic influences on trophic interactions in streams

    NASA Astrophysics Data System (ADS)

    Doyle, Martin W.

    2006-07-01

    Whereas certain linkages between stream channel morphology and stream ecology are fairly well-understood, how geomorphology influences trophic interactions remains largely unknown. As a first step, a simple, heuristic model is developed that couples reach-scale geomorphic morphology with trophic dynamics between vegetation, detritus, herbivores, and predators. Predation is assumed to increase with depth beyond a threshold depth, and herbivory is assumed to decrease with velocity beyond a threshold velocity. Results show that the modeled food chain is sensitive to channel geometry, particularly around the threshold conditions for predators and herbivores. Importantly, geomorphic influences are not isolated to a particular trophic level, but rather are transferred through the food chain via top-down and bottom-up effects. The modeled system is particularly sensitive to changes in the end-members of the food chain: vegetation and predators. Results illustrate that geomorphic disturbances, known to affect a single trophic level (e.g., fish), likely impact multiple trophic levels in the stream ecosystem via trophic interactions. Such impacts at the multiple trophic level are poorly understood. While limited by the lack of empirical long-term data for testing and calibration, this simple model provides a structure for generating hypotheses, collecting targeted data, and assessing the potential impacts of stream disturbance or restoration on entire stream ecosystems. Further, the model illustrates the potential for future coupled stream models to explore spatial and temporal linkages.

  16. Site-specific effects on productivity of an upper trophic-level marine predator: Bottom-up, top-down, and mismatch effects on reproduction in a colonial seabird

    USGS Publications Warehouse

    Suryan, R.M.; Irons, D.B.; Brown, E.D.; Jodice, P.G.R.; Roby, D.D.

    2006-01-01

    We investigated the relative roles of bottom-up and top-down factors in limiting productivity of an upper trophic level marine predator. Our primary working hypothesis was that the reproductive success of black-legged kittiwakes (Rissa tridactyla) a piscivorous, colonial-nesting seabird, was most limited by the abundance, distribution, and species composition of surface-schooling forage fishes. A secondary working hypothesis was that reproductive loss to kittiwake nest predators was greatest during years of reduced prey availability. We report on a broad-scale, integrated study of kittiwakes and their prey in Prince William Sound, Alaska. Our study spanned five breeding seasons (1995-1999) and focused on three colonies that differed in size (ranging from ca. 220 to ca. 7000 breeding pairs) and proximity to each other (50-135 km apart). Kittiwakes in PWS encountered a variety of aquatic habitats, creating a complex foraging environment for breeding birds. We measured kittiwake reproductive success and foraging activities, while simultaneously measuring the abundance of surface schooling forage fishes throughout the foraging range of breeding kittiwakes. The abundance of primary prey species for kittiwakes (Pacific herring Clupea pallasi, Pacific sand lance Ammodytes hexapterus, and capelin Mallotus villosus) varied both annually and regionally, with no one region consistently having the greatest abundance of prey. Likewise, kittiwake reproductive success varied considerably among colonies and years. We found that bottom-up, top-down, timing mismatch, and colony-specific effects were all important to kittiwake productivity. Although bottom-up effects appeared to be strongest, they were not evident in some cases until other effects, such as geographic location (proximity of colony to prey concentrations) and top-down predation, were considered. Important bottom-up effects on kittiwake reproductive success were not only total prey abundance and distribution, but also

  17. Site-specific effects on productivity of an upper trophic-level marine predator: Bottom-up, top-down, and mismatch effects on reproduction in a colonial seabird

    NASA Astrophysics Data System (ADS)

    Suryan, Robert M.; Irons, David B.; Brown, Evelyn D.; Jodice, Patrick G. R.; Roby, Daniel D.

    2006-02-01

    We investigated the relative roles of bottom-up and top-down factors in limiting productivity of an upper trophic level marine predator. Our primary working hypothesis was that the reproductive success of black-legged kittiwakes ( Rissa tridactyla) a piscivorous, colonial-nesting seabird, was most limited by the abundance, distribution, and species composition of surface-schooling forage fishes. A secondary working hypothesis was that reproductive loss to kittiwake nest predators was greatest during years of reduced prey availability. We report on a broad-scale, integrated study of kittiwakes and their prey in Prince William Sound, Alaska. Our study spanned five breeding seasons (1995-1999) and focused on three colonies that differed in size (ranging from ca. 220 to ca. 7000 breeding pairs) and proximity to each other (50-135 km apart). Kittiwakes in PWS encountered a variety of aquatic habitats, creating a complex foraging environment for breeding birds. We measured kittiwake reproductive success and foraging activities, while simultaneously measuring the abundance of surface schooling forage fishes throughout the foraging range of breeding kittiwakes. The abundance of primary prey species for kittiwakes (Pacific herring Clupea pallasi, Pacific sand lance Ammodytes hexapterus, and capelin Mallotus villosus) varied both annually and regionally, with no one region consistently having the greatest abundance of prey. Likewise, kittiwake reproductive success varied considerably among colonies and years. We found that bottom-up, top-down, timing mismatch, and colony-specific effects were all important to kittiwake productivity. Although bottom-up effects appeared to be strongest, they were not evident in some cases until other effects, such as geographic location (proximity of colony to prey concentrations) and top-down predation, were considered. Important bottom-up effects on kittiwake reproductive success were not only total prey abundance and distribution, but also

  18. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2015

    USGS Publications Warehouse

    Beman, Joseph E.; Bryant, Christina F.

    2016-10-27

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is hydrologically defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift between San Acacia to the south and Cochiti Lake to the north. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began treatment and distribution of surface water from the Rio Grande through the San Juan-Chama Drinking Water Project. A 20-percent population increase in the basin from 1990 to 2000 and a 22-percent population increase from 2000 to 2010 may have resulted in an increased demand for water in areas within the basin.An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the Albuquerque Basin. In 1983, this network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly. The network currently (2015) consists of 124 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the ABCWUA, currently (2015) measures and reports water levels from the 124 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 124 sites through water year 2015 (October 1, 2014, through September 30, 2015).

  19. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2009

    USGS Publications Warehouse

    Beman, Joseph E.; Torres, Leeanna T.

    2010-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the population from 1990 to 2000 also resulted in an increased demand for water. A network of wells was established to monitor changes in groundwater levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2009), the network consists of 131 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 123 sites through water year 2009. In addition, data from four wells (Sites 140, 147, 148, and 149) owned, maintained, and measured by Sandia National Laboratories and three from Kirtland Air Force Base (Sites 119, 125, and 126) are presented in this report.

  20. Water-Level Data for the Albuquerque Basin and Adjacent Areas, Central New Mexico, Period of Record Through September 30, 2008

    USGS Publications Warehouse

    Beman, Joseph E.

    2009-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin are currently (2008) obtained soley from ground-water resources. An increase of about 20 percent in the population from 1990 to 2000 also resulted in an increased demand for water. A network of wells was established to monitor changes in ground-water levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2008), the network consists of 144 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 125 sites through water-year 2008. In addition, data from 19 wells (Sites 127-30, 132-134, 136, 138-142 and 144-149) owned, maintained, and measured by Sandia National Laboratories are presented in this report.

  1. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2010

    USGS Publications Warehouse

    Beman, Joseph E.

    2011-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25-40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the basin human population from 1990 to 2000 and about a 22 percent increase from 2000 to 2010 also resulted in an increased demand for water. A network of wells was established by the U.S. Geological Survey in cooperation with the City of Albuquerque to monitor changes in groundwater levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2010), the network consists of 124 wells and piezometers (a piezometer is a small-diameter subwell usually nested within a larger well). To better help the Albuquerque Bernalillo County Water Utility Authority manage water use, this report presents water-level data collected by U.S. Geological Survey personnel at those 124 sites through water year 2010.

  2. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2011

    USGS Publications Warehouse

    Beman, Joseph E.

    2012-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the basin human population from 1990 to 2000 and of about 22 percent increase from 2000 to 2010 also resulted in an increased demand for water. A network of wells was established by the U.S. Geological Survey in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2011), the network consists of 126 wells and piezometers (a piezometer is a specialized well open to a specific depth in the aquifer and is often of small diameter and nested with other piezometers open to different depths). This report presents water-level data collected by U.S. Geological Survey personnel at those 126 sites through water year 2011 to better help the Albuquerque Bernalillo County Water Utility Authority manage water use.

  3. The evolution of trophic transmission

    USGS Publications Warehouse

    Lafferty, Kevin D.

    1999-01-01

    Parasite increased trophic transmission (PITT) is one of the more fascinating tales of parasite evolution. The implications of this go beyond cocktail party anecdotes and science fiction plots as the phenomenon is pervasive and likely to be ecologically and evolutionarily important. Although the subject has already received substantial review, Kevin Lafferty here focuses on evolutionary aspects that have not been fully explored, specifically: (1) How strong should PITT be? (2) How might sexual selection and limb autotomy facilitate PITT? (3) How might infrapopulation regulation in final hosts be important in determining avoidance of infected prey? And (4) what happens when more than one species of parasite is in the same intermediate host?

  4. Trophic interactions and the relationship between species diversity and ecosystem stability.

    PubMed

    Thébault, Elisa; Loreau, Michel

    2005-10-01

    Several theoretical studies propose that biodiversity buffers ecosystem functioning against environmental fluctuations, but virtually all of these studies concern a single trophic level, the primary producers. Changes in biodiversity also affect ecosystem processes through trophic interactions. Therefore, it is important to understand how trophic interactions affect the relationship between biodiversity and the stability of ecosystem processes. Here we present two models to investigate this issue in ecosystems with two trophic levels. The first is an analytically tractable symmetrical plant-herbivore model under random environmental fluctuations, while the second is a mechanistic ecosystem model under periodic environmental fluctuations. Our analysis shows that when diversity affects net species interaction strength, species interactions--both competition among plants and plant-herbivore interactions--have a strong impact on the relationships between diversity and the temporal variability of total biomass of the various trophic levels. More intense plant competition leads to a stronger decrease or a lower increase in variability of total plant biomass, but plant-herbivore interactions always have a destabilizing effect on total plant biomass. Despite the complexity generated by trophic interactions, biodiversity should still act as biological insurance for ecosystem processes, except when mean trophic interaction strength increases strongly with diversity.

  5. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth.

  6. Trophic mismatch requires seasonal heterogeneity of warming.

    PubMed

    Straile, Dietmar; Kerimoglu, Onur; Peeters, Frank

    2015-10-01

    Climate warming has been shown to advance the phenology of species. Asynchronous changes in phenology between interacting species may disrupt feeding interactions (phenological mismatch), which could have tremendous consequences for ecosystem functioning. Long-term field observations have suggested asynchronous shifts in phenology with warming, whereas experimental studies have not been conclusive. Using proxy-based modeling of three trophic levels (algae, herbivores, and fish), we .show that asynchronous changes in phenology only occur if warming is seasonally heterogeneous, but not if warming is constant throughout the year. If warming is seasonally heterogeneous, the degree and even direction of asynchrony depends on the specific seasonality of the warming. Conclusions about phenological mismatches in food web interactions may therefore produce controversial results if the analyses do not distinguish between seasonally constant and seasonal specific warming. Furthermore, our results suggest that predicting asynchrony between interacting species requires reliable warming predictions that resolve sub-seasonal time scales.

  7. Trophic status of the Iranian Caspian Sea based on water quality parameters and phytoplankton diversity

    NASA Astrophysics Data System (ADS)

    Nasrollahzadeh, Hasan Saravi; Din, Zubir Bin; Foong, Swee Yeok; Makhlough, Asieh

    2008-05-01

    The present study attempted to test the applicability of the trophic index (TRIX) for assessing trophic status along the Iranian coast of the Caspian Sea (CS). In order to increase the sensitivity of the TRIX for this area, we defined the range (lower and upper limits) from data collected between 1994 and 2005 which have been used as a reference. Several biological and chemical water quality parameters were determined and compared with the TRIX in order to describe the water quality status of the area. Comparisons were also made on two temporarily and spatially varied trophic status at the study site. Sampling was carried out at 36 stations during Phase I (1996-1997: before the introduction of an alien species Mnemiopsis leidyi, as a background data) while 24 stations were sampled during Phase II in 2005 (after the introduction of the alien species). A Parallel Study (as supplementary data) from 16 smaller scale sampling at shallower sites was also included in the discussion (1994-2005 on 18 transects). The results show that nutrient concentration (DIN, DIP compounds), oxygen (as absolute %) deviation from saturation (aD%O), chlorophyll a and also the Caspian Sea Trophic Index (TRIXCS) increase significantly after the introduction of an alien species ( p<0.01). During Phase I and the Parallel Study, the phytoplankton community was dominated (based on important species index) by Thalassionema nitzschioides, Skeletonema costatum (Chrysophyta) year round but during Phase II, Spirulina laxissma (Cyanophyta ) dominated annually and in autumn, coinciding with the minimum Shannon-Weaver diversity and Evenness indices recorded. Several trophic status indices and indicators were applied and an overall analysis suggested that the area has low trophic level during Phase I and high trophic level during Phase II. During the Parallel Study, low trophic level was recorded during the pre-invasion period and high trophic level for the post-invasion period.

  8. Trophic amplification of climate warming.

    PubMed

    Kirby, Richard R; Beaugrand, Gregory

    2009-12-07

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems.

  9. Trophic amplification of climate warming

    PubMed Central

    Kirby, Richard R.; Beaugrand, Gregory

    2009-01-01

    Ecosystems can alternate suddenly between contrasting persistent states due to internal processes or external drivers. It is important to understand the mechanisms by which these shifts occur, especially in exploited ecosystems. There have been several abrupt marine ecosystem shifts attributed either to fishing, recent climate change or a combination of these two drivers. We show that temperature has been an important driver of the trophodynamics of the North Sea, a heavily fished marine ecosystem, for nearly 50 years and that a recent pronounced change in temperature established a new ecosystem dynamic regime through a series of internal mechanisms. Using an end-to-end ecosystem approach that included primary producers, primary, secondary and tertiary consumers, and detritivores, we found that temperature modified the relationships among species through nonlinearities in the ecosystem involving ecological thresholds and trophic amplifications. Trophic amplification provides an alternative mechanism to positive feedback to drive an ecosystem towards a new dynamic regime, which in this case favours jellyfish in the plankton and decapods and detritivores in the benthos. Although overfishing is often held responsible for marine ecosystem degeneration, temperature can clearly bring about similar effects. Our results are relevant to ecosystem-based fisheries management (EBFM), seen as the way forward to manage exploited marine ecosystems. PMID:19740882

  10. Limits on ecosystem trophic complexity: insights from ecological network analysis.

    PubMed

    Ulanowicz, Robert E; Holt, Robert D; Barfield, Michael

    2014-02-01

    Articulating what limits the length of trophic food chains has remained one of the most enduring challenges in ecology. Mere counts of ecosystem species and transfers have not much illumined the issue, in part because magnitudes of trophic transfers vary by orders of magnitude in power-law fashion. We address this issue by creating a suite of measures that extend the basic indexes usually obtained by counting taxa and transfers so as to apply to networks wherein magnitudes vary by orders of magnitude. Application of the extended measures to data on ecosystem trophic networks reveals that the actual complexity of ecosystem webs is far less than usually imagined, because most ecosystem networks consist of a multitude of weak connections dominated by a relatively few strong flows. Although quantitative ecosystem networks may consist of hundreds of nodes and thousands of transfers, they nevertheless behave similarly to simpler representations of systems with fewer than 14 nodes or 40 flows. Both theory and empirical data point to an upper bound on the number of effective trophic levels at about 3-4 links. We suggest that several whole-system processes may be at play in generating these ecosystem limits and regularities.

  11. Unified spatial scaling of species and their trophic interactions.

    PubMed

    Brose, Ulrich; Ostling, Annette; Harrison, Kateri; Martinez, Neo D

    2004-03-11

    Two largely independent bodies of scaling theory address the quantitative relationships between habitat area, species diversity and trophic interactions. Spatial theory within macroecology addresses how species richness scales with area in landscapes, while typically ignoring interspecific interactions. Complexity theory within community ecology addresses how trophic links scale with species richness in food webs, while typically ignoring spatial considerations. Recent studies suggest unifying these theories by demonstrating how spatial patterns influence food-web structure and vice versa. Here, we follow this suggestion by developing and empirically testing a more unified scaling theory. On the basis of power-law species-area relationships, we develop link-area and non-power-law link-species models that accurately predict how trophic links scale with area and species richness of microcosms, lakes and streams from community to metacommunity levels. In contrast to previous models that assume that species richness alone determines the number of trophic links, these models include the species' spatial distribution, and hence extend the domain of complexity theory to metacommunity scales. This generality and predictive success shows how complexity theory and spatial theory can be unified into a much more general theory addressing new domains of ecology.

  12. Selected metal levels of commercially valuable seaweeds adjacent to and distant from point sources of contamination in Nova Scotia and New Brunswick

    SciTech Connect

    Sharp, G.J. ); Samant, H.S.; Vaidya, O.C. )

    1988-06-01

    The harvesting of marine plants on a commercial scale was a significant industry in the Maritime Provinces of Canada by the end of World War II. These seaweeds have been traditionally utilized as foodstuffs either as a processed extract or a semi-processed plant. The Maritime coastline is becoming industrialized; there is also potential for expansion of the marine plant industry beyond traditional harvest areas. Therefore, the quality of material from new areas must be examined prior to exploitation as well as monitoring of traditional areas. The bioaccumulated of metals by marine plants was recognized in early measurements of trace element concentrations which were above ambient water values. Before growth and reproductive inhibition are caused by severe effects of heavy metal pollution, food quality changes may occur. The Food Chemical Code (U.S.A.) limits heavy metals in the extracts of seaweeds. Sediment and water samples taken in connection with the Ocean Dumping Control Act of Canada have identified several sites with elevated heavy metal content in the Maritimes. The purpose of this study was to examine heavy metal levels in commercially important seaweeds from traditional harvest areas and areas near point sources of pollution. The authors wished to provide a baseline for the future and identify existing problem areas.

  13. Iron, copper and zinc isotopic fractionation up mammal trophic chains

    NASA Astrophysics Data System (ADS)

    Jaouen, Klervia; Pons, Marie-Laure; Balter, Vincent

    2013-07-01

    There is a growing body of evidence that some non-traditional elements exhibit stable isotope compositions that are distinct in botanical and animal products, providing potential new tracers for diet reconstructions. Here, we present data for iron (Fe), copper (Cu) and zinc (Zn) stable isotope compositions in plants and bones of herbivores and carnivores. The samples come from trophic chains located in the Western Cape area and in the Kruger National Park in South Africa. The Fe, Cu and Zn isotope systematics are similar in both parks. However, local Cu, and possibly Zn, isotopic values of soils influence that of plants and of higher trophic levels. Between plants and bones of herbivores, the Zn isotope compositions are 66Zn-enriched by about 0.8‰ whereas no significant trophic enrichment is observed for Fe and Cu. Between bones of herbivores and bones of carnivores, the Fe isotope compositions are 56Fe-depleted by about 0.6‰, the Cu isotope compositions are 65Cu-enriched by about 1.0‰, and the Zn isotope compositions are slightly 66Zn-depleted by about 0.2‰. The isotopic distributions of the metals in the body partly explain the observed trophic isotopic systematics. However, it is also necessary to invoke differential intestinal metal absorption between herbivores and carnivores to account for the observed results. Further studies are necessary to fully understand how the Fe, Cu and Zn isotope values are regulated within the ecosystem's trophic levels, but the data already suggests significant potential as new paleodietary and paleoecological proxies.

  14. Biota-sediment accumulation and trophic transfer factors for extremely hydrophobic polychlorinated biphenyls

    SciTech Connect

    Maruya, K.A.; Lee, R.F.

    1998-12-01

    Polychlorinated biphenyls (PCBs) in fish, invertebrates, and sediment from a contaminated tidal creek system in coastal Georgia (USA) were traced to Aroclor 1268, a mixture of hepta through decachlorinated homologs used at a former chlor/alkali plant adjacent to the study site. The base 10 logarithm of the octanol/water partition coefficient (K{sub ow}) for the 15 most abundant Aroclor 1268 components in these samples ranged from 6.7 to >9. The composite mean biota-sediment accumulation factor (BSAF) for these congeners was 3.1, 0.81, and 0.28 for yearling striped mullet, spotted sea trout, and grass shrimp, respectively, species representing three trophic levels of the local food web. Individual congener BSAFs were negatively correlated with log K{sub ow} for all three species. The composite mean trophic transfer factor (TTF{sub lip}), defined as the ratio of lipid-normalized PCB concentrations in fish to grass shrimp, was higher for mullet (12) than for sea trout (2.9). Individual TTF{sub lip} values were two to three times higher for Cl{sub 7} and Cl{sub 8} homologs that were substituted at all four ortho positions, suggesting a difference in PCB retention based on chlorine substitution patterns. The relative magnitude of BSAFs and TTF{sub lip} values indicated that sediment-ingesting forage species like mullet efficiently accumulate PCBs and are an important link in the food web transfer of sediment-ingesting forage in this system. The negative linear relationships between BSAF and log K{sub ow} established in this study are among the first to be reported in the field for extremely hydrophobic PCBs.

  15. Potential effects of groundwater pumping on water levels, phreatophytes, and spring discharges in Spring and Snake Valleys, White Pine County, Nevada, and adjacent areas in Nevada and Utah

    USGS Publications Warehouse

    Halford, Keith J.; Plume, Russell W.

    2011-01-01

    Assessing hydrologic effects of developing groundwater supplies in Snake Valley required numerical, groundwater-flow models to estimate the timing and magnitude of capture from streams, springs, wetlands, and phreatophytes. Estimating general water-table decline also required groundwater simulation. The hydraulic conductivity of basin fill and transmissivity of basement-rock distributions in Spring and Snake Valleys were refined by calibrating a steady state, three-dimensional, MODFLOW model of the carbonate-rock province to predevelopment conditions. Hydraulic properties and boundary conditions were defined primarily from the Regional Aquifer-System Analysis (RASA) model except in Spring and Snake Valleys. This locally refined model was referred to as the Great Basin National Park calibration (GBNP-C) model. Groundwater discharges from phreatophyte areas and springs in Spring and Snake Valleys were simulated as specified discharges in the GBNP-C model. These discharges equaled mapped rates and measured discharges, respectively. Recharge, hydraulic conductivity, and transmissivity were distributed throughout Spring and Snake Valleys with pilot points and interpolated to model cells with kriging in geologically similar areas. Transmissivity of the basement rocks was estimated because thickness is correlated poorly with transmissivity. Transmissivity estimates were constrained by aquifer-test results in basin-fill and carbonate-rock aquifers. Recharge, hydraulic conductivity, and transmissivity distributions of the GBNP-C model were estimated by minimizing a weighted composite, sum-of-squares objective function that included measurement and Tikhonov regularization observations. Tikhonov regularization observations were equations that defined preferred relations between the pilot points. Measured water levels, water levels that were simulated with RASA, depth-to-water beneath distributed groundwater and spring discharges, land-surface altitudes, spring discharge at

  16. Prey size diversity hinders biomass trophic transfer and predator size diversity promotes it in planktonic communities.

    PubMed

    García-Comas, Carmen; Sastri, Akash R; Ye, Lin; Chang, Chun-Yi; Lin, Fan-Sian; Su, Min-Sian; Gong, Gwo-Ching; Hsieh, Chih-Hao

    2016-02-10

    Body size exerts multiple effects on plankton food-web interactions. However, the influence of size structure on trophic transfer remains poorly quantified in the field. Here, we examine how the size diversity of prey (nano-microplankton) and predators (mesozooplankton) influence trophic transfer efficiency (using biomass ratio as a proxy) in natural marine ecosystems. Our results support previous studies on single trophic levels: transfer efficiency decreases with increasing prey size diversity and is enhanced with greater predator size diversity. We further show that communities with low nano-microplankton size diversity and high mesozooplankton size diversity tend to occur in warmer environments with low nutrient concentrations, thus promoting trophic transfer to higher trophic levels in those conditions. Moreover, we reveal an interactive effect of predator and prey size diversities: the positive effect of predator size diversity becomes influential when prey size diversity is high. Mechanistically, the negative effect of prey size diversity on trophic transfer may be explained by unicellular size-based metabolic constraints as well as trade-offs between growth and predation avoidance with size, whereas increasing predator size diversity may enhance diet niche partitioning and thus promote trophic transfer. These findings provide insights into size-based theories of ecosystem functioning, with implications for ecosystem predictive models.

  17. Trophic look at soft-bottom communities - Short-term effects of trawling cessation on benthos

    NASA Astrophysics Data System (ADS)

    Dannheim, Jennifer; Brey, Thomas; Schröder, Alexander; Mintenbeck, Katja; Knust, Rainer; Arntz, Wolf E.

    2014-01-01

    The trophic structure of the German Bight soft-bottom benthic community was evaluated for potential changes after cessation of bottom trawling. Species were collected with van-Veen grabs and beam trawls. Trophic position (i.e. nitrogen stable isotope ratios, δ15N) and energy flow (i.e. species metabolism approximated by body mass scaled abundance) of dominant species were compared in trawled areas and an area protected from fisheries for 14 months in order to detect trawling cessation effects by trophic characteristics. At the community level, energy flow was lower in the protected area, but we were unable to detect significant changes in trophic position. At the species level energy flow in the protected area was lower for predating/scavenging species but higher for interface feeders. Species trophic positions of small predators/scavengers were lower and of deposit feeders higher in the protected area. Major reasons for trophic changes after trawling cessation may be the absence of artificial and additional food sources from trawling likely to attract predators and scavengers, and the absence of physical sediment disturbance impacting settlement/survival of less mobile species and causing a gradual shift in food availability and quality. Our results provide evidence that species or community energy flow is a good indicator to detect trawling induced energy-flow alterations in the benthic system, and that in particular species trophic properties are suitable to capture subtle and short-term changes in the benthos following trawling cessation.

  18. Trophic transfer of dechloranes in the marine food web of Liaodong Bay, north China.

    PubMed

    Peng, Hui; Wan, Yi; Zhang, Kun; Sun, Jianxian; Hu, Jianying

    2014-05-20

    Dechloranes are of particular concern because of their ubiquity in environmental matrices, but little is known about their trophic transfer in aquatic food web. This study investigated the trophic transfer of seven dechloranes in a marine food web from Liaodong Bay, China. Dechloranes were determined in sediments and 15 marine species including benthic invertebrates, fish and gulls collected from Liaodong Bay. Biomagnification factors (BMFTL) of dechloranes in black-headed gulls were calculated to be 6.4, 1.7, 0.45, 0.36, 0.14, and 0.11 for mirex, Dechlorane 602 (Dec 602), Dechlorane 603 (Dec 603), antiundecachloropentacyclooctadecadiene (anti-Cl11DP), syn-dechlorane plus (syn-DP), and anti-DP. Significantly positive relationships were found between lipid equivalent concentrations of mirex, Dec 602, and anti-Cl11DP and trophic levels, and the trophic magnification factors (TMFs) were 13, 3.7, and 5.6, respectively, indicating that these compounds undergo trophic magnification in the aquatic food web. Lipid equivalent concentrations of Dec 603 and DP isomers did not exhibit a statistically significant correlation with trophic levels. The relatively low trophic magnification potentials of Dec 603 and DP isomers were possibly due to their extreme hydrophobicity (logKOW: 11.2-11.3) and subsequent low bioavailabilities compared with mirex (7.0), Dec 602 (8.1) and anti-Cl11DP. The results provided important information for understanding the ecological risk of dechloranes.

  19. [Treatment of patients with trophic ulcer].

    PubMed

    Karapetian, G É; Iakimov, S V; Mikitin, I L; Kochetova, L V; Pakhomova, R A

    2014-01-01

    The authors present the investigation of inpatient treatment of 137 patients with trophic ulcers of venous aethiology. All the patients were hospitalized in the "Road clinical hospital" on the Krasnoyarsk station. A comparative analysis of treatment results of the patients with trophic ulcers using different medical methods was made. The efficacy of combined use of low-frequency ultrasound and ozone therapy was proved.

  20. Complex trophic interactions of calanoid copepods in the Benguela upwelling system

    NASA Astrophysics Data System (ADS)

    Schukat, Anna; Auel, Holger; Teuber, Lena; Lahajnar, Niko; Hagen, Wilhelm

    2014-01-01

    Life-cycle adaptations, dietary preferences and trophic levels of calanoid copepods from the northern Benguela Current off Namibia were determined via lipid classes, marker fatty acids and stable isotope analyses, respectively. Trophic levels of copepod species were compared to other zooplankton and top consumers. Lipid class analyses revealed that three of the dominant calanoid copepod species stored wax esters, four accumulated triacylglycerols and another three species were characterised by high phospholipid levels. The two biomarker approaches (via fatty acids and stable isotopes) revealed a complex pattern of trophic positions for the various copepod species, but also highlighted the dietary importance of diatoms and dinoflagellates. Calanoides carinatus and Nannocalanus minor occupied the lowest trophic level (predominantly herbivorous) corresponding to high amounts of fatty acid markers for diatoms (e.g. 16:1(n - 7)) and dinoflagellates (e.g. 18:4(n - 3)). These two copepod species represent the classical link between primary production and higher trophic levels. All other copepods belonged to secondary or even tertiary (some deep-sea copepods) consumers. The calanoid copepod species cover the entire range of δ15N ratios, as compared to δ15N ratios of all non-calanoid taxa investigated, from salps to adult fish. These data emphasise that the trophic roles of calanoid copepods are far more complex than just interlinking primary producers with pelagic fish, which should also be considered in the process of developing realistic food-web models of coastal upwelling systems.

  1. Nonylphenol algal bioaccumulation and its effect through the trophic chain.

    PubMed

    Correa-Reyes, Gabriel; Viana, María Teresa; Marquez-Rocha, Facundo J; Licea, Alexei F; Ponce, Elizabeth; Vazquez-Duhalt, Rafael

    2007-06-01

    Nonylphenol is a metabolic intermediate from the microbial transformation of detergents used worldwide. While nonylphenol shows some acute toxicity, it is also able to mimic important hormones resulting in the disruption of several processes by interfering with the signals that control the overall physiology of the organism. The effect of the pollutant nonylphenol (NP) through the trophic chain was studied. Microalgae Isochrysis galbana was able to bioconcentrate NP 6940 times, where 77% of initial NP (100microgl(-1)) is accumulated intracellularly after 1-h incubation. Crustacean Artemia fransiscana showed 25% higher growth when fed with NP-rich algae. However, Artemia metabolized almost all NP ingested and only traces of NP could be found in the organism, eliminating future NP effects. Zebrafish (Brachydanio rerio) were affected by the presence of 171microgg(-1) of NP in the diet, showing higher levels of the hormone vitellogenin and lower levels of cytochrome P450 activity. These results showed that organisms placed in the first level of trophic chain are able to significantly bioconcentrate the pollutant and endocrine disruptor NP. These grassed organisms affect the growth of crustacean. Moreover, the organisms placed on the top of some trophic chains, such as fish, could be affected by the presence of NP in their food, in both the hormone levels and metabolic enzymes. This work shows that the environmental presence of NP should be considered as a risk for the organisms living in an ecosystem.

  2. A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing.

    PubMed

    Liu, Pi-Jen; Shao, Kwang-Tsao; Jan, Rong-Quen; Fan, Tung-Yung; Wong, Saou-Lien; Hwang, Jiang-Shiou; Chen, Jen-Ping; Chen, Chung-Chi; Lin, Hsing-Juh

    2009-09-01

    Several coral reefs of Nanwan Bay, Taiwan have recently undergone shifts to macroalgal or sea anemone dominance. Thus, a mass-balance trophic model was constructed to analyze the structure and functioning of the food web. The fringing reef model was comprised of 18 compartments, with the highest trophic level of 3.45 for piscivorous fish. Comparative analyses with other reef models demonstrated that Nanwan Bay was similar to reefs with high fishery catches. While coral biomass was not lower, fish biomass was lower than those of reefs with high catches. Consequently, the sums of consumption and respiratory flows and total system throughput were also decreased. The Nanwan Bay model potentially suggests an overfished status in which the mean trophic level of the catch, matter cycling, and trophic transfer efficiency are extremely reduced.

  3. Trophic position influences the efficacy of seabirds as metal biovectors.

    PubMed

    Michelutti, Neal; Blais, Jules M; Mallory, Mark L; Brash, Jaclyn; Thienpont, Joshua; Kimpe, Lynda E; Douglas, Marianne S V; Smol, John P

    2010-06-08

    Seabirds represent a well documented biological transport pathway of nutrients from the ocean to the land by nesting in colonies and providing organic subsidies (feces, carcasses, dropped food) to these sites. We investigated whether seabirds that feed at different trophic levels vary in their potency as biovectors of metals, which can bioaccumulate through the marine foodweb. Our study site, located on a small island in Arctic Canada, contains the unique scenario of two nearby ponds, one of which receives inputs almost exclusively from upper trophic level piscivores (Arctic terns, Sterna paradisaea) and the other mainly from lower trophic level molluscivores (common eiders, Somateria mollissima). We used dated sediment cores to compare differences in diatoms, metal concentrations and also stable isotopes of nitrogen (delta(15)N), which reflect trophic position. We show that the seabirds carry species-specific mixtures of metals that are ultimately shunted to their nesting sites. For example, sediments from the tern-affected pond recorded the highest levels of delta(15)N and the greatest concentrations of metals that are known to bioaccumulate, including Hg and Cd. In contrast, the core from the eider-affected site registered lower delta(15)N values, but higher concentrations of Pb, Al, and Mn. These metals have been recorded at their greatest concentrations in eiders relative to other seabirds, including Arctic terns. These data indicate that metals may be used to track seabird population dynamics, and that some metal tracers may even be species-specific. The predominance of large seabird colonies on every continent suggests that similar processes are operating along coastlines worldwide.

  4. Trophic indicators in fisheries: a call for re-evaluation.

    PubMed

    Hornborg, Sara; Belgrano, Andrea; Bartolino, Valerio; Valentinsson, Daniel; Ziegler, Friederike

    2013-02-23

    Mean trophic level (MTL) of landings and primary production required (PPR) by fisheries are increasingly used in the assessment of sustainability in fisheries. However, in their present form, MTL and PPR are prone to misinterpretation. We show that it is important to account for actual catch data, define an appropriate historical and spatial domain, and carefully consider the effects of fisheries management, based on results from a case study of Swedish fisheries during the past century.

  5. Trophic Shifts of a Generalist Consumer in Response to Resource Pulses

    PubMed Central

    Shaner, Pei-Jen L.; Macko, Stephen A.

    2011-01-01

    Trophic shifts of generalist consumers can have broad food-web and biodiversity consequences through altered trophic flows and vertical diversity. Previous studies have used trophic shifts as indicators of food-web responses to perturbations, such as species invasion, and spatial or temporal subsidies. Resource pulses, as a form of temporal subsidies, have been found to be quite common among various ecosystems, affecting organisms at multiple trophic levels. Although diet switching of generalist consumers in response to resource pulses is well documented, few studies have examined if the switch involves trophic shifts, and if so, the directions and magnitudes of the shifts. In this study, we used stable carbon and nitrogen isotopes with a Bayesian multi-source mixing model to estimate proportional contributions of three trophic groups (i.e. producer, consumer, and fungus-detritivore) to the diets of the White-footed mouse (Peromyscus leucopus) receiving an artificial seed pulse or a naturally-occurring cicadas pulse. Our results demonstrated that resource pulses can drive trophic shifts in the mice. Specifically, the producer contribution to the mouse diets was increased by 32% with the seed pulse at both sites examined. The consumer contribution to the mouse diets was also increased by 29% with the cicadas pulse in one of the two grids examined. However, the pattern was reversed in the second grid, with a 13% decrease in the consumer contribution with the cicadas pulse. These findings suggest that generalist consumers may play different functional roles in food webs under perturbations of resource pulses. This study provides one of the few highly quantitative descriptions on dietary and trophic shifts of a key consumer in forest food webs, which may help future studies to form specific predictions on changes in trophic interactions following resource pulses. PMID:21437248

  6. Trophic interactions, ecosystem structure and function in the southern Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lin, Qun; Jin, Xianshi; Zhang, Bo

    2013-01-01

    The southern Yellow Sea is an important fishing ground, providing abundant fishery resources. However, overfishing and climate change have caused a decline in the resource and damaged the ecosystem. We developed an ecosystem model to analyze the trophic interactions and ecosystem structure and function to guide sustainable development of the ecosystem. A trophic mass-balance model of the southern Yellow Sea during 2000-2001 was constructed using Ecopath with Ecosim software. We defined 22 important functional groups and studied their diet composition. The trophic levels of fish, shrimp, crabs, and cephalopods were between 2.78 and 4.39, and the mean trophic level of the fisheries was 3.24. The trophic flows within the food web occurred primarily in the lower trophic levels. The mean trophic transfer efficiency was 8.1%, of which 7.1% was from primary producers and 9.3% was from detritus within the ecosystem. The transfer efficiency between trophic levels II to III to IV to V to >V was 5.0%, 5.7%, 18.5%, and 19.7%-20.4%, respectively. Of the total flow, phytoplankton contributed 61% and detritus contributed 39%. Fishing is defined as a top predator within the ecosystem, and has a negative impact on most commercial species. Moreover, the ecosystem had a high gross efficiency of the fishery and a high value of primary production required to sustain the fishery. Together, our data suggest there is high fishing pressure in the southern Yellow Sea. Based on analysis of Odum's ecological parameters, this ecosystem was at an immature stage. Our results provide some insights into the structure and development of this ecosystem.

  7. Climate change impact on Balearic shearwater through a trophic cascade.

    PubMed

    Luczak, C; Beaugrand, G; Jaffré, M; Lenoir, S

    2011-10-23

    A recent study showed that a critically endangered migratory predator species, the Balearic shearwater Puffinus mauretanicus, rapidly expanded northwards in northeast Atlantic waters after the mid-1990s. As a significant positive correlation was found between the long-term changes in the abundance of this seabird and sea temperature around the British Isles, it was hypothesized that the link between the biogeographic shift and temperature occurred through the food web. Here, we test this conjecture and reveal concomitant changes in a regional index of sea temperature, plankton (total calanoid copepod), fish prey (anchovy and sardine) and the Balearic shearwater for the period 1980-2003. All three trophic levels exhibit a significant shift detected between 1994 and 1996. Our findings therefore support the assertion of both a direct and an indirect effect of climate change on the spatial distribution of post-breeding Balearic shearwater through a trophic cascade.

  8. Plant species loss decreases arthropod diversity and shifts trophic structure.

    PubMed

    Haddad, Nick M; Crutsinger, Gregory M; Gross, Kevin; Haarstad, John; Knops, Johannes M H; Tilman, David

    2009-10-01

    Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.

  9. Does cadmium pollution change trophic interactions in rockpool food webs?

    SciTech Connect

    Koivisto, S.; Arner, M.; Kautsky, N.

    1997-06-01

    The authors studied the regulation of phytoplankton and zooplankton biomass in rockpool food webs under chronic cadmium pollution. Experimental food webs with two and three trophic levels were composed of phytoplankton, small-bodied zooplankton (Chydorus sphaericus, Cyclops sp., and rotifers), Daphnia magna, and Notonecta sp., a zooplanktivorous predator. Every food web received a control and cadmium treatment allowing a separate study of cadmium and predation effects. After a 3-week stabilization period, cadmium and Notonecta were added and changes in primary productivity, chlorophyll, zooplankton species composition, and biomass were followed during 8 weeks. The results showed that phytoplankton and Daphnia were consumer regulated in both control and cadmium treatments, although resource availability ultimately determined the biomass at each trophic level. Daphnia was the only zooplankton species that reduced phytoplankton and also the only species that was eliminated by Notonecta predation. Notonecta had an indirect positive impact on phytoplankton biomass that increased after the extinction of Daphnia. Cadmium significantly reduced phytoplankton and Daphnia but did not change the trophic interactions between them, i.e., Daphnia and chlorophyll were significantly negatively correlated both in the control and cadmium treatments. Cadmium did not affect the relationship between Daphnia and Notonecta.

  10. Trophic cascades in the bryosphere: the impact of global change factors on top-down control of cyanobacterial N2 -fixation.

    PubMed

    Kardol, Paul; Spitzer, Clydecia M; Gundale, Michael J; Nilsson, Marie-Charlotte; Wardle, David A

    2016-08-01

    Trophic cascades in which predators regulate densities of organisms at lower trophic levels are important drivers of population dynamics, but effects of trophic cascades on ecosystem-level fluxes and processes, and the conditions under which top-down control is important, remain unresolved. We manipulated the structure of a food web in boreal feather mosses and found that moss-inhabiting microfauna exerted top-down control of N2 -fixation by moss-associated cyanobacteria. However, the presence of higher trophic levels alleviated this top-down control, likely through feeding on bacterivorous microfauna. These effects of food-web structure on cyanobacterial N2 -fixation were dependent on global change factors and strongly suppressed under N fertilisation. Our findings illustrate how food web interactions and trophic cascades can regulate N cycling in boreal ecosystems, where carbon uptake is generally strongly N-limited, and shifting trophic control of N cycling under global change is therefore likely to impact ecosystem functioning.

  11. Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature

    USGS Publications Warehouse

    Croteau, M.-N.; Luoma, S.N.; Stewart, A.R.

    2005-01-01

    We conducted a study with cadmium (Cd) and copper (Cu) in the delta of San Francisco Bay, using nitrogen and carbon stable isotopes to identify trophic position and food web structure. Cadmium is progressively enriched among trophic levels in discrete epiphyte-based food webs composed of macrophyte-dwelling invertebrates (the first link being epiphytic algae) and fishes (the first link being gobies). Cadmium concentrations were biomagnified 15 times within the scope of two trophic links in both food webs. Trophic enrichment in invertebrates was twice that of fishes. No tendency toward trophic-level enrichment was observed for Cu, regardless of whether organisms were sorted by food web or treated on a taxonomic basis within discrete food webs. The greatest toxic effects of Cd are likely to occur with increasing trophic positions, where animals are ingesting Cd-rich prey (or food). In Franks Tract this occurs within discrete food chains composed of macrophyte-dwelling invertebrates or fishes inhabiting submerged aquatic vegetation. Unraveling ecosystem complexity is necessary before species most exposed and at risk can be identified. ?? 2005, by the American Society of Limnology and Oceanography, Inc.

  12. Trophic niche divergence among colour morphs that exhibit alternative mating tactics

    PubMed Central

    Lattanzio, Matthew S.; Miles, Donald B.

    2016-01-01

    Discrete colour morphs associated with alternative mating tactics are assumed to be ecologically equivalent. Yet suites of behaviours linked with reproduction can also favour habitat segregation and exploitation of different prey among morphs. By contrast, trophic polymorphisms are usually attributed to morphs exhibiting habitat or prey selectivity. An alternative hypothesis is that habitat variation generates a trophic polymorphism driven by differences in morph reproductive behaviour, the spatial dispersion of morphs in a landscape and their exposure to different prey types. In this scenario, morphs are allowed to vary in habitat or diet selectivity (e.g. specialist or generalist) as they do in behaviour, rather than being assumed to exhibit equivalent levels of ecological specialization. We test this hypothesis using male Urosaurus ornatus lizards that exhibit a discrete dewlap colour polymorphism that reflects alternative mating tactics. We found blue morphs specialize on prey at higher trophic levels, yellow males display plasticity in trophic and morphological attributes and orange males are trophic generalists. Our results also demonstrate that morph diet differences are enhanced in resource-limited habitats. We conclude that discrete behavioural morphs may also diverge in morphology and trophic niche. Jointly, these processes may enhance speciation rates in colour polymorphic taxa. PMID:27152203

  13. Persistence of trophic hotspots and relation to human impacts within an upwelling marine ecosystem.

    PubMed

    Santora, Jarrod A; Sydeman, William J; Schroeder, Isaac D; Field, John C; Miller, Rebecca R; Wells, Brian K

    2017-03-01

    Human impacts (e.g., fishing, pollution, and shipping) on pelagic ecosystems are increasing, causing concerns about stresses on marine food webs. Maintaining predator-prey relationships through protection of pelagic hotspots is crucial for conservation and management of living marine resources. Biotic components of pelagic, plankton-based, ecosystems exhibit high variability in abundance in time and space (i.e., extreme patchiness), requiring investigation of persistence of abundance across trophic levels to resolve trophic hotspots. Using a 26-yr record of indicators for primary production, secondary (zooplankton and larval fish), and tertiary (seabirds) consumers, we show distributions of trophic hotspots in the southern California Current Ecosystem result from interactions between a strong upwelling center and a productive retention zone with enhanced nutrients, which concentrate prey and predators across multiple trophic levels. Trophic hotspots also overlap with human impacts, including fisheries extraction of coastal pelagic and groundfish species, as well as intense commercial shipping traffic. Spatial overlap of trophic hotspots with fisheries and shipping increases vulnerability of the ecosystem to localized depletion of forage fish, ship strikes on marine mammals, and pollution. This study represents a critical step toward resolving pelagic areas of high conservation interest for planktonic ecosystems and may serve as a model for other ocean regions where ecosystem-based management and marine spatial planning of pelagic ecosystems is warranted.

  14. Biomass changes and trophic amplification of plankton in a warmer ocean.

    PubMed

    Chust, Guillem; Allen, J Icarus; Bopp, Laurent; Schrum, Corinna; Holt, Jason; Tsiaras, Kostas; Zavatarelli, Marco; Chifflet, Marina; Cannaby, Heather; Dadou, Isabelle; Daewel, Ute; Wakelin, Sarah L; Machu, Eric; Pushpadas, Dhanya; Butenschon, Momme; Artioli, Yuri; Petihakis, George; Smith, Chris; Garçon, Veronique; Goubanova, Katerina; Le Vu, Briac; Fach, Bettina A; Salihoglu, Baris; Clementi, Emanuela; Irigoien, Xabier

    2014-07-01

    Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3-D coupled physical-biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate-change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom-up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and

  15. Impact of climate change on marine pelagic phenology and trophic mismatch.

    PubMed

    Edwards, Martin; Richardson, Anthony J

    2004-08-19

    Phenology, the study of annually recurring life cycle events such as the timing of migrations and flowering, can provide particularly sensitive indicators of climate change. Changes in phenology may be important to ecosystem function because the level of response to climate change may vary across functional groups and multiple trophic levels. The decoupling of phenological relationships will have important ramifications for trophic interactions, altering food-web structures and leading to eventual ecosystem-level changes. Temperate marine environments may be particularly vulnerable to these changes because the recruitment success of higher trophic levels is highly dependent on synchronization with pulsed planktonic production. Using long-term data of 66 plankton taxa during the period from 1958 to 2002, we investigated whether climate warming signals are emergent across all trophic levels and functional groups within an ecological community. Here we show that not only is the marine pelagic community responding to climate changes, but also that the level of response differs throughout the community and the seasonal cycle, leading to a mismatch between trophic levels and functional groups.

  16. Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system.

    PubMed

    Jabiol, Jérémy; McKie, Brendan G; Bruder, Andreas; Bernadet, Caroline; Gessner, Mark O; Chauvet, Eric

    2013-09-01

    1. Understanding the functional significance of species interactions in ecosystems has become a major challenge as biodiversity declines rapidly worldwide. Ecosystem consequences arising from the loss of diversity either within trophic levels (horizontal diversity) or across trophic levels (vertical diversity) are well documented. However, simultaneous losses of species at different trophic levels may also result in interactive effects, with potentially complex outcomes for ecosystem functioning. 2. Because of logistical constraints, the outcomes of such interactions have been difficult to assess in experiments involving large metazoan species. Here, we take advantage of a detritus-based model system to experimentally assess the consequences of biodiversity change within both horizontal and vertical food-web components on leaf-litter decomposition, a fundamental process in a wide range of ecosystems. 3. Our concurrent manipulation of fungal decomposer diversity (0, 1 or 5 species), detritivore diversity (0, 1 or 3 species), and the presence of predatory fish scent showed that trophic complexity is key to eliciting diversity effects on ecosystem functioning. Specifically, although fungi and detritivores tended to promote decomposition individually, rates were highest in the most complete community where all trophic levels were represented at the highest possible species richness. In part, the effects were trait-mediated, reflected in the contrasting foraging responses of the detritivore species to predator scent. 4. Our results thus highlight the importance of interactive effects of simultaneous species loss within multiple trophic levels on ecosystem functioning. If a common phenomenon, this outcome suggests that functional ecosystem impairment resulting from widespread biodiversity loss could be more severe than inferred from previous experiments confined to varying diversity within single trophic levels.

  17. The Dynamics of Cascaded Monod System Models Through Five Levels

    NASA Technical Reports Server (NTRS)

    Blackwell, Charles C.; Kliss, Mark (Technical Monitor)

    1998-01-01

    A Monod system model is a set of ordinary differential equations where the terms resemble those which Monod described in his 1949 paper. We focus on the multiple trophic level case in which each trophic level uses only one of the trophic levels for its perpetuation, and no two trophic entities use the same trophic cascaded level. The treatment derives from a primary producer progressively through five trophic levels. Stability types are identified and are related to persistence, and the consequences of some intuitive scaling structures are developed. These considerations are useful to some theoretical questions in ecology and to applications such as bioreactor operation.

  18. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology

    PubMed Central

    Fleming, Nicholas E.C.; Newton, Jason; Houghton, Jonathan D.R.

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ13C and δ15N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ15N (trophic position) were evident between all three species, with size-based and temporal shifts in δ15N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions that

  19. Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology.

    PubMed

    Fleming, Nicholas E C; Harrod, Chris; Newton, Jason; Houghton, Jonathan D R

    2015-01-01

    Jellyfish are highly topical within studies of pelagic food-webs and there is a growing realisation that their role is more complex than once thought. Efforts being made to include jellyfish within fisheries and ecosystem models are an important step forward, but our present understanding of their underlying trophic ecology can lead to their oversimplification in these models. Gelatinous zooplankton represent a polyphyletic assemblage spanning >2,000 species that inhabit coastal seas to the deep-ocean and employ a wide variety of foraging strategies. Despite this diversity, many contemporary modelling approaches include jellyfish as a single functional group feeding at one or two trophic levels at most. Recent reviews have drawn attention to this issue and highlighted the need for improved communication between biologists and theoreticians if this problem is to be overcome. We used stable isotopes to investigate the trophic ecology of three co-occurring scyphozoan jellyfish species (Aurelia aurita, Cyanea lamarckii and C. capillata) within a temperate, coastal food-web in the NE Atlantic. Using information on individual size, time of year and δ (13)C and δ (15)N stable isotope values, we examined: (1) whether all jellyfish could be considered as a single functional group, or showed distinct inter-specific differences in trophic ecology; (2) Were size-based shifts in trophic position, found previously in A. aurita, a common trait across species?; (3) When considered collectively, did the trophic position of three sympatric species remain constant over time? Differences in δ (15)N (trophic position) were evident between all three species, with size-based and temporal shifts in δ (15)N apparent in A. aurita and C. capillata. The isotopic niche width for all species combined increased throughout the season, reflecting temporal shifts in trophic position and seasonal succession in these gelatinous species. Taken together, these findings support previous assertions

  20. Spider foraging strategy affects trophic cascades under natural and drought conditions

    PubMed Central

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-01-01

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370

  1. Trophic relationships in an estuarine environment: A quantitative fatty acid analysis signature approach

    NASA Astrophysics Data System (ADS)

    Magnone, Larisa; Bessonart, Martin; Gadea, Juan; Salhi, María

    2015-12-01

    In order to better understand the functioning of aquatic environments, it is necessary to obtain accurate diet estimations in food webs. Their description should incorporate information about energy flow and the relative importance of trophic pathways. Fatty acids have been extensively used in qualitative studies on trophic relationships in food webs. Recently a new method to estimate quantitatively single predator diet has been developed. In this study, a model of aquatic food web through quantitative fatty acid signature analysis was generated to identify the trophic interactions among the species in the Rocha Lagoon. The biological sampling over two consecutive annual periods was comprehensive enough to identify all functional groups in the aquatic food web (except birds and mammals). Heleobia australis seemed to play a central role in this estuarine ecosystem. As both, a grazer and a prey to several other species, probably H. australis is transferring a great amount of energy to upper trophic levels. Most of the species at Rocha Lagoon have a wide range of prey items in their diet reflecting a complex food web, which is characteristic of extremely dynamic environment as estuarine ecosystems. QFASA is a model in tracing and quantitative estimate trophic pathways among species in an estuarine food web. The results obtained in the present work are a valuable contribution in the understanding of trophic relationships in Rocha Lagoon.

  2. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    PubMed

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-07-23

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  3. Diversity Effects on Productivity Are Stronger within than between Trophic Groups in the Arbuscular Mycorrhizal Symbiosis

    PubMed Central

    Koch, Alexander M.; Antunes, Pedro M.; Klironomos, John N.

    2012-01-01

    Background The diversity of plants and arbuscular mycorrhizal fungi (AMF) has been experimentally shown to alter plant and AMF productivity. However, little is known about how plant and AMF diversity interact to shape their respective productivity. Methodology/Principal Findings We co-manipulated the diversity of both AMF and plant communities in two greenhouse studies to determine whether the productivity of each trophic group is mainly influenced by plant or AMF diversity, respectively, and whether there is any interaction between plant and fungal diversity. In both experiments we compared the productivity of three different plant species monocultures, or their respective 3-species mixtures. Similarly, in both studies these plant treatments were crossed with an AMF diversity gradient that ranged from zero (non-mycorrhizal controls) to a maximum of three and five taxonomically distinct AMF taxa, respectively. We found that within both trophic groups productivity was significantly influenced by taxon identity, and increased with taxon richness. These main effects of AMF and plant diversity on their respective productivities did not depend on each other, even though we detected significant individual taxon effects across trophic groups. Conclusions/Significance Our results indicate that similar ecological processes regulate diversity-productivity relationships within trophic groups. However, productivity-diversity relationships are not necessarily correlated across interacting trophic levels, leading to asymmetries and possible biotic feedbacks. Thus, biotic interactions within and across trophic groups should be considered in predictive models of community assembly. PMID:22629347

  4. Evaluating trophic cascades as drivers of regime shifts in different ocean ecosystems

    PubMed Central

    Pershing, Andrew J.; Mills, Katherine E.; Record, Nicholas R.; Stamieszkin, Karen; Wurtzell, Katharine V.; Byron, Carrie J.; Fitzpatrick, Dominic; Golet, Walter J.; Koob, Elise

    2015-01-01

    In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.

  5. Influence of intra-shoot trophic competition on shoot development in two grapevine cultivars (Vitis vinifera).

    PubMed

    Pallas, Benoît; Louarn, Gaëtan; Christophe, Angélique; Lebon, Eric; Lecoeur, Jérémie

    2008-09-01

    The effect of trophic competition between vegetative sources and reproductive sinks on grapevine (Vitis vinifera L.) shoot development was analyzed. Two international cultivars (Grenache N and Syrah) grown in pots, which were well watered, were studied. A large range of trophic competition levels was obtained by modifying the cluster loads per plant. An analytical breakdown of the branching system was used to analyze the effects of trophic competition. Phytomer production on the primary axis and the probability and timing of axillary budburst were not affected by trophic competition. However, the duration of development and leaf production rate for secondary axes were both significantly affected. The impact of trophic competition differed within the P0-P1-P2 architectural module, locally within the shoot and between cultivars. Trophic competition reduced the organogenesis of secondary axes most strongly close to clusters, on P1-P2 phytomers and in Grenache N. Based on these results, a modeling approach simulating sink strength variation and the local effects of sink proximity would be more relevant than a model considering only development as a function of thermal time or the global distribution of available biomass.

  6. Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach

    USGS Publications Warehouse

    Reinfelder, J.R.; Fisher, N.S.; Luoma, S. N.; Nichols, J.W.; Wang, W.-X.

    1998-01-01

    The bioaccumulation of trace elements in aquatic organisms can be described with a kinetic model that includes linear expressions for uptake and elimination from dissolved and dietary sources. Within this model, trace element trophic transfer is described by four parameters: the weight-specific ingestion rate (IR); the assimilation efficiency (AE); the physiological loss rate constant (ke); and the weight-specific growth rate (g). These four parameters define the trace element trophic transfer potential (TTP=IR·AE/[ke+g]) which is equal to the ratio of the steady-state trace element concentration in a consumer due to trophic accumulation to that in its prey. Recent work devoted to the quantification of AE and ke for a variety of trace elements in aquatic invertebrates has provided the data needed for comparative studies of trace element trophic transfer among different species and trophic levels and, in at least one group of aquatic consumers (marine bivalves), sensitivity analyses and field tests of kinetic bioaccumulation models. Analysis of the trophic transfer potentials of trace elements for which data are available in zooplankton, bivalves, and fish, suggests that slight variations in assimilation efficiency or elimination rate constant may determine whether or not some trace elements (Cd, Se, and Zn) are biomagnified. A linear, single-compartment model may not be appropriate for fish which, unlike many aquatic invertebrates, have a large mass of tissue in which the concentrations of most trace elements are subject to feedback regulation.

  7. Eastern Scotian Shelf trophic dynamics: A review of the evidence for diverse hypotheses

    NASA Astrophysics Data System (ADS)

    Sinclair, Michael; Power, Michael; Head, Erica; Li, William K. W.; McMahon, Michael; Mohn, Robert; O'Boyle, Robert; Swain, Douglas; Tremblay, John

    2015-11-01

    Two hypotheses have been proposed to account for trophic dynamic control of the eastern Scotian Shelf ecosystem off Atlantic Canada: (1) top-down: fishery induced trophic cascade and (2) bottom-up: climate variability. We evaluate the evidence in support of these hypotheses: including observations on top-down drivers (fishing effort and predation by grey seals), bottom-up drivers (nutrient supply and water column stratification), and the several trophic levels (groundfish, macro-invertebrates, small pelagic fish, and plankton). There is limited support for the fishery-induced trophic cascade hypothesis. The predictions of the climate variability hypothesis are generally met for the lower and middle trophic levels, but the ongoing high levels of natural mortality of groundfish are not accounted for. We propose an alternative hypothesis encompassing concurrent top-down and bottom-up processes, and conclude that many species of groundfish (including cod) and small pelagic fish stocks (including herring) will not recover with the ongoing high levels of natural mortality generated by grey seal predation. Predictions on future trends in abundance of the commercially important macro-invertebrate species (lobster, snow crab, and shrimp) are not possible based on the available evidence.

  8. Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay, north China.

    PubMed

    Wan, Yi; Jin, Xiaohui; Hu, Jianying; Jin, Fen

    2007-05-01

    Trophic transfer of polycyclic aromatic hydrocarbons (PAHs) in aquatic ecosystems is an important criterion for assessing their ecological risk. This study analyzed 18 PAHs in phytoplankton/seston, zooplankton, five invertebrate species, five fish species, and one seabird species collected from Bohai Bay, and trophic transfer of the PAHs was determined in the food web, of which the length was approximately 4 on the basis of stable nitrogen isotope values. The concentrations of PAHs (2-64.5 ng/g wet weight) in the marine ecosystem were moderate compared with other marine organisms worldwide, and the PAH compositions exhibited species-specific profiles that were related to trophic levels in some organisms. Significant negative relationships were also found between trophic levels and lipid-normalized concentrations for 10 PAH compounds (acenaphthylene, anthracene, fluoranthene, pyrene, chrysene, benz[a]anthracene, benzo[b]fluoranthene + benzo[k]fluoranthene, benzo[e]pyrene, benzo[a]pyrene, and perylene), and their trophic magnification factors (TMFs) ranged from 0.11 for fluoranthene to 0.45 for acenaphthylene. These results confirm that PAHs undergo trophic dilution in the marine food web, which is likely to be the combined results of low assimilation efficiencies and efficient metabolic transformation at higher trophic levels.

  9. Trigeminal trophic syndrome with histopathologic correlation.

    PubMed

    Dolohanty, Lindsey B; Richardson, Steven J; Herrmann, David N; Markman, John; Mercurio, Mary Gail

    2015-03-01

    We present the case of a 49-year-old woman with trigeminal trophic syndrome (TTS), also known as trophic trigeminal neuralgia, trigeminal neurotrophic ulceration, and/or trigeminal neuropathy with nasal ulceration. Our case represents an uncommon report of intractable itching and chronic pain associated with TTS. Emphasis was placed on skin biopsy histology, which revealed no neuronal innervation of the affected scalp despite reports of intractable itching and chronic pain. Trigeminal trophic syndrome of the V1 branch of the trigeminal nerve secondary to herpes zoster (HZ) with correlated histology is described. This article provides a discussion of TTS and correlated histology as well as a brief discussion of intractable itching and postherpetic neuralgia.

  10. Trophic Factor Expression in Phrenic Motor Neurons

    PubMed Central

    Mantilla, Carlos B.; Sieck, Gary C.

    2008-01-01

    The function of a motor neuron and the muscle fibers it innervates (i.e., a motor unit) determines neuromotor output. Unlike other skeletal muscles, respiratory muscles (e.g., the diaphragm, DIAm) must function from birth onwards in sustaining ventilation. DIAm motor units are capable of both ventilatory and non-ventilatory behaviors, including expulsive behaviors important for airway clearance. There is significant diversity in motor unit properties across different types of motor units in the DIAm. The mechanisms underlying the development and maintenance of motor unit diversity in respiratory muscles (including the DIAm) are not well understood. Recent studies suggest that trophic factor influences contribute to this diversity. Remarkably little is known about the expression of trophic factors and their receptors in phrenic motor neurons. This review will focus on the contribution of trophic factors to the establishment and maintenance of motor unit diversity in the DIAm, during development and in response to injury or disease. PMID:18708170

  11. Element patterns in albatrosses and petrels: influence of trophic position, foraging range, and prey type.

    PubMed

    Anderson, O R J; Phillips, R A; Shore, R F; McGill, R A R; McDonald, R A; Bearhop, S

    2010-01-01

    We investigated the concentrations of 22 essential and non-essential elements among a community of Procellariiformes (and their prey) to identify the extent to which trophic position and foraging range governed element accumulation. Stable isotope analysis (SIA) was used to characterise trophic (delta(15)N) and spatial patterns (delta(13)C) among species. Few consistent patterns were observed in element distributions among species and diet appeared to be highly influential in some instances. Arsenic levels in seabird red blood cells correlated with delta(15)N and delta(13)C, demonstrating the importance of trophic position and foraging range for arsenic distribution. Arsenic concentrations in prey varied significantly across taxa, and in the strength of association with delta(15)N values (trophic level). In most instances, element patterns in Procellariiformes showed the clearest separation among species, indicating that a combination of prey selection and other complex species-specific characteristics (e.g. moult patterns) were generally more important determining factors than trophic level per se.

  12. Trace elements in organisms of different trophic groups in the White Sea

    NASA Astrophysics Data System (ADS)

    Budko, D. F.; Demina, L. L.; Martynova, D. M.; Gorshkova, O. M.

    2015-09-01

    Concentrations of trace elements (Fe, Mn, Cu, Pb, Ni, Cr, Cd, As, Co, and Se) have been studied in different trophic groups of organisms: primary producers (seston, presented mostly by phytoplankton), primary consumers (mesozooplankton, macrozooplankton, and bivalves), secondary consumers (predatory macrozooplankton and starfish), and consumers of higher trophic levels (fish species), inhabiting the coastal zone of Kandalaksha Bay and the White Sea (Cape Kartesh). The concentrations of elements differ significantly for the size groups of Sagitta elegans (zooplankton) and blue mussel Mytilus edulis, as well as for the bone and muscle tissues of studied fish species, Atlantic cod Gadus morhua marisalbi and Atlantic wolffish Anarhichas lupus. The concentrations of all the studied elements were lower among the primary consumers and producers, but increased again at higher trophic levels, from secondary consumers to tertiary consumers ("mesozooplankton → macrozooplankton Sagitta elegans" and "mussels → starfish"). Ni and Pb tended to decline through the food chains seston→…→cod and mesozooplankton→…→stickleback. Only the concentrations of Fe increased in all the trophic chains along with the increase of the trophic level.

  13. Role of chemical and ecological factors in trophic transfer of organic chemicals in aquatic food webs

    SciTech Connect

    Russell, R.W.; Gobas, F.A.P.C. . School of Resource and Environmental Management); Haffner, G.D. )

    1999-06-01

    Trophic transfer of chlorinated organic contaminants was investigated in an aquatic community composed of zooplankton, benthic invertebrates, and fish. Biomagnification, measured as the increase in lipid-based chemical concentrations in predator over that in prey, was observed for high-K[sub OW] chemicals (log K[sub OW] > 6.3). Low-K[sub OW] chemicals (log K[sub OW] < 5.5) did not biomagnify in the food web, and chemicals with log K[sub OW] between 5.5 and 6.3 showed some evidence of biomagnification. Trophic level differences in chemical accumulation in the food web could not be attributed to bioconcentration into increasing trophic levels with increasing lipid levels, as no relationship was observed between trophic position and lipid content of organisms. Plots of contaminant-ordinated principal component scores in component space predicted the detailed diets of the species examined. It is concluded that (1) trophic interactions play a crucial role in the distribution of high-K[sub OW] chemicals but not for low-K[sub OW] chemicals and that (2) contaminant distributions provide a means to determine structure in aquatic communities.

  14. Ploidy of cell-sorted trophic and cystic forms of Pneumocystis carinii.

    PubMed

    Martinez, Anna; Aliouat, El Moukhtar; Standaert-Vitse, Annie; Werkmeister, Elisabeth; Pottier, Muriel; Pinçon, Claire; Dei-Cas, Eduardo; Aliouat-Denis, Cécile-Marie

    2011-01-01

    Once regarded as an AIDS-defining illness, Pneumocystis pneumonia (PcP) is nowadays prevailing in immunocompromised HIV-negative individuals such as patients receiving immunosuppressive therapies or affected by primary immunodeficiency. Moreover, Pneumocystis clinical spectrum is broadening to non-severely-immunocompromised subjects who could be colonized by the fungus while remaining asymptomatic for PcP, thus being able to transmit the infection by airborne route to susceptible hosts. Although the taxonomical position of the Pneumocystis genus has been clarified, several aspects of its life cycle remain elusive such as its mode of proliferation within the alveolus or its ploidy level. As no long-term culture model exists to grow Pneumocystis organisms in vitro, an option was to use a model of immunosuppressed rat infected with Pneumocystis carinii and sort life cycle stage fractions using a high-through-put cytometer. Subsequently, ploidy levels of the P. carinii trophic and cystic form fractions were measured by flow cytometry. In the cystic form, eight contents of DNA were measured thus strengthening the fact that each mature cyst contains eight haploid spores. Following release, each spore evolves into a trophic form. The majority of the trophic form fraction was haploid in our study. Some less abundant trophic forms displayed two contents of DNA indicating that they could undergo (i) mating/fusion leading to a diploid status or (ii) asexual mitotic division or (iii) both. Even less abundant trophic forms with four contents of DNA were suggestive of mitotic divisions occurring following mating in diploid trophic forms. Of interest, was the presence of trophic forms with three contents of DNA, an unusual finding that could be related to asymmetrical mitotic divisions occurring in other fungal species to create genetic diversity at lower energetic expenses than mating. Overall, ploidy data of P. carinii life cycle stages shed new light on the complexity of its

  15. Ploidy of Cell-Sorted Trophic and Cystic Forms of Pneumocystis carinii

    PubMed Central

    Martinez, Anna; Aliouat, El Moukhtar; Standaert-Vitse, Annie; Werkmeister, Elisabeth; Pottier, Muriel; Pinçon, Claire; Dei-Cas, Eduardo; Aliouat-Denis, Cécile-Marie

    2011-01-01

    Once regarded as an AIDS-defining illness, Pneumocystis pneumonia (PcP) is nowadays prevailing in immunocompromised HIV-negative individuals such as patients receiving immunosuppressive therapies or affected by primary immunodeficiency. Moreover, Pneumocystis clinical spectrum is broadening to non-severely-immunocompromised subjects who could be colonized by the fungus while remaining asymptomatic for PcP, thus being able to transmit the infection by airborne route to susceptible hosts. Although the taxonomical position of the Pneumocystis genus has been clarified, several aspects of its life cycle remain elusive such as its mode of proliferation within the alveolus or its ploidy level. As no long-term culture model exists to grow Pneumocystis organisms in vitro, an option was to use a model of immunosuppressed rat infected with Pneumocystis carinii and sort life cycle stage fractions using a high-through-put cytometer. Subsequently, ploidy levels of the P. carinii trophic and cystic form fractions were measured by flow cytometry. In the cystic form, eight contents of DNA were measured thus strengthening the fact that each mature cyst contains eight haploid spores. Following release, each spore evolves into a trophic form. The majority of the trophic form fraction was haploid in our study. Some less abundant trophic forms displayed two contents of DNA indicating that they could undergo (i) mating/fusion leading to a diploid status or (ii) asexual mitotic division or (iii) both. Even less abundant trophic forms with four contents of DNA were suggestive of mitotic divisions occurring following mating in diploid trophic forms. Of interest, was the presence of trophic forms with three contents of DNA, an unusual finding that could be related to asymmetrical mitotic divisions occurring in other fungal species to create genetic diversity at lower energetic expenses than mating. Overall, ploidy data of P. carinii life cycle stages shed new light on the complexity of its

  16. Laboratory and field assessment of uranium trophic transfer efficiency in the crayfish Orconectes limosus fed the bivalve C. fluminea.

    PubMed

    Simon, Olivier; Garnier-Laplace, Jacqueline

    2005-09-30

    At present, ecotoxicological information regarding the impact of natural uranium (U) on freshwater ecosystems via the trophic contamination route is scarce. We generated an experimental trophic food chain involving the prey species, Corbicula fluminea, and a predator, Orconectes limosus, for a 10-day and a 30-day feeding periods (food ration: one whole soft body/day/crayfish). We studied the efficiency of U trophic transfer and the distribution of U in the predator. During the test, we varied the quantity of dietary U (from beforehand contaminated bivalves at concentrations ranging from 0.9+/-0.1 to 20.2+/-9 microg/g fw provided to each crayfish over the 10 days) applying a daily feeding rate equal to 3.9+/-0.8% fw. The efficiency of U trophic transfer from clams to crayfish varied between 1 and 13% depending on the prey exposure modalities. Accumulation of U was observed in the digestive gland but also in gills, in the muscle, and in the molt of the crayfish after trophic exposure treatments. Under high-level exposure conditions, the digestive gland was the main target-organ, however a significant accumulation was also observed in the stomach. With regard to low levels of trophic exposure, accumulation of U in gills, in the stomach, and in the digestive gland was of the same order of magnitude. Longer exposure period which incorporated a crayfish molt, resulted in a decrease of trophic transfer ratio and a modified U tissue distribution.

  17. Trophic Status Controls Mercury Methylation Pathways in Northern Peats

    NASA Astrophysics Data System (ADS)

    Hines, M. E.; Zhang, L.; Barkay, T.; Krabbenhoft, D. P.; Schaefer, J.; Hu, H.; Sidelinger, W.; Liu, X.; Wang, Y.

    2015-12-01

    Methyl mercury (MeHg) can be produced by a variety of microbes including syntrophs, methanogens, acetogens, and fermenters, besides sulfate (SO42-, SRB) and iron- reducing bacteria. Many freshwater wetlands are deficient in electron acceptors that support the traditional respiratory pathways of methylation, yet they accumulate high levels of MeHg. To investigate methylation in these wetlands and to connect these pathways with vegetation and microbial communities, incubation experiments were conducted using peats from 26 sites in Alaska. The sites were clustered using multiple factor analysis based on pH, temp, CH4 and volatile fatty acids production rates, and surface vegetation composition. Three clusters were generated and corresponded to three trophic levels that were manifested by three pH levels (3.5, 4.5, and 5). Hg methylation activity in laboratory incubations was determined using the short-lived radioisotope 197Hg. In the low pH, Sphagnum-dominated cluster, methylation rates were less than 1% day-1 and likely conducted by primary fermenters. Conversely, the high pH trophic cluster dominated by Carex aquatilis and active syntrophy exhibited Hg methylation rates as high as 12% day-1. In intermediate sites, rich in Sphagnum magellanicum with less Carex, a gradient in syntrophy and Hg methylation paths was observed. Amendments with process-stimulators and inhibitors revealed no evidence of SO42- reduction, but suggested that SRB, metabolizing either syntrophically with methanogens and/or by fermentation, likely methylated Hg. While on going metatranscriptomics studies are required to verify the role of syntrophs, fermenters, and methanogens as methylators, these results revealed that Hg methylation pathways change greatly along trophic gradients with a dominance of respiratory pathways in mineral-rich sites, syntrophy dominance in intermediate sites, and fermentation dominance in nutrient-poor sites.

  18. Trophic structure stability and extinction dynamics of beetles (Coleoptera) in tropical forest fragments

    PubMed Central

    Didham, R. K.

    1998-01-01

    A first analysis of the stability of trophic structure following tropical forest fragmentation was performed in an experimentally fragmented tropical forest landscape in Central Amazonia. A taxonomically and trophically diverse assemblage of 993 species of beetles was sampled from 920 m2 of leaf litter at 46 sites varying in distance from forest edge and fragment area. Beetle density increased significantly towards the forest edge and showed non-linear changes with fragment area, due to the influx of numerous disturbed-area species into 10 ha and 1 ha fragments. There was a marked change in species composition with both decreasing distance from forest edge and decreasing fragment area, but surprisingly this change in composition was not accompanied by a change in species richness. Rarefied species richness did not vary significantly across any of the sites, indicating that local extinctions of deep forest species were balanced by equivalent colonization rates of disturbed-area species. The change in species composition with fragmentation was non-random across trophic groups. Proportions of predator species and xylophage species changed significantly with distance from forest edge, but no area-dependent changes in proportions of species in trophic groups were observed. Trophic structure was also analysed with respect to proportions of abundance in six trophic groups. Proportions of abundance of all trophic groups except xylomycetophages changed markedly with respect to both distance from forest edge and fragment area. Local extinction probabilities calculated for individual beetle species supported theoretical predictions of the differential susceptibility of higher trophic levels to extinction, and of changes in trophic structure following forest fragmentation. To reduce random effects due to sampling error, only abundant species (n = 46) were analysed for extinction probabilities, as defined by absence from samples. Of these common species, 27% had significantly

  19. Isotopic study of mercury sources and transfer between a freshwater lake and adjacent forest food web.

    PubMed

    Kwon, Sae Yun; Blum, Joel D; Nadelhoffer, Knute J; Timothy Dvonch, J; Tsui, Martin Tsz-Ki

    2015-11-01

    Studies of monomethylmercury (MMHg) sources and biogeochemical pathways have been extensive in aquatic ecosystems, but limited in forest ecosystems. Increasing evidence suggests that there is significant mercury (Hg) exchange between aquatic and forest ecosystems. We use Hg stable isotope ratios (δ(202)Hg and Δ(199)Hg) to investigate the relative importance of MMHg sources and assess Hg transfer pathways between Douglas Lake and adjacent forests located at the University of Michigan Biological Station, USA. We characterize Hg isotopic compositions of basal resources and use linear regression of % MMHg versus δ(202)Hg and Δ(199)Hg to estimate Hg isotope values for inorganic mercury (IHg) and MMHg in the aquatic and adjacent forest food webs. In the aquatic ecosystem, we found that lake sediment represents a mixture of IHg pools deposited via watershed runoff and precipitation. The δ(202)Hg and Δ(199)Hg values estimated for IHg are consistent with other studies that measured forest floor in temperate forests. The Δ(199)Hg value estimated for MMHg in the aquatic food web indicates that MMHg is subjected to ~20% photochemical degradation prior to bioaccumulation. In the forest ecosystem, we found a significant negative relationship between total Hg and δ(202)Hg and Δ(199)Hg of soil collected at multiple distances from the lakeshore and lake sediment. This suggests that IHg input from watershed runoff provides an important Hg transfer pathway between the forest and aquatic ecosystems. We measured Δ(199)Hg values for high trophic level insects and compared these insects at multiple distances perpendicular to the lake shoreline. The Δ(199)Hg values correspond to the % canopy cover suggesting that forest MMHg is subjected to varying extents of photochemical degradation and the extent may be controlled by sunlight. Our study demonstrates that the use of Hg isotopes adds important new insight into the relative importance of MMHg sources and complex Hg transfer

  20. Ecological community integration increases with added trophic complexity

    USGS Publications Warehouse

    Wright, Christopher K.

    2008-01-01

    The existence of functional biological organization at the level of multi-species communities has long been contested in ecology and evolutionary biology. I found that adding a trophic level to simulated ecological communities enhanced their ability to compete at the community level, increasing the likelihood of one community forcing all or most species in a second community to extinction. Community-level identity emerged within systems of interacting ecological networks, while competitive ability at the community level was enhanced by intense within-community selection pressure. These results suggest a reassessment of the nature of biological organization above the level of species, indicating that the drive toward biological integration, so prominent throughout the history of life, might extend to multi-species communities.

  1. Convergent, parallel and correlated evolution of trophic morphologies in the subfamily schizothoracinae from the Qinghai-Tibetan plateau.

    PubMed

    Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan

    2012-01-01

    Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP.

  2. Trophic interactions within the Ross Sea continental shelf ecosystem.

    PubMed

    Smith, Walker O; Ainley, David G; Cattaneo-Vietti, Riccardo

    2007-01-29

    The continental shelf of the Ross Sea is one of the Antarctic's most intensively studied regions. We review the available data on the region's physical characteristics (currents and ice concentrations) and their spatial variations, as well as components of the neritic food web, including lower and middle levels (phytoplankton, zooplankton, krill, fishes), the upper trophic levels (seals, penguins, pelagic birds, whales) and benthic fauna. A hypothetical food web is presented. Biotic interactions, such as the role of Euphausia crystallorophias and Pleuragramma antarcticum as grazers of lower levels and food for higher trophic levels, are suggested as being critical. The neritic food web contrasts dramatically with others in the Antarctic that appear to be structured around the keystone species Euphausia superba. Similarly, we suggest that benthic-pelagic coupling is stronger in the Ross Sea than in most other Antarctic regions. We also highlight many of the unknowns within the food web, and discuss the impacts of a changing Ross Sea habitat on the ecosystem.

  3. Trophic interactions within the Ross Sea continental shelf ecosystem

    PubMed Central

    Smith, Walker O; Ainley, David G; Cattaneo-Vietti, Riccardo

    2006-01-01

    The continental shelf of the Ross Sea is one of the Antarctic's most intensively studied regions. We review the available data on the region's physical characteristics (currents and ice concentrations) and their spatial variations, as well as components of the neritic food web, including lower and middle levels (phytoplankton, zooplankton, krill, fishes), the upper trophic levels (seals, penguins, pelagic birds, whales) and benthic fauna. A hypothetical food web is presented. Biotic interactions, such as the role of Euphausia crystallorophias and Pleuragramma antarcticum as grazers of lower levels and food for higher trophic levels, are suggested as being critical. The neritic food web contrasts dramatically with others in the Antarctic that appear to be structured around the keystone species Euphausia superba. Similarly, we suggest that benthic–pelagic coupling is stronger in the Ross Sea than in most other Antarctic regions. We also highlight many of the unknowns within the food web, and discuss the impacts of a changing Ross Sea habitat on the ecosystem. PMID:17405209

  4. Effects of power-plant generated contaminants on trophic relationships in Chesapeake Bay

    SciTech Connect

    Sanders, J.G.; Riedel, G.F.; Connell, D.B.

    1997-09-01

    This project tested the hypothesis that shifts in phytoplankton species composition that occur when Chesapeake Bay phytoplankton communities are chronically exposed to low levels of toxic trace metals can lead to altered (reduced) flow of carbon to higher trophic levels of the conventional food web and increased movement of carbon through microbial food chains and degradation pathways.

  5. Trophic transfer of methyl siloxanes in the marine food web from coastal area of Northern China.

    PubMed

    Jia, Hongliang; Zhang, Zifeng; Wang, Chaoqun; Hong, Wen-Jun; Sun, Yeqing; Li, Yi-Fan

    2015-03-03

    Methyl siloxanes, which belong to organic silicon compounds and have linear and cyclic structures, are of particular concern because of their potential characteristic of persistent, bioaccumulated, toxic, and ecological harm. This study investigated the trophic transfer of four cyclic methyl siloxanes (octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and tetradecamethylcycloheptasiloxane (D7)) in a marine food web from coastal area of Northern China. Trophic magnification of D4, D5, D6, and D7 were assessed as the slope of lipid equivalent concentrations regressed against trophic levels of marine food web configurations. A significant positive correlation (R = 0.44, p < 0.0001) was found between lipid normalized D5 concentrations and trophic levels in organisms, showing the trophic magnification potential of this chemical in the marine food web. The trophic magnification factor (TMF) of D5 was estimated to be 1.77 (95% confidence interval (CI): 1.41-2.24, 99.8% probability of the observing TMF > 1). Such a significant link, however, was not found for D4 (R = 0.14 and p = 0.16), D6 (R = 0.01 and p = 0.92), and D7 (R = -0.15 and p = 0.12); and the estimated values of TMFs (95% CI, probability of the observing TMF > 1) were 1.16 (0.94-1.44, 94.7%), 1.01 (0.84-1.22, 66.9%) and 0.85 (0.69-1.04, 48.6%) for D4, D6, and D7, respectively. The TMF value for the legacy contaminant BDE-99 was also estimated as a benchmark, and a significant positive correlation (R = 0.65, p < 0.0001) was found between lipid normalized concentrations and trophic levels in organisms. The TMF value of BDE-99 was 3.27 (95% CI: 2.49-4.30, 99.7% probability of the observing TMF > 1), showing the strong magnification in marine food webs. To the best of our knowledge, this is the first report on the trophic magnification of methyl siloxanes in China, which provided important information for trophic transformation of these compounds in marine

  6. Trophic status of inland lakes from LANDSAT

    NASA Technical Reports Server (NTRS)

    Fisher, L. T.; Scarpace, F. L.

    1975-01-01

    A first-cut assessment of the trophic status of inland lakes in Wisconsin was obtained from LANDSAT data. To satisfy the criteria of the project, a large and versatile computer program was developed to gain access to LANDSAT data. This analysis technique has proven to be a cost-effective method of classifying inland lakes in Wisconsin.

  7. Modeling lake trophic state: a random forest approach

    EPA Science Inventory

    Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...

  8. Trophic Strategies of a Non-Native and a Native Amphibian Species in Shared Ponds.

    PubMed

    San Sebastián, Olatz; Navarro, Joan; Llorente, Gustavo A; Richter-Boix, Álex

    2015-01-01

    One of the critical factors for understanding the establishment, success and potential impact on native species of an introduced species is a thorough knowledge of how these species manage trophic resources. Two main trophic strategies for resource acquisition have been described: competition and opportunism. In the present study our objective was to identify the main trophic strategies of the non-native amphibian Discoglossus pictus and its potential trophic impact on the native amphibian Bufo calamita. We determine whether D. pictus exploits similar trophic resources to those exploited by the native B. calamita (competition hypothesis) or alternative resources (opportunistic hypothesis). To this end, we analyzed the stable isotope values of nitrogen and carbon in larvae of both species, in natural ponds and in controlled laboratory conditions. The similarity of the δ15N and δ13C values in the two species coupled with isotopic signal variation according to pond conditions and niche partitioning when they co-occurred indicated dietary competition. Additionally, the non-native species was located at higher levels of trophic niches than the native species and B. calamita suffered an increase in its standard ellipse area when it shared ponds with D. pictus. These results suggest niche displacement of B. calamita to non-preferred resources and greater competitive capacity of D. pictus in field conditions. Moreover, D. pictus showed a broader niche than the native species in all conditions, indicating increased capacity to exploit the diversity of resources; this may indirectly favor its invasiveness. Despite the limitations of this study (derived from potential variability in pond isotopic signals), the results support previous experimental studies. All the studies indicate that D. pictus competes with B. calamita for trophic resources with potential negative effects on the fitness of the latter.

  9. Trophic Strategies of a Non-Native and a Native Amphibian Species in Shared Ponds

    PubMed Central

    San Sebastián, Olatz; Navarro, Joan; Llorente, Gustavo A.; Richter-Boix, Álex

    2015-01-01

    One of the critical factors for understanding the establishment, success and potential impact on native species of an introduced species is a thorough knowledge of how these species manage trophic resources. Two main trophic strategies for resource acquisition have been described: competition and opportunism. In the present study our objective was to identify the main trophic strategies of the non-native amphibian Discoglossus pictus and its potential trophic impact on the native amphibian Bufo calamita. We determine whether D. pictus exploits similar trophic resources to those exploited by the native B. calamita (competition hypothesis) or alternative resources (opportunistic hypothesis). To this end, we analyzed the stable isotope values of nitrogen and carbon in larvae of both species, in natural ponds and in controlled laboratory conditions. The similarity of the δ15N and δ13C values in the two species coupled with isotopic signal variation according to pond conditions and niche partitioning when they co-occurred indicated dietary competition. Additionally, the non-native species was located at higher levels of trophic niches than the native species and B. calamita suffered an increase in its standard ellipse area when it shared ponds with D. pictus. These results suggest niche displacement of B. calamita to non-preferred resources and greater competitive capacity of D. pictus in field conditions. Moreover, D. pictus showed a broader niche than the native species in all conditions, indicating increased capacity to exploit the diversity of resources; this may indirectly favor its invasiveness. Despite the limitations of this study (derived from potential variability in pond isotopic signals), the results support previous experimental studies. All the studies indicate that D. pictus competes with B. calamita for trophic resources with potential negative effects on the fitness of the latter. PMID:26101880

  10. Trophic Ecology of Benthic Marine Invertebrates with Bi-Phasic Life Cycles: What Are We Still Missing?

    PubMed

    Calado, Ricardo; Leal, Miguel Costa

    2015-01-01

    The study of trophic ecology of benthic marine invertebrates with bi-phasic life cycles is critical to understand the mechanisms shaping population dynamics. Moreover, global climate change is impacting the marine environment at an unprecedented level, which promotes trophic mismatches that affect the phenology of these species and, ultimately, act as drivers of ecological and evolutionary change. Assessing the trophic ecology of marine invertebrates is critical to understanding maternal investment, larval survival to metamorphosis, post-metamorphic performance, resource partitioning and trophic cascades. Tools already available to assess the trophic ecology of marine invertebrates, including visual observation, gut content analysis, food concentration, trophic markers, stable isotopes and molecular genetics, are reviewed and their main advantages and disadvantages for qualitative and quantitative approaches are discussed. The challenges to perform the partitioning of ingestion, digestion and assimilation are discussed together with different approaches to address each of these processes for short- and long-term fingerprinting. Future directions for research on the trophic ecology of benthic marine invertebrates with bi-phasic life cycles are discussed with emphasis on five guidelines that will allow for systematic study and comparative meta-analysis to address important unresolved questions.

  11. Is the relationship between body size and trophic niche position time-invariant in a predatory fish? First stable isotope evidence.

    PubMed

    Nakazawa, Takefumi; Sakai, Yoichiro; Hsieh, Chih-hao; Koitabashi, Tadatoshi; Tayasu, Ichiro; Yamamura, Norio; Okuda, Noboru

    2010-02-09

    Characterizing relationships between individual body size and trophic niche position is essential for understanding how population and food-web dynamics are mediated by size-dependent trophic interactions. However, whether (and how) intraspecific size-trophic relationships (i.e., trophic ontogeny pattern at the population level) vary with time remains poorly understood. Using archival specimens of a freshwater predatory fish Gymnogobius isaza (Tanaka 1916) from Lake Biwa, Japan, we assembled a long-term (>40 years) time-series of the size-dependence of trophic niche position by examining nitrogen stable isotope ratios (delta(15)N) of the fish specimens. The size-dependence of trophic niche position was defined as the slope of the relationship between delta(15)N and log body size. Our analyses showed that the slope was significantly positive in about 60% of years and null in other years, changing through time. This is the first quantitative (i.e., stable isotope) evidence of long-term variability in the size-trophic relationship in a predatory fish. This finding had implications for the fish trophic dynamics, despite that about 60% of the yearly values were not statistically different from the long-term average. We proposed hypotheses for the underlying mechanism of the time-varying size-trophic relationship.

  12. An assessment of the trophic structure of the Bay of Biscay continental shelf food web: Comparing estimates derived from an ecosystem model and isotopic data

    NASA Astrophysics Data System (ADS)

    Lassalle, G.; Chouvelon, T.; Bustamante, P.; Niquil, N.

    2014-01-01

    Comparing outputs of ecosystem models with estimates derived from experimental and observational approaches is important in creating valuable feedback for model construction, analyses and validation. Stable isotopes and mass-balanced trophic models are well-known and widely used as approximations to describe the structure of food webs, but their consistency has not been properly established as attempts to compare these methods remain scarce. Model construction is a data-consuming step, meaning independent sets for validation are rare. Trophic linkages in the French continental shelf of the Bay of Biscay food webs were recently investigated using both methodologies. Trophic levels for mono-specific compartments representing small pelagic fish and marine mammals and multi-species functional groups corresponding to demersal fish and cephalopods, derived from modelling, were compared with trophic levels calculated from independent carbon and nitrogen isotope ratios. Estimates of the trophic niche width of those species, or groups of species, were compared between these two approaches as well. A significant and close-to-one positive (rSpearman2 = 0.72 , n = 16, p < 0.0001) correlation was found between trophic levels estimated by Ecopath modelling and those derived from isotopic signatures. Differences between estimates were particularly low for mono-specific compartments. No clear relationship existed between indices of trophic niche width derived from both methods. Given the wide recognition of trophic levels as a useful concept in ecosystem-based fisheries management, propositions were made to further combine these two approaches.

  13. Mercury biomagnification in a contaminated estuary food web: effects of age and trophic position using stable isotope analyses.

    PubMed

    Coelho, J P; Mieiro, C L; Pereira, E; Duarte, A C; Pardal, M A

    2013-04-15

    The main aim of this study was to ascertain the biomagnification processes in a mercury-contaminated estuary, by clarifying the trophic web structure through stable isotope ratios. For this purpose, primary producers (seagrasses and macroalgae), invertebrates (detritivores and benthic predators) and fish were analysed for total and organic mercury and for stable carbon and nitrogen isotopic signatures. Trophic structure was accurately described by δ(15)N, while δ(13)C reflected the carbon source for each species. An increase of mercury levels was observed with trophic level, particularly for organic mercury. Results confirm mercury biomagnification to occur in this estuarine food web, especially in the organic form, both in absolute concentrations and fraction of total mercury load. Age can be considered an important variable in mercury biomagnification studies, and data adjustments to account for the different exposure periods may be necessary for a correct assessment of trophic magnification rates and ecological risk.

  14. Adjacent Segment Pathology after Anterior Cervical Fusion

    PubMed Central

    Chung, Jae Yoon; Park, Jong-Beom; Seo, Hyoung-Yeon

    2016-01-01

    Anterior cervical fusion has become a standard of care for numerous pathologic conditions of the cervical spine. However, subsequent development of clinically significant disc disease at levels adjacent to fused discs is a serious long-term complication of this procedure. As more patients live longer after surgery, it is foreseeable that adjacent segment pathology (ASP) will develop in increasing numbers of patients. Also, ASP has been studied more intensively with the recent popularity of motion preservation technologies like total disc arthroplasty. The true nature and scope of ASP remains poorly understood. The etiology of ASP is most likely multifactorial. Various factors including altered biomechanical stresses, surgical disruption of soft tissue and the natural history of cervical disc disease contribute to the development of ASP. General factors associated with disc degeneration including gender, age, smoking and sports may play a role in the development of ASP. Postoperative sagittal alignment and type of surgery are also considered potential causes of ASP. Therefore, a spine surgeon must be particularly careful to avoid unnecessary disruption of the musculoligamentous structures, reduced risk of direct injury to the disc during dissection and maintain a safe margin between the plate edge and adjacent vertebrae during anterior cervical fusion. PMID:27340541

  15. Bioaccumulation and biomagnification of mercury in African lakes: the importance of trophic status.

    PubMed

    Poste, Amanda E; Muir, Derek C G; Guildford, Stephanie J; Hecky, Robert E

    2015-02-15

    Despite the global prevalence of both mercury (Hg) contamination and anthropogenic eutrophication, relatively little is known about the behavior of Hg in eutrophic and hypereutrophic systems or the effects of lake trophic status on Hg uptake and trophodynamics. In the current study we explore Hg trophodynamics at 8 tropical East African study sites ranging from mesotrophic to hypereutrophic, in order to assess the influence of lake trophic status on Hg uptake and biomagnification. Comprehensive water, plankton and fish samples were collected for analysis of total mercury (THg) and stable carbon and nitrogen isotopic ratios. We found evidence that uptake of THg into phytoplankton tended to be lower in higher productivity systems. THg concentrations in fish were generally low, and THg trophic magnification factors (TMFs; representing the average increase in contaminant concentrations from one trophic level to the next) ranged from 1.9 to 5.6. Furthermore TMFs were significantly lower in hypereutrophic lakes than in meso- and eutrophic lakes, and were negatively related to chlorophyll a concentrations both across our study lakes, and across African lakes for which literature data were available. These observations suggest that THg concentrations were strongly influenced by trophic status, with year-round high phytoplankton and fish growth rates reducing the potential for high THg in fish in these productive tropical lakes.

  16. Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador.

    PubMed

    Cabanillas-Terán, Nancy; Loor-Andrade, Peggy; Rodríguez-Barreras, Ruber; Cortés, Jorge

    2016-01-01

    Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP). Diadema mexicanum and Eucidaris thouarsii are the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation. Eucidaris thouarsii is the dominant species in disturbed environments; likewise, their niche amplitude was broader than that of D. mexicanum when conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainly Dictyota spp. (contributions of up to 85% for D. mexicanum and up to 75% for E. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation.

  17. Trophic ecology of sea urchins in coral-rocky reef systems, Ecuador

    PubMed Central

    Loor-Andrade, Peggy; Rodríguez-Barreras, Ruber; Cortés, Jorge

    2016-01-01

    Sea urchins are important grazers and influence reef development in the Eastern Tropical Pacific (ETP). Diadema mexicanum and Eucidaris thouarsii are the most important sea urchins on the Ecuadorian coastal reefs. This study provided a trophic scenario for these two species of echinoids in the coral-rocky reef bottoms of the Ecuadorian coast, using stable isotopes. We evaluated the relative proportion of algal resources assimilated, and trophic niche of the two sea urchins in the most southern coral-rocky reefs of the ETP in two sites with different disturbance level. Bayesian models were used to estimate the contribution of algal sources, niche breadth, and trophic overlap between the two species. The sea urchins behaved as opportunistic feeders, although they showed differential resource assimilation. Eucidaris thouarsii is the dominant species in disturbed environments; likewise, their niche amplitude was broader than that of D. mexicanum when conditions were not optimal. However, there was no niche overlap between the species. The Stable Isotope Analysis in R (SIAR) indicated that both sea urchins shared limiting resources in the disturbed area, mainly Dictyota spp. (contributions of up to 85% for D. mexicanum and up to 75% for E. thouarsii). The Stable Isotope Bayesian Ellipses in R (SIBER) analysis results indicated less interspecific competition in the undisturbed site. Our results suggested a trophic niche partitioning between sympatric sea urchin species in coastal areas of the ETP, but the limitation of resources could lead to trophic overlap and stronger habitat degradation. PMID:26839748

  18. Using stable isotopes to test for trophic niche partitioning: a case study with stream salamanders and fish

    USGS Publications Warehouse

    Sepulveda, Adam; Lowe, Winsor H.; Marra, Peter P.

    2012-01-01

    5. Although we did not identify mechanisms that facilitate salamander and fish coexistence, our empirical data and use of novel approaches to describe the trophic niche did yield important insights on the role of predator–prey interactions and cannibalism as alternative coexistence mechanisms. In addition, we found that 95% kernel estimators are a simple and robust method to describe population-level measure of trophic structure.

  19. The Ontogenetically Variable Trophic Niche of a Praying Mantid Revealed by Stable Isotope Analysis.

    PubMed

    Hurd, Lawrence E; Dehart, Pieter A P; Taylor, Joseph M; Campbell, Meredith C; Shearer, Megan M

    2015-04-01

    Praying mantids have been shown to exert strong influences on arthropod community composition. However, they may not occupy the same trophic level throughout their lives. Trophic shifting over a life cycle could explain the documented variation in results from field studies, but specific interactions of predators within food webs have been difficult to determine simply by comparing control and treatment assemblages in field experiments. We examined the trophic position of the Chinese praying mantid, Tenodera aridifolia sinensis (Saussure), using stable isotope analysis (SIA). We measured the δ(13)C and δ(15)N of field-collected arthropods, and of laboratory groups of mantids fed known diets of these arthropods chosen from the most abundant trophic guilds: herbivores (sap feeders and plant chewers), and carnivores. We also collected mantids from the field over a growing season and compared their SIA values to those of the laboratory groups. Both δ(13)C and δ(15)N of mantids fed carnivorous prey (spiders or other mantids) were higher than those fed herbivores (grasshoppers). SIA values from field-collected mantids were highly variable, and indicated that they did not take prey from trophic guilds in proportion to their abundances, i.e., were not frequency-dependent predators. Further, δ(15)N decreased from a high at egg hatch to a low at the third instar as early nymphs fed mainly on lower trophic levels, and increased steadily thereafter as they shifted to feeding on higher levels. We suggest that the community impact of generalist predators can be strongly influenced by ontogenetic shifts in diet.

  20. Effects of trophic skewing of species richness on ecosystem functioning in a diverse marine community.

    PubMed

    Reynolds, Pamela L; Bruno, John F

    2012-01-01

    Widespread overharvesting of top consumers of the world's ecosystems has "skewed" food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions.

  1. Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    PubMed Central

    Reynolds, Pamela L.; Bruno, John F.

    2012-01-01

    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions. PMID:22693549

  2. Assessment of trophic status in Changjiang (Yangtze) River estuary

    NASA Astrophysics Data System (ADS)

    Wang, Baodong

    2007-07-01

    The integrated methodology for the assessment of estuarine trophic status (ASSETS), which was extended and refined from the United States National Estuarine Eutrophication Assessment (NEEA), is a multi-parameter assessment system and has been widely used in eutrophication assessment in estuarine and coastal waters. The ASSETS was applied to evaluate the trophic status of the Changjiang (Yangtze) River estuary, one of the largest estuaries in the world. The following main results were obtained: (i) The estuarine export potential is “moderate susceptibility” due to the “moderate” dilution potential and “moderate” flushing potential; (ii) The overall human influence (OHI) index classified the impact of nutrients in the system as “high” due to the high level of nutrient discharge by the river which channels anthropogenic impacts in the catchments to the estuarine system; (iii) The overall eutrophic condition (OEC) in the estuary was classified into the “high” category due to frequent occurrence of nuisance and toxic algal blooms in the mixing and seawater zones; (iv) Since the nutrient loadings (e.g., DIN) in the river is expected to continue to increase in the near future following the population increase and rapid economic growth throughout the drainage basin, the nutrient-related symptoms in the estuary are likely to substantially worsen, which leads to the “worsen high” category for the definition of future outlook (DFO). The combinations of the three components (i.e., OHI, OEC, and DFO) lead to an overall grade as “bad” for the trophic status in the Changjiang River estuary.

  3. Trophic magnification of organic chemicals: A global synthesis

    USGS Publications Warehouse

    Walters, David; Jardine, T.D.; Cade, Brian S.; Kidd, K.A.; Muir, D.C.G.; Leipzig-Scott, Peter C.

    2016-01-01

    Production of organic chemicals (OCs) is increasing exponentially, and some OCs biomagnify through food webs to potentially toxic levels. Biomagnification under field conditions is best described by trophic magnification factors (TMFs; per trophic level change in log-concentration of a chemical) which have been measured for more than two decades. Syntheses of TMF behavior relative to chemical traits and ecosystem properties are lacking. We analyzed >1500 TMFs to identify OCs predisposed to biomagnify and to assess ecosystem vulnerability. The highest TMFs were for OCs that are slowly metabolized by animals (metabolic rate kM < 0.01 day–1) and are moderately hydrophobic (log KOW 6–8). TMFs were more variable in marine than freshwaters, unrelated to latitude, and highest in food webs containing endotherms. We modeled the probability that any OC would biomagnify as a combined function of KOW and kM. Probability is greatest (∼100%) for slowly metabolized compounds, regardless of KOW, and lowest for chemicals with rapid transformation rates (kM > 0.2 day–1). This probabilistic model provides a new global tool for screening existing and new OCs for their biomagnification potential.

  4. Isomer-specific trophic transfer of perfluorocarboxylic acids in the marine food web of Liaodong Bay, North China.

    PubMed

    Zhang, Zhong; Peng, Hui; Wan, Yi; Hu, Jianying

    2015-02-03

    Trophic transfers of perfluorocarboxylic acids (PFCAs) have been well studied in aquatic food webs; however, most studies examined PFCAs as single compounds without differentiating isomers. In this study, an in-port derivatization GC-MS method was used to determine PFCA (perfluorooctanoic acid, PFOA; perfluorononanoic acid, PFNA; perfluorodecanoate acid, PFDA; perfluoroundecanoate acid, PFUnDA; perfluorododecanoate acid, PFDoDA; perfluorotridecanoate acid, PFTriDA, and perfluorotetradecanoate acid, PFTeDA) structural isomers in 11 marine species including benthic invertebrates, fishes, and gulls collected in November 2006 from Liaodong Bay in China. The total concentrations of linear PFCAs were 0.35-1.10, 0.93-2.61, and 2.13-2.69 ng/g ww, and the corresponding percentages of branched PFCAs to linear PFCAs were 6.6-15.5%, 4.2-9.9%, and 4.5-6.0% in invertebrates, fishes, and birds, respectively. Except for linear PFOA, significant positive relationships were found between the concentrations of all the target linear PFCAs and trophic levels, and the trophic magnification factors (TMFs) ranged from 1.90 to 4.88. Positive correlations between the concentrations of branched PFCAs isomers and trophic levels were also observed but were without statistical significance. The relatively high biomagnification of linear isomers of PFCAs would lead to low percentages of branched PFCAs to total PFCAs in organisms at high trophic levels. This study for the first time clarified isomer-specific trophic transfers of PFCAs in a marine food web.

  5. Phenological Advances and Trophic Consequences in Low- and High-Arctic Greenland

    NASA Astrophysics Data System (ADS)

    Høye, T. T.; Schmidt, N. M.; Forchhammer, M. C.; Bøving, P. S.; Post, E.

    2009-12-01

    Seasonal timing of reproduction (phenology) is highly responsive to global warming, especially in the Arctic. Here, we present a comparative analysis of multi-annual observational data on phenological dynamics across trophic levels from Zackenberg, North-East Greenland (a High Arctic site) and Kangerlussuaq, West Greenland (a Low Arctic site). Both sites have experienced considerable warming and our analyses indicate that rates of change in plant phenological responses may differ between sites, related to different proximal drivers at the two sites. We also present parallel data on interacting organisms (pollinators and mammalian herbivores) to evaluate the risks and effects of trophic mismatch at these two sites.

  6. Influence of relative trophic position and carbon source on selenium bioaccumulation in turtles from a coal fly-ash spill site.

    PubMed

    Van Dyke, James U; Hopkins, William A; Jackson, Brian P

    2013-11-01

    Selenium (Se) is a bioaccumulative constituent of coal fly-ash that can disrupt reproduction of oviparous wildlife. In food webs, the greatest enrichment of Se occurs at the lowest trophic levels, making it readily bioavailable to higher consumers. However, subsequent enrichment at higher trophic levels is less pronounced, leading to mixed tendencies for Se to biomagnify. We used stable isotopes ((1)(5)N and (13)C) in claws to infer relative trophic positions and relative carbon sources, respectively, of seven turtle species near the site of a recently-remediated coal fly-ash spill. We then tested whether Se concentrations differed with relative trophic position or relative carbon source. We did not observe a strong relationship between δ(15)N and Se concentration. Instead, selenium concentrations decreased with increasing δ(13)C among species. Therefore, in an assemblage of closely-related aquatic vertebrates, relative carbon source was a better predictor of Se bioaccumulation than was relative trophic position.

  7. Assessing trophic position from nitrogen isotope ratios: effective calibration against spatially varying baselines

    NASA Astrophysics Data System (ADS)

    Woodcock, Paul; Edwards, David P.; Newton, Rob J.; Edwards, Felicity A.; Khen, Chey Vun; Bottrell, Simon H.; Hamer, Keith C.

    2012-04-01

    Nitrogen isotope signatures (δ15N) provide powerful measures of the trophic positions of individuals, populations and communities. Obtaining reliable consumer δ15N values depends upon controlling for spatial variation in plant δ15N values, which form the trophic `baseline'. However, recent studies make differing assumptions about the scale over which plant δ15N values vary, and approaches to baseline control differ markedly. We examined spatial variation in the δ15N values of plants and ants sampled from eight 150-m transects in both unlogged and logged rainforests. We then investigated whether ant δ15N values were related to variation in plant δ15N values following baseline correction of ant values at two spatial scales: (1) using `local' means of plants collected from the same transect and (2) using `global' means of plants collected from all transects within each forest type. Plant δ15N baselines varied by the equivalent of one trophic level within each forest type. Correcting ant δ15N values using global plant means resulted in consumer values that were strongly positively related to the transect baseline, whereas local corrections yielded reliable estimates of consumer trophic positions that were largely independent of transect baselines. These results were consistent at the community level and when three trophically distinct ant subfamilies and eight abundant ant species were considered separately. Our results suggest that assuming baselines do not vary can produce misleading estimates of consumer trophic positions. We therefore emphasise the importance of clearly defining and applying baseline corrections at a scale that accounts for spatial variation in plant δ15N values.

  8. Assessing trophic position from nitrogen isotope ratios: effective calibration against spatially varying baselines.

    PubMed

    Woodcock, Paul; Edwards, David P; Newton, Rob J; Edwards, Felicity A; Khen, Chey Vun; Bottrell, Simon H; Hamer, Keith C

    2012-04-01

    Nitrogen isotope signatures (δ(15)N) provide powerful measures of the trophic positions of individuals, populations and communities. Obtaining reliable consumer δ(15)N values depends upon controlling for spatial variation in plant δ(15)N values, which form the trophic 'baseline'. However, recent studies make differing assumptions about the scale over which plant δ(15)N values vary, and approaches to baseline control differ markedly. We examined spatial variation in the δ(15)N values of plants and ants sampled from eight 150-m transects in both unlogged and logged rainforests. We then investigated whether ant δ(15)N values were related to variation in plant δ(15)N values following baseline correction of ant values at two spatial scales: (1) using 'local' means of plants collected from the same transect and (2) using 'global' means of plants collected from all transects within each forest type. Plant δ(15)N baselines varied by the equivalent of one trophic level within each forest type. Correcting ant δ(15)N values using global plant means resulted in consumer values that were strongly positively related to the transect baseline, whereas local corrections yielded reliable estimates of consumer trophic positions that were largely independent of transect baselines. These results were consistent at the community level and when three trophically distinct ant subfamilies and eight abundant ant species were considered separately. Our results suggest that assuming baselines do not vary can produce misleading estimates of consumer trophic positions. We therefore emphasise the importance of clearly defining and applying baseline corrections at a scale that accounts for spatial variation in plant δ(15)N values.

  9. Trophic coherence determines food-web stability

    PubMed Central

    Johnson, Samuel; Domínguez-García, Virginia; Donetti, Luca; Muñoz, Miguel A.

    2014-01-01

    Why are large, complex ecosystems stable? Both theory and simulations of current models predict the onset of instability with growing size and complexity, so for decades it has been conjectured that ecosystems must have some unidentified structural property exempting them from this outcome. We show that trophic coherence—a hitherto ignored feature of food webs that current structural models fail to reproduce—is a better statistical predictor of linear stability than size or complexity. Furthermore, we prove that a maximally coherent network with constant interaction strengths will always be linearly stable. We also propose a simple model that, by correctly capturing the trophic coherence of food webs, accurately reproduces their stability and other basic structural features. Most remarkably, our model shows that stability can increase with size and complexity. This suggests a key to May’s paradox, and a range of opportunities and concerns for biodiversity conservation. PMID:25468963

  10. Trophic coherence determines food-web stability.

    PubMed

    Johnson, Samuel; Domínguez-García, Virginia; Donetti, Luca; Muñoz, Miguel A

    2014-12-16

    Why are large, complex ecosystems stable? Both theory and simulations of current models predict the onset of instability with growing size and complexity, so for decades it has been conjectured that ecosystems must have some unidentified structural property exempting them from this outcome. We show that trophic coherence--a hitherto ignored feature of food webs that current structural models fail to reproduce--is a better statistical predictor of linear stability than size or complexity. Furthermore, we prove that a maximally coherent network with constant interaction strengths will always be linearly stable. We also propose a simple model that, by correctly capturing the trophic coherence of food webs, accurately reproduces their stability and other basic structural features. Most remarkably, our model shows that stability can increase with size and complexity. This suggests a key to May's paradox, and a range of opportunities and concerns for biodiversity conservation.

  11. Increasing trophic complexity influences aphid attendance by ants (Hymenoptera: Formicidae) and predation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species that are involved in multitrophic interactions are affected by the trophic levels that are above and below them in both indirect and direct ways. In this experiment, interactions among ants (Formica montana Wheeler; Hymenoptera: Formicidae), aphids (Myzus persicae [Sulzer]; Hemiptera: Aphidi...

  12. Polychlorinated biphenyls may alter marine trophic pathways by reducing phytoplankton size and production.

    PubMed

    O'Connors, H B; Wurster, C F; Powers, C D; Biggs, D C; Rowland, R G

    1978-08-25

    Polychlorinated biphenyls at concentrations of 1 to 10 micrograms per liter reduced phytoplankton biomass and size in natural estuarine phytoplankton communities grown within dialysis bags in situ in an estuarine marsh. In polychlorinated biphenyls-contaminated waters, these changes could increase the number of trophic levels and divert the flow of biomass from harvestable fish to jellyfish and other gelatinous predators.

  13. Introgressive hybridization in a trophically polymorphic cichlid

    PubMed Central

    Hulsey, C Darrin; García-de-León, Francisco J

    2013-01-01

    Trophically polymorphic species could represent lineages that are rapidly diverging along an ecological axis or could phenotypically mark the collapse of species through introgressive hybridization. We investigated patterns of introgression between the trophically polymorphic cichlid fish Herichthys minckleyi and its relative H. cyanoguttatus using a combination of population genetics and species tree analyses. We first examined the distribution of mitochondrial haplotypes within the alternative H. minckleyi pharyngeal jaw morphotypes that are endemic to the small desert valley of Cuatro Ciénegas. We recovered two clusters of mitochondrial haplotypes. The first contained a number of slightly differentiated cytochrome b (cytb) haplotypes that showed some phylogeographic signal and were present in both jaw morphotypes. The other haplotype was monomorphic, highly differentiated from the other cluster, present in equal frequencies in the morphotypes, and identical to H. cyanoguttatus haplotypes found outside Cuatro Ciénegas. Then, we investigated whether H. minckleyi individuals with the H. cyanoguttatus cytb were more evolutionarily similar to H. cyanoguttatus or other H. minckleyi using a species tree analysis of 84 nuclear loci. Both H. minckleyi pharyngeal morphotypes, regardless of their cytb haplotype, were quite distinct from H. cyanoguttatus. However, hybridization could be blurring subdivision within H. minckleyi as the alternative jaw morphotypes were not genetically distinct from one another. Accounting for introgression from H. cyanoguttatus will be essential to understand the evolution of the trophically polymorphic cichlid H. minckleyi. PMID:24340193

  14. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    USGS Publications Warehouse

    Takekawa, J.Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5-18 g l-1) to hyperhaline (> 40 g l-1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l-1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems. ?? Springer 2006.

  15. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary

    USGS Publications Warehouse

    Takekawa, J.Y.; Miles, A.K.; Schoellhamer, D.H.; Athearn, N.D.; Saiki, M.K.; Duffy, W.D.; Kleinschmidt, S.; Shellenbarger, G.G.; Jannusch, C.A.

    2006-01-01

    Commercial salt evaporation ponds comprise a large proportion of baylands adjacent to the San Francisco Bay, a highly urbanized estuary. In the past two centuries, more than 79% of the historic tidal wetlands in this estuary have been lost. Resource management agencies have acquired more than 10 000 ha of commercial salt ponds with plans to undertake one of the largest wetland restoration projects in North America. However, these plans have created debate about the ecological importance of salt ponds for migratory bird communities in western North America. Salt ponds are unique mesohaline (5–18 g l−1) to hyperhaline (> 40 g l−1) wetlands, but little is known of their ecological structure or value. Thus, we studied decommissioned salt ponds in the North Bay of the San Francisco Bay estuary from January 1999 through November 2001. We measured water quality parameters (salinity, DO, pH, temperature), nutrient concentrations, primary productivity, zooplankton, macroinvertebrates, fish, and birds across a range of salinities from 24 to 264 g l−1. Our studies documented how unique limnological characteristics of salt ponds were related to nutrient levels, primary productivity rates, invertebrate biomass and taxa richness, prey fish, and avian predator numbers. Salt ponds were shown to have unique trophic and physical attributes that supported large numbers of migratory birds. Therefore, managers should carefully weigh the benefits of increasing habitat for native tidal marsh species with the costs of losing these unique hypersaline systems.

  16. Mercury sources and trophic ecology for Hawaiian bottomfish.

    PubMed

    Sackett, Dana K; Drazen, Jeffrey C; Choy, C Anela; Popp, Brian; Pitz, Gerald L

    2015-06-02

    In Hawaii, some of the most important commercial and recreational fishes comprise an assemblage of lutjanids and carangids called bottomfish. Despite their importance, we know little about their trophic ecology or where the mercury (Hg) that ultimately resides in their tissue originates. Here we investigated these topics, by analyzing muscle samples for mercury content, nitrogen, carbon, and amino acid specific nitrogen isotope ratios in six species distributed across different depths from the Northwestern Hawaiian Islands (NWHI) and the Main Hawaiian Islands (MHI). Fishes had different sources of nitrogen and carbon, with isotopic values suggesting benthic food sources for shallow nearshore species. High trophic position lutjanids that foraged in deeper water, benthic environments generally had higher Hg levels. Model results also suggested that benthic Hg methylation was an important source of Hg for shallow benthic feeders, while deepwater sources of mercury may be important for those with a diet that derives, at least in part, from the pelagic environment. Further, despite the lack of freshwater sources of Hg in the NWHI, statistical models explaining the variation in tissue Hg in the MHI and NWHI were nearly identical, suggesting freshwater Hg inputs were not a major source of Hg in fish tissue.

  17. Table scraps: inter-trophic food provisioning by pumas.

    PubMed

    Elbroch, L Mark; Wittmer, Heiko U

    2012-10-23

    Large carnivores perform keystone ecological functions through direct predation, or indirectly, through food subsidies to scavengers or trophic cascades driven by their influence on the distributions of their prey. Pumas (Puma concolor) are an elusive, cryptic species difficult to study and little is known about their inter-trophic-level interactions in natural communities. Using new GPS technology, we discovered that pumas in Patagonia provided 232 ± 31 kg of edible meat/month/100 km(2) to near-threatened Andean condors (Vultur gryphus) and other members of a diverse scavenger community. This is up to 3.1 times the contributions by wolves (Canis lupus) to communities in Yellowstone National Park, USA, and highlights the keystone role large, solitary felids play in natural systems. These findings are more pertinent than ever, for managers increasingly advocate controlling pumas and other large felids to bolster prey populations and mitigate concerns over human and livestock safety, without a full understanding of the potential ecological consequences of their actions.

  18. Table scraps: inter-trophic food provisioning by pumas

    PubMed Central

    Elbroch, L. Mark; Wittmer, Heiko U.

    2012-01-01

    Large carnivores perform keystone ecological functions through direct predation, or indirectly, through food subsidies to scavengers or trophic cascades driven by their influence on the distributions of their prey. Pumas (Puma concolor) are an elusive, cryptic species difficult to study and little is known about their inter-trophic-level interactions in natural communities. Using new GPS technology, we discovered that pumas in Patagonia provided 232 ± 31 kg of edible meat/month/100 km2 to near-threatened Andean condors (Vultur gryphus) and other members of a diverse scavenger community. This is up to 3.1 times the contributions by wolves (Canis lupus) to communities in Yellowstone National Park, USA, and highlights the keystone role large, solitary felids play in natural systems. These findings are more pertinent than ever, for managers increasingly advocate controlling pumas and other large felids to bolster prey populations and mitigate concerns over human and livestock safety, without a full understanding of the potential ecological consequences of their actions. PMID:22696284

  19. Seascape-scale trophic links for fish on inshore coral reefs

    NASA Astrophysics Data System (ADS)

    Davis, Jean P.; Pitt, Kylie A.; Fry, Brian; Olds, Andrew D.; Connolly, Rod M.

    2014-12-01

    It is increasingly accepted that coastal habitats such as inshore coral reefs do not function in isolation but rather as part of a larger habitat network. In the Caribbean, trophic subsidies from habitats adjacent to coral reefs support the diet of reef fishes, but it is not known whether similar trophic links occur on reefs in the Indo-Pacific. Here, we test whether reef fishes in inshore coral, mangrove, and seagrass habitats are supported by trophic links. We used carbon stable isotopes and mathematical mixing models to determine the minimum proportion of resources from mangrove or seagrass habitats in the diet of five fish species from coral reefs at varying distances (0-2,200 m) from these habitats in Moreton Bay, Queensland, eastern Australia. Of the fish species that are more abundant on reefs near to mangroves, Lutjanus russelli and Acanthopagrus australis showed no minimum use of diet sources from mangrove habitat. Siganus fuscescens utilized a minimum of 25-44 % mangrove sources and this contribution increased with the proximity of reefs to mangroves ( R 2 = 0.91). Seagrass or reef flat sources contributed a minimum of 14-78 % to the diet of Diagramma labiosum, a species found in higher abundance on reefs near seagrass beds, but variation in diet among reefs was unrelated to seascape structure. Seagrass or reef flat sources also contributed a minimum of 8-55 % to a fish species found only on reefs ( Pseudolabrus guentheri), indicating that detrital subsidies from these habitats may subsidize fish diet on reefs. These results suggest that carbon sources from multiple habitats contribute to the functioning of inshore coral reef ecosystems and that trophic connectivity between reefs and mangroves may enhance production of a functionally important herbivore.

  20. Habitat contrasts reveal a shift in the trophic position of ant assemblages.

    PubMed

    Gibb, Heloise; Cunningham, Saul A

    2011-01-01

    1. Trophic structure within a guild can be influenced by factors such as resource availability and competition. While ants occupy a wide range of positions in food webs, and ant community composition changes with habitat, it is not well understood if ant genera tend to maintain their position in the trophic structure, or if trophic position varies across habitats. 2. We used ratios of stable isotopes of carbon and nitrogen to test for differences in the trophic structure and position of assemblages of ants among habitat types. We tested for differences between assemblages in replicate sites of the land use categories: (i) pastures with old large trees; (ii) recently revegetated pastures with small young trees; and (iii) remnant woodlands. Known insect herbivores and predatory spiders provided baselines for herbivorous and predaceous arthropods. Soil samples were used to correct for the base level of isotopic enrichment at each site. 3. We found no significant interactions between land use and ant genus for isotope enrichment, indicating that trophic structure is conserved across land use categories. The fixed relative positions of genera in the trophic structure might be re-enforced by competition or some other factor. However, the entire ant assemblage had significantly lower δ(15) N values in revegetated sites, suggesting that ants feed lower down in the food chain i.e. they are more 'herbivorous' in revegetated sites. This may be a result of the high availability of plant sugars, honeydew and herbivorous arthropod prey. 4. Surprisingly, ants in remnants and pastures with trees displayed similar isotopic compositions. Interactions within ant assemblages are thus likely to be resilient to changes in land use, but ant diets in early successional habitats may reflect the simplicity of communities, which may have comparatively lower rates of saprophagy and predation.

  1. Zambian Macrophyte Trophic Ranking scheme (ZMTR): assessing the trophic status of tropical southern African rivers

    NASA Astrophysics Data System (ADS)

    Kennedy, Michael; Lang, Pauline; Tapia Grimaldo, Julissa; Varandas Martins, Sara; Bruce, Alannah; Lowe, Steven; Sichingabula, Henry; Briggs, John; Murphy, Kevin

    2015-04-01

    A new river bioassessment scheme to indicate the trophic status of tropical southern African river systems was developed using newly collected data from macrophyte and water chemistry surveys, conducted during 2006 - 2012. 271 samples were collected from 228 sites in Zambian rivers and associated floodplain waterbodies, mainly located in the five freshwater ecoregions of the world which are primarily represented in Zambia. A typology based on these ecoregions, and three categories of stream order (standing waters; small streams; larger streams and rivers) was set up to structure the data and determine reference conditions for PO4-P. The biomonitoring protocols for the Zambian Macrophyte Trophic Ranking system (ZMTR) were based on schemes used in non-tropical parts of the world, particularly the UK and South Africa, but recalibrated and adapted to reflect tropical conditions and include tropical macrophyte species. Zambian Trophic Ranking Scores (ZTRS-sp) were calculated for each of 225 macrophyte species recorded in the survey, using a quantitative procedure based on relative occurrence of each species in six end sample-groups, of differing mean orthophosphate status, produced by TWINSPAN classification of the dataset. ZMTR-sample values were then calculated based on the occurrence of macrophyte species in each sample. The outcome suggests that the scheme predicts the (mainly mid-range) trophic status of Zambian river systems quite well but tends to underestimate high enrichment, and overestimate the trophic status of some low nutrient rivers. Case studies are presented of application of the methodology, and the potential of the method for hindcasting river trophic status in the wider geographic region is outlined.

  2. Influence of biotransformation on trophic transfer of the PAH, fluoranthene.

    PubMed

    Palmqvist, Annemette; Rasmussen, Lene Juel; Forbes, Valery E

    2006-12-01

    The persistence of polycyclic aromatic hydrocarbons (PAHs) in marine sediments may be influenced by benthic invertebrate bioturbation. Through processes such as deposit-feeding and enhancement of microbial metabolic activity PAHs may be remobilized from the sediment compartment, and either transferred to organisms at higher trophic levels or to the overlying water column, both processes inevitably changing the bioavailability of the PAH. Accumulation of contaminants from one level in the food chain to the next depends on feeding rate and assimilation efficiency, two factors that basically vary with food quality and contaminant type. Though it is generally believed that pre-consumptive biotransformation will reduce bioavailability due to the more polar nature of the metabolites compared to the unchanged parent compound, theoretically the decrease in lipophilicity will increase the sediment/food desorption rate in the intestine, and some metabolites will still be lipophilic enough to be absorbed by passive diffusion. We examined the trophic transfer of the PAH, fluoranthene from two closely related polychaete species (i.e., Capitella sp. I and Capitella sp. S), differing in their biotransformation ability, to the predatory polychaete, Nereis virens. We found that N. virens fed the biotransforming species, Capitella sp. I, accumulated significantly more Flu equivalents compared to worms fed Capitella sp. S, which have a very limited biotransformation ability. The dose-specific increase in N. virens intestinal Flu concentration was approximately twice as high in worms fed Capitella sp. I (equation: gut content=7.3 x dose-3.9) compared to worms fed Capitella sp. S (equation: gut content=3.2 x dose+0.6). In addition, we measured DNA damage, using the comet assay, in N. virens intestinal cells after feeding with the two prey species. We did not detect DNA damage above 'background' levels for worms fed either of the two Capitella species, possibly due to relatively low

  3. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  4. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  5. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  6. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by...

  7. Drivers of trophic amplification of ocean productivity trends in a changing climate

    NASA Astrophysics Data System (ADS)

    Stock, C. A.; Dunne, J. P.; John, J. G.

    2014-12-01

    Pronounced projected 21st century trends in regional oceanic net primary production (NPP) raise the prospect of significant redistributions of marine resources. Recent results further suggest that NPP changes may be amplified at higher trophic levels. Here, we elucidate the role of planktonic food web dynamics in driving projected changes in mesozooplankton production (MESOZP) found to be, on average, twice as large as projected changes in NPP by the latter half of the 21st century under a high emissions scenario in the Geophysical Fluid Dynamics Laboratory's ESM2M-COBALT (Carbon, Ocean Biogeochemistry and Lower Trophics) earth system model. Globally, MESOZP was projected to decline by 7.9% but regional MESOZP changes sometimes exceeded 50%. Changes in three planktonic food web properties - zooplankton growth efficiency (ZGE), the trophic level of mesozooplankton (MESOTL), and the fraction of NPP consumed by zooplankton (zooplankton-phytoplankton coupling, ZPC), explain the projected amplification. Zooplankton growth efficiencies (ZGE) changed with NPP, amplifying both NPP increases and decreases. Negative amplification (i.e., exacerbation) of projected subtropical NPP declines via this mechanism was particularly strong since consumers in the subtropics have limited surplus energy above basal metabolic costs. Increased mesozooplankton trophic level (MESOTL) resulted from projected declines in large phytoplankton production. This further amplified negative subtropical NPP declines but was secondary to ZGE and, at higher latitudes, was often offset by increased ZPC. Marked ZPC increases were projected for high-latitude regions experiencing shoaling of deep winter mixing or decreased winter sea ice - both tending to increase winter zooplankton biomass and enhance grazer control of spring blooms. Increased ZPC amplified projected NPP increases in the Arctic and damped projected NPP declines in the northwestern Atlantic and Southern Ocean. Improved understanding of the

  8. Trophic state determination for shallow coastal lakes from Landsat imagery

    NASA Technical Reports Server (NTRS)

    Welby, C. W.; Witherspoon, A. M.; Holman, R. E., III

    1981-01-01

    A study has been carried out to develop a photo-optical technique by which Landsat imagery can be used to monitor trophic states of lakes. The proposed technique uses a single number to characterize the trophic state, and a feature within the satellite scene is used as an internal standard for comparison of the lakes in time. By use of the technique it is possible to assess in retrospect the trophic state of each individual lake.

  9. Persistent organic pollutants in the Olifants River Basin, South Africa: Bioaccumulation and trophic transfer through a subtropical aquatic food web.

    PubMed

    Verhaert, Vera; Newmark, Nadine; D'Hollander, Wendy; Covaci, Adrian; Vlok, Wynand; Wepener, Victor; Addo-Bediako, Abraham; Jooste, Antoinette; Teuchies, Johannes; Blust, Ronny; Bervoets, Lieven

    2017-05-15

    This study investigates the trophic transfer of persistent organic pollutants (POPs: PCBs, PBDEs, OCPs and PFASs) in the subtropical aquatic ecosystem of the Olifants River Basin (South Africa) by means of trophic magnification factors (TMFs). Relative trophic levels were determined by stable isotope analysis. POP levels in surface water, sediment and biota were low. Only ∑DDTs levels in fish muscle (trophic level and PCB, DDT and HCH concentrations were observed so trophic levels play an important role in the movement of contaminants through the food web. TMFs were >1, indicating biomagnification of all detected POPs. Calculated TMFs for PCBs were comparable to TMF values reported from the tropical Congo River basin and lower than TMFs from temperate and arctic regions. For p,p'-DDT, a higher TMF value was observed for the subtropical Olifants River during the winter low flow season than for the tropical Congo river. TMFs of DDTs from the present study were unexpectedly higher than TMFs from temperate and arctic aquatic food webs. The fish species in the aquatic ecosystem of the Olifants River can be consumed with a low risk for POP contamination.

  10. Adjusting for temporal change in trophic position results in reduced rates of contaminant decline.

    PubMed

    Hebert, Craig E; Weseloh, D V Chip

    2006-09-15

    The development of ecological tracers to track the flow of energy and nutrients through food webs has provided new insights into the factors that are important in regulating diet composition in wildlife. The Great Lakes Herring Gull Monitoring Program has provided information regarding temporal trends in levels of bioaccumulative contaminants since the early 1970s. In recent years, data from this program have also been generated to examine ecological changes in the Great Lakes. Because the contaminants that are evaluated as part of this program biomagnify, food is the primary determinant of contaminant concentrations in the eggs that are analyzed annually. Fluctuations in diet composition could affect the interpretation of temporal trends by affecting exposure to contaminants. Retrospective analyses involving ecological tracers, i.e., stable nitrogen isotopes and fatty acids, have shown temporal change in the diets of Great Lakes herring gulls at some monitoring colonies. These dietary differences have led to temporal variation in the trophic position of herring gulls. Given that higher trophic level organisms incur greater exposure to biomagnifying contaminants, it is necessary to adjust for these temporal changes in trophic position to get an accurate indication of how contaminant burdens are changing within the Great Lakes ecosystem. Here, we outline a method to adjust for temporal changes in indicator species trophic position and discuss how these adjustments affect the interpretation of contaminant temporal trend monitoring data.

  11. Effects of an invasive plant transcend ecosystem boundaries through a dragonfly-mediated trophic pathway.

    PubMed

    Burkle, Laura A; Mihaljevic, Joseph R; Smith, Kevin G

    2012-12-01

    Trophic interactions can strongly influence the structure and function of terrestrial and aquatic communities through top-down and bottom-up processes. Species with life stages in both terrestrial and aquatic systems may be particularly likely to link the effects of trophic interactions across ecosystem boundaries. Using experimental wetlands planted with purple loosestrife (Lythrum salicaria), we tested the degree to which the bottom-up effects of floral density of this invasive plant could trigger a chain of interactions, changing the behavior of terrestrial flying insect prey and predators and ultimately cascading through top-down interactions to alter lower trophic levels in the aquatic community. The results of our experiment support the linkage of terrestrial and aquatic food webs through this hypothesized pathway, with high loosestrife floral density treatments attracting high levels of visiting insect pollinators and predatory adult dragonflies. High floral densities were also associated with increased adult dragonfly oviposition and subsequently high larval dragonfly abundance in the aquatic community. Finally, high-flower treatments were coupled with changes in zooplankton species richness and shifts in the composition of zooplankton communities. Through changes in animal behavior and trophic interactions in terrestrial and aquatic systems, this work illustrates the broad and potentially cryptic effects of invasive species, and provides additional compelling motivation for ecologists to conduct investigations that cross traditional ecosystem boundaries.

  12. Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem.

    PubMed

    Shackell, Nancy L; Frank, Kenneth T; Fisher, Jonathan A D; Petrie, Brian; Leggett, William C

    2010-05-07

    Globally, overfishing large-bodied groundfish populations has resulted in substantial increases in their prey populations. Where it has been examined, the effects of overfishing have cascaded down the food chain. In an intensively fished area on the western Scotian Shelf, Northwest Atlantic, the biomass of prey species increased exponentially (doubling time of 11 years) even though the aggregate biomass of their predators remained stable over 38 years. Concomitant reductions in herbivorous zooplankton and increases in phytoplankton were also evident. This anomalous trophic pattern led us to examine how declines in predator body size (approx. 60% in body mass since the early 1970s) and climatic regime influenced lower trophic levels. The increase in prey biomass was associated primarily with declines in predator body size and secondarily to an increase in stratification. Sea surface temperature and predator biomass had no influence. A regression model explained 65 per cent of prey biomass variability. Trait-mediated effects, namely a reduction in predator size, resulted in a weakening of top predation pressure. Increased stratification may have enhanced growing conditions for prey fish. Size-selective harvesting under changing climatic conditions initiated a trophic restructuring of the food chain, the effects of which may have influenced three trophic levels.

  13. Trophic ecology of sharks in the mid-east pacific ocean inferred from stable isotopes

    NASA Astrophysics Data System (ADS)

    Li, Yunkai; Gong, Yi; Chen, Xinjun; Dai, Xiaojie; Zhu, Jiangfeng

    2013-11-01

    As apex predators, sharks are of ecological and conservation importance in marine ecosystems. In this study, trophic positions of sharks were estimated using stable isotope ratios of carbon and nitrogen for five representative species caught by the Chinese longline fleet in the mid-east Pacific, i.e., the blue shark (Prionace glauca), the bigeye thresher shark (Alopias superciliosus), the silky shark (Carcharhinus falciformis), the scalloped hammerhead (Sphyrna lewini), and the oceanic whitetip shark (Carcharhinus longimanus). Of these species, oceanic whitetip shark has the lowest trophic level and mean δ15N value (3.9 and 14.93‰ ± 0.84‰), whereas bigeye thresher shark has the highest level/values (4.5 and 17.02‰ ± 1.21‰, respectively). The bigeye thresher shark has significantly higher δ15N value than other shark species, indicating its higher trophic position. The blue shark and oceanic whitetip shark has significantly higher δ13C values than bigeye thresher shark, silky shark and scalloped hammerhead, possibly due to different diets and/or living habitats. The stable isotope data and stomach content data are highly consistent, suggesting that stable isotope analysis supplements traditional feeding ecology study of sharks, and thus contributes to understanding their trophic linkage.

  14. Trophic partitioning in tropical rain forest birds: insights from stable isotope analysis.

    PubMed

    Herrera, L Gerardo; Hobson, Keith A; Rodríguez, Malinalli; Hernandez, Patricia

    2003-08-01

    Bird communities reach their highest taxonomic and trophic diversity in tropical rain forest, but the use of different foraging strategies to meet food requirements in such competitive environments is poorly understood. Conventional dietary analyses are poorly suited to investigate dietary patterns in complex systems. We used stable carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) isotope analysis of whole blood to examine avian trophic patterns and sources of diet in the tropical rain forest of Los Tuxtlas, Veracruz, Mexico. We used stable nitrogen isotope analysis to delineate trophic levels, and stable carbon isotope analysis to distinguish the relative contribution of C-3 and CAM/C-4 ultimate sources of proteins to diets. There was large inter- and intraspecific variation in whole blood delta(13)C and delta(15)N values in 23 species of birds. Stable nitrogen isotope analysis separated birds into several trophic levels, including species that obtained their dietary protein mostly from plants, insects or a combination of both food sources. Stable carbon isotope analysis showed that most birds fed on C3-based foods but Stub-tailed Spadebills (Platyrinchus cancrominus) included C-3- and C-4/CAM-specialist individuals. Our analyses provided insights into the nutritional contribution of plant and animal sources of protein and distinguish their photosynthetic origin over relatively long average time periods.

  15. A trophic model for the Danshuei River Estuary, a hypoxic estuary in northern Taiwan.

    PubMed

    Lin, Hsing-Juh; Shao, Kwang-Tsao; Jan, Rong-Quen; Hsieh, Hwey-Lian; Chen, Chang-Po; Hsieh, Li-Yung; Hsiao, Yi-Ting

    2007-11-01

    The estuary of the Danshuei River, a hypoxic subtropical estuary, receives a high rate of untreated sewage effluent. The Ecopath with Ecosim software system was used to construct a mass-balanced trophic model for the estuary, and network analysis was used to characterize the structure and matter flow in the food web. The estuary model was comprised of 16 compartments, and the trophic levels varied from 1.0 for primary producers and detritus to 3.0 for carnivorous and piscivorous fishes. The large organic nutrient loading from the upper reaches has resulted in detritivory being more important than herbivory in the food web. The food-chain length of the estuary was relatively short when compared with other tropical/subtropical coastal systems. The shortness of food-chain length in the estuary could be attributed to the low biomass of the top predators. Consequently, the trophic efficiencies declined sharply for higher trophic levels due to low fractions of flows to the top predators and then high fractions to detritus. The low biomass of the top predators in the estuary was likely subject to over-exploitation and/or hypoxic water. Summation of individual rate measurements for primary production and respiration yielded an estimate of -1791 g WW m(-2) year(-1), or -95 g C m(-2) year(-1), suggesting a heterotrophic ecosystem, which implies that more organic matter was consumed than was produced in the estuary.

  16. Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem

    PubMed Central

    Shackell, Nancy L.; Frank, Kenneth T.; Fisher, Jonathan A. D.; Petrie, Brian; Leggett, William C.

    2010-01-01

    Globally, overfishing large-bodied groundfish populations has resulted in substantial increases in their prey populations. Where it has been examined, the effects of overfishing have cascaded down the food chain. In an intensively fished area on the western Scotian Shelf, Northwest Atlantic, the biomass of prey species increased exponentially (doubling time of 11 years) even though the aggregate biomass of their predators remained stable over 38 years. Concomitant reductions in herbivorous zooplankton and increases in phytoplankton were also evident. This anomalous trophic pattern led us to examine how declines in predator body size (approx. 60% in body mass since the early 1970s) and climatic regime influenced lower trophic levels. The increase in prey biomass was associated primarily with declines in predator body size and secondarily to an increase in stratification. Sea surface temperature and predator biomass had no influence. A regression model explained 65 per cent of prey biomass variability. Trait-mediated effects, namely a reduction in predator size, resulted in a weakening of top predation pressure. Increased stratification may have enhanced growing conditions for prey fish. Size-selective harvesting under changing climatic conditions initiated a trophic restructuring of the food chain, the effects of which may have influenced three trophic levels. PMID:20031989

  17. Dietary back-calculation using stable isotopes: can activities of enzymes involved in amino acid metabolism be used to improve estimates of trophic shifts in fish?

    PubMed

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    2007-06-01

    The aim of this study was (1) to assess the effects of dietary protein content and feeding level on trophic shifts of C and N isotopes (Delta delta(13)C(tissue-diet) and Delta delta(15)N(tissue-diet)) and (2) to test whether the measurement of the activities of two enzymes involved in the metabolism of amino acids could improve the accuracy of estimation of the trophic shifts of C and N isotopes. For this, 36 Nile tilapia (Oreochromis niloticus) were kept under controlled conditions for 8 weeks and fed at three different levels (2, 4 and 8 g kg(-0.8) d(-1)) with three diets differing in their protein content only (20, 29 and 39 %). For each fish, food to fish body trophic shifts of C and N isotopes were measured as well as the hepatic activities of aspartate aminotransferase (ASAT) and glutamate dehydrogenase (GDH). The feeding level affected the activities of ASAT and GDH as well as the trophic shifts of C and N isotopes significantly but the dietary protein content had no significant effect except on the specific activity of ASAT. Fish fed at the lowest level had significantly higher trophic shifts of C and N isotopes than fish fed at higher levels. The trophic shifts were significantly lower in fish with a high protein utilisation. Values of the 'goodness-of-fit' for linear regressions between enzyme activities and trophic shifts were low. Thus, activities of ASAT and GDH are not suitable for predicting estimates of trophic shifts in situations where the amount of food consumed or the dietary protein content is not known. In further studies, activities of enzymes involved in the metabolism of amino acids combined with measurements of the activities of other enzymes should be used to try and improve the accuracy of estimates of trophic shifts.

  18. Soil microcosm for testing the effects of chemical pollutants on soil fauna communities and trophic structure

    SciTech Connect

    Parmelee, R.W. . Dept. of Entomology); Wentsel, R.S.; Phillips, C.T.; Checkai, R.T. ); Simini, M. )

    1993-08-01

    A microcosm technique is presented that uses community and trophic-level analysis of soil nematodes and microarthropods to determine the effects of chemicals on soil systems. Forest soil was treated with either copper, p-nitrophenol, or trinitrotoluene. Nematodes were sorted into bacterivore, fungivore, herbivore, and omnivore-predator trophic groups, and a hatchling category. Microarthropods were sorted to the acarine suborders Prostigmata, Mesostigmata, and Oribatida; the insectan order Collembola; and a miscellaneous group. Omnivore-predator nematodes and meso-stigmatid and oribatid mites were the groups most sensitive to copper and were significantly reduced at levels as low as 100 [mu]g g[sup [minus]1] copper. Total nematode and microarthropod numbers declined above 200 [mu]g g[sup [minus]1] copper. Trophic structure analysis suggested that high sensitivity of nematode predators to intermediate levels of copper reduced predation on herbivore nematodes and resulted in greater numbers of nematodes compared to controls. p-Nitrophenol was very toxic to the nematode community, and all trophic groups were significantly reduced above 20 [mu]g g[sup [minus]1]. However, there was no effect of p-nitrophenol on microarthropods. Trinitrotoluene had no significant negative effect on total abundance of either groups of soil fauna, but oribatids were significantly reduced at 200 [mu]g g[sup [minus]1]. The results demonstrated that soil nematodes and microarthropods were sensitive indicators of environmental contaminants and that trophic-structure and community analysis has the potential to detect more subtle indirect effects of chemicals on soil food-web structure. The authors conclude that microcosms with field communities of soil microfauna offer high resolution of the ecotoxicological effects of chemicals in complex soil systems.

  19. Trophic flow structure of the Danajon ecosystem (Central Philippines) and impacts of illegal and destructive fishing practices

    NASA Astrophysics Data System (ADS)

    Bacalso, Regina Therese M.; Wolff, Matthias

    2014-11-01

    A trophic model of the shallow Danajon Bank, in the Central Visayas, Philippines was developed using a mass-balance approach (Ecopath) to describe the system characteristics and fisheries interactions. The Ecopath model is composed of 37 functional groups and 17 fishing fleet types reflecting the high diversity of catches and fishing operations in the Danajon Bank. Collectively, the catch is dominated by lower trophic level fish and invertebrates as reflected in the mean trophic level of the fishery (2.95). The low biomass and high exploitation levels for many upper trophic level groups and the little evidence for strong natural physical disturbances suggest that top-down fishery is the main driver of system dynamics. The mixed trophic impacts (MTI) analysis reveals the role of the illegal and destructive fishing operations in influencing the ecosystem structure and dynamics. Furthermore, the illegal fisheries' estimated collective annual harvest is equivalent to nearly a quarter of the entire municipal fisheries catch in the area. Improved fisheries law enforcement by the local government units to curb these illegal and destructive fishing operations could substantially increase the potential gains of the legal fisheries.

  20. Consequences of omnivory for trophic interactions on a salt marsh shrub.

    PubMed

    Ho, Chuan-Kai; Pennings, Steven C

    2008-06-01

    Although omnivory is common in nature, its impact on trophic interactions is variable. Predicting the food web consequences of omnivory is complicated because omnivores can simultaneously produce conflicting direct and indirect effects on the same species or trophic level. We conducted field and laboratory experiments testing the top-down impacts of an omnivorous salt marsh crab, Armases cinereum, on the shrub Iva frutescens and its herbivorous and predatory arthropod fauna. Armases is a "true omnivore," consuming both Iva and arthropods living on Iva. We hypothesized that Armases would benefit Iva through a top-down trophic cascade, and that this benefit would be stronger than the direct negative effect of Armases on Iva. A field experiment on Sapelo Island, Georgia (USA), supported this hypothesis. Although Armases suppressed predators (spiders), it also suppressed herbivores (aphids), and benefited Iva, increasing leaf number, and reducing the proportion of dead shoots. A one-month laboratory experiment, focusing on the most common species in the food web, also supported this hypothesis. Armases strongly suppressed aphids and consumed fewer Iva leaves if aphids were available as an alternate diet. Armases gained more body mass if they could feed on aphids as well as on Iva. Although Armases had a negative effect on Iva when aphids were not present, Armases benefited Iva if aphids were present, because Armases controlled aphid populations, releasing Iva from herbivory. Although Armases is an omnivore, it produced strong top-down forces and a trophic cascade because it fed preferentially on herbivores rather than plants when both were available. At the same time, the ability of Armases to subsist on a plant diet allows it to persist in the food web when animal food is not available. Because omnivores feed on multiple trophic levels, their effects on food webs may differ from those predicted by standard trophic models that assume that each species feeds only on a

  1. Demographic and Phenotypic Effects of Human Mediated Trophic Subsidy on a Large Australian Lizard (Varanus varius): Meal Ticket or Last Supper?

    PubMed Central

    Jessop, Tim S.; Smissen, Peter; Scheelings, Franciscus; Dempster, Tim

    2012-01-01

    Humans are increasingly subsidizing and altering natural food webs via changes to nutrient cycling and productivity. Where human trophic subsidies are concentrated and persistent within natural environments, their consumption could have complex consequences for wild animals through altering habitat preferences, phenotypes and fitness attributes that influence population dynamics. Human trophic subsidies conceptually create both costs and benefits for animals that receive increased calorific and altered nutritional inputs. Here, we evaluated the effects of a common terrestrial human trophic subsidies, human food refuse, on population and phenotypic (comprising morphological and physiological health indices) parameters of a large predatory lizard (∼2 m length), the lace monitor (Varanus varius), in southern Australia by comparison with individuals not receiving human trophic subsidies. At human trophic subsidies sites, lizards were significantly more abundant and their sex ratio highly male biased compared to control sites in natural forest. Human trophic subsidies recipient lizards were significantly longer, heavier and in much greater body condition. Blood parasites were significantly lower in human trophic subsidies lizards. Collectively, our results imply that human trophic subsidized sites were especially attractive to adult male lace monitors and had large phenotypic effects. However, we cannot rule out that the male-biased aggregations of large monitors at human trophic subsidized sites could lead to reductions in reproductive fitness, through mate competition and offspring survival, and through greater exposure of eggs and juveniles to predation. These possibilities could have negative population consequences. Aggregations of these large predators may also have flow on effects to surrounding food web dynamics through elevated predation levels. Given that flux of energy and nutrients into food webs is central to the regulation of populations and their

  2. Trophic cascade alters ecosystem carbon exchange.

    PubMed

    Strickland, Michael S; Hawlena, Dror; Reese, Aspen; Bradford, Mark A; Schmitz, Oswald J

    2013-07-02

    Trophic cascades--the indirect effects of carnivores on plants mediated by herbivores--are common across ecosystems, but their influence on biogeochemical cycles, particularly the terrestrial carbon cycle, are largely unexplored. Here, using a (13)C pulse-chase experiment, we demonstrate how trophic structure influences ecosystem carbon dynamics in a meadow system. By manipulating the presence of herbivores and predators, we show that even without an initial change in total plant or herbivore biomass, the cascading effects of predators in this system begin to affect carbon cycling through enhanced carbon fixation by plants. Prolonged cascading effects on plant biomass lead to slowing of carbon loss via ecosystem respiration and reallocation of carbon among plant aboveground and belowground tissues. Consequently, up to 1.4-fold more carbon is retained in plant biomass when carnivores are present compared with when they are absent, owing primarily to greater carbon storage in grass and belowground plant biomass driven largely by predator nonconsumptive (fear) effects on herbivores. Our data highlight the influence that the mere presence of predators, as opposed to direct consumption of herbivores, can have on carbon uptake, allocation, and retention in terrestrial ecosystems.

  3. Trophic dynamics influence climate at high latitudes

    NASA Astrophysics Data System (ADS)

    Oksanen, L.; Tuomi, M.; Hoset, K.; Oksanen, T.; Olofsson, J.; Dahlgren, J.; Nordic Center of Excellence-Tundra

    2011-12-01

    Abundance relationships between tall woody plants and low herbaceous plants influence ground albedo. Increasing abundance of erect woody plants on the tundra increase the amount of solar energy converted to heat, thus speeding up global warming. By transplanting vegetation blocks from an island with predatory mammals and gray-sided voles (Myodes rufocanus) to similar habitats on islands with gray-sided voles but no resident predators and to islands with neither voles nor predators, we show that changing trophic dynamics radically change the abundance relationships between woody and herbaceous plants. Impacts of food limited gray-sided voles result to devastation of all erect woody plants, regardless of their palatability, thus differing both quantitatively and qualitatively from the selective impacts of the same species in the presence of predators. The shift from vegetation dominated by erect woody plants to vegetation dominated by herbs or trailing dwarf shrubs also increases ground albedo. The relationship between climate and trophic dynamics is thus no one way street. Rather than responding passively to changes in climate, food webs can also influence climate via their impacts on ground albedo.

  4. Is the macrophyte diversification along the trophic gradient distinct enough for river monitoring?

    PubMed

    Szoszkiewicz, Krzysztof; Budka, Anna; Pietruczuk, Karol; Kayzer, Dariusz; Gebler, Daniel

    2016-12-01

    The variation of a number of parameters characterizing aquatic plant assemblages in rivers across a wide trophic gradient was investigated to evaluate their usefulness for a Polish national river monitoring system. Analyses were conducted at 100 sites included in the national river monitoring system, representing a uniform river type, i.e., small- and medium-sized lowland rivers with a sandy substrate. Results of botanical surveys, which were supplemented with comprehensive monthly quality records, were obtained from the national monitoring database. By analyzing the Jaccard distances of the botanical metrics using the adonis function, the variation in species composition between rivers of different trophic status was determined. The group consisting of the most degraded rivers was the most homogeneous in terms of botanical composition. The cleanest rivers displayed a high level of heterogeneity within their group, as numerous different unique species were found there at low frequencies. The variation of the macrophyte metrics used to assess the ecological status (Macrophyte Index for Rivers (MIR) and River Macrophyte Nutrient Index (RMNI)) reflected a trophic gradient. We confirmed that vegetation diversification along a trophic gradient is evident enough to detect degradation in a five quality class system.

  5. Diet compositions and trophic guild structure of the eastern Chukchi Sea demersal fish community

    NASA Astrophysics Data System (ADS)

    Whitehouse, George A.; Buckley, Troy W.; Danielson, Seth L.

    2017-01-01

    Fishes are an important link in Arctic marine food webs, connecting production of lower trophic levels to apex predators. We analyzed 1773 stomach samples from 39 fish species collected during a bottom trawl survey of the eastern Chukchi Sea in the summer of 2012. We used hierarchical cluster analysis of diet dissimilarities on 21 of the most well sampled species to identify four distinct trophic guilds: gammarid amphipod consumers, benthic invertebrate generalists, fish and shrimp consumers, and zooplankton consumers. The trophic guilds reflect dominant prey types in predator diets. We used constrained analysis of principal coordinates (CAP) to determine if variation within the composite guild diets could be explained by a suite of non-diet variables. All CAP models explained a significant proportion of the variance in the diet matrices, ranging from 7% to 25% of the total variation. Explanatory variables tested included latitude, longitude, predator length, depth, and water mass. These results indicate a trophic guild structure is present amongst the demersal fish community during summer in the eastern Chukchi Sea. Regular monitoring of the food habits of the demersal fish community will be required to improve our understanding of the spatial, temporal, and interannual variation in diet composition, and to improve our ability to identify and predict the impacts of climate change and commercial development on the structure and functioning of the Chukchi Sea ecosystem.

  6. The interacting effects of temperature and food chain length on trophic abundance and ecosystem function.

    PubMed

    Beveridge, Oliver S; Humphries, Stuart; Petchey, Owen L

    2010-05-01

    1. While much is known about the independent effects of trophic structure and temperature on density and ecosystem processes, less is known about the interaction(s) between the two. 2. We manipulated the temperature of laboratory-based bacteria-protist communities that contained communities with one, two, or three trophic levels, and recorded species' densities and bacterial decomposition. 3. Temperature, food chain length and their interaction produced significant responses in microbial density and bacterial decomposition. Prey and resource density expressed different patterns of temperature dependency during different phases of population dynamics. The addition of a predator altered the temperature-density relationship of prey, from a unimodal trend to a negative one. Bacterial decomposition was greatest in the presence of consumers at higher temperatures. 4. These results are qualitatively consistent with a recent model of direct and indirect temperature effects on resource-consumer population dynamics. Results highlight and reinforce the importance of indirect effects of temperature mediated through trophic interactions. Understanding and predicting the consequences of environmental change will require that indirect effects, trophic structure, and individual species' tolerances be incorporated into theory and models.

  7. Trophic Structure in a Seabird Host-Parasite Food Web: Insights from Stable Isotope Analyses

    PubMed Central

    Gómez-Díaz, Elena; González-Solís, Jacob

    2010-01-01

    Ecological studies on food webs rarely include parasites, partly due to the complexity and dimensionality of host-parasite interaction networks. Multiple co-occurring parasites can show different feeding strategies and thus lead to complex and cryptic trophic relationships, which are often difficult to disentangle by traditional methods. We analyzed stable isotope ratios of C (13C/12C, δ13C) and N (15N/14N, δ15N) of host and ectoparasite tissues to investigate trophic structure in 4 co-occurring ectoparasites: three lice and one flea species, on two closely related and spatially segregated seabird hosts (Calonectris shearwaters). δ13C isotopic signatures confirmed feathers as the main food resource for the three lice species and blood for the flea species. All ectoparasite species showed a significant enrichment in δ15N relatively to the host tissue consumed (discrimination factors ranged from 2 to 5‰ depending on the species). Isotopic differences were consistent across multiple host-ectoparasite locations, despite of some geographic variability in baseline isotopic levels. Our findings illustrate the influence of both ectoparasite and host trophic ecology in the isotopic structuring of the Calonectris ectoparasite community. This study highlights the potential of stable isotope analyses in disentangling the nature and complexity of trophic relationships in symbiotic systems. PMID:20454612

  8. Trophic Niche in a Raptor Species: The Relationship between Diet Diversity, Habitat Diversity and Territory Quality

    PubMed Central

    2015-01-01

    Recent research reports that many populations of species showing a wide trophic niche (generalists) are made up of both generalist individuals and individuals with a narrow trophic niche (specialists), suggesting trophic specializations at an individual level. If true, foraging strategies should be associated with individual quality and fitness. Optimal foraging theory predicts that individuals will select the most favourable habitats for feeding. In addition, the “landscape heterogeneity hypothesis” predicts a higher number of species in more diverse landscapes. Thus, it can be predicted that individuals with a wider realized trophic niche should have foraging territories with greater habitat diversity, suggesting that foraging strategies, territory quality and habitat diversity are inter-correlated. This was tested for a population of common kestrels Falco tinnunculus. Diet diversity, territory occupancy (as a measure of territory quality) and habitat diversity of territories were measured over an 8-year period. Our results show that: 1) territory quality was quadratically correlated with habitat diversity, with the best territories being the least and most diverse; 2) diet diversity was not correlated with territory quality; and 3) diet diversity was negatively correlated with landscape heterogeneity. Our study suggests that niche generalist foraging strategies are based on an active search for different prey species within or between habitats rather than on the selection of territories with high habitat diversity. PMID:26047025

  9. Seismicity in Azerbaijan and Adjacent Caspian Sea

    SciTech Connect

    Panahi, Behrouz M.

    2006-03-23

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicate that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.

  10. Trophic and environmental drivers of the Sechura Bay Ecosystem (Peru) over an ENSO cycle

    NASA Astrophysics Data System (ADS)

    Taylor, Marc H.; Wolff, Matthias; Vadas, Flora; Yamashiro, Carmen

    2008-03-01

    Interannual environmental variability in Peru is dominated by the El Niño Southern Oscillation (ENSO). The most dramatic changes are associated with the warm El Niño (EN) phase (opposite the cold La Niña phase), which disrupts the normal coastal upwelling and affects the dynamics of many coastal marine and terrestrial resources. This study presents a trophic model for Sechura Bay, located at the northern extension of the Peruvian upwelling system, where ENSO-induced environmental variability is most extreme. Using an initial steady-state model for the year 1996, we explore the dynamics of the ecosystem through the year 2003 (including the strong EN of 1997/98 and the weaker EN of 2002/03). Based on support from literature, we force biomass of several non-trophically-mediated ‘drivers’ (e.g. Scallops, Benthic detritivores, Octopus, and Littoral fish) to observe whether the fit between historical and simulated changes (by the trophic model) is improved. The results indicate that the Sechura Bay Ecosystem is a relatively inefficient system from a community energetics point of view, likely due to the periodic perturbations of ENSO. A combination of high system productivity and low trophic level target species of invertebrates (i.e. scallops) and fish (i.e. anchoveta) results in high catches and an efficient fishery. The importance of environmental drivers is suggested, given the relatively small improvements in the fit of the simulation with the addition of trophic drivers on remaining functional groups’ dynamics. An additional multivariate regression model is presented for the scallop Argopecten purpuratus, which demonstrates a significant correlation between both spawning stock size and riverine discharge-mediated mortality on catch levels. These results are discussed in the context of the appropriateness of trophodynamic modeling in relatively open systems, and how management strategies may be focused given the highly environmentally influenced marine

  11. Trophic Niche Differentiation in Rodents and Marsupials Revealed by Stable Isotopes

    PubMed Central

    Galetti, Mauro; Rodarte, Raisa Reis; Neves, Carolina Lima; Moreira, Marcelo; Costa-Pereira, Raul

    2016-01-01

    Tropical rainforests support the greatest diversity of small mammals in the world, yet we have little understanding about the mechanisms that promote the coexistence of species. Diet partitioning can favor coexistence by lessening competition, and interspecific differences in body size and habitat use are usually proposed to be associated with trophic divergence. However, the use of classic dietary methods (e.g. stomach contents) is challenging in small mammals, particularly in community-level studies, thus we used stable isotopes (δ13C and δ15N) to infer about trophic niche. We investigated i) how trophic niche is partitioned among rodent and marsupial species in three Atlantic forest sites and ii) if interspecific body size and locomotor habit inequalities can constitute mechanisms underlying the isotopic niche partitioning. We found that rodents occupied a broad isotopic niche space with species distributed in different trophic levels and relying on diverse basal carbon sources (C3 and C4 plants). Surprisingly, on the other hand, marsupials showed a narrow isotopic niche, both in δ13C and δ15N dimensions, which is partially overlapped with rodents, contradicting their description as omnivores and generalists proposed classic dietary studies. Although body mass differences did not explained the divergence in isotopic values among species, groups of species with different locomotor habit presented clear differences in the position of the isotopic niche space, indicating that the use of different forest strata can favor trophic niche partitioning in small mammals communities. We suggest that anthropogenic impacts, such as habitat modification (logging, harvesting), can simplify the vertical structure of ecosystems and collapse the diversity of basal resources, which might affect negatively small mammals communities in Atlantic forests. PMID:27049763

  12. Trophic size-structure of sailfish Istiophorus platypterus in eastern Taiwan estimated by stable isotope analysis.

    PubMed

    Tsai, C-N; Chiang, W-C; Sun, C-L; Shao, K-T; Chen, S-Y; Yeh, S-Z

    2014-02-01

    To examine trophic dynamics over different size classes, an isotopic study of sailfish Istiophorus platypterus life-history stages was carried out. Samples were collected from eastern Taiwan and the South China Sea during April 2009 and February 2012. A total of 263 samples (111-245 cm, lower jaw fork length, LLJFL ) were examined for changes in trophic structure in relation to LLJFL by using stable isotope analysis of carbon (δ(13) C) and nitrogen (δ(15) N). The δ(15) N values for I. platypterus ranged from 7·51 to 14·19‰ (mean ± s.d. = 12·06 ± 1·16‰) and the δ(13) C values ranged from -22·04 to -15·48‰ (mean ± s.d. = -17·62 ± 1·10‰). The δ(15) N values were positively dependent on LLJFL (r(2)  = 0·377), whereas δ(13) C were negatively dependent on LLJFL (r(2)  = 0·063). There were significantly different seasonal changes in nitrogen and carbon isotopic concentration, but no significant differences in concentrations between eastern Taiwan and the South China Sea were reported. The trophic level (TL ) of each LLJFL class was correlated, starting from 2·84 TL for size class I (LLJFL  < 140 cm) and reaching 5·03 TL for size class VI (LLJFL > 221 cm). The mean ± s.d. TL was 4·43 ± 0·19 for all samples. The results reveal that I. platypterus occupies a wide range of trophic levels and different size classes occupy different trophic positions in the pelagic ecosystem.

  13. Trophic Niche Differentiation in Rodents and Marsupials Revealed by Stable Isotopes.

    PubMed

    Galetti, Mauro; Rodarte, Raisa Reis; Neves, Carolina Lima; Moreira, Marcelo; Costa-Pereira, Raul

    2016-01-01

    Tropical rainforests support the greatest diversity of small mammals in the world, yet we have little understanding about the mechanisms that promote the coexistence of species. Diet partitioning can favor coexistence by lessening competition, and interspecific differences in body size and habitat use are usually proposed to be associated with trophic divergence. However, the use of classic dietary methods (e.g. stomach contents) is challenging in small mammals, particularly in community-level studies, thus we used stable isotopes (δ13C and δ15N) to infer about trophic niche. We investigated i) how trophic niche is partitioned among rodent and marsupial species in three Atlantic forest sites and ii) if interspecific body size and locomotor habit inequalities can constitute mechanisms underlying the isotopic niche partitioning. We found that rodents occupied a broad isotopic niche space with species distributed in different trophic levels and relying on diverse basal carbon sources (C3 and C4 plants). Surprisingly, on the other hand, marsupials showed a narrow isotopic niche, both in δ13C and δ15N dimensions, which is partially overlapped with rodents, contradicting their description as omnivores and generalists proposed classic dietary studies. Although body mass differences did not explained the divergence in isotopic values among species, groups of species with different locomotor habit presented clear differences in the position of the isotopic niche space, indicating that the use of different forest strata can favor trophic niche partitioning in small mammals communities. We suggest that anthropogenic impacts, such as habitat modification (logging, harvesting), can simplify the vertical structure of ecosystems and collapse the diversity of basal resources, which might affect negatively small mammals communities in Atlantic forests.

  14. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities.

    PubMed

    Petermann, Jana S; Farjalla, Vinicius F; Jocque, Merlijn; Kratina, Pavel; MacDonald, A Andrew M; Marino, Nicholas A C; De Omena, Paula M; Piccoli, Gustavo C O; Richardson, Barbara A; Richardson, Michael J; Romero, Gustavo Q; Videla, Martin; Srivastava, Diane S

    2015-02-01

    Local habitat size has been shown to influence colonization and extinction processes of species in patchy environments. However, species differ in body size, mobility, and trophic level, and may not respond in the same way to habitat size. Thus far, we have a limited understanding of how habitat size influences the structure of multitrophic communities and to what extent the effects may be generalizable over a broad geographic range. Here, we used water-filled bromeliads of different sizes as a natural model system to examine the effects of habitat size on the trophic structure of their inhabiting invertebrate communities. We collected composition and biomass data from 651 bromeliad communities from eight sites across Central and South America differing in environmental conditions, species pools, and the presence of large-bodied odonate predators. We found that trophic structure in the communities changed dramatically with changes in habitat (bromeliad) size. Detritivore : resource ratios showed a consistent negative relationship with habitat size across sites. In contrast, changes in predator: detritivore (prey) ratios depended on the presence of odonates as dominant predators in the regional pool. At sites without odonates, predator: detritivore biomass ratios decreased with increasing habitat size. At sites with odonates, we found odonates to be more frequently present in large than in small bromeliads, and predator: detritivore biomass ratios increased with increasing habitat size to the point where some trophic pyramids became inverted. Our results show that the distribution of biomass amongst food-web levels depends strongly on habitat size, largely irrespective of geographic differences in environmental conditions or detritivore species compositions. However, the presence of large-bodied predators in the regional species pool may fundamentally alter this relationship between habitat size and trophic structure. We conclude that taking into account the

  15. Predator diversity and identity drive interaction strength and trophic cascades in a food web.

    PubMed

    Otto, Sonja B; Berlow, Eric L; Rank, Nathan E; Smiley, John; Brose, Ulrich

    2008-01-01

    Declining predator diversity may drastically affect the biomass and productivity of herbivores and plants. Understanding how changes in predator diversity can propagate through food webs to alter ecosystem function is one of the most challenging ecological research topics today. We studied the effects of predator removal in a simple natural food web in the Sierra Nevada mountains of California (USA). By excluding the predators of the third trophic level of a food web in a full-factorial design, we monitored cascading effects of varying predator diversity and composition on the herbivorous beetle Chrysomela aeneicollis and the willow Salix orestera, which compose the first and second trophic levels of the food web. Decreasing predator diversity increased herbivore biomass and survivorship, and consequently increased the amount of plant biomass consumed via a trophic cascade. Despite this simple linear mean effect of diversity on the strength of the trophic cascade, we found additivity, compensation, and interference in the effects of multiple predators on herbivores and plants. Herbivore survivorship and predator-prey interaction strengths varied with predator diversity, predator identity, and the identity of coexisting predators. Additive effects of predators on herbivores and plants may have been driven by temporal niche separation, whereas compensatory effects and interference occurred among predators with a similar phenology. Together, these results suggest that while the general trends of diversity effects may appear linear and additive, other information about species identity was required to predict the effects of removing individual predators. In a community that is not temporally well-mixed, predator traits such as phenology may help predict impacts of species loss on other species. Information about predator natural history and food web structure may help explain variation in predator diversity effects on trophic cascades and ecosystem function.

  16. The trophic transfer of persistent pollutants (HCB, DDTs, PCBs) within polar marine food webs.

    PubMed

    Corsolini, Simonetta; Sarà, Gianluca

    2017-02-23

    Biomagnification (increase in contaminant concentrations at successively higher levels of trophic web), is a process that can transversally impair biodiversity and human health. Most research shows that biomagnification should be higher at poles with northern sites having a major tendency to biomagnify Persistent Organic Pollutants (POPs) through their marine food webs. We investigated the biomagnification degree into two marine trophic webs combining carbon and nitrogen stable isotopes and POP analyses. We showed that the Antarctic trophic web was more depleted than the sub-Arctic one and the differences highlighted for the basal part could explain the difference in length between them. Concentrations of polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), and p,p'-DDE were of the same order of magnitude in the two polar trophic webs, with some values surprisingly higher in the Antarctic than sub-arctic organisms: PCBs ranged (average ± standard deviation) 1.10 ± 0.39-12.93 ± 7.62, HCB <0.10-7.28 ± 5.32, and p,p'-DDE 0.52 ± 0.18-11.36 ± 5.3 ng/g wet weight (wt) in the Antarctic organisms, and 0.53-5.08, <0.10-1.48, and 0.27 ± 0.35-5.46 ± 1.73 ng/g wet wt, respectively, in the sub-Arctic ones. The contribution of tetra- and penta-CBs to the ∑PCBs was 10-65% in the Antarctic species and 15-45% in the Arctic species. The relationships between POPs and trophic levels, and the information obtained by the Trophic Magnification Factor revealed that the Antarctic trophic web had a greater tendency to biomagnify PCBs and p,p'-DDE than its sub-Arctic counterpart. POP availability in the environment and specific ecological features may play an important role in the bioaccumulation, and biomagnification is apparently less important than bioconcentration.

  17. Trophic links between functional groups of arable plants and beetles are stable at a national scale.

    PubMed

    Brooks, David R; Storkey, Jonathan; Clark, Suzanne J; Firbank, Les G; Petit, Sandrine; Woiwod, Ian P

    2012-01-01

    1. There is an urgent need to accurately model how environmental change affects the wide-scale functioning of ecosystems, but advances are hindered by a lack of knowledge of how trophic levels are linked across space. It is unclear which theoretical approach to take to improve modelling of such interactions, but evidence is gathering that linking species responses to their functional traits can increase understanding of ecosystem dynamics. Currently, there are no quantitative studies testing how this approach might improve models of multiple, trophically interacting species, at wide spatial scales. 2. Arable weeds play a foundational role in linking food webs, providing resources for many taxa, including carabid beetles that feed on their seeds and weed-associated invertebrate prey. Here, we model associations between weeds and carabids across farmland in Great Britain (GB), to test the hypothesis that wide-scale trophic links between these groups are structured by their species functional traits. 3. A network of c. 250 arable fields, covering four crops and most lowland areas of GB, was sampled for weed, carabid and invertebrate taxa over 3 years. Data sets of these groups were closely matched in time and space, and each contained numerous species with a range of eco-physiological traits. The consistency of trophic linkages between multiple taxa sharing functional traits was tested within multivariate and log-linear models. 4. Robust links were established between the functional traits of taxa and their trophic interactions. Autumn-germinating, small-seeded weeds were associated with smaller, spring-breeding carabids, more specialised in seed feeding, whereas spring-germinating, large-seeded weeds were associated with a range of larger, autumn-breeding omnivorous carabids. These relationships were strong and dynamic, being independent of changes in invertebrate food resources and consistent across sample dates, crops and regions of GB. 5. We conclude that, in at

  18. Meta-analysis of amino acid stable nitrogen isotope ratios for estimating trophic position in marine organisms.

    PubMed

    Nielsen, Jens M; Popp, Brian N; Winder, Monika

    2015-07-01

    Estimating trophic structures is a common approach used to retrieve information regarding energy pathways, predation, and competition in complex ecosystems. The application of amino acid (AA) compound-specific nitrogen (N) isotope analysis (CSIA) is a relatively new method used to estimate trophic position (TP) and feeding relationships in diverse organisms. Here, we conducted the first meta-analysis of δ(15)N AA values from measurements of 359 marine species covering four trophic levels, and compared TP estimates from AA-CSIA to literature values derived from food items, gut or stomach content analysis. We tested whether the AA trophic enrichment factor (TEF), or the (15)N enrichment among different individual AAs is constant across trophic levels and whether inclusion of δ(15)N values from multiple AAs improves TP estimation. For the TEF of glutamic acid relative to phenylalanine (Phe) we found an average value of 6.6‰ across all taxa, which is significantly lower than the commonly applied 7.6‰. We found that organism feeding ecology influences TEF values of several trophic AAs relative to Phe, with significantly higher TEF values for herbivores compared to omnivores and carnivores, while TEF values were also significantly lower for animals excreting urea compared to ammonium. Based on the comparison of multiple model structures using the metadata of δ(15)N AA values we show that increasing the number of AAs in principle improves precision in TP estimation. This meta-analysis clarifies the advantages and limitations of using individual δ(15)N AA values as tools in trophic ecology and provides a guideline for the future application of AA-CSIA to food web studies.

  19. Assessing Lake Trophic Status: A Proportional Odds Logistic Regression Model

    EPA Science Inventory

    Lake trophic state classifications are good predictors of ecosystem condition and are indicative of both ecosystem services (e.g., recreation and aesthetics), and disservices (e.g., harmful algal blooms). Methods for classifying trophic state are based off the foundational work o...

  20. [Cell technologies in complex treatment of venous trophic ulcers].

    PubMed

    Gavrilenko, A V; Pavlova, O V; Ivanov, A A; Vakhrat'ian, P E; Dashinimaev, É B; Li, R A

    2011-01-01

    Live skin equivalent and fibroblasts in gel were used in complex treatment of venous trophic ulcers to evaluate efficacy of cell transplants. Their efficacy depended on extent of trophic ulcer and time of their existence. Cell culture method is minimally traumatic, can be used in elder patients and seniors and gives positive results in 85% of cases.

  1. Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis.

    PubMed

    Lavoie, Raphael A; Hebert, Craig E; Rail, Jean-François; Braune, Birgit M; Yumvihoze, Emmanuel; Hill, Laura G; Lean, David R S

    2010-10-15

    Even at low concentrations in the environment, mercury has the potential to biomagnify in food chains and reaches levels of concern in apex predators. The aim of this study was to relate the transfer of total mercury (THg) and methylmercury (MeHg) in a Gulf of St. Lawrence food web to the trophic structure, from primary consumers to seabirds, using stable nitrogen (δ(15)N) and carbon (δ(13)C) isotope analysis and physical environmental parameters. The energy reaching upper trophic level species was principally derived from pelagic primary production, with particulate organic matter (POM) at the base of the food chain. We developed a biomagnification factor (BMF) taking into account the various prey items consumed by a given predator using stable isotope mixing models. This BMF provides a more realistic estimation than when using a single prey. Lipid content, body weight, trophic level and benthic connection explained 77.4 and 80.7% of the variation in THg and MeHg concentrations, respectively in this food web. When other values were held constant, relationships with lipid and benthic connection were negative whereas relationships with trophic level and body weight were positive. Total Hg and MeHg biomagnified in this food web with biomagnification power values (slope of the relationship with δ(15)N) of 0.170 and 0.235, respectively on wet weight and 0.134 and 0.201, respectively on dry weight. Values of biomagnification power were greater for pelagic and benthopelagic species compared to benthic species whereas the opposite trend was observed for levels at the base of the food chain. This suggests that Hg would be readily bioavailable to organisms at the base of the benthic food chain, but trophic transfer would be more efficient in each trophic level of pelagic and benthopelagic food chains.

  2. [Cellulase and xylanase activities of Fusarium Lk:Fr. genus fungi of different trophic groups].

    PubMed

    Kurchenko, I M; Sokolova, O V; Zhdanova, N M; Iarynchyn, A M; Iovenko, O M

    2008-01-01

    A comparative analysis of cellulase and xylanase activities of 26 fungal strains of phytopathogenic, saprophytic and endophytic Fusarium species has been realized using the qualitative reactions. The rare of their linear growth on the media with carboxymethyl cellulose or xylane has been studied. It was shown that the fungi of genus Fusarium belonging to different trophic groups possessed low activities of investigated enzymes as a whole, but in endophytic strains their levels were lower than in phytopathogenic ones. At the same time the distinct strain dependence of cellulase and xylanase activities was fixed in the fungi of different trophic groups. As far as the cellulase and xylanase activities in phytopathogenic isolates varied from complete absence to high levels, and since the activity maximum for each of the investigated strains was observed in different growth terms the conclusion was made that the cellulase and xylanase activities could not be considered as possible markers of the fungal isolate pathogenicity on the strain level.

  3. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    NASA Astrophysics Data System (ADS)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  4. Internal distribution of Cd in lettuce and resulting effects on Cd trophic transfer to the snail: Achatina fulica.

    PubMed

    Li, Cheng-Cheng; Dang, Fei; Cang, Long; Zhou, Dong-Mei; Peijnenburg, Willie J G M

    2015-09-01

    The mechanisms underlying Cd trophic transfer along the soil-lettuce-snail food chain were investigated. The fate of Cd within cells, revealed by assessment of Cd chemical forms and of subcellular partitioning, differed between the two examined lettuce species that we examined (L. longifolia and L. crispa). The species-specific internal Cd fate not only influenced Cd burdens in lettuce, with higher Cd levels in L. crispa, but also affected Cd transfer efficiency to the consumer snail (Achatina fulica). Especially, the incorporation of Cd chemical forms (Cd in the inorganic, water-soluble and pectates and protein-integrated forms) in lettuce could best explain Cd trophic transfer, when compared to dietary Cd levels alone and/or subcellular Cd partitioning. Trophically available metal on the subcellular partitioning base failed to shed light on Cd transfer in this study. After 28-d of exposure, most Cd was trapped in the viscera of Achatina fulica, and cadmium bio-magnification was noted in the snails, as the transfer factor of lettuce-to-snail soft tissue was larger than one. This study provides a first step to apply a chemical speciation approach to dictate the trophic bioavailability of Cd through the soil-plant-snail system, which might be an important pre-requisite for mechanistic understanding of metal trophic transfer.

  5. Subcellular distribution and trophic transfer of Pb from bivalves to the common prawn Palaemon serratus.

    PubMed

    Sánchez-Marín, Paula; Beiras, Ricardo

    2017-04-01

    The edible clam Dosinia exoleta has been reported to accumulate high contents of lead (Pb) in soft tissues disregarding the levels of Pb in the environment. This is due to the retention of Pb in the form of metal rich granules (MRG) in their kidneys throughout the mollusc lifespan. The potential for trophic transfer of Pb in this form to predators is expected to be low, since metals in the form of MRG are generally supposed to be trophically unavailable, but this assumption is based on studies with other metals (Ag, Cd, Cu or Zn) and has not been demonstrated with Pb until now. This study was designed to test if the Pb present in D. exoleta in the form of MRG is available to a decapod consumer, the common prawn Palaemon serratus, in comparison with a mussel diet showing a different subcellular distribution of Pb. As hypothesised, despite the high Pb concentrations (15µgg(-1)ww) offered to the prawns as D. exoleta tissues, Pb was almost completely unavailable for trophic transfer, and the prawns fed with this diet during 28 days showed the same Pb accumulation as prawns fed with a control diet with a much lower Pb concentration. On the contrary, individuals fed with mussel tissues containing the same Pb concentrations as the diet based on D. exoleta tissues showed 10 times higher Pb bioaccumulation, corresponding to a trophic transfer factor of 1.1%. Subcellular fractionation experiments revealed that the fraction of Pb in the form of MRG was much lower for the mussel, confirming, as observed for other metals, that MRG-associated Pb is not available for trophic transfer to decapod crustaceans.

  6. Trophic resource partitioning within a shorebird community feeding on intertidal mudflat habitats

    NASA Astrophysics Data System (ADS)

    Bocher, Pierrick; Robin, Frédéric; Kojadinovic, Jessica; Delaporte, Philippe; Rousseau, Pierre; Dupuy, Christine; Bustamante, Paco

    2014-09-01

    In ecological systems, it is necessary to describe the trophic niches of species and their segregation or overlap to understand the distribution of species in the community. In oceanic systems, the community structure of top predators such as seabird communities has been well documented with many studies in several biogeographical areas. But for coastal habitats, very few investigations on the trophic structure have been carried out in avian communities. In this study, the trophic resource partitioning was investigated on eight of the most abundant species of a shorebird community on the central Atlantic coast of France. Our work comprised a comprehensive sample of birds with different ecomorphogical patterns and data on their main prey to encompass potential sources of overlap and segregation in this community. We examined the stable carbon (δ13C) and nitrogen (δ15N) isotopic composition of blood to investigate the trophic structure (1) on a temporal scale by comparing migration and wintering periods; (2) on a spatial scale through inter-site comparisons; and (3) on the community level within groups of phylogenetically related species. Diets appeared different in several cases between periods, between sites and between juveniles and adults for the same sites. A clear trophic partitioning was established with four functional groups of predators in winter inside the community. The Grey Plover, the Bar-tailed Godwit, the Curlew and a majority of the dunlins were worm-eaters mainly feeding on Nereis diversicolor or Nephtys hombergii. Two species were predominantly deposit-suspensivorous mollusc-eaters, including the Red Knot and the Black-tailed Godwit feeding mainly on Macoma balthica. The Oystercatcher fed mainly on suspensivorous molluscs like Cerastodrema edule and two species including the Redshank and some dunlins adopted opportunistic behaviours feeding on mudflat and/or in marshes.

  7. Realistic losses of rare species disproportionately impact higher trophic levels.

    PubMed

    Bracken, Matthew E S; Low, Natalie H N

    2012-05-01

    Predicting the consequences of changes in biodiversity requires understanding both species' susceptibility to extirpation and their functional roles in ecosystems. However, few studies have evaluated the effects of realistic, non-random biodiversity losses, severely limiting the applicability of biodiversity research to conservation. Here, we removed sessile species from a rocky shore community in a way that deliberately mimicked natural patterns of species loss. We found that the rarest species in the system act from the bottom up to disproportionately impact the diversity and abundance of consumers. Realistic losses of rare species in a diverse assemblage of seaweeds and sessile invertebrates, collectively comprising <10% of sessile biomass, resulted in a 42-47% decline in consumer biomass. In contrast, removal of an equivalent biomass of dominant sessile species had no effect on consumers. Our results highlight the 'cornerstone' role that rare species can play in shaping the structure of the community they support.

  8. Loss of trophic complexity in saline prairie lakes as indicated by stable-isotope based community-metrics.

    PubMed

    Cooper, Ryan N; Wissel, Björn

    2012-03-16

    Variations in climate, watershed characteristics and lake-internal processes often result in a large variability of food-web complexity in lake ecosystems. Some of the largest ranges in these environmental parameters can be found in lakes across the northern Great Plains as they are characterized by extreme gradients in respect to lake morphometry and water chemistry, with individual parameters often varying over several orders of magnitude. To evaluate the effects of environmental conditions on trophic complexity in prairie lake food-webs, we analyzed carbon and nitrogen stable isotopes of fishes, zooplankton and littoral macroinvertebrates in 20 lakes across southern Saskatchewan. Our two-year study identified very diverse patterns of trophic complexity, with was predominantly associated with among-lake differences. Small but significant temporal effects were also detected, which were predominantly associated with changes in productivity. The most influential parameters related to changes in trophic complexity among lakes were salinity, complexity of fish assemblage, and indicators of productivity (e.g. nutrients, Chl a). Generally, trophic diversity, number of trophic levels, and trophic redundancy were highest in productive freshwater lakes with diverse fish communities. Surprisingly, mesosaline lakes that were characterized by very low or no predation pressure from fishes were not colonized by invertebrate predators as it is often the case in boreal systems; instead, trophic complexity was further reduced. Together, prairie lake food-webs appear to be highly sensitive to changes in salinity and the loss of piscivorous fishes, making freshwater and mesosaline lakes most vulnerable to the impacts of climate variability. This is particularly important as global circulation models predict future climate warming to have disproportionate negative impacts on hydrologic conditions in this area.

  9. Trophic strategies, animal diversity and body size

    USGS Publications Warehouse

    Lafferty, Kevin D.; Kuris, Armand M.

    2002-01-01

    A primary difference between predators and parasites is the number of victims that an individual attacks throughout a life-history stage. A key division within natural enemies is whether a successful attack eliminates the fitness of the prey or the host. A third distinctive axis for parasites is whether the host must die to further parasite development. The presence or absence of intensity-dependent pathology is a fourth factor that separates macroparasites from microparasites; this also distinguishes between social and solitary predators. Combining these four dichotomies defines seven types of parasitism, seven corresponding parasites, three forms of predation and, when one considers obligate and facultative combinations of these forms, four types of predator. Here, we argue that the energetics underlying the relative and absolute sizes of natural enemies and their victims is the primary selective factor responsible for the evolution of these different trophic strategies.

  10. Global warming tugs at trophic interactions.

    PubMed

    Brook, Barry W

    2009-01-01

    Climate change impacts are becoming increasingly evident as 1 degree C warming above pre-industrial temperatures is approached. One of the signature biological effects is a shift towards earlier-timed reproduction. If individual species lack sufficient adaptive plasticity to alter phenology, they will have reduced fitness in a hotter world. Yet, a long-term study of an oak-caterpillar-songbird-sparrowhawk food web reveals that what could matter as much is if trophic interactions are disrupted. Multiple selective pressures may be triggered by climate change, leading to a tug-of-war between the need to stay in synchrony with the timing of maximum food, and the benefits of minimizing predation.

  11. Trophic specialisations in alternative heterochronic morphs

    NASA Astrophysics Data System (ADS)

    Denoël, Mathieu; Schabetsberger, Robert; Joly, Pierre

    Polymorphisms are suspected of reducing competition among conspecifics in heterogeneous environments by allowing differential resource use. However the adaptive significance of alternative morphs has been poorly documented. The aim of this study is to determine food partitioning of two heterochronic morphs of the Alpine newt, Triturus alpestris, in mountain lakes. The morphs differ in the functional morphology of their feeding apparatus. Only paedomorphs are able to expel water during prey suction behind the mouth through gill slits. We observed a substantial trophic differentiation between morphs in all lakes. Paedomorphs preyed mainly on plankton, whereas metamorphs foraged on terrestrial invertebrates that fell upon the water surface. This resource partitioning may facilitate the coexistence of the alternative morphs in lakes devoid of vertebrate competitors. Food diversity may thus favour the evolutionary maintenance of facultative polymorphism in natural populations.

  12. Novel trophic cascades: apex predators enable coexistence.

    PubMed

    Wallach, Arian D; Ripple, William J; Carroll, Scott P

    2015-03-01

    Novel assemblages of native and introduced species characterize a growing proportion of ecosystems worldwide. Some introduced species have contributed to extinctions, even extinction waves, spurring widespread efforts to eradicate or control them. We propose that trophic cascade theory offers insights into why introduced species sometimes become harmful, but in other cases stably coexist with natives and offer net benefits. Large predators commonly limit populations of potentially irruptive prey and mesopredators, both native and introduced. This top-down force influences a wide range of ecosystem processes that often enhance biodiversity. We argue that many species, regardless of their origin or priors, are allies for the retention and restoration of biodiversity in top-down regulated ecosystems.

  13. Stable Isotopes Reveal Trophic Partitioning and Trophic Plasticity of a Larval Amphibian Guild

    PubMed Central

    Arribas, Rosa; Díaz-Paniagua, Carmen; Caut, Stephane; Gomez-Mestre, Ivan

    2015-01-01

    Temporary ponds are highly variable systems where resource availability and community structure change extensively over time, and consequently the food web is highly dynamic. Amphibians play a critical role both as consumers and prey in aquatic communities and yet there is still little information on the trophic status of most amphibians. More importantly, little is known about the extent to which they can alter their trophic ecology in response to changing conditions. We experimentally investigated the effects of increased amphibian density, presence of intraguild competitors, and presence of native and invasive predators (either free or caged) on the trophic status of a Mediterranean amphibian guild, using stable isotopes. We observed variations in δ13C and δ15N isotopic values among amphibian species and treatments and differences in their food sources. Macrophytes were the most important food resource for spadefoot toad tadpoles (Pelobates cultripes) and relatively important for all anurans within the guild. High density and presence of P. cultripes tadpoles markedly reduced macrophyte biomass, forcing tadpoles to increase their feeding on detritus, algae and zooplankton, resulting in lower δ13C values. Native dytiscid predators only changed the isotopic signature of newts whereas invasive red swamp crayfish had an enormous impact on environmental conditions and greatly affected the isotopic values of amphibians. Crayfish forced tadpoles to increase detritus ingestion or other resources depleted in δ13C. We found that the opportunistic amphibian feeding was greatly conditioned by intra- and interspecific competition whereas non-consumptive predator effects were negligible. Determining the trophic plasticity of amphibians can help us understand natural and anthropogenic changes in aquatic ecosystems and assess amphibians’ ability to adjust to different environmental conditions. PMID:26091281

  14. Trophic conditions in Lake Winnisquam, New Hampshire

    USGS Publications Warehouse

    Frost, Leonard R.

    1977-01-01

    Lake Winnisquam has received treated domestic sewage for approximately 50 years and since June 1961 has been treated with copper sulfate to control the growth of nuisance algae. The Laconia City secondary sewage-treatment plant was upgraded in 1975 to include phosphorus removal. Phosphorus was not removed effectively until early 1976, and, therefore, the 1976 data are considered baseline or pre-phosphorus removal with respect to anticipated changes in the trophic condition of the lake. Effluent from the Laconia State School primary-treatment plant was diverted to the Laconia City plant in October 1976. Dissolved oxygen concentrations showed marked differences between the two basins comprising Lake Winnisquam. Phytoplankton samples showed similarities by algal group for all stations but algal genera varied between the upper and lower basins. Total phosphorus concentrations in the epilimnion ranged from 0.01 to 0.10 milligram per liter, and accumulation of total phosphorus in the hypolimnion resulted in concentrations up to 0.59 milligrams per liter. Chemical states of nutrients varied among the stations corresponding to the degree of depletion of hypolimnetic dissolved oxygen. Dissolved oxygen profiles were used to illustrate zones of algal production, respiration, and bacterial decomposition. The rate of depletion of dissolved oxygen in the hypolimnion was linearly related to time. Because change in the rate of hypolimnetic dissolved oxygen depletion is more easily measured than change of nutrient load in the lake, it is suggested it be used as an indicator of the response of the lake to change in trophic condition.

  15. 22. Float located adjacent to entry stair in filtration bed. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Float located adjacent to entry stair in filtration bed. The float actuates a valve that maintains water level over the bed. - Lake Whitney Water Filtration Plant, Filtration Plant, South side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  16. Analysis of a stochastic tri-trophic food-chain model with harvesting.

    PubMed

    Liu, Meng; Bai, Chuanzhi

    2016-09-01

    We consider a tri-trophic stochastic food-chain model with harvesting. We first establish critical values between persistence in mean and extinction for each species. The results show that persistence and extinction of a species only depends on the demographic impacts of environmental stochasticity on the species and species at lower tropic levels; however, the mean abundance of a species depends on the impacts of environmental stochasticity at all trophic levels. Then we consider stability in distribution of the model. Finally, we provide a necessary and sufficient condition for existence of optimal harvesting strategy and give the optimal harvesting effort and maximum of sustainable yield. The results show that the optimal harvesting strategy is closely related to the stochastic noises in the model.

  17. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  18. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  19. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  20. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  1. 43 CFR 420.3 - Adjacent lands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Adjacent lands. 420.3 Section 420.3 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR OFF-ROAD VEHICLE USE § 420.3 Adjacent lands. When administratively feasible, the regulation of...

  2. Invasive dreissenid mussels and round gobies: a benthic pathway for the trophic transfer of microcystin.

    PubMed

    Poste, Amanda E; Ozersky, Ted

    2013-09-01

    In the present preliminary study, the authors identify 2 pathways through which invasive dreissenid mussels can transfer microcystin to higher trophic levels: either directly, through consumption by benthivorous fish such as the round goby; or indir