Sample records for adjacent vertebral bodies

  1. Adjacent vertebral body fracture following vertebroplasty with polymethylmethacrylate or calcium phosphate cement: biomechanical evaluation of the cadaveric spine.

    PubMed

    Nouda, Shinya; Tomita, Seiji; Kin, Akihiro; Kawahara, Kunihiko; Kinoshita, Mitsuo

    2009-11-15

    A biomechanical study using human cadaveric thoracolumbar spinal columns. To compare the effect of treatment by vertebroplasty (VP) with polymethylmethacrylate cement and VP with calcium phosphate cement on the creation of adjacent vertebral body fracture following VP. Adjacent vertebral body fractures have been reported as a complication following VP. Twenty-four spinal columns (T10-L2) from human cadavers were subjected to dual energy radiograph absorptiometry to assess bone mineral density. They were divided into the P group and C group, and experimental vertebral compression fractures were created at T12 vertebrae. T12 vertebrae were augmented with polymethylmethacrylate and calcium phosphate cement in the P group and C group, respectively. Each spinal column was compressed until a new fracture occurred at any vertebra, and the location of newly fractured vertebra and failure load was investigated. There was no significant difference in bone mineral density at each level within each group. In the P group, a new fracture occurred at T10 in 2 specimens, T11 in 8, and L1 in 2. In the C group, it occurred at T10 in 1 specimen, T11 in 2, L1 in 1, and T12 (treated vertebra) in 8. The failure loads of the spinal column were 1774.8+/-672.3 N and 1501.2+/-556.5 N in the P group and C group, respectively. There was no significant difference in the failure load of the spinal column between each group. New vertebral fractures occurred at the vertebra adjacent to augmented vertebrae in the P group and in the augmented vertebrae in the C group. The difference in the fractured site may be because of the difference in strength between the 2 bone filler materials. Therefore, the strength of bone filler materials is considered a risk factor in developing adjacent vertebral body fractures after VP.

  2. Altered disc pressure profile after an osteoporotic vertebral fracture is a risk factor for adjacent vertebral body fracture

    PubMed Central

    Tzermiadianos, Michael N.; Renner, Susan M.; Phillips, Frank M.; Hadjipavlou, Alexander G.; Zindrick, Michael R.; Havey, Robert M.; Voronov, Michael

    2008-01-01

    This study investigated the effect of endplate deformity after an osteoporotic vertebral fracture in increasing the risk for adjacent vertebral fractures. Eight human lower thoracic or thoracolumbar specimens, each consisting of five vertebrae were used. To selectively fracture one of the endplates of the middle VB of each specimen a void was created under the target endplate and the specimen was flexed and compressed until failure. The fractured vertebra was subjected to spinal extension under 150 N preload that restored the anterior wall height and vertebral kyphosis, while the fractured endplate remained significantly depressed. The VB was filled with cement to stabilize the fracture, after complete evacuation of its trabecular content to ensure similar cement distribution under both the endplates. Specimens were tested in flexion-extension under 400 N preload while pressure in the discs and strain at the anterior wall of the adjacent vertebrae were recorded. Disc pressure in the intact specimens increased during flexion by 26 ± 14%. After cementation, disc pressure increased during flexion by 15 ± 11% in the discs with un-fractured endplates, while decreased by 19 ± 26.7% in the discs with the fractured endplates. During flexion, the compressive strain at the anterior wall of the vertebra next to the fractured endplate increased by 94 ± 23% compared to intact status (p < 0.05), while it did not significantly change at the vertebra next to the un-fractured endplate (18.2 ± 7.1%, p > 0.05). Subsequent flexion with compression to failure resulted in adjacent fracture close to the fractured endplate in six specimens and in a non-adjacent fracture in one specimen, while one specimen had no adjacent fractures. Depression of the fractured endplate alters the pressure profile of the damaged disc resulting in increased compressive loading of the anterior wall of adjacent vertebra that predisposes it to wedge fracture. This data suggests that

  3. Vertebral body fracture after anterior cervical discectomy and fusion with zero-profile anchored cages in adjacent levels: a cautionary tale.

    PubMed

    Mattei, Tobias A; Teles, Alisson R; Dinh, Dzung H

    2016-01-05

    Zero-profile (also called self-locking, anchored or stand-alone cages) have been recently proposed as an interesting alternative for anterior cervical discectomy and fusion (ACDF), as they are supposed to reduce the rates of post-operative cage extrusion without necessarily incurring in the additional surgical time and increased rates of dysphagia associated with plating. Nevertheless, the exact indications of zero-profile anchored cages have not yet been established in the literature. To report the first case of a vertebral body fracture between the blades of zero-profile anchored cages after ACDFs in adjacent levels and to review the available literature on hardware-related complications after multi-level ACDFs with zero-profile anchored cages. Case report and systematic literature review. The authors report the first case of a vertebral body fracture between the blades of zero-profile anchored cages after ACDFs in adjacent levels. The patient presented with refractory mechanical neck pain at the 1-month post-operative follow-up, ultimately requiring a posterior instrumented fusion. A comprehensive systematic literature review on the available data regarding the safety, complications as well as radiological and clinical outcomes of zero-profile anchored cages is also performed. In the reported case, the use of zero-profile anchored cages in adjacent levels on the cervical spine led to a fracture of the vertebral body between the cages at the 1-month follow-up, with anterior avulsion of the part of the vertebral body where the blades from the two cages converged. According to the systematic literature review which included 409 patients from 10 different clinical series (with a total cumulative follow-up of approximately 535 patients-year), there were only two reported hardware-related complications after ACDF with zero-profile anchored cages, none of them involving fracture at the level of convergence of blades or screws. Although hardware-related complications

  4. Assessing the effects of lumbar posterior stabilization and fusion to vertebral bone density in stabilized and adjacent segments by using Hounsfield unit

    PubMed Central

    Öksüz, Erol; Deniz, Fatih Ersay; Demir, Osman

    2017-01-01

    Background Computed tomography (CT) with Hounsfield unit (HU) is being used with increasing frequency for determining bone density. Established correlations between HU and bone density have been shown in the literature. The aim of this retrospective study was to determine the bone density changes of the stabilized and adjacent segment vertebral bodies by comparing HU values before and after lumbar posterior stabilization. Methods Sixteen patients who had similar diagnosis of lumbar spondylosis and stenosis were evaluated in this study. Same surgical procedures were performed to all of the patients with L2-3-4-5 transpedicular screw fixation, fusion and L3-4 total laminectomy. Bone mineral density measurements were obtained with clinical CT. Measurements were obtained from stabilized and adjacent segment vertebral bodies. Densities of vertebral bodies were evaluated with HU before the surgeries and approximately one year after the surgeries. The preoperative HU value of each vertebra was compared with postoperative HU value of the same vertebrae by using statistical analysis. Results The HU values of vertebra in the stabilized and adjacent segments consistently decreased after the operations. There were significant differences between the preoperative HU values and the postoperative HU values of the all evaluated vertebral bodies in the stabilized and adjacent segments. Additionally first sacral vertebra HU values were found to be significantly higher than lumbar vertebra HU values in the preoperative group and postoperative group. Conclusions Decrease in the bone density of the adjacent segment vertebral bodies may be one of the major predisposing factors for adjacent segment disease (ASD). PMID:29354730

  5. Analysis of the spinal nerve roots in relation to the adjacent vertebral bodies with respect to a posterolateral vertebral body replacement procedure.

    PubMed

    Awwad, Waleed; Bourget-Murray, Jonathan; Zeiadin, Nadil; Mejia, Juan P; Steffen, Thomas; Algarni, Abdulrahman D; Alsaleh, Khalid; Ouellet, Jean; Weber, Michael; Jarzem, Peter F

    2017-01-01

    This study aims to improve the understanding of the anatomic variations along the thoracic and lumbar spine encountered during an all-posterior vertebrectomy, and reconstruction procedure. This information will help improve our understanding of human spine anatomy and will allow better planning for a vertebral body replacement (VBR) through either a transpedicular or costotransversectomy approach. The major challenge to a total posterior approach vertebrectomy and VBR in the thoracolumbar spine lies in the preservation of important neural structures. This was a retrospective analysis. Hundred normal magnetic resonance imaging (MRI) spinal studies (T1-L5) on sagittal T2-weighted MRI images were studied to quantify: (1) mid-sagittal vertebral body (VB) dimensions (anterior, midline, and posterior VB height), (2) midline VB and associated intervertebral discs height, (3) mean distance between adjacent spinal nerve roots (DNN) and mean distance between the inferior endplate of the superior vertebrae to its respective spinal nerve root (DNE), and (4) posterior approach expansion ratio (PAER). (1) The mean anterior VB height gradually increased craniocaudally from T1 to L5. The mean midline and posterior VB height showed a similar pattern up to L2. Mean posterior VB height was larger than the mean anterior VB height from T1 to L2, consistent with anterior wedging, and then measured less than the mean anterior VB height, indicating posterior wedging. (2) Midline VB and intervertebral disc height gradually increased from T1 to L4. (3) DNN and DNE were similar, whereby they gradually increased from T1 to L3. (5) Mean PAER varied between 1.69 (T12) and 2.27 (L5) depending on anatomic level. The dimensions of the thoracic and lumbar vertebrae and discs vary greatly. Thus, any attempt at carrying out a VBR from a posterior approach should take into account the specifications at each spinal level.

  6. Anterior cement augmentation of adjacent levels after vertebral body replacement leads to superior stability of the corpectomy cage under cyclic loading-a biomechanical investigation.

    PubMed

    Oberkircher, Ludwig; Krüger, Antonio; Hörth, Dominik; Hack, Juliana; Ruchholtz, Steffen; Fleege, Christoph; Rauschmann, Michael; Arabmotlagh, Mohammad

    2018-03-01

    In the operative treatment of osteoporotic vertebral body fractures, a dorsal stabilization in combination with a corpectomy of the fractured vertebral body might be necessary with respect to the fracture morphology, whereby the osteoporotic bone quality may possibly increase the risk of implant failure. To achieve better stability, it is recommended to use cement-augmented screws for dorsal instrumentation. Besides careful end plate preparation, cement augmentation of the adjacent end plates has also been reported to lead to less reduction loss. The aim of the study was to evaluate biomechanically under cyclic loading whether an additional cement augmentation of the adjacent end plates leads to improved stability of the inserted cage. Methodical cadaver study. Fourteen fresh frozen human thoracic spines with proven osteoporosis were used (T2-T7). After removal of the soft tissues, the spine was embedded in Technovit (Kulzer, Germany). Subsequently, a corpectomy of T5 was performed, leaving the dorsal ligamentary structures intact. After randomization with respect to bone quality, two groups were generated: Dorsal instrumentation (cemented pedicle screws, Medtronic, Minneapolis, MN, USA)+cage implantation (CAPRI Corpectomy Cage, K2M, Leesburg, VA, USA) without additional cementation of the adjacent endplates (Group A) and dorsal instrumentation+cage implantation with additional cement augmentation of the adjacent end plates (Group B). The subsequent axial and cyclic loading was performed at a frequency of 1 Hz, starting at 400 N and increasing the load within 200 N after every 500 cycles up to a maximum of 2,200 N. Load failure was determined when the cages sintered macroscopically into the end plates (implant failure) or when the maximum load was reached. One specimen in Group B could not be clamped appropriately into the test bench for axial loading because of a pronounced scoliotic misalignment and had to be excluded. The mean strength for implant

  7. Vertebral body clinico-morphological features following percutaneous vertebroplasty versus the conservatory approach.

    PubMed

    Constantin, Cristian; Albulescu, Dana Maria; Diţă, Daniel Răzvan; Georgescu, Claudia Valentina; Deaconu, Andrei Constantin

    2018-01-01

    Most percutaneous vertebroplasty procedures are being performed in order to relieve pain in patients with severe osteoporosis and associated stable fractures of one or more vertebral bodies. In addition, vertebroplasty is also recommended for patients suffering from post-traumatic symptoms associated with vertebral fractures, patients with large angiomas positioned inside the vertebral body, with an increased risk for collapse fracture and also patients presenting with pain associated with vertebral body metastatic disease. On another aspect, it is possible that in isolated cases, an orthopedic surgeon confronted with a vertebra plana presentation will recommend bone cement injection into the vertebral bodies adjacent to the fractured one, in order to have a better and more robust substrate for placement of screws or other fixation devices. The aim of our study is to compare results attained by the Department of Interventional Radiology, in performing this procedure, with results attained by following the classical orthopedic treatment procedure, involving non-operative treatment, using medication and bracing varying from simple extension orthoses in order to limit spinal flexion, light bracing for contiguous fractures, presenting either angulation or compression, and for severe cases standard thoracolumbosacral orthoses (TLSOs).

  8. Long-term effects of vertebroplasty: adjacent vertebral fractures.

    PubMed

    Baroud, Gamal; Vant, Christianne; Wilcox, Ruth

    2006-01-01

    In today's aging population, osteoporosis-related fractures are an ever-growing concern. Vertebroplasty, a promising yet cost-effective treatment for vertebral compression fractures, has an increasing role. The first vertebroplasty procedures were reported by Deramond and Galibert in France in 1987, and international interest grew with continued development of clinical techniques and augmentation materials in Europe and the United States. Initial publications and presentations at peer review meetings demonstrated 60-90% success rates in providing immediate and significant pain relief. The objective of this review is to assemble experimental and computational biomechanical research whose goal is determining and preventing the negative long-term effects ofvertebroplasty, with a specific focus on adjacent vertebral fractures. Biomechanical studies using isolated cancellous bone cylinders have shown that osteoporotic cancellous bone samples augmented by the rigid bone cement were at least 12 times stiffer and 35 times stronger than the untreated osteoporotic cancellous bone samples. The biomechanical efficacy of the procedure to repair the fractured vertebrae and prevent further collapse is determined using single-vertebra models. The strength or load-bearing capacity of a single vertebra is significantly increased following augmentation when compared to the intact strength. However, there is no dear result regarding the overall stiffness of the single vertebra, with studies reporting contradictorily that the stiffness increases, decreases, or does not significantly alter following augmentation. The effects of vertebroplasty on adjacent structures are studied via multisegment models, whose results plainly oppose the findings of the single-vertebra and intravertebral models. Here, augmentation was shown to decrease the overall segment strength by 19% when compared to the matched controls. As well, there is a significant increase in disc pressure compared to the pre

  9. Diffusion-Weighted MRI Assessment of Adjacent Disc Degeneration After Thoracolumbar Vertebral Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noriega, David C., E-mail: dcnoriega1970@gmail.com; Marcia, Stefano, E-mail: stemarcia@gmail.com; Ardura, Francisco, E-mail: fardura@ono.com

    ObjectiveThe purpose of this study was to assess, by the mean apparent diffusion coefficient (ADC), if a relationship exists between disc ADC and MR findings of adjacent disc degeneration after thoracolumbar fractures treated by anatomic reduction using vertebral augmentation (VAP).Materials and MethodsTwenty non-consecutive patients (mean age 50.7 years; range 45–56) treated because of vertebral fractures, were included in this study. There were 10 A3.1 and 10 A1.2 fractures (AO classification). Surgical treatment using VAP was applied in 14 cases, and conservative in 6 patients. MRI T2-weighted images and mapping of apparent diffusion coefficient (ADC) of the intervertebral disc adjacent to themore » fractured segment were performed after a mean follow-up of 32 months. A total of 60 discs, 3 per patient, were analysed: infra-adjacent, supra-adjacent and a control disc one level above the supra-adjacent.ResultsNo differences between patients surgically treated and those following a conservative protocol regarding the average ADC values obtained in the 20 control discs analysed were found. Considering all discs, average ADC in the supra-adjacent level was lower than in the infra-adjacent (1.35 ± 0.12 vs. 1.53 ± 0.06; p < 0.001). Average ADC values of the discs used as a control were similar to those of the infra-adjacent level (1.54 ± 0.06). Compared to surgically treated patients, discs at the supra-adjacent fracture level showed statistically significant lower values in cases treated conservatively (p < 0.001). The variation in the delay of surgery had no influence on the average values of ADC at any of the measured levels.ConclusionsADC measurements of the supra-adjacent discs after a mean follow-up of 32 months following thoracolumbar fractures, showed that restoration of the vertebral collapse by minimally invasive VAP prevents posttraumatic disc degeneration.« less

  10. Vertebral pneumatocysts.

    PubMed

    Arslan, G; Ceken, K; Cubuk, M; Ozkaynak, C; Lüleci, E

    2001-01-01

    To review the prevalence and location of vertebral pneumatocysts and evaluate the CT findings of these benign lesions. Retrospectively we reviewed CT images of 89 patients with suspected disc disease during a 6-month period. Distinctive CT pattern of intraosseous pneumatocysts involving the cervical, thoracic and lumbar spine was found. In 8 patients (9%), 10 vertebral pneumatocysts were detected. Five were located in the vertebral body and 4 of these were associated with vacuum phenomenon in adjacent intervertebral discs. Five were located near the facet joint and all were associated with vacuum phenomenon in adjacent facet joint. Intraosseous pneumatocyst is a benign lesion, therefore biopsy and follow-up are unnecessary. Although vertebral pneumatocysts seem to be uncommon with a few reported cases, this study shows them to be more frequent than previously thought.

  11. Vertebral body innervation: Implications for pain.

    PubMed

    Buonocore, Michelangelo; Aloisi, Anna Maria; Barbieri, Massimo; Gatti, Anna Maria; Bonezzi, Cesare

    2010-03-01

    Vertebral fractures often cause intractable pain. To define the involvement of vertebral body innervation in pain, we collected specimens from male and female patients during percutaneous kyphoplasty, a procedure used for reconstruction of the vertebral body. Specimens were taken from 31 patients (9 men and 22 women) suffering high-intensity pain before surgery. In total, 1,876 histological preparations were obtained and analysed. Immunohistochemical techniques were used to locate the nerves in the specimens. The nerve fibres were labelled by indirect immunofluorescence with the primary antibody directed against Protein Gene Product 9.5 (PGP 9.5), a pan-neuronal marker; another primary antibody directed against type IV collagen (Col IV) was used to identify vessels and to determine their relationship with vertebral nerve fibres. The mean percentage of samples in which it was possible to identify nerve fibres was 35% in men and 29% in women. The percentages varied depending on the spinal level considered and the sex of the subject, nerve fibres being mostly present around vessels (95%). In conclusion, there is scarce innervation of the vertebral bodies, with a clear prevalence of fibres located around vessels. It seems unlikely that this pattern of vertebral body innervation is involved in vertebral pain or in pain relief following kyphoplasty.

  12. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    PubMed

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P < 0.05), while no significant difference in T score of BMD, operative level, preoperative anterior compression degree of

  13. Substantial vertebral body osteophytes protect against severe vertebral fractures in compression

    PubMed Central

    Aubin, Carl-Éric; Chaumoître, Kathia; Mac-Thiong, Jean-Marc; Ménard, Anne-Laure; Petit, Yvan; Garo, Anaïs; Arnoux, Pierre-Jean

    2017-01-01

    Recent findings suggest that vertebral osteophytes increase the resistance of the spine to compression. However, the role of vertebral osteophytes on the biomechanical response of the spine under fast dynamic compression, up to failure, is unclear. Seventeen human spine specimens composed of three vertebrae (from T5-T7 to T11-L1) and their surrounding soft tissues were harvested from nine cadavers, aged 77 to 92 years. Specimens were imaged using quantitative computer tomography (QCT) for medical observation, classification of the intervertebral disc degeneration (Thomson grade) and measurement of the vertebral trabecular density (VTD), height and cross-sectional area. Specimens were divided into two groups (with (n = 9) or without (n = 8) substantial vertebral body osteophytes) and compressed axially at a dynamic displacement rate of 1 m/s, up to failure. Normalized force-displacement curves, videos and QCT images allowed characterizing failure parameters (force, displacement and energy at failure) and fracture patterns. Results were analyzed using chi-squared tests for sampling distributions and linear regression for correlations between VTD and failure parameters. Specimens with substantial vertebral body osteophytes present higher stiffness (2.7 times on average) and force at failure (1.8 times on average) than other segments. The presence of osteophytes significantly influences the location, pattern and type of fracture. VTD was a good predictor of the dynamic force and energy at failure for specimens without substantial osteophytes. This study also showed that vertebral body osteophytes provide a protective mechanism to the underlying vertebra against severe compression fractures. PMID:29065144

  14. Risk Prediction of New Adjacent Vertebral Fractures After PVP for Patients with Vertebral Compression Fractures: Development of a Prediction Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Bin-Yan; He, Shi-Cheng; Zhu, Hai-Dong

    PurposeWe aim to determine the predictors of new adjacent vertebral fractures (AVCFs) after percutaneous vertebroplasty (PVP) in patients with osteoporotic vertebral compression fractures (OVCFs) and to construct a risk prediction score to estimate a 2-year new AVCF risk-by-risk factor condition.Materials and MethodsPatients with OVCFs who underwent their first PVP between December 2006 and December 2013 at Hospital A (training cohort) and Hospital B (validation cohort) were included in this study. In training cohort, we assessed the independent risk predictors and developed the probability of new adjacent OVCFs (PNAV) score system using the Cox proportional hazard regression analysis. The accuracy ofmore » this system was then validated in both training and validation cohorts by concordance (c) statistic.Results421 patients (training cohort: n = 256; validation cohort: n = 165) were included in this study. In training cohort, new AVCFs after the first PVP treatment occurred in 33 (12.9%) patients. The independent risk factors were intradiscal cement leakage and preexisting old vertebral compression fracture(s). The estimated 2-year absolute risk of new AVCFs ranged from less than 4% in patients with neither independent risk factors to more than 45% in individuals with both factors.ConclusionsThe PNAV score is an objective and easy approach to predict the risk of new AVCFs.« less

  15. Vertebral Augmentation can Induce Early Signs of Degeneration in the Adjacent Intervertebral Disc: Evidence from a Rabbit Model.

    PubMed

    Feng, Zhiyun; Chen, Lunhao; Hu, Xiaojian; Yang, Ge; Wang, Yue; Chen, Zhong

    2018-04-11

    An experimental study. The aim of this study was to determine the effect of polymethylmethacrylate (PMMA) augmentation on the adjacent disc. Vertebral augmentation with PMMA reportedly may predispose the adjacent vertebra to fracture. The influence of PMMA augmentation on the adjacent disc, however, remains unclear. Using a retroperitoneal approach, PMMA augmentation was performed for 23 rabbits. For each animal, at least one vertebra was augmented with 0.2 to 0.3 mL PMMA. The disc adjacent to the augmented vertebra and a proximal control disc were studied using magnetic resonance (MR) imaging, histological and molecular level evaluation at 1, 3, and 6 months postoperatively. Marrow contact channels in the endplate were quantified in histological slices and number of invalid channels (those without erythrocytes inside) was rated. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) was performed to determine disc cell apoptosis. On MR images, the signal and height of the adjacent disc did not change 6 months after vertebral augmentation. Histological scores of the adjacent disc increased over time, particularly for the nucleus pulposus. The adjacent disc had greater nucleus degeneration score than the control disc at 3 months (5.7 vs. 4.5, P < 0.01) and 6 months (6.9 vs. 4.4, P < 0.001). There were more invalid marrow contact channels in the endplate of augmented vertebra than the control (43.3% vs. 11.1%, P < 0.01). mRNA of ADAMTS-5, MMP-13, HIF-1α, and caspase-3 were significantly upregulated in the adjacent disc at 3 and 6 months (P < 0.05 for all). In addition, there were more TUNEL-positive cells in the adjacent disc than in the control disc (43.4% vs. 24.0%, P < 0.05) at 6 months postoperatively. Vertebral augmentation can induce early degenerative signs in the adjacent disc, which may be due to impaired nutrient supply to the disc. N/A.

  16. Biomechanical Evaluation of an Injectable and Biodegradable Copolymer P(PF-co-CL) in a Cadaveric Vertebral Body Defect Model

    PubMed Central

    Fang, Zhong; Giambini, Hugo; Zeng, Heng; Camp, Jon J.; Dadsetan, Mahrokh; Robb, Richard A.; An, Kai-Nan; Yaszemski, Michael J.

    2014-01-01

    A novel biodegradable copolymer, poly(propylene fumarate-co-caprolactone) [P(PF-co-CL)], has been developed in our laboratory as an injectable scaffold for bone defect repair. In the current study, we evaluated the ability of P(PF-co-CL) to reconstitute the load-bearing capacity of vertebral bodies with lytic lesions. Forty vertebral bodies from four fresh-frozen cadaveric thoracolumbar spines were used for this study. They were randomly divided into four groups: intact vertebral body (intact control), simulated defect without treatment (negative control), defect treated with P(PF-co-CL) (copolymer group), and defect treated with poly(methyl methacrylate) (PMMA group). Simulated metastatic lytic defects were made by removing a central core of the trabecular bone in each vertebral body with an approximate volume of 25% through an access hole in the side of the vertebrae. Defects were then filled by injecting either P(PF-co-CL) or PMMA in situ crosslinkable formulations. After the spines were imaged with quantitative computerized tomography, single vertebral body segments were harvested for mechanical testing. Specimens were compressed until failure or to 25% reduction in body height and ultimate strength and elastic modulus of each specimen were then calculated from the force–displacement data. The average failure strength of the copolymer group was 1.83 times stronger than the untreated negative group and it closely matched the intact vertebral bodies (intact control). The PMMA-treated vertebrae, however, had a failure strength 1.64 times larger compared with the intact control. The elastic modulus followed the same trend. This modulus mismatch between PMMA-treated vertebrae and the host vertebrae could potentially induce a fracture cascade and degenerative changes in adjacent intervertebral discs. In contrast, P(PF-co-CL) restored the mechanical properties of the treated segments similar to the normal, intact, vertebrae. Therefore, P(PF-co-CL) may be a suitable

  17. Surgical treatment of cervical vertebral hemangioma associated with adjacent cervical spondylotic myelopathy.

    PubMed

    Hao, Ying-jie; Yu, Lei; Zhang, Yan; Wang, Li-min; Li, Jia-zhen

    2013-12-01

    Symptoms may vary from simple vertebral pain to progressive neurologic deficit because of cervical vertebral hemangioma associated with adjacent cervical spondylotic myelopathy (CVHAWACSM). Often resistant to conservative medical treatment, surgery has been the treatment of choice for these patients, but the optimal surgical strategy for CVHAWACSM has not been defined. This study aimed to investigate the methods and efficacy in the treatment of CVHAWACSM. Retrospective review of patients enrolled in prospective randomized trial. Procedure was performed in 18 patients (11 men and 7 women) with CVHAWACSM, who were enrolled between January 2006 and September 2011. Radiographic examinations were carried out to assess total filling of polymethylmethacrylate in the vertebral body, fusion rates, implant failure, and general complications. The recovery of neurologic function and neck and shoulder pain relief were measured based on the Japanese Orthopedic Association (JOA) and the visual analog scale (VAS) scores. Eighteen patients had single vertebral hemangioma, including one case at C₃, three at C₄, six at C₅, five at C₆, and three at C₇. The X-ray films showed a typical "palisade" change. According to the clinical and imaging features, there were 12 cases of Type II and 6 of Type IV cervical hemangioma. Standard anterior cervical decompression and fusion with a stand-alone polyetheretherketone cage (filled with autologous cancellous iliac bone) was performed, followed by vertebroplasty. Clinical and radiologic follow-ups were performed. The mean follow-up was 24.1 months, with a range of 18 to 36 months. The symptoms of all 18 patients were improved, by varying degrees, and the lesion vertebra did not show anterior bone cement leakage or injuries in the spinal cord and nerves. The forming vertebra did not show fracture or collapse, and there was no recurrence of the hemangioma. During the follow-up, there was no implant loosening, displacement, or breakage

  18. The evolutionary origin of the vertebrate body plan: the problem of head segmentation.

    PubMed

    Onai, Takayuki; Irie, Naoki; Kuratani, Shigeru

    2014-01-01

    The basic body plan of vertebrates, as typified by the complex head structure, evolved from the last common ancestor approximately 530 Mya. In this review, we present a brief overview of historical discussions to disentangle the various concepts and arguments regarding the evolutionary development of the vertebrate body plan. We then explain the historical transition of the arguments about the vertebrate body plan from merely epistemological comparative morphology to comparative embryology as a scientific treatment on this topic. Finally, we review the current progress of molecular evidence regarding the basic vertebrate body plan, focusing on the link between the basic vertebrate body plan and the evolutionarily conserved developmental stages (phylotypic stages).

  19. Interpedicular Approach in Percutaneous Sacroplasty for Treatment of Sacral Vertebral Body Pathologic Fractures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Latin-Small-Letter-Dotless-I rat, Ahmet Kemal, E-mail: ahmetfirat2@hotmail.com; Guemues, Burcak, E-mail: bgumus@yahoo.com; Kaya, Emin, E-mail: ekaya@inonu.edu.tr

    2011-02-15

    For this technique, bone needle is introduced into the S1 vertebral body through the interpedicular route by penetrating the central spinal canal at the level of S3-4 and passing through the vertebral body of S2-3 parallel to the anterior border of sacrum. With the interpedicular approach, two sacral vertebral bodies can be injected in one session and lower sacral body injection also is available. interpedicular technique is a safe, practical, and effective technique for the treatment of sacral vertebral body pathologic fractures.

  20. Vertebral hemangiomas: their demographical characteristics, location along the spine and position within the vertebral body.

    PubMed

    Slon, Viviane; Stein, Dan; Cohen, Haim; Sella-Tunis, Tatiana; May, Hila; Hershkovitz, Israel

    2015-10-01

    Vertebral hemangiomas (VHs) are the most common form of benign tumors in the spine. The aim of this research was to study the prevalence of VHs in the human population, their distribution along the spine and their location in the vertebral body. The presence of VHs was assessed in full spine CT scans of 196 adults. Demographic data were gathered from medical records. VHs were present in 26.0% of the individuals studied, a rate significantly higher (χ2=43.338, p<0.001) than the prevalence reported in the literature (10.7%). Multiple VHs (≥2) appeared in 7.2% of the population studied. VHs prevalence is sex-independent, appearing in 28.6% of females and 23.5% of males (χ2=0.663, p=0.416); and age-dependent: the mean age of affected individuals (65.8 years) was significantly higher (p<0.001) than unaffected individuals (56.2 years). VH size was also age-dependent (p=0.023). No vertebra was significantly more prone to be affected by a hemangioma. T11 and T12 show the highest prevalence of VHs (3.57% of vertebrae affected). VHs were found in similar percentages in the anterior and posterior parts of the vertebral body (52.8 vs. 47.2%, respectively); and at its center and periphery (50.1 and 49.9%, respectively). VHs usually appeared at mid-height of the vertebral body or slightly higher. The reported prevalence of VHs is dependent on the demographic structure of the population studied, the size of the VHs and the method used to identify them. Overall, the phenomenon is more frequent than usually reported. VHs may appear at all vertebral levels and in all areas of the vertebral body.

  1. Case report: vertebral foreign body granuloma mimicking a skeletal metastasis.

    PubMed

    Vossen, Josephina A; Bathaii, Seyed M; Hatfield, Bryce; Hayes, Curtis W

    2018-06-01

    Intraosseous foreign body granuloma formation related to migrated surgical material is a rarely reported condition with variable imaging appearance. In this case report, we describe a foreign body granuloma that occurred in a lumbar vertebral body one level above a prior surgical fusion. The lytic appearance mimicked a skeletal metastasis in a 65-year-old patient with recently diagnosed renal cell carcinoma. To the best of our knowledge, this is the first reported case of a lumbar vertebral foreign body granuloma occurring distant from the site of surgery, indistinguishable from skeletal metastasis on radiologic examination.

  2. Vertebral reconstruction using the telescopic plate spacer-thoracolumbar (TPS-TL) device.

    PubMed

    Atalay, Basar; Riesenburger, Ron I; Schirmer, Clemens M; Bhadelia, Rafeeque A; Weller, Simcha J

    2010-07-01

    Retrospective study of surgical technique and outcome. The authors conducted a study to evaluate the ability of the TPS-TL (telescopic plate spacer-thoracolumbar) implant to correct kyphotic deformity and restore vertebral body height after vertebrectomy in the thoracolumbar spine. TPS-TL is a novel vertebral body replacement device that consists of an expandable cage with an integrated plate component for transvertebral screw fixation. This is a retrospective study of 20 patients who underwent anterior column reconstruction with TPS-TL after a 1 or 2 level thoracolumbar vertebrectomy. Preoperative and postoperative sagittal alignment and vertebral body heights were radiologically analyzed in all patients. The mean follow-up was 14 months. Preoperative and postoperative Cobb angles were measured to assess sagittal alignment. The average preoperative Cobb angle was 16.0 + or - 7 degrees. This was reduced to 9.8 + or - 10 degrees at the final follow-up (P<0.001). Percent of ideal vertebral body height was used to assess postoperative restoration of vertebral body height. This value was obtained by creating a ratio of the height of the effected vertebral levels to the height of the adjacent normal vertebral bodies. The mean percent of ideal vertebral body height improved from a preoperative value from 86.2 + or - 2% to 93.1 + or - 6% at the final follow-up (P<0.001). The TPS-TL implant is effective in restoring vertebral body height and correcting kyphotic deformity after thoracolumbar vertebrectomy.

  3. Vertebral sclerosis in adults.

    PubMed Central

    Russell, A S; Percy, J S; Lentle, B C

    1979-01-01

    Narrowing of the intervertebral disc space with sclerosis of the adjacent vertebral bodies may occur as a consequence of infection, neoplasia, trauma, or rheumatic disease. Some patients have been described with backache and these radiological appearances without any primary cause being apparent. The lesions were almost always of 1 or, at most, 2 vertebrae and most frequently involved the inferior margin of L4. We describe 3 patients with far more extensive vertebral involvement and present the clinical, radiological, scintiscan, and histological findings. The only patient we have seen with the better known, isolated L4/5 lesion was shown on biopsy to have staphylococcal osteomyelitis. For this reason we would still recommend a biopsy of all such sclerotic vertebral lesions if they occur in the absence of other rheumatic disease. Images PMID:434941

  4. Extraosseous Extension of Aggressive Vertebral Hemangioma as a Potential Pitfall on 68Ga-PSMA PET/CT.

    PubMed

    Probst, Stephan; Bladou, Franck; Abikhzer, Gad

    2017-08-01

    A 74-year-old man with newly diagnosed prostate cancer underwent Ga-PSMA PET/CT, which demonstrated intense uptake in and adjacent the L2 vertebral body. Subsequent MRI of the lumbar spine showed an aggressive L2 hemangioma with adjacent soft tissue extension. There was congruence of the intraosseous and extraosseous components of the hemangioma and the PSMA PET uptake. This is a rare but important potential pitfall in Ga-PSMA PET/CT-a soft tissue lesion with intense tracer uptake related not to a nodal metastasis of prostate cancer but to extraosseous extension of an aggressive vertebral body hemangioma.

  5. [Development and application of artificial vertebral body].

    PubMed

    Liu, Jian-Tao; Zhang, Feng; Gao, Zheng-Chao; Niu, Bin-Bin; Li, Yu-Huan; He, Xi-Jing

    2017-12-25

    Artificial vertebral body has achieved good results in treating spinal tumors, tuberculosis, fracture and other diseases. Currently, artificial vertebral body with variety of kinds and pros and cons, is generally divided into two types: fusion type and movable type. The former according to whether the height could be adjusted and strength of self-stability is divided into three types: support-fixed type, adjust-fixed type and self-fixed type. Whether the height of self-fixed type could be adjusted is dependent on structure of collar thread rotation. The latter is due to mobile device of ball-and-socket joints or hollow structures instead of the disc which retains the activity of the spine to some extent. Materials of artificial vertebral body include metals, ceramics, biomaterials, polymer composites and other materials. Titanium with a dominant role in the metal has developed to the third generation, but there are still defects such as poor surface bioactivity; ceramics with the representative of hydroxyapatite composite, magnetic bioceramics, polycrystalline alumina ceramics and so on, which have the defects of processing complex and uneven mechanical properties; biological material is mainly dominated by xenogeneic bone, which is closest to human bone in structure and properties, but has defects of low toughness and complex production; polymer composites according to biological characteristics in general consists of biodegradable type and non-biodegradable type which are respectively represented by poly-lactide and polyethylene, each with advantages and disadvantages. Although the design and materials of prosthesis have made great progress, it is difficult to fully meet requirements of spinal implants and they need be further optimized. 3D printing technology makes process of the complex structure of prosthesis and individual customization possible and has broad development prospects. However, long production cycles and high cost of defect should be overcome

  6. Vertebral shape and body elongation in Triturus newts.

    PubMed

    Urošević, Aleksandar; Slijepčević, Maja D; Arntzen, Jan W; Ivanović, Ana

    2016-10-01

    Body elongation in vertebrates is often related to a lengthening of the vertebrae and an increase in their number. Changes in the number and shape of vertebrae are not necessarily linked. In tailed amphibians, a change in body shape is mostly associated with an increase in the number of trunk and tail vertebrae. Body elongation without a numerical change of vertebrae is rare. In Triturus aquatic salamanders body elongation is achieved by trunk elongation through an increase in the number of trunk vertebrae. We used computed microtomography and three-dimensional geometric morphometrics to document the size, shape and number of trunk vertebrae in seven Triturus species. The data suggest that body elongation has occurred more frequently than body shortening, possibly related to a more aquatic versus a more terrestrial locomotor style. Our results show that body elongation is achieved through an increase in the number of trunk vertebrae, and that interspecific differences in vertebral shape are correlated with this pattern of elongation. More gracile trunk vertebrae were found in the more elongated species. The shape differences are such that single trunk vertebrae can be used for the identification of species with a possible application in the identification of subfossil and fossil material. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Preventive effects of conservative treatment with short-term teriparatide on the progression of vertebral body collapse after osteoporotic vertebral compression fracture.

    PubMed

    Park, J-H; Kang, K-C; Shin, D-E; Koh, Y-G; Son, J-S; Kim, B-H

    2014-02-01

    The progression of fractured vertebral collapse is not rare after a conservative treatment of vertebral compression fracture (VCF). Teriparatide has been shown to directly stimulate bone formation and improve bone density, but there is a lack of evidence regarding its use in fracture management. Conservative treatment with short-term teriparatide is effective for decreasing the progression of fractured vertebral body collapse. Few studies have reported on the prevention of collapsed vertebral body progression after osteoporotic VCF. Teriparatide rapidly enhances bone formation and increases bone strength. This study evaluated preventive effects of short-term teriparatide on the progression of vertebral body collapse after osteoporotic VCF. Radiographs of 68 women with single-level osteoporotic VCF at thoracolumbar junction (T11-L2) were reviewed. Among them, 32 patients were treated conservatively with teriparatide (minimum 3 months) (group I), and 36 were treated with antiresorptive (group II). We measured kyphosis and wedge angle of the fractured vertebral body, and ratios of anterior, middle, and posterior heights of the collapsed body to posterior height of a normal upper vertebra were determined. The degree of collapse progression was compared between two groups. The progression of fractured vertebral body collapse was shown in both groups, but the degree of progression was significantly lower in group I than in group II. At the last follow-up, mean increments of kyphosis and wedge angle were significantly lower in group I (4.0° ± 4.2° and 3.6° ± 3.6°) than in group II (6.8° ± 4.1° and 5.8° ± 3.5°) (p = 0.032 and p = 0.037). Decrement percentages of anterior and middle border height were significantly lower in group I (9.6 ± 10.3 and 7.4 ± 7.5 %) than in group II (18.1 ± 9.7 and 13.8 ± 12.2 %) (p = 0.001 and p = 0.025), but not in posterior height (p = 0.086). In female patients with single-level osteoporotic VCF at the thoracolumbar junction

  8. Vertebral body spread in thoracolumbar burst fractures can predict posterior construct failure.

    PubMed

    De Iure, Federico; Lofrese, Giorgio; De Bonis, Pasquale; Cultrera, Francesco; Cappuccio, Michele; Battisti, Sofia

    2018-06-01

    The load sharing classification (LSC) laid foundations for a scoring system able to indicate which thoracolumbar fractures, after short-segment posterior-only fixations, would need longer instrumentations or additional anterior supports. We analyzed surgically treated thoracolumbar fractures, quantifying the vertebral body's fragment displacement with the aim of identifying a new parameter that could predict the posterior-only construct failure. This is a retrospective cohort study from a single institution. One hundred twenty-one consecutive patients were surgically treated for thoracolumbar burst fractures. Grade of kyphosis correction (GKC) expressed radiological outcome; Oswestry Disability Index and visual analog scale were considered. One hundred twenty-one consecutive patients who underwent posterior fixation for unstable thoracolumbar burst fractures were retrospectively evaluated clinically and radiologically. Supplementary anterior fixations were performed in 34 cases with posterior instrumentation failure, determined on clinic-radiological evidence or symptomatic loss of kyphosis correction. Segmental kyphosis angle and GKC were calculated according to the Cobb method. The displacement of fracture fragments was obtained from the mean of the adjacent end plate areas subtracted from the area enclosed by the maximum contour of vertebral fragmentation. The "spread" was derived from the ratio between this subtraction and the mean of the adjacent end plate areas. Analysis of variance, Mann-Whitney, and receiver operating characteristic were performed for statistical analysis. The authors report no conflict of interest concerning the materials or methods used in the present study or the findings specified in this paper. No funds or grants have been received for the present study. The spread revealed to be a helpful quantitative measurement of vertebral body fragment displacement, easily reproducible with the current computed tomography (CT) imaging technologies

  9. [Utility of nickel-titanium shape memory alloys of vertebral body reduction fixator with assisted distraction bar].

    PubMed

    Man, Yi; Zheng, Yue-huan; Cao, Peng; Chen, Bo; Zheng, Tao; Sun, Chang-hui; Lu, Jiong

    2011-06-07

    To test the nickel-titanium (Ni-Ti) shape memory alloys of vertebral body reduction fixator with assisted distraction bar for the treatment of traumatic and osteoporotic vertebral body fracture. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar was implanted into the compressed fracture specimens through vertebral pedicle with the radiographic monitoring to reduce the collapsed endplate as well as distract the compressed vertebral fracture. Radiographic film and computed tomographic reconstruction technique were employed to evaluate the effects of reduction and distraction. A biomechanic test machine was used to measure the fatigue and the stability of deformation of fixation segments. Relying on the effect of temperature shape memory, such an assembly could basically reduce the collapsed endplate as well as distract the compressed vertebral fracture. And when unsatisfied results of reduction and distraction occurred, its super flexibility could provide additional distraction strength. A Ni-Ti shape memory alloys of vertebral body reduction fixator with assisted distraction bar may provide effective endplate reduction, restore the vertebral height and the immediate biomechanic spinal stability. So the above assembly is indicated for the treatment of traumatic and osteoporotic vertebral body fracture.

  10. Kyphosis and Kyphoscoliosis Associated with Congenital Malformations of the Thoracic Vertebral Bodies in Dogs.

    PubMed

    Dewey, Curtis W; Davies, Emma; Bouma, Jennifer L

    2016-03-01

    Congenital malformations of the thoracic vertebral bodies are commonly encountered in veterinary practice. These anomalies are prevalent in juvenile and adult small-breed dogs. These anomalous vertebrae typically result in various degrees of kyphosis and scoliosis in the region of the abnormality. They are thought to occur following developmental errors during embryonic or fetal vertebral segmentation and ossification; most are incidental. This article focuses on those anomalies of the thoracic vertebral bodies that lead to clinical signs of neurologic dysfunction. Based on a limited number of reported cases, the prognosis for surgically managed dogs with thoracic vertebral body abnormalities is favorable. Published by Elsevier Inc.

  11. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus

    PubMed Central

    2014-01-01

    The fat body in invertebrates was shown to participate in energy storage and homeostasis, apart from its other roles in immune mediation and protein synthesis to mention a few. Thus, sharing similar characteristics with the liver and adipose tissues in vertebrates. However, vertebrate adipose tissue or fat has been incriminated in the pathophysiology of metabolic disorders due to its role in production of pro-inflammatory cytokines. This has not been reported in the insect fat body. The link between the fat body and adipose tissue was examined in this review with the aim of determining the principal factors responsible for resistance to inflammation in the insect fat body. This could be the missing link in the prevention of metabolic disorders in vertebrates, occasioned by obesity. PMID:24758278

  12. Effect of Augmentation Material Stiffness on Adjacent Vertebrae after Osteoporotic Vertebroplasty Using Finite Element Analysis with Different Loading Methods.

    PubMed

    Cho, Ah-Reum; Cho, Sang-Bong; Lee, Jae-Ho; Kim, Kyung-Hoon

    2015-11-01

    Vertebroplasty is an effective treatment for osteoporotic vertebral fractures, which are one of the most common fractures associated with osteoporosis. However, clinical observation has shown that the risk of adjacent vertebral body fractures may increase after vertebroplasty. The mechanism underlying adjacent vertebral body fracture after vertebroplasty is not clear; excessive stiffness resulting from polymethyl methacrylate has been suspected as an important mechanism. The aim of our study was to compare the effects of bone cement stiffness on adjacent vertebrae after osteoporotic vertebroplasty under load-controlled versus displacement-controlled conditions. An experimental computer study using a finite element analysis. Medical research institute, university hospital, Korean. A three-dimensional digital anatomic model of L1/2 bone structure was reconstructed from human computed tomographic images. The reconstructed three-dimensional geometry was processed for finite element analysis such as meshing elements and applying material properties. Two boundary conditions, load-controlled and displacement-controlled methods, were applied to each of 5 deformation modes: compression, flexion, extension, lateral bending, and torsion. The adjacent L1 vertebra, irrespective of augmentation, revealed nearly similar maximum von Mises stresses under the load-controlled condition. However, for the displacement-controlled condition, the maximum von Mises stresses in the cortical bone and inferior endplate of the adjacent L1 vertebra increased significantly after cement augmentation. This increase was more significant than that with stiffer bone cement under all modes, except the torsion mode. The finite element model was simplified, excluding muscular forces and incorporating a large volume of bone cement, to more clearly demonstrate effects of bone cement stiffness on adjacent vertebrae after vertebroplasty. Excessive stiffness of augmented bone cement increases the risk of

  13. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.

    PubMed

    Keller, Thomas E; Han, Priscilla; Yi, Soojin V

    2016-04-01

    Genomes of invertebrates and vertebrates exhibit highly divergent patterns of DNA methylation. Invertebrate genomes tend to be sparsely methylated, and DNA methylation is mostly targeted to a subset of transcription units (gene bodies). In a drastic contrast, vertebrate genomes are generally globally and heavily methylated, punctuated by the limited local hypo-methylation of putative regulatory regions such as promoters. These genomic differences also translate into functional differences in DNA methylation and gene regulation. Although promoter DNA methylation is an important regulatory component of vertebrate gene expression, its role in invertebrate gene regulation has been little explored. Instead, gene body DNA methylation is associated with expression of invertebrate genes. However, the evolutionary steps leading to the differentiation of invertebrate and vertebrate genomic DNA methylation remain unresolved. Here we analyzed experimentally determined DNA methylation maps of several species across the invertebrate-vertebrate boundary, to elucidate how vertebrate gene methylation has evolved. We show that, in contrast to the prevailing idea, a substantial number of promoters in an invertebrate basal chordate Ciona intestinalis are methylated. Moreover, gene expression data indicate significant, epigenomic context-dependent associations between promoter methylation and expression in C. intestinalis. However, there is no evidence that promoter methylation in invertebrate chordate has been evolutionarily maintained across the invertebrate-vertebrate boundary. Rather, body-methylated invertebrate genes preferentially obtain hypo-methylated promoters among vertebrates. Conversely, promoter methylation is preferentially found in lineage- and tissue-specific vertebrate genes. These results provide important insights into the evolutionary origin of epigenetic regulation of vertebrate gene expression. © The Author(s) 2015. Published by Oxford University Press on behalf

  14. Vertebral body pneumatocyst in the cervical spine and review of the literature.

    PubMed

    Coşar, Murat; Eser, Olcay; Aslan, Adem; Korkmaz, Serhat; Boyaci, Gazi; Değirmenci, Bumin; Albayrak, Ramazan

    2008-04-01

    A pneumatocyst in the cervical spine is extremely rare and to our knowledge only a few reports have been published in the English literature. Although the etiology and natural course of vertebral body pneumatocyst is unclear, nitrogen gas accumulation is claimed. A 65-year-old-man was admitted to the emergency department with neck pain and numbness and incapacity in his both hands and fingers. The radiological images revealed a vertebral located pneumatocyst in the C4 cervical vertebra. In this report, we present a case of cervical pneumatocyst located in the C4 vertebral body. The clinical and radiological features and natural course of the pneumatocyst were evaluated.

  15. High weight or body mass index increase the risk of vertebral fractures in postmenopausal osteoporotic women.

    PubMed

    Pirro, Matteo; Fabbriciani, Gianluigi; Leli, Christian; Callarelli, Laura; Manfredelli, Maria Rosaria; Fioroni, Claudio; Mannarino, Massimo Raffaele; Scarponi, Anna Maria; Mannarino, Elmo

    2010-01-01

    In the general population, low body weight and body mass index (BMI) are significant risk factors for any fracture, but the specific association between body weight, BMI, and prevalence of vertebral fractures in osteoporotic women is not fully recognized. Hence, the association between body weight, BMI, and prevalent vertebral fractures was investigated in 362 women with never-treated postmenopausal osteoporosis. All participants underwent measurement of BMI, bone mineral density (BMD), and semiquantitative assessment of vertebral fractures. Thirty percent of participants had > or =1 vertebral fracture. Body weight and BMI were associated with L1-L4 BMD (R = 0.29, P < 0.001 and R = 0.17, P = 0.009, respectively). In logistic regression analysis, BMI was positively associated with the presence of vertebral fractures independent of age and other traditional risk factors for fractures. Including weight and height instead of BMI in the multivariate model, showed weight as a positive and significant covariate of the presence of vertebral fractures (OR = 1.045; P = 0.016; 95% CI 1.008-1.084). BMI was associated with the number of vertebral fractures (rho = 0.18; P = 0.001), this association being confirmed also in the multivariate analysis (beta = 0.14; P = 0.03) after correction for smoking, early menopause, family history of fragility fractures and BMD. In conclusion, among postmenopausal women with osteoporosis, body weight and BMI are associated with a higher likelihood of having a vertebral fracture, irrespective of the positive association between weight and BMD.

  16. A new method for assessing relative dynamic motion of vertebral bodies during cyclic loading in vitro.

    PubMed

    Dean, J C; Wilcox, C H; Daniels, A U; Goodwin, R R; Van Wagoner, E; Dunn, H K

    1991-01-01

    A new experimental technique for measuring generalized three-dimensional motion of vertebral bodies during cyclic loading in vitro is presented. The system consists of an orthogonal array of three lasers mounted rigidly to one vertebra, and a set of three mutually orthogonal charge-coupled devices mounted rigidly to an adjacent vertebra. Each laser strikes a corresponding charge-coupled device screen. The mathematical model of the system is reduced to a linear set of equations with consequent matrix algebra allowing fast real-time data reduction during cyclic movements of the spine. The range and accuracy of the system is well suited for studying thoracolumbar motion segments. Distinct advantages of the system include miniaturization of the components, the elimination of the need for mechanical linkages between the bodies, and a high degree of accuracy which is not dependent on viewing volume as found in photogrammetric systems. More generally, the spectrum of potential applications of systems of this type to the real-time measurement of the relative motion of two bodies is extremely broad.

  17. Prospective Single-Site Experience with Radiofrequency-Targeted Vertebral Augmentation for Osteoporotic Vertebral Compression Fracture

    PubMed Central

    Moser, Franklin G.; Maya, Marcel M.; Blaszkiewicz, Laura; Scicli, Andrea; Miller, Larry E.; Block, Jon E.

    2013-01-01

    Vertebral augmentation procedures are widely used to treat osteoporotic vertebral compression fractures (VCFs). We report our initial experience with radiofrequency-targeted vertebral augmentation (RF-TVA) in 20 patients aged 50 to 90 years with single-level, symptomatic osteoporotic VCF between T10 and L5, back pain severity > 4 on a 0 to 10 scale, Oswestry Disability Index ≥ 21%, 20% to 90% vertebral height loss compared to adjacent vertebral body, and fracture age < 6 months. After treatment, patients were followed through hospital discharge and returned for visits after 1 week, 1 month, and 3 months. Back pain severity improved 66% (P < 0.001), from 7.9 (95% CI: 7.1 to 8.6) at pretreatment to 2.7 (95% CI: 1.5 to 4.0) at 3 months. Back function improved 46% (P < 0.001), from 74 (95% CI: 69% to 79%) at pretreatment to 40 (95% CI: 33% to 47%) at 3 months. The percentage of patients regularly consuming pain medication was 70% at pretreatment and only 21% at 3 months. No adverse events related to the device or procedure were reported. RF-TVA reduces back pain severity, improves back function, and reduces pain medication requirements with no observed complications in patients with osteoporotic VCF. PMID:24228187

  18. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  19. Vertebral Body Growth After Craniospinal Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, Katherine A.; Li Chenghong; Laningham, Fred H.

    2008-04-01

    Purpose: To estimate the effects of radiotherapy and clinical factors on vertebral growth in patients with medulloblastoma and supratentorial primitive neuroectodermal tumors treated with craniospinal irradiation (CSI) and chemotherapy. Methods and Materials: The height of eight individual or grouped vertebral bodies (C3, C3-C4, T4, T4-T5, C6-T3, T4-T7, L3, L1-L5) was measured before and after CSI (23.4 or 36-39.6 Gy) in 61 patients. Of the 61 patients, 40 were boys and 21 were girls (median age, 7 years; range, 3-13 years), treated between October 1996 and October 2003. Sagittal T{sub 1}-weighted magnetic resonance images were used for the craniocaudal measurements. Themore » measurements numbered 275 (median, 5/patient; range, 3-7). The median follow-up after CSI was 44.1 months (range, 13.8-74.9 months). Results: Significant growth was observed in all measured vertebrae. Excluding C3-C4, the growth rate of the grouped vertebrae was affected by age, gender, and CSI dose (risk classification). The risk classification alone affected the growth rates of C3 (p = 0.002) and L3 (p = 0.02). Before CSI, the length of all vertebral bodies was an increasing function of age (p <0.0001). The C3 length before CSI was affected by gender and risk classification: C3 was longer for female (p = 0.07) and high-risk (p = 0.07) patients. Conclusion: All vertebrae grew significantly after CSI, with the vertebrae of the boys and younger patients growing at a rate greater than that of their counterparts. The effect of age was similar across all vertebrae, and gender had the greatest effect on the growth of the lower cervical and upper thoracic vertebrae. The effect of the risk classification was greatest in the lumbar spine by a factor of {<=}10.« less

  20. Movement of the projected pedicles relative to the projected vertebral body in a fourth lumbar vertebra during axial rotation.

    PubMed

    Coleman, Roger R; Thomas, I Walker

    2004-01-01

    One use of the anteroposterior lumbar radiograph is to determine axial (y-axis) rotation of the lumbar vertebrae. Rotation might be an element of interest to clinicians seeking to evaluate vertebral positioning. Correlate and quantify movements of the projected pedicles relative to the projected vertebral body during axial rotation and determine if vertebral asymmetry and changes in object film distance affect these movements. A three-dimensional computer model of the fourth and fifth lumbar vertebrae, a modeled radiograph source, and a modeled film were produced. The vertebral model was placed in various degrees of axial rotation at a number of different object film distances. Lines from the source were passed through the pedicles of the fourth lumbar vertebral model and additional lines erected tangent to the lateral body margins. These lines were extended to points of contact with the modeled film. The projected pedicles move relative to the projected vertebral body during y-axis rotation. Vertebral asymmetry and object film distances can also affect the distance of the projected pedicle relative to the projected lateral body margin. Axial rotation produces movement of the projected pedicles relative to the projected vertebral body. However, vertebral asymmetry and changes in object film distance also affect the position of the projected pedicles relative to the projected lateral body margin and might serve as confounders to the clinician seeking to analyze vertebral rotation through the use of the projected pedicles.

  1. High-resolution computed tomography evaluation of the bronchial lumen to vertebral body diameter and pulmonary artery to vertebral body diameter ratios in anesthetized ventilated normal cats.

    PubMed

    Lee-Fowler, Tekla M; Cole, Robert C; Dillon, A Ray; Tillson, D Michael; Garbarino, Rachel; Barney, Sharron

    2017-10-01

    Objectives Bronchial lumen to pulmonary artery diameter (BA) ratio has been utilized to investigate pulmonary pathology on high-resolution CT images. Diseases affecting both the bronchi and pulmonary arteries render the BA ratio less useful. The purpose of the study was to establish bronchial lumen diameter to vertebral body diameter (BV) and pulmonary artery diameter to vertebral body diameter (AV) ratios in normal cats. Methods Using high-resolution CT images, 16 sets of measurements (sixth thoracic vertebral body [mid-body], each lobar bronchi and companion pulmonary artery diameter) were acquired from young adult female cats and 41 sets from pubertal female cats. Results Young adult and pubertal cat BV ratios were not statistically different from each other in any lung lobe. Significant differences between individual lung lobe BV ratios were noted on combined age group analysis. Caudal lung lobe AV ratios were significantly different between young adult and pubertal cats. All other lung lobe AV ratios were not significantly different. Caudal lung lobe AV ratios were significantly different from all other lung lobes but not from each other in both the young adult and pubertal cats. Conclusions and relevance BV ratio reference intervals determined for individual lung lobes could be applied to both young adult and pubertal cats. Separate AV ratios for individual lung lobes would be required for young adult and pubertal cats. These ratios should allow more accurate evaluation of cats with concurrent bronchial and pulmonary arterial disease.

  2. Notochord segmentation may lay down the pathway for the development of the vertebral bodies in the Atlantic salmon.

    PubMed

    Grotmol, Sindre; Kryvi, Harald; Nordvik, Kari; Totland, Geir K

    2003-12-01

    This study indicates that the development of the vertebrae in the Atlantic salmon requires the orchestration of two sources of metameric patterning, derived from the notochord and the somite rows, respectively. Before segmentation of the salmon notochord, chordoblasts exhibit a well-defined cell axis that is uniformly aligned with the cranio-caudal axis. The morphology of these cells is characterised by a foot-like basal projection that rests on the notochordal sheath. Notochordal segments are initially formed within the chordoblast layer by metameric change in the axial orientation of groups of chordoblasts. This process results in the formation of circular bands of chordoblasts, with feet perpendicular to the cranio-caudal axis, the original chordoblast orientation. Each vertebra is defined by two such chordoblast bands, at the cranial and caudal borders, respectively. Formation of the chordoblast segments closely precedes formation of the chordacentra, which form as calcified rings within the adjacent notochordal sheath. Sclerotomal osteoblasts then differentiate on the surface of the chordacentra, using them as foundations for further vertebral growth. Thus, the morphogenesis of the rudiments of the vertebral bodies is initiated by a generation of segments within the chordoblast layer. This dual segmentation model for salmon, in which the segmental patterns of the neural and haemal arches are somite-derived, while the vertebral segments seem to be notochord-derived, contrasts with current models for avians and mammals.

  3. A resegmentation-shift model for vertebral patterning.

    PubMed

    Ward, Lizzy; Evans, Susan E; Stern, Claudio D

    2017-02-01

    Segmentation of the vertebrate body axis is established in the embryo by formation of somites, which give rise to the axial muscles (myotome) and vertebrae (sclerotome). To allow a muscle to attach to two successive vertebrae, the myotome and sclerotome must be repositioned by half a segment with respect to each other. Two main models have been put forward: 'resegmentation' proposes that each half-sclerotome joins with the half-sclerotome from the next adjacent somite to form a vertebra containing cells from two successive somites on each side of the midline. The second model postulates that a single vertebra is made from a single somite and that the sclerotome shifts with respect to the myotome. There is conflicting evidence for these models, and the possibility that the mechanism may vary along the vertebral column has not been considered. Here we use DiI and DiO to trace somite contributions to the vertebrae in different axial regions in the chick embryo. We demonstrate that vertebral bodies and neural arches form by resegmentation but that sclerotome cells shift in a region-specific manner according to their dorsoventral position within a segment. We propose a 'resegmentation-shift' model as the mechanism for amniote vertebral patterning. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  4. Early results after vertebral body stenting for fractures of the anterior column of the thoracolumbar spine.

    PubMed

    Klezl, Zdenek; Majeed, Haroon; Bommireddy, Rajendranath; John, Joby

    2011-10-01

    Vertebroplasty and balloon kyphoplasty have shown to improve pain and functional outcome in cases with symptomatic vertebral fractures. Although restoration of the vertebral body height and kyphosis seemed to be easier with balloon kyphoplasty, it became clear that some of the correction achieved by the balloon is lost once it was deflated. Vertebral body stent was developed to eliminate this phenomenon. To our knowledge this is the first study in describing this technique in clinical settings. Seventeen patients with 20 fractured vertebral bodies were included. All fractures were Type A1.3 or A3.1 (incomplete burst). Information about pain (visual analogue scale-VAS) and function (Oswestry disability index-ODI) and vertebral body deformity (vertebral angle-VA) was recorded in a prospective way at regular intervals. Patients were classified into osteoporotic group (7 patients) and traumatic groups (10 patients, younger than 60 years). There were 6 male and 11 female patients with mean age of 58.1 years (31-88 years). Mean follow up was 12 months. The preoperative pain level showed a mean VAS score of 8.9 in osteoporotic group and 9.7 in traumatic group. Postoperatively, in osteoporotic group, mean VAS was 4.8 at 6 weeks, 4.0 at 6 months and 2.5 at 12 months compared with traumatic fracture group where it was 2.7 at 6 weeks, 2.2 at 6 months and 1.6 at 12 months. Mean ODI in osteoporotic group was 41.7% (14-58%) and in traumatic group it was 20.4% (6-33%). Mean vertebral body angle prior to surgery in osteoporotic group was 9.7 whilst postoperatively it was 5.2°; so the mean correction achieved was 4.5°. In traumatic group preoperative VA was 13° whilst postoperatively it was 5.7°; therefore the mean correction achieved was 7.3°. None of the patients lost reduction at their last follow up. Vertebral body stenting leads to satisfactory improvement in pain, function and kyphosis correction in the treatment of osteoporotic and traumatic fractures. Anterior spinal

  5. Enlarging vertebral body pneumatocysts in the cervical spine.

    PubMed

    Kitagawa, Tomoaki; Fujiwara, Atsushi; Tamai, Kazuya; Kobayashi, Naoki; Saiki, Kazuhiko; Omata, Sadatoshi; Saotome, Koichi

    2003-09-01

    An intravertebral pneumatocyst is a relatively rare condition, and its natural course and etiology are unclear. We report a case of intravertebral pneumatocysts in the C5 vertebra that gradually enlarged during a 16-month period as documented by follow-up CT. In addition, direct communication was observed between the gas in the intervertebral disk and another pneumatocyst in the C6 vertebral body, which suggests that the gas in the pneumatocyst had an association with the gas in the degenerated intervertebral disk.

  6. Three-dimensional finite element simulations of vertebral body thermal treatment (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas P.; Patel, Samit J.; Morris, Ronit; Hoopes, P. J.; Bergeron, Jeffrey A.; Mahajan, Roop

    2005-04-01

    Lower back pain affects a large group of people worldwide and when in its early stages, has no viable interventional treatment. In order to avoid the eventuality of an invasive surgical procedure, which is further down the Care Pathway, an interventional treatment that is minimally invasive and arrests the patient's pain would be of tremendous clinical benefit. There is a hypothesis that if the basivertebral nerve in the vertebral body is defunctionalized, lower back pain may be lessened. To further investigate creating a means to provide localized thermal therapy, bench and animal studies were planned, but to help select the applicator configuration and placement, numerical modeling studies were undertaken. A 3D finite element model was utilized to predict the electric field pattern and power deposition pattern of radiofrequency (RF) based electrodes. Three types of tissues were modeled: 1) porcine (ex-vivo), ovine (in-vivo preclinical), and 3) human (ex-vivo, in-vivo). Two types of RF devices were simulated: 1) a pair of converging, hollow electrodes, and 2) an in-line pair of spaced-apart electrodes. Temperature distributions over time were plotted using the electric field results and the bioheat equation. Since the thermal and electrical properties of the vertebral bodies of porcine, ovine, and human tissue were not available, measurements were undertaken to capture these data to input into the model. The measurements of electrical and thermal properties of cancellous and cortical vertebral body were made over a range of temperatures. The simulation temperature results agreed with live animal and human cadaver studies. In addition, the lesion shapes predicted in the simulations matched CT and MRI studies done during the chronic ovine study, as well as histology results. In conclusion, the simulations aided in shaping and sizing the RF electrodes, as well as positioning them in the vertebral body structures to assure that the basivertebral nerve was ablated, but

  7. Investigation of Buckling Phenomenon Induced by Growth of Vertebral Bodies Using a Mechanical Spine Model

    NASA Astrophysics Data System (ADS)

    Sasaoka, Ryu; Azegami, Hideyuki; Murachi, Shunji; Kitoh, Junzoh; Ishida, Yoshito; Kawakami, Noriaki; Makino, Mitsunori; Matsuyama, Yukihiro

    A hypothesis that idiopathic scoliosis is a buckling phenomenon of the fourth or sixth mode, which is the second or third lateral bending mode, induced by the growth of vertebral bodies was presented in a previous paper by the authors using numerical simulations with a finite-element model of the spine. This paper presents experimental proof of the buckling phenomenon using mechanical spine models constructed with the geometrical data of the finite-element model used in a previous work. Using three spine mechanical models with different materials at intervertebral joints, the change in the natural vibration eigenvalue of the second lateral bending mode with the growth of vertebral bodies was measured by experimental modal analysis. From the result, it was observed that natural vibration eigenvalue decreased with the growth of vertebral bodies. Since the increase in primary factor inducing the buckling phenomenon decreases natural vibration eigenvalue, the obtained result confirms the buckling hypothesis.

  8. A carbon fiber reinforced polymer cage for vertebral body replacement: technical note.

    PubMed

    Ciappetta, P; Boriani, S; Fava, G P

    1997-11-01

    We analyzed the surgical technique used for the replacement of damaged vertebral bodies of the thoracolumbar spine and the carbon fiber reinforced polymer (CFRP) cages that are used to replace the pathological vertebral bodies. We also evaluated the biomechanical properties of carbon composite materials used in spinal surgery. The surgical technique of CFRP implants may be divided into two distinct steps, i.e., assembling the components that will replace the pathological vertebral bodies and connecting the cage to an osteosynthetic system to immobilize the cage. The CFRP cages, made of Ultrapek polymer and AS-4 pyrolytic carbon fiber (AcroMed, Rotterdam, The Netherlands), are of different sizes and may be placed one on top of the other and fixed together with a titanium rod. These components are hollow to allow fragments of bone to be pressed manually into them and present threaded holes at 15, 30, and 90 degrees on the external surface, permitting the insertion of screws to connect the cage to an anterior or posterior osteosynthetic system. To date, we have used CFRP cages in 13 patients undergoing corporectomies and 10 patients undergoing spondylectomies. None of our patients have reported complications. CFRP implants offer several advantages compared with titanium or surgical grade stainless steel implants, demonstrating high versatility and outstanding biological and mechanical properties. Furthermore, CFRP implants are radiolucent and do not hinder radiographic evaluation of bone fusion, allowing for better follow-up studies.

  9. Expression of growth differentiation factor 6 in the human developing fetal spine retreats from vertebral ossifying regions and is restricted to cartilaginous tissues.

    PubMed

    Wei, Aiqun; Shen, Bojiang; Williams, Lisa A; Bhargav, Divya; Gulati, Twishi; Fang, Zhimin; Pathmanandavel, Sarennya; Diwan, Ashish D

    2016-02-01

    During embryogenesis vertebral segmentation is initiated by sclerotomal cell migration and condensation around the notochord, forming anlagen of vertebral bodies and intervertebral discs. The factors that govern the segmentation are not clear. Previous research demonstrated that mutations in growth differentiation factor 6 resulted in congenital vertebral fusion, suggesting this factor plays a role in development of vertebral column. In this study, we detected expression and localization of growth differentiation factor 6 in human fetal spinal column, especially in the period of early ossification of vertebrae and the developing intervertebral discs. The extracellular matrix proteins were also examined. Results showed that high levels of growth differentiation factor 6 were expressed in the nucleus pulposus of intervertebral discs and the hypertrophic chondrocytes adjacent to the ossification centre in vertebral bodies, where strong expression of proteoglycan and collagens was also detected. As fetal age increased, the expression of growth differentiation factor 6 was decreased correspondingly with the progress of ossification in vertebral bodies and restricted to cartilaginous regions. This expression pattern and the genetic link to vertebral fusion suggest that growth differentiation factor 6 may play an important role in suppression of ossification to ensure proper vertebral segmentation during spinal development. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Vertebral growth modulation by hemicircumferential electrocoagulation: an experimental study in pigs.

    PubMed

    Caballero, Alberto; Barrios, Carlos; Burgos, Jesús; Hevia, Eduardo; Correa, Carlos

    2011-08-01

    This experimental study in pigs was aimed at evaluating spinal growth disorders after partial arrest of the vertebral epiphyseal plates (EP) and neurocentral cartilages (NCC). Unilateral and multisegmental single or combined lesions of the physeal structures were performed by electrocoagulation throughout a video-assisted thoracoscopical approach. Thirty 4-week-old domestic pigs (mean weight 16 kg) were included in the experiments. The superior and inferior epiphyseal plates of T5 to T9 vertebra were damaged in ten animals by hemicircumferential electrocoagulation (group I). In other ten pigs (group II), right NCC at the same T5-T9 levels were damaged. Ten other animals underwent combined lesions of the ipsilateral hemiepiphyseal plates and NCC at the T5-T9 levels. A total of 26 animals could be evaluated after 12 weeks of follow-up using conventional X-rays, CT scans and histology. The pigs with hemicircumferential EP damage developed very slight concave non-structured scoliotic deformities without vertebral rotation.(mean 12° Cobb; range10-16°). Some of the damaged vertebra showed a marked wedgening with unilateral development alteration of the vertebral body, including the adjacent discs The animals with damage of the NCC developed mild scoliotic curves (mean 19° Cobb; range 16-24°) with convexity opposite to the damaged side and loss of physiological kyphosis. The injured segments showed an asymmetric growth with hypoplasia of the pedicle and costovertebral joints at the damaged side. The pigs undergoing combined EP and NCC lesions developed minimal non-structured curves, ranging from 10 to 12° Cobb. In these animals there was a lack of growth of a vertebral hemibody and disc hypoplasia at the damaged segments. Both damage of the NCC and the EP affect the height of the vertebral body. No spinal stenosis was found in any case. In most cases, the adjacent superior and inferior vertebral EP to damaged segments had a compensatory growth that maintained the

  11. Less invasive reduction and fusion of fresh A2 and A 3 traumatic L 1-L 4 fractures with a novel vertebral body augmentation implant and short pedicle screw fixation and fusion.

    PubMed

    Korovessis, Panagiotis; Vardakastanis, Konstantinos; Repantis, Thomas; Vitsas, Vasilios

    2014-04-01

    The aim of this clinical study was to report on the efficacy in reduction and safety in PMMA leakage of a novel vertebral augmentation technique with PEEK and PMMA, together with pedicle screws in the treatment of fresh vertebral fractures in young adults. Twenty consecutive young adults aged 45 ± 11 years with fresh burst A3/AO or severely compressed A2/AO fractures underwent via a less invasive posterior approach one-staged reduction with a novel augmentation implant and PMMA plus 3-vertebrae pedicle screw fixation and fusion. Radiologic parameters as segmental kyphosis (SKA), anterior (AVBHr) and posterior vertebral body height ratio (PVBHr), spinal canal encroachment (SCE), cement leakage and functional parameters as VAS, SF-36 were measured pre- and post-operatively. Hybrid construct restored AVBHr (P < 0.000), PVBHr (P = 0.02), SKA (P = 0.015), SCE (P = 0.002) without loss of correction at an average follow-up of 17 months. PMMA leakage occurred in 3 patients (3 vertebrae) either anteriorly to the fractured vertebral body or to the adjacent disc, but in no case to the spinal canal. Two pedicle screws were malpositioned (one medially, one laterally to the pedicle at the fracture level) without neurologic sequelae. Solid posterolateral spinal fusion occurred 8-10 months post-operatively. Pre-operative VAS and SF-36 scores improved post-operatively significantly. This study showed that this novel vertebral augmentation technique using PEEK implant and PMMA reduces and stabilizes via less invasive technique A2 and A3 vertebral fractures without loss of correction and leakage to the spinal canal.

  12. A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine.

    PubMed

    Mastmeyer, André; Engelke, Klaus; Fuchs, Christina; Kalender, Willi A

    2006-08-01

    We have developed a new hierarchical 3D technique to segment the vertebral bodies in order to measure bone mineral density (BMD) with high trueness and precision in volumetric CT datasets. The hierarchical approach starts with a coarse separation of the individual vertebrae, applies a variety of techniques to segment the vertebral bodies with increasing detail and ends with the definition of an anatomic coordinate system for each vertebral body, relative to which up to 41 trabecular and cortical volumes of interest are positioned. In a pre-segmentation step constraints consisting of Boolean combinations of simple geometric shapes are determined that enclose each individual vertebral body. Bound by these constraints viscous deformable models are used to segment the main shape of the vertebral bodies. Volume growing and morphological operations then capture the fine details of the bone-soft tissue interface. In the volumes of interest bone mineral density and content are determined. In addition, in the segmented vertebral bodies geometric parameters such as volume or the length of the main axes of inertia can be measured. Intra- and inter-operator precision errors of the segmentation procedure were analyzed using existing clinical patient datasets. Results for segmented volume, BMD, and coordinate system position were below 2.0%, 0.6%, and 0.7%, respectively. Trueness was analyzed using phantom scans. The bias of the segmented volume was below 4%; for BMD it was below 1.5%. The long-term goal of this work is improved fracture prediction and patient monitoring in the field of osteoporosis. A true 3D segmentation also enables an accurate measurement of geometrical parameters that may augment the clinical value of a pure BMD analysis.

  13. Caudal lumbar vertebral fractures in California Quarter Horse and Thoroughbred racehorses.

    PubMed

    Collar, E M; Zavodovskaya, R; Spriet, M; Hitchens, P L; Wisner, T; Uzal, F A; Stover, S M

    2015-09-01

    To gain insight into the pathophysiology of equine lumbar vertebral fractures in racehorses. To characterise equine lumbar vertebral fractures in California racehorses. Retrospective case series and prospective case-control study. Racehorse post mortem reports and jockey injury reports were retrospectively reviewed. Vertebral specimens from 6 racehorses affected with lumbar vertebral fractures and 4 control racehorses subjected to euthanasia for nonspinal fracture were assessed using visual, radiographic, computed tomography and histological examinations. Lumbar vertebral fractures occurred in 38 Quarter Horse and 29 Thoroughbred racehorses over a 22 year period, primarily involving the 5th and/or 6th lumbar vertebrae (L5-L6; 87% of Quarter Horses and 48% of Thoroughbreds). Lumbar vertebral fractures were the third most common musculoskeletal cause of death in Quarter Horses and frequently involved a jockey injury. Lumbar vertebral specimens contained anatomical variations in the number of vertebrae, dorsal spinous processes and intertransverse articulations. Lumbar vertebral fractures examined in 6 racehorse specimens (5 Quarter Horses and one Thoroughbred) coursed obliquely in a cranioventral to caudodorsal direction across the adjacent L5-L6 vertebral endplates and intervertebral disc, although one case involved only one endplate. All cases had evidence of abnormalities on the ventral aspect of the vertebral bodies consistent with pre-existing, maladaptive pathology. Lumbar vertebral fractures occur in racehorses with pre-existing pathology at the L5-L6 vertebral junction that is likely predisposes horses to catastrophic fracture. Knowledge of these findings should encourage assessment of the lumbar vertebrae, therefore increasing detection of mild vertebral injuries and preventing catastrophic racehorse and associated jockey injuries. © 2014 EVJ Ltd.

  14. Depression of the Thoracolumbar Posterior Vertebral Body on the Estimation of Cement Leakage in Vertebroplasty and Kyphoplasty Operations.

    PubMed

    Chen, Hao; Jia, Pu; Bao, Li; Feng, Fei; Yang, He; Li, Jin-Jun; Tang, Hai

    2015-12-05

    The cross-section of thoracolumbar vertebral body is kidney-shaped with depressed posterior boundary. The anterior wall of the vertebral canal is separated from the posterior wall of the vertebral body on the lateral X-ray image. This study was designed to determine the sagittal distance between the anterior border of the vertebral canal and the posterior border of the vertebral body (DBCV) and to analyze the potential role of DBCV in the estimation of cement leakage during percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). We retrospectively recruited 233 patients who had osteoporotic vertebral compression fractures and were treated with PVP or PKP. Computed tomography images of T11-L2 normal vertebrae were measured to obtain DBCV. The distance from cement to the posterior wall of the vertebral body (DCPW) of thoracolumbar vertebrae was measured from C-arm images. The selected vertebrae were divided into two groups according to DCPW, with the fracture levels, fracture grades and leakage rates of the two groups compared. A relative operating characteristic (ROC) curve was applied to determine whether the DCPW difference can be used to estimate the degree of cement leakage. The data were processed by statistical software SPSS version 21.0 using independent sample t-test and Chi-square tests. The maximum DBCV was 6.40 mm and the average DBCV was 3.74 ± 0.95 mm. DBCV appeared to be longer in males than in females, but the difference was not statistically significant. The average DCPW of type-B leakage vertebrae (2.59 ± 1.20 mm) was shorter than that of other vertebrae (7.83 ± 2.38 mm, P < 0.001). The leakage rate of group DCPW ≤6.40 mm was lower than that of group DCPW >6.40 mm for type-C and type-S, but much higher for type-B. ROC curve revealed that DCPW only has a predictive value for type-B leakage (area under the curve: 0.98, 95% confidence interval: 0.95-0.99, P < 0.001), and when the cut-off value was 4.05 mm, the diagnostic sensitivity

  15. Cellular automata segmentation of the boundary between the compacta of vertebral bodies and surrounding structures

    NASA Astrophysics Data System (ADS)

    Egger, Jan; Nimsky, Christopher

    2016-03-01

    Due to the aging population, spinal diseases get more and more common nowadays; e.g., lifetime risk of osteoporotic fracture is 40% for white women and 13% for white men in the United States. Thus the numbers of surgical spinal procedures are also increasing with the aging population and precise diagnosis plays a vital role in reducing complication and recurrence of symptoms. Spinal imaging of vertebral column is a tedious process subjected to interpretation errors. In this contribution, we aim to reduce time and error for vertebral interpretation by applying and studying the GrowCut - algorithm for boundary segmentation between vertebral body compacta and surrounding structures. GrowCut is a competitive region growing algorithm using cellular automata. For our study, vertebral T2-weighted Magnetic Resonance Imaging (MRI) scans were first manually outlined by neurosurgeons. Then, the vertebral bodies were segmented in the medical images by a GrowCut-trained physician using the semi-automated GrowCut-algorithm. Afterwards, results of both segmentation processes were compared using the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HD) which yielded to a DSC of 82.99+/-5.03% and a HD of 18.91+/-7.2 voxel, respectively. In addition, the times have been measured during the manual and the GrowCut segmentations, showing that a GrowCutsegmentation - with an average time of less than six minutes (5.77+/-0.73) - is significantly shorter than a pure manual outlining.

  16. Fluoroscopy-Guided Percutaneous Vertebral Body Biopsy Using a Novel Drill-Powered Device: Technical Case Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Pacheco, Rafael A., E-mail: pachecor@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu

    2016-02-15

    BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reportsmore » were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact.« less

  17. Importance of mechanics and kinematics in determining the stiffness contribution of the vertebral column during body-caudal-fin swimming in fishes.

    PubMed

    Nowroozi, Bryan N; Brainerd, Elizabeth L

    2014-02-01

    Whole-body stiffness in fishes has important consequences for swimming mode, speed and efficiency, but the contribution of vertebral column stiffness to whole-body stiffness is unclear. In our opinion, this lack of clarity is due in part to the lack of studies that have measured both in vitro mechanical properties of the vertebral column as well as in vivo vertebral kinematics in the same species. Some lack of clarity may also come from real variation in the mechanical role of the vertebral column across species. Previous studies, based on either mechanics or kinematics alone, suggest species-specific variation in vertebral column locomotor function that ranges from highly stiff regimes that contribute greatly to whole-body stiffness, and potentially act as a spring, to highly compliant regimes that only prohibit excessive flexion of the intervertebral joints. We review data collected in combined investigations of both mechanics and kinematics of three species, Myxine glutinosa, Acipenser transmontanus, and Morone saxatilis, to illustrate how mechanical testing within the context of the in vivo kinematics more clearly distinguishes the role of the vertebral column in each species. In addition, we identify species for which kinematic data are available, but mechanical data are lacking. We encourage further investigation of these species to fill these mechanical data gaps. Finally, we hope these future combined analyses will identify certain morphological, mechanical, or kinematic parameters that might be associated with certain vertebral column functional regimes with respect to body stiffness. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Depression of the Thoracolumbar Posterior Vertebral Body on the Estimation of Cement Leakage in Vertebroplasty and Kyphoplasty Operations

    PubMed Central

    Chen, Hao; Jia, Pu; Bao, Li; Feng, Fei; Yang, He; Li, Jin-Jun; Tang, Hai

    2015-01-01

    Background: The cross-section of thoracolumbar vertebral body is kidney-shaped with depressed posterior boundary. The anterior wall of the vertebral canal is separated from the posterior wall of the vertebral body on the lateral X-ray image. This study was designed to determine the sagittal distance between the anterior border of the vertebral canal and the posterior border of the vertebral body (DBCV) and to analyze the potential role of DBCV in the estimation of cement leakage during percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). Methods: We retrospectively recruited 233 patients who had osteoporotic vertebral compression fractures and were treated with PVP or PKP. Computed tomography images of T11–L2 normal vertebrae were measured to obtain DBCV. The distance from cement to the posterior wall of the vertebral body (DCPW) of thoracolumbar vertebrae was measured from C-arm images. The selected vertebrae were divided into two groups according to DCPW, with the fracture levels, fracture grades and leakage rates of the two groups compared. A relative operating characteristic (ROC) curve was applied to determine whether the DCPW difference can be used to estimate the degree of cement leakage. The data were processed by statistical software SPSS version 21.0 using independent sample t-test and Chi-square tests. Results: The maximum DBCV was 6.40 mm and the average DBCV was 3.74 ± 0.95 mm. DBCV appeared to be longer in males than in females, but the difference was not statistically significant. The average DCPW of type-B leakage vertebrae (2.59 ± 1.20 mm) was shorter than that of other vertebrae (7.83 ± 2.38 mm, P < 0.001). The leakage rate of group DCPW ≤6.40 mm was lower than that of group DCPW >6.40 mm for type-C and type-S, but much higher for type-B. ROC curve revealed that DCPW only has a predictive value for type-B leakage (area under the curve: 0.98, 95% confidence interval: 0.95–0.99, P < 0.001), and when the cut-off value was 4

  19. A New Vertebral Body Replacement Strategy Using Expandable Polymeric Cages

    PubMed Central

    Liu, Xifeng; Paulsen, Alex; Giambini, Hugo; Guo, Ji; Miller, A. Lee; Lin, Po-Chun; Yaszemski, Michael J.

    2017-01-01

    We have developed a novel polymeric expandable cage that can be delivered via a posterior-only surgical approach for the treatment of noncontained vertebral defects. This approach is less invasive than an anterior-only or combined approach and much more cost-effective than currently used expandable metal cages. The polymeric expandable cage is composed of oligo poly(ethylene glycol) fumarate (OPF), a hydrogel that has been previously shown to have excellent nerve and bone tissue biocompatibility. OPF hydrogel cages can expand to twice their original diameter and length within a surgical time frame following hydration. Modulation of parameters such as polymeric network crosslink density or the introduction of charge to the network allowed for precise expansion kinetics. To meet specific requirements due to size variations in patient vertebral bodies, we fabricated a series of molds with varied diameters and explored the expansion kinetics of the OPF cages. Results showed a stable expansion ratio of approximately twofold to the original size within 20 min, regardless of the absolute value of the cage size. Following implantation of a dried OPF cage into a noncontained vertebral defect and its in situ expansion with normal saline, other augmentation biomaterials, such as poly(propylene fumarate) (PPF), can be injected to the lumen of the OPF cage and allowed to crosslink in situ. The OPF/PPF composite scaffold can provide the necessary rigidity and stability to the augmented spine. PMID:27835935

  20. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies

    PubMed Central

    Nekkanty, Srikant; Yerramshetty, Janardhan; Kim, Do-Gyoon; Zauel, Roger; Johnson, Evan; Cody, Dianna D.; Yeni, Yener N.

    2013-01-01

    Stress magnitude and variability as estimated from large scale finite element (FE) analyses have been associated with compressive strength of human vertebral cancellous cores but these relationships have not been explored for whole vertebral bodies. In this study, the objectives were to investigate the relationship of FE-calculated stress distribution parameters with experimentally determined strength, stiffness, and displacement based ductility measures in human whole vertebral bodies, investigate the effect of endplate loading conditions on vertebral stiffness, strength, and ductility and test the hypothesis that endplate topography affects vertebral ductility and stress distributions. Eighteen vertebral bodies (T6-L3 levels; 4 female and 5 male cadavers, aged 40-98 years) were scanned using a flat panel CT system and followed with axial compression testing with Wood’s metal as filler material to maintain flat boundaries between load plates and specimens. FE models were constructed using reconstructed CT images and filler material was added digitally. Two different FE models with different filler material modulus simulating Wood’s metal and intervertebral disc (W-layer and D-layer models) were used. Element material modulus to cancellous bone was based on image gray value. Average, standard deviation, and coefficient of variation of von Mises stress in vertebral bone for W-layer and D-layer models and also the ratios of FE parameters from the two models (W/D) were calculated. Inferior and superior endplate surface topographical distribution parameters were calculated. Experimental stiffness, maximum load and work to fracture had the highest correlation with FE-calculated stiffness while experimental ductility measures had highest correlations with FE-calculated average von Mises stress and W-layer to D-layer stiffness ratio. Endplate topography of the vertebra was also associated with its structural ductility and the distribution parameter that best explained

  1. Zone-dependent changes in human vertebral trabecular bone: clinical implications.

    PubMed

    Thomsen, Jesper Skovhus; Ebbesen, E N; Mosekilde, Li

    2002-05-01

    We have previously shown that there are pronounced age-related changes in human vertebral cancellous bone density and microarchitecture. However, the magnitude of these changes seemed to be dependent on zone location in the vertebral body-the central third vs. the areas adjacent to the endplates. The aim of the present study was, therefore, to investigate whether such zone-specific differences could be identified by static histomorphometric measures. The material comprised 48 individuals (24 women aged 19-97 years, and 24 men aged 23-95 years). Three of the women had a known fracture of the L-2. From each L-2, thick frontal sections of half of the vertebra were embedded undecalcified in methylmethacrylate, cut into 10-microm-thick sections, and stained with aniline blue. The sections were scanned into a computer, and classic static histomorphometry was performed on the images. The histomorphometry was performed on both the whole section and on the separate zones (central and sub-endplate zone). The results showed that trabecular bone volume, trabecular number, and connectivity density decreased significantly faster with age, whereas marrow space star volume increased significantly faster with age in the zones adjacent to the endplates than in the central zone. The other histomorphometric measures showed no zone specificity in relation to aging. However, trabecular thickness and trabecular separation were both higher at all ages in the central zone than in the sub-endplate zone, although this was significant only for trabecular separation. The described differences might have significant clinical implications concerning quantitative computed tomography (QCT) scanning, X-ray analyses, and assessment of fracture liability in the human spine, but the underlying pathogenesis is still not known. This study shows that the human vertebral body can be described as two distinct zones with very specific age-related changes in density and microstructure. This zone

  2. Asymmetry of the Vertebral Body and Pedicles in the True Transverse Plane in Adolescent Idiopathic Scoliosis: A CT-Based Study.

    PubMed

    Brink, Rob C; Schlösser, Tom P C; Colo, Dino; Vincken, Koen L; van Stralen, Marijn; Hui, Steve C N; Chu, Winnie C W; Cheng, Jack C Y; Castelein, René M

    2017-01-01

    Cross-sectional. To quantify the asymmetry of the vertebral bodies and pedicles in the true transverse plane in adolescent idiopathic scoliosis (AIS) and to compare this with normal anatomy. There is an ongoing debate about the existence and magnitude of the vertebral body and pedicle asymmetry in AIS and whether this is an expression of a primary growth disturbance, or secondary to asymmetrical loading. Vertebral body asymmetry, defined as left-right overlap of the vertebral endplates (ie, 100%: perfect symmetry, 0%: complete asymmetry) was evaluated in the true transverse plane on CT scans of 77 AIS patients and 32 non-scoliotic controls. Additionally, the pedicle width, length, and angle and the length of the ideal screw trajectory were calculated. Scoliotic vertebrae were on average more asymmetric than controls (thoracic: AIS 96.0% vs. controls 96.4%; p = .005, lumbar: 95.8% vs. 97.2%; p < .001) and more pronounced around the thoracic apex (95.8%) than at the end vertebrae (96.3%; p = .031). In the thoracic apex; the concave pedicle was thinner (4.5 vs. 5.4 mm; p < .001) and longer (20.9 vs. 17.9 mm; p < .001), the length of the ideal screw trajectory was longer (43.0 vs. 37.3 mm; p < .001), and the transverse pedicle angle was greater (12.3° vs. 5.7°; p < .001) than the convex one. The axial rotation showed no clear correlation with the asymmetry. Even in non-scoliotic controls is a degree of vertebral body and pedicle asymmetry, but scoliotic vertebrae showed slightly more asymmetry, mostly around the thoracic apex. In contrast to the existing literature, there is no major asymmetry in the true transverse plane in AIS and no uniform relation between the axial rotation and vertebral asymmetry could be observed in these moderate to severe patients, suggesting that asymmetrical vertebral growth does not initiate rotation, but rather follows it as a secondary phenomenon. Level 4. Copyright © 2016 Scoliosis Research Society. Published by Elsevier Inc. All

  3. Can the pattern of vertebral marrow oedema differentiate intervertebral disc infection from degenerative changes?

    PubMed

    Shrot, S; Sayah, A; Berkowitz, F

    2017-07-01

    To evaluate whether various patterns of bone marrow oedema could be used to discriminate between infection and degenerative change. Seventy patients with imaging features suspicious for discitis and available clinical follow-up were blindly reviewed for vertebral marrow oedema on sagittal short-tau inversion recovery (STIR) images according to the following patterns: I, vertebra oedema is adjacent to the intervertebral space and sharply-marginated; II, vertebral oedema is adjacent to the intervertebral space but not sharply marginated from normal marrow or involves the entire vertebral body; and III, vertebral oedema is distant from the endplate with intervening hypointense marrow signal. Of 45 patients with a clinical diagnosis of discitis, pattern II was the most common oedema pattern (64%). Approximately 20% and 9% of discitis patients showed patterns I and III, respectively. In patients with degenerative changes, 44% patients showed pattern I, 32% showed pattern II, and 24% showed pattern III. Pattern II had a sensitivity, specificity, and positive predictive value of 0.64, 0.68, and 0.78 for diagnosing spine infection, respectively. Although bone marrow oedema in infective discitis most often extends from the disc space and has indistinct margins, the oedema may also have sharp margins or be remote from the involved intervertebral space. Bone marrow oedema patterns of infective discitis overlap with those of degenerative disease and are not sufficiently reliable to exclude infection in cases with magnetic resonance imaging findings suggestive of discitis. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  4. Reconstruction of Vertebral Body After Radiofrequency Ablation and Augmentation in Dorsolumbar Metastatic Vertebral Fracture: Analysis of Clinical and Radiological Outcome in a Clinical Series of 18 Patients.

    PubMed

    Maugeri, Rosario; Graziano, Francesca; Basile, Luigi; Gulì, Carlo; Giugno, Antonella; Giammalva, Giuseppe Roberto; Visocchi, Massimiliano; Iacopino, Domenico Gerardo

    2017-01-01

    Painful spinal metastases usually occur in malignant neoplastic disease. Treatment for bone metastases has been largely conservative, and it includes the use of high doses of analgesics, radiotherapy, chemotherapy, hormone therapy, and bisphosphonates; however, results are sometimes transient and ineffective. In the presence of neurological involvement a surgical strategy should be considered. Recently, percutaneous procedures such as radiofrequency ablation, vertebroplasty, and kyphoplasty have been introduced as palliative techniques to treat painful vertebral metastases [3, 11, 25]. In our study we combined the use of radiofrequency ablation with vertebroplasty in the treatment of dorsolumbar metastatic vertebral fractures in order to examine the relationship between restoration of the vertebral structure and decrease in pain. From January 2014 to March 2015 we retrospectively analyzed 18 patients with malignant vertebral lesions who underwent radiofrequency ablation with vertebroplasty followed by cementoplasty, with posterior transpedicle fixation on levels near the lesions. The parameters examined were: demographics, pain relief, and the distribution of polymethylmethacrylate (PMMA) determined by the mean Saliou filling score; all complications were recorded. The mean age of the patients was 55.72 years (range 34-69); average operative time was 60.4 min (range, 51-72). The average pain index score (visual analog score; VAS) decreased significantly from 8.05 at baseline to 3.0 (p < 0.05) after 6 months. The Saliou filling score revealed a distribution of PMMA in the vertebral body that was satisfactory (12-18) in eight patients, mediocre (6-12) in seven patients, and inadequate (0-6) in the remaining three patients. In two vertebrae, minimal asymptomatic cement leakage occurred in the lateral recess without neurological damage. No pulmonary embolism and no visceral or neural damage was recorded. Radiofrequency ablation combined with vertebroplasty seems to

  5. Automated 3D closed surface segmentation: application to vertebral body segmentation in CT images.

    PubMed

    Liu, Shuang; Xie, Yiting; Reeves, Anthony P

    2016-05-01

    A fully automated segmentation algorithm, progressive surface resolution (PSR), is presented in this paper to determine the closed surface of approximately convex blob-like structures that are common in biomedical imaging. The PSR algorithm was applied to the cortical surface segmentation of 460 vertebral bodies on 46 low-dose chest CT images, which can be potentially used for automated bone mineral density measurement and compression fracture detection. The target surface is realized by a closed triangular mesh, which thereby guarantees the enclosure. The surface vertices of the triangular mesh representation are constrained along radial trajectories that are uniformly distributed in 3D angle space. The segmentation is accomplished by determining for each radial trajectory the location of its intersection with the target surface. The surface is first initialized based on an input high confidence boundary image and then resolved progressively based on a dynamic attraction map in an order of decreasing degree of evidence regarding the target surface location. For the visual evaluation, the algorithm achieved acceptable segmentation for 99.35 % vertebral bodies. Quantitative evaluation was performed on 46 vertebral bodies and achieved overall mean Dice coefficient of 0.939 (with max [Formula: see text] 0.957, min [Formula: see text] 0.906 and standard deviation [Formula: see text] 0.011) using manual annotations as the ground truth. Both visual and quantitative evaluations demonstrate encouraging performance of the PSR algorithm. This novel surface resolution strategy provides uniform angular resolution for the segmented surface with computation complexity and runtime that are linearly constrained by the total number of vertices of the triangular mesh representation.

  6. Change in the Beaufort Sea ecosystem: Diverging trends in body condition and/or production in five marine vertebrate species

    NASA Astrophysics Data System (ADS)

    Harwood, L. A.; Smith, T. G.; George, J. C.; Sandstrom, S. J.; Walkusz, W.; Divoky, G. J.

    2015-08-01

    Studies of the body condition of five marine vertebrate predators in the Beaufort Sea, conducted independently during the past 2-4 decades, suggest each has been affected by biophysical changes in the marine ecosystem. We summarize a temporal trend of increasing body condition in two species (bowhead whale subadults, Arctic char), in both cases influenced by the extent and persistence of annual sea ice. Three other species (ringed seal, beluga, black guillemot chicks), consumers with a dietary preference for Arctic cod, experienced declines in condition, growth and/or production during the same time period. The proximate causes of these observed changes remain unknown, but may reflect an upward trend in secondary productivity, and a concurrent downward trend in the availability of forage fishes, such as the preferred Arctic cod. To further our understanding of these apparent ecosystem shifts, we urge the use of multiple marine vertebrate species in the design of biophysical sampling studies to identify causes of these changes. Continued long-term, standardized monitoring of vertebrate body condition should be paired with concurrent direct (stomach contents) or indirect (isotopes, fatty acids) monitoring of diet, detailed study of movements and seasonal ranges to establish and refine baselines, and identification of critical habitats of the marine vertebrates being monitored. This would be coordinated with biophysical and oceanographic sampling, at spatial and temporal scales, and geographic locations, that are relevant to the home range, critical habitats and prey of the vertebrate indicator species showing changes in condition and related parameters.

  7. Automatic vertebral bodies detection of x-ray images using invariant multiscale template matching

    NASA Astrophysics Data System (ADS)

    Sharifi Sarabi, Mona; Villaroman, Diane; Beckett, Joel; Attiah, Mark; Marcus, Logan; Ahn, Christine; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain and pathologies related to it are one of the most common results for a referral to a neurosurgical clinic in the developed and the developing world. Quantitative evaluation of these pathologies is a challenge. Image based measurements of angles/vertebral heights and disks could provide a potential quantitative biomarker for tracking and measuring these pathologies. Detection of vertebral bodies is a key element and is the focus of the current work. From the variety of medical imaging techniques, MRI and CT scans have been typically used for developing image segmentation methods. However, CT scans are known to give a large dose of x-rays, increasing cancer risk [8]. MRI can be substituted for CTs when the risk is high [8] but are difficult to obtain in smaller facilities due to cost and lack of expertise in the field [2]. X-rays provide another option with its ability to control the x-ray dosage, especially for young people, and its accessibility for smaller facilities. Hence, the ability to create quantitative biomarkers from x-ray data is especially valuable. Here, we develop a multiscale template matching, inspired by [9], to detect centers of vertebral bodies from x-ray data. The immediate application of such detection lies in developing quantitative biomarkers and in querying similar images in a database. Previously, shape similarity classification methods have been used to address this problem, but these are challenging to use in the presence of variation due to gross pathology and even subtle effects [1].

  8. One-stage posterior surgical treatment for lumbosacral tuberculosis with major vertebral body loss and kyphosis.

    PubMed

    Sun, Lin; Song, Yueming; Liu, Limin; Gong, Quan; Zhou, Chunguang

    2013-08-01

    The treatment goals of tuberculous spondylitis are to eradicate infection and to prevent or treat instability, deformity, and neurologic deficit. The purpose of this study was to evaluate the clinical outcomes following chemotherapy with 1-stage posterior debridement, correction, and instrumentation and fusion for the treatment of lumbosacral tuberculosis with major vertebral body loss and kyphosis. Fourteen patients with lumbosacral tuberculosis with major vertebral body loss and kyphosis underwent 1-stage posterior surgery. Clinical assessments included low back ache, Oswestry Disability Index, Scoliosis Research Society-22 scores, neurologic deficit, erythrocyte sedimentation rate, and C-reactive protein level. Radiographic parameters included kyphosis angle, anteroposterior translation, local scoliosis, lumbar lordosis, pelvic parameters, sagittal offset, and fusion. Thorough debridement was performed. Patients were followed for an average of 39.3 months. Constitutional symptoms, low back ache, and functional outcome improved in all patients postoperatively. At final follow-up, Frankel Grade improved by 0 to 2 grades, mean kyphosis angle improvement was 44.3°, and satisfactory spinopelvic and sagittal balance were achieved. Spinal posterolateral fusion was obtained in all patients and no fixation loosening was found at 2-year follow-up. Differences existed between the pre- and postoperative radiographic parameters (P<.05). Correction loss at last follow-up was not statistically significant (P>.05). No surgical complications or infection recurrence occurred. Tuberculosis can be cured and effective correction of kyphosis can be achieved for lumbosacral tuberculosis with major vertebral body loss and kyphosis by performing 1-stage posterior surgery and chemotherapy. Copyright 2013, SLACK Incorporated.

  9. Vertebral body bone strength: the contribution of individual trabecular element morphology.

    PubMed

    Parkinson, I H; Badiei, A; Stauber, M; Codrington, J; Müller, R; Fazzalari, N L

    2012-07-01

    Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p < 0.0001) and AP (r(2) = 0.54, p < 0.0001). The determination of SI strength was improved to r(2) = 0.87 with the addition of mean rod length and relative plate bone volume fraction. The determination of AP strength was improved to r(2) = 0.85 with the addition of mean rod volume and relative rod bone volume fraction. Microarchitectural measures of individual trabeculae that contribute to bone strength have been identified. In addition to the contribution of BV/TV, trabecular rod morphology increased the determination of AP strength by 57%, whereas measures of trabecular plate and rod morphology increased determination of SI strength by 13%. Decomposing vertebral body bone architecture into its constituent

  10. The effect of screw tunnels on the biomechanical stability of vertebral body after pedicle screws removal: a finite element analysis.

    PubMed

    Liu, Jia-Ming; Zhang, Yu; Zhou, Yang; Chen, Xuan-Yin; Huang, Shan-Hu; Hua, Zi-Kai; Liu, Zhi-Li

    2017-06-01

    Posterior reduction and pedicle screw fixation is a widely used procedure for thoracic and lumbar vertebrae fractures. Usually, the pedicle screws would be removed after the fracture healing and screw tunnels would be left. The aim of this study is to evaluate the effect of screw tunnels on the biomechanical stability of the lumbar vertebral body after pedicle screws removal by finite element analysis (FEA). First, the CT values of the screw tunnels wall in the fractured vertebral bodies were measured in patients whose pedicle screws were removed, and they were then compared with the values of vertebral cortical bone. Second, an adult patient was included and the CT images of the lumbar spine were harvested. Three dimensional finite element models of the L1 vertebra with unilateral or bilateral screw tunnels were created based on the CT images. Different compressive loads were vertically acted on the models. The maximum loads which the models sustained and the distribution of the force in the different parts of the models were recorded and compared with each other. The CT values of the tunnels wall and vertebral cortical bone were 387.126±62.342 and 399.204±53.612, which were not statistically different (P=0.149). The models of three dimensional tetrahedral mesh finite element of normal lumbar 1 vertebra were established with good geometric similarity and realistic appearance. After given the compressive loads, the cortical bone was the first one to reach its ultimate stress. The maximum loads which the bilateral screw tunnels model, unilateral screw tunnel model, and normal vertebral model can sustain were 3.97 Mpa, 3.83 Mpa, and 3.78 Mpa, respectively. For the diameter of the screw tunnels, the model with a diameter of 6.5 mm could sustain the largest load. In addition, the stress distributing on the outside of the cortical bone gradually decreased as the thickness of the tunnel wall increased. Based on the FEA, pedicle screw tunnels would not decrease the

  11. Characteristic features of bone tissue regeneration in the vertebral bodies in the experiment with osteograft

    NASA Astrophysics Data System (ADS)

    Zaydman, A. M.; Predein, Yu. A.; Korel, A. V.; Shchelkunova, E. I.; Strokova, E. I.; Lastevskiy, A. D.; Rerikh, V. V.; Fomichev, N. G.; Falameeva, O. V.; Shevchenko, A. I.; Shevtcov, V. I.

    2017-09-01

    In the practice of orthopedic and trauma surgeons, there is a need to close bone tissue defects after removal of tumors or traumatic and dystrophic lesions. Currently, as cellular technologies are being developed, stem embryonic and pluripotent cells are widely introduced into practical medicine. The unpredictability of the spectrum of cell differentiations, up to oncogenesis, raised the question of creating biological structures committed toward osteogenic direction, capable of regenerating organo-specific graft at the optimal time. Such osteograft was created at the Novosibirsk Institute of Traumatology and Orthopaedics (patent RU 2574942). Its osteogenic orientation was confirmed by the morphological and immunohistochemical methods, and by the expression of bone genes. The regeneration potential of the osteograft was studied in the vertebral bodies of the mini piglet model. The study revealed that the regeneration of the vertebral body defect and the integration of the osteograft with the bed of the recipient proceeds according to the type of primary angiogenic osteogenesis within 30 days.

  12. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    PubMed

    Wilson, John P; Woodruff, D Cary; Gardner, Jacob D; Flora, Holley M; Horner, John R; Organ, Chris L

    2016-01-01

    Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  13. Anthropometric measurements and vertebral deformities. European Vertebral Osteoporosis Study (EVOS) Group.

    PubMed

    Johnell, O; O'Neill, T; Felsenberg, D; Kanis, J; Cooper, C; Silman, A J

    1997-08-15

    To investigate the association between anthropometric indices and morphometrically determined vertebral deformity, the authors carried out a cross-sectional study using data from the European Vertebral Osteoporosis Study (EVOS), a population-based study of vertebral osteoporosis in 36 European centers from 19 countries. A total of 16,047 EVOS subjects were included in this analysis, of whom 1,973 subjects (915 males, 1,058 females) (12.3%) aged 50 years or over had one or more vertebral deformities ("cases"). The cases were compared with the 14,074 subjects (6,539 males, 7,535 females) with morphometrically normal spines ("controls"). Data were collected on self-reported height at age 25 years and minimum weight after age 25 years, as well as on current measured height and weight. Body mass index (BMI) and height and weight change were calculated from these data. The relations between these variables and vertebral deformity were examined separately by sex with logistic regression adjusting for age, smoking, and physical activity. In females, there was a significant trend of decreasing risk with increasing quintile of current weight, current BMI, and weight gain since age 25 years. In males, subjects in the lightest quintile for these measures were at increased risk but there was no evidence of a trend. An ecologic analysis by country revealed a negative correlation between mean BMI and the prevalence of deformity in females but not in males. The authors conclude that low body weight is associated with presence of vertebral deformity.

  14. Automated Detection, Localization, and Classification of Traumatic Vertebral Body Fractures in the Thoracic and Lumbar Spine at CT

    PubMed Central

    Burns, Joseph E.; Yao, Jianhua; Muñoz, Hector

    2016-01-01

    Purpose To design and validate a fully automated computer system for the detection and anatomic localization of traumatic thoracic and lumbar vertebral body fractures at computed tomography (CT). Materials and Methods This retrospective study was HIPAA compliant. Institutional review board approval was obtained, and informed consent was waived. CT examinations in 104 patients (mean age, 34.4 years; range, 14–88 years; 32 women, 72 men), consisting of 94 examinations with positive findings for fractures (59 with vertebral body fractures) and 10 control examinations (without vertebral fractures), were performed. There were 141 thoracic and lumbar vertebral body fractures in the case set. The locations of fractures were marked and classified by a radiologist according to Denis column involvement. The CT data set was divided into training and testing subsets (37 and 67 subsets, respectively) for analysis by means of prototype software for fully automated spinal segmentation and fracture detection. Free-response receiver operating characteristic analysis was performed. Results Training set sensitivity for detection and localization of fractures within each vertebra was 0.82 (28 of 34 findings; 95% confidence interval [CI]: 0.68, 0.90), with a false-positive rate of 2.5 findings per patient. The sensitivity for fracture localization to the correct vertebra was 0.88 (23 of 26 findings; 95% CI: 0.72, 0.96), with a false-positive rate of 1.3. Testing set sensitivity for the detection and localization of fractures within each vertebra was 0.81 (87 of 107 findings; 95% CI: 0.75, 0.87), with a false-positive rate of 2.7. The sensitivity for fracture localization to the correct vertebra was 0.92 (55 of 60 findings; 95% CI: 0.79, 0.94), with a false-positive rate of 1.6. The most common cause of false-positive findings was nutrient foramina (106 of 272 findings [39%]). Conclusion The fully automated computer system detects and anatomically localizes vertebral body fractures in

  15. [Three-dimensional finite element modeling and biomechanical simulation for evaluating and improving postoperative internal instrumentation of neck-thoracic vertebral tumor en bloc resection].

    PubMed

    Qinghua, Zhao; Jipeng, Li; Yongxing, Zhang; He, Liang; Xuepeng, Wang; Peng, Yan; Xiaofeng, Wu

    2015-04-07

    To employ three-dimensional finite element modeling and biomechanical simulation for evaluating the stability and stress conduction of two postoperative internal fixed modeling-multilevel posterior instrumentation ( MPI) and MPI with anterior instrumentation (MPAI) with neck-thoracic vertebral tumor en bloc resection. Mimics software and computed tomography (CT) images were used to establish the three-dimensional (3D) model of vertebrae C5-T2 and simulated the C7 en bloc vertebral resection for MPI and MPAI modeling. Then the statistics and images were transmitted into the ANSYS finite element system and 20N distribution load (simulating body weight) and applied 1 N · m torque on neutral point for simulating vertebral displacement and stress conduction and distribution of motion mode, i. e. flexion, extension, bending and rotating. With a better stability, the displacement of two adjacent vertebral bodies of MPI and MPAI modeling was less than that of complete vertebral modeling. No significant differences existed between each other. But as for stress shielding effect reduction, MPI was slightly better than MPAI. From biomechanical point of view, two internal instrumentations with neck-thoracic tumor en bloc resection may achieve an excellent stability with no significant differences. But with better stress conduction, MPI is more advantageous in postoperative reconstruction.

  16. MRI Evaluation of Spinal Length and Vertebral Body Angle During Loading with a Spinal Compression Harness

    NASA Technical Reports Server (NTRS)

    Campbell, James A.; Hargens, Alan R.; Murthy, G.; Ballard, R. E.; Watenpaugh, D. E.; Hargens, Alan, R.; Sanchez, E.; Yang, C.; Mitsui, I.; Schwandt, D.; hide

    1998-01-01

    Weight bearing by the spinal column during upright posture often plays a role in the common problem of low back pain. Therefore, we developed a non-ferromagnetic spinal compression harness to enable MRI investigations of the spinal column during axial loading. Human subjects were fitted with a Nest and a footplate which were connected by adjustable straps to an analog load cell. MRI scans of human subjects (5 males and 1 female with age range of 27-53 yrs) during loaded and unloaded conditions were accomplished with a 1.5 Tesla GE Signa scanner. Studies of two subjects undergoing sequentially increasing spinal loads revealed significant decreases (r(sup 2) = 0.852) in spinal length between T4 and L5 culminating in a 1.5 to 2% length decrease during loading with 75% body weight. Sagittal vertebral body angles of four subjects placed under a constant 50% body weight load for one hour demonstrated increased lordotic and kyphotic curvatures. In the lumbar spine, the L2 vertebral body experienced the greatest angular change (-3 deg. to -5 deg.) in most subjects while in the thoracic spine, T4 angles increased from the unloaded state by +2 deg. to +9 deg. Overall, our studies demonstrate: 1) a progressive, although surprisingly small, decrease in spinal length with increasing load and 2) relatively large changes in spinal column angulation with 50% body weight.

  17. Median sternotomy and ventral stabilisation using pins and polymethylmethacrylate for a comminuted T5 vertebral fracture in a Miniature Schnauzer.

    PubMed

    Guiot, L P; Allman, D A

    2011-01-01

    A 2.9 kg Miniature Schnauzer was referred to our clinic, the Emergency & Critical Care Medicine Service at the Michigan State University Veterinary Teaching Hospital, following a dog fight. Physical examination findings upon admission included multiple thoracic wounds, absence of hindlimb deep pain, and marked Schiff-Sherrington syndrome. Computed tomography imaging revealed thoracic wall penetration and a comminuted T5 vertebral fracture. Thoracic exploration and thoracic wall repair were performed through a median sternotomy. The vertebral fracture was exposed and stabilised intra-thoracically through the same approach using pins and polymethylmethacrylate. The pins were placed percutaneously into the vertebral bodies of the adjacent vertebrae. Recovery was uncomplicated and fracture healing was documented eight weeks postoperatively. Spinal trauma secondary to dog fights is relatively common. The presence of concurrent penetrating thoracic injury negatively affects prognosis and necessitates thoracic exploration as soon as feasible. The approach should allow complete thoracic exploration to repair parietal and visceral damage, thus indicating the need for median sternotomy rather than an intercostal approach. The present case report suggested that median sternotomy can be used to safely apply stabilisation devices for the treatment of concurrent spinal trauma. Direct visualisation of the vertebral bodies permitted optimal implant anchorage as compared to potentially more hazardous techniques such as dorsal pinning.

  18. Prone position in balloon kyphoplasty leads to no secondary vertebral compression fractures in osteoporotic spine – a MRI study

    PubMed Central

    Spalteholz, Matthias; Strasser, Evald; Hantel, Torsten; Gahr, Ralf Herbert

    2014-01-01

    Purpose: Vertebral compression fractures are the most common fractures in the elderly. Long lasting pain and deformity is responsible for consecutive impairment with markedly reduced life quality, increased morbidity and mortality. The beneficial effects of balloon kyphoplasty are verified in many studies. Subsequent fracture risk is not finally clarified, cement related risks and deformity related risks are discussed. There is less knowledge about the risk of bone marrow edema and new fractures during balloon kyphoplasty procedure. The goal of this study is to examine, if prone position during kyphoplasty is an independent risk factor for new fractures in the osteoporotic spine. Methods: Consecutive MRI study of 20 patients with fresh, non-traumatic thoracolumbar vertebral compression fractures and balloon kyphoplasty treatment. MRI Scans of the thoracolumbar spine were obtained after surgery, before patients have been mobilized. Specific MRI changes like new bone marrow edema, signal intensity changes in adjacent and remote segments and new fractures were assessed by specialized neuro-radiologist. Results: 20 MR images were examined within 48 hours after balloon kyphoplasty procedure. 85% did not show bone marrow edema extent changes after kyphoplasty. We found minor increase of bone marrow edema within the augmented vertebral body in 3 cases. We did not find any new bone marrow edema and no new fractures in adjacent and remote segments after balloon kyphoplasty treatment. Conclusion: Prone position leads to no new bone marrow edema and no new fractures in the osteoporotic spine. Accordingly, prone position has no risk for adjacent level fractures in osteoporotic spines. PMID:26504728

  19. Non-destructive elemental analysis of vertebral body trabecular bone using muonic X-rays.

    PubMed

    Hosoi, Y; Watanabe, Y; Sugita, R; Tanaka, Y; Nagamine, K; Ono, T; Sakamoto, K

    1995-12-01

    Non-destructive elemental analysis with muonic X-rays was performed on human vertebral bone and lumbar torso phantoms. It can provide quantitative information on all elements in small deep-seated localized volumes. The experiment was carried out using the superconducting muon channel at TRIUMF in Vancouver, Canada and a lithium drifted germanium detector with an active area of 18.5 cm2. The muon channel produced backward-decayed negative muons with wide kinetic energy range from 0.5 to 54.2 MeV. The muon beam was collimated to a diameter of 18 mm. The number of incoming muons was about 4 x 10(6) approximately 5 x 10(7) per data point. In the measurements with human vertebral bones fixed with neutralized formaldehyde, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.0003. In the measurements with lumbar torso phantoms, the correlation coefficient between calcium content measured by muons and by atomic absorption analysis was 0.99 and the level of significance was 0.02. The results suggest that elemental analysis in vertebral body trabecular bone using muonic X-rays closely correlates with measurements by atomic absorption analysis.

  20. Effects of Daily Administration of Prostaglandin E2 and Its Withdrawal on the Lumbar Vertebral Bodies in Male Rats

    NASA Technical Reports Server (NTRS)

    Ke, Hua Zhu; Jee, Webster S. S.

    1992-01-01

    The effects of daily prostaglandin E2 (PGE2) treatment (on) and PGE2 treatment followed by withdrawal (on-off) on cancellous bone in lumbar vertebral bodies were studied in 7 month-old male Sprague-Dawley rats. The first groups of rats were given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE2/kg/d for 60,120, and 180 days, and the second group of rats were given PGE2 for 60 days followed by withdrawal for 60 and 120 days. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified sections of fourth lumbar vertebral bodies. Systemic PGE2 treatment elevated cancerous bone mass of lumbar vertebral bodies 26-60%, above control levels within 60 days and continued treatment maintained it for another 120 days, but the excess bone was lost after the treatment was witndrawn. PGE2 treatment for 60 days increased trabecular bone area, trabecular width, and bone formation parameters, and shortened remodeling periods in a dose-response manner. These changes were sustained at the levels achieved by 60-day treatment in the rats treated for 120 and 180 days. The eroded perimeter increased at day 60 and further at day 120 and then plateaued. In the on-off treated rats, the cancenous bone area, bone formation, and resorption parameters returned to near age-related controls by 60 days after withdrawal and were maintained there after 120 days of withdrawal. Therefore, we conclude that the continuous treatment is needed in order to maintain the PGE2-induced bone gain. When these findings were compared to those previously reported for the proximal tibial metaphyses, we found that the proximal tibial spongiosa was much more responsive to PGE2 treatment than the fourth lumbar vertebral body.

  1. Percutaneous CT-Guided Biopsy of C3 Vertebral Body: Modified Approach for an Old Procedure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pua, Uei, E-mail: druei@yahoo.com; Chan, Stephen Yung-Wei

    2013-06-15

    Percutaneous biopsy of upper cervical vertebrae is challenging due to the various critical structures in the location and often requires difficult trajectory such as transoral or paramaxillary approaches. The purpose of this manuscript is to illustrate the utility of head rotation in creating a potential space for direct percutaneous access to C3 vertebral body for safe biopsy.

  2. Relevant signs of stable and unstable thoracolumbar vertebral column trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehweiler, J.A.; Daffner, R.H.; Osborne, R.L.

    1981-12-01

    One-hundred and seventeen patients with acute thoracolumbar vertebral column fracture or fracture-dislocations were analyzed and classified into stable (36%) and unstable (64%). Eight helpful roentgen signs were observed that may serve to direct attention to serious underlying, often occult, fractures and dislocations. The changes fall into four principal groups: abnormal soft tissues, abnormal vertebral alignment, abnormal joints, and widened vertebral canal. All stable and unstable lesions showed abnormal soft tissues, while 70% demonstrated kyphosis and/or scoliosis, and an abnormal adjacent intervertebral disk space. All unstable lesions showed one or more of the following signs: displaced vertebra, widened interspinous space, abnormalmore » apophyseal joint(s), and widened vertebral canal.« less

  3. SHOX gene is expressed in vertebral body growth plates in idiopathic and congenital scoliosis: implications for the etiology of scoliosis in Turner syndrome.

    PubMed

    Day, Gregory; Szvetko, Attila; Griffiths, Lyn; McPhee, I Bruce; Tuffley, John; LaBrom, Robert; Askin, Geoffrey; Woodland, Peter; McClosky, Eamonn; Torode, Ian; Tomlinson, Francis

    2009-06-01

    Reduced SHOX gene expression has been demonstrated to be associated with all skeletal abnormalities in Turner syndrome, other than scoliosis (and kyphosis). There is evidence to suggest that Turner syndrome scoliosis is clinically and radiologically similar to idiopathic scoliosis, although the phenotypes are dissimilar. This pilot gene expression study used relative quantitative real-time PCR (qRT-PCR) of the SHOX (short stature on X) gene to determine whether it is expressed in vertebral body growth plates in idiopathic and congenital scoliosis. After vertebral growth plate dissection, tissue was examined histologically and RNA was extracted and its integrity was assessed using a Bio-Spec Mini, NanoDrop ND-1000 spectrophotometer and standard denaturing gel electrophoresis. Following cDNA synthesis, gene-specific optimization in a Corbett RotorGene 6000 real-time cycler was followed by qRT-PCR of vertebral tissue. Histological examination of vertebral samples confirmed that only growth plate was analyzed for gene expression. Cycling and melt curves were resolved in triplicate for all samples. SHOX abundance was demonstrated in congenital and idiopathic scoliosis vertebral body growth plates. SHOX expression was 11-fold greater in idiopathic compared to congenital (n = 3) scoliosis (p = 0.027). This study confirmed that SHOX was expressed in vertebral body growth plates, which implies that its expression may also be associated with the scoliosis (and kyphosis) of Turner syndrome. SHOX expression is reduced in Turner syndrome (short stature). In this study, increased SHOX expression was demonstrated in idiopathic scoliosis (tall stature) and congenital scoliosis. Copyright 2008 Orthopaedic Research Society

  4. Origin of the vertebrate body plan via mechanically biased conservation of regular geometrical patterns in the structure of the blastula.

    PubMed

    Edelman, David B; McMenamin, Mark; Sheesley, Peter; Pivar, Stuart

    2016-09-01

    We present a plausible account of the origin of the archetypal vertebrate bauplan. We offer a theoretical reconstruction of the geometrically regular structure of the blastula resulting from the sequential subdivision of the egg, followed by mechanical deformations of the blastula in subsequent stages of gastrulation. We suggest that the formation of the vertebrate bauplan during development, as well as fixation of its variants over the course of evolution, have been constrained and guided by global mechanical biases. Arguably, the role of such biases in directing morphology-though all but neglected in previous accounts of both development and macroevolution-is critical to any substantive explanation for the origin of the archetypal vertebrate bauplan. We surmise that the blastula inherently preserves the underlying geometry of the cuboidal array of eight cells produced by the first three cleavages that ultimately define the medial-lateral, dorsal-ventral, and anterior-posterior axes of the future body plan. Through graphical depictions, we demonstrate the formation of principal structures of the vertebrate body via mechanical deformation of predictable geometrical patterns during gastrulation. The descriptive rigor of our model is supported through comparisons with previous characterizations of the embryonic and adult vertebrate bauplane. Though speculative, the model addresses the poignant absence in the literature of any plausible account of the origin of vertebrate morphology. A robust solution to the problem of morphogenesis-currently an elusive goal-will only emerge from consideration of both top-down (e.g., the mechanical constraints and geometric properties considered here) and bottom-up (e.g., molecular and mechano-chemical) influences. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Vertebral hemangioma coincident with metastasis of colon adenocarcinoma.

    PubMed

    Zapałowicz, Krzysztof; Bierzyńska-Macyszyn, Grażyna; Stasiów, Bartłomiej; Krzan, Aleksandra; Wierzycka, Beata; Kopycka, Anna

    2016-03-01

    The authors report on colon cancer metastasis to the L-3 vertebra, which had been previously found to be involved by an asymptomatic hemangioma. A 61-year-old female patient was admitted after onset of lumbar axial pain and weakness of the right quadriceps muscle. Her medical history included colon cancer that had been diagnosed 3 years earlier and was treated via a right hemicolectomy followed by chemotherapy. Presurgical imaging revealed an asymptomatic hemangioma in the L-3 vertebral body. Computed tomography and MRI of the spine were performed after admission and revealed a hemangioma in the L-3 vertebral body as well as a soft-tissue mass protruding from the L-3 vertebral body to the spinal canal. Treatment consisted of vertebroplasty of the hemangioma, left L-3 hemilaminectomy, and removal of the pathological mass from the spinal canal and the L-3 vertebral body. Histopathological examination revealed the presence of colon cancer metastasis and a hemangioma in the same vertebra.

  6. CIRSE Guidelines on Percutaneous Vertebral Augmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Too, Chow Wei, E-mail: spyder55@gmail.com; Koch, Guillaume, E-mail: guillaume.koch@gmail.com

    Vertebral compression fracture (VCF) is an important cause of severe debilitating back pain, adversely affecting quality of life, physical function, psychosocial performance, mental health and survival. Different vertebral augmentation procedures (VAPs) are used in order to consolidate the VCFs, relief pain,and whenever posible achieve vertebral body height restoration. In the present review we give the indications, contraindications, safety profile and outcomes of the existing percutaneous VAPs.

  7. An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column.

    PubMed

    Rohlmann, Antonius; Gabel, Udo; Graichen, Friedmar; Bender, Alwina; Bergmann, Georg

    2007-06-01

    Realistic loads on a spinal implant are required among others for optimization of implant design and preclinical testing. In addition, such data may help to choose the optimal physiotherapy program for patients with such an implant and to evaluate the efficacy of aids like braces or crutches. Presently, no implant is available that can measure loads in the anterior spinal column during activities of daily life. Therefore, an implant instrumented for in vivo load measurement was developed for vertebral body replacement. The aim of this paper is to describe in detail a telemeterized implant that measures forces and moments acting on it. Six load sensors, a nine-channel telemetry unit and a coil for inductive power supply of the electronic circuits were integrated into a modified vertebral body replacement (Synex). The instrumented part of the implant is hermetically sealed. Patients are videotaped during measurements, and implant loads are displayed on and off line. The average accuracy of load measurement is better than 2% for force and 5% for moment components with reference to the maximum value of 3000 N and 20 Nm, respectively. The measuring implant described here will provide additional information on spinal loads.

  8. Integration of planar cell polarity and ECM signaling in elongation of the vertebrate body plan.

    PubMed

    Skoglund, Paul; Keller, Ray

    2010-10-01

    The shaping of the vertebrate embryonic body plan depends heavily on the narrowing and lengthening (convergence and extension) of embryonic tissues by cell intercalation, a process by which cells actively crawl between one another along the axis of convergence to produce a narrower, longer array. We discuss recent evidence that the vertebrate non-canonical Wnt/Planar Cell Polarity (PCP) pathway, known to directly function in polarizing the movements of intercalating cells, is also involved in the localized assembly of extracellular matrix (ECM). These cell-ECM interactions, in turn, are necessary for expression of the oriented, polarized cell intercalation. The mechanism of PCP/ECM interactions, their molecular signaling, and their mechanical consequences for morphogenesis are discussed with the goal of identifying important unsolved issues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. [Complications of percutaneous kyphoplasty non-related with bone leakage in treating osteoporotic thoracolumbar vertebral compression fractures].

    PubMed

    Ru, Xuan-liong; Jiang, Zeng-hui; Gui, Xian-ge; Sun, Qi-cai; Song, Bo-Shan; Lin, Hang; He, Jian

    2015-08-01

    To analyze the complications of percutaneous kyphoplasty except bone leakge for the treatment of osteoporotic thoracolumbar vertebral compression fractures. From October 2008 to October 2012,178 patients with 224 osteoporotic vertebral compression fractures were treated with percutaneous kyphoplasty under local anethsia. There were 72 males and 106 females,ranging in age from 58 to 92 years old,with an average of 75.3 years,including 93 thoracic vertebrae and 131 lumbar vertebrae. The complications except bone cement leakage were analyzed during operation and after operation. All operations were successful and all patients were followed up from 12 to 60 months with an average of 26.2 months. No death was found. Bone cement leakage occurred in 27 cases, about 15.1% in 178 cases; and complications except bone cement leakage occurred in 15 cases. There was 1 case with cardiac arrest,was completely recovery by cardiopulmonary resuscitation (CPR) immediately; and 1 case with temporary absence of breathing,was recovery after treatment. There were 3 cases with fall of blood pressure and slower of heart rate; 1 case with intestinal obstruction; 2 cases with local hematoma and 1 case with intercostal neuralgia. Vertebral body fractures of 2 cases were split by bone cement and the fractures of adjacent body occurred in 4 cases. It's uncommon complication except bone cement leakge in treatment of osteoporotic thoracolumbar vertebral compression fractures with percutaneous kyphoplasty. The complication of cardiopulmonary system is a high risk in surgery; and cytotoxicity of bone cement,nervous reflex,fat embolism and alteration of intravertebral pressure may be main reasons.

  10. Bone loss of vertebral bodies at the operative segment after cervical arthroplasty: a potential complication?

    PubMed

    Heo, Dong Hwa; Lee, Dong Chan; Oh, Jong Yang; Park, Choon Keun

    2017-02-01

    OBJECTIVE Bony overgrowth and spontaneous fusion are complications of cervical arthroplasty. In contrast, bone loss or bone remodeling of vertebral bodies at the operation segment after cervical arthroplasty has also been observed. The purpose of this study is to investigate a potential complication-bone loss of the anterior portion of the vertebral bodies at the surgically treated segment after cervical total disc replacement (TDR)-and discuss the clinical significance. METHODS All enrolled patients underwent follow-up for more than 24 months after cervical arthroplasty using the Baguera C disc. Clinical evaluations included recording demographic data and measuring the visual analog scale and Neck Disability Index scores. Radiographic evaluations included measurements of the functional spinal unit's range of motion and changes such as bone loss and bone remodeling. The grading of the bone loss of the operative segment was classified as follows: Grade 1, disappearance of the anterior osteophyte or small minor bone loss; Grade 2, bone loss of the anterior portion of the vertebral bodies at the operation segment without exposure of the artificial disc; or Grade 3, significant bone loss with exposure of the anterior portion of the artificial disc. RESULTS Forty-eight patients were enrolled in this study. Among them, bone loss developed in 29 patients (Grade 1 in 15 patients, Grade 2 in 6 patients, and Grade 3 in 8 patients). Grade 3 bone loss was significantly associated with postoperative neck pain (p < 0.05). Bone loss was related to the motion preservation effect of the operative segment after cervical arthroplasty in contrast to heterotopic ossification. CONCLUSIONS Bone loss may be a potential complication of cervical TDR and affect early postoperative neck pain. However, it did not affect mid- to long-term clinical outcomes or prosthetic failure at the last follow-up. Also, this phenomenon may result in the motion preservation effect in the operative segment

  11. Apparent diffusion coefficient of vertebral haemangiomas allows differentiation from malignant focal deposits in whole-body diffusion-weighted MRI.

    PubMed

    Winfield, Jessica M; Poillucci, Gabriele; Blackledge, Matthew D; Collins, David J; Shah, Vallari; Tunariu, Nina; Kaiser, Martin F; Messiou, Christina

    2018-04-01

    The aim of this study was to identify apparent diffusion coefficient (ADC) values for typical haemangiomas in the spine and to compare them with active malignant focal deposits. This was a retrospective single-institution study. Whole-body magnetic resonance imaging (MRI) scans of 106 successive patients with active multiple myeloma, metastatic prostate or breast cancer were analysed. ADC values of typical vertebral haemangiomas and malignant focal deposits were recorded. The ADC of haemangiomas (72 ROIs, median ADC 1,085×10 -6 mm 2 s -1 , interquartile range 927-1,295×10 -6 mm 2 s -1 ) was significantly higher than the ADC of malignant focal deposits (97 ROIs, median ADC 682×10 -6 mm 2 s -1 , interquartile range 583-781×10 -6 mm 2 s -1 ) with a p-value < 10 -6 . Receiver operating characteristic (ROC) analysis produced an area under the curve of 0.93. An ADC threshold of 872×10 -6 mm 2 s -1 separated haemangiomas from malignant focal deposits with a sensitivity of 84.7 % and specificity of 91.8 %. ADC values of classical vertebral haemangiomas are significantly higher than malignant focal deposits. The high ADC of vertebral haemangiomas allows them to be distinguished visually and quantitatively from active sites of disease, which show restricted diffusion. • Whole-body diffusion-weighted MRI is becoming widely used in myeloma and bone metastases. • ADC values of vertebral haemangiomas are significantly higher than malignant focal deposits. • High ADCs of haemangiomas allows them to be distinguished from active disease.

  12. Vertebral Compression Fractures after Lumbar Instrumentation.

    PubMed

    Granville, Michelle; Berti, Aldo; Jacobson, Robert E

    2017-09-29

    Lumbar spinal stenosis (LSS) is primarily found in an older population. This is a similar demographic group that develops both osteoporosis and vertebral compression fractures (VCF). This report reviewed a series of patients treated for VCF that had previous lumbar surgery for symptomatic spinal stenosis. Patients that only underwent laminectomy or fusion without instrumentation had a similar distribution of VCF as the non-surgical population in the mid-thoracic, or lower thoracic and upper lumbar spine. However, in the patients that had previous short-segment spinal instrumentation, fractures were found to be located more commonly in the mid-lumbar spine or sacrum adjacent to or within one or two spinal segments of the spinal instrumentation. Adjacent-level fractures that occur due to vertebral osteoporosis after long spinal segment instrumentation has been discussed in the literature. The purpose of this report is to highlight the previously unreported finding of frequent lumbar and sacral osteoporotic fractures in post-lumbar instrumentation surgery patients. Important additional factors found were lack of preventative medical treatment for osteoporosis, and secondary effects related to inactivity, especially during the first year after surgery.

  13. Posterior internal fixation plus vertebral bone implantation under navigational aid for thoracolumbar fracture treatment

    PubMed Central

    ZHOU, WEI; KONG, WEIQING; ZHAO, BIZHEN; FU, YISHAN; ZHANG, TAO; XU, JIANGUANG

    2013-01-01

    The aim of this study was to investigate the method of posterior thoracolumbar vertebral pedicle screw reduction and fixation combined with vertebral bone implantation via the affected vertebral body under navigational aid for the treatment of thoracolumbar fractures. The efficacy of the procedure was also measured. Between June 2005 and March 2011, posterior thoracolumbar vertebral pedicle screw reduction and fixation plus artificial bone implantation via the affected vertebral pedicle under navigational aid was used to treat 30 patients with thoracolumbar fractures, including 18 males and 12 females, ranging in age from 21 to 57 years. Compared with the values prior to surgery, intraspinal occupation, vertebral height ratio and Cobb angle at the follow-up were significantly improved. At the long-term follow-up, the postoperative Cobb angle loss was <1° and the anterior vertebral body height loss was <2 mm. Posterior thoracolumbar vertebral pedicle screw reduction and fixation combined with vertebral bone implantation via the affected vertebral body under navigational aid may increase the accuracy and safety of surgery, and it is an ideal method of internal implantation. Bone implantation via the affected vertebral body may increase vertebral stability. PMID:23935737

  14. Closure of the vertebral canal in human embryos and fetuses.

    PubMed

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S Eleonore; Lamers, Wouter H

    2017-08-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10 weeks of development. Human embryos (5-10 weeks of development) were visualized using Amira 3D ® reconstruction and Cinema 4D ® remodelling software. Vertebral bodies were identifiable as loose mesenchymal structures between the dense mesenchymal intervertebral discs up to 6 weeks and then differentiated into cartilaginous structures in the 7th week. In this week, the dense mesenchymal neural processes also differentiated into cartilaginous structures. Transverse processes became identifiable at 6 weeks. The growth rate of all vertebral bodies was exponential and similar between 6 and 10 weeks, whereas the intervertebral discs hardly increased in size between 6 and 8 weeks and then followed vertebral growth between 8 and 10 weeks. The neural processes extended dorsolaterally (6th week), dorsally (7th week) and finally dorsomedially (8th and 9th weeks) to fuse at the midthoracic level at 9 weeks. From there, fusion extended cranially and caudally in the 10th week. Closure of the foramen magnum required the development of the supraoccipital bone as a craniomedial extension of the exoccipitals (neural processes of occipital vertebra 4), whereas a growth burst of sacral vertebra 1 delayed closure until 15 weeks. Both the cranial- and caudal-most vertebral bodies fused to form the basioccipital (occipital vertebrae 1-4) and sacrum (sacral vertebrae 1-5). In the sacrum, fusion of its so-called alar processes preceded that of the bodies by at least 6 weeks. In conclusion, the highly ordered and substantial changes in shape of the vertebral bodies leading to the formation of the vertebral canal make the development of the spine an excellent, continuous staging system for

  15. Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine

    PubMed Central

    Kunkel, Maria E; Herkommer, Andrea; Reinehr, Michael; Böckers, Tobias M; Wilke, Hans-Joachim

    2011-01-01

    The main aim of this study was to provide anatomical data on the heights of the human intervertebral discs for all levels of the thoracic spine by direct and radiographic measurements. Additionally, the heights of the neighboring vertebral bodies were measured, and the prediction of the disc heights based only on the size of the vertebral bodies was investigated. The anterior (ADH), middle (MDH) and posterior heights (PDH) of the discs were measured directly and on radiographs of 72 spine segments from 30 donors (age 57.43 ± 11.27 years). The radiographic measurement error and the reliability of the measurements were calculated. Linear and non-linear regression analyses were employed for investigation of statistical correlations between the heights of the thoracic disc and vertebrae. Radiographic measurements displayed lower repeatability and were shorter than the anatomical ones (approximately 9% for ADH and 37% for PDH). The thickness of the discs varied from 4.5 to 7.2 mm, with the MDH approximately 22.7% greater. The disc heights showed good correlations with the vertebral body heights (R2, 0.659–0.835, P-values < 0.005; anova), allowing the generation of 10 prediction equations. New data on thoracic disc morphometry were provided in this study. The generated set of regression equations could be used to predict thoracic disc heights from radiographic measurement of the vertebral body height posterior. For the creation of parameterized models of the human thoracic discs, the use of the prediction equations could eliminate the need for direct measurement on intervertebral discs. Moreover, the error produced by radiographic measurements could be reduced at least for the PDH. PMID:21615399

  16. Two-stage vertebral column resection for severe and rigid scoliosis in patients with low body weight.

    PubMed

    Zhou, Chunguang; Liu, Limin; Song, Yueming; Liu, Hao; Li, Tao; Gong, Quan

    2013-05-01

    To date, there are no clinical series documenting the treatment of severe and rigid scoliosis in patients with low body weight. To optimize curve correction and minimize the risk of complications, we performed a two-stage vertebral column resection (VCR) with posterior pedicle screw instrumentation to treat patients with severe and rigid scoliosis and low body weight. The purposes of this study were to report the results of a two-staged VCR for patients with severe and rigid scoliosis and low body weight. This was a prospective, longitudinal, and descriptive study with a minimum follow-up of 2 years. Sixteen patients (nine women and seven men) with severe and rigid scoliosis and low body weight from the department of orthopedics, West China hospital, Sichuan University. Clinical analysis included rib hump and lumbar hump. Radiographic analysis consisted of Cobb angle measurements of coronal curves, apical vertebral translation, coronal balance, sagittal balance, thoracic kyphosis, and lumbar lordosis. All measurements were taken before surgery, after surgery, and in the final follow-up period. For evaluation of surgical effectiveness, comparative analysis of rib hump, lumbar hump, Cobb angle of coronal curves, apical vertebral translation, coronal balance, sagittal balance, thoracic kyphosis, and lumbar lordosis before operation, after operation, and at the most recent follow-up was done. The body weight of patients averaged 33.8 kg (range 27-40 kg). Mean operating time was 580.3 minutes, with a blood loss of 1,581.3 mL. The correction rates of rib hump and lumbar hump were 77% and 85%. Preoperative major curves ranged from 90° to 130° Cobb angle. Coronal plane correction of the major curve averaged 70.7%, with an average loss of correction of 1.8%. The apical vertebral translation of the major curve was corrected by 73.2%. The preoperative coronal imbalance of 0.6 cm (range 0-1.4 cm) was improved to 0.5 cm (range 0-1.4 cm) at the most recent follow-up. The

  17. Estimation of stature from radiologic anthropometry of the lumbar vertebral dimensions in Chinese.

    PubMed

    Zhang, Kui; Chang, Yun-feng; Fan, Fei; Deng, Zhen-hua

    2015-11-01

    The recent study was to assess the relationship between the radiologic anthropometry of the lumbar vertebral dimensions and stature in Chinese and to develop regression formulae to estimate stature from these dimensions. A total of 412 normal, healthy volunteers, comprising 206 males and 206 females, were recruited. The linear regression analysis were performed to assess the correlation between the stature and lengths of various segments of the lumbar vertebral column. Among the regression equations created for single variable, the predictive value was greatest for the reconstruction of stature from the lumbar segment in both sexes and subgroup analysis. When individual vertebral body was used, the heights of posterior vertebral body of L3 gave the most accurate results for male group, the heights of central vertebral body of L1 provided the most accurate results for female group and female group with age above 45 years, the heights of central vertebral body of L3 gave the most accurate results for the groups with age from 20-45 years for both sexes and the male group with age above 45 years. The heights of anterior vertebral body of L5 gave the less accurate results except for the heights of anterior vertebral body of L4 provided the less accurate result for the male group with age above 45 years. As expected, multiple regression equations were more successful than equations derived from a single variable. The research observations suggest lumbar vertebral dimensions to be useful in stature estimation among Chinese population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Behavioral fever in ectothermic vertebrates.

    PubMed

    Rakus, Krzysztof; Ronsmans, Maygane; Vanderplasschen, Alain

    2017-01-01

    Fever is an evolutionary conserved defense mechanism which is present in both endothermic and ectothermic vertebrates. Ectotherms in response to infection can increase their body temperature by moving to warmer places. This process is known as behavioral fever. In this review, we summarize the current knowledge on the mechanisms of induction of fever in mammals. We further discuss the evolutionary conserved mechanisms existing between fever of mammals and behavioral fever of ectothermic vertebrates. Finally, the experimental evidences supporting an adaptive value of behavioral fever expressed by ectothermic vertebrates are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Rapid onset aggressive vertebral haemangioma.

    PubMed

    Cheung, Nicholas K; Doorenbosch, Xenia; Christie, John G

    2011-03-01

    Vertebral haemangiomas are generally benign asymptomatic vascular tumours seen commonly in the adult population. Presentations in paediatric populations are extremely rare, which can result in rapid onset of neurological symptoms. We present a highly unusual case of an aggressive paediatric vertebral haemangioma causing significant cord compression. A 13-year-old boy presented with only 2 weeks duration of progressive gait disturbance, truncal ataxia and loss of bladder control. Magnetic resonance imaging (MRI) of the spine revealed a large vascular epidural mass extending between T6 and T8 vertebral bodies. Associated displacement and compression of the spinal cord was present. A highly vascular bony lesion was found during surgery. Histopathology identified this tumour to be a vertebral haemangioma. We present an extremely unusual acute presentation of a paediatric vertebral haemangioma. This study highlights the need for early diagnosis, MRI for investigation and urgent surgical management. © Springer-Verlag 2011

  20. The origin of the vertebrate skeleton

    NASA Astrophysics Data System (ADS)

    Pivar, Stuart

    2011-01-01

    The anatomy of the human and other vertebrates has been well described since the days of Leonardo da Vinci and Vesalius. The causative origin of the configuration of the bones and of their shapes and forms has been addressed over the ensuing centuries by such outstanding investigators as Goethe, Von Baer, Gegenbauer, Wilhelm His and D'Arcy Thompson, who sought to apply mechanical principles to morphogenesis. However, no coherent causative model of morphogenesis has ever been presented. This paper presents a causative model for the origin of the vertebrate skeleton, based on the premise that the body is a mosaic enlargement of self-organized patterns engrained in the membrane of the egg cell. Drawings illustrate the proposed hypothetical origin of membrane patterning and the changes in the hydrostatic equilibrium of the cytoplasm that cause topographical deformations resulting in the vertebrate body form.

  1. The generation of vertebral segmental patterning in the chick embryo

    PubMed Central

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-01-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. PMID:22458512

  2. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?

    PubMed Central

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-01-01

    Abstract Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis. From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study. With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0

  3. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography–Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thibault, Isabelle; Department of Radiation Oncology, Centre Hospitalier de L'Universite de Québec–Université Laval, Quebec, Quebec; Whyne, Cari M.

    Purpose: To determine a threshold of vertebral body (VB) osteolytic or osteoblastic tumor involvement that would predict vertebral compression fracture (VCF) risk after stereotactic body radiation therapy (SBRT), using volumetric image-segmentation software. Methods and Materials: A computational semiautomated skeletal metastasis segmentation process refined in our laboratory was applied to the pretreatment planning CT scan of 100 vertebral segments in 55 patients treated with spine SBRT. Each VB was segmented and the percentage of lytic and/or blastic disease by volume determined. Results: The cumulative incidence of VCF at 3 and 12 months was 14.1% and 17.3%, respectively. The median follow-up was 7.3 months (range,more » 0.6-67.6 months). In all, 56% of segments were determined lytic, 23% blastic, and 21% mixed, according to clinical radiologic determination. Within these 3 clinical cohorts, the segmentation-determined mean percentages of lytic and blastic tumor were 8.9% and 6.0%, 0.2% and 26.9%, and 3.4% and 15.8% by volume, respectively. On the basis of the entire cohort (n=100), a significant association was observed for the osteolytic percentage measures and the occurrence of VCF (P<.001) but not for the osteoblastic measures. The most significant lytic disease threshold was observed at ≥11.6% (odds ratio 37.4, 95% confidence interval 9.4-148.9). On multivariable analysis, ≥11.6% lytic disease (P<.001), baseline VCF (P<.001), and SBRT with ≥20 Gy per fraction (P=.014) were predictive. Conclusions: Pretreatment lytic VB disease volumetric measures, independent of the blastic component, predict for SBRT-induced VCF. Larger-scale trials evaluating our software are planned to validate the results.« less

  4. Temporal Trends in Vertebral Size and Shape from Medieval to Modern-Day

    PubMed Central

    Junno, Juho-Antti; Niskanen, Markku; Nieminen, Miika T.; Maijanen, Heli; Niinimäki, Jaakko; Bloigu, Risto; Tuukkanen, Juha

    2009-01-01

    Human lumbar vertebrae support the weight of the upper body. Loads lifted and carried by the upper extremities cause significant loading stress to the vertebral bodies. It is well established that trauma-induced vertebral fractures are common especially among elderly people. The aim of this study was to investigate the morphological factors that could have affected the prevalence of trauma-related vertebral fractures from medieval times to the present day. To determine if morphological differences existed in the size and shape of the vertebral body between medieval times and the present day, the vertebral body size and shape was measured from the 4th lumbar vertebra using magnetic resonance imaging (MRI) and standard osteometric calipers. The modern samples consisted of modern Finns and the medieval samples were from archaeological collections in Sweden and Britain. The results show that the shape and size of the 4th lumbar vertebra has changed significantly from medieval times in a way that markedly affects the biomechanical characteristics of the lumbar vertebral column. These changes may have influenced the incidence of trauma- induced spinal fractures in modern populations. PMID:19279681

  5. The variability of vertebral body volume and pain associated with osteoporotic vertebral fractures: conservative treatment versus percutaneous transpedicular vertebroplasty.

    PubMed

    Andrei, Diana; Popa, Iulian; Brad, Silviu; Iancu, Aida; Oprea, Manuel; Vasilian, Cristina; Poenaru, Dan V

    2017-05-01

    Osteoporotic vertebral fractures (OVF) can lead to late collapse which often causes kyphotic spinal deformity, persistent back pain, decreased lung capacity, increased fracture risk and increased mortality. The purpose of our study is to compare the efficacy and safety of vertebroplasty against conservative management of osteoporotic vertebral fractures without neurologic symptoms. A total of 66 patients with recent OVF on MRI examination were included in the study. All patients were admitted from September 2009 to September 2012. The cohort was divided into two groups. The first study group consisted of 33 prospectively followed consecutive patients who suffered 40 vertebral osteoporotic fractures treated by percutaneous vertebroplasty (group 1), and the control group consisted of 33 patients who suffered 41 vertebral osteoporotic fractures treated conservatively because they refused vertebroplasty (group 2). The data collection has been conducted in a prospective registration manner. The inclusion criteria consisted of painful OVF matched with imagistic findings. We assessed the results of pain relief and minimal sagittal area of the vertebral body on the axial CT scan at presentation, after the intervention, at six and 12 months after initial presentation. Vertebroplasty with poly(methyl methacrylate) (PMMA) was performed in 30 patients on 39 VBs, including four thoracic vertebras, 27 vertebras of the thoracolumbar jonction and eight lumbar vertebras. Group 2 included 30 patients with 39 OVFs (four thoracic vertebras, 23 vertebras of the thoracolumbar junction and 11 lumbar vertebras). There was no significant difference in VAS scores before treatment (p = 0.229). The mean VAS was 5.90 in Group 1 and 6.28 in Group 2 before the treatment. Mean VAS after vertebroplasty was 0.85 in Group 1. The mean VAS at six months was 0.92 in Group 1 and 3.00 in Group 2 (p < 0.05). The mean VAS at 12 months was 0.92 in Group 1 and 2.36 in Group 2. The mean improvement

  6. Anterior dural ectasia mimicking a lytic lesion in the posterior vertebral body in ankylosing spondylitis.

    PubMed

    Bele, Keerthiraj; Pendharkar, Hima Shriniwas; Venkat, Easwer; Gupta, Arun Kumar

    2011-12-01

    Anterior dural ectasia is an extremely rare finding in ankylosing spondylitis (AS). The authors describe a unique case of AS in which the patient presented with cauda equina syndrome as well as an unusual imaging finding of erosion of the posterior aspect of the L-1 (predominantly) and L-2 vertebral bodies due to anterior dural ectasia. Symptomatic patients with long-standing AS should be monitored for the presence of dural ectasia, which can be anterior in location, as is demonstrated in the present case.

  7. The generation of vertebral segmental patterning in the chick embryo.

    PubMed

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-06-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  8. Lumbar vertebral hemangioma with extradural extension, causing neurogenic claudication: a case report.

    PubMed

    Jouibari, Morteza Faghih; Khoshnevisan, Alireza; Ghodsi, Seyed Mohammad; Nejat, Farideh; Naderi, Soheil; Abdollahzadeh, Sina

    2011-01-01

    The authors present a rare case of lumbar vertebral hemangioma extending to the epidural space with a bisected appearance and impinging on thecal sac. This 52-year-old lady presented with one year history of low back pain and bilateral leg radiation. Plain radiography showed vertical linear streaks at L2 vertebral body and axial computed tomography (CT) scan revealed small "polka dot" appearance within the vertebral body. Magnetic resonance imaging (MRI) showed low signal intensity on T1-weighted images in L2 vertebral body which was not characteristic for hemangioma. The patient underwent an L2 laminectomy, spinal canal decompression and posterior spinal instrumentation. This study indicates that lumbar vertebral hemangioma can extend to the epidural space and cause neurologic symptoms. Magnetic resonance imaging may not show diagnostic features, especially in active lesions and plain radiography and CT scan may be helpful.

  9. Micro Finite Element models of the vertebral body: Validation of local displacement predictions.

    PubMed

    Costa, Maria Cristiana; Tozzi, Gianluca; Cristofolini, Luca; Danesi, Valentina; Viceconti, Marco; Dall'Ara, Enrico

    2017-01-01

    The estimation of local and structural mechanical properties of bones with micro Finite Element (microFE) models based on Micro Computed Tomography images depends on the quality bone geometry is captured, reconstructed and modelled. The aim of this study was to validate microFE models predictions of local displacements for vertebral bodies and to evaluate the effect of the elastic tissue modulus on model's predictions of axial forces. Four porcine thoracic vertebrae were axially compressed in situ, in a step-wise fashion and scanned at approximately 39μm resolution in preloaded and loaded conditions. A global digital volume correlation (DVC) approach was used to compute the full-field displacements. Homogeneous, isotropic and linear elastic microFE models were generated with boundary conditions assigned from the interpolated displacement field measured from the DVC. Measured and predicted local displacements were compared for the cortical and trabecular compartments in the middle of the specimens. Models were run with two different tissue moduli defined from microindentation data (12.0GPa) and a back-calculation procedure (4.6GPa). The predicted sum of axial reaction forces was compared to the experimental values for each specimen. MicroFE models predicted more than 87% of the variation in the displacement measurements (R2 = 0.87-0.99). However, model predictions of axial forces were largely overestimated (80-369%) for a tissue modulus of 12.0GPa, whereas differences in the range 10-80% were found for a back-calculated tissue modulus. The specimen with the lowest density showed a large number of elements strained beyond yield and the highest predictive errors. This study shows that the simplest microFE models can accurately predict quantitatively the local displacements and qualitatively the strain distribution within the vertebral body, independently from the considered bone types.

  10. Micro Finite Element models of the vertebral body: Validation of local displacement predictions

    PubMed Central

    Costa, Maria Cristiana; Tozzi, Gianluca; Cristofolini, Luca; Danesi, Valentina; Viceconti, Marco

    2017-01-01

    The estimation of local and structural mechanical properties of bones with micro Finite Element (microFE) models based on Micro Computed Tomography images depends on the quality bone geometry is captured, reconstructed and modelled. The aim of this study was to validate microFE models predictions of local displacements for vertebral bodies and to evaluate the effect of the elastic tissue modulus on model’s predictions of axial forces. Four porcine thoracic vertebrae were axially compressed in situ, in a step-wise fashion and scanned at approximately 39μm resolution in preloaded and loaded conditions. A global digital volume correlation (DVC) approach was used to compute the full-field displacements. Homogeneous, isotropic and linear elastic microFE models were generated with boundary conditions assigned from the interpolated displacement field measured from the DVC. Measured and predicted local displacements were compared for the cortical and trabecular compartments in the middle of the specimens. Models were run with two different tissue moduli defined from microindentation data (12.0GPa) and a back-calculation procedure (4.6GPa). The predicted sum of axial reaction forces was compared to the experimental values for each specimen. MicroFE models predicted more than 87% of the variation in the displacement measurements (R2 = 0.87–0.99). However, model predictions of axial forces were largely overestimated (80–369%) for a tissue modulus of 12.0GPa, whereas differences in the range 10–80% were found for a back-calculated tissue modulus. The specimen with the lowest density showed a large number of elements strained beyond yield and the highest predictive errors. This study shows that the simplest microFE models can accurately predict quantitatively the local displacements and qualitatively the strain distribution within the vertebral body, independently from the considered bone types. PMID:28700618

  11. Prevalence of silent vertebral fractures detected by vertebral fracture assessment in young Portuguese men with hyperthyroidism.

    PubMed

    Barbosa, Ana Paula; Rui Mascarenhas, Mário; Silva, Carlos Francisco; Távora, Isabel; Bicho, Manuel; do Carmo, Isabel; de Oliveira, António Gouveia

    2015-02-01

    Hyperthyroidism is a risk factor for reduced bone mineral density (BMD) and osteoporotic fractures. Vertebral fracture assessment (VFA) by dual-energy X-ray absorptiometry (DXA) is a radiological method of visualization of the spine, which enables patient comfort and reduced radiation exposure. This study was carried out to evaluate BMD and the prevalence of silent vertebral fractures in young men with hyperthyroidism. We conducted a cross-sectional study in a group of Portuguese men aged up to 50 years and matched in hyperthyroidism (n=24) and control (n=24) groups. A group of 48 Portuguese men aged up to 50 years was divided and matched in hyperthyroidism (n=24) and control (n=24) groups. BMD (g/cm(2)) at L1-L4, hip, radius 33%, and whole body as well as the total body masses (kg) were studied by DXA. VFA was used to detect fractures and those were classified by Genant's semiquantitative method. No patient had previously been treated for hyperthyroidism, osteoporosis, or low bone mass. Adequate statistical tests were used. The mean age, height, and total fat mass were similar in both groups (P≥0.05). The total lean body mass and the mean BMD at lumbar spine, hip, and whole body were significantly decreased in the hyperthyroidism group. In this group, there was also a trend for an increased prevalence of reduced BMD/osteoporosis and osteoporotic vertebral fractures. The results obtained using VFA technology (confirmed by X-ray) suggest that the BMD changes in young men with nontreated hyperthyroidism may lead to the development of osteoporosis and vertebral fractures. This supports the pertinence of using VFA in the routine of osteoporosis assessment to detect silent fractures precociously and consider early treatment. © 2015 European Society of Endocrinology.

  12. YAP is essential for tissue tension to ensure vertebrate 3D body shape.

    PubMed

    Porazinski, Sean; Wang, Huijia; Asaoka, Yoichi; Behrndt, Martin; Miyamoto, Tatsuo; Morita, Hitoshi; Hata, Shoji; Sasaki, Takashi; Krens, S F Gabriel; Osada, Yumi; Asaka, Satoshi; Momoi, Akihiro; Linton, Sarah; Miesfeld, Joel B; Link, Brian A; Senga, Takeshi; Shimizu, Nobuyoshi; Nagase, Hideaki; Matsuura, Shinya; Bagby, Stefan; Kondoh, Hisato; Nishina, Hiroshi; Heisenberg, Carl-Philipp; Furutani-Seiki, Makoto

    2015-05-14

    Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.

  13. Embryonic origin of the gnathostome vertebral skeleton

    PubMed Central

    Gillis, J. Andrew

    2017-01-01

    The vertebral column is a key component of the jawed vertebrate (gnathostome) body plan, but the primitive embryonic origin of this skeleton remains unclear. In tetrapods, all vertebral components (neural arches, haemal arches and centra) derive from paraxial mesoderm (somites). However, in teleost fishes, vertebrae have a dual embryonic origin, with arches derived from somites, but centra formed, in part, by secretion of bone matrix from the notochord. Here, we test the embryonic origin of the vertebral skeleton in a cartilaginous fish (the skate, Leucoraja erinacea) which serves as an outgroup to tetrapods and teleosts. We demonstrate, by cell lineage tracing, that both arches and centra are somite-derived. We find no evidence of cellular or matrix contribution from the notochord to the skate vertebral skeleton. These findings indicate that the earliest gnathostome vertebral skeleton was exclusively of somitic origin, with a notochord contribution arising secondarily in teleosts. PMID:29167367

  14. The role of the notochord in amniote vertebral column segmentation.

    PubMed

    Ward, Lizzy; Pang, Angel S W; Evans, Susan E; Stern, Claudio D

    2018-07-01

    The vertebral column is segmented, comprising an alternating series of vertebrae and intervertebral discs along the head-tail axis. The vertebrae and outer portion (annulus fibrosus) of the disc are derived from the sclerotome part of the somites, whereas the inner nucleus pulposus of the disc is derived from the notochord. Here we investigate the role of the notochord in vertebral patterning through a series of microsurgical experiments in chick embryos. Ablation of the notochord causes loss of segmentation of vertebral bodies and discs. However, the notochord cannot segment in the absence of the surrounding sclerotome. To test whether the notochord dictates sclerotome segmentation, we grafted an ectopic notochord. We find that the intrinsic segmentation of the sclerotome is dominant over any segmental information the notochord may possess, and no evidence that the chick notochord is intrinsically segmented. We propose that the segmental pattern of vertebral bodies and discs in chick is dictated by the sclerotome, which first signals to the notochord to ensure that the nucleus pulposus develops in register with the somite-derived annulus fibrosus. Later, the notochord is required for maintenance of sclerotome segmentation as the mature vertebral bodies and intervertebral discs form. These results highlight differences in vertebral development between amniotes and teleosts including zebrafish, where the notochord dictates the segmental pattern. The relative importance of the sclerotome and notochord in vertebral patterning has changed significantly during evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis

    PubMed Central

    Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim

  16. Comparative physiology of body fluid regulation in vertebrates with special reference to thirst regulation.

    PubMed

    Takei, Y

    2000-04-01

    The origin of life took place in the ancient sea where the ionic concentration is thought to have been somewhat lower than that of the present day seas. This may partly explain why most vertebrate species have plasma ionic concentrations roughly one-third of seawater. Exceptions are primitive marine cyclostomes whose plasma is almost identical to seawater, and marine cartilaginous fishes that accumulate urea in plasma to increase osmolarity to a seawater level. The mechanisms for regulation of water and electrolyte balance should have evolved from these animals into those of more advanced ones in which plasma ions are regulated to one-third of seawater irrespective of the habitat. Although most extant terrestrial and aquatic animals maintain similar plasma osmolarity and ionic concentrations, the mechanisms of regulation differ greatly among different groups of animals according to their habitat. An outstanding difference is that while plasma Na(+) concentration is a primary factor of regulation in terrestrial mammals and birds, blood volume is most strictly regulated in aquatic teleost fishes. Consistently, while an increase in plasma osmolarity (cellular dehydration) is a major dipsogenic stimulus for birds and mammals, hypovolemia (extracellular dehydration) is a much stronger stimulus for elicitation of drinking in teleost fishes. Furthermore, fish cells in culture are tolerant to changes in environmental osmolarity compared with mammalian cells, further suggesting a secondary role of plasma osmolarity as a target of regulation in fishes. A secondary role of blood volume for body fluid regulation in birds is further assessed by the fact that volume receptors for thirst, salt gland secretion, and vasotocin secretion are localized in the extravascular, interstitial space in some species of birds. All terrestrial animals including mammals have derived from the fishes in phylogeny, during which the mechanisms for body fluid regulation underwent adaptive evolution

  17. Cervical vertebral bone mineral density changes in adolescents during orthodontic treatment.

    PubMed

    Crawford, Bethany; Kim, Do-Gyoon; Moon, Eun-Sang; Johnson, Elizabeth; Fields, Henry W; Palomo, J Martin; Johnston, William M

    2014-08-01

    The cervical vertebral maturation (CVM) stages have been used to estimate facial growth status. In this study, we examined whether cone-beam computed tomography images can be used to detect changes of CVM-related parameters and bone mineral density distribution in adolescents during orthodontic treatment. Eighty-two cone-beam computed tomography images were obtained from 41 patients before (14.47 ± 1.42 years) and after (16.15 ± 1.38 years) orthodontic treatment. Two cervical vertebral bodies (C2 and C3) were digitally isolated from each image, and their volumes, means, and standard deviations of gray-level histograms were measured. The CVM stages and mandibular lengths were also estimated after converting the cone-beam computed tomography images. Significant changes for the examined variables were detected during the observation period (P ≤0.018) except for C3 vertebral body volume (P = 0.210). The changes of CVM stage had significant positive correlations with those of vertebral body volume (P ≤0.021). The change of the standard deviation of bone mineral density (variability) showed significant correlations with those of vertebral body volume and mandibular length for C2 (P ≤0.029). The means and variability of the gray levels account for bone mineral density and active remodeling, respectively. Our results indicate that bone mineral density distribution and the volume of the cervical vertebral body changed because of active bone remodeling during maturation. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Extinction risk is most acute for the world's largest and smallest vertebrates.

    PubMed

    Ripple, William J; Wolf, Christopher; Newsome, Thomas M; Hoffmann, Michael; Wirsing, Aaron J; McCauley, Douglas J

    2017-10-03

    Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world's vertebrates, fundamentally reordering the structure of life on our planet.

  19. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia

    PubMed Central

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments. PMID:26132139

  20. Widespread Forest Vertebrate Extinctions Induced by a Mega Hydroelectric Dam in Lowland Amazonia.

    PubMed

    Benchimol, Maíra; Peres, Carlos A

    2015-01-01

    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, under-construction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments.

  1. Building the backbone: the development and evolution of vertebral patterning.

    PubMed

    Fleming, Angeleen; Kishida, Marcia G; Kimmel, Charles B; Keynes, Roger J

    2015-05-15

    The segmented vertebral column comprises a repeat series of vertebrae, each consisting of two key components: the vertebral body (or centrum) and the vertebral arches. Despite being a defining feature of the vertebrates, much remains to be understood about vertebral development and evolution. Particular controversy surrounds whether vertebral component structures are homologous across vertebrates, how somite and vertebral patterning are connected, and the developmental origin of vertebral bone-mineralizing cells. Here, we assemble evidence from ichthyologists, palaeontologists and developmental biologists to consider these issues. Vertebral arch elements were present in early stem vertebrates, whereas centra arose later. We argue that centra are homologous among jawed vertebrates, and review evidence in teleosts that the notochord plays an instructive role in segmental patterning, alongside the somites, and contributes to mineralization. By clarifying the evolutionary relationship between centra and arches, and their varying modes of skeletal mineralization, we can better appreciate the detailed mechanisms that regulate and diversify vertebral patterning. © 2015. Published by The Company of Biologists Ltd.

  2. Effectiveness of percutaneous vertebroplasty in patients with multiple myeloma having vertebral pain

    PubMed Central

    Nas, Ömer Fatih; İnecikli, Mehmet Fatih; Hacıkurt, Kadir; Büyükkaya, Ramazan; Özkaya, Güven; Özkalemkaş, Fahir; Ali, Rıdvan; Erdoğan, Cüneyt; Hakyemez, Bahattin

    2016-01-01

    PURPOSE We aimed to assess the effectiveness, benefits, and reliability of percutaneous vertebroplasty (PV) in patients with vertebral involvement of multiple myeloma. METHODS PV procedures performed on 166 vertebrae of 41 patients with multiple myeloma were retrospectively evaluated. Most of our patients were using level 3 (moderate to severe pain) analgesics. Magnetic resonance imaging was performed before the procedure to assess vertebral involvement of multiple myeloma. The following variables were evaluated: affected vertebral levels, loss of vertebral body height, polymethylmethacrylate (PMMA) cement amount applied to the vertebral body during PV, PMMA cement leakages, and pain before and after PV as assessed by a visual analogue scale (VAS). RESULTS Median VAS scores of patients decreased from 9 one day before PV, to 6 one day after the procedure, to 3 one week after the procedure, and eventually to 1 three months after the procedure (P < 0.001). During the PV procedure, cement leakage was observed at 68 vertebral levels (41%). The median value of PMMA applied to the vertebral body was 6 mL. CONCLUSION Being a minimally invasive and easily performed procedure with low complication rates, PV should be preferred for serious back pain of multiple myeloma patients. PMID:26912107

  3. Vertebrate blood cell volume increases with temperature: implications for aerobic activity.

    PubMed

    Gillooly, James F; Zenil-Ferguson, Rosana

    2014-01-01

    Aerobic activity levels increase with body temperature across vertebrates. Differences in these levels, from highly active to sedentary, are reflected in their ecology and behavior. Yet, the changes in the cardiovascular system that allow for greater oxygen supply at higher temperatures, and thus greater aerobic activity, remain unclear. Here we show that the total volume of red blood cells in the body increases exponentially with temperature across vertebrates, after controlling for effects of body size and taxonomy. These changes are accompanied by increases in relative heart mass, an indicator of aerobic activity. The results point to one way vertebrates may increase oxygen supply to meet the demands of greater activity at higher temperatures.

  4. High-resolution CT evaluation of bronchial lumen to vertebral body, pulmonary artery to vertebral body and bronchial lumen to pulmonary artery ratios in Dirofilaria immitis-infected cats with and without selamectin administration.

    PubMed

    Lee-Fowler, Tekla M; Cole, Robert C; Dillon, A Ray; Graham, Shannon; Tillson, D Michael; Barney, Sharron

    2017-10-01

    Objectives The bronchial lumen to pulmonary artery (BA) ratio is utilized to evaluate pulmonary pathology on CT images. The BA ratio may be unreliable when changes are present in bronchial and pulmonary arteries concurrently. Bronchial lumen to vertebral body (BV) and pulmonary artery to vertebral body (AV) ratios have been established in normal cats and may serve as an alternative. This study aimed to evaluate the BV, AV and BA ratios in cats before and after infection with Dirofilaria immitis, with and without selamectin administration, and to characterize the distribution of disease. Methods Archived CT images were reviewed from three groups of cats: D immitis-infected untreated (n = 6); infected pretreated with selamectin (n = 6); uninfected untreated (n = 5). The BV, AV and BA ratios were calculated for all lung lobes for baseline (D0) and day 240 (D240) postinfection. Ratios and percentage change from baseline were compared between lobes and between groups. Results BV and AV ratios were more consistent in identifying abnormalities when disease was present in bronchial and arteries concurrently than BA ratios. Infected untreated cats had significant changes in both BV and AV ratios and percentage change from baseline. Abnormal BV and AV ratios were noted in the infected selamectin group, although less widely distributed. Conclusions and relevance The BV and AV ratios more accurately identified bronchial and pulmonary artery abnormalities in D immitis-infected cats. Both bronchial and pulmonary artery changes were present in infected cats, decreasing the diagnostic application of the BA ratio. Pulmonary artery changes were more widely distributed than bronchial changes in the lung. Heartworm-infected cats receiving selamectin had bronchial and pulmonary artery changes but to a lesser extent than untreated heartworm-infected cats. The CT-derived BV and AV ratios are a useful measure to evaluate lung disease of cats.

  5. Pleistocene vertebrates of the Yukon Territory

    NASA Astrophysics Data System (ADS)

    Harington, C. R.

    2011-08-01

    Unglaciated parts of the Yukon constitute one of the most important areas in North America for yielding Pleistocene vertebrate fossils. Nearly 30 vertebrate faunal localities are reviewed spanning a period of about 1.6 Ma (million years ago) to the close of the Pleistocene some 10 000 BP (radiocarbon years before present, taken as 1950). The vertebrate fossils represent at least 8 species of fishes, 1 amphibian, 41 species of birds and 83 species of mammals. Dominant among the large mammals are: steppe bison ( Bison priscus), horse ( Equus sp.), woolly mammoth ( Mammuthus primigenius), and caribou ( Rangifer tarandus) - signature species of the Mammoth Steppe fauna ( Fig. 1), which was widespread from the British Isles, through northern Europe, and Siberia to Alaska, Yukon and adjacent Northwest Territories. The Yukon faunas extend from Herschel Island in the north to Revenue Creek in the south and from the Alaskan border in the west to Ketza River in the east. The Yukon holds evidence of the earliest-known people in North America. Artifacts made from bison, mammoth and caribou bones from Bluefish Caves, Old Crow Basin and Dawson City areas show that people had a substantial knowledge of making and using bone tools at least by 25 000 BP, and possibly as early as 40 000 BP. A suggested chronological sequence of Yukon Pleistocene vertebrates ( Table 1) facilitates comparison of selected faunas and indicates the known duration of various taxa.

  6. Extinction risk is most acute for the world’s largest and smallest vertebrates

    PubMed Central

    Ripple, William J.; Wolf, Christopher; Newsome, Thomas M.; Hoffmann, Michael; Wirsing, Aaron J.; McCauley, Douglas J.

    2017-01-01

    Extinction risk in vertebrates has been linked to large body size, but this putative relationship has only been explored for select taxa, with variable results. Using a newly assembled and taxonomically expansive database, we analyzed the relationships between extinction risk and body mass (27,647 species) and between extinction risk and range size (21,294 species) for vertebrates across six main classes. We found that the probability of being threatened was positively and significantly related to body mass for birds, cartilaginous fishes, and mammals. Bimodal relationships were evident for amphibians, reptiles, and bony fishes. Most importantly, a bimodal relationship was found across all vertebrates such that extinction risk changes around a body mass breakpoint of 0.035 kg, indicating that the lightest and heaviest vertebrates have elevated extinction risk. We also found range size to be an important predictor of the probability of being threatened, with strong negative relationships across nearly all taxa. A review of the drivers of extinction risk revealed that the heaviest vertebrates are most threatened by direct killing by humans. By contrast, the lightest vertebrates are most threatened by habitat loss and modification stemming especially from pollution, agricultural cropping, and logging. Our results offer insight into halting the ongoing wave of vertebrate extinctions by revealing the vulnerability of large and small taxa, and identifying size-specific threats. Moreover, they indicate that, without intervention, anthropogenic activities will soon precipitate a double truncation of the size distribution of the world’s vertebrates, fundamentally reordering the structure of life on our planet. PMID:28923917

  7. The 'Tully monster' is a vertebrate.

    PubMed

    McCoy, Victoria E; Saupe, Erin E; Lamsdell, James C; Tarhan, Lidya G; McMahon, Sean; Lidgard, Scott; Mayer, Paul; Whalen, Christopher D; Soriano, Carmen; Finney, Lydia; Vogt, Stefan; Clark, Elizabeth G; Anderson, Ross P; Petermann, Holger; Locatelli, Emma R; Briggs, Derek E G

    2016-04-28

    Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica', particularly the 'weird wonders' of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.

  8. Fibrous dysplasia: an unusual case of a very aggressive form with costo-vertebral joint destruction and invasion of the contralateral D7 vertebral body.

    PubMed

    Zoccali, Carmine; Attala, Dario; Rossi, Barbara; Zoccali, Giovanni; Ferraresi, Virginia

    2018-05-23

    Fibrous dysplasia (FD) is a benign fibro-osseous disease of the bone that may be solitary or multicentric. It is important to distinguish this type of lesion from low-grade osteosarcomas (LGOS) and from secondary sarcomas, because malignant transformation has rarely been reported. It is classically described as having a ground-glass appearance, endosteal scalloping, and thinning of the cortex. Cortical disruption is considered evidence of malignancy, but it can also be present in benign FD with aggressive behavior. We present an unusual case of aggressive FD of the 7th left rib, already diagnosed more than 22 years ago, where cortical and costo-vertebral joint disruption and 7th thoracic vertebral body involvement were not evidence of malignant behavior. From a histological perspective, FD and LGOS are similar; even if histology is of fundamental importance, the diagnosis has to be made based on the clinical and radiological aspects as well, although at imaging, differentiation between FD and LGOS can be difficult. In the present case, even though the histological examination suggested a benign lesion, the radiological examination instead consistently suggests malignancy. It is for this reason that there should be a high index of suspicion during follow-up and a new biopsy should be scheduled in case any changes occur during follow-up.

  9. Delayed vertebral body collapse after stereotactic radiosurgery and radiofrequency ablation: Case report with histopathologic-MRI correlation.

    PubMed

    Wallace, Adam N; Vyhmeister, Ross; Hsi, Andy C; Robinson, Clifford G; Chang, Randy O; Jennings, Jack W

    2015-12-01

    Stereotactic radiosurgery and percutaneous radiofrequency ablation are emerging therapies for pain palliation and local control of spinal metastases. However, the post-treatment imaging findings are not well characterized and the risk of long-term complications is unknown. We present the case of a 46-year-old woman with delayed vertebral body collapse after stereotactic radiosurgery and radiofrequency ablation of a painful lumbar metastasis. Histopathologic-MRI correlation confirmed osteonecrosis as the underlying etiology and demonstrated that treatment-induced vascular fibrosis and tumor progression can have identical imaging appearances. © The Author(s) 2015.

  10. Vertebral Osteomyelitis and Acinetobacter Spp. Paravertebral Soft Tissue Infection in a 4-Year-Old Boy With X-Linked Chronic Granulomatous Disease.

    PubMed

    Vignesh, Pandiarajan; Bhattad, Sagar; Shandilya, Jitendra-Kumar; Vyas, Sameer; Garg, Rashi; Rawat, Amit

    2016-09-01

    Vertebral osteomyelitis is known to occur in chronic granulomatous disease, a phagocytic disorder and the etiology is usually a fungus. Indolent spread of fungal infection from lungs to adjacent ribs and vertebra often results in persistent pneumonia and vertebral deformities. We report a 4-year-old boy with chronic cough and kyphosis, who had a fungal vertebral osteomyelitis and Acinetobacter spp. paravertebral soft tissue infection related to X-linked chronic granulomatous disease.

  11. Identifying osteoporotic vertebral endplate and cortex fractures

    PubMed Central

    Santiago, Fernando Ruiz; Deng, Min; Nogueira-Barbosa, Marcello H.

    2017-01-01

    Osteoporosis is the most common metabolic bone disease, and vertebral fractures (VFs) are the most common osteoporotic fracture. A single atraumatic VF may lead to the diagnosis of osteoporosis. Prevalent VFs increase the risk of future vertebral and non-vertebral osteoporotic fracture independent of bone mineral density (BMD). The accurate and clear reporting of VF is essential to ensure patients with osteoporosis receive appropriate treatment. Radiologist has a vital role in the diagnosis of this disease. Several morphometrical and radiological methods for detecting osteoporotic VF have been proposed, but there is no consensus regarding the definition of osteoporotic VF. A vertebra may fracture yet not ever result in measurable changes in radiographic height or area. To overcome these difficulties, algorithm-based qualitative approach (ABQ) was developed with a focus on the identification of change in the vertebral endplate. Evidence of endplate fracture (rather than variation in vertebral shape) is the primary indicator of osteoporotic fracture according to ABQ criteria. Other changes that may mimic osteoporotic fractures should be systemically excluded. It is also possible that vertebral cortex fracture may not initially occur in endplate. Particularly, vertebral cortex fracture can occur in anterior vertebral cortex without gross vertebral deformity (VD), or fractures deform the anterior vertebral cortex without endplate disruption. This article aims to serve as a teaching material for physicians or researchers to identify vertebral endplate/cortex fracture (ECF). Emphasis is particularly dedicated to identifying ECF which may not be associated apparent vertebral body collapse. We believe a combined approach based on standardized radiologic evaluation by experts and morphometry measurement is the most appropriate approach to detect and classify VFs. PMID:29184768

  12. Variation of canine vertebral bone architecture in computed tomography

    PubMed Central

    Cheon, Byunggyu; Park, Seungjo; Lee, Sang-kwon; Park, Jun-Gyu; Cho, Kyoung-Oh

    2018-01-01

    Focal vertebral bone density changes were assessed in vertebral computed tomography (CT) images obtained from clinically healthy dogs without diseases that affect bone density. The number, location, and density of lesions were determined. A total of 429 vertebral CT images from 20 dogs were reviewed, and 99 focal vertebral changes were identified in 14 dogs. Focal vertebral bone density changes were mainly found in thoracic vertebrae (29.6%) as hyperattenuating (86.9%) lesions. All focal vertebral changes were observed at the vertebral body, except for a single hyperattenuating change in one thoracic transverse process. Among the hyperattenuating changes, multifocal changes (53.5%) were more common than single changes (46.5%). Most of the hypoattenuating changes were single (92.3%). Eight dogs, 40% of the 20 dogs in the study and 61.6% of the 13 dogs showing focal vertebral changes in the thoracic vertebra, had hyperattenuating changes at the 7th or 8th thoracic vertebra. Our results indicate that focal changes in vertebral bone density are commonly identified on vertebral CT images in healthy dogs, and these changes should be taken into consideration on interpretation of CT images. PMID:28693309

  13. Timing Embryo Segmentation: Dynamics and Regulatory Mechanisms of the Vertebrate Segmentation Clock

    PubMed Central

    Resende, Tatiana P.; Andrade, Raquel P.; Palmeirim, Isabel

    2014-01-01

    All vertebrate species present a segmented body, easily observed in the vertebrate column and its associated components, which provides a high degree of motility to the adult body and efficient protection of the internal organs. The sequential formation of the segmented precursors of the vertebral column during embryonic development, the somites, is governed by an oscillating genetic network, the somitogenesis molecular clock. Herein, we provide an overview of the molecular clock operating during somite formation and its underlying molecular regulatory mechanisms. Human congenital vertebral malformations have been associated with perturbations in these oscillatory mechanisms. Thus, a better comprehension of the molecular mechanisms regulating somite formation is required in order to fully understand the origin of human skeletal malformations. PMID:24895605

  14. A segmental pattern of alkaline phosphatase activity within the notochord coincides with the initial formation of the vertebral bodies.

    PubMed

    Grotmol, Sindre; Nordvik, Kari; Kryvi, Harald; Totland, Geir K

    2005-05-01

    This study shows that segmental expression of alkaline phosphatase (ALP) activity by the notochord of the Atlantic salmon (Salmo salar L.) coincides with the initial mineralization of the vertebral body (chordacentrum), and precedes ALP expression by presumed somite-derived cells external to the notochordal sheath. The early expression of ALP indicates that the notochord plays an instructive role in the segmental patterning of the vertebral column. The chordacentra form segmentally as mineralized rings within the notochordal sheath, and ALP activity spreads within the chordoblast layer from ventral to dorsal, displaying the same progression and spatial distribution as the mineralization process. No ALP activity was observed in sclerotomal mesenchyme surrounding the notochordal sheath during initial formation of the chordacentra. Our results support previous findings indicating that the chordoblasts initiate a segmental differentiation of the notochordal sheath into chordacentra and intervertebral regions.

  15. Diet and body mass of wintering ducks in adjacent brackish and freshwater habitats

    USGS Publications Warehouse

    Miller, M.R.; Burns, E.G.; Wickland, B.E.; Eadie, J.M.

    2009-01-01

    Field-collected and hunter-donated ducks obtained during September-January of 1997-98 and 1998-99 were used to determine if food habits and body mass of Northern Pintails (Anas acuta) and Mallards (A. platyrhynchos) wintering in Suisun Marsh (Suisun), California, a managed estuarine brackish marsh, differed from values in the adjacent Sacramento-San Joaquin River Delta (the Delta), a freshwater region of grain fields flooded after harvest. Ducks in Suisun fed primarily on seeds of Sea Purslane (Sesuvium verrucosum), followed by Alkali Bulrush (Schoenoplectus maritimus) and Wild Millet (Echinochloa crusgalli), together forming 73-90% (aggregate % dry mass) of the diets. Ducks in the Delta fed primarily on seeds of Smartweed (Polygonum spp.), followed by corn (Zea mays) and tomato seeds (Lycopersicon esculentum), together forming 62-88% of the diets. Pintails and Mallards collected in Suisun each had similar (5 of 11 seasonal comparisons) or greater (6 of the 11 comparisons) body mass compared to their conspecifics collected from the Delta (90% confidence interval analyses), despite a composite diet in the Delta having about 39% greater metabolizable energy content (ME) and 24% greater protein content than in Suisun. Therefore, diet quality alone was not a predictor of body mass in these two areas. Other factors must have been involved, such as greater food abundance and density, lower waterfowl abundance and density, or lower daily energy costs in Suisun. Direct measurement of these factors should explain the apparent inconsistencies in body mass relative to food quality in these brackish and freshwater habitats.

  16. Polymethylmethacrylate distribution is associated with recompression after vertebroplasty or kyphoplasty for osteoporotic vertebral compression fractures: A retrospective study.

    PubMed

    Hou, Yu; Yao, Qi; Zhang, Genai; Ding, Lixiang; Huang, Hui

    2018-01-01

    Osteoporotic vertebral compression fracture, always accompanied with pain and height loss of vertebral body, has a significant negative impact on life quality of patients. Vertebroplasty or kyphoplasty is minimal invasive techniques to reconstruct the vertebral height and prevent further collapse of the fractured vertebrae by injecting polymethylmethacrylate into vertebral body. However, recompression of polymethylmethacrylate augmented vertebrae with significant vertebral height loss and aggressive local kyphotic was observed frequently after VP or KP. The purpose of this study was to investigate the effect of polymethylmethacrylate distribution on recompression of the vertebral body after vertebroplasty or kyphoplasty surgery for osteoporotic vertebral compression fracture. A total of 281 patients who were diagnosed with vertebral compression fracture (T5-L5) from June 2014 to June 2016 and underwent vertebroplasty or kyphoplasty by polymethylmethacrylate were retrospectively analyzed. The X-ray films at 1 day and 12 months after surgery were compared to evaluate the recompression of operated vertebral body. Patients were divided into those without recompression (non-recompression group) and those with recompression (recompression group). Polymethylmethacrylate distribution pattern, including location and relationship to endplates, was compared between the two groups by lateral X-ray film. Multivariate logistic regression analysis was performed to assess the potential risk factors associated with polymethylmethacrylate distribution for recompression. One hundred and six (37.7%) patients experienced recompression after surgery during the follow-up period. The polymethylmethacrylate distributed in the middle of vertebral body showed significant differences between two groups. In non-recompression group, the polymethylmethacrylate in the middle portion of vertebral body were closer to endplates than that in the recompression group (upper: t = 31.41, p<0.001; lower

  17. Polymethylmethacrylate distribution is associated with recompression after vertebroplasty or kyphoplasty for osteoporotic vertebral compression fractures: A retrospective study

    PubMed Central

    Yao, Qi; Zhang, Genai; Ding, Lixiang; Huang, Hui

    2018-01-01

    Background Osteoporotic vertebral compression fracture, always accompanied with pain and height loss of vertebral body, has a significant negative impact on life quality of patients. Vertebroplasty or kyphoplasty is minimal invasive techniques to reconstruct the vertebral height and prevent further collapse of the fractured vertebrae by injecting polymethylmethacrylate into vertebral body. However, recompression of polymethylmethacrylate augmented vertebrae with significant vertebral height loss and aggressive local kyphotic was observed frequently after VP or KP. The purpose of this study was to investigate the effect of polymethylmethacrylate distribution on recompression of the vertebral body after vertebroplasty or kyphoplasty surgery for osteoporotic vertebral compression fracture. Methods A total of 281 patients who were diagnosed with vertebral compression fracture (T5-L5) from June 2014 to June 2016 and underwent vertebroplasty or kyphoplasty by polymethylmethacrylate were retrospectively analyzed. The X-ray films at 1 day and 12 months after surgery were compared to evaluate the recompression of operated vertebral body. Patients were divided into those without recompression (non-recompression group) and those with recompression (recompression group). Polymethylmethacrylate distribution pattern, including location and relationship to endplates, was compared between the two groups by lateral X-ray film. Multivariate logistic regression analysis was performed to assess the potential risk factors associated with polymethylmethacrylate distribution for recompression. Results One hundred and six (37.7%) patients experienced recompression after surgery during the follow-up period. The polymethylmethacrylate distributed in the middle of vertebral body showed significant differences between two groups. In non-recompression group, the polymethylmethacrylate in the middle portion of vertebral body were closer to endplates than that in the recompression group (upper

  18. Vertebrate whole-body-action asymmetries and the evolution of right handedness: a comparison between humans and marine mammals.

    PubMed

    MacNeilage, Peter F

    2013-09-01

    As part of a vertebrate-wide trend toward left brain/right side asymmetries in routine whole-body actions, marine mammals show signs of rightward appendage-use biases, and short- and long-term turning asymmetries most of which are unique in non-humans in being just as strong as right handedness, and even stronger than human handedness-related turning biases. Short-term marine mammal turning asymmetries and human about-turning asymmetries share a leading right side, suggesting a commonality in left hemisphere intentional control. The long-term leftward turning bias that both groups share may be an indirect result of both sensory and motor influences on the right side in dolphins, but be induced by a right-hemisphere-controlled spatial/attentional bias to the left in humans. Marine mammals may share, with humans and other higher primates, a left hemisphere specialization for action dynamics, although evidence is currently lacking for human-like right hemisphere specializations relevant to action in other vertebrates. Copyright © 2013 Wiley Periodicals, Inc.

  19. Building the Vertebrate Spine

    NASA Astrophysics Data System (ADS)

    Pourquié, Olivier

    2008-03-01

    The vertebrate body can be subdivided along the antero-posterior (AP) axis into repeated structures called segments. This periodic pattern is established during embryogenesis by the somitogenesis process. Somites are generated in a rhythmic fashion from the paraxial mesoderm and subsequently differentiate to give rise to the vertebrae and skeletal muscles of the body. Somite formation involves an oscillator-the segmentation clock-whose periodic signal is converted into the periodic array of somite boundaries. This clock drives the dynamic expression of cyclic genes in the presomitic mesoderm and requires Notch and Wnt signaling. Microarray studies of the mouse presomitic mesoderm transcriptome reveal that the segmentation clock drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive activation of the Notch/FGF and Wnt pathways during each cycle suggests that coordinated regulation of these three pathways underlies the clock oscillator. In humans, mutations in the genes associated to the function of this oscillator such as Dll3 or Lunatic Fringe result in abnormal segmentation of the vertebral column such as those seen in congenital scoliosis. Whereas the segmentation clock is thought to set the pace of vertebrate segmentation, the translation of this pulsation into the reiterated arrangement of segment boundaries along the AP axis involves dynamic gradients of FGF and Wnt signaling. The FGF signaling gradient is established based on an unusual mechanism involving mRNA decay which provides an efficient means to couple the spatio-temporal activation of segmentation to the posterior elongation of the embryo. Another striking aspect of somite production is the strict bilateral symmetry of the process. Retinoic acid was shown to control aspects of this coordination by buffering destabilizing effects from the embryonic left-right machinery. Defects in this embryonic program controlling vertebral symmetry might lead

  20. The ‘Tully monster’ is a vertebrate

    NASA Astrophysics Data System (ADS)

    McCoy, Victoria E.; Saupe, Erin E.; Lamsdell, James C.; Tarhan, Lidya G.; McMahon, Sean; Lidgard, Scott; Mayer, Paul; Whalen, Christopher D.; Soriano, Carmen; Finney, Lydia; Vogt, Stefan; Clark, Elizabeth G.; Anderson, Ross P.; Petermann, Holger; Locatelli, Emma R.; Briggs, Derek E. G.

    2016-04-01

    Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the ‘problem of the problematica’, particularly the ‘weird wonders’ of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.

  1. Invasive Fire Ants Reduce Reproductive Success and Alter the Reproductive Strategies of a Native Vertebrate Insectivore

    PubMed Central

    Ligon, Russell A.; Siefferman, Lynn; Hill, Geoffrey E.

    2011-01-01

    Background Introduced organisms can alter ecosystems by disrupting natural ecological relationships. For example, red imported fire ants (Solenopsis invicta) have disrupted native arthropod communities throughout much of their introduced range. By competing for many of the same food resources as insectivorous vertebrates, fire ants also have the potential to disrupt vertebrate communities. Methodology/Principal Findings To explore the effects of fire ants on a native insectivorous vertebrate, we compared the reproductive success and strategies of eastern bluebirds (Sialia sialis) inhabiting territories with different abundances of fire ants. We also created experimental dyads of adjacent territories comprised of one territory with artificially reduced fire ant abundance (treated) and one territory that was unmanipulated (control). We found that more bluebird young fledged from treated territories than from adjacent control territories. Fire ant abundance also explained significant variation in two measures of reproductive success across the study population: number of fledglings and hatching success of second clutches. Furthermore, the likelihood of bluebird parents re-nesting in the same territory was negatively influenced by the abundance of foraging fire ants, and parents nesting in territories with experimentally reduced abundances of fire ants produced male-biased broods relative to pairs in adjacent control territories. Conclusions/Significance Introduced fire ants altered both the reproductive success (number of fledglings, hatching success) and strategies (decision to renest, offspring sex-ratio) of eastern bluebirds. These results illustrate the negative effects that invasive species can have on native biota, including species from taxonomically distant groups. PMID:21799904

  2. Effect of the Location of Endplate Cement Extravasation on Adjacent Level Fracture in Osteoporotic Patients Undergoing Vertebroplasty and Kyphoplasty.

    PubMed

    Jesse, Mary Kristen; Petersen, Brian; Glueck, Deborah; Kriedler, Sarah

    2015-01-01

    The most widely researched risk/complication following vertebroplasty (VP) or kyphoplasty (KP) is that of adjacent level fracture (ALF). Current literature results regarding the effect of intradiscal extravasation of cement on the risk of ALF is conflicting with about half of the studies concluding there is no added risk with endplate extravasation and half of the studies reporting opposite conclusions. The purpose of the study is to further stratify the data to determine whether specifically the location and extent of endplate cement extravasation more strongly affect ALF risk in osteoporotic patients following either VP or balloon KP. Retrospective cohort study. University teaching hospital. One hundred and fifty-six cemented levels in 80 patients, treated at a single center between 2008 and 2012 were reviewed. Age, gender, T-score, body mass index, and osteoporosis type (primary or secondary) were recorded. An ALF was defined as a fracture: 1) in a non-cemented vertebra; 2) adjacent to a cemented level; and 3) not due to trauma or malignancy. Location of the cement extravasation (anterior, middle, or posterior third of the vertebral body) and extravasation extent (percentage of the intervertebral disc height occupied by the bolus) were measured. A logistic modeling strategy permitted examining the association between the location and extent of extravasation and the odds of ALF. ALF occurred in 14 of the 52 patients (27%) and 20 of the 98 levels (20.4%) remaining after exclusions. Odds of ALF were 5.9 times higher (95% CI: 1.6 to 21.2, P = 0.008) with extravasation when compared to no leakage. Odds of ALF in a given patient were 22.6 times higher (95% CI: 3.0 to 170.9, P = 0.003) with anterior extravasation when compared to no leakage. Leakage in the middle or posterior thirds and extent of extravasation were not associated with ALF. Limitations of the study include the retrospective study design and small sample size as well as the retrospective implementation

  3. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?: A retrospective study.

    PubMed

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-09-01

    Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis.From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study.With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0

  4. Ancient deuterostome origins of vertebrate brain signalling centres.

    PubMed

    Pani, Ariel M; Mullarkey, Erin E; Aronowicz, Jochanan; Assimacopoulos, Stavroula; Grove, Elizabeth A; Lowe, Christopher J

    2012-03-14

    Neuroectodermal signalling centres induce and pattern many novel vertebrate brain structures but are absent, or divergent, in invertebrate chordates. This has led to the idea that signalling-centre genetic programs were first assembled in stem vertebrates and potentially drove morphological innovations of the brain. However, this scenario presumes that extant cephalochordates accurately represent ancestral chordate characters, which has not been tested using close chordate outgroups. Here we report that genetic programs homologous to three vertebrate signalling centres-the anterior neural ridge, zona limitans intrathalamica and isthmic organizer-are present in the hemichordate Saccoglossus kowalevskii. Fgf8/17/18 (a single gene homologous to vertebrate Fgf8, Fgf17 and Fgf18), sfrp1/5, hh and wnt1 are expressed in vertebrate-like arrangements in hemichordate ectoderm, and homologous genetic mechanisms regulate ectodermal patterning in both animals. We propose that these genetic programs were components of an unexpectedly complex, ancient genetic regulatory scaffold for deuterostome body patterning that degenerated in amphioxus and ascidians, but was retained to pattern divergent structures in hemichordates and vertebrates. © 2012 Macmillan Publishers Limited. All rights reserved

  5. Correlation and taphonomy of late Cretaceous vertebrate localities in Fruitland and Kirtland formations, San Juan basin, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, A.P.

    Most fossil vertebrates in the Fruitland and Kirtland formations occur in two narrow stratigraphic intervals. The upper interval comprises the approximately 30 m-thick Naashoibito Member of the Kirtland formation. Fossiliferous localities within this interval are physically correlatable within the small and continuous outcrop belt of this unit. The lower fossiliferous interval comprises a 20 m-thick sequence between the stratigraphically highest, thick coal bed (1 m thick) in the Fruitland Formation and distinctive brown tabular sandstones in the lower Kirtland formation, which differ in color and geometry from adjacent sandstone bodies. Localities within this interval occur in physically discontinuous outcrops, principallymore » between Hunter Wash in the northwest and Coal Creek in the southeast. These localities can be correlated utilizing the upper Fruitland coal, the lower Kirtland sandstones, and a series of volcanic ashes. Measurement of 38 stratigraphic sections and examination of more than 100 subsurface geophysical logs has allowed detailed correlation between the principal areas of vertebrate-fossil occurrences in Hunter Wash and the Fossil Forest. The occurrence of fossils in the Naashoibito is related to energy of depositional environment. Farther north, coarser deposits of the McDermott Member of the Animas Formation, which represent proximal facies of the Naashoibito, lack abundant fossil vertebrates. The geographic extent of vertebrate fossils in the upper Fruitland and lower Kirtland coincides with the extent of the tabular brown sandstones in the lower Kirtland and is related to Laramide downwarping of the central San Juan basin.« less

  6. Handed behavior in hagfish--an ancient vertebrate lineage--and a survey of lateralized behaviors in other invertebrate chordates and elongate vertebrates.

    PubMed

    Miyashita, Tetsuto; Palmer, A Richard

    2014-04-01

    Hagfish represent an ancient lineage of boneless and jawless vertebrates. Among several curious behaviors they exhibit, solitary individuals in one dominant genus of hagfish (Eptatretus spp.) regularly rest in a tightly coiled posture. We present the first systematic treatment of this distinctive behavior. Individual northeastern Pacific hagfish (E. stoutii) exhibited significant handedness (preferred orientation of coiling). However, right-coiling and left-coiling individuals were equally common in the population. Individual hagfish likely develop a preference for one direction by repeating the preceding coiling direction. We also revisit classical accounts of chordate natural history and compare the coiling behavior of Eptatretus with other handed or lateralized behaviors in non-vertebrate chordates, lampreys, and derived vertebrates with elongate bodies. Handed behaviors occur in many of these groups, but they likely evolved independently. In contrast to vertebrates, morphological asymmetries may bias lateralized larval behaviors toward one side in cephalochordates and tunicates. As a consequence, no known handed behavior can be inferred to have existed in the common ancestor of vertebrates.

  7. The development of inter-strain variation in cortical and trabecular traits during growth of the mouse lumbar vertebral body.

    PubMed

    Ramcharan, M A; Faillace, M E; Guengerich, Z; Williams, V A; Jepsen, K J

    2017-03-01

    How cortical and trabecular bone co-develop to establish a mechanically functional structure is not well understood. Comparing early postnatal differences in morphology of lumbar vertebral bodies for three inbred mouse strains identified coordinated changes within and between cortical and trabecular traits. These early coordinate changes defined the phenotypic differences among the inbred mouse strains. Age-related changes in cortical and trabecular traits have been well studied; however, very little is known about how these bone tissues co-develop from day 1 of postnatal growth to establish functional structures by adulthood. In this study, we aimed to establish how cortical and trabecular tissues within the lumbar vertebral body change during growth for three inbred mouse strains that express wide variation in adult bone structure and function. Bone traits were quantified for lumbar vertebral bodies of female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse strains from 1 to 105 days of age (n = 6-10 mice/age/strain). Inter-strain differences in external bone size were observed as early as 1 day of age. Reciprocal and rapid changes in the trabecular bone volume fraction and alignment in the direction of axial compression were observed by 7 days of age. Importantly, the inter-strain difference in adult trabecular bone volume fraction was established by 7 days of age. Early variation in external bone size and trabecular architecture was followed by progressive increases in cortical area between 28 and 105 days of age, with the greatest increases in cortical area seen in the mouse strain with the lowest trabecular mass. Establishing the temporal changes in bone morphology for three inbred mouse strains revealed that genetic variation in adult trabecular traits were established early in postnatal development. Early variation in trabecular architecture preceded strain-specific increases in cortical area and changes in cortical thickness. This study

  8. Inheritance of Vertebral Number in the Three-Spined Stickleback (Gasterosteus aculeatus)

    PubMed Central

    Alho, Jussi S.; Leinonen, Tuomas; Merilä, Juha

    2011-01-01

    Intraspecific variation in the number of vertebrae is taxonomically widespread, and both genetic and environmental factors are known to contribute to this variation. However, the relative importance of genetic versus environmental influences on variation in vertebral number has seldom been investigated with study designs that minimize bias due to non-additive genetic and maternal influences. We used a paternal half-sib design and animal model analysis to estimate heritability and causal components of variance in vertebral number in three-spined sticklebacks (Gasterosteus aculeatus). We found that both the number of vertebrae (h2 = 0.36) and body size (h2 = 0.42) were moderately heritable, whereas the influence of maternal effects was estimated to be negligible. While the number of vertebrae had a positive effect on body size, no evidence for a genetic correlation between body size and vertebral number was detected. However, there was a significant positive environmental correlation between these two traits. Our results support the generalization-in accordance with results from a review of heritability estimates for vertebral number in fish, reptiles and mammals-that the number of vertebrae appears to be moderately to highly heritable in a wide array of species. In the case of the three-spined stickleback, independent evolution of body size and number of vertebrae should be possible given the low genetic correlation between the two traits. PMID:21603609

  9. Geometry of the intervertebral volume and vertebral endplates of the human spine.

    PubMed

    van der Houwen, E B; Baron, P; Veldhuizen, A G; Burgerhof, J G M; van Ooijen, P M A; Verkerke, G J

    2010-01-01

    Replacement of a degenerated vertebral disc with an artificial intervertebral disc (AID) is currently possible, but poses problems, mainly in the force distribution through the vertebral column. Data on the intervertebral disc space geometry will provide a better fit of the prosthesis to the vertebrae, but current literature on vertebral disc geometry is very scarce or not suitable. In this study, existing CT-scans of 77 patients were analyzed to measure the intervertebral disc and vertebral endplate geometry of the lumbar spine. Ten adjacent points on both sides of the vertebrae (S1-superior to T12-inferior) and sagittal and transverse diameters were measured to describe the shape of the caudal and cranial vertebral planes of the vertebrae. It was found that the largest endplate depth is located in the middle or posterior regions of the vertebra, that there is a linear relationship between all inferior endplate depths and the endplate location (p < 0.0001) within the spinal column, and that the superior endplate depth increases with age by about 0.01 mm per year (p < 0.02). The wedge angle increases from T12-L1 to L5-S1. The results allow for improvement of the fit of intervertebral disc-prostheses to the vertebrae and optimized force transmission through the vertebral column.

  10. Comparison of Radiofrequency-targeted Vertebral Augmentation With Balloon Kyphoplasty for the Treatment of Vertebral Compression Fractures: 2-Year Results.

    PubMed

    Bornemann, Rahel; Jansen, Tom R; Kabir, Koroush; Pennekamp, Peter H; Stüwe, Brit; Wirtz, Dieter C; Pflugmacher, Robert

    2017-04-01

    A retrospective study. The aim of this study was the evaluation of the safety and effectiveness of radiofrequency-targeted vertebral augmentation (RF-TVA) in comparison with balloon kyphoplasty (BK) for the treatment of acute painful vertebral compression fractures (VCFs) on the basis of matched pairs. Vertebroplasty and BK are the common surgical interventions for the treatment of VCF. Both are effective and safe but pose some risks such as adjacent fractures and cement leakage. In 2009, RF-TVA was introduced as an innovative augmentation procedure for the treatment of VCF. A total of 192 patients (116 female; 51-90 y) with VCF (n=303) at 1 to 3 levels were treated with RF-TVA or BK. Functionality (Oswestry Disability Index), pain (visual analogue scale), vertebral height (anterior, middle), and kyphotic angle were evaluated over a 2-year period (postoperatively, 3-4 d, 3, 6, 12, and 24 mo). In addition, operating time and occurrence of cement leakage were recorded. Pain and functionality were significantly improved after both treatments. In both groups, there was an increase in the vertebral height and a decrease in the kyphotic angle, which remained relatively consistent during 24 months. The incidence of cement leakage was 9.4% (n=9) in the RF-TVA group and 24.0% (n=25) in the BK group. The mean operating time with radiofrequency kyphoplasty was 25.9±9.9 minutes, and with balloon kyphoplasty 48.0±18.4 minutes. RF-TVA is a safe and effective procedure for the treatment of vertebral compression fractures when compared with BK. Improvement in pain and functional scores after RF-TVA are durable through 24 months postprocedure and remained better than those after BK at long-term follow-up. Operating time for RF-TVA is shorter and the risk of cement leakage is lower. Both procedures provided similar results in vertebral height restoration and reduction in the kyphotic angle.

  11. Computerized method for detection of vertebral fractures on lateral chest radiographs based on morphometric data

    NASA Astrophysics Data System (ADS)

    Kasai, Satoshi; Li, Feng; Shiraishi, Junji; Li, Qiang; Straus, Christopher; Vokes, Tamara; MacMahon, Heber; Doi, Kunio

    2007-03-01

    Vertebral fractures are the most common osteoporosis-related fractures. It is important to detect vertebral fractures, because they are associated with increased risk of subsequent fractures, and because pharmacologic therapy can reduce the risk of subsequent fractures. Although vertebral fractures are often not clinically recognized, they can be visualized on lateral chest radiographs taken for other purposes. However, only 15-60% of vertebral fractures found on lateral chest radiographs are mentioned in radiology reports. The purpose of this study was to develop a computerized method for detection of vertebral fractures on lateral chest radiographs in order to assist radiologists' image interpretation. Our computerized method is based on the automated identification of upper and lower vertebral edges. In order to develop the scheme, radiologists provided morphometric data for each identifiable vertebra, which consisted of six points for each vertebra, for 25 normals and 20 cases with severe fractures. Anatomical information was obtained from morphometric data of normal cases in terms of vertebral heights, heights of vertebral disk spaces, and vertebral centerline. Computerized detection of vertebral fractures was based on the reduction in the heights of fractured vertebrae compared to adjacent vertebrae and normal reference data. Vertebral heights from morphometric data on normal cases were used as reference. On 138 chest radiographs (20 with fractures) the sensitivity of our method for detection of fracture cases was 95% (19/20) with 0.93 (110/118) false-positives per image. In conclusion, the computerized method would be useful for detection of potentially overlooked vertebral fractures on lateral chest radiographs.

  12. The evolution of vertebral formulae in Hominoidea.

    PubMed

    Thompson, Nathan E; Almécija, Sergio

    2017-09-01

    Primate vertebral formulae have long been investigated because of their link to locomotor behavior and overall body plan. Knowledge of the ancestral vertebral formulae in the hominoid tree of life is necessary to interpret the pattern of evolution among apes, and to critically evaluate the morphological adaptations involved in the transition to hominin bipedalism. Though many evolutionary hypotheses have been proposed based on living and fossil species, the application of quantitative phylogenetic methods for thoroughly reconstructing ancestral vertebral formulae and formally testing patterns of vertebral evolution is lacking. To estimate the most probable scenarios of hominoid vertebral evolution, we utilized an iterative ancestral state reconstruction approach to determine likely ancestral vertebral counts in apes, humans, and other anthropoid out-groups. All available ape and hominin fossil taxa with an inferred regional vertebral count were included in the analysis. Sensitivity iterations were performed both by changing the phylogenetic position of fossil taxa with a contentious placement, and by changing the inferred number of vertebrae in taxa with uncertain morphology. Our ancestral state reconstruction results generally support a short-backed hypothesis of human evolution, with a Pan-Homo last common ancestor possessing a vertebral formulae of 7:13:4:6 (cervical:thoracic:lumbar:sacral). Our results indicate that an initial reduction in lumbar vertebral count and increase in sacral count is a synapomorphy of crown hominoids (supporting an intermediate-backed hypothesis for the origins of the great ape-human clade). Further reduction in lumbar count occurs independently in orangutans and African apes. Our results highlight the complexity and homoplastic nature of vertebral count evolution, and give little support to the long-backed hypothesis of human evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling.

    PubMed

    Jones, K E; Pierce, S E

    2016-03-01

    Ecological diversification into new environments presents new mechanical challenges for locomotion. An extreme example of this is the transition from a terrestrial to an aquatic lifestyle. Here, we examine the implications of life in a neutrally buoyant environment on adaptations of the axial skeleton to evolutionary increases in body size. On land, mammals must use their thoracolumbar vertebral column for body support against gravity and thus exhibit increasing stabilization of the trunk as body size increases. Conversely, in water, the role of the axial skeleton in body support is reduced, and, in aquatic mammals, the vertebral column functions primarily in locomotion. Therefore, we hypothesize that the allometric stabilization associated with increasing body size in terrestrial mammals will be minimized in secondarily aquatic mammals. We test this by comparing the scaling exponent (slope) of vertebral measures from 57 terrestrial species (23 felids, 34 bovids) to 23 semi-aquatic species (pinnipeds), using phylogenetically corrected regressions. Terrestrial taxa meet predictions of allometric stabilization, with posterior vertebral column (lumbar region) shortening, increased vertebral height compared to width, and shorter, more disc-shaped centra. In contrast, pinniped vertebral proportions (e.g. length, width, height) scale with isometry, and in some cases, centra even become more spool-shaped with increasing size, suggesting increased flexibility. Our results demonstrate that evolution of a secondarily aquatic lifestyle has modified the mechanical constraints associated with evolutionary increases in body size, relative to terrestrial taxa. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  14. Evolution of neural crest and placodes: amphioxus as a model for the ancestral vertebrate?

    NASA Technical Reports Server (NTRS)

    Holland, L. Z.; Holland, N. D.

    2001-01-01

    Recent studies of protochordates (ascidian tunicates and amphioxus) have given insights into possible ancestors of 2 of the characteristic features of the vertebrate head: neural crest and placodes. The neural crest probably evolved from cells on either side of the neural plate-epidermis boundary in a protochordate ancestral to the vertebrates. In amphioxus, homologues of several vertebrate neural crest marker genes (BMP2/4, Pax3/7, Msx, Dll and Snail) are expressed at the edges of the neural plate and/or adjacent nonneural ectoderm. Some of these markers are also similarly expressed in tunicates. In protochordates, however, these cells, unlike vertebrate neural crest, neither migrate as individuals through embryonic tissues nor differentiate into a wide spectrum of cell types. Therefore, while the protochordate ancestor of the vertebrates probably had the beginnings of a genetic programme for neural crest formation, this programme was augmented in the earliest vertebrates to attain definitive neural crest. Clear homologues of vertebrate placodes are lacking in protochordates. However, both amphioxus and tunicates have ectodermal sensory cells. In tunicates these are all primary neurons, sending axons to the central nervous system, while in amphioxus, the ectodermal sensory cells include both primary neurons and secondary neurons lacking axons. Comparisons of developmental gene expression suggest that the anterior ectoderm in amphioxus may be homologous to the vertebrate olfactory placode, the only vertebrate placode with primary, not secondary, neurons. Similarly, biochemical, morphological and gene expression data suggest that amphioxus and tunicates also have homologues of the adenohypophysis, one of the few vertebrate structures derived from nonneurogenic placodes. In contrast, the origin of the other vertebrate placodes is very uncertain.

  15. The ‘Tully monster’ is a vertebrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Victoria E.; Saupe, Erin E.; Lamsdell, James C.

    Abstract Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica'(1), particularly the 'weird wonders'(2) of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium(3), popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million yearsmore » ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans(4,5), polychaetes(4), gastropods(4), conodonts(6), and the stem arthropod Opabinia(4). Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes(3-6). We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys(7-9), a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years« less

  16. Age changes in the bone density and structure of the lumbar vertebral column.

    PubMed Central

    Twomey, L; Taylor, J; Furniss, B

    1983-01-01

    Old age is associated with a decline in bone density in lumbar vertebral bodies in both sexes, although the rate and amount of the decline is greatest in females. The bone translucency index method, described in this study, is a sensitive method of estimating bone density. The primary reason for this decline is the significant decrease in the number of transverse trabeculae of lumbar vertebrae in old age. It is postulated that the increase in vertebral end plate concavity and the increased horizontal dimensions of lumbar vertebral bodies in old age follows as a direct consequence of the selective loss of the transverse trabeculae. Images Fig. 2 PMID:6833115

  17. Radioecology of Vertebrate Animals in the Area Adjacent to the Chernobyl Nuclear Power Plant Site in 1986-2008

    NASA Astrophysics Data System (ADS)

    Farfan, E. B.; Gashchak, S. P.; Makliuk, Y. A.; Maksymenko, A. M.; Bondarkov, M. D.; Jannik, G. T.; Marra, J. C.

    2009-12-01

    A widespread environmental contamination of the areas adjacent to the Chernobyl Nuclear Power Plant (ChNPP) site attracted a great deal of publicity to the biological consequences of the ChNPP catastrophe. However, only a few studies focused on a detailed analysis of radioactive contamination of the local wild fauna and most of them were published in Eastern European languages, making them poorly accessible for Western scientists. In addition, evaluation of this information appears difficult due to significant differences in raw data acquisition and analysis methodologies and final data presentation formats. Using an integrated approach to assessment of all available information, the International Radioecology Laboratory scientists showed that the ChNPP accident had increased the average values of the animals 137Cs and 90Sr contamination by a factor of thousands, followed by its decrease by a factor of tens, primarily resulting from a decrease in the biological accessibility of the radionuclides. However, this trend depended on many factors. Plant and bottom feeding fish species were the first to reach the maximum contamination levels. No data are available on other vertebrates, but it can be assumed that the same trend was true for all plant feeding animals and animals searching for food on the soil surface. The most significant decrease of the average values occurred during the first 3-5 years after the accident and it was the most pronounced for elks and plant and plankton feeding fish. Their diet included elements “alienated” from the major radionuclide inventory; for example, upper soil layers and bottom deposits where the fallout that had originally precipitated on plants, water and soils gradually migrated. Further radionuclide penetration into deeper layers of soils and its bonding with their mineral components intensified decontamination of the fauna. It took a while for the contamination of predatory fish and mammals (wolves) to reach the maximum

  18. Cross-sectional neck response of a total human body FE model during simulated frontal and side automobile impacts.

    PubMed

    White, Nicholas A; Moreno, Daniel P; Gayzik, F Scott; Stitzel, Joel D

    2015-01-01

    Human body finite element (FE) models are beginning to play a more prevalent role in the advancement of automotive safety. A methodology has been developed to evaluate neck response at multiple levels in a human body FE model during simulated automotive impacts. Three different impact scenarios were simulated: a frontal impact of a belted driver with airbag deployment, a frontal impact of a belted passenger without airbag deployment and an unbelted side impact sled test. Cross sections were created at each vertebral level of the cervical spine to calculate the force and moment contributions of different anatomical components of the neck. Adjacent level axial force ratios varied between 0.74 and 1.11 and adjacent level bending moment ratios between 0.55 and 1.15. The present technique is ideal for comparing neck forces and moments to existing injury threshold values, calculating injury criteria and for better understanding the biomechanical mechanisms of neck injury and load sharing during sub-injurious and injurious loading.

  19. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates

    PubMed Central

    Brunet, Frédéric G.; Volff, Jean-Nicolas; Schartl, Manfred

    2016-01-01

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. PMID:27260203

  20. Height restoration of osteoporotic vertebral compression fractures using different intravertebral reduction devices: a cadaveric study.

    PubMed

    Krüger, Antonio; Oberkircher, Ludwig; Figiel, Jens; Floßdorf, Felix; Bolzinger, Florent; Noriega, David C; Ruchholtz, Steffen

    2015-05-01

    The treatment of osteoporotic vertebral compression fractures using transpedicular cement augmentation has grown significantly during the past two decades. Balloon kyphoplasty was developed to restore vertebral height and improve sagittal alignment. Several studies have shown these theoretical improvements cannot be transferred universally to the clinical setting. The aim of the current study is to evaluate two different procedures used for percutaneous augmentation of vertebral compression fractures with respect to height restoration: balloon kyphoplasty and SpineJack. Twenty-four vertebral bodies of two intact, fresh human cadaveric spines (T6-L5; donor age, 70 years and 60 years; T-score -6.8 points and -6.3 points) were scanned using computed tomography (CT) and dissected into single vertebral bodies. Vertebral wedge compression fractures were created by a material testing machine (Universal testing machine, Instron 5566, Darmstadt, Germany). The axial load was increased continuously until the height of the anterior edge of the vertebral body was reduced by 40% of the initial measured values. After 15 minutes, the load was decreased manually to 100 N. After postfracture CT, the clamped vertebral bodies were placed in a custom-made loading frame with a preload of 100 N. Twelve vertebral bodies were treated using SpineJack (SJ; Vexim, Balma, France), the 12 remaining vertebral bodies were treated with balloon kyphoplasty (BKP; Kyphon, Medtronic, Sunnyvale, CA, USA). The load was maintained during the procedure until the cement set completely. Posttreatment CT was performed. Anterior, central, and posterior height as well as the Beck index were measured prefracture and postfracture as well as after treatment. For anterior height restoration (BKP, 0.14±1.48 mm; SJ, 3.34±1.19 mm), central height restoration (BKP, 0.91±1.04 mm; SJ, 3.24±1.22 mm), and posterior restoration (BKP, 0.37±0.57 mm; SJ, 1.26±1.05), as well as the Beck index (BKP, 0.00±0.06 mm; SJ, 0

  1. Comparison of radiographic and computed tomographic measurement of pedicle and vertebral body dimensions in Koreans: the ratio of pedicle transverse diameter to vertebral body transverse diameter.

    PubMed

    Kang, Ki Ser; Song, Kwang-Sup; Lee, Jong Seok; Yang, Jae Jun; Song, In Sup

    2011-03-01

    This study was designed to investigate the characteristics of pedicle transverse diameters (PD), vertebral body transverse diameters (VBD), especially the ratios of PD/VBD (CT ratio), which has never been discussed, in Koreans using computed tomography (CT) scans and to evaluate the possibility of obtaining more accurate estimations of PD from plain radiographs using the CT ratios in each spine level. The T1-L5 vertebrae of 50 participants were analyzed prospectively with CT scans (CT-VBD and CT-PD), and the T9-L5 vertebrae of the same participants were investigated with plain radiographs (X-VBD and X-PD). The CT ratio had a higher correlation with the CT-PD (r2 = 0.630) from T1 to L5, especially in the lower thoracic and lumbar spine (T9-L5, r2 = 0.737). The correlation of VBDs between the two radiologic tools (r2 = 0.896) was higher than that of the PDs (r2 = 0.665). Based on the data, equations for the estimation of a more accurate PD from plain radiographs were developed as follows: estimated PD = estimated VBD × [1.014 × (X-VBD) + 0.152] × the mean CT ratio at each spinal level. The correlation between the estimated PD and the CT-PD (r2 = 0.852) was improved compared with that (r2 = 0.665) between the X-PD and the CT-PD. In conclusion, the CT ratio showed a very similar changing trends to CT-PD from T1 to L5 regardless of sex and body mass, and the measurement error of PD from only plain radiographs could be minimized using estimated VBD and the mean CT ratio at each spinal level.

  2. Coupling between the spinal cord and cervical vertebral column under tensile loading.

    PubMed

    Kroeker, Shannon G; Ching, Randal P

    2013-02-22

    Current neck injury criteria are based on structural failure of the spinal (vertebral) column without consideration of injury to the spinal cord. Since one of the primary functions of the vertebral column is to protect the cord, it stands to reason that a more refined measure of neck injury threshold would be the onset of spinal cord injury (SCI). This study investigated the relationship between axial strains in the cervical vertebral column and the spinal cord using an in vitro primate model (n=10) under continuous tensile loading. Mean failure loads occurred at 1951.5±396N with failure strains in the vertebral column of 16±5% at the level of failure. Average tensile strains in the spinal cord at failure were 11±5% resulting in a mean coupling ratio of 0.54±0.17 between C1 and C7. The level of peak strain measured in the spinal cord did not always occur at the location of vertebral column failure. Spinal cord strains were less than spine strains and coupling ratios were not significantly different along the length of the spine. The largest coupling ratio was measured in the atlanto-occipital joint whereas the smallest coupling ratio occurred at the adjacent C1-C2 joint. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Lumbo-costo-vertebral syndrome with congenital lumbar hernia.

    PubMed

    Gupta, Lucky; Mala, Tariq Ahmed; Gupta, Rahul; Malla, Shahid Amin

    2014-01-01

    Lumbo-costo-vertebral syndrome (LCVS) is a set of rare abnormalities involving vertebral bodies, ribs, and abdominal wall. We present a case of LCVS in a 2-year-old girl who had a progressive swelling over left lumbar area noted for the last 12 months. Clinical examination revealed a reducible swelling with positive cough impulse. Ultrasonography showed a defect containing bowel loops in the left lumbar region. Chest x-ray showed scoliosis and hemivertebrae with absent lower ribs on left side. Meshplasty was done.

  4. Lumbo-Costo-Vertebral Syndrome with Congenital Lumbar Hernia

    PubMed Central

    Gupta, Lucky; Gupta, Rahul; Malla, Shahid Amin

    2014-01-01

    Lumbo-costo-vertebral syndrome (LCVS) is a set of rare abnormalities involving vertebral bodies, ribs, and abdominal wall. We present a case of LCVS in a 2-year-old girl who had a progressive swelling over left lumbar area noted for the last 12 months. Clinical examination revealed a reducible swelling with positive cough impulse. Ultrasonography showed a defect containing bowel loops in the left lumbar region. Chest x-ray showed scoliosis and hemivertebrae with absent lower ribs on left side. Meshplasty was done. PMID:24834386

  5. Study of lesions of the lumbar endplate based on the stage of maturation of the lumbar vertebral body: the relationship between skeletal maturity and chronological age.

    PubMed

    Uraoka, Hideyuki; Higashino, Kosaku; Morimoto, Masatoshi; Yamashita, Kazuta; Tezuka, Fumitake; Takata, Yoichiro; Sakai, Toshinori; Nagamachi, Akihiro; Murase, Masaaki; Sairyo, Koichi

    2018-02-01

    The lesion of the lumbar endplate is sometimes identified in the vertebrae of children and adolescents. The purpose of this study is to compare between skeletal maturity and chronological age. The second purpose of this study is to clarify the lesions of the lumbar endplate based on the maturation of the lumbar vertebral body. Six hundred and thirty-two (485 men and 147 women) consecutive patients were included. The mean age at the first medical examination was 13.8 years. Their skeletal maturity was evaluated based on the appearances of the secondary ossification center of L3. The area of the endplate lesions was classified into five types. The apophyseal stage was observed from 10 years old to 18 years old, and the apophyseal stage was shown the peak at 14 years old. The appearance of the apophyseal ring was observed earlier in female patients than in male patients. For the concave type, the lesion at upper level vertebra was more prevalent. The anterior and middle type of the lesion at upper level vertebra was more prevalent. For the posterior type, the lesion of the inferior rim of L4 and the lesion of the rim of L5 were more prevalent. This study emerged after comparing skeletal maturity based on the maturation of the lumbar vertebral body with the chronological age of a large number of patients and examining the lesions of the lumbar endplate based on the stage of maturation of the lumbar vertebral body.

  6. [Cement augmentation on the spine : Biomechanical considerations].

    PubMed

    Kolb, J P; Weiser, L; Kueny, R A; Huber, G; Rueger, J M; Lehmann, W

    2015-09-01

    Vertebral compression fractures are the most common osteoporotic fractures. Since the introduction of vertebroplasty and screw augmentation, the management of osteoporotic fractures has changed significantly. The biomechanical characteristics of the risk of adjacent fractures and novel treatment modalities for osteoporotic vertebral fractures, including pure cement augmentation by vertebroplasty, and cement augmentation of screws for posterior instrumentation, are explored. Eighteen human osteoporotic lumbar spines (L1-5) adjacent to vertebral bodies after vertebroplasty were tested in a servo-hydraulic machine. As augmentation compounds we used standard cement and a modified low-strength cement. Different anchoring pedicle screws were tested with and without cement augmentation in another cohort of human specimens with a simple pull-out test and a fatigue test that better reflects physiological conditions. Cement augmentation in the osteoporotic spine leads to greater biomechanical stability. However, change in vertebral stiffness resulted in alterations with the risk of adjacent fractures. By using a less firm cement compound, the risk of adjacent fractures is significantly reduced. Both screw augmentation techniques resulted in a significant increase in the withdrawal force compared with the group without cement. Augmentation using perforated screws showed the highest stability in the fatigue test. The augmentation of cement leads to a significant change in the biomechanical properties. Differences in the stability of adjacent vertebral bodies increase the risk of adjacent fractures, which could be mitigated by a modified cement compound with reduced strength. Screws that were specifically designed for cement application displayed greatest stability in the fatigue test.

  7. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates.

    PubMed

    Brunet, Frédéric G; Volff, Jean-Nicolas; Schartl, Manfred

    2016-06-03

    The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Influence of physical activity on vertebral strength during late adolescence.

    PubMed

    Junno, Juho-Antti; Paananen, Markus; Karppinen, Jaro; Tammelin, Tuija; Niinimäki, Jaakko; Lammentausta, Eveliina; Niskanen, Markku; Nieminen, Miika T; Järvelin, Marjo-Riitta; Takatalo, Jani; Tervonen, Osmo; Tuukkanen, Juha

    2013-02-01

    Reduced vertebral strength is a clear risk factor for vertebral fractures. Men and women with vertebral fractures often have reduced vertebral size and bone mineral density (BMD). Vertebral strength is controlled by both genetic and developmental factors. Malnutrition and low levels of physical activity are commonly considered to result in reduced bone size during growth. Several studies have also demonstrated the general relationship between BMD and physical activity in the appendicular skeleton. In this study, we wanted to clarify the role of physical activity on vertebral bodies. Vertebral dimensions appear to generally be less pliant than long bones when lifetime changes occur. We wanted to explore the association between physical activity during late adolescence and vertebral strength parameters such as cross-sectional size and BMD. The association between physical activity and vertebral strength was explored by measuring vertebral strength parameters and defining the level of physical activity during adolescence. The study population consisted of 6,928 males and females who, at 15 to 16 and 19 years of age, responded to a mailed questionnaire inquiring about their physical activity. A total of 558 individuals at the mean age of 21 years underwent magnetic resonance imaging (MRI) scans. We measured the dimensions of the fourth lumbar vertebra from the MRI scans of the Northern Finland Birth Cohort 1986 and performed T2* relaxation time mapping, reflective of BMD. Vertebral strength was based on these two parameters. We analyzed the association of physical activity on vertebral strength using the analysis of variance. We observed no association between the level of physical activity during late adolescence and vertebral strength at 21 years. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Bone edema of the whole vertebral body: an unusual case of spondyloarthritis.

    PubMed

    Ortolan, Augusta; Lazzarin, Paolo; Lorenzin, Mariagrazia; Rampin, Lucia; Ramonda, Roberta

    2017-01-01

    Spondyloarthritis (SpA) is usually characterized by early inflammatory involvement of the sacroiliac joints (SI), which constitutes one of the most important classification criteria according to the SpondyloArthritis International Society (ASAS). These criteria do not include inflammatory spine lesions which can be detected on MRI, although spine involvement is very common in axial SpA. This is because spine MRI lesion often retrieved in SpA are not very specific, and can be found in many other diseases such as malignancy and osteoarthritis. Here we present the case of a 33-year old woman who presented a worsening low back pain, with a thoracic spine MRI showing bone marrow edema (BME) of the whole T8 vertebral body. Owing to this peculiar presentation, together with the unresponsiveness of the pain to nonsteroidal anti inflammatory drugs (NSAIDs) and a slight increase of the biomarker CA19-9, a malignancy was suspected. Therefore, the patient underwent bone scintigraphy, Single positron emission computed tomography (SPET/TC), positron emission tomography and repeated MRI without reaching a diagnosis. Finally, when SI joints MRI was performed, BME of the SI joints emerged: this was fundamental to formulate the diagnosis of axSpA.

  10. Are spinal or paraspinal anatomic markers helpful for vertebral numbering and diagnosing lumbosacral transitional vertebrae?

    PubMed

    Tokgoz, Nil; Ucar, Murat; Erdogan, Aylin Billur; Kilic, Koray; Ozcan, Cahide

    2014-01-01

    To evaluate the value of spinal and paraspinal anatomic markers in both the diagnosis of lumbosacral transitional vertebrae (LSTVs) and identification of vertebral levels on lumbar MRI. Lumbar MRI from 1049 adult patients were studied. By comparing with the whole-spine localizer, the diagnostic errors in numbering vertebral segments on lumbar MRI were evaluated. The morphology of S1-2 disc, L5 and S1 body, and lumbar spinous processes (SPs) were evaluated by using sagittal MRI. The positions of right renal artery (RRA), superior mesenteric artery, aortic bifurcation (AB) and conus medullaris (CM) were described. The diagnostic error for evaluation of vertebral segmentation on lumbar MRI alone was 14.1%. In lumbarization, all patients revealed a well-formed S1-2 disc with squared S1 body. A rhombus-shaped L5 body in sacralization and a rectangular-shaped S1 body in lumbarization were found. The L3 had the longest SP. The most common sites of spinal and paraspinal structures were: RRA at L1 body (53.6%) and L1-2 disc (34.1%), superior mesenteric artery at L1 body (55.1%) and T12-L1 disc (31.6%), and AB at L4 body (71.1%). CM had variable locations, changing from the T12-L1 disc to L2 body. They were located at higher sacralization and lower lumbarization. The spinal morphologic features and locations of the spinal and paraspinal structures on lumbar MRI are not completely reliable for the diagnosis of LSTVs and identification on the vertebral levels.

  11. The cervical vertebral maturation method: A user's guide.

    PubMed

    McNamara, James A; Franchi, Lorenzo

    2018-03-01

    The cervical vertebral maturation (CVM) method is used to determine the craniofacial skeletal maturational stage of an individual at a specific time point during the growth process. This diagnostic approach uses data derived from the second (C2), third (C3), and fourth (C4) cervical vertebrae, as visualized in a two-dimensional lateral cephalogram. Six maturational stages of those three cervical vertebrae can be determined, based on the morphology of their bodies. The first step is to evaluate the inferior border of these vertebral bodies, determining whether they are flat or concave (ie, presence of a visible notch). The second step in the analysis is to evaluate the shape of C3 and C4. These vertebral bodies change in shape in a typical sequence, progressing from trapezoidal to rectangular horizontal, to square, and to rectangular vertical. Typically, cervical stages (CSs) 1 and CS 2 are considered prepubertal, CS 3 and CS 4 circumpubertal, and CS 5 and CS 6 postpubertal. Criticism has been rendered as to the reproducibility of the CVM method. Diminished reliability may be observed at least in part due to the lack of a definitive description of the staging procedure in the literature. Based on the now nearly 20 years of experience in staging cervical vertebrae, this article was prepared as a "user's guide" that describes the CVM stages in detail in attempt to help the reader use this approach in everyday clinical practice.

  12. The role of bone shape in determining gender differences in vertebral bone mass.

    PubMed

    Barlow, Tricia; Carlino, Will; Blades, Heather Z; Crook, Jon; Harrison, Rachel; Arundel, Paul; Bishop, Nick J

    2011-01-01

    Dual-energy X-ray absorptiometry (DXA) measures of bone mineral density (BMD) in children fail to account for growth because bone depth is unmeasured. While multiple adjustment methods have been proposed using body or bone size, the effect of vertebral shape is relatively unknown. Our study aimed to determine gender differences in vertebral shape and their impact on areal BMD (aBMD). We recruited 189 children, including 107 boys, aged 4-17 years, who attended the emergency department due to trauma. None had fractured. Height, weight, Tanner stage, and DXA measurements of the lumbar spine (LS) and total body were obtained. Cylindrical models were used to predict relationships between vertebral width (VW) and areal density for a given vertebral area assuming uniform volumetric density. The actual relationships between VW, bone area, and aBMD for the LS in the children were then determined. The theoretical models predicted a positive relationship between width and areal density for a constant vertebral area. Actual vertebral measurements demonstrated that boys had greater VW for a given vertebral area but lower aBMD for a given VW than girls at any age. The most likely explanation for the apparent paradox was that vertebral cortical thickness relative to width was greater in girls. This difference remained after adjusting for lean mass, suggesting that bone's response to mechanical stimulation may vary between the sexes during growth with consequent evolutionary advantage for girls approaching reproductive age. Copyright © 2011 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  13. Early prenatal diagnosis of a lumbo-costo-vertebral syndrome.

    PubMed

    Pristavu, Anda Ioana; Furnica, Cristina; Ifrim, Mona Mihaela; Popovici, Razvan Mihai

    2018-04-01

    Lumbo-costo-vertebral syndrome (LCVS) is a rare type of lumbar hernia with associated abnormalities of the vertebral bodies, ribs, and trunk muscles. Only a few cases have been reported in the literature, all of which were diagnosed after birth. We present a case of LCVS diagnosed early in the second trimester of pregnancy using two- and three-dimensional ultrasound. In our case, the associated anomalies were: multiple costovertebral anomalies, lumbar hernia, anal imperforation, left hand supernumerary digit, and clubfoot.

  14. Analysis of Long Bone and Vertebral Failure Patterns

    DTIC Science & Technology

    1985-02-14

    have disc-shaped epiphyses on the surfaces of the vertebral bodies (Schmorl and Junghanns, 1959). Humans, ]< orangutans , gorillas...The annular epiphysis has been previously reported in humans, orangutans , gorillas, and marmosets (Schmorl and Junghanns, 1959; Bernick, et al

  15. Mechanical Contributions of the Cortical and Trabecular Compartments Contribute to Differences in Age-Related Changes in Vertebral Body Strength in Men and Women Assessed by QCT-Based Finite Element Analysis

    PubMed Central

    Christiansen, Blaine A; Kopperdahl, David L; Kiel, Douglas P; Keaveny, Tony M; Bouxsein, Mary L

    2011-01-01

    The biomechanical mechanisms underlying sex-specific differences in age-related vertebral fracture rates are ill defined. To gain insight into this issue, we used finite element analysis of clinical computed tomography (CT) scans of the vertebral bodies of L3 and T10 of young and old men and women to assess age- and sex-related differences in the strength of the whole vertebra, the trabecular compartment, and the peripheral compartment (the outer 2 mm of vertebral bone, including the thin cortical shell). We sought to determine whether structural and geometric changes with age differ in men and women, making women more susceptible to vertebral fractures. As expected, we found that vertebral strength decreased with age 2-fold more in women than in men. The strength of the trabecular compartment declined significantly with age for both sexes, whereas the strength of the peripheral compartment decreased with age in women but was largely maintained in men. The proportion of mechanical strength attributable to the peripheral compartment increased with age in both sexes and at both vertebral levels. Taken together, these results indicate that men and women lose vertebral bone differently with age, particularly in the peripheral (cortical) compartment. This differential bone loss explains, in part, a greater decline in bone strength in women and may contribute to the higher incidence of vertebral fractures among women than men. © 2011 American Society for Bone and Mineral Research. PMID:21542000

  16. One-stage posterior instrumentation surgery for the treatment of osteoporotic vertebral collapse with neurological deficits

    PubMed Central

    Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Takahata, Masahiko; Hojo, Yoshihiro; Minami, Akio

    2010-01-01

    The number of reports describing osteoporotic vertebral fracture has increased as the number of elderly people has grown. Anterior decompression and fusion alone for the treatment of vertebral collapse is not easy for patients with comorbid medical problems and severe bone fragility. The purpose of the present study was to evaluate the efficacy of one-stage posterior instrumentation surgery for the treatment of osteoporotic vertebral collapse with neurological deficits. A consecutive series of 21 patients who sustained osteoporotic vertebral collapse with neurological deficits were managed with posterior decompression and short-segmental pedicle screw instrumentation augmented with ultra-high molecular weight polyethylene (UHMWP) cables with or without vertebroplasty using calcium phosphate cement. The mean follow-up was 42 months. All patients showed neurologic recovery. Segmental kyphotic angle at the instrumented level was significantly improved from an average preoperative kyphosis of 22.8–14.7 at a final follow-up. Spinal canal occupation was significantly reduced from an average before surgery of 40.4–19.1% at the final follow-up. Two patients experienced loosening of pedicle screws and three patients developed subsequent vertebral compression fractures within adjacent segments. However, these patients were effectively treated in a conservative fashion without any additional surgery. Our results indicated that one-stage posterior instrumentation surgery augmented with UHMWP cables could provide significant neurological improvement in the treatment of osteoporotic vertebral collapse. PMID:20157741

  17. One-stage posterior instrumentation surgery for the treatment of osteoporotic vertebral collapse with neurological deficits.

    PubMed

    Sudo, Hideki; Ito, Manabu; Abumi, Kuniyoshi; Kotani, Yoshihisa; Takahata, Masahiko; Hojo, Yoshihiro; Minami, Akio

    2010-06-01

    The number of reports describing osteoporotic vertebral fracture has increased as the number of elderly people has grown. Anterior decompression and fusion alone for the treatment of vertebral collapse is not easy for patients with comorbid medical problems and severe bone fragility. The purpose of the present study was to evaluate the efficacy of one-stage posterior instrumentation surgery for the treatment of osteoporotic vertebral collapse with neurological deficits. A consecutive series of 21 patients who sustained osteoporotic vertebral collapse with neurological deficits were managed with posterior decompression and short-segmental pedicle screw instrumentation augmented with ultra-high molecular weight polyethylene (UHMWP) cables with or without vertebroplasty using calcium phosphate cement. The mean follow-up was 42 months. All patients showed neurologic recovery. Segmental kyphotic angle at the instrumented level was significantly improved from an average preoperative kyphosis of 22.8-14.7 at a final follow-up. Spinal canal occupation was significantly reduced from an average before surgery of 40.4-19.1% at the final follow-up. Two patients experienced loosening of pedicle screws and three patients developed subsequent vertebral compression fractures within adjacent segments. However, these patients were effectively treated in a conservative fashion without any additional surgery. Our results indicated that one-stage posterior instrumentation surgery augmented with UHMWP cables could provide significant neurological improvement in the treatment of osteoporotic vertebral collapse.

  18. Age-related changes in vertebral and iliac crest 3D bone microstructure--differences and similarities.

    PubMed

    Thomsen, J S; Jensen, M V; Niklassen, A S; Ebbesen, E N; Brüel, A

    2015-01-01

    Age-related changes of vertebra and iliac crest 3D microstructure were investigated, and we showed that they were in general similar. The 95th percentile of vertebral trabecular thickness distribution increased with age for women. Surprisingly, vertebral and iliac crest bone microstructure was only weakly correlated (r = 0.38 to 0.75), despite the overall similar age-related changes. The purposes of the study were to determine the age-related changes in iliac and vertebral bone microstructure for women and men over a large age range and to investigate the relationship between the bone microstructure at these skeletal sites. Matched sets of transiliac crest bone biopsies and lumbar vertebral body (L2) specimens from 41 women (19-96 years) and 39 men (23-95 years) were micro-computed tomography (μCT) scanned, and the 3D microstructure was quantified. For both women and men, bone volume per total volume (BV/TV), connectivity density (CD), and trabecular number (Tb.N) decreased significantly, while structure model index (SMI) and trabecular separation (Tb.Sp) increased significantly with age at either skeletal site. Vertebral trabecular thickness (Tb.Th) was independent of age for both women and men, while iliac Tb.Th decreased significantly with age for men, but not for women. In general, the vertebral and iliac age-related changes were similar. The 95th percentile of the Tb.Th distribution increased significantly with age for women but was independent of age for men at the vertebral body, while it was independent of age for either sex at the iliac crest. The Tb.Th probability density functions at the two skeletal sites became significantly more similar with age for women, but not for men. The microstructural parameters at the iliac crest and the vertebral bodies were only moderately correlated from r = 0.38 for SMI in women to r = 0.75 for Tb.Sp in men. Age-related changes in vertebral and iliac bone microstructure were in general similar. The iliac

  19. Incidence of Symptomatic Vertebral Fractures in Patients After Percutaneous Vertebroplasty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hierholzer, Johannes, E-mail: jhierholzer@klinikumevb.de; Fuchs, Heiko; Westphalen, Kerstin

    The aim of this study was to evaluate the incidence of secondary symptomatic vertebral compression fractures (VCFs) in patients previously treated by percutaneous vertebroplasty (VTP). Three hundred sixteen patients with 486 treated VCFs were included in the study according to the inclusion criteria. Patients were kept in regular follow-up using a standardized questionairre before, 1 day, 7 days, 6 months, and 1 year after, and, further on, on a yearly basis after VTP. The incidence of secondary symptomatic VCF was calculated, and anatomical distribution with respect to previous fractures characterized. Mean follow-up was 8 months (6-56 months) after VTP. Fifty-twomore » of 316 (16.4 %) patients (45 female, 7 male) returned for treatment of 69 secondary VCFs adjacent to (35/69; 51%) or distant from (34/69; 49%) previously treated levels. Adjacent secondary VCF occurred significantly more often compared to distant secondary VCF. Of the total 69 secondary VCFs, 35 of 69 occurred below and 27 of 69 above pretreated VCFs. Of the 65 sandwich levels generated, in 7 of 65 (11%) secondary VCFs were observed. Secondary VCF below pretreated VCF occurred significantly earlier in time compared to VCF above and compared to sandwich body fractures. No major complication occurred during initial or follow-up intervention. We conclude that secondary VCFs do occur in individuals after VTP but the rate found in our study remains below the level expected from epidemiologic studies. Adjacent fractures occur more often and follow the cluster distribution of VCF as expected from the natural history of the underlying osteoporosis. No increased rate of secondary VCF after VTP was observed in this retrospective analysis. In accordance with the pertinent literature, short-term and also midterm clinical results are encouraging and provide further support for the usefulness and the low complication rate of this procedure as an adjunct to the spectrum of pain management in patients with

  20. Prenatal development of the normal human vertebral corpora in different segments of the spine.

    PubMed

    Nolting, D; Hansen, B F; Keeling, J; Kjaer, I

    1998-11-01

    Vertebral columns from 13 normal human fetuses (10-24 weeks of gestation) that had aborted spontaneously were investigated as part of the legal autopsy procedure. The investigation included spinal cord analysis. To analyze the formation of the normal human vertebral corpora along the spine, including the early location and disappearance of the notochord. Reference material on the development of the normal human vertebral corpora is needed for interpretation of published observations on prenatal malformations in the spine, which include observations of various types of malformation (anencephaly, spina bifida) and various genotypes (trisomy 18, 21 and 13, as well as triploidy). The vertebral columns were studied by using radiography (Faxitron X-ray apparatus, Faxitron Model 43,855, Hewlett Packard) in lateral, frontal, and axial views and histology (decalcification, followed by toluidine blue and alcian blue staining) in and axial view. Immunohistochemical marking with Keratin Wide Spectrum also was done. Notochordal tissue (positive on marking with Keratin Wide Spectrum [DAKO, Denmark]) was located anterior to the cartilaginous body center in the youngest fetuses. The process of disintegration of the notochord and the morphology of the osseous vertebral corpora in the lumbosacral, thoracic, and cervical segments are described. Marked differences appeared in axial views, which were verified on horizontal histologic sections. Also, the increase in size was different in the different segments, being most pronounced in the thoracic and upper lumbar bodies. The lower thoracic bodies were the first to ossify. The morphologic changes observed by radiography were verified histologically. In this study, normal prenatal standards were established for the early development of the vertebral column. These standards can be used in the future--for evaluation of pathologic deviations in the human vertebral column in the second trimester.

  1. Are Spinal or Paraspinal Anatomic Markers Helpful for Vertebral Numbering and Diagnosing Lumbosacral Transitional Vertebrae?

    PubMed Central

    Ucar, Murat; Erdogan, Aylin Billur; Kilic, Koray; Ozcan, Cahide

    2014-01-01

    Objective To evaluate the value of spinal and paraspinal anatomic markers in both the diagnosis of lumbosacral transitional vertebrae (LSTVs) and identification of vertebral levels on lumbar MRI. Materials and Methods Lumbar MRI from 1049 adult patients were studied. By comparing with the whole-spine localizer, the diagnostic errors in numbering vertebral segments on lumbar MRI were evaluated. The morphology of S1-2 disc, L5 and S1 body, and lumbar spinous processes (SPs) were evaluated by using sagittal MRI. The positions of right renal artery (RRA), superior mesenteric artery, aortic bifurcation (AB) and conus medullaris (CM) were described. Results The diagnostic error for evaluation of vertebral segmentation on lumbar MRI alone was 14.1%. In lumbarization, all patients revealed a well-formed S1-2 disc with squared S1 body. A rhombus-shaped L5 body in sacralization and a rectangular-shaped S1 body in lumbarization were found. The L3 had the longest SP. The most common sites of spinal and paraspinal structures were: RRA at L1 body (53.6%) and L1-2 disc (34.1%), superior mesenteric artery at L1 body (55.1%) and T12-L1 disc (31.6%), and AB at L4 body (71.1%). CM had variable locations, changing from the T12-L1 disc to L2 body. They were located at higher sacralization and lower lumbarization. Conclusion The spinal morphologic features and locations of the spinal and paraspinal structures on lumbar MRI are not completely reliable for the diagnosis of LSTVs and identification on the vertebral levels. PMID:24644411

  2. Kyphoplasty for vertebral augmentation in the elderly with osteoporotic vertebral compression fractures: scenarios and review of recent studies.

    PubMed

    Bednar, Timothy; Heyde, Christoph E; Bednar, Grace; Nguyen, David; Volpi, Elena; Przkora, Rene

    2013-11-01

    Vertebral compression fractures caused by osteoporosis are among the most common fractures in the elderly. The treatment focuses on pain control, maintenance of independence, and management of the osteoporosis. Elderly patients often encounter adverse effects to pain medications, do not tolerate bed rest, and are not ideal candidates for invasive spinal reconstructive surgery. Percutaneous vertebral augmentation (vertebroplasty or kyphoplasty) has become popular as a less-invasive alternative. However, studies have questioned the effectiveness of these procedures. The authors conducted a MEDLINE search using relevant search terms including osteoporosis, osteoporotic vertebral compression fracture, elderly, kyphoplasty and vertebroplasty. Two elderly patients presented with a fracture of their third and first lumbar vertebral body, respectively. One patient progressed well with conservative treatment, whereas the other patient was hospitalized secondary to pain after conservative measures failed to offer improvement. The hospitalized patient subsequently opted for a kyphoplasty and was able to resume his normal daily activities after the procedure. Selecting patients on an individual case-by-case basis can optimize the effectiveness and outcomes of a vertebral augmentation. This process includes the documentation of an osteoporotic vertebral compression fracture with the aide of imaging studies, including the acuity of the fracture as well as the correlation with the physical examination findings. Patients who are functional and improving under a conservative regimen are not candidates for kyphoplasty. However, if the conservative management is not successful after 4 to 6 weeks and the patient is at risk to become bedridden, an augmentation should be considered. A kyphoplasty procedure may be preferred over vertebroplasty, given the lower risk profile and better outcomes regarding spinal alignment. Published by Elsevier HS Journals, Inc.

  3. Evolution of the head-trunk interface in tetrapod vertebrates

    PubMed Central

    Sefton, Elizabeth M; Bhullar, Bhart-Anjan S; Mohaddes, Zahra; Hanken, James

    2016-01-01

    Vertebrate neck musculature spans the transition zone between head and trunk. The extent to which the cucullaris muscle is a cranial muscle allied with the gill levators of anamniotes or is instead a trunk muscle is an ongoing debate. Novel computed tomography datasets reveal broad conservation of the cucullaris in gnathostomes, including coelacanth and caecilian, two sarcopterygians previously thought to lack it. In chicken, lateral plate mesoderm (LPM) adjacent to occipital somites is a recently identified embryonic source of cervical musculature. We fate-map this mesoderm in the axolotl (Ambystoma mexicanum), which retains external gills, and demonstrate its contribution to posterior gill-levator muscles and the cucullaris. Accordingly, LPM adjacent to the occipital somites should be regarded as posterior cranial mesoderm. The axial position of the head-trunk border in axolotl is congruent between LPM and somitic mesoderm, unlike in chicken and possibly other amniotes. DOI: http://dx.doi.org/10.7554/eLife.09972.001 PMID:27090084

  4. iDNA screening: Disease vectors as vertebrate samplers.

    PubMed

    Kocher, Arthur; de Thoisy, Benoit; Catzeflis, François; Valière, Sophie; Bañuls, Anne-Laure; Murienne, Jérôme

    2017-11-01

    In the current context of global change and human-induced biodiversity decline, there is an urgent need for developing sampling approaches able to accurately describe the state of biodiversity. Traditional surveys of vertebrate fauna involve time-consuming and skill-demanding field methods. Recently, the use of DNA derived from invertebrate parasites (leeches and blowflies) was suggested as a new tool for vertebrate diversity assessment. Bloodmeal analyses of arthropod disease vectors have long been performed to describe their feeding behaviour, for epidemiological purposes. On the other hand, this existing expertise has not yet been applied to investigate vertebrate fauna per se. Here, we evaluate the usefulness of hematophagous dipterans as vertebrate samplers. Blood-fed sand flies and mosquitoes were collected in Amazonian forest sites and analysed using high-throughput sequencing of short mitochondrial markers. Bloodmeal identifications highlighted contrasting ecological features and feeding behaviour among dipteran species, which allowed unveiling arboreal and terrestrial mammals of various body size, as well as birds, lizards and amphibians. Additionally, lower vertebrate diversity was found in sites undergoing higher levels of human-induced perturbation. These results suggest that, in addition to providing precious information on disease vector host use, dipteran bloodmeal analyses may represent a useful tool in the study of vertebrate communities. Although further effort is required to validate the approach and consider its application to large-scale studies, this first work opens up promising perspectives for biodiversity monitoring and eco-epidemiology. © 2017 John Wiley & Sons Ltd.

  5. Quantifying the Availability of Vertebrate Hosts to Ticks: A Camera-Trapping Approach

    PubMed Central

    Hofmeester, Tim R.; Rowcliffe, J. Marcus; Jansen, Patrick A.

    2017-01-01

    The availability of vertebrate hosts is a major determinant of the occurrence of ticks and tick-borne zoonoses in natural and anthropogenic ecosystems and thus drives disease risk for wildlife, livestock, and humans. However, it remains challenging to quantify the availability of vertebrate hosts in field settings, particularly for medium-sized to large-bodied mammals. Here, we present a method that uses camera traps to quantify the availability of warm-bodied vertebrates to ticks. The approach is to deploy camera traps at questing height at a representative sample of random points across the study area, measure the average photographic capture rate for vertebrate species, and then correct these rates for the effective detection distance. The resulting “passage rate” is a standardized measure of the frequency at which vertebrates approach questing ticks, which we show is proportional to contact rate. A field test across twenty 1-ha forest plots in the Netherlands indicated that this method effectively captures differences in wildlife assemblage composition between sites. Also, the relative abundances of three life stages of the sheep tick Ixodes ricinus from drag sampling were correlated with passage rates of deer, which agrees with the known association with this group of host species, suggesting that passage rate effectively reflects the availability of medium- to large-sized hosts to ticks. This method will facilitate quantitative studies of the relationship between densities of questing ticks and the availability of different vertebrate species—wild as well as domesticated species—in natural and anthropogenic settings. PMID:28770219

  6. The largest Silurian vertebrate and its palaeoecological implications

    PubMed Central

    Choo, Brian; Zhu, Min; Zhao, Wenjin; Jia, Liaotao; Zhu, You'an

    2014-01-01

    An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from the Silurian Kuanti Formation (late Ludlow, ~423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes. PMID:24921626

  7. Turbines and Terrestrial Vertebrates: Variation in Tortoise Survivorship Between a Wind Energy Facility and an Adjacent Undisturbed Wildland Area in the Desert Southwest (USA).

    PubMed

    Agha, Mickey; Lovich, Jeffrey E; Ennen, Joshua R; Augustine, Benjamin; Arundel, Terence R; Murphy, Mason O; Meyer-Wilkins, Kathie; Bjurlin, Curtis; Delaney, David; Briggs, Jessica; Austin, Meaghan; Madrak, Sheila V; Price, Steven J

    2015-08-01

    With the recent increase in utility-scale wind energy development, researchers have become increasingly concerned how this activity will affect wildlife and their habitat. To understand the potential impacts of wind energy facilities (WEF) post-construction (i.e., operation and maintenance) on wildlife, we compared differences in activity centers and survivorship of Agassiz's desert tortoises (Gopherus agassizii) inside or near a WEF to neighboring tortoises living near a wilderness area (NWA) and farther from the WEF. We found that the size of tortoise activity centers varied, but not significantly so, between the WEF (6.25 ± 2.13 ha) and adjacent NWA (4.13 ± 1.23 ha). However, apparent survival did differ significantly between the habitat types: over the 18-year study period apparent annual survival estimates were 0.96 ± 0.01 for WEF tortoises and 0.92 ± 0.02 for tortoises in the NWA. High annual survival suggests that operation and maintenance of the WEF has not caused considerable declines in the adult population over the past two decades. Low traffic volume, enhanced resource availability, and decreased predator populations may influence annual survivorship at this WEF. Further research on these proximate mechanisms and population recruitment would be useful for mitigating and managing post-development impacts of utility-scale wind energy on long-lived terrestrial vertebrates.

  8. Turbines and terrestrial vertebrates: variation in tortoise survivorship between a wind energy facility and an adjacent undisturbed wildland area in the desert southwest (USA)

    USGS Publications Warehouse

    Agha, Mickey; Lovich, Jeffrey E.; Ennen, Joshua R.; Augustine, Benjamin J.; Arundel, Terry; Murphy, Mason O.; Meyer-Wilkins, Kathie; Bjurlin, Curtis; Delaney, David F.; Briggs, Jessica; Austin, Meaghan; Madrak, Sheila V.; Price, Steven J.

    2015-01-01

    With the recent increase in utility-scale wind energy development, researchers have become increasingly concerned how this activity will affect wildlife and their habitat. To understand the potential impacts of wind energy facilities (WEF) post-construction (i.e., operation and maintenance) on wildlife, we compared differences in activity centers and survivorship of Agassiz's desert tortoises (Gopherus agassizii) inside or near a WEF to neighboring tortoises living near a wilderness area (NWA) and farther from the WEF. We found that the size of tortoise activity centers varied, but not significantly so, between the WEF (6.25 ± 2.13 ha) and adjacent NWA (4.13 ± 1.23 ha). However, apparent survival did differ significantly between the habitat types: over the 18 year study period apparent annual survival estimates were 0.96 ± 0.01 for WEF tortoises and 0.92 ± 0.02 for tortoises in the NWA. High annual survival suggests that operation and maintenance of the WEF has not caused considerable declines in the adult population over the past two decades. Low traffic volume, enhanced resource availability and decreased predator populations may influence annual survivorship at this WEF. Further research on these proximate mechanisms and population recruitment would be useful for mitigating and managing post-development impacts of utility scale wind energy on long-lived terrestrial vertebrates.

  9. Turbines and Terrestrial Vertebrates: Variation in Tortoise Survivorship Between a Wind Energy Facility and an Adjacent Undisturbed Wildland Area in the Desert Southwest (USA)

    NASA Astrophysics Data System (ADS)

    Agha, Mickey; Lovich, Jeffrey E.; Ennen, Joshua R.; Augustine, Benjamin; Arundel, Terence R.; Murphy, Mason O.; Meyer-Wilkins, Kathie; Bjurlin, Curtis; Delaney, David; Briggs, Jessica; Austin, Meaghan; Madrak, Sheila V.; Price, Steven J.

    2015-08-01

    With the recent increase in utility-scale wind energy development, researchers have become increasingly concerned how this activity will affect wildlife and their habitat. To understand the potential impacts of wind energy facilities (WEF) post-construction (i.e., operation and maintenance) on wildlife, we compared differences in activity centers and survivorship of Agassiz's desert tortoises ( Gopherus agassizii) inside or near a WEF to neighboring tortoises living near a wilderness area (NWA) and farther from the WEF. We found that the size of tortoise activity centers varied, but not significantly so, between the WEF (6.25 ± 2.13 ha) and adjacent NWA (4.13 ± 1.23 ha). However, apparent survival did differ significantly between the habitat types: over the 18-year study period apparent annual survival estimates were 0.96 ± 0.01 for WEF tortoises and 0.92 ± 0.02 for tortoises in the NWA. High annual survival suggests that operation and maintenance of the WEF has not caused considerable declines in the adult population over the past two decades. Low traffic volume, enhanced resource availability, and decreased predator populations may influence annual survivorship at this WEF. Further research on these proximate mechanisms and population recruitment would be useful for mitigating and managing post-development impacts of utility-scale wind energy on long-lived terrestrial vertebrates.

  10. Adjacent-level arthroplasty following cervical fusion.

    PubMed

    Rajakumar, Deshpande V; Hari, Akshay; Krishna, Murali; Konar, Subhas; Sharma, Ankit

    2017-02-01

    OBJECTIVE Adjacent-level disc degeneration following cervical fusion has been well reported. This condition poses a major treatment dilemma when it becomes symptomatic. The potential application of cervical arthroplasty to preserve motion in the affected segment is not well documented, with few studies in the literature. The authors present their initial experience of analyzing clinical and radiological results in such patients who were treated with arthroplasty for new or persistent arm and/or neck symptoms related to neural compression due to adjacent-segment disease after anterior cervical discectomy and fusion (ACDF). METHODS During a 5-year period, 11 patients who had undergone ACDF anterior cervical discectomy and fusion (ACDF) and subsequently developed recurrent neck or arm pain related to adjacent-level cervical disc disease were treated with cervical arthroplasty at the authors' institution. A total of 15 devices were implanted (range of treated levels per patient: 1-3). Clinical evaluation was performed both before and after surgery, using a visual analog scale (VAS) for pain and the Neck Disability Index (NDI). Radiological outcomes were analyzed using pre- and postoperative flexion/extension lateral radiographs measuring Cobb angle (overall C2-7 sagittal alignment), functional spinal unit (FSU) angle, and range of motion (ROM). RESULTS There were no major perioperative complications or device-related failures. Statistically significant results, obtained in all cases, were reflected by an improvement in VAS scores for neck/arm pain and NDI scores for neck pain. Radiologically, statistically significant increases in the overall lordosis (as measured by Cobb angle) and ROM at the treated disc level were observed. Three patients were lost to follow-up within the first year after arthroplasty. In the remaining 8 cases, the duration of follow-up ranged from 1 to 3 years. None of these 8 patients required surgery for the same vertebral level during the follow

  11. Cervical vertebral stenosis associated with a vertebral arch anomaly in the Basset Hound.

    PubMed

    De Decker, S; De Risio, L; Lowrie, M; Mauler, D; Beltran, E; Giedja, A; Kenny, P J; Gielen, I; Garosi, L; Volk, H

    2012-01-01

    To report the clinical presentation, imaging characteristics, treatment results, and histopathological findings of a previously undescribed vertebral malformation in the Basset Hound. Retrospective case series study. Eighteen Basset Hounds presented for evaluation of a suspected cervical spinal cord problem. All dogs underwent computed tomography myelography or magnetic resonance imaging of the cervical region. Thirteen male and 5 female Basset Hounds between 6 months and 10.8 years of age (median: 1.4 years) were studied. Clinical signs varied from cervical hyperesthesia to nonambulatory tetraparesis. Imaging demonstrated a well-defined and smooth hypertrophy of the dorsal lamina and spinous process of ≥ 2 adjacent vertebrae. Although this bony abnormality could decrease the ventrodorsal vertebral canal diameter, dorsal midline spinal cord compression was predominantly caused by ligamentum flavum hypertrophy. The articulation between C4 and C5 was most commonly affected. Three dogs were lost to follow-up, 10 dogs underwent dorsal laminectomy, and medical management was initiated in 5 dogs. Surgery resulted in a good outcome with short hospitalization times (median: 4.5 days) in all dogs, whereas medical management produced more variable results. Histopathology confirmed ligamentum flavum hypertrophy and demonstrated the fibrocartilaginous nature of this anomaly. Dorsal lamina and spinous process hypertrophy leading to ligamentum flavum hypertrophy should be included in the differential diagnosis of Basset Hounds with cervical hyperesthesia or myelopathy. Prognosis after decompressive surgery is favorable. Although a genetic component is suspected, additional studies are needed to determine the specific etiology of this disorder. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  12. Life-long accumulation of 137Cs and 40K in the vertebral column of a cow.

    PubMed

    Pichl, Elke; Rabitsch, Herbert

    2013-01-01

    We have investigated the accumulation of (137)Cs and (40)K in all the tissues and organs of an adult slaughtered Austrian "mountain pasture cow". In this paper we present measured (137)Cs- and (40)K-activity concentrations in different tissues of the vertebral bodies, in their other bony components and in all the vertebrae forming the vertebral column. Data are also given for activity concentrations of adherent tissues, and for activities of both the components and the whole vertebral column. The dairy cow was born in a highly contaminated region of Styria, Austria, at the time of the radioactive fallout following the Chernobyl accident. Both radionuclides were incorporated during life-long ingestion and their accumulation in all the vertebrae up to the day of slaughtering was determined by high-purity germanium detectors. Our results show considerable variations of (137)Cs- and (40)K-activity concentrations in the components of a certain vertebra, within vertebrae of a particular region, and between vertebrae of different regions of the vertebral column. Particularly, the courses of (137)Cs- and (40)K-activity concentrations in trabecular bone, cortical bone and intervertebral discs of thoracic vertebral bodies are subdivided by a strong drop into two sections. Mean values of (137)Cs-concentration in vertebral bodies of these subsections vary by a factor 4. Compared with corresponding quantities for the skeleton, total mass, as well as total (137)Cs- and (40)K-activities of the whole vertebral column came to 14%, and approximately 38% for each (137)Cs and (40)K, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Gravidity, Parity and Vertebral Dimensions in the Northern Finland Birth Cohort 1966.

    PubMed

    Oura, Petteri; Paananen, Markus; Auvinen, Juha; Niinimäki, Jaakko; Niinimäki, Maarit; Karppinen, Jaro; Junno, Juho-Antti

    2018-03-15

    A population-based birth cohort study. To investigate the association between gravidity, parity and vertebral geometry among middle-aged women. Vertebral size is a recognized determinant of vertebral fracture risk. Yet only a few lifestyle factors that influence vertebral size are known. Pregnancy is a labile period which may affect the maternal vertebral size or shape. The lumbar lordosis angle is permanently deepened by pregnancy, but it remains unclear whether vertebral shape or size contribute to this deepened angle. We aimed to investigate whether gravidity and parity were associated with vertebral cross-sectional area (CSA) and height ratio (anterior height: posterior height) among 705 middle-aged women from the Northern Finland Birth Cohort 1966. We measured the corpus of their fourth lumbar vertebra using magnetic resonance imaging of the lumbar spine at the age of 46. Gravidity and parity were elicited using a questionnaire also at the age of 46. Linear regression analysis was used with adjustments for body mass index, vertebral CSA (height ratio models), and vertebral height (CSA models). We also ran a subgroup analysis which did not include nulliparous women, and we compared nulliparous women with grand multiparous women. The models found no statistically significant associations between the predictors and outcomes. Crude and adjusted results were highly similar, and the subgroup analyses provided analogous results. Pregnancy, or even multiple pregnancies, do not seem to have long-term effects on vertebral geometry. In order to enhance the prevention of vertebral fractures, future studies should aim to reveal more lifestyle determinants of vertebral size. 3.

  14. Elongation of the body in eels.

    PubMed

    Mehta, Rita S; Ward, Andrea B; Alfaro, Michael E; Wainwright, Peter C

    2010-12-01

    The shape of the body affects how organisms move, where they live, and how they feed. One body plan that has long engaged the interest of both evolutionary biologists and functional morphologists is axial elongation. There is a growing interest in the correlates and evolution of elongation within different terrestrial and aquatic vertebrate clades. At first glance, Anguilliformes may appear to exhibit a single cylindrical form but there is considerable diversity underlying this seemingly simplified body plan. Here, we explore evolution of the axial skeleton in 54 anguilliform taxa and some close relatives. We describe the diversity of axial elongation as well as investigate how characters such as head length, branchial-arch length, and shape of the pectoral fins correlate with vertebral number to possibly facilitate changes in absolute diameter of the body. Overall, we find that precaudal vertebral numbers and caudal vertebral numbers are evolving independently across elopomorph fishes. We also find that precaudal and caudal vertebral aspect ratios are evolving together across elopomorph fishes. When focusing within Anguilliformes we find striking diversity in the mechanisms of elongation of the body, including almost every trend for axial elongation known within actinopterygian fishes. The three major clades of eels we examined have slightly different mechanisms of elongation. We also find a suite of morphological characters associated with elongation in anguilliform fishes that appears to coincide with a more fossorial lifestyle such as high elongation ratios, a more posteriorly extended-branchial region, and a reduction in the size of the pectoral fins. Lastly, we point out that a diverse range of derived behaviors such as head- and tail-first burrowing, rotational feeding, and knotting around prey are only found in long cylindrical vertebrates.

  15. Traumatic dissection of extracranial vertebral artery with massive subtentorial cerebral infarction: report of an autopsy case.

    PubMed

    Saito, Kazuyuki; Takada, Aya; Kuroda, Naohito; Hara, Masaaki; Arai, Masaaki; Ro, Ayako

    2009-04-01

    We present an extremely rare autopsy case with traumatic dissection of the extracranial vertebral artery due to blunt injury caused by a traffic accident. The patient complained of nausea and numbness of the hands at the scene of the accident. His consciousness deteriorated and he fell into a coma within 12h, then died 4 days after the collision. Brain CT/MRI disclosed massive infratentorial cerebral infarction while MRA imaged neither of the vertebral arteries. Autopsy revealed a seatbelt mark on the right side of the lower neck, with fracture of the right transverse process of the sixth cervical vertebra. The right extracranial vertebral artery (V2) showed massive medial dissection from the portion adjacent to the fracture throughout the upper end of the extracranial part of the artery and was occluded by a thrombus. An intimal tear was confirmed near the starting point of the dissection. The brain disclosed massive infarction of posterior circulation territories with changes to the so-called respirator brain. The victim's left vertebral artery was considerably hypoplastic. We concluded that a massive infratentorial infarction was caused by dissection of the right extracranial vertebral artery and consecutive thrombus formation brought about by impact with the seatbelt at the time of the collision.

  16. Gene regulation in amphioxus: An insight from transgenic studies in amphioxus and vertebrates.

    PubMed

    Kozmikova, Iryna; Kozmik, Zbynek

    2015-12-01

    Cephalochordates, commonly known as amphioxus or lancelets, are the most basal subphylum of chordates. Cephalochordates are thus key to understanding the origin of vertebrates and molecular mechanisms underlying vertebrate evolution. The evolution of developmental control mechanisms during invertebrate-to-vertebrate transition involved not only gene duplication events, but also specific changes in spatial and temporal expression of many genes. To get insight into the spatiotemporal regulation of gene expression during invertebrate-to-vertebrate transition, functional studies of amphioxus gene regulatory elements are highly warranted. Here, we review transgenic studies performed in amphioxus and vertebrates using promoters and enhancers derived from the genome of Branchiostoma floridae. We describe the current methods of transgenesis in amphioxus, provide evidence of Tol2 transposon-generated transgenic embryos of Branchiostoma lanceolatum and discuss possible future directions. We envision that comparative transgenic analysis of gene regulatory sequences in the context of amphioxus and vertebrate embryos will likely provide an important mechanistic insight into the evolution of vertebrate body plan. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    PubMed

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Gap junctional coupling in the vertebrate retina: variations on one theme?

    PubMed

    Völgyi, Béla; Kovács-Oller, Tamás; Atlasz, Tamás; Wilhelm, Márta; Gábriel, Róbert

    2013-05-01

    Gap junctions connect cells in the bodies of all multicellular organisms, forming either homologous or heterologous (i.e. established between identical or different cell types, respectively) cell-to-cell contacts by utilizing identical (homotypic) or different (heterotypic) connexin protein subunits. Gap junctions in the nervous system serve electrical signaling between neurons, thus they are also called electrical synapses. Such electrical synapses are particularly abundant in the vertebrate retina where they are specialized to form links between neurons as well as glial cells. In this article, we summarize recent findings on retinal cell-to-cell coupling in different vertebrates and identify general features in the light of the evergrowing body of data. In particular, we describe and discuss tracer coupling patterns, connexin proteins, junctional conductances and modulatory processes. This multispecies comparison serves to point out that most features are remarkably conserved across the vertebrate classes, including (i) the cell types connected via electrical synapses; (ii) the connexin makeup and the conductance of each cell-to-cell contact; (iii) the probable function of each gap junction in retinal circuitry; (iv) the fact that gap junctions underlie both electrical and/or tracer coupling between glial cells. These pan-vertebrate features thus demonstrate that retinal gap junctions have changed little during the over 500 million years of vertebrate evolution. Therefore, the fundamental architecture of electrically coupled retinal circuits seems as old as the retina itself, indicating that gap junctions deeply incorporated in retinal wiring from the very beginning of the eye formation of vertebrates. In addition to hard wiring provided by fast synaptic transmitter-releasing neurons and soft wiring contributed by peptidergic, aminergic and purinergic systems, electrical coupling may serve as the 'skeleton' of lateral processing, enabling important functions such

  19. [Complex program for the recovery of the vertebral column motor function].

    PubMed

    Kukareko, V P; Furmanov, A G

    2011-01-01

    This paper addresses the problems pertinent to the improvement of the efficacy of restoration of the vertebral column motor function based on the implementation of a comprehensive therapeutic program including massage, thermal procedures, and physical exercises. The program was realized in three phases, viz. preparatory, basic, and consolidating. The results of integral estimation of the whole body and vertebral column condition were taken into consideration. The experiment lasted 6 months and confirmed high efficiency of the comprehensive program.

  20. The use of non‐adult vertebral dimensions as indicators of growth disruption and non‐specific health stress in skeletal populations

    PubMed Central

    Gowland, Rebecca L.

    2015-01-01

    ABSTRACT Objective Traditional methods of detecting growth disruption have focused on deficiencies in the diaphyseal length of the long bones. This study proposes the implementation of vertebral measurements (body height and transverse diameter of the neural canal) from non‐adults (0–17 years) as a new methodology for the identification of growth disruption. Methods Measurements of vertebral body height and transverse diameter were taken from 96 non‐adult skeletons and 40 adult skeletons from two post‐medieval sites in England (Bow Baptist, London and Coronation Street, South Shields). Non‐adult measurements were plotted against dental age to construct vertebral growth profiles through which inter‐population comparisons could be made. Results Results demonstrated that both sites experienced some growth retardation in infancy, evident as deficiencies in transverse diameter. However, analysis of vertebral body height revealed different chronologies of growth disruption between the sites, with a later age of attainment of skeletal maturity recorded in the Bow Baptist sample. Discussion These vertebral dimensions undergo cessation of growth at different ages, with transverse diameter being “locked‐in” by ∼1–2 years of age, while vertebral body height may continue to grow into early adulthood. These measurements can therefore provide complementary information regarding the timing of growth disruption within archaeological populations. Non‐adult vertebral measurements can increase our osteobiographical understanding of the timings of episodes of health stress, and allow for the analysis of growth when other skeletal elements are fragmentary. Am J Phys Anthropol 158:155–164, 2015. © 2015 Wiley Periodicals, Inc. PMID:26118898

  1. C3 Vertebral Metastases From Tongue Adenoid Cystic Carcinoma: A Rare Case Report.

    PubMed

    Feng, Helin; Wang, Jin; Guo, Peng; Xu, Jianfa; Feng, Jiangang

    2015-07-01

    We report a rare case involving a patient with C3 vertebral body metastasis secondary to adenoid cystic carcinoma of the tongue.Five years after local resection of the primary tumor, magnetic resonance imaging showed a metastasis located in the left posterior border of the C3 vertebral body. Additionally, multiple pulmonary metastases were identified by computed tomography. Based on these findings, the patient underwent C2-3, C3-4 discectomy; C3 corpectomy; and titanium mesh fusion with a Zephir plate. The diagnosis was confirmed by the pathology findings. During 6 months of follow-up, the patient showed improvement and return of function of the cervical vertebrae, with no serious complications.Because of the scarcity of cases of vertebral metastases from tumors of the tongue in the literature, we have reported this case to add to the available evidence regarding this rarely encountered condition.

  2. Vertebral pneumatocyst. A case report.

    PubMed

    Laufer, L; Schulman, H; Hertzanu, Y

    1996-02-01

    This study illustrates intraosseous pneumatocyst of the vertebral body, a benign lesion. To review the incidence and location of this benign lesion during a 1-year period. Intraosseous pneumatocyst is a rare benign condition, commonly seen in iliac bone or sacrum. The etiology of this entity is unclear. Other locations of these lesions are very rare, and only a few isolated cases are reported in the literature. In the last year (1994-1995), vertebral pneumatocyst was incidentally found in four patients who underwent computed tomography examination for presumptive discal lesion. Axial computed tomography with 2- and 4-mm slice thickness was performed. The typical computed tomography patterns of intraosseous pneumatocyst involving the cervical, dorsal, or lumbar spine were found. The bony structure and joints were normal. To the best of our knowledge, intraosseous pneumatocyst located in the spinal process has not been reported. Intraosseous pneumatocyst is a benign lesion. Biopsy and follow-up are unnecessary.

  3. Ecological Guild Evolution and the Discovery of the World's Smallest Vertebrate

    PubMed Central

    Rittmeyer, Eric N.; Allison, Allen; Gründler, Michael C.; Thompson, Derrick K.; Austin, Christopher C.

    2012-01-01

    Living vertebrates vary drastically in body size, yet few taxa reach the extremely minute size of some frogs and teleost fish. Here we describe two new species of diminutive terrestrial frogs from the megadiverse hotspot island of New Guinea, one of which represents the smallest known vertebrate species, attaining an average body size of only 7.7 mm. Both new species are members of the recently described genus Paedophryne, the four species of which are all among the ten smallest known frog species, making Paedophryne the most diminutive genus of anurans. This discovery highlights intriguing ecological similarities among the numerous independent origins of diminutive anurans, suggesting that minute frogs are not mere oddities, but represent a previously unrecognized ecological guild. PMID:22253785

  4. The origin of conodonts and of vertebrate mineralized skeletons

    USGS Publications Warehouse

    Murdock, Duncan J.E.; Dong, Xi-Ping; Repetski, John E.; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C.J.

    2013-01-01

    Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the ‘inside-out’ hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.

  5. Turning maneuvers in sharks: Predicting body curvature from axial morphology.

    PubMed

    Porter, Marianne E; Roque, Cassandra M; Long, John H

    2009-08-01

    Given the diversity of vertebral morphologies among fishes, it is tempting to propose causal links between axial morphology and body curvature. We propose that shape and size of the vertebrae, intervertebral joints, and the body will more accurately predict differences in body curvature during swimming rather than a single meristic such as total vertebral number alone. We examined the correlation between morphological features and maximum body curvature seen during routine turns in five species of shark: Triakis semifasciata, Heterodontus francisci, Chiloscyllium plagiosum, Chiloscyllium punctatum, and Hemiscyllium ocellatum. We quantified overall body curvature using three different metrics. From a separate group of size-matched individuals, we measured 16 morphological features from precaudal vertebrae and the body. As predicted, a larger pool of morphological features yielded a more robust prediction of maximal body curvature than vertebral number alone. Stepwise linear regression showed that up to 11 features were significant predictors of the three measures of body curvature, yielding highly significant multiple regressions with r(2) values of 0.523, 0.537, and 0.584. The second moment of area of the centrum was always the best predictor, followed by either centrum length or transverse height. Ranking as the fifth most important variable in three different models, the body's total length, fineness ratio, and width were the most important non-vertebral morphologies. Without considering the effects of muscle activity, these correlations suggest a dominant role for the vertebral column in providing the passive mechanical properties of the body that control, in part, body curvature during swimming. (c) 2009 Wiley-Liss, Inc.

  6. Built for speed: strain in the cartilaginous vertebral columns of sharks.

    PubMed

    Porter, M E; Diaz, Candido; Sturm, Joshua J; Grotmol, Sindre; Summers, A P; Long, John H

    2014-02-01

    In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Disordered vertebral and rib morphology in pudgy mice. Structural relationships to human scoliosis.

    PubMed

    Shapiro, Frederic

    2016-01-01

    Normal and abnormal vertebral development have been studied over the past 200 years at increasing levels of resolution as techniques for biological investigation have improved. Disordered development of the axial skeleton from the early embryonic period on leads to structurally malformed vertebrae and intervertebral discs and ribs causing the severe deformities of scoliosis, kyphosis, and kyphoscoliosis. Developmental malformation of the axial skeleton therefore has led to considerable biological and clinical interest. This work will detail our studies on the structural deformities of the vertebral column and adjacent ribs in the pudgy mouse [1] caused by mutations in the delta-like 3 (Dll3) gene of the Notch family [2]. While gene abnormalities in the pudgy mouse have been outlined, there has been no in-depth assessment of the histopathology of the pudgy vertebral and rib abnormalities that this study will provide. In addition, although congenital scoliosis has been recognized as a clinical problem since the mid-nineteenth century (1800s) [3] and accurately defined by radiography since the early twentieth century (1900s) [4-6], there have been few detailed histopathologic studies of human cases. We will also relate our histopathologic findings in the pudgy mouse to the histopathology of human vertebral and rib malformations in clinical cases of congenital scoliosis, one of which we defined in detail previously [7].

  8. Human Disc Nucleus Properties and Vertebral Endplate Permeability

    PubMed Central

    Rodriguez, Azucena G.; Slichter, Chloe K.; Acosta, Frank L.; Rodriguez-Soto, Ana E.; Burghardt, Andrew J.; Majumdar, Sharmila; Lotz, Jeffrey C.

    2010-01-01

    Study of human cadaveric discs quantifying endplate permeability and porosity and correlating these with measures of disc quality: cell density, proteoglycan content, and overall degeneration. Permeability and porosity increased with age and were not correlated with cell density or overall degeneration, suggesting that endplate calcification may not accelerate disc degeneration. Study Design Experimental quantification of relationships between vertebral endplate morphology, permeability, disc cell density, glycosaminoglycan content and degeneration in samples harvested from human cadaveric spines. Objective To test the hypothesis that variation in endplate permeability and porosity contribute to changes in intervertebral disc cell density and overall degeneration. Summary of Background Data Cells within the intervertebral disc are dependent on diffusive exchange with capillaries in the adjacent vertebral bone. Previous findings suggest that blocked routes of transport negatively affect disc quality, yet there are no quantitative relationships between human vertebral endplate permeability, porosity, cell density and disc degeneration. Such relationships would be valuable for clarifying degeneration risk factors, and patient features that may impede efforts at disc tissue engineering. Methods Fifty-one motion segments were harvested from 13 frozen cadaveric human lumbar spines (32 to 85 years) and classified for degeneration using the MRI-based Pfirrmann scale. A cylindrical core was harvested from the center of each motion segment that included vertebral bony and cartilage endplates along with adjacent nucleus tissue. The endplate mobility, a type of permeability, was measured directly using a custom-made permeameter before and after the cartilage endplate was removed. Cell density within the nucleus tissue was estimated using the picogreen method while the nuclear GAG content was quantified using the DMMB technique. Specimens were imaged at 8 μm resolution using

  9. Permo-Triassic vertebrate extinctions: A program

    NASA Technical Reports Server (NTRS)

    Olson, E. C.

    1988-01-01

    Since the time of the Authors' study on this subject, a great deal of new information has become available. Concepts of the nature of extinctions have changed materially. The Authors' conclusion that a catastrophic event was not responsible for the extinction of vertebrates has modified to the extent that hypotheses involving either the impact of a massive extra-terrestrial body or volcanism provide plausible but not currently fully testable hypotheses. Stated changes resulted in a rapid decrease in organic diversity, as the ratio of origins of taxa to extinctions shifted from strongly positive to negative, with momentary equilibrium being reached at about the Permo-Triassic boundary. The proximate causes of the changes in the terrestrial biota appear to lie in two primary factors: (1) strong climatic changes (global mean temperatures, temperature ranges, humidity) and (2) susceptibility of the dominant vertebrates (large dicynodonts) and the glossopteris flora to disruption of the equlibrium of the world ecosystem. The following proximate causes have been proposed: (1) rhythmic fluctuations in solar radiation, (2) tectonic events as Pangea assembled, altering land-ocean relationships, patterns of wind and water circulation and continental physiography, (3) volcanism, and (4) changes subsequent to impacts of one or more massive extra terrestrial objects, bodies or comets. These hypotheses are discussed.

  10. V. Terrestrial vertebrates

    Treesearch

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  11. The eyes of Tullimonstrum reveal a vertebrate affinity.

    PubMed

    Clements, Thomas; Dolocan, Andrei; Martin, Peter; Purnell, Mark A; Vinther, Jakob; Gabbott, Sarah E

    2016-04-28

    Tullimonstrum gregarium is an iconic soft-bodied fossil from the Carboniferous Mazon Creek Lagerstätte (Illinois, USA). Despite a large number of specimens and distinct anatomy, various analyses over the past five decades have failed to determine the phylogenetic affinities of the 'Tully monster', and although it has been allied to such disparate phyla as the Mollusca, Annelida or Chordata, it remains enigmatic. The nature and phylogenetic affinities of Tullimonstrum have defied confident systematic placement because none of its preserved anatomy provides unequivocal evidence of homology, without which comparative analysis fails. Here we show that the eyes of Tullimonstrum possess ultrastructural details indicating homology with vertebrate eyes. Anatomical analysis using scanning electron microscopy reveals that the eyes of Tullimonstrum preserve a retina defined by a thick sheet comprising distinct layers of spheroidal and cylindrical melanosomes. Time-of-flight secondary ion mass spectrometry and multivariate statistics provide further evidence that these microbodies are melanosomes. A range of animals have melanin in their eyes, but the possession of melanosomes of two distinct morphologies arranged in layers, forming retinal pigment epithelium, is a synapomorphy of vertebrates. Our analysis indicates that in addition to evidence of colour patterning, ecology and thermoregulation, fossil melanosomes can also carry a phylogenetic signal. Identification in Tullimonstrum of spheroidal and cylindrical melanosomes forming the remains of retinal pigment epithelium indicates that it is a vertebrate; considering its body parts in this new light suggests it was an anatomically unusual member of total group Vertebrata.

  12. Variation in vertebral number and its morphological implication in Galaxias platei.

    PubMed

    Barriga, J P; Milano, D; Cussac, V E

    2013-11-01

    Variation in the vertebral number of the puyen grande Galaxias platei was examined for specimens from 22 localities that span the entire distribution range of the species (from 40° to 55° S). The mean vertebral number (NMW ) increases towards high latitudes, i.e. Jordan's rule is applicable to this species. Owing to the wide geographic variation of the species, not only in latitude but also in altitude, the most explicative variable for NMW was mean winter air temperature, showing negative dependence. Morphological data suggest that the increment in vertebral number lies in the pre-pelvic region of the trunk and in the caudal region, but not in the segment between pelvic-fin insertion and the origin of the anal fin. As these alterations in body shape have important consequences for hydrodynamics and swimming performance, vertebral number variation in G. platei also holds implications for both individual and population fitness. © 2013 The Fisheries Society of the British Isles.

  13. The selenium content of SEPP1 versus selenium requirements in vertebrates

    PubMed Central

    Hamre, Kristin; Ellingsen, Ståle

    2015-01-01

    Selenoprotein P (SEPP1) distributes selenium (Se) throughout the body via the circulatory system. For vertebrates, the Se content of SEPP1 varies from 7 to 18 Se atoms depending on the species, but the reason for this variation remains unclear. Herein we provide evidence that vertebrate SEPP1 Sec content correlates positively with Se requirements. As the Se content of full length SEPP1 is genetically determined, this presents a unique case where a nutrient requirement can be predicted based on genomic sequence information. PMID:26734501

  14. Continuum theory of gene expression waves during vertebrate segmentation.

    PubMed

    Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank

    2015-09-01

    The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time.

  15. Continuum theory of gene expression waves during vertebrate segmentation

    PubMed Central

    Jörg, David J; Morelli, Luis G; Soroldoni, Daniele; Oates, Andrew C; Jülicher, Frank

    2015-01-01

    Abstract The segmentation of the vertebrate body plan during embryonic development is a rhythmic and sequential process governed by genetic oscillations. These genetic oscillations give rise to traveling waves of gene expression in the segmenting tissue. Here we present a minimal continuum theory of vertebrate segmentation that captures the key principles governing the dynamic patterns of gene expression including the effects of shortening of the oscillating tissue. We show that our theory can quantitatively account for the key features of segmentation observed in zebrafish, in particular the shape of the wave patterns, the period of segmentation and the segment length as a function of time. PMID:28725158

  16. Management of cement vertebroplasty in the treatment of vertebral hemangioma.

    PubMed

    Boschi, V; Pogorelić, Z; Gulan, G; Perko, Z; Grandić, L; Radonić, V

    2011-01-01

    The vertebral hemangiomas are benign vascular lesions occurring in spine. Although uncommon, symptomatic vertebral hemangiomas can be painful and can limit daily activities. A number of methods have been used in the treatment of symptomatic and aggressive vertebral hemangioma, but none of them is optimal. Treatment with cement vertebroplasty showed very good results. This study aims to illustrate the validity of the treatment with cement vertebroplasty in patients with painful vertebral hemangiomas. From January 2000 to January 2007, 24 patients were treated by percutaneous vertebroplasty because of hemangioma: 16 thoracic, 8 lumbar. There were 11 males and 13 females. The average age at the time of surgery was 48 years. All the patients complained of a pain syndrome resistant to continuing medication. All patients underwent X-ray examination, CT-scan and MR of the involved level preoperatively. A unipedicular approach under fluoroscopic guidance has been performed in all patients. All procedures have been carried out under the local anesthesia. The mean follow-up was 5.8 years. In all the patients a successful outcome has been observed with a complete resolution of pain symptom. Extravertebral vascular cement leakage has been observed in 3 patients, without any clinical radicular syndrome onset due to the epidural diffusion. Clinical and radiological follow-up showed stability of the treatment and absence of pain in all patients. Percutaneous treatment with vertebroplasty for symptomatic vertebral hemangiomas is a valuable, less-invasive, and a quick method that allows a complete and enduring resolution of the painful vertebral symptoms without findings of the vertebral body's fracture.

  17. Differential segmental growth of the vertebral column of the rat (Rattus norvegicus).

    PubMed

    Bergmann, Philip J; Melin, Amanda D; Russell, Anthony P

    2006-01-01

    Despite the pervasive occurrence of segmental morphologies in the animal kingdom, the study of segmental growth is almost entirely lacking, but may have significant implications for understanding the development of these organisms. We investigate the segmental and regional growth of the entire vertebral column of the rat (Rattus norvegicus) by fitting a Gompertz curve to length and age data for each vertebra and each vertebral region. Regional lengths are calculated by summing constituent vertebral lengths and intervertebral space lengths for cervical, thoracic, lumbar, sacral, and caudal regions. Gompertz curves allow for the estimation of parameters representing neonatal and adult vertebral and regional lengths, as well as initial growth rate and the rate of exponential growth decay. Findings demonstrate differences between neonatal and adult rats in terms of relative vertebral lengths, and differential growth rates between sequential vertebrae and vertebral regions. Specifically, relative differences in the length of vertebrae indicate increasing differences caudad. Vertebral length in neonates increases from the atlas to the middle of the thoracic series and decreases in length caudad, while adult vertebral lengths tend to increase caudad. There is also a general trend of increasing vertebral and regional initial growth and rate of growth decay caudad. Anteroposterior patterns of growth are sexually dimorphic, with males having longer vertebrae than females at any given age. Differences are more pronounced (a) increasingly caudad along the body axis, and (b) in adulthood than in neonates. Elucidated patterns of growth are influenced by a combination of developmental, functional, and genetic factors.

  18. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates

    PubMed Central

    Peat, Julian R.; Ortega-Recalde, Oscar; Kardailsky, Olga; Hore, Timothy A.

    2017-01-01

    Background: Methylation of CG dinucleotides constitutes a critical system of epigenetic memory in bony vertebrates, where it modulates gene expression and suppresses transposon activity. The genomes of studied vertebrates are pervasively hypermethylated, with the exception of regulatory elements such as transcription start sites (TSSs), where the presence of methylation is associated with gene silencing. This system is not found in the sparsely methylated genomes of invertebrates, and establishing how it arose during early vertebrate evolution is impeded by a paucity of epigenetic data from basal vertebrates. Methods: We perform whole-genome bisulfite sequencing to generate the first genome-wide methylation profiles of a cartilaginous fish, the elephant shark Callorhinchus milii. Employing these to determine the elephant shark methylome structure and its relationship with expression, we compare this with higher vertebrates and an invertebrate chordate using published methylation and transcriptome data.  Results: Like higher vertebrates, the majority of elephant shark CG sites are highly methylated, and methylation is abundant across the genome rather than patterned in the mosaic configuration of invertebrates. This global hypermethylation includes transposable elements and the bodies of genes at all expression levels. Significantly, we document an inverse relationship between TSS methylation and expression in the elephant shark, supporting the presence of the repressive regulatory architecture shared by higher vertebrates. Conclusions: Our demonstration that methylation patterns in a cartilaginous fish are characteristic of higher vertebrates imply the conservation of this epigenetic modification system across jawed vertebrates separated by 465 million years of evolution. In addition, these findings position the elephant shark as a valuable model to explore the evolutionary history and function of vertebrate methylation. PMID:28580133

  19. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates.

    PubMed

    Peat, Julian R; Ortega-Recalde, Oscar; Kardailsky, Olga; Hore, Timothy A

    2017-01-01

    Methylation of CG dinucleotides constitutes a critical system of epigenetic memory in bony vertebrates, where it modulates gene expression and suppresses transposon activity. The genomes of studied vertebrates are pervasively hypermethylated, with the exception of regulatory elements such as transcription start sites (TSSs), where the presence of methylation is associated with gene silencing. This system is not found in the sparsely methylated genomes of invertebrates, and establishing how it arose during early vertebrate evolution is impeded by a paucity of epigenetic data from basal vertebrates.  We perform whole-genome bisulfite sequencing to generate the first genome-wide methylation profiles of a cartilaginous fish, the elephant shark Callorhinchus milii . Employing these to determine the elephant shark methylome structure and its relationship with expression, we compare this with higher vertebrates and an invertebrate chordate using published methylation and transcriptome data.  Results: Like higher vertebrates, the majority of elephant shark CG sites are highly methylated, and methylation is abundant across the genome rather than patterned in the mosaic configuration of invertebrates. This global hypermethylation includes transposable elements and the bodies of genes at all expression levels. Significantly, we document an inverse relationship between TSS methylation and expression in the elephant shark, supporting the presence of the repressive regulatory architecture shared by higher vertebrates.  Our demonstration that methylation patterns in a cartilaginous fish are characteristic of higher vertebrates imply the conservation of this epigenetic modification system across jawed vertebrates separated by 465 million years of evolution. In addition, these findings position the elephant shark as a valuable model to explore the evolutionary history and function of vertebrate methylation.

  20. Relation between obesity and bone mineral density and vertebral fractures in Korean postmenopausal women.

    PubMed

    Kim, Kyong-Chol; Shin, Dong-Hyuk; Lee, Sei-Young; Im, Jee-Aee; Lee, Duk-Chul

    2010-11-01

    The traditional belief that obesity is protective against osteoporosis has been questioned. Recent epidemiologic studies show that body fat itself may be a risk factor for osteoporosis and bone fractures. Accumulating evidence suggests that metabolic syndrome and the individual components of metabolic syndrome such as hypertension, increased triglycerides, and reduced high-density lipoprotein cholesterol are also risk factors for low bone mineral density. Using a cross sectional study design, we evaluated the associations between obesity or metabolic syndrome and bone mineral density (BMD) or vertebral fracture. A total of 907 postmenopausal healthy female subjects, aged 60-79 years, were recruited from woman hospitals in Seoul, South Korea. BMD, vetebral fracture, bone markers, and body composition including body weight, body mass index (BMI), percentage body fat, and waist circumference were measured. After adjusting for age, smoking status, alcohol consumption, total calcium intake, and total energy intake, waist circumference was negatively related to BMD of all sites (lumbar BMD p = 0.037, all sites of femur BMD p < 0.001) whereas body weight was still positively related to BMD of all sites (p < 0.001). Percentage body fat and waist circumference were much higher in the fracture group than the non-fracture group (p = 0.0383, 0.082 respectively). Serum glucose levels were positively correlated to lumbar BMD (p = 0.016), femoral neck BMD (p = 0.0335), and femoral trochanter BMD (p = 0.0082). Serum high density lipoprotein cholesterol (HDLC) was positively related to femoral trochanter BMD (p = 0.0366) and was lower in the control group than the fracture group (p = 0.011). In contrast to the effect favorable body weight on bone mineral density, high percentage body fat and waist circumference are related to low BMD and a vertebral fracture. Some components of metabolic syndrome were related to BMD and a vertebral fracture.

  1. Evolution of the regionalization and patterning of the vertebrate telencephalon: what can we learn from cyclostomes?

    PubMed

    Sugahara, Fumiaki; Murakami, Yasunori; Adachi, Noritaka; Kuratani, Shigeru

    2013-08-01

    The telencephalon, the most anterior part of the vertebrate central nervous system (CNS), is a highly diversified region of the vertebrate body. Its evolutionary origin remains elusive, especially with regard to the ancestral state of its architecture as well as the origin of telencephalon-specific neuron subtypes. Cyclostomes (lampreys and hagfish), the sister group of the gnathostomes (jawed vertebrates), serve as valuable models for studying the evolution of the vertebrate CNS. Here, we summarize recent studies on the development of the telencephalon in the lamprey. By comparing detailed developmental studies in mammals, we illustrate a possible ancestral developmental plan underlying the diversification of the vertebrate telencephalon and propose possible approaches for understanding the early evolution of the telencephalon. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Isolated unilateral vertebral pedicle fracture caused by a back massage in an elderly patient: a case report and literature review.

    PubMed

    Guo, Zhiping; Chen, Wei; Su, Yanling; Yuan, Junhui; Zhang, Yingze

    2013-11-01

    The vertebral pedicle injuries are clinically common. However, the isolated vertebral pedicle fracture with intact vertebral bodies is a rare lesion. We reported a case of a 66-year-old man who experienced a pedicle fracture after a back massage. The patient sustained osteoporosis, long-existing low back pain and nerve compression symptoms without antecedent major trauma. Imaging findings demonstrated an isolated unilateral L5 vertebral pedicle fracture with intact vertebral bodies, spinal canal stenosis at the L4-5 levels, bulging annulus fibrosus at the L4-S1 levels, bilateral spondylolysis and an L5/S1 spondylolisthesis. The patient underwent L4-S1 decompressive laminectomy, L5/S1 discectomy and neurolysis, and reduction and fixation of the L5 vertebral pedicle fracture and L5/S1 spondylolisthesis using the pedicle nail system. At follow-ups, the patient showed good recovery without pain or numbness in the low back and bilateral lower extremities. This study raises the awareness of a complication of alternative medicine and the possibility of a pedicle fracture caused by a low-energy trauma.

  3. High prevalence of radiological vertebral fractures in HIV-infected males.

    PubMed

    Torti, Carlo; Mazziotti, Gherardo; Soldini, Pier Antonio; Focà, Emanuele; Maroldi, Roberto; Gotti, Daria; Carosi, Giampiero; Giustina, Andrea

    2012-06-01

    Age-related co-morbidities including osteoporosis are relevant in patients responding to combination antiretroviral therapy (cART). Vertebral fractures are common osteoporotic fractures and their diagnosis is useful for managing at-risk individuals. However, there are few data from HIV-infected patients. Therefore, the aim of this study was to determine the prevalence of and factors associated with vertebral fractures in a population of HIV-infected males. A cross-sectional study of 160 HIV-infected patients with available chest X-rays was conducted from 1998 to 2010. One hundred and sixty-three males with comparable age and with no history of HIV infection were recruited as controls. Semi-quantitative evaluation of vertebral heights in lateral chest X-rays and quantitative morphometry assessment of centrally digitized images using dedicated morphometry software were utilized to detect prevalent vertebral fractures. The result showed that the vertebral fractures were detected in 43/160 (26.9%) HIV-infected patients and in 21/163 (12.9%) controls (P = 0.002). In HIV-infected patients with fractures, 27 had two or more fractures and ten patients had severe fractures. The prevalence of any fractures and multiple fractures in HIV-infected patients receiving cART (29.6 and 20.0%) was slightly higher than in HIV-infected patients not exposed to cART (17.1 and 5.7%), but significantly higher than control subjects (12.9 and 3.7%). At multivariable analyses, body mass index and diabetes mellitus were independently correlated with vertebral fractures in HIV-infected patients. We concluded that a significant proportion of HIV-infected males receiving cART showed vertebral fractures. Furthermore, proactive diagnosis of vertebral fragility fractures is particularly relevant in patients who are overweight or suffer from diabetes.

  4. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents.

    PubMed

    Wren, Tishya A L; Aggabao, Patricia C; Poorghasamians, Ervin; Chavez, Thomas A; Ponrartana, Skorn; Gilsanz, Vicente

    2017-01-01

    Lumbar lordosis (LL) is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA) when compared to boys-a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA) and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI), we measured vertebral cross-sectional area (CSA) and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9-13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001), while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02). When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001); this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001), suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as spondylolysis

  5. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents

    PubMed Central

    Aggabao, Patricia C.; Poorghasamians, Ervin; Chavez, Thomas A.

    2017-01-01

    Lumbar lordosis (LL) is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA) when compared to boys—a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA) and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI), we measured vertebral cross-sectional area (CSA) and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9–13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001), while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02). When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001); this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001), suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as

  6. Reconstruction of the Upper Cervical Spine Using a Personalized 3D-Printed Vertebral Body in an Adolescent With Ewing Sarcoma.

    PubMed

    Xu, Nanfang; Wei, Feng; Liu, Xiaoguang; Jiang, Liang; Cai, Hong; Li, Zihe; Yu, Miao; Wu, Fengliang; Liu, Zhongjun

    2016-01-01

    Case report. To describe a three-dimensional (3D) printed axial vertebral body used in upper cervical spine reconstruction after a C2 Ewing sarcoma resection in an adolescent boy. Ewing sarcoma is a malignant musculoskeletal neoplasm with a peak incidence in adolescents. Cervical spine as the primary site of the tumor has been related to a worse prognosis. Tumor resection is particularly challenging in the atlantoaxial region due to complexity of the anatomy, necessity for extensive resection according to oncological principles, and a lack of specialized implants for reconstruction. 3D printing refers to a process where 3D objects are created through successive layering of material under computer control. Although this technology potentially enables accurate fabrication of patient-specific orthopedic implants, literature on its utilization in this regard is rare. A 12-year-old boy with a C2 Ewing sarcoma underwent a staged spondylectomy. Wide resection of the posterior elements was first performed. Two weeks later, a high anterior retropharyngeal approach was taken to remove the remains of the C2 vertebra. A customized artificial vertebral body fabricated according to a computer model using titanium alloy powder was inserted to replace the defect between C1 and C3. The microstructure of the implant was optimized for better biomechanical stability and enhanced bone healing. Patient had an uneventful recovery and began to ambulate on postoperative day 7. Adjuvant treatment commenced 3 weeks after the surgery. He was tumor-free at the 1-year follow-up. Computed tomography studies revealed evidence of implant osseointegration and no subsidence or displacement of the construct. This is a case example on the concept of personalized precision medicine in a surgical setting and demonstrates how 3D-printed, patient-specific implants may bring individualized solutions to rare problems wherein restoration of the specific anatomy of each patient is a key prognostic factor.

  7. Vertebral formula and congenital abnormalities of the vertebral column in rabbits.

    PubMed

    Proks, P; Stehlik, L; Nyvltova, I; Necas, A; Vignoli, M; Jekl, V

    2018-06-01

    The aim of this retrospective study of 330 rabbits (164 males, 166 females) was to determine different vertebral formulas and prevalence of congenital vertebral anomalies in rabbits from radiographs of the cervical (C), thoracic (Th), lumbar (L) and sacral (S) segments of the vertebral column. The number of vertebrae in each segment of vertebral column, position of anticlinal vertebra and localisation and type of congenital abnormalities were recorded. In 280/330 rabbits (84.8%) with normal vertebral morphology, seven vertebral formulas were identified: C7/Th12/L7/S4 (252/330, 76.4%), C7/Th12/L6/S4 (11/330, 3.3%), C7/Th13/L7/S4 (8/330, 2.4%), C7/Th12/L7/S5 (4/330, 1.2%), C7/Th12/L8/S4 (3/330, 0.9%), C7/Th12/L7/S6 (1/330, 0.3%) and C7/Th11/L7/S4 (1/330, 0.3%). The anticlinal vertebra was identified as Th10 in 56.4% of rabbits and Th11 in 42.4% of rabbits. Congenital spinal abnormalities were identified in 50/330 (15.2%) rabbits, predominantly as a single pathology (n=44). Transitional vertebrae represented the most common abnormalities (n=41 rabbits) in the thoracolumbar (n=35) and lumbosacral segments (n=6). Five variants of thoracolumbar transitional vertebrae were identified. Cervical butterfly vertebrae were detected in three rabbits. One rabbit exhibited three congenital vertebral anomalies: cervical block vertebra, thoracic hemivertebra and thoracolumbar transitional vertebra. Five rabbits exhibited congenital vertebral abnormalities with concurrent malalignment, specifically cervical kyphosis/short vertebra (n=1), thoracic lordoscoliosis/thoracolumbar transitional vertebrae (n=1), thoracic kyphoscoliosis/wedge vertebrae (n=2) and thoracolumbar lordoscoliosis/thoracolumbar transitional vertebrae/lumbosacral transitional vertebrae (n=1). These findings suggest that vertebral columns in rabbits display a wide range of morphologies, with occasional congenital malformations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Vertebrate land invasions-past, present, and future: an introduction to the symposium.

    PubMed

    Ashley-Ross, Miriam A; Hsieh, S Tonia; Gibb, Alice C; Blob, Richard W

    2013-08-01

    The transition from aquatic to terrestrial habitats was a seminal event in vertebrate evolution because it precipitated a sudden radiation of species as new land animals diversified in response to novel physical and biological conditions. However, the first stages of this environmental transition presented numerous challenges to ancestrally aquatic organisms, and necessitated changes in the morphological and physiological mechanisms that underlie most life processes, among them movement, feeding, respiration, and reproduction. How did solutions to these functional challenges evolve? One approach to this question is to examine modern vertebrate species that face analogous demands; just as the first tetrapods lived at the margins of bodies of water and likely moved between water and land regularly, many extant fishes and amphibians use their body systems in both aquatic and terrestrial habitats on a daily basis. Thus, studies of amphibious vertebrates elucidate the functional demands of two very different habitats and clarify our understanding of the initial evolutionary challenges of moving onto land. A complementary approach is to use studies of the fossil record and comparative development to gain new perspectives on form and function of modern amphibious and non-amphibious vertebrate taxa. Based on the synthetic approaches presented in the symposium, it is clear that our understanding of aquatic-to-terrestrial transitions is greatly improved by the reciprocal integration of paleontological and neontological perspectives. In addition, common themes and new insights that emerged from this symposium point to the value of innovative approaches, new model species, and cutting-edge research techniques to elucidate the functional challenges and evolutionary changes associated with vertebrates' invasion of the land.

  9. The incidence of secondary vertebral fracture of vertebral augmentation techniques versus conservative treatment for painful osteoporotic vertebral fractures: a systematic review and meta-analysis.

    PubMed

    Song, Dawei; Meng, Bin; Gan, Minfeng; Niu, Junjie; Li, Shiyan; Chen, Hao; Yuan, Chenxi; Yang, Huilin

    2015-08-01

    Percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP) are minimally invasive and effective vertebral augmentation techniques for managing osteoporotic vertebral compression fractures (OVCFs). Recent meta-analyses have compared the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques or conservative treatment; however, the inclusions were not thorough and rigorous enough, and the effects of each technique on the incidence of secondary vertebral fractures remain unclear. To perform an updated systematic review and meta-analysis of the studies with more rigorous inclusion criteria on the effects of vertebral augmentation techniques and conservative treatment for OVCF on the incidence of secondary vertebral fractures. PubMed, MEDLINE, EMBASE, SpringerLink, Web of Science, and the Cochrane Library database were searched for relevant original articles comparing the incidence of secondary vertebral fractures between vertebral augmentation techniques and conservative treatment for patients with OVCFs. Randomized controlled trials (RCTs) and prospective non-randomized controlled trials (NRCTs) were identified. The methodological qualities of the studies were evaluated, relevant data were extracted and recorded, and an appropriate meta-analysis was conducted. A total of 13 articles were included. The pooled results from included studies showed no statistically significant differences in the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques and conservative treatment. Subgroup analysis comparing different study designs, durations of symptoms, follow-up times, races of patients, and techniques were conducted, and no significant differences in the incidence of secondary fractures were identified (P > 0.05). No obvious publication bias was detected by either Begg's test (P = 0.360 > 0.05) or Egger's test (P = 0.373 > 0.05). Despite current thinking in the

  10. Vertebral Body Stapling versus Bracing for Patients with High-Risk Moderate Idiopathic Scoliosis

    PubMed Central

    Cuddihy, Laury; Danielsson, Aina J.; Cahill, Patrick J.; Samdani, Amer F.; Grewal, Harsh; Richmond, John M.; Mulcahey, M. J.; Gaughan, John P.; Antonacci, M. Darryl; Betz, Randal R.

    2015-01-01

    Purpose. We report a comparison study of vertebral body stapling (VBS) versus a matched bracing cohort for immature patients with moderate (25 to 44°) idiopathic scoliosis (IS). Methods. 42 of 49 consecutive patients (86%) with IS were treated with VBS and followed for a minimum of 2 years. They were compared to 121 braced patients meeting identical inclusion criteria. 52 patients (66 curves) were matched according to age at start of treatment (10.6 years versus 11.1 years, resp. [P = 0.07]) and gender. Results. For thoracic curves 25–34°, VBS had a success rate (defined as curve progression <10°) of 81% versus 61% for bracing (P = 0.16). In thoracic curves 35–44°, VBS and bracing both had a poor success rate. For lumbar curves, success rates were similar in both groups for curves measuring 25–34°. Conclusion. In this comparison of two cohorts of patients with high-risk (Risser 0-1) moderate IS (25–44°), in smaller thoracic curves (25–34°) VBS provided better results as a clinical trend as compared to bracing. VBS was found not to be effective for thoracic curves ≥35°. For lumbar curves measuring 25–34°, results appear to be similar for both VBS and bracing, at 80% success. PMID:26618169

  11. Thoracic kyphosis and rate of incident vertebral fractures: the Fracture Intervention Trial.

    PubMed

    Katzman, W B; Vittinghoff, E; Kado, D M; Lane, N E; Ensrud, K E; Shipp, K

    2016-03-01

    Biomechanical analyses support the theory that thoracic spine hyperkyphosis may increase risk of new vertebral fractures. While greater kyphosis was associated with an increased rate of incident vertebral fractures, our analysis does not show an independent association of kyphosis on incident fracture, after adjustment for prevalent vertebral fracture. Excessive kyphosis may still be a clinical marker for prevalent vertebral fracture. Biomechanical analyses suggest hyperkyphosis may increase risk of incident vertebral fracture by increasing the load on vertebral bodies during daily activities. We propose to assess the association of kyphosis with incident radiographic vertebral fracture. We used data from the Fracture Intervention Trial among 3038 women 55-81 years of age with low bone mineral density (BMD). Baseline kyphosis angle was measured using a Debrunner kyphometer. Vertebral fractures were assessed at baseline and follow-up from lateral radiographs of the thoracic and lumbar spine. We used Poisson models to estimate the independent association of kyphosis with incident fracture, controlling for age and femoral neck BMD. Mean baseline kyphosis was 48° (SD = 12) (range 7-83). At baseline, 962 (32%) participants had a prevalent fracture. There were 221 incident fractures over a median of 4 years. At baseline, prevalent fracture was associated with 3.7° greater average kyphosis (95% CI 2.8-4.6, p < 0.0005), adjusting for age and femoral neck BMD. Before adjusting for prevalent fracture, each 10° greater kyphosis was associated with 22% increase (95% CI 8-38%, p = 0.001) in annualized rate of new radiographic vertebral fracture, adjusting for age and femoral neck BMD. After additional adjustment for prevalent fracture, estimated increased annualized rate was attenuated and no longer significant, 8% per 10° kyphosis (95% CI -4 to 22%, p = 0.18). While greater kyphosis increased the rate of incident vertebral fractures, our analysis does not

  12. Thoracic kyphosis and rate of incident vertebral fractures: the Fracture Intervention Trial

    PubMed Central

    Vittinghoff, E.; Kado, D. M.; Lane, N. E.; Ensrud, K. E.; Shipp, K.

    2016-01-01

    Summary Biomechanical analyses support the theory that thoracic spine hyperkyphosis may increase risk of new vertebral fractures. While greater kyphosis was associated with an increased rate of incident vertebral fractures, our analysis does not show an independent association of kyphosis on incident fracture, after adjustment for prevalent vertebral fracture. Excessive kyphosis may still be a clinical marker for prevalent vertebral fracture. Introduction Biomechanical analyses suggest hyperkyphosis may increase risk of incident vertebral fracture by increasing the load on vertebral bodies during daily activities. We propose to assess the association of kyphosis with incident radiographic vertebral fracture. Methods We used data from the Fracture Intervention Trial among 3038 women 55–81 years of age with low bone mineral density (BMD). Baseline kyphosis angle was measured using a Debrunner kyphometer. Vertebral fractures were assessed at baseline and follow-up from lateral radiographs of the thoracic and lumbar spine. We used Poisson models to estimate the independent association of kyphosis with incident fracture, controlling for age and femoral neck BMD. Results Mean baseline kyphosis was 48° (SD = 12) (range 7–83). At baseline, 962 (32 %) participants had a prevalent fracture. There were 221 incident fractures over a median of 4 years. At baseline, prevalent fracture was associated with 3.7° greater average kyphosis (95 % CI 2.8–4.6, p < 0.0005), adjusting for age and femoral neck BMD. Before adjusting for prevalent fracture, each 10° greater kyphosis was associated with 22 % increase (95 % CI 8–38 %, p = 0.001) in annualized rate of new radiographic vertebral fracture, adjusting for age and femoral neck BMD. After additional adjustment for prevalent fracture, estimated increased annualized rate was attenuated and no longer significant, 8 % per 10° kyphosis (95 % CI −4 to 22 %, p = 0.18). Conclusions While greater kyphosis increased the rate of

  13. Long term outcome of treatment of vertebral body hemangiomas with direct ethanol injection and short segment stabilization.

    PubMed

    Chandra, P Sarat; Singh, Pankaj; K, Rajender; Agarwal, Deepak; Tandon, Vivek; Kale, S S; Sarkar, Chitra

    2018-06-08

    Vertebral body (VH) hemangiomas with myelopathy are difficult to manage. To evaluate the role of intra-operative ethanol embolization, surgical decompression and instrumented short segment fusion in VH with myelopathy and long-term outcome (>24 months). Prospective study: Symptomatic VH with cord compression with myelopathy. Excluded: pathological fractures, and/or deformity or multi-level pathologies. Surgery consisted of intra-operative bilateral pedicular absolute alcohol (<1% hydrated ethyl alcohol) injection, laminectomy and cord decompression at the level of pathology followed by a short segment instrumented fusion using pedicle screws. 33 patients (Mean 26.9 + 13.2, range: 10-68 years, 18 females). myelopathy all (5 paraplegic), sphincter involvement (13), and mid back/ lower pain (7). Pre-operative American Spinal Injury Association (ASIA) scores: A(7), B(11), C(6), D(8) and E(1). Majority had single vertebral involvement (30), 3 multiple level. Six underwent surgery earlier (1 alcohol embolization here). Mean surgical time: 124+39 minutes, average blood: 274+80 cc. Mean amount of absolute alcohol injected: 14.6+5.7 cc. (2 requiring 20 & 25 cc). Immediate embolization achieved in all, allowing laminectomy and soft-tissue hemangioma removal easily. Post-surgery, 1 patient had transient deterioration, rest all patients improved (sphincters improved in 9) at a follow up ranging 28-103 months (mean 47.6+22.3). Follow-up ASIA scores: E(26), D(4), B(2) & C(1). All patients showed evidence of bone sclerosis and relief of cord compression on follow-up imaging. This is largest study in literature showing excellent improvement, low re-operation rates following ethanol embolization and short segment fixation. Copyright © 2018. Published by Elsevier Inc.

  14. Body size distribution of the dinosaurs.

    PubMed

    O'Gorman, Eoin J; Hone, David W E

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size.

  15. Body Size Distribution of the Dinosaurs

    PubMed Central

    O’Gorman, Eoin J.; Hone, David W. E.

    2012-01-01

    The distribution of species body size is critically important for determining resource use within a group or clade. It is widely known that non-avian dinosaurs were the largest creatures to roam the Earth. There is, however, little understanding of how maximum species body size was distributed among the dinosaurs. Do they share a similar distribution to modern day vertebrate groups in spite of their large size, or did they exhibit fundamentally different distributions due to unique evolutionary pressures and adaptations? Here, we address this question by comparing the distribution of maximum species body size for dinosaurs to an extensive set of extant and extinct vertebrate groups. We also examine the body size distribution of dinosaurs by various sub-groups, time periods and formations. We find that dinosaurs exhibit a strong skew towards larger species, in direct contrast to modern day vertebrates. This pattern is not solely an artefact of bias in the fossil record, as demonstrated by contrasting distributions in two major extinct groups and supports the hypothesis that dinosaurs exhibited a fundamentally different life history strategy to other terrestrial vertebrates. A disparity in the size distribution of the herbivorous Ornithischia and Sauropodomorpha and the largely carnivorous Theropoda suggests that this pattern may have been a product of a divergence in evolutionary strategies: herbivorous dinosaurs rapidly evolved large size to escape predation by carnivores and maximise digestive efficiency; carnivores had sufficient resources among juvenile dinosaurs and non-dinosaurian prey to achieve optimal success at smaller body size. PMID:23284818

  16. Reversible neuronal and muscular toxicity of caffeine in developing vertebrates.

    PubMed

    Rodriguez, Rufino S; Haugen, Rebecca; Rueber, Alexandra; Huang, Cheng-Chen

    2014-06-01

    This study utilizes zebrafish embryos to understand the cellular and molecular mechanisms of caffeine toxicity in developing vertebrate embryos. By using a high concentration of caffeine, we observed almost all the phenotypes that have been described in humans and/or in other animal models, including neural tube closure defect, jittery, touch insensitivity, and growth retardation as well as a drastic coiled body phenotype. Zebrafish embryos exposed to 5mM caffeine exhibited high frequent movement, 10 moves/min comparing with around 3 moves/min in control embryos, within half an hour post exposure (HPE). They later showed twitching, uncoordinated movement, and eventually severe body curvature by 6HPE. Exposure at later stages resulted in the same phenotypes but more posteriorly. Surprisingly, when caffeine was removed before 6HPE, the embryos were capable of recovering but still exhibited mild curvature and shorter bodies. Longer exposure caused irreversible body curvature and lethality. These results suggest that caffeine likely targets the neuro-muscular physiology in developing embryos. Immunohistochemistry revealed that the motorneurons in treated embryos developed shorter axons, abnormal branching, and excessive synaptic vesicles. Developing skeletal muscles also appeared smaller and lacked the well-defined boundaries seen in control embryos. Finally, caffeine increases the expression of genes involved in synaptic vesicle migration. In summary, our results provide molecular understanding of caffeine toxicity on developing vertebrate embryos. Published by Elsevier Inc.

  17. Contribution of vertebral deformities to chronic back pain and disability. The Study of Osteoporotic Fractures Research Group

    NASA Technical Reports Server (NTRS)

    Ettinger, B.; Black, D. M.; Nevitt, M. C.; Rundle, A. C.; Cauley, J. A.; Cummings, S. R.; Genant, H. K.

    1992-01-01

    Among 2992 white women aged 65-70 years recruited from population-based listings, we measured radiographic vertebral dimensions of T5-L4 and calculated ratios of heights: anterior/posterior, mid/posterior, and posterior/posterior of either adjacent vertebra. The degree of deformity for each vertebra was analyzed in terms of the number of standard deviations (SD) that ratio differed from the mean ratio calculated for the same vertebral level in this population. We correlated the severity of each woman's worst vertebral deformity with back pain, back disability in six activities of daily living, and height loss since age 25. Only 39.4% of the cohort had no vertebral deformity; 10.2% had a deformity greater than or equal to 4 SD. Vertebral deformities less than 4 SD below the mean were not associated with increased back pain, disability, or loss of height. In contrast, women whose deformity was greater than or equal to 4 SD had a 1.9 (95% CI, 1.5-2.4) times higher risk of moderate to severe back pain and a 2.6 (95% CI, 1.7-3.9) times higher risk of disability involving the back; they were also 2.5 (95% CI, 2.0-3.2) times more likely to have lost greater than or equal to 4 cm in height. All three types of vertebral deformity (wedge, end plate, and crush) were equally associated with these outcomes. Multiple deformities less than 4 SD did not increase the likelihood of these three outcomes, but multiple deformities greater than or equal to 4 SD tended to be associated with increased back pain, disability, and height loss. This large cross-sectional study suggests that vertebral deformities cause substantial pain, disability, or loss of height only if vertebral height ratios fall 4 SD below the normal mean. Much back pain could not be attributed to vertebral deformities, suggesting other causes.

  18. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis

    PubMed Central

    Bulut, Mehmet Deniz; Alpayci, Mahmut; Şenköy, Emre; Bora, Aydin; Yazmalar, Levent; Yavuz, Alpaslan; Gülşen, İsmail

    2016-01-01

    Background Because loss of cervical lordosis leads to disrupted biomechanics, the natural lordotic curvature is considered to be an ideal posture for the cervical spine. The vertebral arteries proceed in the transverse foramen of each cervical vertebra. Considering that the vertebral arteries travel in close anatomical relationship to the cervical spine, we speculated that the loss of cervical lordosis may affect vertebral artery hemodynamics. The aim of this study was to compare the vertebral artery values between subjects with and without loss of cervical lordosis. Material/Methods Thirty patients with loss of cervical lordosis and 30 controls matched for age, sex, and body mass index were included in the study. Sixty vertebral arteries in patients with loss of cervical lordosis and 60 in controls without loss of cervical lordosis were evaluated by Doppler ultrasonography. Vertebral artery hemodynamics, including lumen diameter, flow volume, peak systolic velocity, end-diastolic velocity, and resistive index, were measured, and determined values were statistically compared between the patient and the control groups. Results The means of diameter (p=0.003), flow volume (p=0.002), and peak systolic velocity (p=0.014) in patients were significantly lower as compared to controls. However, there was no significant difference between the 2 groups in terms of the end-diastolic velocity (p=0.276) and resistive index (p=0.536) parameters. Conclusions The present study revealed a significant association between loss of cervical lordosis and decreased vertebral artery hemodynamics, including diameter, flow volume, and peak systolic velocity. Further studies are required to confirm these findings and to investigate their possible clinical implications. PMID:26876295

  19. Decreased Vertebral Artery Hemodynamics in Patients with Loss of Cervical Lordosis.

    PubMed

    Bulut, Mehmet Deniz; Alpayci, Mahmut; Şenköy, Emre; Bora, Aydin; Yazmalar, Levent; Yavuz, Alpaslan; Gülşen, İsmail

    2016-02-15

    BACKGROUND Because loss of cervical lordosis leads to disrupted biomechanics, the natural lordotic curvature is considered to be an ideal posture for the cervical spine. The vertebral arteries proceed in the transverse foramen of each cervical vertebra. Considering that the vertebral arteries travel in close anatomical relationship to the cervical spine, we speculated that the loss of cervical lordosis may affect vertebral artery hemodynamics. The aim of this study was to compare the vertebral artery values between subjects with and without loss of cervical lordosis. MATERIAL AND METHODS Thirty patients with loss of cervical lordosis and 30 controls matched for age, sex, and body mass index were included in the study. Sixty vertebral arteries in patients with loss of cervical lordosis and 60 in controls without loss of cervical lordosis were evaluated by Doppler ultrasonography. Vertebral artery hemodynamics, including lumen diameter, flow volume, peak systolic velocity, end-diastolic velocity, and resistive index, were measured, and determined values were statistically compared between the patient and the control groups. RESULTS The means of diameter (p=0.003), flow volume (p=0.002), and peak systolic velocity (p=0.014) in patients were significantly lower as compared to controls. However, there was no significant difference between the 2 groups in terms of the end-diastolic velocity (p=0.276) and resistive index (p=0.536) parameters. CONCLUSIONS The present study revealed a significant association between loss of cervical lordosis and decreased vertebral artery hemodynamics, including diameter, flow volume, and peak systolic velocity. Further studies are required to confirm these findings and to investigate their possible clinical implications.

  20. Threats from Climate Change to Terrestrial Vertebrate Hotspots in Europe

    PubMed Central

    Maiorano, Luigi; Amori, Giovanni; Capula, Massimo; Falcucci, Alessandra; Masi, Monica; Montemaggiori, Alessandro; Pottier, Julien; Psomas, Achilleas; Rondinini, Carlo; Russo, Danilo; Zimmermann, Niklaus E.

    2013-01-01

    We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21st century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In particular, we considered the entire European sub-continent plus Turkey and a total of 1149 species of terrestrial vertebrates. For each species, we developed species-specific expert-based distribution models (validated against field data) which we used to calculate species richness maps for mammals, breeding birds, amphibians, and reptiles. Considering four global circulation model outputs and three emission scenarios, we generated an index of risk of exposure to extreme climates, and we used a bivariate local Moran’s I to identify the areas with a significant association between hotspots of diversity and high risk of exposure to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot for biodiversity and especially for threatened species for all taxa. In particular, the Iberian and Italian peninsulas host particularly high species richness as measured over all groups, while the eastern Mediterranean basin is particularly rich in amphibians and reptiles; the islands (both Macaronesian and Mediterranean) host the highest richness of threatened species for all taxa occurs. Our results suggest that the main hotspots of biodiversity for terrestrial vertebrates may be extensively influenced by the climate change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing serious concerns for biodiversity conservation. PMID:24066162

  1. Threats from climate change to terrestrial vertebrate hotspots in Europe.

    PubMed

    Maiorano, Luigi; Amori, Giovanni; Capula, Massimo; Falcucci, Alessandra; Masi, Monica; Montemaggiori, Alessandro; Pottier, Julien; Psomas, Achilleas; Rondinini, Carlo; Russo, Danilo; Zimmermann, Niklaus E; Boitani, Luigi; Guisan, Antoine

    2013-01-01

    We identified hotspots of terrestrial vertebrate species diversity in Europe and adjacent islands. Moreover, we assessed the extent to which by the end of the 21(st) century such hotspots will be exposed to average monthly temperature and precipitation patterns which can be regarded as extreme if compared to the climate experienced during 1950-2000. In particular, we considered the entire European sub-continent plus Turkey and a total of 1149 species of terrestrial vertebrates. For each species, we developed species-specific expert-based distribution models (validated against field data) which we used to calculate species richness maps for mammals, breeding birds, amphibians, and reptiles. Considering four global circulation model outputs and three emission scenarios, we generated an index of risk of exposure to extreme climates, and we used a bivariate local Moran's I to identify the areas with a significant association between hotspots of diversity and high risk of exposure to extreme climates. Our results outline that the Mediterranean basin represents both an important hotspot for biodiversity and especially for threatened species for all taxa. In particular, the Iberian and Italian peninsulas host particularly high species richness as measured over all groups, while the eastern Mediterranean basin is particularly rich in amphibians and reptiles; the islands (both Macaronesian and Mediterranean) host the highest richness of threatened species for all taxa occurs. Our results suggest that the main hotspots of biodiversity for terrestrial vertebrates may be extensively influenced by the climate change projected to occur over the coming decades, especially in the Mediterranean bioregion, posing serious concerns for biodiversity conservation.

  2. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates.

    PubMed

    Codron, Daryl; Carbone, Chris; Müller, Dennis W H; Clauss, Marcus

    2012-08-23

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals--the other dominant vertebrate group since the Mesozoic--have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism--based on an understanding of different ecological and evolutionary constraints across vertebrate groups--that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous-Tertiary (K-T) boundary, and how post-K-T mammals were able to diversify into larger size categories.

  3. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates

    PubMed Central

    Codron, Daryl; Carbone, Chris; Müller, Dennis W. H.; Clauss, Marcus

    2012-01-01

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals—the other dominant vertebrate group since the Mesozoic—have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism—based on an understanding of different ecological and evolutionary constraints across vertebrate groups—that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous–Tertiary (K–T) boundary, and how post-K–T mammals were able to diversify into larger size categories. PMID:22513279

  4. An investigation of thoracic and lumbar cancellous vertebral architecture using power-spectral analysis of plain radiographs*

    PubMed Central

    Buck, AM; Price, RI; Sweetman, IM; Oxnard, CE

    2002-01-01

    The internal architecture of the vertebral bodies spanning the levels T1 to L5 in seven male columns was studied using mammographic-resolution radiographs of 2.5-mm-thick planar parasagittal slices. The overlapping radiographic shadows of vertebral trabeculae combined in the image to form a series of ‘elements’, broadly representative of the cancellous structure. The orientations and sizes of these elements were analysed by applying the Fast Fourier transform (FFT) to the digitized radiographic images. Elements aligned in the ‘vertical’ orientation, along the long axis of the column, were the most prominent for all vertebral levels. The relative prominence of horizontal to vertical elements was generally constant along the column below T5. In contrast, the relative prominence of oblique to vertical elements declined in the cranio-caudal direction, particularly in individuals aged ≥ 60 years. The ratio of ‘large’ (x > 0.3 mm) to ‘small’ (0.15 mm ≤ x ≤ 0.3 mm) elements was unchanged cranio-caudally in specimens < 60 years. However, in individuals ≥ 60 years, large elements increased in relative prominence in the caudal direction. These results suggest that a basic orthogonal pattern of trabeculae is found along the male human spine, regardless of differences in vertebral body size. Power-spectral analysis is shown to yield information summarizing the predominant orientations and sizes of radiographically rendered architectural elements of vertebral cancellous bone, to define the effects of ageing on architecture, and to identify broad structural differences between vertebral levels in the adult male spine. PMID:12090391

  5. Establishment of the Vertebrate Germ Layers.

    PubMed

    Tseng, Wei-Chia; Munisha, Mumingjiang; Gutierrez, Juan B; Dougan, Scott T

    2017-01-01

    The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.

  6. Nervous systems and scenarios for the invertebrate-to-vertebrate transition

    PubMed Central

    Holland, Nicholas D.

    2016-01-01

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. PMID:26598728

  7. Nervous systems and scenarios for the invertebrate-to-vertebrate transition.

    PubMed

    Holland, Nicholas D

    2016-01-05

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. © 2015 The Author(s).

  8. Evolution of endothelin receptors in vertebrates.

    PubMed

    Braasch, Ingo; Schartl, Manfred

    2014-12-01

    Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only present among vertebrates, including the lineages of jawless vertebrates (lampreys and hagfishes), cartilaginous vertebrates (sharks, rays, and chimaeras), and bony vertebrates (ray-finned fishes and lobe-finned vertebrates including tetrapods). A bona fide endothelin system is thus a vertebrate-specific innovation with important roles for regulating the cardiovascular system, renal and pulmonary processes, as well as for the development of the vertebrate-specific neural crest cell population and its derivatives. Expectedly, dysregulation of endothelin receptors and the endothelin system leads to a multitude of human diseases. Despite the importance of different types of endothelin receptors for vertebrate development and physiology, current knowledge on endothelin ligand-receptor interactions, on the expression of endothelin receptors and their ligands, and on the functional roles of the endothelin system for embryonic development and in adult vertebrates is very much biased towards amniote vertebrates. Recent analyses from a variety of vertebrate lineages, however, have shown that the endothelin system in lineages such as teleost fish and lampreys is more diverse and is divergent from the mammalian endothelin system. This diversity is mainly based on differential evolution of numerous endothelin system components among vertebrate lineages generated by two rounds of whole genome duplication (three in teleosts) during vertebrate evolution. Here we review current understanding of the evolutionary history of the endothelin receptor family in vertebrates supplemented with surveys on the endothelin receptor gene complement of

  9. New method for evaluation of cervical vertebral maturation based on angular measurements.

    PubMed

    Alhadlaq, Adel M; Al-Shayea, Eman I

    2013-04-01

    To investigate the validity of a new approach to assess the cervical vertebral maturation based on angular measurements of the lower border concavity of cervical vertebral bodies. Hand-wrist and lateral cephalometric radiographs of 197 male subjects with age range of 10-15 years attending the orthodontic clinic at King Saud University, Riyadh, Kingdom of Saudi Arabia were utilized. The study was carried out between September 2009 and May 2011. The study sample was divided into 6 groups (group 1: 10 years to group 6: 15 years) based on the chronological age of the subject. The skeletal age of the subjects was determined using Greulich and Pyle's standard radiographic atlas, and skeletal maturation was assessed by Fishman's skeletal maturity indicators. The cervical vertebral maturation (CVM) of subjects was determined using angular measurements of the second, third, and fourth cervical vertebral bodies. The validity of the newly developed method was assessed by examining the correlation between CVM stages determined by the angular measurements and the skeletal maturation level as determined by the standard hand-wrist methods. A significant correlation (r=0.94) was found between the angular CVM stages and the skeletal age determined by Greulich and Pyle's atlas from hand-wrist radiographs. Also, a high correlation (r=0.94) was found between the angular CVM stages and the Fishman's hand-wrist skeletal maturity indicators. The new angular measurement approach to determine CVM is valid and has the potential to be applied in assessing skeletal maturity level in growing male children.

  10. Toward understanding the evolution of vertebrate gene regulatory networks: comparative genomics and epigenomic approaches.

    PubMed

    Martinez-Morales, Juan R

    2016-07-01

    Vertebrates, as most animal phyla, originated >500 million years ago during the Cambrian explosion, and progressively radiated into the extant classes. Inferring the evolutionary history of the group requires understanding the architecture of the developmental programs that constrain the vertebrate anatomy. Here, I review recent comparative genomic and epigenomic studies, based on ChIP-seq and chromatin accessibility, which focus on the identification of functionally equivalent cis-regulatory modules among species. This pioneer work, primarily centered in the mammalian lineage, has set the groundwork for further studies in representative vertebrate and chordate species. Mapping of active regulatory regions across lineages will shed new light on the evolutionary forces stabilizing ancestral developmental programs, as well as allowing their variation to sustain morphological adaptations on the inherited vertebrate body plan. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Vertebral osteomyelitis with a rare etiology diagnosed by fine-needle aspiration cytology.

    PubMed

    B N, Nandeesh; Kini, Usha; Alexander, Betty

    2010-05-01

    Invasive fungal infections are rare in immunocompromised individuals, but are not uncommon in immunologically compromised patients. Bone involvement by these infections, though exceedingly rare, may occur due to direct extension of the infection from a neighboring organ or due to hematogenous dissemination in critically ill patients. Still rarer is the invasive aspergillosis involving either the vertebral body or the intervertebral disc with extension into the extradural space as an abscess. We report one such case of vertebral osteomyelitis due to Aspergillus diagnosed by FNAC in a well-controlled diabetic patient who presented with nonspecific symptoms and in whom a clinical and radiological diagnosis of Pott's spine was considered. The present case stresses the importance of early cytologic diagnosis of vertebral Aspergillus osteomyelitis, which in conjunction with appropriate timely medical and surgical treatment, offers good recovery without much sequelae or threat to life.

  12. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies.

    PubMed

    Aikawa, Takeshi; Kanazono, Shinichi; Yoshigae, Yuki; Sharp, Nicholas J H; Muñana, Karen R

    2007-07-01

    To describe diagnostic findings, surgical technique, and outcome in dogs with thoracic spinal canal stenosis and vertebral instability secondary to congenital vertebral anomalies. Retrospective clinical study. Dogs (n=9) with thoracic spinal canal stenosis. Medical records (1995-1996; 2000-2006) of 9 dogs with a myelographic diagnosis of spinal canal stenosis and/or vertebral instability secondary to congenital vertebral anomaly that were surgically managed by vertebral stabilization with or without laminectomy were reviewed. Data on pre- and postoperative neurologic status, diagnostic findings, surgical techniques, and outcomes were retrieved. Follow-up evaluations were performed at 1, 2, and 6 months. Long-term outcome was assessed by means of clinical examination or owner telephone interviews. Spinal cord compression was confirmed by myelography, and in 2 dogs, dynamic compression by stress myelography. Eight dogs regained the ability to ambulate postoperatively. One dog with a partial recovery regained voluntary movement but did not become ambulatory. Spinal cord injury secondary to congenital vertebral anomaly may have a good outcome when treated by vertebral stabilization with or without laminectomy. Adequate stabilization of the vertebrae and improved neurologic outcome were achieved in most dogs. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate with or without laminectomy is an effective treatment for spinal canal stenosis and vertebral instability secondary to congenital thoracic vertebral anomalies.

  13. Spontaneous Hemothorax, A Rare Face of Vertebral Osteochondroma.

    PubMed

    Sainte, Sarah; Decaluwé, Herbert; Vanbrabant, Peter

    2017-06-01

    Osteochondroma is the most common benign tumor of the bone. It is usually asymptomatic, but complications may result from mechanical injury to adjacent anatomic structures, such as the diaphragm and lung, when located intrathoracically. We report the unusual occurrence of a large hemothorax and lacerated right diaphragm in a 41-year-old woman caused by vertebral osteochondroma affecting the eleventh thoracic vertebra. Thoracoscopic exploration with resection of the osteochondroma and repair of the diaphragm was performed. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Spontaneous hemothorax is a potential life-threatening condition when the initial diagnosis is postponed and hemodynamic instability and hypovolemic shock occurs. Osteochondroma as a cause of spontaneous hemothorax is uncommon but may require urgent surgical intervention with video-assisted thoracoscopic surgery of thoracotomy to control the hemorrhage and prevent recurrence. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Meiotic chromatin diminution in a vertebrate, the holocephalan fish Hydrolagus collie (Chondrichthyes, Holocephali).

    PubMed

    Stanley, H P; Kasinsky, H E; Bols, N C

    1984-01-01

    A histochemical, microdensitometric, and electron microscopic study of testes of the ratfish Hydrolagus colliei shows that an instance of the rare phenomenon of germ line chromatin diminution occurs in this vertebrate species. In primary spermatocytes at metaphase I a spherical mass of heterochromatin accumulates at one side of the metaphase plate. At anaphase I the heterochromatic mass is left in the equatorial cytoplasm and is passed into one of the two secondary spermatocytes formed during cytokinesis. As nuclear membranes are being restored, a double membrane envelope is also formed around the heterochromatic mass, which is then termed the 'chromatin diminution body' (CDB). At second meiotic division the CDB is included in the cytoplasm of one of the four spermatids and retained there, apparently unchanged, until mid-spermiogenesis. At that time the CDB becomes adherent to the spermatid plasma membrane and is pinched off from the spermatid by a process of apocrine exocytosis, taking a layer of spermatid plasma membrane along with it. Simultaneously this tri-membrane CDB is taken into the adjacent Sertoli cell by endocytosis, thereby acquiring a fourth membrane layer, a part of the Sertoli cell plasma membrane. The CDBs are subsequently phagocytized, possibly first fusing with dense, multilaminate bodies in the Sertoli cell cytoplasm. The CDB chromatin mass is strongly positive with the Feulgen method for DNA and the alkaline fast green method for histones. Microdensitometric analysis shows that the discarded chromatin amounts to about 10% of the diploid nuclear content and that it appears to be part of the normal diploid complement rather than DNA amplified during meiosis.

  15. Vascular Plant and Vertebrate Inventory of Tuzigoot National Monument

    USGS Publications Warehouse

    Powell, Brian F.; Albrecht, E.W.; Halvorson, William Lee; Schmidt, Cecilia A.; Anning, P.; Docherty, K.

    2005-01-01

    Executive Summary From 2002 to 2004, we surveyed for plants and vertebrates (amphibians, reptiles, birds, and mammals) at Tuzigoot National Monument (NM) and adjacent areas in Arizona. This was the first effort of its kind in the area and was part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. In addition to our own surveys, we also compiled a complete list of species that have been found by previous studies. We found 330 species, including 142 that had not previously been recorded at the monument (Table 1). We found 39 species of non-native plants, 11 non-native fishes, three non-native birds, and one non-native species each of amphibian and mammal. Based on our work and that of others, there have been 597 species of plants and vertebrates found at the monument. The bird community at the monument had the highest species richness of any national park unit in central and southern Arizona. We found all other taxa to have intermediate species richness compared to other park units in the region. This extraordinary species richness observed for birds, as well as for some other taxa, is due primarily to Tavasci Marsh and the Verde River, two critical sources of perennial water, which provide habitat for many regionally rare or uncommon species. The location of the monument at the northern edge of the Sonoran Desert and at the southern edge of the Mogollon Rim also plays an important role in determining the distribution and community composition of the plant and vertebrate communities. Based on our findings, we believe the high number of non-native species, especially fish and plants, should be of particular management concern. We detail other management challenges, most notably the rapid increase in housing and associated commercial development near the monument, which will continue to impact the plant and vertebrate communities. Based on our data and a review of past studies, we believe the

  16. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis

    PubMed Central

    Irie, Naoki; Kuratani, Shigeru

    2011-01-01

    One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates. PMID:21427719

  17. A calibration methodology of QCT BMD for human vertebral body with registered micro-CT images.

    PubMed

    Dall'Ara, E; Varga, P; Pahr, D; Zysset, P

    2011-05-01

    The accuracy of QCT-based homogenized finite element (FE) models is strongly related to the accuracy of the prediction of bone volume fraction (BV/TV) from bone mineral density (BMD). The goal of this study was to establish a calibration methodology to relate the BMD computed with QCT with the BV/TV computed with micro-CT (microCT) over a wide range of bone mineral densities and to investigate the effect of region size in which BMD and BV/TV are computed. Six human vertebral bodies were dissected from the spine of six donors and scanned submerged in water with QCT (voxel size: 0.391 x 0.391 x 0.450 mm3) and microCT (isotropic voxel size: 0.018(3) mm3). The microCT images were segmented with a single level threshold. Afterward, QCT-grayscale, microCT-grayscale, and microCT-segmented images were registered. Two isotropic grids of 1.230 mm (small) and 4.920 mm (large) were superimposed on every image, and QCT(BMD) was compared both with microCT(BMD) and microCT(BV/TV) for each grid cell. The ranges of QCT(BMD) for large and small regions were 9-559 mg/cm3 and -90 to 1006 mg/cm3, respectively. QCT(BMD) was found to overestimate microCT(BMD). No significant differences were found between the QCT(BMD)-microCT(BV/TV) regression parameters of the two grid sizes. However, the R2 was higher, and the standard error of the estimate (SEE) was lower for large regions when compared to small regions. For the pooled data, an extrapolated QCTBMD value equal to 1062 mg/ cm3 was found to correspond to 100% microCT(BV/TV). A calibration method was defined to evaluate BV/TV from QCTBMD values for cortical and trabecular bone in vitro. The QCT(BMD-microCT(BV/TV) calibration was found to be dependent on the scanned vertebral section but not on the size of the regions. However, the higher SEE computed for small regions suggests that the deleterious effect of QCT image noise on FE modelling increases with decreasing voxel size.

  18. Dry paths effectively reduce road mortality of small and medium-sized terrestrial vertebrates.

    PubMed

    Niemi, Milla; Jääskeläinen, Niina C; Nummi, Petri; Mäkelä, Tiina; Norrdahl, Kai

    2014-11-01

    Wildlife passages are widely used mitigation measures designed to reduce the adverse impacts of roads on animals. We investigated whether road kills of small and medium-sized terrestrial vertebrates can be reduced by constructing dry paths adjacent to streams that pass under road bridges. The study was carried out in southern Finland during the summer of 2008. We selected ten road bridges with dry paths and ten bridges without them, and an individual dry land reference site for each study bridge on the basis of landscape and traffic features. A total of 307 dead terrestrial vertebrates were identified during the ten-week study period. The presence of dry paths decreased the amount of road-killed terrestrial vertebrates (Poisson GLMM; p < 0.001). That was true also when considering amphibians alone (p < 0.001). The evidence on road-kills on mammals was not such clear. In the mammal model, a lack of dry paths increased the amount of carcasses (p = 0.001) whereas the number of casualties at dry path bridges was comparable with dry land reference sites. A direct comparison of the dead ratios suggests an average efficiency of 79% for the dry paths. When considering amphibians and mammals alone, the computed effectiveness was 88 and 70%, respectively. Our results demonstrate that dry paths under road bridges can effectively reduce road-kills of small and medium-sized terrestrial vertebrates, even without guiding fences. Dry paths seemed to especially benefit amphibians which are a threatened species group worldwide and known to suffer high traffic mortality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A review of the natural history of adult Cetoniinae (Coleoptera: Scarabaeidae) from Argentina and adjacent countries.

    PubMed

    Di Iorio, Osvaldo

    2014-04-17

    A compilation of the known natural history of adult Cetoniinae (Coleoptera: Scarabaeidae) from Argentina and adjacent countries is provided. Food items of adult Cetoniinae include pollen and/or nectar (flower visitors), sap and/or slime flux, ripened fruits on plants, green tissues and leaves, and honey. Of the 36 species of Cetoniinae from Argentina, food items are known only for 11 species (30.5%). Attraction to light and bait-traps, adult activity periods, vertebrate predators, and the occurrence in bird nests are presented and discussed. Other insects that share the same food sources and bait-traps with Cetoniinae are mentioned.

  20. Vertebral osteoporosis: perfused animal cadaver model for testing new vertebroplastic agents.

    PubMed

    Hoell, Thomas; Huschak, Gerald; Beier, Andre; Holzhausen, Hans-Juergen; Meisel, Hans-Joerg; Emmrich, Frank

    2010-12-01

    Experimental study. It was aimed to establish a cadaver model to imitate osteoporotic perfused vertebral bone and to allow for transpedicular transfer of bone cement and various new materials into vertebrae. The model was perfused to simulate vertebroplasty in the presence of transvertebral blood flow. The injection of bone cement into vertebrae bears the risk of irreversible discharge of material into the venous system of the spinal canal. The bovine cadaver model studied allows visual studies of material distribution in a vertebral bone, the potential spill-out of material, and quantification of washout and disintegration phenomena. Thoracic and lumbar vertebrae from 1-year-old calves were cut transversally into 5 mm slices, macerated, and decalcified. The softened bone slices were compressed between 2 transparent plastic discs. A standard vertebroplasty cannula (outer diameter 3.5 mm, inner diameter 2.5 mm) was inserted into the vertebral body via the pedicle to transfer the different vertebroplasty materials. Arterial blood flow was simulated by means of liquid irrigation via 2 needles in the ventral part of the vertebral body slice. Metal powder was mixed with the solution to indicate the blood flow in the bone. The model was evaluated with the vertebroplasty cement polymethylmethacrylate. The model permitted visualization of the insertion and distribution of vertebroplasty materials. Liquid bone cement was effused into the spinal canal as in the clinical situation. Higher modulus cement acted in the same way as in clinical vertebroplasty. Rigid vertebroplasty agents led to trabecular fractures and stable mechanical interactions with the bone and eventually moved dorsal bone fragments into the spinal canal. Sedimentation of the metal powder indicated regions of perfusion. The model simulated the clinical behavior of liquid and higher modulus vertebroplasty agents in the presence of blood flow. It enabled safe ex vivo testing of the mechanical and physical

  1. A single posterior approach for multilevel modified vertebral column resection in adults with severe rigid congenital kyphoscoliosis: a retrospective study of 13 cases.

    PubMed

    Wang, Yan; Zhang, Yonggang; Zhang, Xuesong; Huang, Peng; Xiao, Songhua; Wang, Zheng; Liu, Zhengsheng; Liu, Baowei; Lu, Ning; Mao, Keya

    2008-03-01

    We report a multilevel modified vertebral column resection (MVCR) through a single posterior approach and clinical outcomes for treatment of severe congenital rigid kyphoscoliosis in adults. Transpedicular eggshell osteotomies and vertebral column resection are two techniques for the surgical treatment of rigid severe spine deformities. The authors developed a new technique combining the two surgical methods as a MVCR, through a single posterior approach, for surgical treatment of severe congenital rigid kyphoscoliosis in adults. Thirteen adult patients with severe rigid congenital kyphoscoliosis deformity were treated by a single posterior approach using a MVCR technique. The surgery processes included a one-stage posterior transpedicular eggshell technique first, and then expanded the eggshell technique to adjacent intervertebra space through abrasive reduction of the vertebral cortices from inside out. All posterior vertebral elements were removed including the cortical vertebral bone around the neural canal. Range of resection of the vertebral column at the apex of the deformity included apical vertebra and both cephalic and/or caudal adjacent wedged vertebrae. Totally, 32 vertebrae had been removed in 13 patients, with 2.42 vertebrae being removed on average in each case. The average fusion extent was 7.69 vertebrae. Mean operation time was 266 min with average blood loss of 2,411.54 ml during operation. Patients were followed up for an average duration of 2.54 years. Deformity correction was 59% in the coronal plane (from 79.7 degrees to 32.4 degrees ) postoperatively and 33.7 degrees (57% correction) at 2 years follow-up. In the sagittal plane, correction was from preoperative 85.9 degrees to 27.5 degrees immediately after operation, and 32.0 degrees at 2 years follow-up. Postoperative pain was reduced from preoperative 1.77 to 0.54 at 2 years follow-up in visual analog scale. SRS-24 scale was from 38.2 preoperatively to 76.9 at 2 years follow

  2. Primary extracranial vertebral artery aneurysms.

    PubMed

    Morasch, Mark D; Phade, Sachin V; Naughton, Peter; Garcia-Toca, Manuel; Escobar, Guillermo; Berguer, Ramon

    2013-05-01

    Extracranial vertebral artery aneurysms are uncommon and are usually associated with trauma or dissection. Primary cervical vertebral aneurysms are even rarer and are not well described. The presentation and natural history are unknown and operative management can be difficult. Accessing aneurysms at the skull base can be difficult and, because the frail arteries are often afflicted with connective tissue abnormalities, direct repair can be particularly challenging. We describe the presentation and surgical management of patients with primary extracranial vertebral artery aneurysms. In this study we performed a retrospective, multi-institutional review of patients with primary aneurysms within the extracranial vertebral artery. Between January 2000 and January 2011, 7 patients, aged 12-56 years, were noted to have 9 primary extracranial vertebral artery aneurysms. All had underlying connective tissue or another hereditary disorder, including Ehler-Danlos syndrome (n=3), Marfan's disease (n=2), neurofibromatosis (n=1), and an unspecified connective tissue abnormality (n=1). Eight of 9 aneurysms were managed operatively, including an attempted bypass that ultimately required vertebral ligation; the contralateral aneurysm on this patient has not been treated. Open interventions included vertebral bypass with vein, external carotid autograft, and vertebral transposition to the internal carotid artery. Special techniques were used for handling the anastomoses in patients with Ehler-Danlos syndrome. Although endovascular exclusion was not performed in isolation, 2 hybrid procedures were performed. There were no instances of perioperative stroke or death. Primary extracranial vertebral artery aneurysms are rare and occur in patients with hereditary disorders. Operative intervention is warranted in symptomatic patients. Exclusion and reconstruction may be performed with open and hybrid techniques with low morbidity and mortality. Copyright © 2013 Elsevier Inc. All rights

  3. Analysis of Long Bone and Vertebral Failure Patterns.

    DTIC Science & Technology

    1983-03-01

    apophyseal joints, lumbar spondylosis and low back pain in Jayson, M.I.V. (ed) The Lumbar Spine and Back Pain, Pitman Medical, pp. 83-114. PUBLICATIONS...NOTES Material in this report was presented at the International Society for the Study of the Lumbar Spine, Toronto, Canada, June 6-10, 1982. 19. KEY...intervertebral disc and end plate fragments were observed in the vertebral bodies (G84 L2 -3 ) of the upper lumbar levels. Also fragments of trabecular bone

  4. Analysis of Long Bone and Vertebral Failure Patterns.

    DTIC Science & Technology

    1982-03-01

    Roberts, B., 1976. Pathology of degenerative spondylosis in The Lumbar Spine and Back Pain (ed. M. Jayson), New York, Grune & Stratton, Inc., pp. 55-75...compressive loading failed by end plate or vertebral body fracture (Percy, 1957). The fractures were most common in the upper lumbar level, and the fracture...and upper lumbar regions which is supported Iby Perey’s findings (1957). The debris in the hematopoietic spaces appears Ito be bone fragments, but it

  5. Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution

    PubMed Central

    Crees, Jennifer J.; Hansford, James; Jeffree, Timothy E.; Crumpton, Nick; Kurniawan, Iwan; Setiyabudi, Erick; Paranggarimu, Umbu; Dosseto, Anthony; van den Bergh, Gerrit D.

    2017-01-01

    Historical patterns of diversity, biogeography and faunal turnover remain poorly understood for Wallacea, the biologically and geologically complex island region between the Asian and Australian continental shelves. A distinctive Quaternary vertebrate fauna containing the small-bodied hominin Homo floresiensis, pygmy Stegodon proboscideans, varanids and giant murids has been described from Flores, but Quaternary faunas are poorly known from most other Lesser Sunda Islands. We report the discovery of extensive new fossil vertebrate collections from Pleistocene and Holocene deposits on Sumba, a large Wallacean island situated less than 50 km south of Flores. A fossil assemblage recovered from a Pleistocene deposit at Lewapaku in the interior highlands of Sumba, which may be close to 1 million years old, contains a series of skeletal elements of a very small Stegodon referable to S. sumbaensis, a tooth attributable to Varanus komodoensis, and fragmentary remains of unidentified giant murids. Holocene cave deposits at Mahaniwa dated to approximately 2000–3500 BP yielded extensive material of two new genera of endemic large-bodied murids, as well as fossils of an extinct frugivorous varanid. This new baseline for reconstructing Wallacean faunal histories reveals that Sumba's Quaternary vertebrate fauna, although phylogenetically distinctive, was comparable in diversity and composition to the Quaternary fauna of Flores, suggesting that similar assemblages may have characterized Quaternary terrestrial ecosystems on many or all of the larger Lesser Sunda Islands. PMID:28855367

  6. [Initial clinical experience with radiofrequency-guided percutaneous vertebral augmentation in the treatment of vertebral compression fractures].

    PubMed

    Marosfoi, Miklós; Kulcsár, Zsolt; Berentei, Zsolt; Gubucz, István; Szikora, István

    2011-07-30

    Percutaenous Vertebroplasty (PVP) is effective in alleviating pain and facilitating early mobilization following vertebral compression fractures. The relatively high risk of extravertebral leakage due to uncontrolled delivery of low viscosity bone cement is an inherent limitation of the technique. The aim of this research is to investigate the ability of controlled cement delivery in decreasing the rate of such complications by applying radiofrequency heating to regulate cement viscosity. Thirty two vetebrae were treated in 28 patients as part of an Ethics Committee approved multicenter clinical trial using RadioFreqency assisted Percutaenous Vertebral Augmentation (RF-PVA) technique. This technique is injecting low viscosity polymethylmethacrylate (PMMA) bone cement using a pressure controlled hydraulic pump and applying radiofrequency heating to increase cement viscosity prior to entering the vertebral body. All patients were screened for any cement leakage by X-ray and CT scan. The intensity of pain was recorded on a Visual Analog Scale (VAS) and the level of physical activity on the Oswestry Disability Index (ODI) prior to, one day, one month and three months following procedure. All procedures were technically successful. There were no clinical complication, intraspinal or intraforaminal cement leakage. In nine cases (29%) a small amount of PMMA entered the intervertebral space through the broken end plate. Intensity of pain by VAS was reduced from a mean of 7.0 to 2.5 and physical inactivity dropped on the ODI from 52% to 23% three months following treatment. In this small series controlled cement injection using RF-PVA was capable of preventing clinically hazardous extravertebral cement leakage while achieving outcomes similar to that of conventional vertebroplasty.

  7. The evolution of vertebrate somatostatin receptors and their gene regions involves extensive chromosomal rearrangements

    PubMed Central

    2012-01-01

    Background Somatostatin and its related neuroendocrine peptides have a wide variety of physiological functions that are mediated by five somatostatin receptors with gene names SSTR1-5 in mammals. To resolve their evolution in vertebrates we have investigated the SSTR genes and a large number of adjacent gene families by phylogeny and conserved synteny analyses in a broad range of vertebrate species. Results We find that the SSTRs form two families that belong to distinct paralogons. We observe not only chromosomal similarities reflecting the paralogy relationships between the SSTR-bearing chromosome regions, but also extensive rearrangements between these regions in teleost fish genomes, including fusions and translocations followed by reshuffling through intrachromosomal rearrangements. These events obscure the paralogy relationships but are still tractable thanks to the many genomes now available. We have identified a previously unrecognized SSTR subtype, SSTR6, previously misidentified as either SSTR1 or SSTR4. Conclusions Two ancestral SSTR-bearing chromosome regions were duplicated in the two basal vertebrate tetraploidizations (2R). One of these ancestral SSTR genes generated SSTR2, -3 and -5, the other gave rise to SSTR1, -4 and -6. Subsequently SSTR6 was lost in tetrapods and SSTR4 in teleosts. Our study shows that extensive chromosomal rearrangements have taken place between related chromosome regions in teleosts, but that these events can be resolved by investigating several distantly related species. PMID:23194088

  8. Pulmonary Embolism from Cement Augmentation of the Vertebral Body.

    PubMed

    Ignacio, Jose Manuel Fernando; Ignacio, Katrina Hannah Dizon

    2018-04-01

    Pulmonary cement embolism (PCE) can follow cement augmentation procedures for spine fractures due to osteoporosis, traumatic injuries, and painful metastatic lesions. PCE is underreported and it is likely that many cases remain undiagnosed. Risk factors for PCE have been identified, which can help alert clinicians to patients likely to develop the condition, and there are recommended techniques to reduce its incidence. Most patients with PCE are asymptomatic or only develop transient symptoms, although a few may exhibit florid cardiorespiratory manifestations which can ultimately be fatal. Diagnosis is mainly by radiographic means, commonly using simple radiographs and computed tomography scans of the chest with ancillary tests that assess the patient's cardiorespiratory condition. Management depends on the location and size of the emboli as well as the patient's symptomatology. The aim of this review is to raise awareness of the not uncommon complications of PCE following vertebral cement augmentation and the possibility of serious sequelae. Recommendations for the diagnosis and management of PCE are presented, based on the most recent literature.

  9. Estrogenic modulation of auditory processing: a vertebrate comparison

    PubMed Central

    Caras, Melissa L.

    2013-01-01

    Sex-steroid hormones are well-known regulators of vocal motor behavior in several organisms. A large body of evidence now indicates that these same hormones modulate processing at multiple levels of the ascending auditory pathway. The goal of this review is to provide a comparative analysis of the role of estrogens in vertebrate auditory function. Four major conclusions can be drawn from the literature: First, estrogens may influence the development of the mammalian auditory system. Second, estrogenic signaling protects the mammalian auditory system from noise- and age-related damage. Third, estrogens optimize auditory processing during periods of reproductive readiness in multiple vertebrate lineages. Finally, brain-derived estrogens can act locally to enhance auditory response properties in at least one avian species. This comparative examination may lead to a better appreciation of the role of estrogens in the processing of natural vocalizations and may provide useful insights toward alleviating auditory dysfunctions emanating from hormonal imbalances. PMID:23911849

  10. There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development.

    PubMed

    Richardson, M K; Hanken, J; Gooneratne, M L; Pieau, C; Raynaud, A; Selwood, L; Wright, G M

    1997-08-01

    Embryos of different species of vertebrate share a common organisation and often look similar. Adult differences among species become more apparent through divergence at later stages. Some authors have suggested that members of most or all vertebrate clades pass through a virtually identical, conserved stage. This idea was promoted by Haeckel, and has recently been revived in the context of claims regarding the universality of developmental mechanisms. Thus embryonic resemblance at the tailbud stage has been linked with a conserved pattern of developmental gene expression - the zootype. Haeckel's drawings of the external morphology of various vertebrates remain the most comprehensive comparative data purporting to show a conserved stage. However, their accuracy has been questioned and only a narrow range of species was illustrated. In view of the current widespread interest in evolutionary developmental biology, and especially in the conservation of developmental mechanisms, re-examination of the extent of variation in vertebrate embryos is long overdue. We present here the first review of the external morphology of tailbud embryos, illustrated with original specimens from a wide range of vertebrate groups. We find that embryos at the tailbud stage - thought to correspond to a conserved stage - show variations in form due to allometry, heterochrony, and differences in body plan and somite number. These variations foreshadow important differences in adult body form. Contrary to recent claims that all vertebrate embryos pass through a stage when they are the same size, we find a greater than 10-fold variation in greatest length at the tailbud stage. Our survey seriously undermines the credibility of Haeckel's drawings, which depict not a conserved stage for vertebrates, but a stylised amniote embryo. In fact, the taxonomic level of greatest resemblance among vertebrate embryos is below the subphylum. The wide variation in morphology among vertebrate embryos is

  11. Repeated vertebral augmentation for new vertebral compression fractures of postvertebral augmentation patients: a nationwide cohort study

    PubMed Central

    Liang, Cheng-Loong; Wang, Hao-Kwan; Syu, Fei-Kai; Wang, Kuo-Wei; Lu, Kang; Liliang, Po-Chou

    2015-01-01

    Purpose Postvertebral augmentation vertebral compression fractures are common; repeated vertebral augmentation is usually performed for prompt pain relief. This study aimed to evaluate the incidence and risk factors of repeat vertebral augmentation. Methods We performed a retrospective, nationwide, population-based longitudinal observation study, using the National Health Insurance Research Database (NHIRD) of Taiwan. All patients who received vertebral augmentation for vertebral compression fractures were evaluated. The collected data included patient characteristics (demographics, comorbidities, and medication exposure) and repeat vertebral augmentation. Kaplan–Meier and stratified Cox proportional hazard regressions were performed for analyses. Results The overall incidence of repeat vertebral augmentation was 11.3% during the follow-up until 2010. Patients with the following characteristics were at greater risk for repeat vertebral augmentation: female sex (AOR=1.24; 95% confidence interval [CI]: 1.10–2.36), advanced age (AOR=1.60; 95% CI: 1.32–2.08), diabetes mellitus (AOR=4.31; 95% CI: 4.05–5.88), cerebrovascular disease (AOR=4.09; 95% CI: 3.44–5.76), dementia (AOR=1.97; 95% CI: 1.69–2.33), blindness or low vision (AOR=3.72; 95% CI: 2.32–3.95), hypertension (AOR=2.58; 95% CI: 2.35–3.47), and hyperlipidemia (AOR=2.09; 95% CI: 1.67–2.22). Patients taking calcium/vitamin D (AOR=2.98; 95% CI: 1.83–3.93), bisphosphonates (AOR=2.11; 95% CI: 1.26–2.61), or calcitonin (AOR=4.59; 95% CI: 3.40–5.77) were less likely to undergo repeat vertebral augmentation; however, those taking steroids (AOR=7.28; 95% CI: 6.32–8.08), acetaminophen (AOR=3.54; 95% CI: 2.75–4.83), or nonsteroidal anti-inflammatory drugs (NSAIDs) (AOR=6.14; 95% CI: 5.08–7.41) were more likely to undergo repeat vertebral augmentation. Conclusion We conclude that the incidence of repeat vertebral augmentation is rather high. An understanding of risk factors predicting repeat

  12. High Incidence of Vertebral Fractures in Children with Acute Lymphoblastic Leukemia 12 Months After the Initiation of Therapy

    PubMed Central

    Alos, Nathalie; Grant, Ronald; Ramsay, Timothy; Halton, Jacqueline; Cummings, Elizabeth A.; Miettunen, Paivi M.; Abish, Sharon; Atkinson, Stephanie; Barr, Ronald; Cabral, David A.; Cairney, Elizabeth; Couch, Robert; Dix, David B.; Fernandez, Conrad V.; Hay, John; Israels, Sara; Laverdière, Caroline; Lentle, Brian; Lewis, Victor; Matzinger, MaryAnn; Rodd, Celia; Shenouda, Nazih; Stein, Robert; Stephure, David; Taback, Shayne; Wilson, Beverly; Williams, Kathryn; Rauch, Frank; Siminoski, Kerry; Ward, Leanne M.

    2014-01-01

    Purpose Vertebral fractures due to osteoporosis are a potential complication of childhood acute lymphoblastic leukemia (ALL). To date, the incidence of vertebral fractures during ALL treatment has not been reported. Patient and Methods We prospectively evaluated 155 children with ALL during the first 12 months of leukemia therapy. Lateral thoracolumbar spine radiographs were obtained at baseline and 12 months. Vertebral bodies were assessed for incident vertebral fractures using the Genant semi-quantitative method, and relevant clinical indices such as spine bone mineral density (BMD), back pain and the presence of vertebral fractures at baseline were analyzed for association with incident vertebral fractures. Results Of the 155 children, 25 (16%, 95% Confidence Interval (CI) 11% to 23%) had a total of 61 incident vertebral fractures, of which 32 (52%) were moderate or severe. Thirteen of the 25 children with incident vertebral fractures (52%) also had fractures at baseline. Vertebral fractures at baseline increased the odds of an incident fracture at 12 months by an odds ratio of 7.3 (95% CI 2.3 to 23.1, p = 0.001). In addition, for every one standard deviation reduction in spine BMD Z-score at baseline, there was 1.8-fold increased odds of incident vertebral fracture at 12 months (95% CI 1.2 to 2.7, p = 0.006). Conclusion Children with ALL have a high incidence of vertebral fractures after 12 months of chemotherapy, and the presence of vertebral fractures and reductions in spine BMD Z-scores at baseline are highly associated clinical features. PMID:22734031

  13. Aspects of vertebrate gustatory phylogeny: morphology and turnover of chick taste bud cells.

    PubMed

    Ganchrow, J R; Ganchrow, D; Royer, S M; Kinnamon, J C

    1993-10-01

    The taste bud is a receptor form observed across vertebrates. The present report compares chick taste buds to those of other vertebrates using light and electron microscopy. Unlike mammals, but common to many modern avians, the dorsal surface of chick anterior tongue lacks taste papillae and taste buds. Ultrastructurally, chick buds located in the anterior floor of the mouth (as in some reptiles and amphibians) and palate contain dark, intermediate, light, and basal cell types. Dark, intermediate, and light cells extend microvilli into intragemmal lumina and pores communicating with the oral cavity. As specialized features, dark cell apices lack dense granules and exhibit short microvilli relative to light and intermediate cells. Dark cell cytoplasmic fingers envelop intragemmal nerve fibers and cells as in other species, and sometimes contain abundant clear vesicles. Nerve profile expansions often are located adjacent to dark, intermediate, and light cell nuclei. Classical afferent synaptic contacts are rarely observed. Taste cell turnover is suggested by mitotic and degenerating figures in chick buds. In addition, tritiated thymidine injected into hatchlings, whose anterior mandibular oral taste bud population approximates that in adults, reveals a turnover rate of about 4.5 days. This is about half that observed in altricial mammals, reflecting a species difference or developmental factor in precocial avians. It is concluded that chick taste buds exhibit morphologic features common to other vertebrate buds with specializations reflecting the influences of niche, glandular relations, and/or age.

  14. [Effect of different bone cement dispersion types in the treatment of osteoporotic vertebral compression fracture].

    PubMed

    Zhao, Yong-Sheng; Li, Qiang; Li, Qiang; Zheng, Yan-Ping

    2017-05-25

    To observe different bone cement dispersion types of PVP, PKP and manipulative reduction PVP and their effects in the treatment of senile osteoporotic vertebral compression fractures and the bone cement leakage rate. The clinical data of patients with osteoporotic vertebral compression fractures who underwent unilateral vertebroplasty from January 2012 to January 2015 was retrospectively analyzed. Of them, 56 cases including 22 males and 34 females aged from 60 to 78 years old were treated by PVP operation; Fouty-eight cases including 17 males and 31 females aged from 61 to 79 years old were treated by PKP operation; Forty-three cases including 15 males and 28 females aged from 60 to 76 years old were treated by manipulative reduction PVP operation. AP and lateral DR films were taken after the operation; the vertebral bone cement diffusion district area and mass district area were calculated with AutoCAD graphics processing software by AP and lateral DR picture, then ratio(K) of average diffusion area and mass area were calculated, defining K<50% as mass type, 50%<=K<=100% as mixed type and K>100% as diffusion type. Different bone cement dispersion types of PVP, PKP and manipulative reduction PVP operation were analyzed. According to bone cement dispersion types, patients were divided into diffusion type, mixed type and mass type groups.Visual analogue scale (VAS), vertebral body compression rate, JOA score and bone cement leakage rate were observed. All patients were followed up for 12-24 months with an average of 17.2 months. There was significant difference in bone cement dispersion type among three groups ( P <0.05). The constituent ratio of diffusion type, mixed type and mass type in PVP operation was 46.43%, 35.71%, 17.86%, in PKP was 16.67%, 37.50% , 45.83%, and in manipulative reduction PVP was 37.21%, 44.19% and 18.60%, respectively. PVP operation and manipulative reduction PVP were mainly composed of diffusion type and mixed type, while PKP was mainly

  15. A comparative study of high-viscosity cement percutaneous vertebroplasty vs. low-viscosity cement percutaneous kyphoplasty for treatment of osteoporotic vertebral compression fractures.

    PubMed

    Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui

    2016-06-01

    The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (P<0.05). Both groups showed significant improvements in pain relief and functional capacity status after surgery (P<0.05). It was concluded that high-viscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.

  16. Research information needs on terrestrial vertebrate species of the interior Columbia basin and northern portions of the Klamath and Great Basins: a research, development, and application database.

    Treesearch

    Bruce G. Marcot

    1997-01-01

    Research information needs on selected invertebrates and all vertebrates of the interior Columbia River basin and adjacent areas in the United States were collected into a research, development, and application database as part of the Interior Columbia Basin Ecosystem Management Project. The database includes 482 potential research study topics on 232 individual...

  17. [Vertebroplasty: state of the art].

    PubMed

    Chiras, J; Barragán-Campos, H M; Cormier, E; Jean, B; Rose, M; LeJean, L

    2007-09-01

    Over the last 10 years, there has been much development in the management of metastatic and osteoporotic vertebral compression fractures using vertebroplasty. This percutaneous image-guided interventional radiology procedure allows stabilization of a vertebral body by injection of an acrylic cement and frequently results in significant symptomatic relief. During cement polymerisation, an exothermic reaction may destroy adjacent tumor cells. Advances have been made to reduce complications from extravasation of cement in veins or surrounding soft tissues. Safety relates to experience but also to technical parameters: optimal cement radio-density, adequate digital fluoroscopy unit (single or bi-plane digital angiography unit), development of cements other than PMMA to avoid the risk of adjacent vertebral compression fractures. The rate of symptomatic relief from vertebroplasty performed for its principal indications (vertebral hemangioma, metastases, osteoporotic fractures) reaches 90-95%. The rate of complications is about 2% for metastases and less than 0.5% for osteoporotic fractures. Vertebroplasty plays a major role in the management of specific bone weakening vertebral lesions causing, obviating the need for kyphoplasty.

  18. Comparison of high-viscosity cement vertebroplasty and balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures.

    PubMed

    Wang, Cheng-hu; Ma, Jin-zhu; Zhang, Chuan-chen; Nie, Lin

    2015-01-01

    Percutaneous vertebroplasty is a widely used vertebral augmentation procedure for treating osteoporotic vertebral compression fractures (OVCFs). But high cement leakage rate caused by a low-viscosity cement and high injection pressure has limited its general use. Balloon kyphoplasty (BKP) and high-viscosity cement vertebroplasty (HVCV) are 2 modifications of vertebroplasty designed to decrease cement leakage. To assess the safety and efficacy of HVCV compared with BKP. A prospective cohort study. Department of Spine Surgery, an affiliated hospital of a medical university. One hundred seven patients suffering from painful OVCFs were randomly assigned into HVCV or BKP groups. Visual Analog Scale (VAS), Oswestry Disability Index (ODI), cement leakage, and vertebral height restoration were evaluated. All occurring complications and injected cement volumes were recorded. The follow-up time was one year. VAS and ODI scores improved in both groups, and did not differ significantly between the 2 groups. More cement was used in the BKP group than in HVCV group (4.22 vs. 3.31 mL, P < 0.0001). The incidence of cement leakage in the HVCV group was lower than that of the BKP group (13.24% vs 30.56%, P < 0.05). No symptomatic cement leakages occurred in the HVCV group. In the BKP group, one patient experienced discogenic back pain related to a disc leak, and another patient had asymptomatic cement emboli in the lung related to venous leakage. The mean compression rate before the procedure was 29.98% in the HVCV group and 28.67% in the BKP group (P = 0.94). The vertebral height was improved significantly and maintained at one-year follow-up in both groups. BKP was more effective in vertebral height restoration than HVCV (44.87% vs. 23.93%, P < 0.0001). There was one case of a new adjacent vertebral fracture in the HVCV group (2%), and 4 cases of new nonadjacent vertebral fractures in the BKP group (7.84%) (P = 0.18). A single-center and relatively small-sample size study. HVCV

  19. The scaling and temperature dependence of vertebrate metabolism

    PubMed Central

    White, Craig R; Phillips, Nicole F; Seymour, Roger S

    2005-01-01

    Body size and temperature are primary determinants of metabolic rate, and the standard metabolic rate (SMR) of animals ranging in size from unicells to mammals has been thought to be proportional to body mass (M) raised to the power of three-quarters for over 40 years. However, recent evidence from rigorously selected datasets suggests that this is not the case for birds and mammals. To determine whether the influence of body mass on the metabolic rate of vertebrates is indeed universal, we compiled SMR measurements for 938 species spanning six orders of magnitude variation in mass. When normalized to a common temperature of 38 °C, the SMR scaling exponents of fish, amphibians, reptiles, birds and mammals are significantly heterogeneous. This suggests both that there is no universal metabolic allometry and that models that attempt to explain only quarter-power scaling of metabolic rate are unlikely to succeed. PMID:17148344

  20. Diversity and Community Composition of Vertebrates in Desert River Habitats

    PubMed Central

    Free, C. L.; Baxter, G. S.; Dickman, C. R.; Lisle, A.; Leung, L. K.-P.

    2015-01-01

    Animal species are seldom distributed evenly at either local or larger spatial scales, and instead tend to aggregate in sites that meet their resource requirements and maximise fitness. This tendency is likely to be especially marked in arid regions where species could be expected to concentrate at resource-rich oases. In this study, we first test the hypothesis that productive riparian sites in arid Australia support higher vertebrate diversity than other desert habitats, and then elucidate the habitats selected by different species. We addressed the first aim by examining the diversity and composition of vertebrate assemblages inhabiting the Field River and adjacent sand dunes in the Simpson Desert, western Queensland, over a period of two and a half years. The second aim was addressed by examining species composition in riparian and sand dune habitats in dry and wet years. Vertebrate species richness was estimated to be highest (54 species) in the riverine habitats and lowest on the surrounding dune habitats (45 species). The riverine habitats had different species pools compared to the dune habitats. Several species, including the agamid Gowidon longirostris and tree frog Litoria rubella, inhabited the riverine habitats exclusively, while others such as the skinks Ctenotus ariadnae and C. dux were captured only in the dune habitats. The results suggest that, on a local scale, diversity is higher along riparian corridors and that riparian woodland is important for tree-dependent species. Further, the distribution of some species, such as Mus musculus, may be governed by environmental variables (e.g. soil moisture) associated with riparian corridors that are not available in the surrounding desert environment. We conclude that inland river systems may be often of high conservation value, and that management should be initiated where possible to alleviate threats to their continued functioning. PMID:26637127

  1. Effect of vertebral shell on injection pressure and intravertebral pressure in vertebroplasty.

    PubMed

    Baroud, Gamal; Vant, Christianne; Giannitsios, Demetri; Bohner, Marc; Steffen, Thomas

    2005-01-01

    An experimental biomechanical study conducted on osteoporotic cadaveric vertebrae. 1) To measure the intravertebral shell pressure and injection pressure; and 2) to determine the effect of the vertebral shell on the intravertebral shell pressure and on the injection pressure. Forces that govern cement flow are an essential component of the cement injection process in vertebroplasty. The vertebral shell may play a significant role in confining the flow of cement in the vertebral body and thereby affecting the intravertebral pressure and injection pressure. A small fenestration was created in the left lateral vertebral shell of 14 vertebrae. A valve to open and close the fenestration and a sensor to measure the intravertebral pressure were attached to the opening. A closed fenestration simulated an intact shell, whereas an open fenestration represented a vented shell. Injection pressure and intravertebral pressure at the shell were recorded during a controlled injection. A closed fenestration resulted in a significant increase in the intravertebral pressure at the shell. During the injection, the shell pressure increased on average to approximately 3.54 +/- 2.91 kPa. Conversely, an open fenestration resulted in an instant relaxation of the shell pressure to the ambient pressure of 0 kPa. Additionally, the injection pressure was approximately 97 times higher than the shell pressure. The presence of vertebral shell seems to be important for intravertebral pressure. However, the intravertebral shell pressure adds very little to the injection pressure.

  2. Quantification of localized vertebral deformities using a sparse wavelet-based shape model.

    PubMed

    Zewail, R; Elsafi, A; Durdle, N

    2008-01-01

    Medical experts often examine hundreds of spine x-ray images to determine existence of various pathologies. Common pathologies of interest are anterior osteophites, disc space narrowing, and wedging. By careful inspection of the outline shapes of the vertebral bodies, experts are able to identify and assess vertebral abnormalities with respect to the pathology under investigation. In this paper, we present a novel method for quantification of vertebral deformation using a sparse shape model. Using wavelets and Independent component analysis (ICA), we construct a sparse shape model that benefits from the approximation power of wavelets and the capability of ICA to capture higher order statistics in wavelet space. The new model is able to capture localized pathology-related shape deformations, hence it allows for quantification of vertebral shape variations. We investigate the capability of the model to predict localized pathology related deformations. Next, using support-vector machines, we demonstrate the diagnostic capabilities of the method through the discrimination of anterior osteophites in lumbar vertebrae. Experiments were conducted using a set of 150 contours from digital x-ray images of lumbar spine. Each vertebra is labeled as normal or abnormal. Results reported in this work focus on anterior osteophites as the pathology of interest.

  3. The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information.

    PubMed

    Irie, Naoki; Sehara-Fujisawa, Atsuko

    2007-01-12

    Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0-8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues

  4. Linking vertebral number to performance of aquatic escape responses in the axolotl (Ambystoma mexicanum).

    PubMed

    Ackerly, Kerri L; Ward, Andrea B

    2015-12-01

    Environmental conditions during early development in ectothermic vertebrates can lead to variation in vertebral number among individuals of the same species. It is often seen that individuals of a species raised at cooler temperatures have more vertebrae than individuals raised at warmer temperatures, although the functional consequences of this variation in vertebral number on swimming performance are relatively unclear. To investigate this relationship, we tested how vertebral number in axolotls (Ambystoma mexicanum) affected performance of aquatic escape responses (C-starts). Axolotls were reared at four temperatures (12-24°C) encompassing their natural thermal range and then transitioned to a mean temperature (18°C) three months before C-starts were recorded. Our results showed variation in vertebral number, but that variation was not significantly affected by developmental temperature. C-start performance among axolotls was significantly correlated with caudal vertebral number, and individuals with more caudal vertebrae were able to achieve greater curvature more quickly during their responses than individuals with fewer vertebrae. However, our results show that these individuals did not achieve greater displacements or velocities, and that developmental temperature did not have any effect on C-start performance. We highlight that the most important aspects of escape swim performance (i.e., how far individuals get from a threat and how quickly they move the most important parts of the body away from that threat) are consistent across individuals regardless of developmental temperature and morphological variation. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Mineralization of the vertebral bodies in Atlantic salmon (Salmo salar L.) is initiated segmentally in the form of hydroxyapatite crystal accretions in the notochord sheath

    PubMed Central

    Wang, Shou; Kryvi, Harald; Grotmol, Sindre; Wargelius, Anna; Krossøy, Christel; Epple, Mattias; Neues, Frank; Furmanek, Tomasz; Totland, Geir K

    2013-01-01

    We performed a sequential morphological and molecular biological study of the development of the vertebral bodies in Atlantic salmon (Salmo salar L.). Mineralization starts in separate bony elements which fuse to form complete segmental rings within the notochord sheath. The nucleation and growth of hydroxyapatite crystals in both the lamellar type II collagen matrix of the notochord sheath and the lamellar type I collagen matrix derived from the sclerotome, were highly similar. In both matrices the hydroxyapatite crystals nucleate and accrete on the surface of the collagen fibrils rather than inside the fibrils, a process that may be controlled by a template imposed by the collagen fibrils. Apatite crystal growth starts with the formation of small plate-like structures, about 5 nm thick, that gradually grow and aggregate to form extensive multi-branched crystal arborizations, resembling dendritic growth. The hydroxyapatite crystals are always oriented parallel to the long axis of the collagen fibrils, and the lamellar collagen matrices provide oriented support for crystal growth. We demonstrate here for the first time by means of synchroton radiation based on X-ray diffraction that the chordacentra contain hydroxyapatite. We employed quantitative real-time PCR to study the expression of key signalling molecule transcripts expressed in the cellular core of the notochord. The results indicate that the notochord not only produces and maintains the notochord sheath but also expresses factors known to regulate skeletogenesis: sonic hedgehog (shh), indian hedgehog homolog b (ihhb), parathyroid hormone 1 receptor (pth1r) and transforming growth factor beta 1 (tgfb1). In conclusion, our study provides evidence for the process of vertebral body development in teleost fishes, which is initially orchestrated by the notochord. PMID:23711083

  6. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    PubMed

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are

  7. Metameric pattern of intervertebral disc/vertebral body is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somites in the mouse embryo.

    PubMed

    Takahashi, Yu; Yasuhiko, Yukuto; Takahashi, Jun; Takada, Shinji; Johnson, Randy L; Saga, Yumiko; Kanno, Jun

    2013-08-15

    The vertebrae are derived from the sclerotome of somites. Formation of the vertebral body involves a process called resegmentation, by which the caudal half of a sclerotome is combined with the rostral half of the next sclerotome. To elucidate the relationship between resegmentation and rostro-caudal patterning of somite, we used the Uncx4.1-LacZ transgene to characterize the resegmentation process. Our observations suggested that in the thoracic and lumbar vertebrae, the Uncx4.1-expressing caudal sclerotome gave rise to the intervertebral disc (IVD) and rostral portion of the vertebral body (VB). In the cervical vertebrae, the Uncx4.1-expressing caudal sclerotome appeared to contribute to the IVD and both caudal and rostral ends of the VB. This finding suggests that the rostro-caudal gene expression boundary does not necessarily coincide with the resegmentation boundary. This conclusion was supported by analyses of Mesp2 KO and Ripply1/2 double KO embryos lacking rostral and caudal properties, respectively. Resegmentation was not observed in Mesp2 KO embryos, but both the IVD and whole VB were formed from the caudalized sclerotome. Expression analysis of IVD marker genes including Pax1 in the wild-type, Mesp2 KO, and Ripply1/2 DKO embryos also supported the idea that a metameric pattern of IVD/VB is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somite. However, in the lumbar region, IVD differentiation appeared to be stimulated by the caudal property and suppressed by the rostral property. Therefore, we propose that rostro-caudal patterning of somites is not a prerequisite for metameric patterning of the IVD and VB, but instead required to stimulate IVD differentiation in the caudal half of the sclerotome. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis.

    PubMed

    Ponrartana, Skorn; Fisher, Carissa L; Aggabao, Patricia C; Chavez, Thomas A; Broom, Alexander M; Wren, Tishya A L; Skaggs, David L; Gilsanz, Vicente

    2016-09-01

    When compared to boys, girls have smaller vertebral cross-sectional area, which conveys a greater spinal flexibility, and a higher prevalence of adolescent idiopathic scoliosis. To test the hypothesis that small vertebral cross-sectional area and tall intervertebral disc height are structural characteristics of patients with adolescent idiopathic scoliosis. Using multiplanar imaging techniques, measures of vertebral cross-sectional area, vertebral height and intervertebral disc height in the lumbar spine were obtained in 35 pairs of girls and 11 pairs of boys with and without adolescent idiopathic scoliosis of the thoracic spine matched for age, height and weight. Compared to adolescents without spinal deformity, girls and boys with adolescent idiopathic scoliosis had, on average, 9.8% (6.68 ± 0.81 vs. 7.40 ± 0.99 cm(2); P = 0.0007) and 13.9% (8.22 ± 0.84 vs. 9.55 ± 1.61 cm(2); P = 0.009) smaller vertebral cross-sectional dimensions, respectively. Additionally, patients with adolescent idiopathic scoliosis had significantly greater values for intervertebral disc heights (9.06 ± 0.85 vs. 7.31 ± 0.62 mm and 9.09 ± 0.87 vs. 7.61 ± 1.00 mm for girls and boys respectively; both P ≤ 0.011). Multiple regression analysis indicated that the presence of scoliosis was negatively associated with vertebral cross-sectional area and positively with intervertebral disc height, independent of sex, age and body mass index. We provide new evidence that girls and boys with adolescent idiopathic scoliosis have significantly smaller vertebral cross-sectional area and taller intervertebral disc heights - two major structural determinants that influence trunk flexibility. With appropriate validation, these findings may have implications for the identification of children at the highest risk for developing scoliosis.

  9. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits.

    PubMed

    Green, Stephen A; Bronner, Marianne E

    2014-01-01

    Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  10. Non-integumentary melanosomes can bias reconstructions of the colours of fossil vertebrate skin

    NASA Astrophysics Data System (ADS)

    McNamara, Maria; Kaye, Jonathan; Benton, Mike; Orr, Patrick

    2017-04-01

    The soft tissues of many fossil vertebrates preserve melanosomes - micron-scale organelles used to inform on original integumentary coloration and the evolution of visual signalling strategies through time. In extant vertebrates, however, melanosomes also occur in internal tissues, and hence melanosomes preserved in fossils may not derive solely from the integument. Here, by analyzing the internal tissues of extant and fossil frogs, we show that non-integumentary melanosomes are extremely abundant; they are usually localised to the torso in fossils but can also occur in the limbs, presumably due to dispersal during decay. Melanosomes from the body outlines of fossils cannot, therefore, reliably inform on integumentary coloration. Crucially, non-integumentary and integumentary melanosomes differ in geometry in both fossil and modern frogs and, in fossils, occur as discrete layers. Analysis of melanosome geometry, distribution and size-specific layering is required to differentiate integumentary from non-integumentary melanosomes and is essential to any attempt to reconstruct the original colours of vertebrate skin.

  11. Paraplegia in a Bornean orangutan (Pongo pygmaeus pygmaeus) due to multiple myeloma.

    PubMed

    Mauel, Susanne; Fritsch, Guido; Ochs, Andreas; Koch, Martin; Kershaw, Olivia; Gruber, Achim D

    2009-10-01

    A 38-year-old male Bornean orangutan (Pongo pygmaeus pygmaeus) developed progressive hind leg paresis. A computed tomography scan of the vertebral column revealed soft tissue type densities within vertebral bones. At necropsy infiltrating tumor masses were found in the vertebral bodies, protruding into the spinal canal and compressing the spinal cord. Microscopically neoplastic plasma cells infiltrated the vertebral bodies and adjacent soft tissues. Immunohistochemically, tumor cells tested positive for B cell markers (CD38, CD79alpha), kappa, and lambda light chains, while vimentin, GFAP, S100, and CD138 were not expressed. The tumor was classified as multiple myeloma on the basis of radiographic, pathological, and immunohistochemical findings. This first systematic case description on multiple myeloma in a non-human primate revealed many similarities with the disease in humans and the immunohistochemical tools proved suitable for their use in the orangutan.

  12. Testing Skills in Vertebrates

    ERIC Educational Resources Information Center

    Funk, Mildred Sears; Tosto, Pat

    2007-01-01

    In this article, the authors present a project that gives students examples of basic skills that many vertebrate species develop as they grow and function in their ecosystem. These activities involve information gathering about surroundings, learning how to use objects, and tracking and searching skills. Different vertebrate species may acquire…

  13. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: A Systematic Review

    PubMed Central

    Pron, Gaylene; Holubowich, Corinne; Kaulback, Kellee

    2016-01-01

    Background Cancers that metastasize to the spine and primary cancers such as multiple myeloma can result in vertebral compression fractures or instability. Conservative strategies, including bed rest, bracing, and analgesic use, can be ineffective, resulting in continued pain and progressive functional disability limiting mobility and self-care. Surgery is not usually an option for cancer patients in advanced disease states because of their poor medical health or functional status and limited life expectancy. The objectives of this review were to evaluate the effectiveness and safety of percutaneous image-guided vertebral augmentation techniques, vertebroplasty and kyphoplasty, for palliation of cancer-related vertebral compression fractures. Methods We performed a systematic literature search for studies on vertebral augmentation of cancer-related vertebral compression fractures published from January 1, 2000, to October 2014; abstracts were screened by a single reviewer. For those studies meeting the eligibility criteria, full-text articles were obtained. Owing to the heterogeneity of the clinical reports, we performed a narrative synthesis based on an analytical framework constructed for the type of cancer-related vertebral fractures and the diversity of the vertebral augmentation interventions. Results The evidence review identified 3,391 citations, of which 111 clinical reports (4,235 patients) evaluated the effectiveness of vertebroplasty (78 reports, 2,545 patients) or kyphoplasty (33 reports, 1,690 patients) for patients with mixed primary spinal metastatic cancers, multiple myeloma, or hemangiomas. Overall the mean pain intensity scores often reported within 48 hours of vertebral augmentation (kyphoplasty or vertebroplasty), were significantly reduced. Analgesic use, although variably reported, usually involved parallel decreases, particularly in opioids, and mean pain-related disability scores were also significantly improved. In a randomized controlled

  14. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: A Systematic Review.

    PubMed

    2016-01-01

    Cancers that metastasize to the spine and primary cancers such as multiple myeloma can result in vertebral compression fractures or instability. Conservative strategies, including bed rest, bracing, and analgesic use, can be ineffective, resulting in continued pain and progressive functional disability limiting mobility and self-care. Surgery is not usually an option for cancer patients in advanced disease states because of their poor medical health or functional status and limited life expectancy. The objectives of this review were to evaluate the effectiveness and safety of percutaneous image-guided vertebral augmentation techniques, vertebroplasty and kyphoplasty, for palliation of cancer-related vertebral compression fractures. We performed a systematic literature search for studies on vertebral augmentation of cancer-related vertebral compression fractures published from January 1, 2000, to October 2014; abstracts were screened by a single reviewer. For those studies meeting the eligibility criteria, full-text articles were obtained. Owing to the heterogeneity of the clinical reports, we performed a narrative synthesis based on an analytical framework constructed for the type of cancer-related vertebral fractures and the diversity of the vertebral augmentation interventions. The evidence review identified 3,391 citations, of which 111 clinical reports (4,235 patients) evaluated the effectiveness of vertebroplasty (78 reports, 2,545 patients) or kyphoplasty (33 reports, 1,690 patients) for patients with mixed primary spinal metastatic cancers, multiple myeloma, or hemangiomas. Overall the mean pain intensity scores often reported within 48 hours of vertebral augmentation (kyphoplasty or vertebroplasty), were significantly reduced. Analgesic use, although variably reported, usually involved parallel decreases, particularly in opioids, and mean pain-related disability scores were also significantly improved. In a randomized controlled trial comparing kyphoplasty

  15. The neural crest, a multifaceted structure of the vertebrates.

    PubMed

    Dupin, Elisabeth; Le Douarin, Nicole M

    2014-09-01

    In this review, several features of the cells originating from the lateral borders of the primitive neural anlagen, the neural crest (NC) are considered. Among them, their multipotentiality, which together with their migratory properties, leads them to colonize the developing body and to participate in the development of many tissues and organs. The in vitro analysis of the developmental capacities of single NC cells (NCC) showed that they present several analogies with the hematopoietic cells whose differentiation involves the activity of stem cells endowed with different arrays of developmental potentialities. The permanence of such NC stem cells in the adult organism raises the problem of their role at that stage of life. The NC has appeared during evolution in the vertebrate phylum and is absent in their Protocordates ancestors. The major role of the NCC in the development of the vertebrate head points to a critical role for this structure in the remarkable diversification and radiation of this group of animals. © 2014 Wiley Periodicals, Inc.

  16. Gravity and the Adaptation of Form and Function in Lower Vertebrates

    NASA Technical Reports Server (NTRS)

    Lillywhite, Harvey B.

    1994-01-01

    Comparative data emphasizing lower vertebrates will be used to justify the following generalized conclusions or expectations: 1) Gravitational stress produces adaptive increases in arterial pressure. 2) Gravitational stress produces adaptive reorganization of anatomy. 3) Natural selection favors small body size in high G-stress environments. 4) Gravitational stress produces low-compliant perivascular tissues (morphological antigravity suit). 5) Gradients or regional zonation of vascular characters evolve along the length of elongate vertebrates living in high G-stress environments. Presentation of information will include new data gathered by the author and Dr. Alan Hargens while the author was a NRC Senior Research Associate at NASA Ames Research Center. While there is no published abstract provided at the meeting, a symposium manuscript will be published in a special volume of Journal of Experimental Zoology.

  17. Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates

    PubMed Central

    Kikuta, Hiroshi; Laplante, Mary; Navratilova, Pavla; Komisarczuk, Anna Z.; Engström, Pär G.; Fredman, David; Akalin, Altuna; Caccamo, Mario; Sealy, Ian; Howe, Kerstin; Ghislain, Julien; Pezeron, Guillaume; Mourrain, Philippe; Ellingsen, Staale; Oates, Andrew C.; Thisse, Christine; Thisse, Bernard; Foucher, Isabelle; Adolf, Birgit; Geling, Andrea; Lenhard, Boris; Becker, Thomas S.

    2007-01-01

    We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated “bystander” genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs. PMID:17387144

  18. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength.

    PubMed

    Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang

    2017-09-01

    Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2  = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2  = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2  = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.

  19. A minimally invasive vertebral hemangioma.

    PubMed

    Van den Broeck, S; Mailleux, P; Joris, J P

    2010-01-01

    We describe a very unusual vertebral hemangioma presenting with a mixture of aggressive-like pattern (epidural extension, T1 hyposignal) and quiescent, inactive lesion (fatty infiltration), in association with a spiculated calcified epidural component.This paper emphasizes that CT and/or MR findings are accurate enough to make formal assessment of vertebral hemangioma, preventing patient's anguish and moreover unnecessary treatment. Furthermore this attractive case proposes a poorly known characteristic of vertebral hemangioma which is usually encountered and described only in skull hemangiomas.

  20. Distal junctional failure secondary to L5 vertebral fracture—a report of two rare cases

    PubMed Central

    Tan, Jiong Hao; Tan, Kimberly-Anne; Wong, Hee-Kit

    2017-01-01

    Distal junctional failure (DJF) with fracture at the last instrumented vertebra is a rare occurrence. In this case report, we present two patients with L5 vertebral fracture post-instrumented fusion of the lumbar spine. The first patient is a 78-year-old female who had multi-level degenerative disc disease, spinal stenosis and degenerative scoliosis involving levels T12 to L5. She underwent instrumented posterolateral fusion (PLF) from T12 to L5, and transforaminal lumbar interbody fusion (TLIF) at L2/3 and L4/5. Six months after her operation, she presented with a fracture of the L5 vertebral body necessitating revision of the L5 pedicle screws, with additional TLIF of L5/S1. The second patient is a 71-year-old female who underwent decompression and TLIF of L3/4 and L4/5 for degenerative spondylolisthesis. Six months after the surgery, she developed a fracture of the L5 vertebral body with loosening of the L5 screws. The patient declined revision surgery despite being symptomatic. DJF remains poorly understood as its rare incidence precludes sufficiently powered studies within a single institution. This report aims to contribute to the currently scarce literature on DJF. PMID:28435925

  1. Globally threatened vertebrates on islands with invasive species

    PubMed Central

    Spatz, Dena R.; Zilliacus, Kelly M.; Holmes, Nick D.; Butchart, Stuart H. M.; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R.; Croll, Donald A.

    2017-01-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth’s terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in <1% of islands worldwide. Information about invasive vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth’s highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss. PMID:29075662

  2. Globally threatened vertebrates on islands with invasive species.

    PubMed

    Spatz, Dena R; Zilliacus, Kelly M; Holmes, Nick D; Butchart, Stuart H M; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R; Croll, Donald A

    2017-10-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth's terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in <1% of islands worldwide. Information about invasive vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth's highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss.

  3. Hormonally active phytochemicals and vertebrate evolution.

    PubMed

    Lambert, Max R; Edwards, Thea M

    2017-06-01

    Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.

  4. Vertebral Osteomyelitis Caused by Helicobacter cinaedi Identified Using Broad-range Polymerase Chain Reaction with Sequencing of the Biopsied Specimen.

    PubMed

    Hase, Ryota; Hirooka, Takuya; Itabashi, Takashi; Endo, Yasunobu; Otsuka, Yoshihito

    2018-05-15

    A 65-year-old man presented with gradually exacerbating low back pain. Magnetic resonance imaging revealed vertebral osteomyelitis in the Th11-L2 vertebral bodies and discs. The patient showed negative findings on conventional cultures. Direct broad-range polymerase chain reaction (PCR) with sequencing of the biopsied specimen had the highest similarity to the 16S rRNA gene of Helicobacter cinaedi. This case suggests that direct broad-range PCR with sequencing should be considered when conventional cultures cannot identify the causative organism of vertebral osteomyelitis, and that this method may be particularly useful when the pathogen is a fastidious organism, such as H. cinaedi.

  5. Comparative Physiology of Energy Metabolism: Fishing for Endocrine Signals in the Early Vertebrate Pool

    PubMed Central

    van de Pol, Iris; Flik, Gert; Gorissen, Marnix

    2017-01-01

    Energy is the common currency of life. To guarantee a homeostatic supply of energy, multiple neuro-endocrine systems have evolved in vertebrates; systems that regulate food intake, metabolism, and distribution of energy. Even subtle (lasting) dysregulation of the delicate balance of energy intake and expenditure may result in severe pathologies. Feeding-related pathologies have fueled research on mammals, including of course the human species. The mechanisms regulating food intake and body mass are well-characterized in these vertebrates. The majority of animal life is ectothermic, only birds and mammals are endotherms. What can we learn from a (comparative) study on energy homeostasis in teleostean fishes, ectotherms, with a very different energy budget and expenditure? We present several adaptation strategies in fish. In recent years, the components that regulate food intake in fishes have been identified. Although there is homology of the major genetic machinery with mammals (i.e., there is a vertebrate blueprint), in many cases this does not imply analogy. Although both mammals and fish must gain their energy from food, the expenditure of the energy obtained is different. Mammals need to spend vast amounts of energy to maintain body temperature; fishes seem to utilize a broader metabolic range to their advantage. In this review, we briefly discuss ecto- and endothermy and their consequences for energy balance. Next, we argue that the evolution of endothermy and its (dis-)advantages may explain very different strategies in endocrine regulation of energy homeostasis among vertebrates. We follow a comparative and evolutionary line of thought: we discuss similarities and differences between fish and mammals. Moreover, given the extraordinary radiation of teleostean fishes (with an estimated number of 33,400 contemporary species, or over 50% of vertebrate life forms), we also compare strategies in energy homeostasis between teleostean species. We present recent

  6. Osteoporosis and vertebral fractures in men aged 60-74 years.

    PubMed

    Frost, Morten; Wraae, Kristian; Abrahamsen, Bo; Høiberg, Mikkel; Hagen, Claus; Andersen, Marianne; Brixen, Kim

    2012-03-01

    limited information on the prevalence of osteoporosis and VFxs in men in high-risk populations is available. The choice of reference values for dual X-ray absorptiometry (DXA) is debated. We evaluated the prevalence of osteoporosis and vertebral deformities in a population-based sample of men. bone mineral density (BMD) was measured and vertebral deformities assessed using DXA and VFx assessment (VFA), respectively, in a random sample of 600 Danish men aged 60-74 years. Osteoporosis was defined as a T-score of -2.5 or less. the study population was comparable with the background population with regard to age, body mass index and co-morbidity. Osteoporosis was diagnosed in less than 1% of the participants at inclusion. Using Danish and NHANES III reference data, 10.2 and 11.5% of the study population had osteoporosis, respectively. In all, 6.3% participants had at least one VFx. BMD was significantly lower in participants with vertebral deformities, but only 24% of these cases had osteoporosis. osteoporosis and VFxs are prevalent in men aged 60-74 years. Although the majority of deformities were present in individuals without osteoporosis, BMD was lower in patients with VFxs at all sites investigated. Male osteoporosis was markedly underdiagnosed.

  7. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates.

    PubMed

    Warren, Ian A; Naville, Magali; Chalopin, Domitille; Levin, Perrine; Berger, Chloé Suzanne; Galiana, Delphine; Volff, Jean-Nicolas

    2015-09-01

    Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.

  8. Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey.

    PubMed

    Mukendi, Christian; Dean, Nicholas; Lala, Rushil; Smith, Jeramiah; Bronner, Marianne E; Nikitina, Natalya V

    2016-01-01

    Claudins are major constituents of tight junctions, contributing both to their intercellular sealing and selective permeability properties. While claudins and claudin-like molecules are present in some invertebrates, the association of claudins with tight junctions has been conclusively documented only in vertebrates. Here we report the sequencing, phylogenetic analysis and comprehensive spatiotemporal expression analysis of the entire claudin gene family in the basal extant vertebrate, the sea lamprey. Our results demonstrate that clear orthologues to about half of all mammalian claudins are present in the lamprey, suggesting that at least one round of whole genome duplication contributed to the diversification of this gene family. Expression analysis revealed that claudins are expressed in discrete and specific domains, many of which represent vertebrate-specific innovations, such as in cranial ectodermal placodes and the neural crest; whereas others represent structures characteristic of chordates, e.g. pronephros, notochord, somites, endostyle and pharyngeal arches. By comparing the embryonic expression of claudins in the lamprey to that of other vertebrates, we found that ancestral expression patterns were often preserved in higher vertebrates. Morpholino mediated loss of Cldn3b demonstrated a functional role for this protein in placode and pharyngeal arch morphogenesis. Taken together, our data provide novel insights into the origins and evolution of the claudin gene family and the significance of claudin proteins in the evolution of vertebrates.

  9. Stenting for symptomatic vertebral artery stenosis: The Vertebral Artery Ischaemia Stenting Trial.

    PubMed

    Markus, Hugh S; Larsson, Susanna C; Kuker, Wilhelm; Schulz, Ursula G; Ford, Ian; Rothwell, Peter M; Clifton, Andrew

    2017-09-19

    To compare in the Vertebral Artery Ischaemia Stenting Trial (VIST) the risks and benefits of vertebral angioplasty and stenting with best medical treatment (BMT) alone for symptomatic vertebral artery stenosis. VIST was a prospective, randomized, open-blinded endpoint clinical trial performed in 14 hospitals in the United Kingdom. Participants with symptomatic vertebral stenosis ≥50% were randomly assigned (1:1) to vertebral angioplasty/stenting plus BMT or to BMT alone with randomization stratified by site of stenosis (extracranial vs intracranial). Because of slow recruitment and cessation of funding, recruitment was stopped after 182 participants. Follow-up was a minimum of ≥1 year for each participant. Three patients did not contribute any follow-up data and were excluded, leaving 91 patients in the stent group and 88 in the medical group. Mean follow-up was 3.5 (interquartile range 2.1-4.7) years. Of 61 patients who were stented, stenosis was extracranial in 48 (78.7%) and intracranial in 13 (21.3%). No periprocedural complications occurred with extracranial stenting; 2 strokes occurred during intracranial stenting. The primary endpoint of fatal or nonfatal stroke occurred in 5 patients in the stent group vs 12 in the medical group (hazard ratio 0.40, 95% confidence interval 0.14-1.13, p = 0.08), with an absolute risk reduction of 25 strokes per 1,000 person-years. The hazard ratio for stroke or TIA was 0.50 ( p = 0.05). Stenting in extracranial stenosis appears safe with low complication rates. Large phase 3 trials are required to determine whether stenting reduces stroke risk. ISRCTN95212240. This study provides Class I evidence that for patients with symptomatic vertebral stenosis, angioplasty with stenting does not reduce the risk of stroke. However, the study lacked the precision to exclude a benefit from stenting. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  10. The role of physical activity in bone health: a new hypothesis to reduce risk of vertebral fracture.

    PubMed

    Sinaki, Mehrsheed

    2007-08-01

    Locomotion has always been a major criterion for human survival. Thus, it is no surprise that science supports the dependence of bone health on weight-bearing physical activities. The effect of physical activity on bone is site-specific. Determining how to perform osteogenic exercises, especially in individuals who have osteopenia or osteoporosis, without exceeding the biomechanical competence of bone always poses a dilemma and must occur under medical advice. This article presents the hypothesis that back exercises performed in a prone position, rather than a vertical position, may have a greater effect on decreasing the risk for vertebral fractures without resulting in compression fracture. The risk for vertebral fractures can be reduced through improvement in the horizontal trabecular connection of vertebral bodies.

  11. The association between genetic variants of RUNX2, ADIPOQ and vertebral fracture in Korean postmenopausal women.

    PubMed

    Kim, Kyong-Chol; Chun, Hyejin; Lai, ChaoQiang; Parnell, Laurence D; Jang, Yangsoo; Lee, Jongho; Ordovas, Jose M

    2015-03-01

    Contrary to the traditional belief that obesity acts as a protective factor for bone, recent epidemiologic studies have shown that body fat might be a risk factor for osteoporosis and bone fracture. Accordingly, we evaluated the association between the phenotypes of osteoporosis or vertebral fracture and variants of obesity-related genes, peroxisome proliferator-activated receptor-gamma (PPARG), runt-related transcription factor 2 (RUNX2), leptin receptor (LEPR), and adiponectin (ADIPOQ). In total, 907 postmenopausal healthy women, aged 60-79 years, were included in this study. BMD and biomarkers of bone health and adiposity were measured. We genotyped for four single nucleotide polymorphisms (SNPs) from four genes (PPARG, RUNX2, LEPR, ADIPOQ). A general linear model for continuous dependent variables and a logistic regression model for categorical dependent variables were used to analyze the statistical differences among genotype groups. Compared with the TT subjects at rs7771980 in RUNX2, C-carrier (TC + CC) subjects had a lower vertebral fracture risk after adjusting for age, smoking, alcohol, total calorie intake, total energy expenditure, total calcium intake, total fat intake, weight, body fat. Odds ratio (OR) and 95% interval (CI) for the vertebral fracture risk was 0.55 (95% CI 0.32-0.94). After adjusting for multiple variables, the prevalence of vertebral fracture was highest in GG subjects at rs1501299 in ADIPOQ (p = 0.0473). A high calcium intake (>1000 mg/day) contributed to a high bone mineral density (BMD) in GT + TT subjects at rs1501299 in ADIPOQ (p for interaction = 0.0295). Even if the mechanisms between obesity-related genes and bone health are not fully established, the results of our study revealed the association of certain SNPs from obesity-related genes with BMD or vertebral fracture risk in postmenopausal Korean women.

  12. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis.

    PubMed

    2016-01-01

    Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. The base case considered each of kyphoplasty and vertebroplasty

  13. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis

    PubMed Central

    2016-01-01

    Background Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. Methods We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. Results The base case considered each of

  14. Conserved form and function of the germinal epithelium through 500 million years of vertebrate evolution.

    PubMed

    Grier, Harry J; Uribe, Mari Carmen; Lo Nostro, Fabiana L; Mims, Steven D; Parenti, Lynne R

    2016-08-01

    The germinal epithelium, i.e., the site of germ cell production in males and females, has maintained a constant form and function throughout 500 million years of vertebrate evolution. The distinguishing characteristic of germinal epithelia among all vertebrates, males, and females, is the presence of germ cells among somatic epithelial cells. The somatic epithelial cells, Sertoli cells in males or follicle (granulosa) cells in females, encompass and isolate germ cells. Morphology of all vertebrate germinal epithelia conforms to the standard definition of an epithelium: epithelial cells are interconnected, border a body surface or lumen, are avascular and are supported by a basement membrane. Variation in morphology of gonads, which develop from the germinal epithelium, is correlated with the evolution of reproductive modes. In hagfishes, lampreys, and elasmobranchs, the germinal epithelia of males produce spermatocysts. A major rearrangement of testis morphology diagnoses osteichthyans: the spermatocysts are arranged in tubules or lobules. In protogynous (female to male) sex reversal in teleost fishes, female germinal epithelial cells (prefollicle cells) and oogonia transform into the first male somatic cells (Sertoli cells) and spermatogonia in the developing testis lobules. This common origin of cell types from the germinal epithelium in fishes with protogynous sex reversal supports the homology of Sertoli cells and follicle cells. Spermatogenesis in amphibians develops within spermatocysts in testis lobules. In amniotes vertebrates, the testis is composed of seminiferous tubules wherein spermatogenesis occurs radially. Emerging research indicates that some mammals do not have lifetime determinate fecundity. The fact emerged that germinal epithelia occur in the gonads of all vertebrates examined herein of both sexes and has the same form and function across all vertebrate taxa. Continued study of the form and function of the germinal epithelium in vertebrates

  15. Body temperatures of selected amphibian and reptile species.

    PubMed

    Raske, Matthew; Lewbart, Gregory A; Dombrowski, Daniel S; Hale, Peyton; Correa, Maria; Christian, Larry S

    2012-09-01

    Ectothermic vertebrates are a diverse group of animals that rely on external sources to maintain a preferred body temperature. Amphibians and reptiles have a preferred optimal temperature zone that allows for optimal biological function. Physiologic processes in ectotherms are influenced by temperature; these animals have capabilities in which they make use of behavioral and physiologic mechanisms to thermoregulate. Core body, ambient air, body surface, and surface/water temperatures were obtained from six ectothermic species including one anuran, two snakes, two turtles, and one alligator. Clinically significant differences between core body temperature and ambient temperature were noted in the black rat snake, corn snake, and eastern box turtle. No significant differences were found between core body and ambient temperature for the American alligator, bullfrog, mata mata turtle, dead spotted turtle, or dead mole king snake. This study indicates some ectotherms are able to regulate their body temperatures independent of their environment. Body temperature of ectotherms is an important component that clinicians should consider when selecting and providing therapeutic care. Investigation of basic physiologic parameters (heart rate, respiratory rate, and body temperature) from a diverse population of healthy ectothermic vertebrates may provide baseline data for a systematic health care approach.

  16. Vertebral Volumetric Bone Density and Strength Are Impaired in Women With Low-Weight and Atypical Anorexia Nervosa.

    PubMed

    Bachmann, Katherine N; Schorr, Melanie; Bruno, Alexander G; Bredella, Miriam A; Lawson, Elizabeth A; Gill, Corey M; Singhal, Vibha; Meenaghan, Erinne; Gerweck, Anu V; Slattery, Meghan; Eddy, Kamryn T; Ebrahimi, Seda; Koman, Stuart L; Greenblatt, James M; Keane, Robert J; Weigel, Thomas; Misra, Madhusmita; Bouxsein, Mary L; Klibanski, Anne; Miller, Karen K

    2017-01-01

    Areal bone mineral density (BMD) is lower, particularly at the spine, in low-weight women with anorexia nervosa (AN). However, little is known about vertebral integral volumetric BMD (Int.vBMD) or vertebral strength across the AN weight spectrum, including "atypical" AN [body mass index (BMI) ≥18.5 kg/m2]. To investigate Int.vBMD and vertebral strength, and their determinants, across the AN weight spectrum. Cross-sectional observational study. Clinical research center. 153 women (age 18 to 45): 64 with low-weight AN (BMI <18.5 kg/m2; 58% amenorrheic), 44 with atypical AN (18.5≤BMI<23 kg/m2; 30% amenorrheic), 45 eumenorrheic controls (19.2≤BMI<25 kg/m2). Int.vBMD and cross-sectional area (CSA) by quantitative computed tomography of L4; estimated vertebral strength (derived from Int.vBMD and CSA). Int.vBMD and estimated vertebral strength were lowest in low-weight AN, intermediate in atypical AN, and highest in controls. CSA did not differ between groups; thus, vertebral strength (calculated using Int.vBMD and CSA) was driven by Int.vBMD. In AN, Int.vBMD and vertebral strength were associated positively with current BMI and nadir lifetime BMI (independent of current BMI). Int.vBMD and vertebral strength were lower in AN with current amenorrhea and longer lifetime amenorrhea duration. Among amenorrheic AN, Int.vBMD and vertebral strength were associated positively with testosterone. Int.vBMD and estimated vertebral strength (driven by Int.vBMD) are impaired across the AN weight spectrum and are associated with low BMI and endocrine dysfunction, both current and previous. Women with atypical AN experience diminished vertebral strength, partially due to prior low-weight and/or amenorrhea. Lack of current low-weight or amenorrhea in atypical AN does not preclude compromise of vertebral strength. Copyright © 2017 by the Endocrine Society

  17. Vertebral Volumetric Bone Density and Strength Are Impaired in Women With Low-Weight and Atypical Anorexia Nervosa

    PubMed Central

    Bachmann, Katherine N.; Schorr, Melanie; Bruno, Alexander G.; Bredella, Miriam A.; Lawson, Elizabeth A.; Gill, Corey M.; Singhal, Vibha; Meenaghan, Erinne; Gerweck, Anu V.; Slattery, Meghan; Eddy, Kamryn T.; Ebrahimi, Seda; Koman, Stuart L.; Greenblatt, James M.; Keane, Robert J.; Weigel, Thomas; Misra, Madhusmita; Bouxsein, Mary L.; Klibanski, Anne

    2017-01-01

    Context: Areal bone mineral density (BMD) is lower, particularly at the spine, in low-weight women with anorexia nervosa (AN). However, little is known about vertebral integral volumetric BMD (Int.vBMD) or vertebral strength across the AN weight spectrum, including “atypical” AN [body mass index (BMI) ≥18.5 kg/m2]. Objective: To investigate Int.vBMD and vertebral strength, and their determinants, across the AN weight spectrum Design: Cross-sectional observational study Setting: Clinical research center Participants: 153 women (age 18 to 45): 64 with low-weight AN (BMI <18.5 kg/m2; 58% amenorrheic), 44 with atypical AN (18.5≤BMI<23 kg/m2; 30% amenorrheic), 45 eumenorrheic controls (19.2≤BMI<25 kg/m2). Measures: Int.vBMD and cross-sectional area (CSA) by quantitative computed tomography of L4; estimated vertebral strength (derived from Int.vBMD and CSA) Results: Int.vBMD and estimated vertebral strength were lowest in low-weight AN, intermediate in atypical AN, and highest in controls. CSA did not differ between groups; thus, vertebral strength (calculated using Int.vBMD and CSA) was driven by Int.vBMD. In AN, Int.vBMD and vertebral strength were associated positively with current BMI and nadir lifetime BMI (independent of current BMI). Int.vBMD and vertebral strength were lower in AN with current amenorrhea and longer lifetime amenorrhea duration. Among amenorrheic AN, Int.vBMD and vertebral strength were associated positively with testosterone. Conclusions: Int.vBMD and estimated vertebral strength (driven by Int.vBMD) are impaired across the AN weight spectrum and are associated with low BMI and endocrine dysfunction, both current and previous. Women with atypical AN experience diminished vertebral strength, partially due to prior low-weight and/or amenorrhea. Lack of current low-weight or amenorrhea in atypical AN does not preclude compromise of vertebral strength. PMID:27732336

  18. The vertebral remains of the late Miocene great ape Hispanopithecus laietanus from Can Llobateres 2 (Vallès-Penedès Basin, NE Iberian Peninsula).

    PubMed

    Susanna, Ivette; Alba, David M; Almécija, Sergio; Moyà-Solà, Salvador

    2014-08-01

    Here we describe the vertebral fragments from the partial skeleton IPS18800 of the fossil great ape Hispanopithecus laietanus (Hominidae: Dryopithecinae) from the late Miocene (9.6 Ma) of Can Llobateres 2 (Vallès-Penedès Basin, Catalonia, Spain). The eight specimens (IPS18800.5-IPS18800.12) include a fragment of thoracic vertebral body, three partial bodies and four neural arch fragments of lumbar vertebrae. Despite the retention of primitive features (moderately long lumbar vertebral bodies with slightly concave ventrolateral sides), these specimens display a suite of derived, modern hominoid-like features: thoracic vertebrae with dorsally-situated costal foveae; lumbar vertebrae with non-ventrally-oriented transverse processes originating from a robust pedicle, caudally-long laminae with caudally-oriented spinous process, elliptical end-plates, and moderately stout bodies reduced in length and with no ventral keel. These features, functionally related to orthograde behaviors, are indicative of a broad and shallow thorax with a moderately short and stiff lumbar region in Hispanopithecus. Despite its large body mass (ca. 39-40 kg), its vertebral morphology is more comparable to that of hylobatids and Ateles than to extant great apes. This is confirmed by our morphometric analyses, also indicating that Hispanopithecus most closely resembles Pierolapithecus and Morotopithecus among Miocene apes, whereas Proconsul and Nacholapithecus resemble pronograde monkeys. Only in a few features (craniocaudally short and transversely wide pedicles, transverse processes situated on the pedicle, and slight ventral wedging), Hispanopithecus is more derived towards the extant great ape condition than other Miocene apes. Overall, the vertebral morphology of Hispanopithecus supports previous inferences of an orthograde body plan with suspensory and climbing adaptations. However, given similarities with Ateles and the retention of a longer and more flexible spine than in extant

  19. A proposed radiographic classification scheme for congenital thoracic vertebral malformations in brachycephalic "screw-tailed" dog breeds.

    PubMed

    Gutierrez-Quintana, Rodrigo; Guevar, Julien; Stalin, Catherine; Faller, Kiterie; Yeamans, Carmen; Penderis, Jacques

    2014-01-01

    Congenital vertebral malformations are common in brachycephalic "screw-tailed" dog breeds such as French bulldogs, English bulldogs, Boston terriers, and pugs. The aim of this retrospective study was to determine whether a radiographic classification scheme developed for use in humans would be feasible for use in these dog breeds. Inclusion criteria were hospital admission between September 2009 and April 2013, neurologic examination findings available, diagnostic quality lateral and ventro-dorsal digital radiographs of the thoracic vertebral column, and at least one congenital vertebral malformation. Radiographs were retrieved and interpreted by two observers who were unaware of neurologic status. Vertebral malformations were classified based on a classification scheme modified from a previous human study and a consensus of both observers. Twenty-eight dogs met inclusion criteria (12 with neurologic deficits, 16 with no neurologic deficits). Congenital vertebral malformations affected 85/362 (23.5%) of thoracic vertebrae. Vertebral body formation defects were the most common (butterfly vertebrae 6.6%, ventral wedge-shaped vertebrae 5.5%, dorsal hemivertebrae 0.8%, and dorso-lateral hemivertebrae 0.5%). No lateral hemivertebrae or lateral wedge-shaped vertebrae were identified. The T7 vertebra was the most commonly affected (11/28 dogs), followed by T8 (8/28 dogs) and T12 (8/28 dogs). The number and type of vertebral malformations differed between groups (P = 0.01). Based on MRI, dorsal, and dorso-lateral hemivertebrae were the cause of spinal cord compression in 5/12 (41.6%) of dogs with neurologic deficits. Findings indicated that a modified human radiographic classification system of vertebral malformations is feasible for use in future studies of brachycephalic "screw-tailed" dogs. © 2014 American College of Veterinary Radiology.

  20. Mineralization of the vertebral bodies in Atlantic salmon (Salmo salar L.) is initiated segmentally in the form of hydroxyapatite crystal accretions in the notochord sheath.

    PubMed

    Wang, Shou; Kryvi, Harald; Grotmol, Sindre; Wargelius, Anna; Krossøy, Christel; Epple, Mattias; Neues, Frank; Furmanek, Tomasz; Totland, Geir K

    2013-08-01

    We performed a sequential morphological and molecular biological study of the development of the vertebral bodies in Atlantic salmon (Salmo salar L.). Mineralization starts in separate bony elements which fuse to form complete segmental rings within the notochord sheath. The nucleation and growth of hydroxyapatite crystals in both the lamellar type II collagen matrix of the notochord sheath and the lamellar type I collagen matrix derived from the sclerotome, were highly similar. In both matrices the hydroxyapatite crystals nucleate and accrete on the surface of the collagen fibrils rather than inside the fibrils, a process that may be controlled by a template imposed by the collagen fibrils. Apatite crystal growth starts with the formation of small plate-like structures, about 5 nm thick, that gradually grow and aggregate to form extensive multi-branched crystal arborizations, resembling dendritic growth. The hydroxyapatite crystals are always oriented parallel to the long axis of the collagen fibrils, and the lamellar collagen matrices provide oriented support for crystal growth. We demonstrate here for the first time by means of synchroton radiation based on X-ray diffraction that the chordacentra contain hydroxyapatite. We employed quantitative real-time PCR to study the expression of key signalling molecule transcripts expressed in the cellular core of the notochord. The results indicate that the notochord not only produces and maintains the notochord sheath but also expresses factors known to regulate skeletogenesis: sonic hedgehog (shh), indian hedgehog homolog b (ihhb), parathyroid hormone 1 receptor (pth1r) and transforming growth factor beta 1 (tgfb1). In conclusion, our study provides evidence for the process of vertebral body development in teleost fishes, which is initially orchestrated by the notochord. © 2013 Anatomical Society.

  1. Mechanical Loading during Growth Is Associated with Plane-specific Differences in Vertebral Geometry: A Cross-sectional Analysis Comparing Artistic Gymnasts vs. Non-gymnasts

    PubMed Central

    Dowthwaite, Jodi N.; Rosenbaum, Paula F.; Scerpella, Tamara A.

    2011-01-01

    Lumbar spine geometry, density and indices of bone strength were assessed relative to menarche status, using artistic gymnastics exposure during growth as a model of mechanical loading. Paired posteroanterior (PA) and supine lateral (LAT) DXA scans of L3 for 114 females (60 ex/gymnasts and 54 non-gymnasts) yielded output for comparison of paired (PALAT) versus standard PA and LAT outcomes. BMC, areal BMD, vertebral body dimensions, bone mineral apparent density (BMAD), axial compressive strength (IBS) and a fracture risk index were evaluated, modeling vertebral body geometry as an ellipsoid cylinder. Two-factor ANCOVA tested statistical effects of gymnastic exposure, menarche status and their interaction, adjusting for age and height as appropriate. Compared to non-gymnasts, ex/gymnasts exhibited greater PABMD, PABMC, PAWIDTH, PA CROSS-SECTIONAL AREA (CSA), PAVOLUME, LATBMD, LATBMAD, PALATCSA and PALATIBS (p<0.05). Non-gymnasts exhibited greater LATDEPTH/PAWIDTH, LATBMC/PABMC, LATVHEIGHT, LATAREA and Fracture Risk Index. Using ellipsoid vertebral geometric models, no significant differences were detected for PA or PALAT BMAD. In contrast, cuboid model results (Carter 1992) suggested erroneous ex/gymnast PABMAD advantages, resulting from invalid assumptions of proportional variation in linear skeletal dimensions. Gymnastic exposure was associated with shorter, wider vertebral bodies, yielding greater axial compressive strength and lower fracture risk, despite no BMAD advantage. Our results suggest the importance of plane-specific vertebral geometric adaptation to mechanical loading during growth. Paired scan output provides a more accurate assessment of this adaptation than PA or LAT plane scans alone. PMID:21839871

  2. [Minimally invasive cement augmentation of osteoporotic vertebral compression fractures with the new radiofrequency kyphoplasty].

    PubMed

    Mattyasovszky, S G; Kurth, A A; Drees, P; Gemidji, J; Thomczyk, S; Kafchitsas, K

    2014-10-01

    Minimally invasive cement augmentation of painful osteoporotic vertebral compression fractures in elderly patients. Painful osteoporotic vertebral compression fractures in elderly patients (> 65 years of age) after conservative therapy failure. Painful aggressive primary tumors of the spine or osteolytic metastases to the spine with high risk of vertebral fracture in the palliative care setting. General contraindications for surgical interventions. Local soft-tissue infection. Osteomyelitis, discitis or systemic infection. Coagulopathy refractory to treatment or bleeding diathesis. Asymptomatic vertebral compression fractures. Burst of the posterior vertebral column with high degree of spinal canal stenosis. Primary or metastatic spinal tumors with epidural growth. Prone position on a radiolucent operating table. Fluoroscopic localization of the fractured vertebra using two conventional C-arm devices (anteroposterior and lateral views). Fluoroscopic localization of the fractured vertebra using two conventional C-arm devices (anteroposterior and lateral views). An introducer is inserted through a small skin incision into the pedicle under fluoroscopic guidance. To create a site- and size-specific three-dimensional cavity in the center of the fractured vertebra, the navigational VertecoR™ MidLine Osteotome was inserted through the correctly sited introducer and guided fluoroscopically. As the MidLine Osteotome allows angulation of the tip up to 90° by rotating the handle, a cavity over the midline of the vertebral body can mainly be created through one pedicle. The radiofrequency activated cohesive ultrahigh viscosity PMMA cement (ER(2) bone cement) is injected stepwise on demand by remote control under continuous pressure from the hydraulic assembly into the vertebral body. Bed rest for 6 h postoperatively in supine position. Early mobilization without a corset on the day of surgery. Specific back and abdominal exercises that strengthen the back and abdominal

  3. The posterior skeletal thorax: rib-vertebral angle and axial vertebral rotation asymmetries in adolescent idiopathic scoliosis.

    PubMed

    Burwell, R G; Aujla, R K; Freeman, B J C; Dangerfield, P H; Cole, A A; Kirby, A S; Polak, F J; Pratt, R K; Moulton, A

    2008-01-01

    The deformity of the ribcage in thoracic adolescent idiopathic scoliosis (AIS) is viewed by most as being secondary to the spinal deformity, though a few consider it primary or involved in curve aggravation. Those who consider it primary ascribe pathogenetic significance to rib-vertebra angle asymmetry. In thoracic AIS, supra-apical rib-vertebra angle differences (RVADs) are reported to be associated with the severity of the Cobb angle. In this paper we attempt to evaluate rib and spinal pathomechanisms in thoracic and thnoracolumbar AIS using spinal radiographs and real-time ultrasound. On the radiographs by costo-vertebral angle asymmetries (rib-vertebral angle differences RVADs, and rib-spinal angle differences RSADs), apical vertebral rotation (AV) and apical vertebral translation (AVT) were measured; and by ultrasound, spine-rib rotation differences (SRRDs) were estimated. RVADs are largest at two and three vertebral levels above the apex where they correlate significantly and positively with Cobb angle and AVT but not AVR. In right thoracic AIS, the cause(s) of the RVA asymmetries is unknown: it may result from trunk muscle imbalance, or from ribs adjusting passively within the constraint of the fourth column of the spine to increasing spinal curvature from whatever cause. Several possible mechanisms may drive axial vertebral rotation including, biplanar spinal asymmetry, relative anterior spinal overgrowth, dorsal shear forces in the presence of normal vertebral axial rotation, asymmetry of rib linear growth, trunk muscle imbalance causing rib-vertebra angle asymmetry weakening the spinal rotation-defending system of bipedal gait, and CNS mechanisms.

  4. Quantitative computed tomography-based predictions of vertebral strength in anterior bending.

    PubMed

    Buckley, Jenni M; Cheng, Liu; Loo, Kenneth; Slyfield, Craig; Xu, Zheng

    2007-04-20

    This study examined the ability of QCT-based structural assessment techniques to predict vertebral strength in anterior bending. The purpose of this study was to compare the abilities of QCT-based bone mineral density (BMD), mechanics of solids models (MOS), e.g., bending rigidity, and finite element analyses (FE) to predict the strength of isolated vertebral bodies under anterior bending boundary conditions. Although the relative performance of QCT-based structural measures is well established for uniform compression, the ability of these techniques to predict vertebral strength under nonuniform loading conditions has not yet been established. Thirty human thoracic vertebrae from 30 donors (T9-T10, 20 female, 10 male; 87 +/- 5 years of age) were QCT scanned and destructively tested in anterior bending using an industrial robot arm. The QCT scans were processed to generate specimen-specific FE models as well as trabecular bone mineral density (tBMD), integral bone mineral density (iBMD), and MOS measures, such as axial and bending rigidities. Vertebral strength in anterior bending was poorly to moderately predicted by QCT-based BMD and MOS measures (R2 = 0.14-0.22). QCT-based FE models were better strength predictors (R2 = 0.34-0.40); however, their predictive performance was not statistically different from MOS bending rigidity (P > 0.05). Our results suggest that the poor clinical performance of noninvasive structural measures may be due to their inability to predict vertebral strength under bending loads. While their performance was not statistically better than MOS bending rigidities, QCT-based FE models were moderate predictors of both compressive and bending loads at failure, suggesting that this technique has the potential for strength prediction under nonuniform loads. The current FE modeling strategy is insufficient, however, and significant modifications must be made to better mimic whole bone elastic and inelastic material behavior.

  5. Abdominal girth, vertebral column length, and spread of spinal anesthesia in 30 minutes after plain bupivacaine 5 mg/mL.

    PubMed

    Zhou, Qing-he; Xiao, Wang-pin; Shen, Ying-yan

    2014-07-01

    The spread of spinal anesthesia is highly unpredictable. In patients with increased abdominal girth and short stature, a greater cephalad spread after a fixed amount of subarachnoidally administered plain bupivacaine is often observed. We hypothesized that there is a strong correlation between abdominal girth/vertebral column length and cephalad spread. Age, weight, height, body mass index, abdominal girth, and vertebral column length were recorded for 114 patients. The L3-L4 interspace was entered, and 3 mL of 0.5% plain bupivacaine was injected into the subarachnoid space. The cephalad spread (loss of temperature sensation and loss of pinprick discrimination) was assessed 30 minutes after intrathecal injection. Linear regression analysis was performed for age, weight, height, body mass index, abdominal girth, vertebral column length, and the spread of spinal anesthesia, and the combined linear contribution of age up to 55 years, weight, height, abdominal girth, and vertebral column length was tested by multiple regression analysis. Linear regression analysis showed that there was a significant univariate correlation among all 6 patient characteristics evaluated and the spread of spinal anesthesia (all P < 0.039) except for age and loss of temperature sensation (P > 0.068). Multiple regression analysis showed that abdominal girth and the vertebral column length were the key determinants for spinal anesthesia spread (both P < 0.0001), whereas age, weight, and height could be omitted without changing the results (all P > 0.059, all 95% confidence limits < 0.372). Multiple regression analysis revealed that the combination of a patient's 5 general characteristics, especially abdominal girth and vertebral column length, had a high predictive value for the spread of spinal anesthesia after a given dose of plain bupivacaine.

  6. Quantitative assessment of cervical vertebral maturation using cone beam computed tomography in Korean girls.

    PubMed

    Byun, Bo-Ram; Kim, Yong-Il; Yamaguchi, Tetsutaro; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6-18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R (2) had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status.

  7. Quantitative Assessment of Cervical Vertebral Maturation Using Cone Beam Computed Tomography in Korean Girls

    PubMed Central

    Byun, Bo-Ram; Kim, Yong-Il; Maki, Koutaro; Son, Woo-Sung

    2015-01-01

    This study was aimed to examine the correlation between skeletal maturation status and parameters from the odontoid process/body of the second vertebra and the bodies of third and fourth cervical vertebrae and simultaneously build multiple regression models to be able to estimate skeletal maturation status in Korean girls. Hand-wrist radiographs and cone beam computed tomography (CBCT) images were obtained from 74 Korean girls (6–18 years of age). CBCT-generated cervical vertebral maturation (CVM) was used to demarcate the odontoid process and the body of the second cervical vertebra, based on the dentocentral synchondrosis. Correlation coefficient analysis and multiple linear regression analysis were used for each parameter of the cervical vertebrae (P < 0.05). Forty-seven of 64 parameters from CBCT-generated CVM (independent variables) exhibited statistically significant correlations (P < 0.05). The multiple regression model with the greatest R 2 had six parameters (PH2/W2, UW2/W2, (OH+AH2)/LW2, UW3/LW3, D3, and H4/W4) as independent variables with a variance inflation factor (VIF) of <2. CBCT-generated CVM was able to include parameters from the second cervical vertebral body and odontoid process, respectively, for the multiple regression models. This suggests that quantitative analysis might be used to estimate skeletal maturation status. PMID:25878721

  8. Light adaptation and the evolution of vertebrate photoreceptors.

    PubMed

    Morshedian, Ala; Fain, Gordon L

    2017-07-15

    Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease

  9. Lymphatic regulation in nonmammalian vertebrates.

    PubMed

    Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C

    2013-08-01

    All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression.

  10. Nanotechnology for treating osteoporotic vertebral fractures

    PubMed Central

    Gao, Chunxia; Wei, Donglei; Yang, Huilin; Chen, Tao; Yang, Lei

    2015-01-01

    Osteoporosis is a serious public health problem affecting hundreds of millions of aged people worldwide, with severe consequences including vertebral fractures that are associated with significant morbidity and mortality. To augment or treat osteoporotic vertebral fractures, a number of surgical approaches including minimally invasive vertebroplasty and kyphoplasty have been developed. However, these approaches face problems and difficulties with efficacy and long-term stability. Recent advances and progress in nanotechnology are opening up new opportunities to improve the surgical procedures for treating osteoporotic vertebral fractures. This article reviews the improvements enabled by new nanomaterials and focuses on new injectable biomaterials like bone cements and surgical instruments for treating vertebral fractures. This article also provides an introduction to osteoporotic vertebral fractures and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. In addition, perspectives on future trends with injectable bone cements and surgical instruments enhanced by nanotechnology are provided. PMID:26316746

  11. Vertebral architecture in the earliest stem tetrapods.

    PubMed

    Pierce, Stephanie E; Ahlberg, Per E; Hutchinson, John R; Molnar, Julia L; Sanchez, Sophie; Tafforeau, Paul; Clack, Jennifer A

    2013-02-14

    The construction of the vertebral column has been used as a key anatomical character in defining and diagnosing early tetrapod groups. Rhachitomous vertebrae--in which there is a dorsally placed neural arch and spine, an anteroventrally placed intercentrum and paired, posterodorsally placed pleurocentra--have long been considered the ancestral morphology for tetrapods. Nonetheless, very little is known about vertebral anatomy in the earliest stem tetrapods, because most specimens remain trapped in surrounding matrix, obscuring important anatomical features. Here we describe the three-dimensional vertebral architecture of the Late Devonian stem tetrapod Ichthyostega using propagation phase-contrast X-ray synchrotron microtomography. Our scans reveal a diverse array of new morphological, and associated developmental and functional, characteristics, including a possible posterior-to-anterior vertebral ossification sequence and the first evolutionary appearance of ossified sternal elements. One of the most intriguing features relates to the positional relationships between the vertebral elements, with the pleurocentra being unexpectedly sutured or fused to the intercentra that directly succeed them, indicating a 'reverse' rhachitomous design. Comparison of Ichthyostega with two other stem tetrapods, Acanthostega and Pederpes, shows that reverse rhachitomous vertebrae may be the ancestral condition for limbed vertebrates. This study fundamentally revises our current understanding of vertebral column evolution in the earliest tetrapods and raises questions about the presumed vertebral architecture of tetrapodomorph fish and later, more crownward, tetrapods.

  12. Alternative approaches for vertebrate ecotoxicity tests in the ...

    EPA Pesticide Factsheets

    The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimised wherever possible. For some regulatory purposes, the use of vertebrate organisms for environmental risk assessments (ERA) has even been banned, and in other situations the numbers of organisms tested has been dramatically reduced, or the severity of the procedure refined. However, there is still a long way to go to achieve replacement of vertebrate organisms to generate environmental hazard data. The development of animal alternatives is not just based on ethical considerations but also to reduce the cost of performing vertebrate ecotoxicity tests and in some cases to provide better information aimed at improving ERAs. The present focus paper provides an overview of the considerable advances that have been made towards alternative approaches for ecotoxicity assessments over the last few decades. The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimised wherever possible. For some regulatory purposes, the use of vertebrate organi

  13. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates.

    PubMed

    Nakatani, Yoichiro; Takeda, Hiroyuki; Kohara, Yuji; Morishita, Shinichi

    2007-09-01

    Although several vertebrate genomes have been sequenced, little is known about the genome evolution of early vertebrates and how large-scale genomic changes such as the two rounds of whole-genome duplications (2R WGD) affected evolutionary complexity and novelty in vertebrates. Reconstructing the ancestral vertebrate genome is highly nontrivial because of the difficulty in identifying traces originating from the 2R WGD. To resolve this problem, we developed a novel method capable of pinning down remains of the 2R WGD in the human and medaka fish genomes using invertebrate tunicate and sea urchin genes to define ohnologs, i.e., paralogs produced by the 2R WGD. We validated the reconstruction using the chicken genome, which was not considered in the reconstruction step, and observed that many ancestral proto-chromosomes were retained in the chicken genome and had one-to-one correspondence to chicken microchromosomes, thereby confirming the reconstructed ancestral genomes. Our reconstruction revealed a contrast between the slow karyotype evolution after the second WGD and the rapid, lineage-specific genome reorganizations that occurred in the ancestral lineages of major taxonomic groups such as teleost fishes, amphibians, reptiles, and marsupials.

  14. On the use of volumetric-modulated arc therapy for single-fraction thoracic vertebral metastases stereotactic body radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhrel, Damodar, E-mail: damodar.pokhrel@uky.edu; Sood, Sumit; McClinton, Christopher

    To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planningmore » target volumes (PTV) were between 14.4 and 230.1 cc (median = 38.0 cc). Prescription dose was 16 Gy in 1 fraction with 6 MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV-1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D{sub 0.03} {sub cc}, D{sub 0.35} {sub cc}), partial spinal cord (D{sub 10%}), esophagus (D{sub 0.03} {sub cc} and D{sub 5} {sub cc}), heart (D{sub 0.03} {sub cc} and D{sub 15} {sub cc}), and lung (V{sub 5}, V{sub 10}, and maximum dose to 1000 cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2 mm and 3%/3 mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly

  15. Notochord-dependent expression of MFH1 and PAX1 cooperates to maintain the proliferation of sclerotome cells during the vertebral column development.

    PubMed

    Furumoto, T A; Miura, N; Akasaka, T; Mizutani-Koseki, Y; Sudo, H; Fukuda, K; Maekawa, M; Yuasa, S; Fu, Y; Moriya, H; Taniguchi, M; Imai, K; Dahl, E; Balling, R; Pavlova, M; Gossler, A; Koseki, H

    1999-06-01

    During axial skeleton development, the notochord is essential for the induction of the sclerotome and for the subsequent differentiation of cartilage forming the vertebral bodies and intervertebral discs. These functions are mainly mediated by the diffusible signaling molecule Sonic hedgehog. The products of the paired-box-containing Pax1 and the mesenchyme forkhead-1 (Mfh1) genes are expressed in the developing sclerotome and are essential for the normal development of the vertebral column. Here, we demonstrate that Mfh1 like Pax1 expression is dependent on Sonic hedgehog signals from the notochord, and Mfh1 and Pax1 act synergistically to generate the vertebral column. In Mfh1/Pax1 double mutants, dorsomedial structures of the vertebrae are missing, resulting in extreme spina bifida accompanied by subcutaneous myelomeningocoele, and the vertebral bodies and intervertebral discs are missing. The morphological defects in Mfh1/Pax1 double mutants strongly correlate with the reduction of the mitotic rate of sclerotome cells. Thus, both the Mfh1 and the Pax1 gene products cooperate to mediate Sonic hedgehog-dependent proliferation of sclerotome cells. Copyright 1999 Academic Press.

  16. Vertebral formula in red-crowned crane (Grus japonensis) and hooded crane (Grus monacha).

    PubMed

    Hiraga, Takeo; Sakamoto, Haruka; Nishikawa, Sayaka; Muneuchi, Ippei; Ueda, Hiromi; Inoue, Masako; Shimura, Ryoji; Uebayashi, Akiko; Yasuda, Nobuhiro; Momose, Kunikazu; Masatomi, Hiroyuki; Teraoka, Hiroki

    2014-04-01

    Red-crowned cranes (Grus japonensis) are distributed separately in the east Eurasian Continent (continental population) and in Hokkaido, Japan (island population). The island population is sedentary in eastern Hokkaido and has increased from a very small number of cranes to over 1,300, thus giving rise to the problem of poor genetic diversity. While, Hooded cranes (Grus monacha), which migrate from the east Eurasian Continent and winter mainly in Izumi, Kagoshima Prefecture, Japan, are about eight-time larger than the island population of Red-crowned cranes. We collected whole bodies of these two species, found dead or moribund in eastern Hokkaido and in Izumi, and observed skeletons with focus on vertebral formula. Numbers of cervical vertebrae (Cs), thoracic vertebrae (Ts), vertebrae composing the synsacrum (Sa) and free coccygeal vertebrae (free Cos) in 22 Red-crowned cranes were 17 or 18, 9-11, 13 or 14 and 7 or 8, respectively. Total number of vertebrae was 47, 48 or 49, and the vertebral formula was divided into three types including 9 sub-types. Numbers of Cs, Ts, vertebrae composing the Sa and free Cos in 25 Hooded cranes were 17 or 18, 9 or 10, 12-14 and 6-8, respectively. Total number of vertebrae was 46, 47, 48 or 49, and the vertebral formula was divided into four types including 14 sub-types. Our findings clearly showed various numerical vertebral patterns in both crane species; however, these variations in the vertebral formula may be unrelated to the genetic diversity.

  17. Vertebral Formula in Red-Crowned Crane (Grus japonensis) and Hooded Crane (Grus monacha)

    PubMed Central

    HIRAGA, Takeo; SAKAMOTO, Haruka; NISHIKAWA, Sayaka; MUNEUCHI, Ippei; UEDA, Hiromi; INOUE, Masako; SHIMURA, Ryoji; UEBAYASHI, Akiko; YASUDA, Nobuhiro; MOMOSE, Kunikazu; MASATOMI, Hiroyuki; TERAOKA, Hiroki

    2013-01-01

    ABSTRACT Red-crowned cranes (Grus japonensis) are distributed separately in the east Eurasian Continent (continental population) and in Hokkaido, Japan (island population). The island population is sedentary in eastern Hokkaido and has increased from a very small number of cranes to over 1,300, thus giving rise to the problem of poor genetic diversity. While, Hooded cranes (Grus monacha), which migrate from the east Eurasian Continent and winter mainly in Izumi, Kagoshima Prefecture, Japan, are about eight-time larger than the island population of Red-crowned cranes. We collected whole bodies of these two species, found dead or moribund in eastern Hokkaido and in Izumi, and observed skeletons with focus on vertebral formula. Numbers of cervical vertebrae (Cs), thoracic vertebrae (Ts), vertebrae composing the synsacrum (Sa) and free coccygeal vertebrae (free Cos) in 22 Red-crowned cranes were 17 or 18, 9–11, 13 or 14 and 7 or 8, respectively. Total number of vertebrae was 47, 48 or 49, and the vertebral formula was divided into three types including 9 sub-types. Numbers of Cs, Ts, vertebrae composing the Sa and free Cos in 25 Hooded cranes were 17 or 18, 9 or 10, 12–14 and 6–8, respectively. Total number of vertebrae was 46, 47, 48 or 49, and the vertebral formula was divided into four types including 14 sub-types. Our findings clearly showed various numerical vertebral patterns in both crane species; however, these variations in the vertebral formula may be unrelated to the genetic diversity. PMID:24334828

  18. New software for cervical vertebral geometry assessment and its relationship to skeletal maturation—a pilot study

    PubMed Central

    Cunha, A R; Júnior, G C; Fernandes, N; Campos, M J S; Costa, L F M; Vitral, R W F; Bolognese, A M

    2014-01-01

    Objectives: In the present study, we developed new software for quantitative analysis of cervical vertebrae maturation, and we evaluated its applicability through a multinomial logistic regression model (MLRM). Methods: Digitized images of the bodies of the second (C2), third (C3) and fourth (C4) cervical vertebrae were analysed in cephalometric radiographs of 236 subjects (116 boys and 120 girls) by using a software developed for digitized vertebrae analysis. The sample was initially distributed into 11 categories according to the Fishman's skeletal maturity indicators and were then grouped into four stages for quantitative cervical maturational changes (QCMC) analysis (QCMC I, II, III and IV). Seven variables of interest were measured and analysed to identify morphologic alterations of the vertebral bodies in each QCMC category. Results: Statistically significant differences (p < 0.05) were observed among all QCMC categories for the variables analysed. The MLRM used to calculate the probability that an individual belonged to each of the four cervical vertebrae maturation categories was constructed by taking into account gender, chronological age and four variables determined by digitized vertebrae analysis (Ang_C3, MP_C3, MP_C4 and SP_C4). The MLRM presented a predictability of 81.4%. The weighted κ test showed almost perfect agreement (κ = 0.832) between the categories defined initially by the method of Fishman and those allocated by the MLRM. Conclusions: Significant alterations in the morphologies of the C2, C3 and C4 vertebral bodies that were analysed through the digitized vertebrae analysis software occur during the different stages of skeletal maturation. The model that combines the four parameters measured on the vertebral bodies, the age and the gender showed an excellent prediction. PMID:24319125

  19. New software for cervical vertebral geometry assessment and its relationship to skeletal maturation--a pilot study.

    PubMed

    Santiago, R C; Cunha, A R; Júnior, G C; Fernandes, N; Campos, M J S; Costa, L F M; Vitral, R W F; Bolognese, A M

    2014-01-01

    In the present study, we developed new software for quantitative analysis of cervical vertebrae maturation, and we evaluated its applicability through a multinomial logistic regression model (MLRM). Digitized images of the bodies of the second (C2), third (C3) and fourth (C4) cervical vertebrae were analysed in cephalometric radiographs of 236 subjects (116 boys and 120 girls) by using a software developed for digitized vertebrae analysis. The sample was initially distributed into 11 categories according to the Fishman's skeletal maturity indicators and were then grouped into four stages for quantitative cervical maturational changes (QCMC) analysis (QCMC I, II, III and IV). Seven variables of interest were measured and analysed to identify morphologic alterations of the vertebral bodies in each QCMC category. Statistically significant differences (p < 0.05) were observed among all QCMC categories for the variables analysed. The MLRM used to calculate the probability that an individual belonged to each of the four cervical vertebrae maturation categories was constructed by taking into account gender, chronological age and four variables determined by digitized vertebrae analysis (Ang_C3, MP_C3, MP_C4 and SP_C4). The MLRM presented a predictability of 81.4%. The weighted κ test showed almost perfect agreement (κ = 0.832) between the categories defined initially by the method of Fishman and those allocated by the MLRM. Significant alterations in the morphologies of the C2, C3 and C4 vertebral bodies that were analysed through the digitized vertebrae analysis software occur during the different stages of skeletal maturation. The model that combines the four parameters measured on the vertebral bodies, the age and the gender showed an excellent prediction.

  20. Surgical treatment of pyogenic vertebral osteomyelitis with spinal instrumentation

    PubMed Central

    Chen, Wei-Hua; Jiang, Lei-Sheng

    2006-01-01

    Pyogenic vertebral osteomyelitis responds well to conservative treatment at early stage, but more complicated and advanced conditions, including mechanical spinal instability, epidural abscess formation, neurologic deficits, and refractoriness to antibiotic therapy, usually require surgical intervention. The subject of using metallic implants in the setting of infection remains controversial, although more and more surgeons acknowledge that instrumentation can help the body to combat the infection rather than to interfere with it. The combination of radical debridement and instrumentation has lots of merits such as, restoration and maintenance of the sagittal alignment of the spine, stabilization of the spinal column and reduction of bed rest period. This issue must be viewed in the context of the overall and detailed health conditions of the subjecting patient. We think the culprit for the recurrence of infection is not the implants itself, but is the compromised general health condition of the patients. In this review, we focus on surgical treatment of pyogenic vertebral osteomyelitis with special attention to the role of spinal instrumentation in the presence of pyogenic infection. PMID:17106664

  1. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms

    PubMed Central

    Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.

    2016-01-01

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  2. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  3. Origin and Loss of Nested LRRTM/α-Catenin Genes during Vertebrate Evolution

    PubMed Central

    Uvarov, Pavel; Kajander, Tommi; Airaksinen, Matti S.

    2014-01-01

    Leucine-rich repeat transmembrane neuronal proteins (LRRTMs) form in mammals a family of four postsynaptic adhesion proteins, which have been shown to bind neurexins and heparan sulphate proteoglycan (HSPG) glypican on the presynaptic side. Mutations in the genes encoding LRRTMs and neurexins are implicated in human cognitive disorders such as schizophrenia and autism. Our analysis shows that in most jawed vertebrates, lrrtm1, lrrtm2, and lrrtm3 genes are nested on opposite strands of large conserved intron of α-catenin genes ctnna2, ctnna1, and ctnna3, respectively. No lrrtm genes could be found in tunicates or lancelets, while two lrrtm genes are found in the lamprey genome, one of which is adjacent to a single ctnna homolog. Based on similar highly positive net charge of lamprey LRRTMs and the HSPG-binding LRRTM3 and LRRTM4 proteins, we speculate that the ancestral LRRTM might have bound HSPG before acquiring neurexins as binding partners. Our model suggests that lrrtm gene translocated into the large ctnna intron in early vertebrates, and that subsequent duplications resulted in three lrrtm/ctnna gene pairs present in most jawed vertebrates. However, we detected three prominent exceptions: (1) the lrrtm3/ctnna3 gene structure is absent in the ray-finned fish genomes, (2) the genomes of clawed frogs contain ctnna1 but lack the corresponding nested (lrrtm2) gene, and (3) contain lrrtm3 gene in the syntenic position but lack the corresponding host (ctnna3) gene. We identified several other protein-coding nested gene structures of which either the host or the nested gene has presumably been lost in the frog or chicken lineages. Interestingly, majority of these nested genes comprise LRR domains. PMID:24587117

  4. The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo.

    PubMed

    Briggs, Andrew M; Wrigley, Tim V; van Dieën, Jaap H; Phillips, Bev; Lo, Sing Kai; Greig, Alison M; Bennell, Kim L

    2006-12-01

    The aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 +/- 6.4 years, 162.2 +/- 5.1 cm, 69.1 +/- 11.2 kg) and 19 without fractures (62.9 +/- 7.9 years, 158.3 +/- 4.4 cm, 59.3 +/- 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (p = 0.0008) and shear force (p < 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (p = 0.001) and shear force (p < 0.001) was observed in the fracture group. A greater flexion moment (p = 0.003) and compression force (p = 0.007) one level below the fracture, and a greater flexion moment (p = 0.002) and shear force (p = 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for

  5. Skeletal site-specific effects of whole body vibration in mature rats: from deleterious to beneficial frequency-dependent effects.

    PubMed

    Pasqualini, Marion; Lavet, Cédric; Elbadaoui, Mohamed; Vanden-Bossche, Arnaud; Laroche, Norbert; Gnyubkin, Vasily; Vico, Laurence

    2013-07-01

    Whole body vibration (WBV) is receiving increasing interest as an anti-osteoporotic prevention strategy. In this context, selective effects of different frequency and acceleration magnitude modalities on musculoskeletal responses need to be better defined. Our aim was to investigate the bone effects of different vibration frequencies at constant g level. Vertical WBV was delivered at 0.7 g (peak acceleration) and 8, 52 or 90 Hz sinusoidal vibration to mature male rats 10 min daily for 5 days/week for 4 weeks. Peak accelerations measured by skin or bone-mounted accelerometers at L2 vertebral and tibia crest levels revealed similar values between adjacent skin and bone sites. Local accelerations were greater at 8 Hz compared with 52 and 90 Hz and were greater in vertebra than tibia for all the frequencies tested. At 52 Hz, bone responses were mainly seen in L2 vertebral body and were characterized by trabecular reorganization and stimulated mineral apposition rate (MAR) without any bone volume alteration. At 90 Hz, axial and appendicular skeletons were affected as were the cortical and trabecular compartments. Cortical thickness increased in femur diaphysis (17%) along with decreased porosity; trabecular bone volume increased at distal femur metaphysis (23%) and even more at L2 vertebral body (32%), along with decreased SMI and increased trabecular connectivity. Trabecular thickness increased at the tibia proximal metaphysis. Bone cellular activities indicated a greater bone formation rate, which was more pronounced at vertebra (300%) than at long bone (33%). Active bone resorption surfaces were unaffected. At 8 Hz, however, hyperosteoidosis with reduced MAR along with increased resorption surfaces occurred in the tibia; hyperosteoidosis and trend towards decreased MAR was also seen in L2 vertebra. Trabecular bone mineral density was decreased at femur and tibia. Thus the most favorable regimen is 90 Hz, while deleterious effects were seen at 8 Hz. We concluded that

  6. A Symptomatic Case of Thoracic Vertebral Hemangioma Causing Lower Limb Spastic Paresis.

    PubMed

    Alfawareh, Mohammad; Alotaibi, Tariq; Labeeb, Abdallah; Audat, Ziad

    2016-10-31

    BACKGROUND Despite being the most common tumor of the spine, vertebral hemangioma is rarely symptomatic in adults. In fact, only 0.9-1.2% of all vertebral hemangiomas may be symptomatic. When hemangiomas occur in the thoracic vertebrae, they are more likely to be symptomatic due to the narrow vertebral canal dimensions that mandate more aggressive management prior to the onset of severe neurological sequelae. CASE REPORT An 18-year-old male presented to the emergency room with a one-month history of mild to moderate mid-thoracic back pain, radiating to both lower limbs. It was associated with both lower limb weakness and decreased sensation. There was no history of bowel or bladder incontinence. Neurological examination revealed lower limb weakness with power 3/5, exaggerated deep tendon reflexes, bilateral sustained clonus, impaired sensation below the umbilicus, spasticity, and a positive Babinski sign. A CT scan showed a diffuse body lesion at the 8th thoracic vertebra with coarse trabeculations, corduroy appearance, or jail-bar sign. The patient underwent decompression and fixation. Biopsy of permanent samples showed proliferation of blood vessels with dilated spaces and no malignant cells, consistent with hemangioma. Postoperatively, spasticity improved, and the patient regained normal power. CONCLUSIONS Symptomatic vertebral hemangiomas are rare but should be considered as a differential diagnosis. They can present with severe neurological symptoms. When managed appropriately, patients regain full motor and sensory function. Decompression resulted in quick relief of symptoms, which was followed by an extensive rehabilitation program.

  7. Unicameral bone cyst of a cervical vertebral body and lateral mass with associated pathological fracture in a child. Case report and review of the literature.

    PubMed

    Snell, B E; Adesina, A; Wolfla, C E

    2001-10-01

    The authors present the case of a 10-year-old girl with a history of cervical trauma in whom a cystic lesion was found to involve all three columns of C-7 with evidence of pathological fracture. Computerized tomography scanning revealed a lytic lesion with sclerotic margins involving the left vertebral body, pedicle, lateral mass, and lamina of C-7 with an associated pathological compression fracture. Magnetic resonance imaging demonstrated mixed signal on both T1- and T2-weighted sequences, with cystic and enhancing solid portions. Magnetic resonance angiography demonstrated anterior displacement of the left vertebral artery at C-7. The patient underwent C-7 subtotal corpectomy and posterior resection of the tumor mass; anterior and posterior fusion were performed in which instrumentation was placed. Histological examination disclosed cystic areas lined by fibromembranous tissue with calcification and osteoid deposits consistent with unicameral bone cyst. Of the four previously reported cases of unicameral bone cysts in the cervical spine, none involved all three columns simultaneously or was associated with pathological fracture. The most common differential diagnostic considerations for cystic lesions in the spine are aneurysmal bone cyst, osteoblastoma, or giant cell tumor of bone. Unicameral bone cyst, in this location, although rare, must be considered in the differential diagnosis and may require resection and spinal reconstruction.

  8. Health economic aspects of vertebral augmentation procedures.

    PubMed

    Borgström, F; Beall, D P; Berven, S; Boonen, S; Christie, S; Kallmes, D F; Kanis, J A; Olafsson, G; Singer, A J; Åkesson, K

    2015-04-01

    We reviewed all peer-reviewed papers analysing the cost-effectiveness of vertebroplasty and balloon kyphoplasty for osteoporotic vertebral compression fractures. In general, the procedures appear to be cost effective but are very dependent upon model input details. Better data, rather than new models, are needed to answer outstanding questions. Vertebral augmentation procedures (VAPs), including vertebroplasty (VP) and balloon kyphoplasty (BKP), seek to stabilise fractured vertebral bodies and reduce pain. The aim of this paper is to review current literature on the cost-effectiveness of VAPs as well as to discuss the challenges for economic evaluation in this research area. A systematic literature search was conducted to identify existing published studies on the cost-effectiveness of VAPs in patients with osteoporosis. Only peer-reviewed published articles that fulfilled the criteria of being regarded as full economic evaluations including both morbidity and mortality in the outcome measure in the form of quality-adjusted life years (QALYs) were included. The search identified 949 studies, of which four (0.4 %) were identified as relevant with one study added later. The reviewed studies differed widely in terms of study design, modelling framework and data used, yielding different results and conclusions regarding the cost-effectiveness of VAPs. Three out of five studies indicated in the base case results that VAPs were cost effective compared to non-surgical management (NSM). The five main factors that drove the variations in the cost-effectiveness between the studies were time horizon, quality of life effect of treatment, offset time of the treatment effect, reduced number of bed days associated with VAPs and mortality benefit with treatment. The cost-effectiveness of VAPs is uncertain. In answering the remaining questions, new cost-effectiveness analysis will yield limited benefit. Rather, studies that can reduce the uncertainty in the underlying data

  9. Male pregnancy and the evolution of body segmentation in seahorses and pipefishes.

    PubMed

    Hoffman, Eric A; Mobley, Kenyon B; Jones, Adam G

    2006-02-01

    The evolution of complex traits, which are specified by the interplay of multiple genetic loci and environmental effects, is a topic of central importance in evolutionary biology. Here, we show that body and tail vertebral numbers in fishes of the pipefish and seahorse family (Syngnathidae) can serve as a model for studies of quantitative trait evolution. A quantitative genetic analysis of body and tail vertebrae from field-collected families of the Gulf pipefish, Syngnathus scovelli, shows that both traits exhibit significantly positive additive genetic variance, with heritabilities of 0.75 +/- 0.13 (mean +/- standard error) and 0.46 +/- 0.18, respectively. We do not find any evidence for either phenotypic or genetic correlations between the two traits. Pipefish are characterized by male pregnancy, and phylogenetic consideration of body proportions suggests that the position of eggs on the pregnant male's body may have contributed to the evolution of vertebral counts. In terms of numbers of vertebrae, tail-brooding males have longer tails for a given trunk size than do trunk-brooding males. Overall, these results suggest that vertebral counts in pipefish are heritable traits, capable of a response to selection, and they may have experienced an interesting history of selection due to the phenomenon of male pregnancy. Given that these traits vary among populations within species as well as among species, they appear to provide an excellent model for further research on complex trait evolution. Body segmentation may thus afford excellent opportunities for comparative study of homologous complex traits among disparate vertebrate taxa.

  10. Department of Vertebrate Zoology, NMNH

    Science.gov Websites

    Research & Collections About Us Get Involved Calendar Department ofVertebrate Zoology Red-eyed Libraries Staff Contact Us NMNH Home › Research & Collections › Department of Vertebrate Zoology the study of animals with backbones. Research in the department covers fishes, amphibians, reptiles

  11. Back pain caused by a pseudo-tumorous vertebral collapse: atypical presentation of primary vertebral hydatidosis.

    PubMed

    Mrabet, D; Rekik, S; Khiari, H; Mizouni, H; Meddeb, N; Cheour, I; Elleuch, M; Mnif, E; Mrabet, A; Sahli, H; Sellami, S

    2011-03-24

    Hydatidosis, also known as echinococcosis, is a rare but serious parasitic disease in endemic areas. Primary spinal location is extremely rare. This case report describes a rare instance of hydatid cyst that caused severe and progressive low-back pain and neurologic dysfunction. Spine MRI showed a unique vertebral collapse of Th12 body with multicystic lesions filling the spinal canal. In addition, hydatidosis serodiagnostic test was positive at 1/725. Treatment depended on the actual surgical removal of the cysts. Surgery consisted in excision and extirpation of the cysts, associated with decompressive laminectomy. The diagnosis was confirmed on the basis of histological results. No coincidental hydatid visceral involvement was found. Antihelminthic drugs (Albendazole) were promptly given before surgery for a long period. The outcome was satisfactorily marked by total regression of the motor deficit and sphincter disorders.

  12. Combined modified en bloc corpectomy with replacement of the aorta in curative interdisciplinary treatment of a large osteosarcoma infiltrating the aorta.

    PubMed

    Pilger, Amrei; Tsilimparis, Nikolaos; Bockhorn, Maximilian; Trepel, Martin; Dreimann, Marc

    2016-05-01

    We report a case of a large three-level spinal osteosarcoma infiltrating the adjacent aorta. This is the first case in which a combined modified three-level en bloc corpectomy with resection and replacement of the adjacent aorta was successful as a part of interdisciplinary curative treatment. Case report. The surgical procedure was performed as a two-step treatment. A heart lung machine (HLM) was not used, in order to avoid cerebral and spinal ischemia and to decrease the risk of hematogenous tumor metastases. Instead, a bypass from the left subclavian artery the distal descending aorta was used. We modified the en bloc corpectomy procedure, leaving a dorsal segment of the vertebral bodies to enable rapid surgery. The procedure was successful and the en bloc resection of the vertebral body with aortal resection could be achieved. Except for pallhypesthesia in the left dermatomes Th7-Th10, the patient does not have any postoperative neurologic deficits. Combined corpectomy with aortic replacement should be considered as a reasonable option in the curative treatment of osteosarcoma with consideration of the immense surgical risks. The use of an HLM is not necessary, especially considering the inherent risk of hematogenous tumor metastases. Modified corpectomy leaving a dorsal vertebral body segment was considered a reasonable variation since tumor-free margins could still be expected.

  13. Multi-detector thoracic CT findings in cerebro-costo-mandibular syndrome: rib gaps and failure of costo-vertebral separation.

    PubMed

    Watson, Tom Anthony; Arthurs, Owen John; Muthialu, Nagarajan; Calder, Alistair Duncan

    2014-02-01

    Cerebro-costo-mandibular syndrome (CCMS) describes a triad of mandibular hypoplasia, brain dysfunction and posterior rib defects ("rib gaps"). We present the CT imaging for a 2-year-old girl with CCMS that highlights the rib gap defects and shows absent transverse processes with abnormal fusion of the ribs directly to the vertebral bodies. We argue that this is likely to relate to abnormal lateral sclerotome development in embryology, with the failure of normal costo-vertebral junctions compounding impaired thoracic function. The case also highlights the use of CT for specific indications in skeletal dysplasia.

  14. HEMATOPOIETIC PROGENITOR CELL CONTENT OF VERTEBRAL BODY MARROW USED FOR COMBINED SOLID ORGAN AND BONE MARROW TRANSPLANTATION

    PubMed Central

    Rybka, Witold B.; Fontes, Paulo A.; Rao, Abdul S.; Winkelstein, Alan; Ricordi, Camillo; Ball, Edward D.; Starzl, Thomas E.

    2010-01-01

    While cadaveric vertebral bodies (VB) have long been proposed as a suitable source of bone marrow (BM) for transplantation (BMT), they have rarely been used for this purpose. We have infused VB BM immediately following whole organ (WO) transplantation to augment donor cell chimerism. We quantified the hematopoietic progenitor cell (HPC) content of VB BM as well as BM obtained from the iliac crests (IC) of normal allogeneic donors (ALLO) and from patients with malignancy undergoing autologous marrow harvest (AUTO). Patients undergoing WOIBM transplantation also had AUTO BM harvested in the event that subsequent lymphohematopoietic reconstitution was required. Twenty-four VB BM, 24 IC BM-ALLO, 31 IC AUTO, and 24 IC WO-AUTO were harvested. VB BM was tested 12 to 72 hr after procurement and infused after completion ofWO grafting. IC BM was tested and then used or cryopreserved immediately. HPC were quantified by clonal assay measuring CFU-GM, BFU-E, and CFU-GEMM, and by flow cytometry for CD34+ progenitor cells. On an average, 9 VB were processed during each harvest, and despite an extended processing time the number of viable nucleated cells obtained was significantly higher than that from IC. Furthermore, by HPC content, VB BM was equivalent to IC BM, which is routinely used for BMT. We conclude that VB BM is a clinically valuable source of BM for allogeneic transplantation. PMID:7701582

  15. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision

    PubMed Central

    Kiser, Philip D.; Zhang, Jianye; Badiee, Mohsen; Li, Qingjiang; Shi, Wuxian; Sui, Xuewu; Golczak, Marcin; Tochtrop, Gregory P.; Palczewski, Krzysztof

    2015-01-01

    Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase, RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive due to uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligand positioned in an adjacent pocket. With the geometry of the RPE65-substrate complex clarified we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. These data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules. PMID:25894083

  16. Size cues and the adjacency principle.

    DOT National Transportation Integrated Search

    1963-11-01

    The purpose of the present study was to apply the adjacency principle to the perception of relative depth from size cues. In agreement with the adjacency principle, it was found that the size cue between adjacent objects was more effective than the s...

  17. Allometry and Scaling of the Intraocular Pressure and Aqueous Humour Flow Rate in Vertebrate Eyes.

    PubMed

    Zouache, Moussa A; Eames, Ian; Samsudin, Amir

    2016-01-01

    In vertebrates, intraocular pressure (IOP) is required to maintain the eye into a shape allowing it to function as an optical instrument. It is sustained by the balance between the production of aqueous humour by the ciliary body and the resistance to its outflow from the eye. Dysregulation of the IOP is often pathological to vision. High IOP may lead to glaucoma, which is in man the second most prevalent cause of blindness. Here, we examine the importance of the IOP and rate of formation of aqueous humour in the development of vertebrate eyes by performing allometric and scaling analyses of the forces acting on the eye during head movement and the energy demands of the cornea, and testing the predictions of the models against a list of measurements in vertebrates collated through a systematic review. We show that the IOP has a weak dependence on body mass, and that in order to maintain the focal length of the eye, it needs to be an order of magnitude greater than the pressure drop across the eye resulting from gravity or head movement. This constitutes an evolutionary constraint that is common to all vertebrates. In animals with cornea-based optics, this constraint also represents a condition to maintain visual acuity. Estimated IOPs were found to increase with the evolution of terrestrial animals. The rate of formation of aqueous humour was found to be adjusted to the metabolic requirements of the cornea, scaling as Vac(0.67), where Vac is the volume of the anterior chamber. The present work highlights an interdependence between IOP and aqueous flow rate crucial to ocular function that must be considered to understand the evolution of the dioptric apparatus. It should also be taken into consideration in the prevention and treatment of glaucoma.

  18. Allometry and Scaling of the Intraocular Pressure and Aqueous Humour Flow Rate in Vertebrate Eyes

    PubMed Central

    Zouache, Moussa A.; Eames, Ian; Samsudin, Amir

    2016-01-01

    In vertebrates, intraocular pressure (IOP) is required to maintain the eye into a shape allowing it to function as an optical instrument. It is sustained by the balance between the production of aqueous humour by the ciliary body and the resistance to its outflow from the eye. Dysregulation of the IOP is often pathological to vision. High IOP may lead to glaucoma, which is in man the second most prevalent cause of blindness. Here, we examine the importance of the IOP and rate of formation of aqueous humour in the development of vertebrate eyes by performing allometric and scaling analyses of the forces acting on the eye during head movement and the energy demands of the cornea, and testing the predictions of the models against a list of measurements in vertebrates collated through a systematic review. We show that the IOP has a weak dependence on body mass, and that in order to maintain the focal length of the eye, it needs to be an order of magnitude greater than the pressure drop across the eye resulting from gravity or head movement. This constitutes an evolutionary constraint that is common to all vertebrates. In animals with cornea-based optics, this constraint also represents a condition to maintain visual acuity. Estimated IOPs were found to increase with the evolution of terrestrial animals. The rate of formation of aqueous humour was found to be adjusted to the metabolic requirements of the cornea, scaling as Vac0.67, where Vac is the volume of the anterior chamber. The present work highlights an interdependence between IOP and aqueous flow rate crucial to ocular function that must be considered to understand the evolution of the dioptric apparatus. It should also be taken into consideration in the prevention and treatment of glaucoma. PMID:26990431

  19. Vascular Plant and Vertebrate Inventory of Gila Cliff Dwellings National Monument

    USGS Publications Warehouse

    Powell, Brian F.; Albrecht, Eric W.; Halvorson, William L.; Schmidt, Cecilia A.; Docherty, Kathleen; Anning, Pamela

    2006-01-01

    Executive Summary This report summarizes the results of the first comprehensive biological inventory of Gila Cliff Dwellings National Monument (NM) in western New Mexico. This project was part of a larger effort to inventory plants and vertebrates in eight National Park Service units in Arizona and New Mexico. Our surveys address many of the objectives that were set forth in the monument's natural resource management plan almost 20 years ago, but until this effort, those goals were never accomplished. From 2001 to 2003 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at Gila Cliff Dwellings NM to document presence of species within the boundaries of the monument. For all taxonomic groups that we studied, we collected 'incidental' sightings on U.S. Forest Service lands adjacent to the monument, and in a few cases we did formal surveys on those lands. Because we used repeatable study designs and standardized field techniques, these inventories can serve as the first step in a biological monitoring program for Gila Cliff Dwellings NM and surrounding lands. We recorded 552 species at Gila Cliff Dwellings NM and the surrounding lands (Table 1). We found no non-native species of reptiles, birds, or mammals, one non-native amphibian (American bullfrog), and 33 non-native plants. Particularly on lands adjacent to the monument we found that the American bullfrog was very abundant, which is a cause for significant management concern. Species of non-native plants that are of management concern include red brome, bufflegrass, and cheatgrass. For a park unit of its size and geographic location, we found the plant and vertebrate communities to be fairly diverse; for each taxonomic group we found representative species from a wide range of taxonomic orders and/or families. The monument's geographic location, with influences from the Rocky Mountain, Chihuahuan Desert, and Madrean ecological provinces, plays an important role in determining

  20. Metamerism in cephalochordates and the problem of the vertebrate head.

    PubMed

    Onai, Takayuki; Adachi, Noritaka; Kuratani, Shigeru

    2017-01-01

    The vertebrate head characteristically exhibits a complex pattern with sense organs, brain, paired eyes and jaw muscles, and the brain case is not found in other chordates. How the extant vertebrate head has evolved remains enigmatic. Historically, there have been two conflicting views on the origin of the vertebrate head, segmental and non-segmental views. According to the segmentalists, the vertebrate head is organized as a metameric structure composed of segments equivalent to those in the trunk; a metamere in the vertebrate head was assumed to consist of a somite, a branchial arch and a set of cranial nerves, considering that the head evolved from rostral segments of amphioxus-like ancestral vertebrates. Non-segmentalists, however, considered that the vertebrate head was not segmental. In that case, the ancestral state of the vertebrate head may be non-segmented, and rostral segments in amphioxus might have been secondarily gained, or extant vertebrates might have evolved through radical modifications of amphioxus-like ancestral vertebrate head. Comparative studies of mesodermal development in amphioxus and vertebrate gastrula embryos have revealed that mesodermal gene expressions become segregated into two domains anteroposteriorly to specify the head mesoderm and trunk mesoderm only in vertebrates; in this segregation, key genes such as delta and hairy, involved in segment formation, are expressed in the trunk mesoderm, but not in the head mesoderm, strongly suggesting that the head mesoderm of extant vertebrates is not segmented. Taken together, the above finding possibly adds a new insight into the origin of the vertebrate head; the vertebrate head mesoderm would have evolved through an anteroposterior polarization of the paraxial mesoderm if the ancestral vertebrate had been amphioxus-like.

  1. Common normal variants of pediatric vertebral development that mimic fractures: a pictorial review from a national longitudinal bone health study

    PubMed Central

    Jaremko, Jacob Lester; Siminoski, Kerry; Firth, Gregory; Matzinger, Mary Ann; Shenouda, Nazih; Konji, Victor N.; Roth, Johannes; Sbrocchi, Anne Marie; Reed, Martin; O’Brien, Kathleen; Nadel, Helen; McKillop, Scott; Kloiber, Reinhard; Dubois, Josée; Coblentz, Craig; Charron, Martin; Ward, Leanne M.

    2015-01-01

    Children with glucocorticoid-treated illnesses are at risk for osteoporotic vertebral fractures and growing awareness has led to increased monitoring for these fractures. However scant literature describes developmental changes in vertebral morphology that can mimic fractures. The goal of this paper is to aid in distinguishing between normal variants and fractures. We illustrate differences using lateral spine radiographs obtained annually from children recruited to the Canada-wide STeroid-Associated Osteoporosis in the Pediatric Population (STOPP) observational study, in which 400 children with glucocorticoid-treated leukemia, rheumatic disorders, and nephrotic syndrome were enrolled near glucocorticoid initiation and followed prospectively for 6 years. Normal variants mimicking fractures exist in all regions of the spine and fall into two groups. The first group comprises variants mimicking pathological vertebral height loss, including not-yet-ossified vertebral apophyses superiorly and inferiorly which can lead to a vertebral shape easily over-interpreted as anterior wedge fracture, physiologic beaking, and spondylolisthesis associated with shortened posterior vertebral height. The second group includes variants mimicking other radiologic signs of fractures: anterior vertebral artery groove resembling an anterior buckle fracture, Cupid’s bow balloon disk morphology, Schmorl nodes mimicking concave endplate fractures, and parallax artifact resembling endplate interruption or biconcavity. If an unexpected vertebral body contour is detected, careful attention to its location, detailed morphology, and (if available) serial changes over time may clarify whether it is a fracture requiring change in management or simply a normal variant. Awareness of the variants described in this paper can improve accuracy in the diagnosis of pediatric vertebral fractures. PMID:25828359

  2. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep.

    PubMed

    Zhang, Zhifeng; Sun, Yawei; Du, Wei; He, Sangang; Liu, Mingjun; Tian, Changyan

    2017-09-01

    The vertebral number is associated with body length and carcass traits, which represents an economically important trait in farm animals. The variation of vertebral number has been observed in a few mammalian species. However, the variation of vertebral number and quantitative trait loci in sheep breeds have not been well addressed. In our investigation, the information including gender, age, carcass weight, carcass length and the number of thoracic and lumbar vertebrae from 624 China Kazakh sheep was collected. The effect of vertebral number variation on carcass weight and carcass length was estimated by general linear model. Further, the polymorphic sites of Vertnin ( VRTN ) gene were identified by sequencing, and the association of the genotype and vertebral number variation was analyzed by the one-way analysis of variance model. The variation of thoracolumbar vertebrae number in Kazakh sheep (18 to 20) was smaller than that in Texel sheep (17 to 21). The individuals with 19 thoracolumbar vertebrae (T13L6) were dominant in Kazakh sheep (79.2%). The association study showed that the numbers of thoracolumbar vertebrae were positively correlated with the carcass length and carcass weight, statistically significant with carcass length. To investigate the association of thoracolumbar vertebrae number with VRTN gene, we genotyped the VRTN gene. A total of 9 polymorphic sites were detected and only a single nucleotide polymorphism (SNP) (rs426367238) was suggested to associate with thoracic vertebral number statistically. The variation of thoracolumbar vertebrae number positively associated with the carcass length and carcass weight, especially with the carcass length. VRTN gene polymorphism of the SNP (rs426367238) with significant effect on thoracic vertebral number could be as a candidate marker to further evaluate its role in influence of thoracolumbar vertebral number.

  3. The Expanding Diversity of RNA Viruses in Vertebrates.

    PubMed

    Wang, Wenqiang; Han, Guan-Zhu

    2018-06-01

    The diversity of RNA viruses in vertebrates remains largely unexplored. The discovery of 214 novel vertebrate-associated RNA viruses will likely help us to understand the diversity and evolution of RNA viruses in vertebrates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  5. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  6. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  7. 46 CFR 148.445 - Adjacent spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Adjacent spaces. 148.445 Section 148.445 Shipping COAST... THAT REQUIRE SPECIAL HANDLING Additional Special Requirements § 148.445 Adjacent spaces. When... following requirements must be met: (a) Each space adjacent to a cargo hold must be ventilated by natural...

  8. Vestibular blueprint in early vertebrates.

    PubMed

    Straka, Hans; Baker, Robert

    2013-11-19

    Central vestibular neurons form identifiable subgroups within the boundaries of classically outlined octavolateral nuclei in primitive vertebrates that are distinct from those processing lateral line, electrosensory, and auditory signals. Each vestibular subgroup exhibits a particular morpho-physiological property that receives origin-specific sensory inputs from semicircular canal and otolith organs. Behaviorally characterized phenotypes send discrete axonal projections to extraocular, spinal, and cerebellar targets including other ipsi- and contralateral vestibular nuclei. The anatomical locations of vestibuloocular and vestibulospinal neurons correlate with genetically defined hindbrain compartments that are well conserved throughout vertebrate evolution though some variability exists in fossil and extant vertebrate species. The different vestibular subgroups exhibit a robust sensorimotor signal processing complemented with a high degree of vestibular and visual adaptive plasticity.

  9. Unusual vertebral artery origins: examples and related pathology.

    PubMed

    Koenigsberg, Robert A; Pereira, Lorianne; Nair, Bronwyn; McCormick, Daniel; Schwartzman, Robert

    2003-06-01

    Anomalies of the vertebral arteries are uncommon, but important to recognize in the diagnosis and catheter based evaluation and treatment of patients suffering cerebrovascular disease. This article illustrates our experience with such anomalies. These include the vertebral artery arising as the fourth and most distal branch of the aortic arch, as a right subclavian artery branch arising distal to the right thyrocervical trunk, as a right common carotid artery branch in a patient with an aberrant right subclavian artery, and a case of left vertebral artery proximal duplication, with both aortic and left subclavian vertebral arteries present in the same patient; the latter join to form a single distal cervical vertebral artery. Copyright 2003 Wiley-Liss, Inc.

  10. Ecomorphological inferences in early vertebrates: reconstructing Dunkleosteus terrelli (Arthrodira, Placodermi) caudal fin from palaeoecological data.

    PubMed

    Ferrón, Humberto G; Martínez-Pérez, Carlos; Botella, Héctor

    2017-01-01

    Our knowledge about the body morphology of many extinct early vertebrates is very limited, especially in regard to their post-thoracic region. The prompt disarticulation of the dermo-skeletal elements due to taphonomic processes and the lack of a well-ossified endoskeleton in a large number of groups hinder the preservation of complete specimens. Previous reconstructions of most early vertebrates known from partial remains have been wholly based on phylogenetically closely related taxa. However, body design of fishes is determined, to a large extent, by their swimming mode and feeding niche, making it possible to recognise different morphological traits that have evolved several times in non-closely related groups with similar lifestyles. Based on this well-known ecomorphological correlation, here we propose a useful comparative framework established on extant taxa for predicting some anatomical aspects in extinct aquatic vertebrates from palaeoecological data and vice versa. For this, we have assessed the relationship between the locomotory patterns and the morphological variability of the caudal region in extant sharks by means of geometric morphometrics and allometric regression analysis. Multivariate analyses reveal a strong morphological convergence in non-closely related shark species that share similar modes of life, enabling the characterization of the caudal fin morphology of different ecological subgroups. In addition, interspecific positive allometry, affecting mainly the caudal fin span, has been detected. This phenomenon seems to be stronger in sharks with more pelagic habits, supporting its role as a compensation mechanism for the loss of hydrodynamic lift associated with the increase in body size, as previously suggested for many other living and extinct aquatic vertebrates. The quantification of shape change per unit size in each ecological subgroup has allowed us to establish a basis for inferring not only qualitative aspects of the caudal fin

  11. Osteological and Soft-Tissue Evidence for Pneumatization in the Cervical Column of the Ostrich (Struthio camelus) and Observations on the Vertebral Columns of Non-Volant, Semi-Volant and Semi-Aquatic Birds

    PubMed Central

    Apostolaki, Naomi E.; Rayfield, Emily J.; Barrett, Paul M.

    2015-01-01

    Postcranial skeletal pneumaticity (PSP) is a condition most notably found in birds, but that is also present in other saurischian dinosaurs and pterosaurs. In birds, skeletal pneumatization occurs where bones are penetrated by pneumatic diverticula, membranous extensions that originate from air sacs that serve in the ventilation of the lung. Key questions that remain to be addressed include further characterizing (1) the skeletal features that can be used to infer the presence/absence and extent of PSP in birds and non-avian dinosaurs, and (2) the association between vertebral laminae and specific components of the avian respiratory system. Previous work has used vertebral features such as pneumatic foramina, fossae, and laminae to identify/infer the presence of air sacs and diverticula, and to discuss the range of possible functions of such features. Here, we tabulate pneumatic features in the vertebral column of 11 avian taxa, including the flightless ratites and selected members of semi-volant and semi-aquatic Neornithes. We investigate the associations of these osteological features with each other and, in the case of Struthio camelus, with the specific presence of pneumatic diverticula. We find that the mere presence of vertebral laminae does not indicate the presence of skeletal pneumaticity, since laminae are not always associated with pneumatic foramina or fossae. Nevertheless, laminae are more strongly developed when adjacent to foramina or fossae. In addition, membranous air sac extensions and adjacent musculature share the same attachment points on the vertebrae, rendering the use of such features for reconstructing respiratory soft tissue features ambiguous. Finally, pneumatic diverticula attach to the margins of laminae, foramina, and/or fossae prior to their intraosseous course. Similarities in PSP distribution among the examined taxa are concordant with their phylogenetic interrelationships. The possible functions of PSP are discussed in brief, based

  12. Risk factor analysis for predicting vertebral body re-collapse after posterior instrumented fusion in thoracolumbar burst fracture.

    PubMed

    Jang, Hae-Dong; Bang, Chungwon; Lee, Jae Chul; Soh, Jae-Wan; Choi, Sung-Woo; Cho, Hyeung-Kyu; Shin, Byung-Joon

    2018-02-01

    In the posterior instrumented fusion surgery for thoracolumbar (T-L) burst fracture, early postoperative re-collapse of well-reduced vertebral body fracture could induce critical complications such as correction loss, posttraumatic kyphosis, and metal failure, often leading to revision surgery. Furthermore, re-collapse is quite difficult to predict because of the variety of risk factors, and no widely accepted accurate prediction systems exist. Although load-sharing classification has been known to help to decide the need for additional anterior column support, this radiographic scoring system has several critical limitations. (1) To evaluate risk factors and predictors for postoperative re-collapse in T-L burst fractures. (2) Through the decision-making model, we aimed to predict re-collapse and prevent unnecessary additional anterior spinal surgery. Retrospective comparative study. Two-hundred and eight (104 men and 104 women) consecutive patients with T-L burst fracture who underwent posterior instrumented fusion were reviewed retrospectively. Burst fractures caused by high-energy trauma (fall from a height and motor vehicle accident) with a minimum 1-year follow-up were included. The average age at the time of surgery was 45.9 years (range, 15-79). With respect to the involved spinal level, 95 cases (45.6%) involved L1, 51 involved T12, 54 involved L2, and 8 involved T11. Mean fixation segments were 3.5 (range, 2-5). Pedicle screw instrumentation including fractured vertebra had been performed in 129 patients (62.3%). Clinical data using self-report measures (visual analog scale score), radiographic measurements (plain radiograph, computed tomography, and magnetic resonance image), and functional measures using the Oswestry Disability Index were evaluated. Body height loss of fractured vertebra, body wedge angle, and Cobb angle were measured in serial plain radiographs. We assigned patients to the re-collapse group if their body height loss progressed greater

  13. A Case of Duplicated Right Vertebral Artery.

    PubMed

    Motomura, Mayuko; Watanabe, Koichi; Tabira, Yoko; Iwanaga, Joe; Matsuuchi, Wakako; Yoshida, Daichi; Saga, Tsuyoshi; Yamaki, Koh-Ichi

    2018-04-27

    We encountered a case of duplicated right vertebral artery during an anatomical dissection course for medical students in 2015. Two vertebral arteries were found in the right neck of a 91-year-old female cadaver. The proximal leg of the arteries arose from the area between the right subclavian artery and the right common carotid artery that diverged from the brachiocephalic artery. The distal leg arose from the right subclavian artery as expected. The proximal leg entered the transverse foramen of the fourth cervical vertebra and the distal leg entered the transverse foramen of the sixth cervical vertebra. The two right vertebral arteries joined to form one artery just after the origin of the right vertebral artery of the brachiocephalic artery entered the transverse foramen of the fourth cervical vertebra. This artery then traveled up in the transverse foramina and became the basilar artery, joining with the left vertebral artery. We discuss the embryological origin of this case and review previously reported cases.

  14. Clinical, Genetic and Environmental Factors Associated with Congenital Vertebral Malformations

    PubMed Central

    Giampietro, P.F.; Raggio, C.L.; Blank, R.D.; McCarty, C.; Broeckel, U.; Pickart, M.A.

    2013-01-01

    Congenital vertebral malformations (CVM) pose a significant health problem because they can be associated with spinal deformities, such as congenital scoliosis and kyphosis, in addition to various syndromes and other congenital malformations. Additional information remains to be learned regarding the natural history of congenital scoliosis and related health problems. Although significant progress has been made in understanding the process of somite formation, which gives rise to vertebral bodies, there is a wide gap in our understanding of how genetic factors contribute to CVM development. Maternal diabetes during pregnancy most commonly contributes to the occurrence of CVM, followed by other factors such as hypoxia and anticonvulsant medications. This review highlights several emerging clinical issues related to CVM, including pulmonary and orthopedic outcome in congenital scoliosis. Recent breakthroughs in genetics related to gene and environment interactions associated with CVM development are discussed. The Klippel-Feil syndrome which is associated with cervical segmentation abnormalities is illustrated as an example in which animal models, such as the zebrafish, can be utilized to provide functional evidence of pathogenicity of identified mutations. PMID:23653580

  15. Postsacral vertebral morphology in relation to tail length among primates and other mammals.

    PubMed

    Russo, Gabrielle A

    2015-02-01

    Tail reduction/loss independently evolved in a number of mammalian lineages, including hominoid primates. One prerequisite to appropriately contextualizing its occurrence and understanding its significance is the ability to track evolutionary changes in tail length throughout the fossil record. However, to date, the bony correlates of tail length variation among living taxa have not been comprehensively examined. This study quantifies postsacral vertebral morphology among living primates and other mammals known to differ in relative tail length (RTL). Linear and angular measurements with known biomechanical significance were collected on the first, mid-, and transition proximal postsacral vertebrae, and their relationship with RTL was assessed using phylogenetic generalized least-squares regression methods. Compared to shorter-tailed primates, longer-tailed primates possess a greater number of postsacral vertebral features associated with increased proximal tail flexibility (e.g., craniocaudally longer vertebral bodies), increased intervertebral body joint range of motion (e.g., more circularly shaped cranial articular surfaces), and increased leverage of tail musculature (e.g., longer spinous processes). These observations are corroborated by the comparative mammalian sample, which shows that distantly related short-tailed (e.g., Phascolarctos, Lynx) and long-tailed (e.g., Dendrolagus, Acinonyx) nonprimate mammals morphologically converge with short-tailed (e.g., Macaca tonkeana) and long-tailed (e.g., Macaca fascicularis) primates, respectively. Multivariate models demonstrate that the variables examined account for 70% (all mammals) to 94% (only primates) of the variance in RTL. Results of this study may be used to infer the tail lengths of extinct primates and other mammals, thereby improving our understanding about the evolution of tail reduction/loss. © 2014 Wiley Periodicals, Inc.

  16. Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan.

    PubMed

    Guerreiro, Isabel; Gitto, Sandra; Novoa, Ana; Codourey, Julien; Nguyen Huynh, Thi Hanh; Gonzalez, Federico; Milinkovitch, Michel C; Mallo, Moises; Duboule, Denis

    2016-08-01

    Within land vertebrate species, snakes display extreme variations in their body plan, characterized by the absence of limbs and an elongated morphology. Such a particular interpretation of the basic vertebrate body architecture has often been associated with changes in the function or regulation of Hox genes. Here, we use an interspecies comparative approach to investigate different regulatory aspects at the snake HoxD locus. We report that, unlike in other vertebrates, snake mesoderm-specific enhancers are mostly located within the HoxD cluster itself rather than outside. In addition, despite both the absence of limbs and an altered Hoxd gene regulation in external genitalia, the limb-associated bimodal HoxD chromatin structure is maintained at the snake locus. Finally, we show that snake and mouse orthologous enhancer sequences can display distinct expression specificities. These results show that vertebrate morphological evolution likely involved extensive reorganisation at Hox loci, yet within a generally conserved regulatory framework.

  17. Reorganisation of Hoxd regulatory landscapes during the evolution of a snake-like body plan

    PubMed Central

    Guerreiro, Isabel; Gitto, Sandra; Novoa, Ana; Codourey, Julien; Nguyen Huynh, Thi Hanh; Gonzalez, Federico; Milinkovitch, Michel C; Mallo, Moises; Duboule, Denis

    2016-01-01

    Within land vertebrate species, snakes display extreme variations in their body plan, characterized by the absence of limbs and an elongated morphology. Such a particular interpretation of the basic vertebrate body architecture has often been associated with changes in the function or regulation of Hox genes. Here, we use an interspecies comparative approach to investigate different regulatory aspects at the snake HoxD locus. We report that, unlike in other vertebrates, snake mesoderm-specific enhancers are mostly located within the HoxD cluster itself rather than outside. In addition, despite both the absence of limbs and an altered Hoxd gene regulation in external genitalia, the limb-associated bimodal HoxD chromatin structure is maintained at the snake locus. Finally, we show that snake and mouse orthologous enhancer sequences can display distinct expression specificities. These results show that vertebrate morphological evolution likely involved extensive reorganisation at Hox loci, yet within a generally conserved regulatory framework. DOI: http://dx.doi.org/10.7554/eLife.16087.001 PMID:27476854

  18. Innate immunity in vertebrates: an overview.

    PubMed

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  19. The evolution of early vertebrate photoreceptors.

    PubMed

    Collin, Shaun P; Davies, Wayne L; Hart, Nathan S; Hunt, David M

    2009-10-12

    Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these 'living fossils', we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.

  20. Correlation between Hox code and vertebral morphology in archosaurs.

    PubMed

    Böhmer, Christine; Rauhut, Oliver W M; Wörheide, Gert

    2015-07-07

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns.

  1. Correlation between Hox code and vertebral morphology in archosaurs

    PubMed Central

    Böhmer, Christine; Rauhut, Oliver W. M.; Wörheide, Gert

    2015-01-01

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns. PMID:26085583

  2. A unique case of penetrating neck and cervical spine trauma resulting in vertebral artery transection and internal carotid artery laceration.

    PubMed

    Marston, Alexander P; Montenegro, Monique M; Oldenburg, Michael S; Thom, Joshua T; Driscoll, Colin L W

    2016-01-01

    Describe the presentation and treatment of a patient who suffered a penetrating cervical trauma resulting in occlusion of the vertebral and internal carotid arteries. The electronic medical record was used to collect information pertaining to the patient's clinical history. A 20-year-old male suffered a unique penetrating neck injury resulting in simultaneous injuries to the internal carotid and vertebral arteries as demonstrated by pre-operative angiography. Combined endovascular and open surgical approaches were utilized to successfully manage the vascular injuries prior to foreign body extraction. Complex penetrating cervical trauma is best managed with a multidisciplinary and multimodality approach. In appropriately selected patients, pre-operative angiography is a critical diagnostic modality that can prevent life-threatening hemorrhage following foreign body extraction. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evaluating Intensity Modulated Proton Therapy relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in CSI in Growing Pediatric Patients

    PubMed Central

    Giantsoudi, Drosoula; Seco, Joao; Eaton, Bree R.; Simeone, F. Joseph; Kooy, Hanne; Yock, Torunn I.; Tarbell, Nancy J; DeLaney, Thomas F.; Adams, Judith; Paganetti, Harald; MacDonald, Shannon M.

    2017-01-01

    Purpose At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aim to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Methods Five plans were generated for medulloblastoma patients, previously treated with CSI PS proton radiation therapy (PRT): (a) single posterior-anterior (PA) PS field covering the WVB (PS-PA-WVB), (b) single PA PS field including only the thecal sac in the target volume (PS-PA-VBS), (c) single PA IMPT field covering the WVB (IMPT-PA-WVB), (d) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS) and (e) two posterior-oblique (−35°, 35°) IMPT fields, target volume including thecal sac only (IMPT2F-VBS). For all cases, 23.4Gy(RBE) was prescribed to 95% of the spinal canal. Dose, LET and variable-RBE-weighted dose distributions were calculated for all plans using the TOPAS Monte Carlo system. Results IMPT VBS techniques spared efficiently the anterior vertebral bodies (AVB), even when accounting for potential higher variable RBE predicted by linear energy transfer (LET) distributions. Assuming RBE=1.1, V10Gy(RBE) decreased from 100% for the WVB techniques to 59.5–76.8% for the cervical, 29.9–34.6% for the thoracic and 20.6–25.1% for the lumbar, and V20Gy(RBE) decreased from 99.0% to 17.8–20.0% for the cervical, 7.2–7.6% for the thoracic and 4.0–4.6% for the lumbar AVB when IMPT VBS techniques were applied. Corresponding values for the PS VBS technique were higher. Conclusions Advanced proton techniques may sufficiently reduce the dose to the vertebral body and allow for vertebral column growth for children with CNS tumors requiring CSI. This holds even when considering variable RBE values. A clinical trial is planned for VBS to

  4. Origins of gonadotropin-releasing hormone (GnRH) in vertebrates: identification of a novel GnRH in a basal vertebrate, the sea lamprey.

    PubMed

    Kavanaugh, Scott I; Nozaki, Masumi; Sower, Stacia A

    2008-08-01

    We cloned a cDNA encoding a novel (GnRH), named lamprey GnRH-II, from the sea lamprey, a basal vertebrate. The deduced amino acid sequence of the newly identified lamprey GnRH-II is QHWSHGWFPG. The architecture of the precursor is similar to that reported for other GnRH precursors consisting of a signal peptide, decapeptide, a downstream processing site, and a GnRH-associated peptide; however, the gene for lamprey GnRH-II does not have introns in comparison with the gene organization for all other vertebrate GnRHs. Lamprey GnRH-II precursor transcript was widely expressed in a variety of tissues. In situ hybridization of the brain showed expression and localization of the transcript in the hypothalamus, medulla, and olfactory regions, whereas immunohistochemistry using a specific antiserum showed only GnRH-II cell bodies and processes in the preoptic nucleus/hypothalamus areas. Lamprey GnRH-II was shown to stimulate the hypothalamic-pituitary axis using in vivo and in vitro studies. Lamprey GnRH-II was also shown to activate the inositol phosphate signaling system in COS-7 cells transiently transfected with the lamprey GnRH receptor. These studies provide evidence for a novel lamprey GnRH that has a role as a third hypothalamic GnRH. In summary, the newly discovered lamprey GnRH-II offers a new paradigm of the origin of the vertebrate GnRH family. We hypothesize that due to a genome/gene duplication event, an ancestral gene gave rise to two lineages of GnRHs: the gnathostome GnRH and lamprey GnRH-II.

  5. Constrained vertebrate evolution by pleiotropic genes.

    PubMed

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song; Shimai, Kotaro; Lu, Tsai-Ming; Li, Fang; Fujimoto, Satoko; Ishikawa, Masato; Liu, Shiping; Sasagawa, Yohei; Zhang, Guojie; Kuratani, Shigeru; Yu, Jr-Kai; Kusakabe, Takehiro G; Khaitovich, Philipp; Irie, Naoki

    2017-11-01

    Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.

  6. Loss of col8a1a Function during Zebrafish Embryogenesis Results in Congenital Vertebral Malformations

    PubMed Central

    Gray, Ryan S.; Wilm, Thomas; Smith, Jeff; Bagnat, Michel; Dale, Rodney M.; Topczewski, Jacek; Johnson, Stephen L.; Solnica-Krezel, Lilianna

    2014-01-01

    Congenital vertebral malformations (CVM) occur in 1 in 1,000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles (m531, vu41, vu105) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue. PMID:24333517

  7. Loss of col8a1a function during zebrafish embryogenesis results in congenital vertebral malformations.

    PubMed

    Gray, Ryan S; Wilm, Thomas P; Smith, Jeff; Bagnat, Michel; Dale, Rodney M; Topczewski, Jacek; Johnson, Stephen L; Solnica-Krezel, Lilianna

    2014-02-01

    Congenital vertebral malformations (CVM) occur in 1 in 1000 live births and in many cases can cause spinal deformities, such as scoliosis, and result in disability and distress of affected individuals. Many severe forms of the disease, such as spondylocostal dystostosis, are recessive monogenic traits affecting somitogenesis, however the etiologies of the majority of CVM cases remain undetermined. Here we demonstrate that morphological defects of the notochord in zebrafish can generate congenital-type spine defects. We characterize three recessive zebrafish leviathan/col8a1a mutant alleles ((m531, vu41, vu105)) that disrupt collagen type VIII alpha1a (col8a1a), and cause folding of the embryonic notochord and consequently adult vertebral column malformations. Furthermore, we provide evidence that a transient loss of col8a1a function or inhibition of Lysyl oxidases with drugs during embryogenesis was sufficient to generate vertebral fusions and scoliosis in the adult spine. Using periodic imaging of individual zebrafish, we correlate focal notochord defects of the embryo with vertebral malformations (VM) in the adult. Finally, we show that bends and kinks in the notochord can lead to aberrant apposition of osteoblasts normally confined to well-segmented areas of the developing vertebral bodies. Our results afford a novel mechanism for the formation of VM, independent of defects of somitogenesis, resulting from aberrant bone deposition at regions of misshapen notochord tissue. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Automatic Localization of Vertebral Levels in X-Ray Fluoroscopy Using 3D-2D Registration: A Tool to Reduce Wrong-Site Surgery

    PubMed Central

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-01-01

    Surgical targeting of the incorrect vertebral level (“wrong-level” surgery) is among the more common wrong-site surgical errors, attributed primarily to a lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. Conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error, and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (viz., CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved 10 patient CT datasets from which 50,000 simulated fluoroscopic images were generated from C-arm poses selected to approximate C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (viz., mPD < 5mm). Simulation studies showed a success rate of 99.998% (1 failure in 50,000 trials) and computation time of 4.7 sec on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond the specific

  9. KAST Study: The Kiva System As a Vertebral Augmentation Treatment-A Safety and Effectiveness Trial: A Randomized, Noninferiority Trial Comparing the Kiva System With Balloon Kyphoplasty in Treatment of Osteoporotic Vertebral Compression Fractures.

    PubMed

    Tutton, Sean M; Pflugmacher, Robert; Davidian, Mark; Beall, Douglas P; Facchini, Francis R; Garfin, Steven R

    2015-06-15

    The KAST (Kiva Safety and Effectiveness Trial) study was a pivotal, multicenter, randomized control trial for evaluation of safety and effectiveness in the treatment of patients with painful, osteoporotic vertebral compression fractures (VCFs). The objective was to demonstrate noninferiority of the Kiva system to balloon kyphoplasty (BK) with respect to the composite primary endpoint. Annual incidence of osteoporotic VCFs is prevalent. Optimal treatment of VCFs should address pain, function, and deformity. Kiva is a novel implant for vertebral augmentation in the treatment of VCFs. A total of 300 subjects with 1 or 2 painful osteoporotic VCFs were randomized to blindly receive Kiva (n = 153) or BK (n = 147). Subjects were followed through 12 months. The primary endpoint was a composite at 12 months defined as a reduction in fracture pain by at least 15 mm on the visual analogue scale, maintenance or improvement in function on the Oswestry Disability Index, and absence of device-related serious adverse events. Secondary endpoints included cement usage, extravasation, and adjacent level fracture. A mean improvement of 70.8 and 71.8 points in the visual analogue scale score and 38.1 and 42.2 points in the Oswestry Disability Index was noted in Kiva and BK, respectively. No device-related serious adverse events occurred. Despite significant differences in risk factors favoring the control group at baseline, the primary endpoint demonstrated noninferiority of Kiva to BK. Analysis of secondary endpoints revealed superiority with respect to cement use and site-reported extravasation and a positive trend in adjacent level fracture warranting further study. The KAST study successfully established that the Kiva system is noninferior to BK based on a composite primary endpoint assessment incorporating pain-, function-, and device-related serious adverse events for the treatment of VCFs due to osteoporosis. Kiva was shown to be noninferior to BK and revealed a positive trend

  10. Cope's Rule and Romer's theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates

    PubMed Central

    Lamsdell, James C.; Braddy, Simon J.

    2010-01-01

    Gigantism is widespread among Palaeozoic arthropods, yet causal mechanisms, particularly the role of (abiotic) environmental factors versus (biotic) competition, remain unknown. The eurypterids (Arthropoda: Chelicerata) include the largest arthropods; gigantic predatory pterygotids (Eurypterina) during the Siluro-Devonian and bizarre sweep-feeding hibbertopterids (Stylonurina) from the Carboniferous to end-Permian. Analysis of family-level originations and extinctions among eurypterids and Palaeozoic vertebrates show that the diversity of Eurypterina waned during the Devonian, while the Placodermi radiated, yet Stylonurina remained relatively unaffected; adopting a sweep-feeding strategy they maintained their large body size by avoiding competition, and persisted throughout the Late Palaeozoic while the predatory nektonic Eurypterina (including the giant pterygotids) declined during the Devonian, possibly out-competed by other predators including jawed vertebrates. PMID:19828493

  11. Evolutionary Specialization of Tactile Perception in Vertebrates.

    PubMed

    Schneider, Eve R; Gracheva, Elena O; Bagriantsev, Slav N

    2016-05-01

    Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  12. Eimeria that infect fish are diverse and are related to, but distinct from, those that infect terrestrial vertebrates

    USDA-ARS?s Scientific Manuscript database

    The Eimeria are ubiquitous Apicoplexan parasites (family: coccidia) of the gut epithelium of vertebrates which complete their development in a single host species and whose sporocysts may be recognized by the presence of a Stieda body through which their sporozoites excyst. Their diversity and rel...

  13. Strain distribution in the lumbar vertebrae under different loading configurations.

    PubMed

    Cristofolini, Luca; Brandolini, Nicola; Danesi, Valentina; Juszczyk, Mateusz M; Erani, Paolo; Viceconti, Marco

    2013-10-01

    The stress/strain distribution in the human vertebrae has seldom been measured, and only for a limited number of loading scenarios, at few locations on the bone surface. This in vitro study aimed at measuring how strain varies on the surface of the lumbar vertebral body and how such strain pattern depends on the loading conditions. Eight cadaveric specimens were instrumented with eight triaxial strain gauges each to measure the magnitude and direction of principal strains in the vertebral body. Each vertebra was tested in a three adjacent vertebrae segment fashion. The loading configurations included a compressive force aligned with the vertebral body but also tilted (15°) in each direction in the frontal and sagittal planes, a traction force, and torsion (both directions). Each loading configuration was tested six times on each specimen. The strain magnitude varied significantly between strain measurement locations. The strain distribution varied significantly when different loading conditions were applied (compression vs. torsion vs. traction). The strain distribution when the compressive force was tilted by 15° was also significantly different from the axial compression. Strains were minimal when the compressive force was applied coaxial with the vertebral body, compared with all other loading configurations. Also, strain was significantly more uniform for the axial compression, compared with all other loading configurations. Principal strains were aligned within 19° to the axis of the vertebral body for axial-compression and axial-traction. Conversely, when the applied force was tilted by 15°, the direction of principal strain varied by a much larger angle (15° to 28°). This is the first time, to our knowledge, that the strain distribution in the vertebral body is measured for such a variety of loading configurations and a large number of strain sensors. The present findings suggest that the structure of the vertebral body is optimized to sustain

  14. Facultative parthenogenesis in vertebrates: reproductive error or chance?

    PubMed

    Lampert, K P

    2008-01-01

    Parthenogenesis, the development of an embryo from a female gamete without any contribution of a male gamete, is very rare in vertebrates. Parthenogenetically reproducing species have, so far, only been found in the Squamate reptiles (lizards and snakes). Facultative parthenogenesis, switching between sexual and clonal reproduction, although quite common in invertebrates, e.g. Daphnia and aphids, seems to be even rarer in vertebrates. However, isolated cases of parthenogenetic development have been reported in all vertebrate groups. Facultative parthenogenesis in vertebrates has only been found in captive animals but might simply have been overlooked in natural populations. Even though its evolutionary impact is hard to determine and very likely varies depending on the ploidy restoration mechanisms and sex-determining mechanisms involved, facultative parthenogenesis is already discussed in conservation biology and medical research. To raise interest for facultative parthenogenesis especially in evolutionary biology, I summarize the current knowledge about facultative parthenogenesis in the different vertebrate groups, introduce mechanisms of diploid oocyte formation and discuss the genetic consequences and potential evolutionary impact of facultative parthenogenesis in vertebrates.

  15. The prevalence of radiographic vertebral fractures in Latin American countries: the Latin American Vertebral Osteoporosis Study (LAVOS).

    PubMed

    Clark, P; Cons-Molina, F; Deleze, M; Ragi, S; Haddock, L; Zanchetta, J R; Jaller, J J; Palermo, L; Talavera, J O; Messina, D O; Morales-Torres, J; Salmeron, J; Navarrete, A; Suarez, E; Pérez, C M; Cummings, S R

    2009-02-01

    In the first population-based study of vertebral fractures in Latin America, we found a 11.18 (95% CI 9.23-13.4) prevalence of radiographically ascertained vertebral fractures in a random sample of 1,922 women from cities within five different countries. These figures are similar to findings from studies in Beijing, China, some regions of Europe, and slightly lower than those found in the USA using the same standardized methodology. We report the first study of radiographic vertebral fractures in Latin America. An age-stratified random sample of 1,922 women aged 50 years and older from Argentina, Brazil, Colombia, Mexico, and Puerto Rico were included. In all cases a standardized questionnaire and lateral X-rays of the lumbar and thoracic spine were obtained after informed consent. A standardized prevalence of 11.18 (95% CI 9.23-13.4) was found. The prevalence was similar in all five countries, increasing from 6.9% (95% CI 4.6-9.1) in women aged 50-59 years to 27.8% (95% CI 23.1-32.4) in those 80 years and older (p for trend < 0.001). Among different risk factors, self-reported height loss OR = 1.63 (95% CI: 1.18-2.25), and previous history of fracture OR = 1.52 (95% CI: 1.14-2.03) were significantly (p < 0.003 and p < 0.04 respectably) associated with the presence of radiographic vertebral fractures in the multivariate analysis. In the bivariate analyses HRT was associated with a 35% lower risk OR = 0.65 (95% CI: 0.46-0.93) and physical activity with a 27% lower risk of having a vertebral fracture OR = 0.73 (95% CI: 0.55-0.98), but were not statistically significant in multivariate analyses We conclude that radiographically ascertained vertebral fractures are common in Latin America. Health authorities in the region should be aware and consider implementing measures to prevent vertebral fractures.

  16. Lower Jump Power Rather Than Muscle Mass Itself is Associated with Vertebral Fracture in Community-Dwelling Elderly Korean Women.

    PubMed

    Lee, Eun Young; Lee, Su Jin; Kim, Kyoung Min; Seo, Da Hea; Lee, Seung Won; Choi, Han Sol; Kim, Hyeon Chang; Youm, Yoosik; Kim, Chang Oh; Rhee, Yumie

    2017-06-01

    Sarcopenia is considered to be a risk factor for osteoporotic fracture, which is a major health problem in elderly women. In this study, we aimed to investigate the association of sarcopenia, with regard to muscle mass and function, with prevalent vertebral fracture in community-dwelling elderly women. We recruited 1281 women aged 64 to 87 years from the Korean Urban Rural Elderly cohort study. Muscle mass and function were measured using bioimpedance analysis and jumping mechanography. Skeletal muscle index (SMI) and jump power were used as an indicator of muscle mass and function, respectively. Among the participants, we observed 282 (18.9%) vertebral fractures and 564 (44.0%) osteoporosis. Although age, body mass index, and prevalence of osteoporosis increased as both SMI and jump power decreased, prevalence of vertebral fracture increased only when jump power decreased. In univariate analysis, compared with the highest quartile of jump power, the lowest quartile had a significant odds ratio of 2.80 (95% CI 1.79-4.36) for vertebral fracture. This association between jump power and vertebral fracture remained significant, with an odds ratio of 3.04 (95% CI 1.77-5.23), even after adjusting for other risk factors including age, bone mineral density, previous fracture, and cognitive function. In contrast, there was no association between SMI and vertebral fracture. Based on our results, low jump power, but not SMI, is associated with vertebral fracture in community-dwelling elderly Korean women. This finding suggests that jump power may have a more important role than muscle mass itself for osteoporotic fracture.

  17. Pathologic fracture of the thoracic spine in a male master ultra-marathoner due to the combination of a vertebral hemangioma and osteopenia.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T; Lutz, Bruno; Rosemann, Thomas; Baerlocher, Christian B

    2017-01-01

    Vertebral hemangiomas are the most common benign vertebral neoplasms and are generally asymptomatic. In the present study, we report the case of a 52-year-old male master ultra-marathoner suffering from a pathologic fracture of the thoracic spine due to a vertebral hemangioma. A further examination in the athlete revealed an accompanying osteopenia, which was most likely due to a deficiency in both vitamin D and testosterone. The treatment of the fracture consisted of percutaneous vertebroplasty. Shortly after the operation the athlete was able to continue running. The most likely reason for the pathologic fracture of the vertebral body was the combination of the vertebral hemangioma and osteopenia. The further treatment consisted of supplementation of both vitamin D and testosterone. Athletes and physicians should be aware that male master ultra-marathoners older than 50 years might suffer from osteopenia, where a deficiency in vitamin D and testosterone could be contributing factors for osteopenia development in general. Copyright © 2017 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Sp. z o.o. All rights reserved.

  18. Evolution and development of the vertebrate neck

    PubMed Central

    Ericsson, Rolf; Knight, Robert; Johanson, Zerina

    2013-01-01

    Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1–3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates. PMID:22697305

  19. A systematic approach to vertebral hemangioma.

    PubMed

    Gaudino, Simona; Martucci, Matia; Colantonio, Raffaella; Lozupone, Emilio; Visconti, Emiliano; Leone, Antonio; Colosimo, Cesare

    2015-01-01

    Vertebral hemangiomas (VHs) are a frequent and often incidental finding on computed tomography (CT) and magnetic resonance (MR) imaging of the spine. When their imaging appearance is "typical" (coarsened vertical trabeculae on radiographic and CT images, hyperintensity on T1- and T2-weighted MR images), the radiological diagnosis is straightforward. Nonetheless, VHs might also display an "atypical" appearance on MR imaging because of their histological features (amount of fat, vessels, and interstitial edema). Although the majority of VHs are asymptomatic and quiescent lesions, they can exhibit active behaviors, including growing quickly, extending beyond the vertebral body, and invading the paravertebral and/or epidural space with possible compression of the spinal cord and/or nerve roots ("aggressive" VHs). These "atypical" and "aggressive" VHs are a radiological challenge since they can mimic primary bony malignancies or metastases. CT plays a central role in the workup of atypical VHs, being the most appropriate imaging modality to highlight the polka-dot appearance that is representative of them. When aggressive VHs are suspected, both CT and MR are needed. MR is the best imaging modality to characterize the epidural and/or soft-tissue component, helping in the differential diagnosis. Angiography is a useful imaging adjunct for evaluating and even treating aggressive VHs. The primary objectives of this review article are to summarize the clinical, pathological, and imaging features of VHs, as well as the treatment options, and to provide a practical guide for the differential diagnosis, focusing on the rationale assessment of the findings from radiography, CT, and MR imaging.

  20. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus.

    PubMed Central

    Lukowiak, A A; Narayanan, A; Li, Z H; Terns, R M; Terns, M P

    2001-01-01

    Telomerase RNA is an essential component of the ribonucleoprotein enzyme involved in telomere length maintenance, a process implicated in cellular senescence and cancer. Vertebrate telomerase RNAs contain a box H/ACA snoRNA motif that is not required for telomerase activity in vitro but is essential in vivo. Using the Xenopus oocyte system, we have found that the box H/ACA motif functions in the subcellular localization of telomerase RNA. We have characterized the transport and biogenesis of telomerase RNA by injecting labeled wild-type and variant RNAs into Xenopus oocytes and assaying nucleocytoplasmic distribution, intranuclear localization, modification, and protein binding. Although yeast telomerase RNA shares characteristics of spliceosomal snRNAs, we show that human telomerase RNA is not associated with Sm proteins or efficiently imported into the nucleus. In contrast, the transport properties of vertebrate telomerase RNA resemble those of snoRNAs; telomerase RNA is retained in the nucleus and targeted to nucleoli. Furthermore, both nuclear retention and nucleolar localization depend on the box H/ACA motif. Our findings suggest that the H/ACA motif confers functional localization of vertebrate telomerase RNAs to the nucleus, the compartment where telomeres are synthesized. We have also found that telomerase RNA localizes to Cajal bodies, intranuclear structures where it is thought that assembly of various cellular RNPs takes place. Our results identify the Cajal body as a potential site of telomerase RNP biogenesis. PMID:11780638

  1. The Variety of Vertebrate Mechanisms of Sex Determination

    PubMed Central

    Trukhina, Antonina V.; Lukina, Natalia A.; Wackerow-Kouzova, Natalia D.; Smirnov, Alexander F.

    2013-01-01

    The review deals with features of sex determination in vertebrates. The mechanisms of sex determination are compared between fishes, amphibians, reptilians, birds, and mammals. We focus on structural and functional differences in the role of sex-determining genes in different vertebrates. Special attention is paid to the role of estrogens in sex determination in nonmammalian vertebrates. PMID:24369014

  2. The variety of vertebrate mechanisms of sex determination.

    PubMed

    Trukhina, Antonina V; Lukina, Natalia A; Wackerow-Kouzova, Natalia D; Smirnov, Alexander F

    2013-01-01

    The review deals with features of sex determination in vertebrates. The mechanisms of sex determination are compared between fishes, amphibians, reptilians, birds, and mammals. We focus on structural and functional differences in the role of sex-determining genes in different vertebrates. Special attention is paid to the role of estrogens in sex determination in nonmammalian vertebrates.

  3. Measuring local depletion of terrestrial game vertebrates by central-place hunters in rural Amazonia

    PubMed Central

    Peres, Carlos A.; Costa, Hugo C. M.

    2017-01-01

    The degree to which terrestrial vertebrate populations are depleted in tropical forests occupied by human communities has been the subject of an intense polarising debate that has important conservation implications. Conservation ecologists and practitioners are divided over the extent to which community-based subsistence offtake is compatible with ecologically functional populations of tropical forest game species. To quantify depletion envelopes of forest vertebrates around human communities, we deployed a total of 383 camera trap stations and 78 quantitative interviews to survey the peri-community areas controlled by 60 semi-subsistence communities over a combined area of over 3.2 million hectares in the Médio Juruá and Uatumã regions of Central-Western Brazilian Amazonia. Our results largely conform with prior evidence that hunting large-bodied vertebrates reduces wildlife populations near settlements, such that they are only found at a distance to settlements where they are hunted less frequently. Camera trap data suggest that a select few harvest-sensitive species, including lowland tapir, are either repelled or depleted by human communities. Nocturnal and cathemeral species were detected relatively more frequently in disturbed areas close to communities, but individual species did not necessarily shift their activity patterns. Group biomass of all species was depressed in the wider neighbourhood of urban areas rather than communities. Interview data suggest that species traits, especially group size and body mass, mediate these relationships. Large-bodied, large-group-living species are detected farther from communities as reported by experienced informants. Long-established communities in our study regions have not “emptied” the surrounding forest. Low human population density and low hunting offtake due to abundant sources of alternative aquatic protein, suggest that these communities represent a best-case scenario for sustainable hunting of

  4. Measuring local depletion of terrestrial game vertebrates by central-place hunters in rural Amazonia.

    PubMed

    Abrahams, Mark I; Peres, Carlos A; Costa, Hugo C M

    2017-01-01

    The degree to which terrestrial vertebrate populations are depleted in tropical forests occupied by human communities has been the subject of an intense polarising debate that has important conservation implications. Conservation ecologists and practitioners are divided over the extent to which community-based subsistence offtake is compatible with ecologically functional populations of tropical forest game species. To quantify depletion envelopes of forest vertebrates around human communities, we deployed a total of 383 camera trap stations and 78 quantitative interviews to survey the peri-community areas controlled by 60 semi-subsistence communities over a combined area of over 3.2 million hectares in the Médio Juruá and Uatumã regions of Central-Western Brazilian Amazonia. Our results largely conform with prior evidence that hunting large-bodied vertebrates reduces wildlife populations near settlements, such that they are only found at a distance to settlements where they are hunted less frequently. Camera trap data suggest that a select few harvest-sensitive species, including lowland tapir, are either repelled or depleted by human communities. Nocturnal and cathemeral species were detected relatively more frequently in disturbed areas close to communities, but individual species did not necessarily shift their activity patterns. Group biomass of all species was depressed in the wider neighbourhood of urban areas rather than communities. Interview data suggest that species traits, especially group size and body mass, mediate these relationships. Large-bodied, large-group-living species are detected farther from communities as reported by experienced informants. Long-established communities in our study regions have not "emptied" the surrounding forest. Low human population density and low hunting offtake due to abundant sources of alternative aquatic protein, suggest that these communities represent a best-case scenario for sustainable hunting of wildlife

  5. Surgical treatment of hematogenous vertebral Aspergillus osteomyelitis.

    PubMed

    Bridwell, K H; Campbell, J W; Barenkamp, S J

    1990-04-01

    Three cases of Aspergillus fumigatas vertebral osteomyelitis failed courses of medical treatment. Each was subsequently treated with anterior vertebral debridement and posterior segmental spinal instrumentation. Despite poor nutritional and immune systems, resolution of the infection and subsequent anterior ankylosis occurred in each patient, with follow-up ranging from 1 to 3 years. If patients with aspergillus vertebral osteomyelitis do not respond to medical treatment, early surgical debridement and stabilization in combination with intravenous amphotericin B can lead to resolution and bony ankylosis.

  6. A Symptomatic Case of Thoracic Vertebral Hemangioma Causing Lower Limb Spastic Paresis

    PubMed Central

    Alfawareh, Mohammad; Alotaibi, Tariq; Labeeb, Abdallah; Audat, Ziad

    2016-01-01

    Patient: Male, 18 Final Diagnosis: Hemangioma Symptoms: Pain • weaknes of lower limbs Medication: — Clinical Procedure: Decompression and fixation Specialty: Neurosurgery Objective: Unusual clinical course Background: Despite being the most common tumor of the spine, vertebral hemangioma is rarely symptomatic in adults. In fact, only 0.9–1.2% of all vertebral hemangiomas may be symptomatic. When hemangiomas occur in the thoracic vertebrae, they are more likely to be symptomatic due to the narrow vertebral canal dimensions that mandate more aggressive management prior to the onset of severe neurological sequelae. Case Report: An 18-year-old male presented to the emergency room with a one-month history of mild to moderate midthoracic back pain, radiating to both lower limbs. It was associated with both lower limb weakness and decreased sensation. There was no history of bowel or bladder incontinence. Neurological examination revealed lower limb weakness with power 3/5, exaggerated deep tendon reflexes, bilateral sustained clonus, impaired sensation below the umbilicus, spasticity, and a positive Babinski sign. A CT scan showed a diffuse body lesion at the 8th thoracic vertebra with coarse trabeculations, corduroy appearance, or jail-bar sign. The patient underwent decompression and fixation. Biopsy of permanent samples showed proliferation of blood vessels with dilated spaces and no malignant cells, consistent with hemangioma. Postoperatively, spasticity improved, and the patient regained normal power. Conclusions: Symptomatic vertebral hemangiomas are rare but should be considered as a differential diagnosis. They can present with severe neurological symptoms. When managed appropriately, patients regain full motor and sensory function. Decompression resulted in quick relief of symptoms, which was followed by an extensive rehabilitation program. PMID:27795545

  7. Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine

    PubMed Central

    2012-01-01

    Background The purpose of this study was to test the hypothesis that direct vertebral derotation by pedicle screws (PS) causes hypokyphosis of the thoracic spine in adolescent idiopathic scoliosis (AIS) patients, using computer simulation. Methods Twenty AIS patients with Lenke type 1 or 2 who underwent posterior correction surgeries using PS were included in this study. Simulated corrections of each patient’s scoliosis, as determined by the preoperative CT scan data, were performed on segmented 3D models of the whole spine. Two types of simulated extreme correction were performed: 1) complete coronal correction only (C method) and 2) complete coronal correction with complete derotation of vertebral bodies (C + D method). The kyphosis angle (T5-T12) and vertebral rotation angle at the apex were measured before and after the simulated corrections. Results The mean kyphosis angle after the C + D method was significantly smaller than that after the C method (2.7 ± 10.0° vs. 15.0 ± 7.1°, p < 0.01). The mean preoperative apical rotation angle of 15.2 ± 5.5° was completely corrected after the C + D method (0°) and was unchanged after the C method (17.6 ± 4.2°). Conclusions In the 3D simulation study, kyphosis was reduced after complete correction of the coronal and rotational deformity, but it was maintained after the coronal-only correction. These results proved the hypothesis that the vertebral derotation obtained by PS causes hypokyphosis of the thoracic spine. PMID:22691717

  8. Synthetic CT for MRI-based liver stereotactic body radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Bredfeldt, Jeremy S.; Liu, Lianli; Feng, Mary; Cao, Yue; Balter, James M.

    2017-04-01

    A technique for generating MRI-derived synthetic CT volumes (MRCTs) is demonstrated in support of adaptive liver stereotactic body radiation therapy (SBRT). Under IRB approval, 16 subjects with hepatocellular carcinoma were scanned using a single MR pulse sequence (T1 Dixon). Air-containing voxels were identified by intensity thresholding on T1-weighted, water and fat images. The envelope of the anterior vertebral bodies was segmented from the fat image and fuzzy-C-means (FCM) was used to classify each non-air voxel as mid-density, lower-density, bone, or marrow in the abdomen, with only bone and marrow classified within the vertebral body envelope. MRCT volumes were created by integrating the product of the FCM class probability with its assigned class density for each voxel. MRCTs were deformably aligned with corresponding planning CTs and 2-ARC-SBRT-VMAT plans were optimized on MRCTs. Fluence was copied onto the CT density grids, dose recalculated, and compared. The liver, vertebral bodies, kidneys, spleen and cord had median Hounsfield unit differences of less than 60. Median target dose metrics were all within 0.1 Gy with maximum differences less than 0.5 Gy. OAR dose differences were similarly small (median: 0.03 Gy, std:0.26 Gy). Results demonstrate that MRCTs derived from a single abdominal imaging sequence are promising for use in SBRT dose calculation.

  9. Remodeling of the notochord during development of vertebral fusions in Atlantic salmon (Salmo salar).

    PubMed

    Ytteborg, Elisabeth; Torgersen, Jacob Seilø; Pedersen, Mona E; Baeverfjord, Grete; Hannesson, Kirsten O; Takle, Harald

    2010-12-01

    Histological characterization of spinal fusions in Atlantic salmon (Salmo salar) has demonstrated shape alterations of vertebral body endplates, a reduced intervertebral space, and replacement of intervertebral cells by ectopic bone. However, the significance of the notochord during the fusion process has not been addressed. We have therefore investigated structural and cellular events in the notochord during the development of vertebral fusions. In order to induce vertebral fusions, Atlantic salmon were exposed to elevated temperatures from fertilization until they attained a size of 15g. Based on results from radiography, intermediate and terminal stages of the fusion process were investigated by immunohistochemistry and real-time quantitative polymerase chain reaction. Examination of structural extracellular matrix proteins such as Perlecan, Aggrecan, Elastin, and Laminin revealed reduced activity and reorganization at early stages in the pathology. Staining for elastic fibers visualized a thinner elastic membrane surrounding the notochord of developing fusions, and immunohistochemistry for Perlecan showed that the notochordal sheath was stretched during fusion. These findings in the outer notochord correlated with the loss of Aggrecan- and Substance-P-positive signals and the further loss of vacuoles from the chordocytes in the central notochord. At more progressed stages of fusion, chordocytes condensed, and the expression of Aggrecan and Substance P reappeared. The hyperdense regions seem to be of importance for the formation of notochordal tissue into bone. Thus, the remodeling of notochord integrity by reduced elasticity, structural alterations, and cellular changes is probably involved in the development of vertebral fusions.

  10. Single-fraction stereotactic body radiotherapy for spinal metastases from renal cell carcinoma.

    PubMed

    Balagamwala, Ehsan H; Angelov, Lilyana; Koyfman, Shlomo A; Suh, John H; Reddy, Chandana A; Djemil, Toufik; Hunter, Grant K; Xia, Ping; Chao, Samuel T

    2012-12-01

    Stereotactic body radiotherapy (SBRT) has emerged as an important treatment option for spinal metastases from renal cell carcinoma (RCC) as a means to overcome RCC's inherent radioresistance. The authors reviewed the outcomes of SBRT for the treatment of RCC metastases to the spine at their institution, and they identified factors associated with treatment failure. Fifty-seven patients (88 treatment sites) with RCC metastases to the spine received single-fraction SBRT. Pain relief was based on the Brief Pain Inventory and was adjusted for narcotic use according to the Radiation Therapy Oncology Group protocol 0631. Toxicity was scored according to Common Toxicity Criteria for Adverse Events version 4.0. Radiographic failure was defined as infield or adjacent (within 1 vertebral body [VB]) failure on follow-up MRI. Multivariate analyses were performed to correlate outcomes with the following variables: epidural, paraspinal, single-level, or multilevel disease (2-5 sites); neural foramen involvement; and VB fracture prior to SBRT. Kaplan-Meier analysis and Cox proportional hazards modeling were used for statistical analysis. The median follow-up and survival periods were 5.4 months (range 0.3-38 months) and 8.3 months (range 1.5-38 months), respectively. The median time to radiographic failure and unadjusted pain progression were 26.5 and 26.0 months, respectively. The median time to pain relief (from date of simulation) and duration of pain relief (from date of treatment) were 0.9 months (range 0.1-4.4 months) and 5.4 months (range 0.1-37.4 months), respectively. Multivariate analyses demonstrated that multilevel disease (hazard ratio [HR] 3.5, p = 0.02) and neural foramen involvement (HR 3.4, p = 0.02) were correlated with radiographic failure; multilevel disease (HR 2.3, p = 0.056) and VB fracture (HR 2.4, p = 0.046) were correlated with unadjusted pain progression. One patient experienced Grade 3 nausea and vomiting; no other Grade 3 or 4 toxicities were observed

  11. VerSeDa: vertebrate secretome database

    PubMed Central

    Cortazar, Ana R.; Oguiza, José A.

    2017-01-01

    Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly. Database URL: VerSeDa is freely available at http://genomics.cicbiogune.es/VerSeDa/index.php PMID:28365718

  12. VerSeDa: vertebrate secretome database.

    PubMed

    Cortazar, Ana R; Oguiza, José A; Aransay, Ana M; Lavín, José L

    2017-01-01

    Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly. VerSeDa is freely available at http://genomics.cicbiogune.es/VerSeDa/index.php. © The Author(s) 2017. Published by Oxford University Press.

  13. Molecular signatures that are distinctive characteristics of the vertebrates and chordates and supporting a grouping of vertebrates with the tunicates.

    PubMed

    Gupta, Radhey S

    2016-01-01

    Members of the phylum Chordata and the subphylum Vertebrata are presently distinguished solely on the basis of morphological characteristics. The relationship of the vertebrates to the two non-vertebrate chordate subphyla is also a subject of debate. Analyses of protein sequences have identified multiple conserved signature indels (CSIs) that are specific for Chordata or for Vertebrata. Five CSIs in 4 important proteins are specific for the Vertebrata, whereas two other CSIs are uniquely found in all sequenced chordate species including Ciona intestinalis and Oikapleura dioica (Tunicates) as well as Branchiostoma floridae (Cephalochordates). The shared presence of these molecular signatures by all vertebrates/chordate species, but in no other animal taxa, strongly indicates that the genetic changes represented by the identified CSIs diagnose monophyletic groups. Two other discovered CSIs are uniquely shared by different vertebrate species and by either one (Ciona intestinalis) or both tunicate (Ciona and Oikapleura) species, but they are not found in Branchiostoma or other animal species. Specific presence of these CSIs in different vertebrates and either one or both tunicate species provides strong independent evidence that the vertebrate species are more closely related to the urochordates (tunicates) than to the cephalochordates. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Coblation vertebroplasty for complex vertebral insufficiency fractures.

    PubMed

    Wilson, David J; Owen, Sara; Corkill, Rufus A

    2013-07-01

    Coblation to create a cavity in the affected vertebral body was performed for complex fractures and/or when there was a posterior wall defect. This permitted a low-pressure injection and potentially reduces the risk of extravasation of cement into the spinal canal. Prospective audit for outcome measures and complications allowed retrospective review of cases treated by coblation. A commercial wand inserted via a wide-bore vertebroplasty needle created a cavity before inserting cement. A visual analogue scale assessed pain and Roland Morris scoring assessed mobility. Thirty-two coblation procedures were performed. Primary diagnoses were myeloma, metastases, osteoporosis and trauma. Outcome measures were recorded with a 56 % success rate, 6 % no change and 32 % with mixed but mainly positive results; 6 % died before follow-up. No complications were observed; in particular no patient suffered neurological damage and none have developed subsequent fractures at the treated levels. This technique makes possible cementation of patients who would otherwise be unsuitable for vertebroplasty. The modest pain and disability improvement is partly due to our stringent criteria as well as fracture complexity. Further work will assess the efficacy of the method compared with conservative measures. • Treatment of vertebral compression fractures with possible posterior wall defects is controversial. • Coblation before vertebroplasty allows a low-pressure injection into fractured vertebrae. • This technique reduces risk of extravasation of cement. • No serious complication of our coblation procedures was observed.

  15. The pre-vertebrate origins of neurogenic placodes.

    PubMed

    Abitua, Philip Barron; Gainous, T Blair; Kaczmarczyk, Angela N; Winchell, Christopher J; Hudson, Clare; Kamata, Kaori; Nakagawa, Masashi; Tsuda, Motoyuki; Kusakabe, Takehiro G; Levine, Michael

    2015-08-27

    The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.

  16. Convergent evolution of mechanically optimal locomotion in aquatic invertebrates and vertebrates.

    PubMed

    Bale, Rahul; Neveln, Izaak D; Bhalla, Amneet Pal Singh; MacIver, Malcolm A; Patankar, Neelesh A

    2015-04-01

    Examples of animals evolving similar traits despite the absence of that trait in the last common ancestor, such as the wing and camera-type lens eye in vertebrates and invertebrates, are called cases of convergent evolution. Instances of convergent evolution of locomotory patterns that quantitatively agree with the mechanically optimal solution are very rare. Here, we show that, with respect to a very diverse group of aquatic animals, a mechanically optimal method of swimming with elongated fins has evolved independently at least eight times in both vertebrate and invertebrate swimmers across three different phyla. Specifically, if we take the length of an undulation along an animal's fin during swimming and divide it by the mean amplitude of undulations along the fin length, the result is consistently around twenty. We call this value the optimal specific wavelength (OSW). We show that the OSW maximizes the force generated by the body, which also maximizes swimming speed. We hypothesize a mechanical basis for this optimality and suggest reasons for its repeated emergence through evolution.

  17. Convergent Evolution of Mechanically Optimal Locomotion in Aquatic Invertebrates and Vertebrates

    PubMed Central

    Bale, Rahul; Neveln, Izaak D.; Bhalla, Amneet Pal Singh

    2015-01-01

    Examples of animals evolving similar traits despite the absence of that trait in the last common ancestor, such as the wing and camera-type lens eye in vertebrates and invertebrates, are called cases of convergent evolution. Instances of convergent evolution of locomotory patterns that quantitatively agree with the mechanically optimal solution are very rare. Here, we show that, with respect to a very diverse group of aquatic animals, a mechanically optimal method of swimming with elongated fins has evolved independently at least eight times in both vertebrate and invertebrate swimmers across three different phyla. Specifically, if we take the length of an undulation along an animal’s fin during swimming and divide it by the mean amplitude of undulations along the fin length, the result is consistently around twenty. We call this value the optimal specific wavelength (OSW). We show that the OSW maximizes the force generated by the body, which also maximizes swimming speed. We hypothesize a mechanical basis for this optimality and suggest reasons for its repeated emergence through evolution. PMID:25919026

  18. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiser, Philip D.; Zhang, Jianye; Badiee, Mohsen

    Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligandmore » positioned in an adjacent pocket. With the geometry of the RPE65–substrate complex clarified, we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. Finally, these data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules.« less

  19. Catalytic mechanism of a retinoid isomerase essential for vertebrate vision

    DOE PAGES

    Kiser, Philip D.; Zhang, Jianye; Badiee, Mohsen; ...

    2015-04-20

    Visual function in vertebrates is dependent on the membrane-bound retinoid isomerase RPE65, an essential component of the retinoid cycle pathway that regenerates 11-cis-retinal for rod and cone opsins. The mechanism by which RPE65 catalyzes stereoselective retinoid isomerization has remained elusive because of uncertainty about how retinoids bind to its active site. Here we present crystal structures of RPE65 in complex with retinoid-mimetic compounds, one of which is in clinical trials for the treatment of age-related macular degeneration. The structures reveal the active site retinoid-binding cavity located near the membrane-interacting surface of the enzyme as well as an Fe-bound palmitate ligandmore » positioned in an adjacent pocket. With the geometry of the RPE65–substrate complex clarified, we delineate a mechanism of catalysis that reconciles the extensive biochemical and structural research on this enzyme. Finally, these data provide molecular foundations for understanding a key process in vision and pharmacological inhibition of RPE65 with small molecules.« less

  20. Redistribution of blood within the body is important for thermoregulation in an ectothermic vertebrate (Crocodylus porosus).

    PubMed

    Seebacher, Frank; Franklin, Craig E

    2007-11-01

    Changes in blood flow are a principal mechanism of thermoregulation in vertebrates. Changes in heart rate will alter blood flow, although multiple demands for limited cardiac output may compromise effective thermoregulation. We tested the hypothesis that regional differences in blood flow during heating and cooling can occur independently from changes in heart rate. We measured heart rate and blood pressure concurrently with blood flow in the crocodile, Crocodylus porosus. We measured changes in blood flow by laser Doppler flowmetry, and by injecting coloured microspheres. All measurements were made under different heat loads, with and without blocking cholinergic and beta-adrenergic receptors (autonomic blockade). Heart rates were significantly faster during heating than cooling in the control animals, but not when autonomic receptors were blocked. There were no significant differences in blood flow distribution between the control and autonomic blockade treatments. In both treatments, blood flow was directed to the dorsal skin and muscle and away from the tail and duodenum during heating. When the heat source was switched off, there was a redistribution of blood from the dorsal surface to the duodenum. Blood flow to the leg skin and muscle, and to the liver did not change significantly with thermal state. Blood pressure was significantly higher during the autonomic blockade than during the control. Thermal time constants of heating and cooling were unaffected by the blockade of autonomic receptors. We concluded that animals partially compensated for a lack of differential heart rates during heating and cooling by redistributing blood within the body, and by increasing blood pressure to increase flow. Hence, measures of heart rate alone are insufficient to assess physiological thermoregulation in reptiles.

  1. Vertebral fracture after aircraft ejection during Operation Desert Storm.

    PubMed

    Osborne, R G; Cook, A A

    1997-04-01

    During Operation Desert Storm, 21 United States and 2 Italian military personnel were held in Iraq as prisoners of war. Of these, 18 had ejected from fixed-wing, ejection seat-equipped, combat aircraft prior to their capture. Of the 18, 6 (33%) had sustained vertebral fractures; 4 of these were compression fractures. This fracture rate is comparable to that of previously studied groups. Fractures were noted to be at several different vertebral sites and after ejecting from a variety of aircraft. Apart from contusions and abrasions, vertebral fractures were the most common injuries discovered in this repatriated population. None of the vertebral fractures produced recognizable neurological disability. The development of vertebral fractures was neither associated with the use of any particular ejection system or aircraft nor did the development of vertebral fractures appear dependent on the age, height or length of service of the affected personnel. Ejected aircrew with low altitude mission profiles seemed more predisposed to vertebral fracture than those at high altitudes, but with a small sample population, this relationship was not statistically significant (p > 0.25). Reliable data were unavailable on aircrew positioning and preparation time for ejection.

  2. The CW domain, a structural module shared amongst vertebrates, vertebrate-infecting parasites and higher plants.

    PubMed

    Perry, Jason; Zhao, Yunde

    2003-11-01

    A previously undetected domain, named CW for its conserved cysteine and tryptophan residues, appears to be a four-cysteine zinc-finger motif found exclusively in vertebrates, vertebrate-infecting parasites and higher plants. Of the twelve distinct nuclear protein families that comprise the CW domain-containing superfamily, only the microrchida (MORC) family has begun to be characterized. However, several families contain other domains suggesting a relationship between the CW domain and either chromatin methylation status or early embryonic development.

  3. Role of BMI and age in predicting pathologic vertebral fractures in newly diagnosed multiple myeloma patients: A retrospective cohort study.

    PubMed

    Chen, Yi-Lun; Liu, Yao-Chung; Wu, Chia-Hung; Yeh, Chiu-Mei; Chiu, Hsun-I; Lee, Gin-Yi; Lee, Yu-Ting; Hsu, Pei; Lin, Ting-Wei; Gau, Jyh-Pyng; Hsiao, Liang-Tsai; Chiou, Tzeon-Jye; Liu, Jin-Hwang; Liu, Chia-Jen

    2018-04-01

    Vertebral fractures affect approximately 30% of myeloma patients and lead to a poor impact on survival and life quality. In general, age and body mass index (BMI) are reported to have an important role in vertebral fractures. However, the triangle relationship among age, BMI, and vertebral fractures is still unclear in newly diagnosed multiple myeloma (NDMM) patients. This study recruited consecutive 394 patients with NDMM at Taipei Veterans General Hospital between January 1, 2005 and December 31, 2015. Risk factors for vertebral fractures in NDMM patients were collected and analyzed. The survival curves were demonstrated using Kaplan-Meier estimate. In total, 301 (76.4%) NDMM patients were enrolled in the cohort. In the median follow-up period of 18.0 months, the median survival duration in those with vertebral fractures ≥ 2 was shorter than those with vertebral fracture < 2 (59.3 vs 28.6 months; P = 0.017). In multivariate Poisson regression, BMI < 18.5 kg/m 2 declared increased vertebral fractures compared with BMI ≥ 24.0 kg/m 2 (adjusted RR, 2.79; 95% CI, 1.44-5.43). In multivariable logistic regression, BMI < 18.5 kg/m 2 was an independent risk factor for vertebral fractures ≥ 2 compared with BMI ≥ 24.0 kg/m 2 (adjusted OR, 6.05; 95% CI, 2.43-15.08). Among age stratifications, patients with both old age and low BMI were at a greater risk suffering from increased vertebral fractures, especially in patients > 75 years and BMI < 18.5 kg/m 2 (adjusted RR, 12.22; 95% CI, 3.02-49.40). This is the first study that demonstrated that age had a significant impact on vertebral fractures in NDMM patients with low BMI. Elder patients with low BMI should consider to routinely receive spinal radiographic examinations and regular follow-up. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Imaging of human vertebral surface using ultrasound RF data received at each element of probe for thoracic anesthesia

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazuki; Taki, Hirofumi; Onishi, Eiko; Yamauchi, Masanori; Kanai, Hiroshi

    2017-07-01

    Epidural anesthesia is a common technique for perioperative analgesia and chronic pain treatment. Since ultrasonography is insufficient for depicting the human vertebral surface, most examiners apply epidural puncture by body surface landmarks on the back such as the spinous process and scapulae without any imaging, including ultrasonography. The puncture route to the epidural space at thoracic vertebrae is much narrower than that at lumber vertebrae, and therefore, epidural anesthesia at thoracic vertebrae is difficult, especially for a beginner. Herein, a novel imaging method is proposed based on a bi-static imaging technique by making use of the transmit beam width and direction. In an in vivo experimental study on human thoracic vertebrae, the proposed method succeeded in depicting the vertebral surface clearly as compared with conventional B-mode imaging and the conventional envelope method. This indicates the potential of the proposed method in visualizing the vertebral surface for the proper and safe execution of epidural anesthesia.

  5. Subsequent Vertebral Fractures Post Cement Augmentation of the Thoracolumbar Spine: Does it Correlate With Level-specific Bone Mineral Density Scores?

    PubMed

    Hey, Hwee Weng Dennis; Hwee Weng, Dennis Hey; Tan, Jun Hao; Jun, Hao Tan; Tan, Chuen Seng; Chuen, Seng Tan; Tan, Hsi Ming Bryan; Ming, Bryan Tan Hsi; Lau, Puang Huh Bernard; Huh, Bernard Lau Puang; Hee, Hwan Tak; Hwan, Tak Hee

    2015-12-01

    A case-control study. In this study, we investigated the correlation between level-specific preoperative bone mineral density and subsequent vertebral fractures. We also identified factors associated with subsequent vertebral fractures. Complications of cement augmentation of the spine include subsequent vertebral fractures, leading to unnecessary morbidity and more treatment. Ability to predict at-risk vertebra will help guide management. We studied all patients with osteoporotic compression fractures who underwent cement augmentation in a single institution from November 2001 to December 2010 by a single surgeon. Association between level-specific bone mineral density T-scores and subsequent fractures was assessed. Multivariable analysis was performed to identify significant factors associated with subsequent vertebral fractures. 93 patients followed up for a mean duration of 25.1 months (12-96) had a mean age of 76.8 years (47-99). Vertebroplasty was performed in 58 patients (62.4%) on 68 levels and kyphoplasty in 35 patients (37.6%) on 44 levels. Refracture was seen in 16 patients (17.2%). The time to subsequent fracture post cement augmentation was 20.5 months (2-90). For refracture cases, 43.8% (7/16) fractured in the adjacent vertebrae. Subsequently fractured vertebra had a mean T-score of -2.860 (95% confidence interval -3.268 to -2.452) and nonfractured vertebra had a mean T-score of -2.180 (95% confidence interval -2.373 to -1.986). A T-score of -2.2 or lower is predictive of refracture at that vertebra (P = 0.047). Odds ratio increases with decreasing T-scores from -2.2 or lower to -2.6 or lower. A T-score of -2.6 or lower gives no additional predictive advantage. After multivariable analysis, age (P = 0.049) and loss of preoperative anterior vertebral height (P = 0.017) are associated with refracture. Level-specific T-scores are predictive of subsequent fractures and the odds ratio increases with lower T-scores from -2.2 or less to -2.6 or less. They

  6. Non-contiguous multifocal vertebral osteomyelitis caused by Serratia marcescens.

    PubMed

    Lau, Jen Xin; Li, Jordan Yuanzhi; Yong, Tuck Yean

    2015-03-01

    Serratia marcescens is a common nosocomial infection but a rare cause of osteomyelitis and more so of vertebral osteomyelitis. Vertebral osteomyelitis caused by this organism has been reported in few studies. We report a case of S. marcescens vertebral discitis and osteomyelitis affecting multiple non-contiguous vertebras. Although Staphylococcus aureus is the most common cause of vertebral osteomyelitis, rare causes, such as S. marcescens, need to be considered, especially when risk factors such as intravenous heroin use, post-spinal surgery and immunosuppression are present. Therefore, blood culture and where necessary biopsy of the infected region should be undertaken to establish the causative organism and determine appropriate antibiotic susceptibility. Prompt diagnosis of S. marcescens vertebral osteomyelitis followed by the appropriate treatment can achieve successful outcomes.

  7. Changes in NMR relaxation times of adjacent muscle after implantation of malignant and normal tissue.

    PubMed Central

    Ling, C. R.; Foster, M. A.; Mallard, J. R.

    1979-01-01

    In separate experiments, normal foreign tissue and malignant tumour were implanted s.c. into the rat thigh. NMR T1 values of the adjacent normal muscle, resulting from local inflammatory reactions or from malignant invasion, were measured. Elevations in T1 of the underlying muscle occurred within 24 h in both experiments, and it is believed these were caused by rapid inflammatory and immunological reactions to the implants. However the T1 values of muscle samples adjacent to the non-malignant implants decreased during the 11 days after implantation, dropping to values within the normal range. In the second experiment there was progressive malignant invasion into the normal adjacent tissue and the elevated T1 values were maintained throughout the 12-day period. The effects of the implantation on tissue water content are discussed in relation to NMR T1 relaxation times, and the relevance to whole-body NMR imaging of elevated T1 values due to nonmalignant pathological states is considered. PMID:526431

  8. Health state utility values and patient-reported outcomes before and after vertebral and non-vertebral fractures in an osteoporosis clinical trial.

    PubMed

    Imai, T; Tanaka, S; Kawakami, K; Miyazaki, T; Hagino, H; Shiraki, M

    2017-06-01

    We assessed the health state utility value (HSUV) reductions associated with vertebral fractures using data collected in the Japanese Osteoporosis Intervention Trial-03 (JOINT-03). Our analysis revealed that assessment of HSUVs after morphometric vertebral fracture is important to capture the burden of vertebral fractures. Evaluation of the HSUV after fracture is important to calculate the quality-adjusted life years (QALYs) of osteoporosis patients, which is essential information in the context of health economic evaluation. JOINT-03 study patients were aged ≥65 years and treated with risedronate and vitamin K 2 or risedronate alone. Radiographic information and patient-reported outcomes measured by EQ-5D and a visual analogue scale (VAS) were assessed at registration and followed up after 6, 12, and 24 months. According to differences among the dates of these assessments and the radiographic information, we classified the follow-up HSUVs calculated based on EQ-5D results into before or after fracture categories regardless of clinical symptoms. Among 2922 follow-up HSUVs, 201 HSUVs were categorized as HSUVs that were observed after incident vertebral fractures on X-ray films. The median time from the detection of an incident vertebral fracture until the EQ-5D assessment was 53 days (25th percentile, 0 day; 75th percentile, 357 days). The impact of incident vertebral fractures on HSUVs was quantified as -0.03. Among the five health profile domains on the EQ-5D, an incident vertebral fracture had significant effects on anxiety/depression, self-care, and usual activities. The results suggest that incident morphometric vertebral fracture was associated with impairment of the HSUV for patients with osteoporosis not only immediately but also several months after the fracture.

  9. Late development of hagfish vertebral elements.

    PubMed

    Ota, Kinya G; Fujimoto, Satoko; Oisi, Yasuhiro; Kuratani, Shigeru

    2013-05-01

    It has been demonstrated recently that hagfishes, one of two groups of extant jawless vertebrates, have cartilaginous vertebral elements. Embryological and gene expression analyses have also shown that this group of animals develops a sclerotome, the potential primordium of the axial skeleton. However, it has not been shown unequivocally that the hagfish sclerotome truly differentiates into cartilage, because access to late-stage embryos and information about the cartilaginous extracellular matrix (ECM) are lacking for these animals. Here we investigated the expression patterns of the biglycan/decorin (BGN/DCN) gene in the inshore hagfish, Eptatretus burgeri. The homologue of this gene encodes the major noncollagenous component of the cartilaginous ECM among gnathostomes. We clearly identified the expression of this gene in adult vertebral tissues and in embryonic mesenchymal cells on the ventral aspect of the notochord. Taking into account that the sclerotome in the gnathostomes expresses BGN/DCN gene during the chondrogenesis, it is highly expected the hagfish BGN/DCN-positive mesenchymal cells are derived from the sclerotomes. We propose that hagfishes and gnathostomes share conserved developmental mechanisms not only in their somite differentiation, but also in chondrogenesis of their vertebral elements. Copyright © 2013 Wiley Periodicals, Inc.

  10. Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.

    PubMed

    Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan

    2015-06-01

    Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. © 2015 John Wiley & Sons Ltd.

  11. Thyroglobulin Represents a Novel Molecular Architecture of Vertebrates.

    PubMed

    Holzer, Guillaume; Morishita, Yoshiaki; Fini, Jean-Baptiste; Lorin, Thibault; Gillet, Benjamin; Hughes, Sandrine; Tohmé, Marie; Deléage, Gilbert; Demeneix, Barbara; Arvan, Peter; Laudet, Vincent

    2016-08-05

    Thyroid hormones modulate not only multiple functions in vertebrates (energy metabolism, central nervous system function, seasonal changes in physiology, and behavior) but also in some non-vertebrates where they control critical post-embryonic developmental transitions such as metamorphosis. Despite their obvious biological importance, the thyroid hormone precursor protein, thyroglobulin (Tg), has been experimentally investigated only in mammals. This may bias our view of how thyroid hormones are produced in other organisms. In this study we searched genomic databases and found Tg orthologs in all vertebrates including the sea lamprey (Petromyzon marinus). We cloned a full-size Tg coding sequence from western clawed frog (Xenopus tropicalis) and zebrafish (Danio rerio). Comparisons between the representative mammal, amphibian, teleost fish, and basal vertebrate indicate that all of the different domains of Tg, as well as Tg regional structure, are conserved throughout the vertebrates. Indeed, in Xenopus, zebrafish, and lamprey Tgs, key residues, including the hormonogenic tyrosines and the disulfide bond-forming cysteines critical for Tg function, are well conserved despite overall divergence of amino acid sequences. We uncovered upstream sequences that include start codons of zebrafish and Xenopus Tgs and experimentally proved that these are full-length secreted proteins, which are specifically recognized by antibodies against rat Tg. By contrast, we have not been able to find any orthologs of Tg among non-vertebrate species. Thus, Tg appears to be a novel protein elaborated as a single event at the base of vertebrates and virtually unchanged thereafter. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Jumping sans legs: does elastic energy storage by the vertebral column power terrestrial jumps in bony fishes?

    PubMed

    Ashley-Ross, Miriam A; Perlman, Benjamin M; Gibb, Alice C; Long, John H

    2014-02-01

    Despite having no obvious anatomical modifications to facilitate movement over land, numerous small fishes from divergent teleost lineages make brief, voluntary terrestrial forays to escape poor aquatic conditions or to pursue terrestrial prey. Once stranded, these fishes produce a coordinated and effective "tail-flip" jumping behavior, wherein lateral flexion of the axial body into a C-shape, followed by contralateral flexion of the body axis, propels the fish into a ballistic flight-path that covers a distance of multiple body lengths. We ask: how do anatomical structures that evolved in one habitat generate effective movement in a novel habitat? Within this context, we hypothesized that the mechanical properties of the axial skeleton play a critical role in producing effective overland movement, and that tail-flip jumping species demonstrate enhanced elastic energy storage through increased body flexural stiffness or increased body curvature, relative to non-jumping species. To test this hypothesis, we derived a model to predict elastic recoil work from the morphology of the vertebral (neural and hemal) spines. From ground reaction force (GRF) measurements and high-speed video, we calculated elastic recoil work, flexural stiffness, and apparent material stiffness of the body for Micropterus salmoides (a non-jumper) and Kryptolebias marmoratus (adept tail-flip jumper). The model predicted no difference between the two species in work stored by the vertebral spines, and GRF data showed that they produce the same magnitude of mass-specific elastic recoil work. Surprisingly, non-jumper M. salmoides has a stiffer body than tail-flip jumper K. marmoratus. Many tail-flip jumping species possess enlarged, fused hypural bones that support the caudal peduncle, which suggests that the localized structures, rather than the entire axial skeleton, may explain differences in terrestrial performance. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Vertebrate richness and biogeography in the Big Thicket of Texas

    Treesearch

    Michael H MacRoberts; Barbara R. MacRoberts; D. Craig Rudolph

    2010-01-01

    The Big Thicket of Texas has been described as rich in species and a “crossroads:” a place where organisms from many different regions meet. We examine the species richness and regional affiliations of Big Thicket vertebrates. We found that the Big Thicket is neither exceptionally rich in vertebrates nor is it a crossroads for vertebrates. Its vertebrate fauna is...

  14. Imperfect isolation: factors and filters shaping Madagascar's extant vertebrate fauna.

    PubMed

    Samonds, Karen E; Godfrey, Laurie R; Ali, Jason R; Goodman, Steven M; Vences, Miguel; Sutherland, Michael R; Irwin, Mitchell T; Krause, David W

    2013-01-01

    Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar's colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island's biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island's paleogeographical evolution to determine how particular events influenced the arrival of the island's extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar's tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island's isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar's extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar's unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of other, more

  15. A unified anatomy ontology of the vertebrate skeletal system.

    PubMed

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  16. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    PubMed Central

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  17. Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women.

    PubMed

    Sinaki, M; Itoi, E; Wahner, H W; Wollan, P; Gelzcer, R; Mullan, B P; Collins, D A; Hodgson, S F

    2002-06-01

    The long-term protective effect of stronger back muscles on the spine was determined in 50 healthy white postmenopausal women, aged 58-75 years, 8 years after they had completed a 2 year randomized, controlled trial. Twenty-seven subjects had performed progressive, resistive back-strengthening exercises for 2 years and 23 had served as controls. Bone mineral density, spine radiographs, back extensor strength, biochemical marker values, and level of physical activity were obtained for all subjects at baseline, 2 years, and 10 years. Mean back extensor strength (BES) in the back-exercise (BE) group was 39.4 kg at baseline, 66.8 kg at 2 years (after 2 years of prescribed exercises), and 32.9 kg at 10 years (8 years after cessation of the prescribed exercises). Mean BES in the control (C) group was 36.9 kg at baseline, 49.0 kg at 2 years, and 26.9 kg at 10 years. The difference between the two groups was still statistically significant at 10 year follow-up (p = 0.001). The difference in bone mineral density, which was not significant between the two groups at baseline and 2 year follow-up, was significant at 10 year follow-up (p = 0.0004). The incidence of vertebral compression fracture was 14 fractures in 322 vertebral bodies examined (4.3%) in the C group and 6 fractures in 378 vertebral bodies examined (1.6%) in the BE group (chi-square test, p = 0.0290). The relative risk for compression fracture was 2.7 times greater in the C group than in the BE group. To our knowledge, this is the first study reported in the literature demonstrating the long-term effect of strong back muscles on the reduction of vertebral fractures in estrogen-deficient women.

  18. Cervical vertebral erosion caused by bilateral vertebral artery tortuosity, predisposing to spinal, sprain: A medieval case study.

    PubMed

    Darton, Yves

    2014-03-01

    Bone resorption within the cervical spine due to vertebral arterial tortuosities is rarely observed in medical practice because the condition often lacks clinical symptoms. Traumatic complications involving the vertebral arteries are relatively common and occasionally very serious, but very few affect bone, appearing only when survival has been sufficiently long for a pseudoaneurysm to form. CT scans and MRI screening, practised increasingly today following traffic and sports accidents, incidentally show that arterial tortuosities that had stimulated bone resorption are relatively frequent. Only rarely do such tortuosities cause nerve compression or trigger orthopaedic problems, while large pseudoaneurysms and congenital absence of a vertebral pedicle may require surgery to stabilize the spine. There are few publications by palaeopathologists reporting such conditions of the cervical vertebrae. This contribution reports a case of a tiered bilateral tortuosity of the vertebral artery dating from the Early Middle Ages; it provides a basis by which to recognize this type of lesion in osteoarchaeology, and it attests to the fact that multiple tortuosities may lead to spinal instability in the form of spine sprain. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Do mollusks use vertebrate sex steroids as reproductive hormones? Part I: Critical appraisal of the evidence for the presence, biosynthesis and uptake of steroids.

    PubMed

    Scott, Alexander P

    2012-11-01

    The consensus view is that vertebrate-type steroids are present in mollusks and perform hormonal roles which are similar to those that they play in vertebrates. Although vertebrate steroids can be measured in molluscan tissues, a key question is 'Are they formed endogenously or they are picked up from their environment?'. The present review concludes that there is no convincing evidence for biosynthesis of vertebrate steroids by mollusks. Furthermore, the 'mollusk' genome does not contain the genes for key enzymes that are necessary to transform cholesterol in progressive steps into vertebrate-type steroids; nor does the mollusk genome contain genes for functioning classical nuclear steroid receptors. On the other hand, there is very strong evidence that mollusks are able to absorb vertebrate steroids from the environment; and are able to store some of them (by conjugating them to fatty acids) for weeks to months. It is notable that the three steroids that have been proposed as functional hormones in mollusks (i.e. progesterone, testosterone and 17β-estradiol) are the same as those of humans. Since humans (and indeed all vertebrates) continuously excrete steroids not just via urine and feces, but via their body surface (and, in fish, via the gills), it is impossible to rule out contamination as the sole reason for the presence of vertebrate steroids in mollusks (even in animals kept under supposedly 'clean laboratory conditions'). Essentially, the presence of vertebrate steroids in mollusks cannot be taken as reliable evidence of either endogenous biosynthesis or of an endocrine role. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  20. The vertebral column of Australopithecus sediba.

    PubMed

    Williams, Scott A; Ostrofsky, Kelly R; Frater, Nakita; Churchill, Steven E; Schmid, Peter; Berger, Lee R

    2013-04-12

    Two partial vertebral columns of Australopithecus sediba grant insight into aspects of early hominin spinal mobility, lumbar curvature, vertebral formula, and transitional vertebra position. Au. sediba likely possessed five non-rib-bearing lumbar vertebrae and five sacral elements, the same configuration that occurs modally in modern humans. This finding contrasts with other interpretations of early hominin regional vertebral numbers. Importantly, the transitional vertebra is distinct from and above the last rib-bearing vertebra in Au. sediba, resulting in a functionally longer lower back. This configuration, along with a strongly wedged last lumbar vertebra and other indicators of lordotic posture, would have contributed to a highly flexible spine that is derived compared with earlier members of the genus Australopithecus and similar to that of the Nariokotome Homo erectus skeleton.

  1. Vertebrate estrogen regulates the development of female characteristics in silkworm, Bombyx mori.

    PubMed

    Shen, Guanwang; Lin, Ying; Yang, Congwen; Xing, Runmiao; Zhang, Haiyan; Chen, Enxiang; Han, Chaoshan; Liu, Hongling; Zhang, Weiwei; Xia, Qingyou

    2015-01-01

    The vertebrate estrogens include 17-β-estradiol (E2), which has an analog in silkworm ovaries. In this study, the Bombyx mori vitellogenin gene (BmVg) was used as a biomarker to analyze the function of the E2 in silkworm. In most oviparous animals, Vg has female-specific expression. However, BmVg expression was also detected in B. mori males. Stage specific fluctuation of BmVg expression was similar in males and females, but expression levels in males were lower than in females. E2 treatment by injection or feeding of male larvae in the final instar stage induced and stimulated male BmVg transcription and protein synthesis. When silkworm ovary primordia were transplanted into males, BmVg was induced in male fat bodies. Transplanted ovaries primordia were also able to develop into ovaries and produce mature eggs. When females were treated with E2 promoted BmVg/BmVn protein accumulation in hemolymph, ovaries and eggs. However, BmVg transcription was decreased in female fat bodies. An E2 analog was identified in the hemolymph of day 3 wandering silkworms using high-performance liquid chromatography. Estradiol titers from fifth late-instar larvae to pupal stage were determined by enzyme-linked immunosorbent assay. The results suggested that silkworms synthesized a vertebrate E2 analog. This study found that E2 promoted the synthesis of BmVg, a female typical protein in silkworms. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Evolution of the bilaterian body plan: what have we learned from annelids?

    NASA Technical Reports Server (NTRS)

    Shankland, M.; Seaver, E. C.

    2000-01-01

    Annelids, unlike their vertebrate or fruit fly cousins, are a bilaterian taxon often overlooked when addressing the question of body plan evolution. However, recent data suggest that annelids offer unique insights on the early evolution of spiral cleavage, anteroposterior axis formation, body axis segmentation, and head versus trunk distinction.

  3. Grading apical vertebral rotation without a computed tomography scan: a clinically relevant system based on the radiographic appearance of bilateral pedicle screws.

    PubMed

    Upasani, Vidyadhar V; Chambers, Reid C; Dalal, Ali H; Shah, Suken A; Lehman, Ronald A; Newton, Peter O

    2009-08-01

    Bench-top and retrospective analysis to assess vertebral rotation based on the appearance of bilateral pedicle screws in patients with adolescent idiopathic scoliosis (AIS). To develop a clinically relevant radiographic grading system for evaluating postoperative thoracic apical vertebral rotation that would correlate with computed tomography (CT) measures of rotation. The 3-column vertebral body control provided by bilateral pedicle screws has enabled scoliosis surgeons to develop advanced techniques of direct vertebral derotation. Our ability to accurately quantify spinal deformity in the axial plane, however, continues to be limited. Trigonometry was used to define the relationship between the position of bilateral pedicle screws and vertebral rotation. This relationship was validated using digital photographs of a bench-top model. The mathematical relationships were then used to calculate vertebral rotation from standing postoperative, posteroanterior radiographs in AIS patients and correlated with postoperative CT measures of rotation. Fourteen digital photographs of the bench-top model were independently analyzed twice by 3 coauthors. The mathematically calculated degree of rotation was found to correlate significantly with the actual degree of rotation (r = 0.99; P < 0.001) and the intra- and interobserver reliability for these measurements were both excellent (kappa = 0.98 and kappa = 0.97, respectively). In the retrospective analysis of 17 AIS patients, the average absolute difference between the radiographic measurement of rotation and the CT measure was only 1.9 degrees +/- 2.0 degrees (r = 0.92; P < 0.001). Based on these correlations a simple radiographic grading system for postoperative apical vertebral rotation was developed. An accurate assessment of vertebral rotation can be performed radiographically, using screw lengths and screw tip-to-rod distances of bilateral segmental pedicle screws and a trigonometric calculation. These data support the use

  4. Worldwide prevalence and incidence of osteoporotic vertebral fractures.

    PubMed

    Ballane, G; Cauley, J A; Luckey, M M; El-Hajj Fuleihan, G

    2017-05-01

    We investigated the prevalence and incidence of vertebral fractures worldwide. We used a systematic Medline search current to 2015 and updated as per authors' libraries. A total of 62 articles of fair to good quality and comparable methods for vertebral fracture identification were considered. The prevalence of morphometric vertebral fractures in European women is highest in Scandinavia (26%) and lowest in Eastern Europe (18%). Prevalence rates in North America (NA) for White women ≥50 are 20-24%, with a White/Black ratio of 1.6. Rates in women ≥50 years in Latin America are overall lower than Europe and NA (11-19%). In Asia, rates in women above ≥65 are highest in Japan (24%), lowest in Indonesia (9%), and in the Middle East, Lebanon, rates are 20%. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Incidence data is less abundant and more heterogeneous. Age-standardized rates in studies combining hospitalized and ambulatory vertebral fractures are highest in South Korea, USA, and Hong Kong and lowest in the UK. Neither a North-South gradient nor a relation to urbanization is evident. Conversely, the incidence of hospitalized vertebral fractures in European patients ≥50 shows a North-South gradient with 3-3.7-fold variability. In the USA, rates in Whites are approximately 4-fold higher than in Blacks. Vertebral fractures variation worldwide is lower than observed with hip fractures, and some of highest rates are unexpectedly from Asia. Better quality representative studies are needed. We investigate the occurrence of vertebral fractures, worldwide, using published data current until the present. Worldwide, the variation in vertebral fractures is lower than observed for hip fractures. Some of the highest rates are from North America and unexpectedly Asia. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Better quality representative data is needed.

  5. Staff Directory, Department of Vertebrate Zoology, NMNH

    Science.gov Websites

    Research & Collections About Us Get Involved Calendar Department ofVertebrate Zoology Chestnut Mammals VZ Online Newsletter Visitor Information Research Fellowships Volunteers and Interns VZ Libraries Staff Contact Us NMNH Home › Research & Collections › Vertebrate Zoology › Staff Directory

  6. Evaluating Intensity Modulated Proton Therapy Relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in Craniospinal Irradiation in Growing Pediatric Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, Drosoula, E-mail: dgiantsoudi@mgh.harvard.edu; Seco, Joao; Eaton, Bree R.

    Purpose: At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Methods and Materials: Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac inmore » the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (−35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. Results: IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Conclusions: Advanced proton techniques can sufficiently reduce the dose to the

  7. Evaluating Intensity Modulated Proton Therapy Relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in Craniospinal Irradiation in Growing Pediatric Patients.

    PubMed

    Giantsoudi, Drosoula; Seco, Joao; Eaton, Bree R; Simeone, F Joseph; Kooy, Hanne; Yock, Torunn I; Tarbell, Nancy J; DeLaney, Thomas F; Adams, Judith; Paganetti, Harald; MacDonald, Shannon M

    2017-05-01

    At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac in the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (-35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Advanced proton techniques can sufficiently reduce the dose to the vertebral body and allow for vertebral column growth for children

  8. Balbiani body, nuage and sponge bodies--term plasm pathway players.

    PubMed

    Kloc, Malgorzata; Jedrzejowska, Izabela; Tworzydlo, Waclaw; Bilinski, Szczepan M

    2014-07-01

    In many animal species, germ cells are specified by maternally provided, often asymmetrically localized germ cell determinant, termed the germ plasm. It has been shown that in model organisms such as Xenopus laevis, Danio rerio and Drosophila melanogaster germ plasm components (various proteins, mRNAs and mitochondria) are delivered to the proper position within the egg cell by germline specific organelles, i.e. Balbiani bodies, nuage accumulations and/or sponge bodies. In the present article, we review the current knowledge on morphology, molecular composition and functioning of these organelles in main lineages of arthropods and different ovary types on the backdrop of data derived from the studies of the model vertebrate species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. An invertebrate stomach's view on vertebrate ecology: certain invertebrates could be used as "vertebrate samplers" and deliver DNA-based information on many aspects of vertebrate ecology.

    PubMed

    Calvignac-Spencer, Sébastien; Leendertz, Fabian H; Gilbert, M Thomas P; Schubert, Grit

    2013-11-01

    Recent studies suggest that vertebrate genetic material ingested by invertebrates (iDNA) can be used to investigate vertebrate ecology. Given the ubiquity of invertebrates that feed on vertebrates across the globe, iDNA might qualify as a very powerful tool for 21st century population and conservation biologists. Here, we identify some invertebrate characteristics that will likely influence iDNA retrieval and elaborate on the potential uses of invertebrate-derived information. We hypothesize that beyond inventorying local faunal diversity, iDNA should allow for more profound insights into wildlife population density, size, mortality, and infectious agents. Based on the similarities of iDNA with other low-quality sources of DNA, a general technical framework for iDNA analyses is proposed. As it is likely that no such thing as a single ideal iDNA sampler exists, forthcoming research efforts should aim at cataloguing invertebrate properties relevant to iDNA retrieval so as to guide future usage of the invertebrate tool box. © 2013 WILEY Periodicals, Inc.

  10. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview

    NASA Astrophysics Data System (ADS)

    Cavin, L.; Tong, H.; Boudad, L.; Meister, C.; Piuz, A.; Tabouelle, J.; Aarab, M.; Amiot, R.; Buffetaut, E.; Dyke, G.; Hua, S.; Le Loeuff, J.

    2010-07-01

    Fossils of vertebrates have been found in great abundance in the continental and marine early Late Cretaceous sediments of Southeastern Morocco for more than 50 years. About 80 vertebrate taxa have so far been recorded from this region, many of which were recognised and diagnosed for the first time based on specimens recovered from these sediments. In this paper, we use published data together with new field data to present an updated overview of Moroccan early Late Cretaceous vertebrate assemblages. The Cretaceous series we have studied encompasses three Formations, the Ifezouane and Aoufous Formations, which are continental and deltaic in origin and are often grouped under the name "Kem Kem beds", and the Akrabou Formation which is marine in origin. New field observations allow us to place four recognised vertebrate clusters, corresponding to one compound assemblage and three assemblages, within a general temporal framework. In particular, two ammonite bioevents characterise the lower part of the Upper Cenomanian ( Calycoceras guerangeri Zone) at the base of the Akrabou Formation and the upper part of the Lower Turonian ( Mammites nodosoides Zone), that may extend into the Middle Turonian within the Akrabou Formation, and allow for more accurate dating of the marine sequence in the study area. We are not yet able to distinguish a specific assemblage that characterises the Ifezouane Formation when compared to the similar Aoufous Formation, and as a result we regard the oldest of the four vertebrate "assemblages" in this region to be the compound assemblage of the "Kem Kem beds". This well-known vertebrate assemblage comprises a mixture of terrestrial (and aerial), freshwater and brackish vertebrates. The archosaur component of this fauna appears to show an intriguingly high proportion of large-bodied carnivorous taxa, which may indicate a peculiar trophic chain, although collecting biases alter this palaeontological signal. A small and restricted assemblage, the

  11. Evolutionary biology of plant defenses against herbivory and their predictive implications for endocrine disruptor susceptibility in vertebrates.

    PubMed Central

    Wynne-Edwards, K E

    2001-01-01

    Hormone disruption is a major, underappreciated component of the plant chemical arsenal, and the historical coevolution between hormone-disrupting plants and herbivores will have both increased the susceptibility of carnivores and diversified the sensitivities of herbivores to man-made endocrine disruptors. Here I review diverse evidence of the influence of plant secondary compounds on vertebrate reproduction, including human reproduction. Three of the testable hypotheses about the evolutionary responses of vertebrate herbivores to hormone-disrupting challenges from their diet are developed. Specifically, the hypotheses are that a) vertebrate herbivores will express steroid hormone receptors in the buccal cavity and/or the vomeronasal organ; b) absolute sex steroid concentrations will be lower in carnivores than in herbivores; and c) herbivore steroid receptors should be more diverse in their binding affinities than carnivore lineages. The argument developed in this review, if empirically validated by support for the specific hypotheses, suggests that a) carnivores will be more susceptible than herbivores to endocrine-disrupting compounds of anthropogenic origin entering their bodies, and b) diverse herbivore lineages will be variably susceptible to any given natural or synthetic contaminant. As screening methods for hormone-disrupting potential are compared and adopted, comparative endocrine physiology research is urgently needed to develop models that predict the broad applicability of those screening results in diverse vertebrate species. PMID:11401754

  12. Evolution of the vertebrate phototransduction cascade activation steps.

    PubMed

    Lamb, Trevor D; Hunt, David M

    2017-11-01

    We examine the molecular phylogeny of the proteins underlying the activation steps of vertebrate phototransduction, for both agnathan and jawed vertebrate taxa. We expand the number of taxa analysed and we update the alignment and tree building methodology from a previous analysis. For each of the four primary components (the G-protein transducin alpha subunit, Gα T , the cyclic GMP phosphodiesterase, PDE6, and the alpha and beta subunits of the cGMP-gated ion channel, CNGC), the phylogenies appear consistent with expansion from an ancestral proto-vertebrate cascade during two rounds of whole-genome duplication followed by divergence of the agnathan and jawed vertebrate lineages. In each case, we consider possible scenarios for the underlying gene duplications and losses, and we apply relevant constraints to the tree construction. From tests of the topology of the resulting trees, we obtain a scenario for the expansion of each component during 2R that accurately fits the observations. Similar analysis of the visual opsins indicates that the only expansion to have occurred during 2R was the formation of Rh1 and Rh2. Finally, we propose a hypothetical scenario for the conversion of an ancestral chordate cascade into the proto-vertebrate phototransduction cascade, prior to whole-genome duplication. Together, our models provide a plausible account for the origin and expansion of the vertebrate phototransduction cascade. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Propionibacterium acnes infected intervertebral discs cause vertebral bone marrow lesions consistent with Modic changes.

    PubMed

    Dudli, Stefan; Liebenberg, Ellen; Magnitsky, Sergey; Miller, Steve; Demir-Deviren, Sibel; Lotz, Jeffrey C

    2016-08-01

    Modic type I change (MC1) are vertebral bone marrow lesions adjacent to degenerated discs that are specific for discogenic low back pain. The etiopathogenesis is unknown, but occult discitis, in particular with Propionibacteria acnes (P. acnes), has been suggested as a possible etiology. If true, antibiotic therapy should be considered for patients with MC1. However, this hypothesis is controversial. While some studies report up to 40% infection rate in herniated discs, others fail to detect infected discs and attribute reports of positive cultures to contamination during sampling procedure. Irrespective of the clinical controversy, whether it is biologically plausible for P. acnes to cause MC1 has never been investigated. Therefore, the objective of this study was to test if P. acnes can proliferate within discs and cause reactive changes in the adjacent bone marrow. P. acnes was aseptically isolated from a symptomatic human L4/5 disc with MC1 and injected into rat tail discs. We demonstrate proliferation of P. acnes and up-regulation of IL-1 and IL-6 within three days of inoculation. At day-7, disc degeneration was apparent along with fibrotic endplate erosion. TNF-α immunoreactivity was enhanced within the effected endplates along with cellular infiltrates. The bone marrow appeared normal. At day-14, endplates and trabecular bone close to the disc were almost completely resorbed and fibrotic tissue extended into the bone marrow. T-cells and TNF-α immunoreactivity were identified at the disc/marrow junction. On MRI, bone marrow showed MC1-like changes. In conclusion, P. acnes proliferate within the disc, induce degeneration, and cause MC1-like changes in the adjacent bone marrow. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1447-1455, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Evolution of vertebrate sex chromosomes and dosage compensation.

    PubMed

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.

  15. 3D microstructural architecture of muscle attachments in extant and fossil vertebrates revealed by synchrotron microtomography.

    PubMed

    Sanchez, Sophie; Dupret, Vincent; Tafforeau, Paul; Trinajstic, Katherine M; Ryll, Bettina; Gouttenoire, Pierre-Jean; Wretman, Lovisa; Zylberberg, Louise; Peyrin, Françoise; Ahlberg, Per E

    2013-01-01

    Firm attachments binding muscles to skeleton are crucial mechanical components of the vertebrate body. These attachments (entheses) are complex three-dimensional structures, containing distinctive arrangements of cells and fibre systems embedded in the bone, which can be modified during ontogeny. Until recently it has only been possible to obtain 2D surface and thin section images of entheses, leaving their 3D histology largely unstudied except by extrapolation from 2D data. Entheses are frequently preserved in fossil bones, but sectioning is inappropriate for rare or unique fossil material. Here we present the first non-destructive 3D investigation, by propagation phase contrast synchrotron microtomography (PPC-SRµCT), of enthesis histology in extant and fossil vertebrates. We are able to identify entheses in the humerus of the salamander Desmognathus from the organization of bone-cell lacunae and extrinsic fibres. Statistical analysis of the lacunae differentiates types of attachments, and the orientation of the fibres, reflect the approximate alignment of the muscle. Similar histological structures, including ontogenetically related pattern changes, are perfectly preserved in two 380 million year old fossil vertebrates, the placoderm Compagopiscis croucheri and the sarcopterygian fish Eusthenopteron foordi. We are able to determine the position of entheses in fossil vertebrates, the approximate orientation of the attached muscles, and aspects of their ontogenetic histories, from PPC-SRµCT data. Sub-micron microtomography thus provides a powerful tool for studying the structure, development, evolution and palaeobiology of muscle attachments.

  16. Gas Turbine Engine Staged Fuel Injection Using Adjacent Bluff Body and Swirler Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Snyder, Timothy S. (Inventor)

    2015-01-01

    A fuel injection array for a gas turbine engine includes a plurality of bluff body injectors and a plurality of swirler injectors. A control operates the plurality of bluff body injectors and swirler injectors such that bluff body injectors are utilized without all of the swirler injectors at least at low power operation. The swirler injectors are utilized at higher power operation.

  17. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems.

    PubMed

    Du, Kang; Zhong, Zaixuan; Fang, Chengchi; Dai, Wei; Shen, Yanjun; Gan, Xiaoni; He, Shunping

    2018-04-01

    Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Use of cervical vertebral dimensions for assessment of children growth.

    PubMed

    Caldas, Maria de Paula; Ambrosano, Gláucia Maria Bovi; Haiter-Neto, Francisco

    2007-04-01

    The purpose of this study was to investigate whether skeletal maturation using cephalometric radiographs could be used in a Brazilian population. The study population was selected from the files of the Oral Radiological Clinic of the Dental School of Piracicaba, Brazil and consisted of 128 girls and 110 boys (7.0 to 15.9 years old) who had cephalometric and hand-wrist radiographs taken on the same day. Cervical vertebral bone age was evaluated using the method described by Mito and colleagues in 2002. Bone age was assessed by the Tanner-Whitehouse (TW3) method and was used as a gold standard to determine the reliability of cervical vertebral bone age. An analysis of variance and Tukey's post-hoc test were used to compare cervical vertebral bone age, bone age and chronological age at 5% significance level. The analysis of the Brazilian female children data showed that there was a statistically significant difference (p<0.05) between cervical vertebral bone age and chronological age and between bone age and chronological age. However no statistically significant difference (p>0.05) was found between cervical vertebral bone age and bone age. Differently, the analysis of the male children data revealed a statistically significant difference (p<0.05) between cervical vertebral bone age and bone age and between cervical vertebral bone age and chronological age (p<0.05). The findings of the present study suggest that the method for objectively evaluating skeletal maturation on cephalometric radiographs by determination of vertebral bone age can be applied to Brazilian females only. The development of a new method to objectively evaluate cervical vertebral bone age in males is needed.

  19. Evolution of the β-adrenoreceptors in vertebrates.

    PubMed

    Zavala, Kattina; Vandewege, Michael W; Hoffmann, Federico G; Opazo, Juan C

    2017-01-01

    The study of the evolutionary history of genes related to human disease lies at the interface of evolution and medicine. These studies provide the evolutionary context on which medical researchers should work, and are also useful in providing information to suggest further genetic experiments, especially in model species where genetic manipulations can be made. Here we studied the evolution of the β-adrenoreceptor gene family in vertebrates with the aim of adding an evolutionary framework to the already abundant physiological information. Our results show that in addition to the three already described vertebrate β-adrenoreceptor genes there is an additional group containing cyclostome sequences. We suggest that β-adrenoreceptors diversified as a product of the two whole genome duplications that occurred in the ancestor of vertebrates. Gene expression patterns are in general consistent across species, suggesting that expression dynamics were established early in the evolutionary history of vertebrates, and have been maintained since then. Finally, amino acid polymorphisms that are associated to pathological conditions in humans appear to be common in non-human mammals, suggesting that the phenotypic effects of these mutations depend on epistatic interaction with other positions. The evolutionary analysis of the β-adrenoreceptors delivers new insights about the diversity of these receptors in vertebrates, the evolution of the expression patterns and a comparative perspective regarding the polymorphisms that in humans are linked to pathological conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Lucy's back: Reassessment of fossils associated with the A.L. 288-1 vertebral column.

    PubMed

    Meyer, Marc R; Williams, Scott A; Smith, Michael P; Sawyer, Gary J

    2015-08-01

    The Australopithecus afarensis partial skeleton A.L. 288-1, popularly known as "Lucy" is associated with nine vertebrae. The vertebrae were given provisional level assignments to locations within the vertebral column by their discoverers and later workers. The continuity of the thoracic series differs in these assessments, which has implications for functional interpretations and comparative studies with other fossil hominins. Johanson and colleagues described one vertebral element (A.L. 288-1am) as uniquely worn amongst the A.L. 288-1 fossil assemblage, a condition unobservable on casts of the fossils. Here, we reassess the species attribution and serial position of this vertebral fragment and other vertebrae in the A.L. 288-1 series. When compared to the other vertebrae, A.L. 288-1am falls well below the expected size within a given spinal column. Furthermore, we demonstrate this vertebra exhibits non-metric characters absent in hominoids but common in large-bodied papionins. Quantitative analyses situate this vertebra within the genus Theropithecus, which today is solely represented by the gelada baboon but was the most abundant cercopithecoid in the KH-1s deposit at Hadar where Lucy was discovered. Our additional analyses confirm that the remainder of the A.L. 288-1 vertebral material belongs to A. afarensis, and we provide new level assignments for some of the other vertebrae, resulting in a continuous articular series of thoracic vertebrae, from T6 to T11. This work does not refute previous work on Lucy or its importance for human evolution, but rather highlights the importance of studying original fossils, as well as the efficacy of the scientific method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Analysis of the Factors Contributing to Vertebral Compression Fractures After Spine Stereotactic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyce-Fappiano, David; Elibe, Erinma; Schultz, Lonni

    Purpose: To determine our institutional vertebral compression fracture (VCF) rate after spine stereotactic radiosurgery (SRS) and determine contributory factors. Methods and Materials: Retrospective analysis from 2001 to 2013 at a single institution was performed. With institutional review board approval, electronic medical records of 1905 vertebral bodies from 791 patients who were treated with SRS for the management of primary or metastatic spinal lesions were reviewed. A total of 448 patients (1070 vertebral bodies) with adequate follow-up imaging studies available were analyzed. Doses ranging from 10 Gy in 1 fraction to 60 Gy in 5 fractions were delivered. Computed tomography and magnetic resonancemore » imaging were used to evaluate the primary endpoints of this study: development of a new VCF, progression of an existing VCF, and requirement of stabilization surgery after SRS. Results: A total of 127 VCFs (11.9%; 95% confidence interval [CI] 9.5%-14.2%) in 97 patients were potentially SRS induced: 46 (36%) were de novo, 44 (35%) VCFs progressed, and 37 (29%) required stabilization surgery after SRS. Our rate for radiologic VCF development/progression (excluding patients who underwent surgery) was 8.4%. Upon further exclusion of patients with hematologic malignancies the VCF rate was 7.6%. In the univariate analyses, females (hazard ratio [HR] 1.54, 95% CI 1.01-2.33, P=.04), prior VCF (HR 1.99, 95% CI 1.30-3.06, P=.001), primary hematologic malignancies (HR 2.68, 95% CI 1.68-4.28, P<.001), thoracic spine lesions (HR 1.46, 95% CI 1.02-2.10, P=.02), and lytic lesions had a significantly increased risk for VCF after SRS. On multivariate analyses, prior VCF and lesion type remained contributory. Conclusions: Single-fraction SRS doses of 16 to 18 Gy to the spine seem to be associated with a low rate of VCFs. To the best of our knowledge, this is the largest reported experience analyzing SRS-induced VCFs, with one of the lowest event rates reported.« less

  2. Gout and the Risk of Non-vertebral Fracture

    PubMed Central

    Kim, Seoyoung C.; Paik, Julie M.; Liu, Jun; Curhan, Gary C.; Solomon, Daniel H.

    2016-01-01

    Prior studies suggest an association between osteoporosis, systemic inflammation and pro-inflammatory cytokines such as IL-1 and IL-6. Conflicting findings exist on the association between hyperuricemia and osteoporosis. Furthermore, it remains unknown whether gout, a common inflammatory arthritis, affects fracture risk. Using data from a US commercial health plan (2004–2013), we evaluated the risk of non-vertebral fracture (i.e. forearm, wrist, hip and pelvis) in patients with gout versus those without. Gout patients were identified with ≥2 diagnosis codes and ≥1 dispensing for a gout-related drug. Non-gout patients, identified with ≥2 visits coded for any diagnosis and ≥1 dispensing for any prescription drugs, were free of gout diagnosis and received no gout-related drugs. Hip fracture was the secondary outcome. Fractures were identified with a combination of diagnosis and procedure codes. Cox proportional hazards models compared the risk of non-vertebral fracture in gout patients versus non-gout, adjusting for over 40 risk factors for osteoporotic fracture. Among gout patients with baseline serum uric acid (sUA) measurements available, we assessed the risk of non-vertebral fracture associated with sUA. We identified 73,202 gout and 219,606 non-gout patients, matched on age, sex, and the date of study entry. The mean age was 60 years and 82% were men. Over the mean 2-year follow-up, the incidence rate of non-vertebral fracture per 1,000 person-years was 2.92 in gout and 2.66 in non-gout. The adjusted hazard ratio (HR) was 0.98 (95%CI 0.85–1.12) for non-vertebral fracture and 0.83 (95%CI 0.65–1.07) for hip fracture in gout versus non-gout. Subgroup analysis (n=15,079) showed no association between baseline sUA and non-vertebral fracture (HR 1.03, 95%CI 0.93–1.15), adjusted for age, sex, comorbidity score and number of any prescription drugs. Gout was not associated with a risk of non-vertebral fracture. Among patients with gout, sUA was not

  3. Gout and the Risk of Non-vertebral Fracture.

    PubMed

    Kim, Seoyoung C; Paik, Julie M; Liu, Jun; Curhan, Gary C; Solomon, Daniel H

    2017-02-01

    Prior studies suggest an association between osteoporosis, systemic inflammation, and pro-inflammatory cytokines such as interleukin (IL)-1 and IL-6. Conflicting findings exist on the association between hyperuricemia and osteoporosis. Furthermore, it remains unknown whether gout, a common inflammatory arthritis, affects fracture risk. Using data from a US commercial health plan (2004-2013), we evaluated the risk of non-vertebral fracture (ie, forearm, wrist, hip, and pelvis) in patients with gout versus those without. Gout patients were identified with ≥2 diagnosis codes and ≥1 dispensing for a gout-related drug. Non-gout patients, identified with ≥2 visits coded for any diagnosis and ≥1 dispensing for any prescription drugs, were free of gout diagnosis and received no gout-related drugs. Hip fracture was the secondary outcome. Fractures were identified with a combination of diagnosis and procedure codes. Cox proportional hazards models compared the risk of non-vertebral fracture in gout patients versus non-gout, adjusting for more than 40 risk factors for osteoporotic fracture. Among gout patients with baseline serum uric acid (sUA) measurements available, we assessed the risk of non-vertebral fracture associated with sUA. We identified 73,202 gout and 219,606 non-gout patients, matched on age, sex, and the date of study entry. The mean age was 60 years and 82% were men. Over the mean 2-year follow-up, the incidence rate of non-vertebral fracture per 1,000 person-years was 2.92 in gout and 2.66 in non-gout. The adjusted hazard ratio (HR) was 0.98 (95% confidence interval [CI] 0.85-1.12) for non-vertebral fracture and 0.83 (95% CI 0.65-1.07) for hip fracture in gout versus non-gout. Subgroup analysis (n = 15,079) showed no association between baseline sUA and non-vertebral fracture (HR = 1.03, 95% CI 0.93-1.15), adjusted for age, sex, comorbidity score, and number of any prescription drugs. Gout was not associated with a risk of non-vertebral

  4. [Vertebral artery dissection due to the C6 transverse process and laryngeal cartilage associated with vertebral artery anomaly].

    PubMed

    Kusunoki Nakamoto, Fumiko; Hashimoto Maeda, Meiko; Mori, Kentaro; Hara, Takayuki; Uesaka, Yoshikazu

    2014-01-01

    A 52-year-old woman complained of the sudden onset of a left temporal headache, left neck stiffness and dizziness. Brain magnetic resonance imaging showed a high-intensity lesion in the right medial medulla. Dynamic cerebral angiography revealed vertebral artery dissection and compression at the C6 level due to a transverse process at the C6 level associated with rightward head rotation. Removal of bone and decompression of the vertebral artery were performed from the C5 to C6 levels. Intraoperasively, obstruction of blood flow due to a laryngeal cartilage that rotated with the passive rotation of the patient's head to the right was found. To the best of our knowledge this is the first reported case of vertebral artery occlusion due to a laryngeal cartilage associated with head rotation.

  5. Prenatal diagnosis of isochromosome 20q in a fetus with vertebral anomaly and rocker-bottom feet.

    PubMed

    Receveur, Aline; Brisset, Sophie; Martinovic, Jelena; Bazin, Anne; Lhomann, Laurence; Colmant, Claire; Pineau, Dominique; Gautier, Valérie; Tosca, Lucie; Tachdjian, Gérard

    2017-10-01

    Isochromosome of the long arm of chromosome 20 (i(20q)) is a rare structural abnormality in prenatal diagnosis. Thirty prenatal cases of mosaic i(20q) have been reported, among which only four are associated with fetal malformations. We describe a new prenatal case of i(20q) with fetal malformations. We also observed a discrepancy between uncultured and cultured amniotic fluid cells by using conventional cytogenetic, fluorescence in situ hybridization and array-SNP analysis. The short arm deletion of chromosome 20 arising from the isochromosome encompassed two candidate genes PAX1 and JAG1 involved in cranio-facial and vertebral development. The data would allow establishing a phenotype-genotype correlation. Thus, we proposed to define a recognizable syndrome combining cranio-facial dysmorphism, vertebral bodies' anomalies, feet and cerebral malformations. Copyright © 2017. Published by Elsevier B.V.

  6. [Revenue and losses with vertebral augmentation under the G-DRG system 2012 - a comparison of supply costs in the context of vertebroplasty and kyphoplasty].

    PubMed

    Krüger, A; Wollny, M; Oberkircher, L; Bornemann, R; Pflugmacher, R

    2012-10-01

    If clearly indicated and implemented, augmentations of vertebral bodies with cement are standardized, safe and low-risk procedures. However, the multiplicity of providers and systems are today more varied than ever. At present, the systems differ starkly from one another not only in specifications, possible applications and extensions of indications, but they are also extremely variable in price. Publications have shown that in times of medical-economic change, vertebral augmentations make sense not only medically, but also in terms of economics and the national economy. Our analysis targets the question of how insurance costs with vertebroplasty and kyphoplasty affect profit margins per G-DRG (German Diagnosis Related Groups) in consideration of the different system approaches of the providers. After reviewing the literature, extremely varied, minimally invasive augmentation methods and techniques for treating vertebral body fractures were identified and classified. These were grouped based also [sic: on] OPS and possibly further subdivisions. Material costs were gathered based on average price quotations of different providers and techniques and aligned with those from the literature. The inpatient costs per day were estimated as a lump sum according to published information, since our analysis was interested in less detailed process costs as these are difficult to transfer to other clinics due to parameters being unique to each facility. The G-DRGs concerned were likewise determined according to the case-based lump sum catalogue from 2012. Based on this, the material costs as well as the daily costs per day of inpatient stay according to the average length of stay per G-DRG were subtracted. Vertebral augmentation methods are classified into vertebroplasty and kyphoplasty according to OPS. In addition, according to current literature, a further subdivision of kyphoplasty into substance-conserving or direct cement injection techniques and substance-destroying or

  7. Whole-body low-dose computed tomography in multiple myeloma staging: Superior diagnostic performance in the detection of bone lesions, vertebral compression fractures, rib fractures and extraskeletal findings compared to radiography with similar radiation exposure.

    PubMed

    Lambert, Lukas; Ourednicek, Petr; Meckova, Zuzana; Gavelli, Giampaolo; Straub, Jan; Spicka, Ivan

    2017-04-01

    The primary objective of the present prospective study was to compare the diagnostic performance of conventional radiography (CR) and whole-body low-dose computed tomography (WBLDCT) with a comparable radiation dose reconstructed using hybrid iterative reconstruction technique, in terms of the detection of bone lesions, skeletal fractures, vertebral compressions and extraskeletal findings. The secondary objective was to evaluate lesion attenuation in relation to its size. A total of 74 patients underwent same-day skeletal survey by CR and WBLDCT. In CR and WBLDCT, two readers assessed the number of osteolytic lesions at each region and stage according to the International Myeloma Working Group (IMWG) criteria. A single reader additionally assessed extraskeletal findings and their significance, the number of vertebral compressions and bone fractures. The radiation exposure was 2.7±0.9 mSv for WBLDCT and 2.5±0.9 mSv for CR (P=0.054). CR detected bone involvement in 127 out of 486 regions (26%; P<0.0001), confirmed by WBLDCT. CR underestimated the disease stage in 16% and overestimated it in 8% of the patients (P=0.0077). WBLDCT detected more rib fractures compared with CR (188 vs. 47; P<0.0001), vertebral compressions (93 vs. 67; P=0.010) and extraskeletal findings (194 vs. 52; P<0.0001). There was no correlation observed between lesion size (≥5 mm) and its attenuation (r=-0.006; P=0.93). The inter-observer agreement for the presence of osteolytic lesions was κ=0.76 for WBLDCT, and κ=0.55 for CR. The present study concluded that WBLDCT with hybrid iterative reconstruction technique demonstrates superiority to CR with an identical radiation dose in the detection of bone lesions, skeletal fractures, vertebral compressions and extraskeletal findings, which results in up- or downstaging in 24% patients according to the IMWG criteria. The attenuation of osteolytic lesions can be measured with the avoidance of the partial volume effect.

  8. Comparison of four morphometric definitions and a semiquantitative consensus reading for assessing prevalent vertebral fractures.

    PubMed

    Grados, F; Roux, C; de Vernejoul, M C; Utard, G; Sebert, J L; Fardellone, P

    2001-01-01

    The assessment of vertebral fracture in patients with osteoporosis by conventional radiography has been improved over the past 10 years using either the semiquantitative (SQ) method devised by Genant et al. or quantitative morphometry. However, there is still no internationally agreed definition for vertebral fracture and there have been few comparative studies between these different approaches. Our study assessed the reproducibility of the SQ method and of four commonly used morphometric algorithms (Melton's, Eastell's, Minne's and McCloskey's methods) for assessing prevalent vertebral fractures, and examined the agreement of each morphometric algorithm with a SQ consensus reading performed by three experts. With this consensus reading in place of a gold standard, we determined relative measures of sensitivity, specificity and optimal cutoff threshold for each morphometric algorithm. The study was conducted in 39 postmenopausal women who had at least one osteoporotic vertebral fracture. Normal values were derived from 84 healthy postmenopausal women with apparently normal vertebral bodies. Our results indicate that the concordance of SQ method was excellent (intraobserver agreement on serial radiographs = 96.4%, kappa = 0.91; agreement between individual readings and the consensus reading = 98%, kappa = 0.95). Three morphometric approaches demonstrated good intra- and interobserver concordance (Melton: intraobserver agreement on serial radiographs = 92.7%, kappa = 0.82, interobserver agreement = 91.1%, kappa = 0.79; Eastell: intraobserver agreement on serial radiographs = 87.6%, kappa = 0.66, interobserver agreement = 88.6%, kappa = 0.68; McCloskey: intraobserver agreement on serial radiographs = 91.5%, kappa = 0.72, interobserver agreement = 93.9%, kappa = 0.78). Except for McCloskey's method, the optimal cutoff thresholds defined in our study by highest kappa score or Youden index in comparison with the SQ consensus reading were near the cutoff thresholds that

  9. Contact Us, Department of Vertebrate Zoology, NMNH

    Science.gov Websites

    Contact Us NMNH Home › Research & Collections › Vertebrate Zoology › Contact Us Contacting Individual Staff Members: To contact members of the Department of Vertebrate Zoology please go to the Staff page. Most members will be linked to their own webpage that contains contact information, research

  10. Cost-Effectiveness Analysis of Single Fraction of Stereotactic Body Radiation Therapy Compared With Single Fraction of External Beam Radiation Therapy for Palliation of Vertebral Bone Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hayeon, E-mail: kimh2@upmc.edu; Rajagopalan, Malolan S.; Beriwal, Sushil

    Purpose: Stereotactic body radiation therapy (SBRT) has been proposed for the palliation of painful vertebral bone metastases because higher radiation doses may result in superior and more durable pain control. A phase III clinical trial (Radiation Therapy Oncology Group 0631) comparing single fraction SBRT with single fraction external beam radiation therapy (EBRT) in palliative treatment of painful vertebral bone metastases is now ongoing. We performed a cost-effectiveness analysis to compare these strategies. Methods and Materials: A Markov model, using a 1-month cycle over a lifetime horizon, was developed to compare the cost-effectiveness of SBRT (16 or 18 Gy in 1 fraction)more » with that of 8 Gy in 1 fraction of EBRT. Transition probabilities, quality of life utilities, and costs associated with SBRT and EBRT were captured in the model. Costs were based on Medicare reimbursement in 2014. Strategies were compared using the incremental cost-effectiveness ratio (ICER), and effectiveness was measured in quality-adjusted life years (QALYs). To account for uncertainty, 1-way, 2-way and probabilistic sensitivity analyses were performed. Strategies were evaluated with a willingness-to-pay (WTP) threshold of $100,000 per QALY gained. Results: Base case pain relief after the treatment was assumed as 20% higher in SBRT. Base case treatment costs for SBRT and EBRT were $9000 and $1087, respectively. In the base case analysis, SBRT resulted in an ICER of $124,552 per QALY gained. In 1-way sensitivity analyses, results were most sensitive to variation of the utility of unrelieved pain; the utility of relieved pain after initial treatment and median survival were also sensitive to variation. If median survival is ≥11 months, SBRT cost <$100,000 per QALY gained. Conclusion: SBRT for palliation of vertebral bone metastases is not cost-effective compared with EBRT at a $100,000 per QALY gained WTP threshold. However, if median survival is ≥11 months, SBRT costs

  11. Evolution of vertebrates: a view from the crest

    PubMed Central

    Bronner, Marianne E.

    2016-01-01

    The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural crest specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analyzing the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives. PMID:25903629

  12. [Effectiveness of long segment fixation combined with vertebroplasty for severe osteoporotic thoracolumbar compressive fractures].

    PubMed

    Xu, Zixing; Xu, Weihong; Wang, Changsheng; Luo, Hongbin; Li, Guishuang; Chen, Rongsheng

    2013-11-01

    To study the effectiveness of long segment fixation combined with vertebroplasty (LSF-VP) for severe osteoporotic thoracolumbar compressive fractures with kyphosis deformity. Between March 2006 and May 2012, a retrospective analysis was made on the clinical data of 48 cases of severe osteoporotic thoracolumbar compressive fractures with more than 50% collapse of the anterior vertebral body or more than 400 of sagittal angulation, which were treated by LSF-VP in 27 cases (LSF-VP group) or percutaneous kyphoplasty (PKP) in 21 cases (PKP group). All patients suffered from single thoracolumbar vertebral compressive fracture at T11 to L2. There was no significant difference in gender, age, spinal segment, and T values of bone mineral density between 2 groups (P > 0.05). The effectiveness of the treatment was appraised by visual analogue scale (VAS), Cobb angle of thoracolumbar kyphosis, height of anterior/posterior vertebral body, and compressive ratio of vertebrae before and after operations. The LSF-VP group had longer operation time, hospitalization days, and more bone cement injection volume than the PKP group, showing significant differences (P < 0.05). Intraoperative blood loss in LSF-VP group ranged from 220 to 1,050 mL (mean, 517 mL). No pulmonaryor cerebral embolism or cerebrospinal fluid leakage was found in both groups. Asymptomatic bone cement leakage was found in 3 cases of LSF-VP group and 2 cases of PKP group. The patients were followed up for 16-78 months (mean, 41.1 months) in LSF-VP group, and 12-71 months (mean, 42.1 months) in PKP group. No fixation failure such as loosened or broken pedicle screw was found in LSF-VP group during the follow-up, and no re-fracture or adjacent vertebral body fracture was found. Two cases in PKP group at 39 and 56 months after operation respectively were found to have poor maintenance of vertebral height and loss of rectification (Cobb angle was more than 40 degrees) with recurrence of pain, which were treated by second

  13. Trait-based prediction of extinction risk of small-bodied freshwater fishes.

    PubMed

    Kopf, R Keller; Shaw, Casey; Humphries, Paul

    2017-06-01

    Small body size is generally correlated with r-selected life-history traits, including early maturation, short-generation times, and rapid growth rates, that result in high population turnover and a reduced risk of extinction. Unlike other classes of vertebrates, however, small freshwater fishes appear to have an equal or greater risk of extinction than large fishes. We explored whether particular traits explain the International Union for Conservation of Nature (IUCN) Red List conservation status of small-bodied freshwater fishes from 4 temperate river basins: Murray-Darling, Australia; Danube, Europe; Mississippi-Missouri, North America; and the Rio Grande, North America. Twenty-three ecological and life-history traits were collated for all 171 freshwater fishes of ≤120 mm total length. We used generalized linear mixed-effects models to assess which combination of the 23 traits best explained whether a species was threatened or not threatened. We used the best models to predict the probability of 29 unclassified species being listed as threatened. With and without controlling for phylogeny at the family level, small body size-among small-bodied species-was the most influential trait correlated with threatened species listings. The k-folds cross-validation demonstrated that body size and a random effect structure that included family predicted the threat status with an accuracy of 78% (SE 0.5). We identified 10 species likely to be threatened that are not listed as such on the IUCN Red List. Small body size is not a trait that provides universal resistance to extinction, particularly for vertebrates inhabiting environments affected by extreme habitat loss and fragmentation. We hypothesize that this is because small-bodied species have smaller home ranges, lower dispersal capabilities, and heightened ecological specialization relative to larger vertebrates. Trait data and further model development are needed to predict the IUCN conservation status of the over 11

  14. The Immunoglobulins of Cold-Blooded Vertebrates

    PubMed Central

    Pettinello, Rita; Dooley, Helen

    2014-01-01

    Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species. PMID:25427250

  15. Evolution of motor innervation to vertebrate fins and limbs.

    PubMed

    Murakami, Yasunori; Tanaka, Mikiko

    2011-07-01

    The evolution and diversification of vertebrate behaviors associated with locomotion depend highly on the functional transformation of paired appendages. Although the evolution of fins into limbs has long been a focus of interest to scientists, the evolution of neural control during this transition has not received much attention. Recent studies have provided significant progress in the understanding of the genetic and developmental bases of the evolution of fin/limb motor circuitry in vertebrates. Here we compare the organization of the motor neurons in the spinal cord of various vertebrates. We also discuss recent advances in our understanding of these events and how they can provide a mechanistic explanation for the evolution of fin/limb motor circuitry in vertebrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. The clinical characteristics and therapy of syndrome of craniocerebral-cervical vertebral injury.

    PubMed

    Liu, Sheng; Liu, Yuan-xin; Wang, Cheng

    2005-06-01

    To explore the clinical characteristics and new treatment for syndrome of craniocerebral-cervical vertebral injury. The clinical data of 52 patients with head injury accompanied by neck injury were analyzed retrospectively. Craniocerebral injury could result in damage to cervical vertebrae, muscles, vessels and nerves, and even cause vertebral artery injury, which may lead to insufficient blood-supply of vertebral-basal artery. All patients were treated with cervical vertebral traction and the results were good. Acute craniocerebral injury with symptom of insufficient blood-supply of vertebral-basal artery, evident neurosis and atlas-axis half-dislocation in X-ray should be treated by cervical vertebral traction, which will yield better outcome.

  17. Variability of adjacency effects in sky reflectance measurements.

    PubMed

    Groetsch, Philipp M M; Gege, Peter; Simis, Stefan G H; Eleveld, Marieke A; Peters, Steef W M

    2017-09-01

    Sky reflectance R sky (λ) is used to correct in situ reflectance measurements in the remote detection of water color. We analyzed the directional and spectral variability in R sky (λ) due to adjacency effects against an atmospheric radiance model. The analysis is based on one year of semi-continuous R sky (λ) observations that were recorded in two azimuth directions. Adjacency effects contributed to R sky (λ) dependence on season and viewing angle and predominantly in the near-infrared (NIR). For our test area, adjacency effects spectrally resembled a generic vegetation spectrum. The adjacency effect was weakly dependent on the magnitude of Rayleigh- and aerosol-scattered radiance. The reflectance differed between viewing directions 5.4±6.3% for adjacency effects and 21.0±19.8% for Rayleigh- and aerosol-scattered R sky (λ) in the NIR. Under which conditions in situ water reflectance observations require dedicated correction for adjacency effects is discussed. We provide an open source implementation of our method to aid identification of such conditions.

  18. Effects of seed predators of different body size on seed mortality in Bornean logged forest.

    PubMed

    Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C; Hector, Andy

    2010-07-19

    The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition.

  19. Effects of Seed Predators of Different Body Size on Seed Mortality in Bornean Logged Forest

    PubMed Central

    Hautier, Yann; Saner, Philippe; Philipson, Christopher; Bagchi, Robert; Ong, Robert C.; Hector, Andy

    2010-01-01

    Background The Janzen-Connell hypothesis proposes that seed and seedling enemies play a major role in maintaining high levels of tree diversity in tropical forests. However, human disturbance may alter guilds of seed predators including their body size distribution. These changes have the potential to affect seedling survival in logged forest and may alter forest composition and diversity. Methodology/Principal Findings We manipulated seed density in plots beneath con- and heterospecific adult trees within a logged forest and excluded vertebrate predators of different body sizes using cages. We show that small and large-bodied predators differed in their effect on con- and heterospecific seedling mortality. In combination small and large-bodied predators dramatically decreased both con- and heterospecific seedling survival. In contrast, when larger-bodied predators were excluded small-bodied predators reduced conspecific seed survival leaving seeds coming from the distant tree of a different species. Conclusions/Significance Our results suggest that seed survival is affected differently by vertebrate predators according to their body size. Therefore, changes in the body size structure of the seed predator community in logged forests may change patterns of seed mortality and potentially affect recruitment and community composition. PMID:20657841

  20. Cervical vertebral and dental maturity in Turkish subjects.

    PubMed

    Başaran, Güvenç; Ozer, Törün; Hamamci, Nihal

    2007-04-01

    The aim of this study was to investigate the relationships between the stages of calcification of teeth and the cervical vertebral maturity stages in Turkish subjects. A retrospective cross-sectional study was designed. The final study population consisted of 590 Turkish subjects. Statistical analysis of the data was performed with computer software. Spearman rank order correlation coefficients were used to assess the relationship between cervical vertebral and dental maturation. For a better understanding of the relationship between cervical vertebral maturation indexes and dental age, percentage distributions of the studied teeth were also calculated. Strict correlations were found between dental and cervical vertebral maturation of Turkish subjects. For males, the sequence from lowest to the highest was third molar, central incisor, canine, first premolar, second premolar, first molar, and second molar. For females, the sequence from lowest to the highest was third molar, canine, second premolar, first premolar, central incisor, first molar, and second molar. Dental maturation stages can be used as a reliable indicator of facial growth.

  1. Allergenicity of vertebrate tropomyosins: Challenging an immunological dogma.

    PubMed

    González-Fernández, J; Daschner, A; Cuéllar, C

    With the exception of tilapia tropomyosin, other anecdotic reports of tropomyosin recognition of vertebrate origin are generally not accompanied by clinical significance and a dogmatic idea is generally accepted about the inexistence of allergenicity of vertebrate tropomyosins, based mainly on sequence similarity evaluations with human tropomyosins. Recently, a specific work-up of a tropomyosin sensitised patient with seafood allergy, demonstrated that the IgE-recognition of tropomyosin from different fish species can be clinically relevant. We hypothesise that some vertebrate tropomyosins could be relevant allergens. The hypothesis is based on the molecular evolution of the proteins and it was tested by in silico methods. Fish, which are primitive vertebrates, could have tropomyosins similar to those of invertebrates. If the hypothesis is confirmed, tropomyosin should be included in different allergy diagnosis tools to improve the medical protocols and management of patients with digestive or cutaneous symptoms after fish intake. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  2. Spinal bone marrow necrosis with vertebral compression fracture: differentiation of BMN from AVN.

    PubMed

    Nix, J S; Fitzgerald, R T; Samant, R S; Harrison, M; Angtuaco, E J

    2014-09-01

    Bone marrow necrosis (BMN) is a rare malignancy-associated hematologic disorder characterized by necrosis of myeloid and stromal marrow elements with preservation of cortical bone. Overlap between the imaging appearances of BMN and avascular necrosis (AVN) raises the potential for diagnostic confusion. We report a case of BMN presenting with a traumatic multi-level vertebral body collapse, and finding that may potentially confound distinction between the two entities. We discuss important pathophysiologic, clinical, and radiologic differences between BMN and AVN with emphasis on features important in the differential diagnosis.

  3. Developmental mechanisms of intervertebral disc and vertebral column formation.

    PubMed

    Lawson, Lisa Y; Harfe, Brian D

    2017-11-01

    The vertebral column consists of repeating units of ossified vertebrae that are adjoined by fibrocartilagenous intervertebral discs. These structures form from the embryonic notochord and somitic mesoderm. In humans, congenital malformations of the vertebral column include scoliosis, kyphosis, spina bifida, and Klippel Feil syndrome. In adulthood, a common malady affecting the vertebral column includes disc degeneration and associated back pain. Indeed, recent reports estimate that low back pain is the number one cause of disability worldwide. Our review provides an overview of the molecular mechanisms underlying vertebral column morphogenesis and intervertebral disc development and maintenance, with an emphasis on what has been gleaned from recent genetic studies in mice. The aim of this review is to provide a developmental framework through which vertebral column formation can be understood so that ultimately, research scientists and clinicians alike can restore disc health with appropriately designed gene and cell-based therapies. WIREs Dev Biol 2017, 6:e283. doi: 10.1002/wdev.283 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  4. Corticotropin-releasing hormone: Mediator of vertebrate life stage transitions?

    PubMed

    Watanabe, Yugo; Grommen, Sylvia V H; De Groef, Bert

    2016-03-01

    Hormones, particularly thyroid hormones and corticosteroids, play critical roles in vertebrate life stage transitions such as amphibian metamorphosis, hatching in precocial birds, and smoltification in salmonids. Since they synergistically regulate several metabolic and developmental processes that accompany vertebrate life stage transitions, the existence of extensive cross-communication between the adrenal/interrenal and thyroidal axes is not surprising. Synergies of corticosteroids and thyroid hormones are based on effects at the level of tissue hormone sensitivity and gene regulation. In addition, in representative nonmammalian vertebrates, corticotropin-releasing hormone (CRH) stimulates hypophyseal thyrotropin secretion, and thus functions as a common regulator of both the adrenal/interrenal and thyroidal axes to release corticosteroids and thyroid hormones. The dual function of CRH has been speculated to control or affect the timing of vertebrate life history transitions across taxa. After a brief overview of recent insights in the molecular mechanisms behind the synergic actions of thyroid hormones and corticosteroids during life stage transitions, this review examines the evidence for a possible role of CRH in controlling vertebrate life stage transitions. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Association between frontal sinus morphology and cervical vertebral maturation for the assessment of skeletal maturity.

    PubMed

    Mahmood, Hafiz Taha; Shaikh, Attiya; Fida, Mubassar

    2016-10-01

    Various methods have been proposed to evaluate a patient's developmental status. However, most of them lacked precision and failed to give a reliable estimate of skeletal maturity. The aims of this study were to evaluate the association between frontal sinus morphology and cervical vertebral maturation for the assessment of skeletal maturity and to determine its validity in assessing the different stages of the adolescent growth spurt. A cross-sectional study was performed on the pretreatment lateral cephalograms of 252 subjects aged 8 to 21 years. The sample was divided into 6 groups based on the cervical vertebral maturation stages. The frontal sinus index was calculated by dividing the frontal sinus height and width, and the cervical stages were evaluated on the same radiograph. The Kruskal-Wallis test was applied to compare frontal sinus index values at different cervical stages, and the post hoc Dunnett T3 test was applied to compare frontal sinus index values between adjacent cervical stages for each sex. The Kendall tau-b values were computed to assess the correlation between the cervical stages and the sinus index. A P value of ≤0.05 was considered statistically significant. The height and width of the frontal sinus were significantly larger in the male subjects than in the females. A significant association was found between the frontal sinus height and width and cervical stages (P ≤0.001) in both sexes. However, the changes in the frontal sinus index across the different cervical stages were found to be significant (P ≤0.001) in male subjects only. Similarly, a weak negative correlation was found between the sinus index and the cervical stages in male subjects (tau-b = -0.271; P <0.001), whereas no correlation was found in female subjects (tau-b = -0.006; P <0.928). However, the post hoc analysis showed that the values of the sinus index were comparable between any 2 adjacent cervical stages. The frontal sinus index cannot be used to

  6. A broad-scale comparison of aerobic activity levels in vertebrates: endotherms versus ectotherms

    PubMed Central

    Gomez, Juan Pablo; Mavrodiev, Evgeny V.

    2017-01-01

    Differences in the limits and range of aerobic activity levels between endotherms and ectotherms remain poorly understood, though such differences help explain basic differences in species' lifestyles (e.g. movement patterns, feeding modes, and interaction rates). We compare the limits and range of aerobic activity in endotherms (birds and mammals) and ectotherms (fishes, reptiles, and amphibians) by evaluating the body mass-dependence of VO2 max, aerobic scope, and heart mass in a phylogenetic context based on a newly constructed vertebrate supertree. Contrary to previous work, results show no significant differences in the body mass scaling of minimum and maximum oxygen consumption rates with body mass within endotherms or ectotherms. For a given body mass, resting rates and maximum rates were 24-fold and 30-fold lower, respectively, in ectotherms than endotherms. Factorial aerobic scope ranged from five to eight in both groups, with scope in endotherms showing a modest body mass-dependence. Finally, maximum consumption rates and aerobic scope were positively correlated with residual heart mass. Together, these results quantify similarities and differences in the potential for aerobic activity among ectotherms and endotherms from diverse environments. They provide insights into the models and mechanisms that may underlie the body mass-dependence of oxygen consumption. PMID:28202808

  7. Evolution of phototransduction, vertebrate photoreceptors and retina.

    PubMed

    Lamb, Trevor D

    2013-09-01

    Evidence is reviewed from a wide range of studies relevant to the evolution of vertebrate photoreceptors and phototransduction, in order to permit the synthesis of a scenario for the major steps that occurred during the evolution of cones, rods and the vertebrate retina. The ancestral opsin originated more than 700 Mya (million years ago) and duplicated to form three branches before cnidarians diverged from our own lineage. During chordate evolution, ciliary opsins (C-opsins) underwent multiple stages of improvement, giving rise to the 'bleaching' opsins that characterise cones and rods. Prior to the '2R' rounds of whole genome duplication near the base of the vertebrate lineage, 'cone' photoreceptors already existed; they possessed a transduction cascade essentially the same as in modern cones, along with two classes of opsin: SWS and LWS (short- and long-wave-sensitive). These cones appear to have made synaptic contact directly onto ganglion cells, in a two-layered retina that resembled the pineal organ of extant non-mammalian vertebrates. Interestingly, those ganglion cells appear to be descendants of microvillar photoreceptor cells. No lens was associated with this two-layered retina, and it is likely to have mediated circadian timing rather than spatial vision. Subsequently, retinal bipolar cells evolved, as variants of ciliary photoreceptors, and greatly increased the computational power of the retina. With the advent of a lens and extraocular muscles, spatial imaging information became available for central processing, and gave rise to vision in vertebrates more than 500 Mya. The '2R' genome duplications permitted the refinement of cascade components suitable for both rods and cones, and also led to the emergence of five visual opsins. The exact timing of the emergence of 'true rods' is not yet clear, but it may not have occurred until after the divergence of jawed and jawless vertebrates. Copyright © 2013 The Author. Published by Elsevier Ltd.. All

  8. Collection & Processing of Vertebrate Specimens for Arbovirus Studies.

    ERIC Educational Resources Information Center

    Sudia, W. Daniel; And Others

    Described are techniques used by the National Communicable Disease Center in obtaining blood and tissues from man and other vertebrates for arbovirus isolation and antibody studies. Also included are techniques for capturing and handling vertebrates; banding and marking; restraining and bleeding; storing of specimens to preserve antibody and…

  9. A semi-automated method for bone age assessment using cervical vertebral maturation.

    PubMed

    Baptista, Roberto S; Quaglio, Camila L; Mourad, Laila M E H; Hummel, Anderson D; Caetano, Cesar Augusto C; Ortolani, Cristina Lúcia F; Pisa, Ivan T

    2012-07-01

    To propose a semi-automated method for pattern classification to predict individuals' stage of growth based on morphologic characteristics that are described in the modified cervical vertebral maturation (CVM) method of Baccetti et al. A total of 188 lateral cephalograms were collected, digitized, evaluated manually, and grouped into cervical stages by two expert examiners. Landmarks were located on each image and measured. Three pattern classifiers based on the Naïve Bayes algorithm were built and assessed using a software program. The classifier with the greatest accuracy according to the weighted kappa test was considered best. The classifier showed a weighted kappa coefficient of 0.861 ± 0.020. If an adjacent estimated pre-stage or poststage value was taken to be acceptable, the classifier would show a weighted kappa coefficient of 0.992 ± 0.019. Results from this study show that the proposed semi-automated pattern classification method can help orthodontists identify the stage of CVM. However, additional studies are needed before this semi-automated classification method for CVM assessment can be implemented in clinical practice.

  10. Imperfect Isolation: Factors and Filters Shaping Madagascar’s Extant Vertebrate Fauna

    PubMed Central

    Samonds, Karen E.; Godfrey, Laurie R.; Ali, Jason R.; Goodman, Steven M.; Vences, Miguel; Sutherland, Michael R.; Irwin, Mitchell T.; Krause, David W.

    2013-01-01

    Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar’s colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island’s biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island’s paleogeographical evolution to determine how particular events influenced the arrival of the island’s extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar’s tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island’s isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar’s extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar’s unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of

  11. [Is height restoration possible with a comparatively smaller amount of cement in radiofrequency kyphoplasty using a monopedicle approach?].

    PubMed

    Röllinghoff, M; Hagel, A; Siewe, J; Gutteck, N; Delank, K-S; Steinmetz, A; Zarghooni, K

    2013-04-01

    Percutaneous cement augmentation systems have been proven to be an effective treatment for vertebral compression fractures in the last 10 years. A special form available since 2009 is the radiofrequency kyphoplasty (RF) in which the applied energy raises the viscosity of the cement. The aim of this study is to find out if a smaller cement amount in radiofrequency kyphoplasty can also restore vertebral body height in osteoporotic vertebral compression fractures. The treatment was minimally invasive using the StabiliT® vertebral augmentation system by DFine. In a retrospective study from 2011 to January 2012, 35 patients underwent RF kyphoplasty for 49 fresh osteoporotic vertebral compression fractures. From the clinical side the parameters, demographics and pain relief using a visual analogue scale (VAS: 0 to 100 mm) were collected. For the radiological outcome the vertebral body height (anterior, mean and posterior vertebral body height with kyphosis angle) after surgery and after three months was measured and compared to the cement volume. All patients still had permanent pain on the fractured level after conservative treatment. The time from initial painful fracture to treatment was 3.0 weeks ± 1.3. Average visual analogue scale results decreased significantly from 71 ± 9.2 preoperatively to 35 ± 6.2 postoperatively (p < 0.001) and to 30 ± 5.7 (p < 0.001) after three months. With a mean cement volume in the thoracic spine of 2.9 ± 0.7 ml (1.8-4.1) and lumbar spine of 3.0 ± 0.7 ml (2.0-5.0) we had a significant vertebral body height restoration. Anterior and mean vertebral body heights significantly increased by an average of 2.3 and 3.1 mm, kyphosis angle significantly decreased with an average of 2.1° at three-month follow-up (p < 0.05). In two vertebrae (4.1 %) a minimal asymptomatic cement leakage occurred into the upper disc. In two patients (5.7 %) we had new fractures in the directly adjacent segment that were also successfully treated with

  12. Vertebral osteomyelitis and epidural abscess due to Aspergillus nidulans resulting in spinal cord compression: case report and literature review.

    PubMed

    Jiang, Zheng; Wang, Yunyan; Jiang, Yuquan; Xu, Yonghao; Meng, Bin

    2013-04-01

    Vertebral osteomyelitis caused by Aspergillus nidulans is rare and usually affects immunocompromised patients. This report presents a case of thoracic vertebral osteomyelitis with epidural abscesses due to A. nidulans in a 40-year-old immunocompetent female who presented with back pain, numbness and weakness of both lower limbs. Magnetic resonance imaging demonstrated osteomyelitis involving the thoracic (T)1-T3 vertebral bodies with epidural abscesses, resulting in spinal compression. The patient underwent a decompression laminectomy of T1-T3 and debridement of the thoracic epidural inflammatory granuloma. Histopathology revealed fungal granulomatous inflammation. The patient received 6 mg/kg voriconazole every 12 h (loading dose on day 1) followed by 4 mg/kg voriconazole twice daily for 1 month, administered intravenously. The patient returned with recurrent back pain 16 months after initial presentation. A. nidulans was identified by fungal culture and polymerase chain reaction. The patient showed no evidence of recurrence 1 year after a 6-month course of oral voriconazole. The key to the effective treatment of Aspergillus osteomyelitis is not to excise the abscess, but to administer systemic antifungal drug therapy.

  13. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest

    PubMed Central

    Paredes, Omar Stalin Landázuri; Norris, Darren; de Oliveira, Tadeu Gomes

    2017-01-01

    Terrestrial vertebrate frugivores constitute one of the major guilds in tropical forests. Previous studies show that the meso-scale distribution of this group is only weakly explained by variables such as altitude and tree basal area in lowland Amazon forests. For the first time we test whether seasonally limiting resources (water and fallen fruit) affect the dry season distribution in 25 species of terrestrial vertebrates. To examine the effects of the spatial availability of fruit and water on terrestrial vertebrates we used a standardized, regularly spaced arrangement of camera-traps within 25km2 of lowland Amazon forest. Generalized linear models (GLMs) were then used to examine the influence of four variables (altitude, distance to large rivers, distance to nearest water, and presence vs absence of fruits) on the number of photos on five functional groups (all frugivores, small, medium, large and very large frugivores) and on seven of the most abundant frugivore species (Cuniculus paca, Dasyprocta leporina, Mazama americana, Mazama nemorivaga, Myoprocta acouchy, Pecari tajacu and Psophia crepitans). A total of 279 independent photos of 25 species were obtained from 900 camera-trap days. For most species and three functional groups, the variation in the number of photos per camera was significantly but weakly explained by the GLMs (deviance explained ranging from 6.2 to 48.8%). Generally, we found that the presence of water availability was more important than the presence of fallen fruit for the groups and species studied. Medium frugivores, large-bodied frugivores, and two of the more abundant species (C. paca and P. crepitans) were recorded more frequently closer to water bodies; while none of the functional groups nor the most abundant species showed any significant relationship with the presence of fallen fruit. Two functional groups and two of the seven most common frugivore species assessed in the GLMs showed significant results with species

  14. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest.

    PubMed

    Paredes, Omar Stalin Landázuri; Norris, Darren; Oliveira, Tadeu Gomes de; Michalski, Fernanda

    2017-01-01

    Terrestrial vertebrate frugivores constitute one of the major guilds in tropical forests. Previous studies show that the meso-scale distribution of this group is only weakly explained by variables such as altitude and tree basal area in lowland Amazon forests. For the first time we test whether seasonally limiting resources (water and fallen fruit) affect the dry season distribution in 25 species of terrestrial vertebrates. To examine the effects of the spatial availability of fruit and water on terrestrial vertebrates we used a standardized, regularly spaced arrangement of camera-traps within 25km2 of lowland Amazon forest. Generalized linear models (GLMs) were then used to examine the influence of four variables (altitude, distance to large rivers, distance to nearest water, and presence vs absence of fruits) on the number of photos on five functional groups (all frugivores, small, medium, large and very large frugivores) and on seven of the most abundant frugivore species (Cuniculus paca, Dasyprocta leporina, Mazama americana, Mazama nemorivaga, Myoprocta acouchy, Pecari tajacu and Psophia crepitans). A total of 279 independent photos of 25 species were obtained from 900 camera-trap days. For most species and three functional groups, the variation in the number of photos per camera was significantly but weakly explained by the GLMs (deviance explained ranging from 6.2 to 48.8%). Generally, we found that the presence of water availability was more important than the presence of fallen fruit for the groups and species studied. Medium frugivores, large-bodied frugivores, and two of the more abundant species (C. paca and P. crepitans) were recorded more frequently closer to water bodies; while none of the functional groups nor the most abundant species showed any significant relationship with the presence of fallen fruit. Two functional groups and two of the seven most common frugivore species assessed in the GLMs showed significant results with species

  15. A new heart for a new head in vertebrate cardiopharyngeal evolution.

    PubMed

    Diogo, Rui; Kelly, Robert G; Christiaen, Lionel; Levine, Michael; Ziermann, Janine M; Molnar, Julia L; Noden, Drew M; Tzahor, Eldad

    2015-04-23

    It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.

  16. Management of vertebral compression fracture in general practice: BEACH program.

    PubMed

    Megale, Rodrigo Z; Pollack, Allan; Britt, Helena; Latimer, Jane; Naganathan, Vasi; McLachlan, Andrew J; Ferreira, Manuela L

    2017-01-01

    The pain associated with vertebral compression fractures can cause significant loss of function and quality of life for older adults. Despite this, there is little consensus on how best to manage this condition. To describe usual care provided by general practitioners (GPs) in Australia for the management of vertebral compression fractures. Data from the Bettering the Evaluation And Care of Health (BEACH) program collected between April 2005 and March 2015 was used for this study. Each year, a random sample of approximately 1,000 GPs each recorded information on 100 consecutive encounters. We selected those encounters at which vertebral compression fracture was managed. Analyses of management options were limited to encounters with patients aged 50 years or over. i) patient demographics; ii) diagnoses/problems managed; iii) the management provided for vertebral compression fracture during the encounter. Robust 95% confidence intervals, adjusted for the cluster survey design, were used to assess significant differences between group means. Vertebral compression fractures were managed in 211 (0.022%; 95% CI: 0.018-0.025) of the 977,300 BEACH encounters recorded April 2005- March 2015. That provides a national annual estimate of 26,000 (95% CI: 22,000-29,000) encounters at which vertebral fractures were managed. At encounters with patients aged 50 years or over (those at higher risk of primary osteoporosis), prescription of analgesics was the most common management action, particularly opioids analgesics (47.1 per 100 vertebral fractures; 95% CI: 38.4-55.7). Prescriptions of paracetamol (8.2; 95% CI: 4-12.4) or non-steroidal anti-inflammatory drugs (4.1; 95% CI: 1.1-7.1) were less frequent. Non-pharmacological treatment was provided at a rate of 22.4 per 100 vertebral fractures (95% CI: 14.6-30.1). At least one referral (to hospital, specialist, allied health care or other) was given for 12.3 per 100 vertebral fractures (95% CI: 7.8-16.8). The prescription of oral

  17. Evolution and the origin of the visual retinoid cycle in vertebrates.

    PubMed

    Kusakabe, Takehiro G; Takimoto, Noriko; Jin, Minghao; Tsuda, Motoyuki

    2009-10-12

    Absorption of a photon by visual pigments induces isomerization of 11-cis-retinaldehyde (RAL) chromophore to all-trans-RAL. Since the opsins lacking 11-cis-RAL lose light sensitivity, sustained vision requires continuous regeneration of 11-cis-RAL via the process called 'visual cycle'. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual retinoid cycles between different photoreceptors of vertebrates, including rods, cones and non-visual photoreceptors, as well as between vertebrates and invertebrates. The visual cycle systems in ascidians, the closest living relatives of vertebrates, show an intermediate state between vertebrates and non-chordate invertebrates. The ascidian larva may use retinochrome-like opsin as the major isomerase. The entire process of the visual cycle can occur inside the photoreceptor cells with distinct subcellular compartmentalization, although the visual cycle components are also present in surrounding non-photoreceptor cells. The adult ascidian probably uses RPE65 isomerase, and trans-to-cis isomerization may occur in distinct cellular compartments, which is similar to the vertebrate situation. The complete transition to the sophisticated retinoid cycle of vertebrates may have required acquisition of new genes, such as interphotoreceptor retinoid-binding protein, and functional evolution of the visual cycle genes.

  18. The biogeography of threatened insular iguanas and opportunities for invasive vertebrate management

    USGS Publications Warehouse

    Tershy, Bernie R.; Newton, Kelly M.; Spatz, Dena R.; Swinnerton, Kirsty; Iverson, John B.; Fisher, Robert N.; Harlow, Peter S.; Holmes, Nick D.; Croll, Donald A.; Iverson, J.B.; Grant, T. D.; Knapp, C. R.; Pasachnik, S. A.

    2016-01-01

    Iguanas are a particularly threatened group of reptiles, with 61% of species at risk of extinction. Primary threats to iguanas include habitat loss, direct and indirect impacts by invasive vertebrates, overexploitation, and human disturbance. As conspicuous, charismatic vertebrates, iguanas also represent excellent flagships for biodiversity conservation. To assist planning for invasive vertebrate management and thus benefit threatened iguana recovery, we identified all islands with known extant or extirpated populations of Critically Endangered and Endangered insular iguana taxa as recognized by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. For each island, we determined total area, sovereignty, the presence of invasive alien vertebrates, and human population. For the 23 taxa of threatened insular iguanas we identified 230 populations, of which iguanas were extant on 185 islands and extirpated from 45 islands. Twenty-one iguana taxa (91% of all threatened insular iguana taxa) occurred on at least one island with invasive vertebrates present; 16 taxa had 100% of their population(s) on islands with invasive vertebrates present. Rodents, cats, ungulates, and dogs were the most common invasive vertebrates. We discuss biosecurity, eradication, and control of invasive vertebrates to benefit iguana recovery: (1) on islands already free of invasive vertebrates; (2) on islands with high iguana endemicity; and (3) for species and subspecies with small total populations occurring across multiple small islands. Our analyses provide an important first step toward understanding how invasive vertebrate management can be planned effectively to benefit threatened insular iguanas.

  19. Zygotic Genome Activation in Vertebrates.

    PubMed

    Jukam, David; Shariati, S Ali M; Skotheim, Jan M

    2017-08-21

    The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Pregnancy-associated osteoporosis presenting severe vertebral fractures.

    PubMed

    Ozturk, Cihat; Atamaz, Funda Calis; Akkurt, Halil; Akkoc, Yesim

    2014-01-01

    The syndrome of pregnancy-associated osteoporosis (PAO) is a rare disorder which occurs either in late pregnancy or early post-partum period leading to fragility fracture(s), most commonly in the vertebral bodies. We presented two cases with PAO who had compression fractures at multiple levels involving five vertebrae in one case and 10 vertebrae in the other. Their spinal bone mineral density values were below -2.5 standard deviations. Anti-osteoporotic treatments with nasal calcitonin 400 IU/day, vitamin D 300.000 IU single dose, calcium 1000 mg/day, vitamin D 880 IU/day were initiated. In one case, kyphoplasty was performed by a spinal surgeon. In addition to a thoracolumbosacral orthosis, a rehabilitation program including muscle strengthening, range of motion, relaxation and weight-bearing exercises was started for both cases. These cases emphasize that all pregnant women with complaints of back/lumbar pain should be carefully evaluated. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.