Science.gov

Sample records for adjacent water molecules

  1. Synthesis of a Molecule with Four Different Adjacent Pnictogens.

    PubMed

    Hinz, Alexander; Schulz, Axel; Villinger, Alexander

    2016-08-22

    The synthesis of a molecule containing four adjacent different pnictogens was attempted by conversion of a Group 15 allyl analogue anion [Mes*NAsPMes*](-) (Mes*=2,4,6-tri-tert-butylphenyl) with antimony(III) chloride. A suitable precursor is Mes*N(H)AsPMes* (1) for which several syntheses were investigated. The anions afforded by deprotonation of Mes*N(H)AsPMes* were found to be labile and, therefore, salts could not be isolated. However, the in situ generated anions could be quenched with SbCl3 , yielding Mes*N(SbCl2 )AsPMes* (4). PMID:27377437

  2. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  3. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  4. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  5. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  6. 33 CFR 80.1395 - Puget Sound and adjacent waters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Thirteenth District § 80.1395 Puget Sound and adjacent waters. The 72 COLREGS shall apply on all waters of Puget Sound and adjacent waters, including Lake...

  7. Structured Water Layers Adjacent to Biological Membranes

    PubMed Central

    Higgins, Michael J.; Polcik, Martin; Fukuma, Takeshi; Sader, John E.; Nakayama, Yoshikazu; Jarvis, Suzanne P.

    2006-01-01

    Water amid the restricted space of crowded biological macromolecules and at membrane interfaces is essential for cell function, though the structure and function of this “biological water” itself remains poorly defined. The force required to remove strongly bound water is referred to as the hydration force and due to its widespread importance, it has been studied in numerous systems. Here, by using a highly sensitive dynamic atomic force microscope technique in conjunction with a carbon nanotube probe, we reveal a hydration force with an oscillatory profile that reflects the removal of up to five structured water layers from between the probe and biological membrane surface. Further, we find that the hydration force can be modified by changing the membrane fluidity. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel (Lβ) phase bilayers, each oscillation in the force profile indicates the force required to displace a single layer of water molecules from between the probe and bilayer. In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 60°C and 1,2-dioleoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 24°C seriously disrupt the molecular ordering of the water and result predominantly in a monotonic force profile. PMID:16798815

  8. View from water showing south facade and adjacent boat slips ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View from water showing south facade and adjacent boat slips (Facility Nos. S375 & S376) - U.S. Naval Base, Pearl Harbor, Boat House, Hornet Avenue at Independence Street, Pearl City, Honolulu County, HI

  9. 7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF WATER TREATMENT PLANT, ADJACENT TO THE COAL CONVEYOR; IN THE DISTANCE IS THE FREQUENCY CHANGER HOUSE, WHICH IS ATTACHED TO SWITCH HOUSE NO. 1; LOOKING WEST. - Commonwealth Electric Company, Fisk Street Electrical Generating Station, 1111 West Cermak Avenue, Chicago, Cook County, IL

  10. How subaerial salt extrusions influence water quality in adjacent aquifers

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Razieh; Zarei, Mehdi; Raeisi, Ezzat

    2015-12-01

    Brines supplied from salt extrusions cause significant groundwater salinization in arid and semi-arid regions where salt rock is exposed to dissolution by episodic rainfalls. Here we focus on 62 of the 122 diapirs of Hormuz salt emergent in the southern Iran. To consider managing the degradation effect that salt extrusions have on the quality of adjoining aquifers, it is first necessary to understand how they influence adjacent water resources. We evaluate here the impacts that these diapirs have on adjacent aquifers based on investigating their geomorphologies, geologies, hydrologies and hydrogeologies. The results indicate that 28/62 (45%) of our sample of salt diapirs have no significant impact on the quality of groundwater in adjoining aquifers (namely Type N), while the remaining 34/62 (55%) degrade nearby groundwater quality. We offer simple conceptual models that account for how brines flowing from each of these types of salt extrusions contaminate adjacent aquifers. We identify three main mechanisms that lead to contamination: surface impact (Type A), subsurface intrusion (Type B) and indirect infiltration (Type C). A combination of all these mechanisms degrades the water quality in nearby aquifers in 19/62 (31%) of the salt diapirs studied. Having characterized the mechanism(s) by which each diapir affects the adjacent aquifer, we suggest a few possible remediation strategies to be considered. For instance, engineering the surface runoff of diapirs Types A and C into nearby evaporation basins would improve groundwater quality.

  11. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and adjacent waters, Mass. 110.140 Section 110.140 Navigation and Navigable Waters COAST GUARD..., Nantucket Sound, and adjacent waters, Mass. Link to an amendment published at 76 FR 35744, June 20, 2011. (a... adjacent waters, Mass. (a) * * * (2) Anchorage B. All waters bounded by a line beginning at 41°36′42.3″...

  12. Spectroscopic modeling of water molecule

    NASA Astrophysics Data System (ADS)

    Danylo, R. I.; Okhrimenko, B. A.

    2013-12-01

    This research is devoted to the vibrational spectroscopy inverse problem solution that gives a possibility to design a molecule and make conclusions about its geometry. The valence angle finding based on the usage of inverse spectral vibrational spectroscopy problem is a well-known task. 3N-matrix method was chosen to solve the proposed task. The usage of this method permits to make no assumptions about the molecule force field, besides it can be applied to molecules of matter in liquid state. Anharmonicity constants assessment is an important part of the valence angle finding. The reduction to zero vibrations is necessary because used matrix analytical expression were found in the harmonic approach. In order to find the single-valued inverse spectral problem of vibrational spectroscopy solution a shape parameter characterizing "mixing" of ω1 and ω2 vibrations forms must be found. The minimum of such a function Υ called a divergence parameter was found. This function characterizes method's accuracy. The valence angle assessment was reduced to the divergence parameter minimization. The β value concerning divergence parameter minimum was interpreted as the desired valence angle. The proposed method was applied for water molecule in liquid state: β = (88,8 ±1,7)° . The found angle fits the water molecule nearest surrounding tetrahedral model including hydrogen bond curvature in the first approximation.

  13. Seabed drifter movement in San Diego Bay and adjacent waters

    NASA Astrophysics Data System (ADS)

    Hammond, Robert R.; Wallace, William J.

    1982-06-01

    The seabed drifter has been used successfully to provide valuable information in many estuarine and open sea environments. It was therefore selected for use in the San Diego area. Five hundred drifters were released in San Diego Bay and adjacent ocean waters to delineate bottom flow patterns. Four significant bottom drift regimes are differentiated: off-coastal, main bay channel, open and semi-enclosed docking basins. Mean residual bottom drift ranged between 0·17km day -1 off the coast to essentially zero in the docking basins. Off-coast drifter results (31% recovery) showed a persistent northmoving bottom current with shallow near-coast drift distances between 4 and 25 km. This nearshore north moving bottom current appears to cause a net bottom water inflow into the main San Diego Bay channel (44% recovery). In the open bay a reverse trend was observed from the 16% of the drifters recovered. At the head of the estuary, evaporative densification is believed to occur, with the heavier water sinking and moving outward, towards the estuary mouth, resulting in an area of opposing bottom water currents. In this area San Diego Gas and Electric power plant takes in an average 150 million gallons of cooling water daily which, discharged as warm surface water, is suggested as the surface divergence mode required to reconcile the observed flow. With the three San Diego Bay electric power plants utilizing more than 5% of the maximum tidal prism for cooling purposes, this flow may play a major role in the overall bay circulation and requires quantitative investigation.

  14. Water molecules orientation in surface layer

    NASA Astrophysics Data System (ADS)

    Klingo, V. V.

    2000-08-01

    The water molecules orientation has been investigated theoretically in the water surface layer. The surface molecule orientation is determined by the direction of a molecule dipole moment in relation to outward normal to the water surface. Entropy expressions of the superficial molecules in statistical meaning and from thermodynamical approach to a liquid surface tension have been found. The molecules share directed opposite to the outward normal that is hydrogen protons inside is equal 51.6%. 48.4% water molecules are directed along to surface outward normal that is by oxygen inside. A potential jump at the water surface layer amounts about 0.2 volts.

  15. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Buzzards Bay, Nantucket Sound, and adjacent waters, Mass. 110.140 Section 110.140 Navigation and Navigable Waters COAST GUARD..., Nantucket Sound, and adjacent waters, Mass. (a) New Bedford Outer Harbor—(1) Anchorage A. West of...

  16. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  17. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  18. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  19. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  20. 33 CFR 165.1303 - Puget Sound and adjacent waters, WA-regulated navigation area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Puget Sound and adjacent waters... § 165.1303 Puget Sound and adjacent waters, WA—regulated navigation area. (a) The following is a... Light to New Dungeness Light and all points in the Puget Sound area north and south of these lights....

  1. Conserved water molecules in bacterial serine hydroxymethyltransferases.

    PubMed

    Milano, Teresa; Di Salvo, Martino Luigi; Angelaccio, Sebastiana; Pascarella, Stefano

    2015-10-01

    Water molecules occurring in the interior of protein structures often are endowed with key structural and functional roles. We report the results of a systematic analysis of conserved water molecules in bacterial serine hydroxymethyltransferases (SHMTs). SHMTs are an important group of pyridoxal-5'-phosphate-dependent enzymes that catalyze the reversible conversion of l-serine and tetrahydropteroylglutamate to glycine and 5,10-methylenetetrahydropteroylglutamate. The approach utilized in this study relies on two programs, ProACT2 and WatCH. The first software is able to categorize water molecules in a protein crystallographic structure as buried, positioned in clefts or at the surface. The other program finds, in a set of superposed homologous proteins, water molecules that occur approximately in equivalent position in each of the considered structures. These groups of molecules are referred to as 'clusters' and represent structurally conserved water molecules. Several conserved clusters of buried or cleft water molecules were found in the set of 11 bacterial SHMTs we took into account for this work. The majority of these clusters were not described previously. Possible structural and functional roles for the conserved water molecules are envisaged. This work provides a map of the conserved water molecules helpful for deciphering SHMT mechanism and for rational design of molecular engineering experiments.

  2. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a) Atlantic Ocean in vicinity of No Mans Land—(1) The area. The waters surrounding No Mans Land within an...

  3. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a) Atlantic Ocean in vicinity of No Mans Land—(1) The area. The waters surrounding No Mans Land within an...

  4. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... REGULATIONS § 334.70 Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations. (a) Atlantic Ocean in vicinity of No Mans Land—(1) The area. The waters surrounding No Mans Land within an...

  5. Modelling water molecules inside cyclic peptide nanotubes

    NASA Astrophysics Data System (ADS)

    Tiangtrong, Prangsai; Thamwattana, Ngamta; Baowan, Duangkamon

    2016-03-01

    Cyclic peptide nanotubes occur during the self-assembly process of cyclic peptides. Due to the ease of synthesis and ability to control the properties of outer surface and inner diameter by manipulating the functional side chains and the number of amino acids, cyclic peptide nanotubes have attracted much interest from many research areas. A potential application of peptide nanotubes is their use as artificial transmembrane channels for transporting ions, biomolecules and waters into cells. Here, we use the Lennard-Jones potential and a continuum approach to study the interaction of a water molecule in a cyclo[(- D-Ala- L-Ala)_4-] peptide nanotube. Assuming that each unit of a nanotube comprises an inner and an outer tube and that a water molecule is made up of a sphere of two hydrogen atoms uniformly distributed over its surface and a single oxygen atom at the centre, we determine analytically the interaction energy of the water molecule and the peptide nanotube. Using this energy, we find that, independent of the number of peptide units, the water molecule will be accepted inside the nanotube. Once inside the nanotube, we show that a water molecule prefers to be off-axis, closer to the surface of the inner nanotube. Furthermore, our study of two water molecules inside the peptide nanotube supports the finding that water molecules form an array of a 1-2-1-2 file inside peptide nanotubes. The theoretical study presented here can facilitate thorough understanding of the behaviour of water molecules inside peptide nanotubes for applications, such as artificial transmembrane channels.

  6. Regional Jurassic geologic framework of Alabama coastal waters area and adjacent Federal waters area

    USGS Publications Warehouse

    Mink, R.M.; Bearden, B.L.; Mancini, E.A.

    1989-01-01

    To date, numerous Jurassic hydrocarbon fields and pools have been discovered in the Cotton Valley Group, Haynesville Formation, Smackover Formation and Norphlet Formation in the tri-state area of Mississippi, Alabama and Florida, and in Alabama State coastal waters and adjacent Federal waters area. Petroleum traps are basement highs, salt anticlines, faulted salt anticlines and extensional faults associated with salt movement. Reservoirs include continental and marine sandstones, limestones and dolostones. Hydrocarbon types are oil, condensate and natural gas. The onshore stratigraphic and structural information can be used to establish a regional geologic framework for the Jurassic for the State coastal waters and adjacent Federal waters areas. Evaluation of the geologic information along with the hydrocarbon data from the tri-state area indicates that at least three Jurassic hydrocarbon trends (oil, oil and gas condensate, and deep natural gas) can be identified onshore. These onshore hydrocarbon trends can be projected into the Mobile area in the Central Gulf of Mexico and into the Pensacola, Destin Dome and Apalachicola areas in the Eastern Gulf of Mexico. Substantial reserves of natural gas are expected to be present in Alabama State waters and the northern portion of the Mobile area. Significant accumulations of oil and gas condensate may be encountered in the Pensacola, Destin Dome, and Apalachicola areas. ?? 1989.

  7. Evidence of water molecules--a statistical evaluation of water molecules based on electron density.

    PubMed

    Nittinger, Eva; Schneider, Nadine; Lange, Gudrun; Rarey, Matthias

    2015-04-27

    Water molecules play important roles in many biological processes, especially when mediating protein-ligand interactions. Dehydration and the hydrophobic effect are of central importance for estimating binding affinities. Due to the specific geometric characteristics of hydrogen bond functions of water molecules, meaning two acceptor and two donor functions in a tetrahedral arrangement, they have to be modeled accurately. Despite many attempts in the past years, accurate prediction of water molecules-structurally as well as energetically-remains a grand challenge. One reason is certainly the lack of experimental data, since energetic contributions of water molecules can only be measured indirectly. However, on the structural side, the electron density clearly shows the positions of stable water molecules. This information has the potential to improve models on water structure and energy in proteins and protein interfaces. On the basis of a high-resolution subset of the Protein Data Bank, we have conducted an extensive statistical analysis of 2.3 million water molecules, discriminating those water molecules that are well resolved and those without much evidence of electron density. In order to perform this classification, we introduce a new measurement of electron density around an individual atom enabling the automatic quantification of experimental support. On the basis of this measurement, we present an analysis of water molecules with a detailed profile of geometric and structural features. This data, which is freely available, can be applied to not only modeling and validation of new water models in structural biology but also in molecular design.

  8. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Buzzards Bay, Nantucket Sound..., Nantucket Sound, and adjacent waters, Mass. (a) New Bedford Outer Harbor—(1) Anchorage A. West of Sconticut... Sounds—(1) Anchorage E. South of a line beginning at a point bearing 180° about 3.25 miles from...

  9. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Buzzards Bay, Nantucket Sound..., Nantucket Sound, and adjacent waters, Mass. (a) New Bedford Outer Harbor—(1) Anchorage A. West of Sconticut... Sounds—(1) Anchorage E. South of a line beginning at a point bearing 180° about 3.25 miles from...

  10. 33 CFR 110.140 - Buzzards Bay, Nantucket Sound, and adjacent waters, Mass.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Buzzards Bay, Nantucket Sound..., Nantucket Sound, and adjacent waters, Mass. (a) New Bedford Outer Harbor—(1) Anchorage A. West of Sconticut... Sounds—(1) Anchorage E. South of a line beginning at a point bearing 180° about 3.25 miles from...

  11. Flow and transport within a coastal aquifer adjacent to a stratified water body

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Yechieli, Yoseph; Eyal, Shalev; Gavrieli, Ittai; Gvirtzman, Haim

    2016-04-01

    The existence of a freshwater-saltwater interface and the circulation flow of saltwater beneath the interface is a well-known phenomenon found at coastal aquifers. This flow is a natural phenomenon that occurs due to density differences between fresh groundwater and the saltwater body. The goals of this research are to use analytical, numerical, and physical models in order to examine the configuration of the freshwater-saltwater interface and the density-driven flow patterns within a coastal aquifer adjacent to long-term stratified saltwater bodies (e.g. meromictic lake). Such hydrological systems are unique, as they consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. This research also aims to examine the influence of such stratification on hydrogeological processes within the coastal aquifer. The coastal aquifer adjacent to the Dead Sea, under its possible future meromictic conditions, serves as an ideal example to examine these processes. The results show that adjacent to a stratified saltwater body three interfaces between three different water bodies are formed, and that a complex flow system, controlled by the density differences, is created, where three circulation cells are developed. These results are significantly different from the classic circulation cell that is found adjacent to non-stratified water bodies (lakes or oceans). In order to obtain a more generalized insight into the groundwater behavior adjacent to a stratified water body, we used the numerical model to perform sensitivity analysis. The hydrological system was found be sensitive to three dimensionless parameters: dimensionless density (i.e. the relative density of the three water bodies'); dimensionless thickness (i.e. the ratio between the relative thickness of the upper layer and the whole thickness of the lake); and dimensionless flux. The results

  12. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  13. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  14. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Puget Sound and Adjacent Waters... Areas Thirteenth Coast Guard District § 165.1301 Puget Sound and Adjacent Waters in Northwestern... northwestern Washington waters under the jurisdiction of the Captain of the Port, Puget Sound: Puget...

  15. 76 FR 30023 - Pamlico Sound and Adjacent Waters, NC; Danger Zones for Marine Corps Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ..., 2010, issue of the Federal Register (75 FR 65278) with the docket number COE-2010-0037 and one comment... of Engineers, Department of the Army 33 CFR Part 334 Pamlico Sound and Adjacent Waters, NC; Danger.... SUMMARY: The U.S. Army Corps of Engineers is amending its regulations to establish a new danger zone....

  16. 75 FR 65278 - Pamlico Sound and Adjacent Waters, NC; Danger Zones for Marine Corps Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... of Engineers, Department of the Army 33 CFR Part 334 Pamlico Sound and Adjacent Waters, NC; Danger... its regulations to establish one new danger zone in Pamlico Sound near Marine Corps Air Station Cherry Point, North Carolina. Establishment of this danger zone will enable the Marine Corps to control...

  17. Physical controls of hypoxia in waters adjacent to the Yangtze Estuary: A numerical modeling study.

    PubMed

    Chen, Xiaofeng; Shen, Zhenyao; Li, Yangyang; Yang, Ye

    2015-08-15

    A three-dimensional circulation model (the Environmental Fluid Dynamic Code) was used to examine the role that physical forcing (river discharge, wind speed and direction) plays in controlling hypoxia in waters adjacent to the Yangtze Estuary. The model assumes that the biological consumption of oxygen is constant in both time and space, which allows the role of physical forcing in modulating the oxygen dynamics to be isolated. Despite of the simplicity of this model, the simulation results showed that it can reproduce the observed variability of dissolved oxygen in waters adjacent to the Yangtze Estuary, thereby highlighting the important role of changes in physical forcing in the variation of hypoxia. The scenarios tested revealed appreciable changes in the areal extent of hypoxia as a function of wind speed and wind direction. Interestingly, well-developed hypoxia was insensitive to river discharge.

  18. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  19. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  20. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  1. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  2. 33 CFR 165.1310 - Strait of Juan de Fuca and adjacent coastal waters of Northwest Washington; Makah Whale Hunting...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... adjacent coastal waters of Northwest Washington; Makah Whale Hunting-Regulated Navigation Area. 165.1310... and adjacent coastal waters of Northwest Washington; Makah Whale Hunting—Regulated Navigation Area. (a.... Datum: NAD 1983. (b) During a whale hunt, while the international numeral pennant five (5) is flown by...

  3. [Distribution of Aerobic Ammonia-Oxidizing Microorganisms in Sediments from Adjacent Waters of Rushan Bay].

    PubMed

    He, Hui; Zhen, Yu; Mi, Tie-zhu; Zhang, Yu; Fu, Lu-lu; Yu, Zhi-gang

    2015-11-01

    Nitrogen cycle is a key process in material circulation of marine ecosystem, which plays an important role in maintaining ecological balance. The ammonia oxidation process promoted by aerobic ammonia-oxidizing microorganism (AOM) is a rate-limiting step of nitrification. Real-time quantitative polymerase chain reaction (qPCR ), along with the determination of potential nitrification rates (PNR) was carried out in this study to understand the distribution of AOM in sediments of adjacent waters of Rushan Bay in August, 2014. The results indicated that the abundance of total ammonia-oxidizing bacteria (AOB) was always greater than that of total ammonia-oxidizing archaea (AOA) in the three sampling stations; the ratio of active AOB to total AOB was less than 1%, while no active AOA was detected in this study; the PNR significantly decreased after adding ampicillin which could inhibit the activity of AOB (P < 0.05). It was speculated that AOB might play a more important role in the ammonia oxidation in sediments of adjacent waters of Rushan Bay in August, 2014. Dissolved oxygen concentrations, temperature and ammonium concentrations played a significant role in distribution of AOM in sediments of adjacent waters of Rushan Bay.

  4. Water resources of the Waccasassa River Basin and adjacent areas, Florida

    USGS Publications Warehouse

    Taylor, G.F.; Snell, L.J.

    1978-01-01

    This map report was prepared in cooperation with the Southwest Florida Water Management District which, with the Waccasassa River Basin Board, had jurisdiction over waters within the Waccasassa River basin, the coastal areas adjacent to the basin, and other adjacent areas outside the basin. New water management district boundaries, effective January 1977, place most of the Waccasassa River basin in the Suwannee River Water Management District. The purpose of the report is to provide water information for consideration in land-use and water development which is accelerating, especially in the northeastern part of the study area. It is based largely on existing data in the relatively undeveloped area. Of the total area included in the topographic drainage basin for the Waccasassa River about 72 percent is in Levy County, 18 percent in Alachua County, 9 percent in Gilchrist County, and 1 percent in Marion County. The elongated north-south drainage basin is approximately 50 mi in length, averages 13 mi in width, and lies between the Suwannee River, the St. Johns River, and the Withlacoochee River basins. (Woodard-USGS)

  5. Two new species in the family Axinellidae (Porifera, Demospongiae) from British Columbia and adjacent waters

    PubMed Central

    Austin, William C.; Ott, Bruce S.; Reiswig, Henry M.; Romagosa, Paula; McDaniel, Neil G.

    2013-01-01

    Abstract Two new species of Demospongiae are described for British Columbia and adjacent waters in the family Axinellidae, Auletta krautteri sp. n. and Dragmacidon kishinensis sp. n. They represent range extensions for both of these genera. Both are fairly commonly encountered, Auletta krautteri below diving depths (87 to at least 300 m) and Dragmacidon kishinensis in shallow water (intertidal to 30 m). We propose an amended genus diagnosis for Auletta to account for the variability among species in principal spicules that form the ascending tracts to be either oxeas, styles or strongyles rather than just oxeas. PMID:24146581

  6. Water: one molecule, two surfaces, one mistake

    NASA Astrophysics Data System (ADS)

    Vega, Carlos

    2015-05-01

    In order to rigorously evaluate the energy and dipole moment of a certain configuration of molecules, one needs to solve the Schrödinger equation. Repeating this for many different configurations allows one to determine the potential energy surface (PES) and the dipole moment surface (DMS). Since the early days of computer simulation, it has been implicitly accepted that for empirical potentials the charges used to fit the PES should also be used to describe the DMS. This is a mistake. Partial charges are not observable magnitudes. They should be regarded as adjustable fitting parameters. Optimal values used to describe the PES are not necessarily the best to describe the DMS. One could use two fits: one for the PES and the other for the DMS. This is a common practice in the quantum chemistry community, but not used so often by the community performing computer simulations. This idea affects all types of modelling of water (with the exception of ab initio calculations) from coarse-grained to non-polarisable and polarisable models. We anticipate that an area that will benefit dramatically from having both, a good PES and a good DMS, is the modelling of water in the presence of electric fields.

  7. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  8. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  9. Contrasting microbial assemblages in adjacent water masses associated with the East Australian Current.

    PubMed

    Seymour, Justin R; Doblin, Martina A; Jeffries, Thomas C; Brown, Mark V; Newton, Kelly; Ralph, Peter J; Baird, Mark; Mitchell, James G

    2012-10-01

    Different oceanographic provinces host discrete microbial assemblages that are adapted to local physicochemical conditions. We sequenced and compared the metagenomes of two microbial communities inhabiting adjacent water masses in the Tasman Sea, where the recent strengthening of the East Australian Current (EAC) has altered the ecology of coastal environments. Despite the comparable latitude of the samples, significant phylogenetic differences were apparent, including shifts in the relative frequency of matches to Cyanobacteria, Crenarchaeota and Euryarchaeota. Fine-scale variability in the structure of SAR11, Prochlorococcus and Synechococcus populations, with more matches to 'warm-water' ecotypes observed in the EAC, indicates the EAC may drive an intrusion of tropical microbes into temperate regions of the Tasman Sea. Furthermore, significant shifts in the relative importance of 17 metabolic categories indicate that the EAC prokaryotic community has different physiological properties than surrounding waters. PMID:23760900

  10. Contrasting microbial assemblages in adjacent water masses associated with the East Australian Current.

    PubMed

    Seymour, Justin R; Doblin, Martina A; Jeffries, Thomas C; Brown, Mark V; Newton, Kelly; Ralph, Peter J; Baird, Mark; Mitchell, James G

    2012-10-01

    Different oceanographic provinces host discrete microbial assemblages that are adapted to local physicochemical conditions. We sequenced and compared the metagenomes of two microbial communities inhabiting adjacent water masses in the Tasman Sea, where the recent strengthening of the East Australian Current (EAC) has altered the ecology of coastal environments. Despite the comparable latitude of the samples, significant phylogenetic differences were apparent, including shifts in the relative frequency of matches to Cyanobacteria, Crenarchaeota and Euryarchaeota. Fine-scale variability in the structure of SAR11, Prochlorococcus and Synechococcus populations, with more matches to 'warm-water' ecotypes observed in the EAC, indicates the EAC may drive an intrusion of tropical microbes into temperate regions of the Tasman Sea. Furthermore, significant shifts in the relative importance of 17 metabolic categories indicate that the EAC prokaryotic community has different physiological properties than surrounding waters.

  11. Measures of Water Quality in Merrit Island National Wildlife Refuge Impoundments and Adjacent Indian River Lagoon

    NASA Technical Reports Server (NTRS)

    Blum, Linda K.

    2000-01-01

    The goal of this project was to conduct preliminary investigations to determine appropriate sampling strategies to measure the flux of dissolved nutrients (specifically, NH4+, NO3-, NO2-, and PO4(3-)) and suspended particulate matter (TSS) between impoundments and the IRL in preparation for an intensive three-year monitoring program. In addition to nutrients and TSS, a variety of common water quality indicators were also measured during these preliminary studies. Six impoundments and a single restored marsh were selected for study. Over a month long period, water samples were collected weekly at selected impoundment culverts. Water was collected in duplicate as independent grab samples from both the lagoon side and within the perimeter ditch directly adjacent to the culverts. Water quality indicators inside and outside the marsh impoundments were different. Ammonium, salinity, bacteria, and chlorophyll-a were higher inside the impoundments as expected possibly as a result of the great affect of evaporation on impoundment water. Water quality indicators responded rapidly both inside and outside the impoundments as exemplified by the increase in NH4(+)-N concentrations during a horseshoe crab die-off. Water quality indicators were high variable during the month in which water samples were collected. Because the impoundments are widely spaced it is logistically unrealistic to sample each of the impoundments and associated seagrass beds on a single day, sampling must be stratified to allow patterns of material movement and the annual flux of materials to and from the impoundments to be determined.

  12. What is the minimum number of water molecules required to dissolve a potassium chloride molecule?

    PubMed

    Sen, Anik; Ganguly, Bishwajit

    2010-12-01

    This work answers an unsolved question that consists of determining the least number of water molecules necessary to separate a potassium chloride molecule. The answer based on accurate quantum chemical calculations suggests that tetramers are the smallest clusters necessary to dissociate KCl molecules. The study was made with Møller-Plesset second-order perturbation theory modified with the cluster theory having single, double, and perturbative triple excitations. With this extensive study, the dissociation of KCl molecule in different water clusters was evaluated. The calculated results show that four water molecules stabilize a solvent separated K(+)/Cl(-) ion-pair in prismatic structure and with six water molecules further dissociation was observed. Attenuated total reflection infrared spectroscopy of KCl dissolved in water establishes that clusters are made of closely bound ions with a mean of five water molecules per ion-pair [K(+)(H(2)O)(5)Cl(-)]. (Max and Chapados, Appl Spectrosc 1999, 53, 1601; Max and Chapados, J Chem Phys 2001, 115, 2664.) The calculated results tend to support that five water molecules leads toward the formation of contact ion-pair. The structures, energies, and infrared spectra of KCl molecules in different water clusters are also discussed.

  13. [Phytoplankton assemblage in Yangtze River estuary and its adjacent waters in winter time].

    PubMed

    He, Qing; Sun, Jun; Luan, Qing-shan; Song, Shu-qun; Shen, Zhi-liang; Wang, Dan

    2007-11-01

    Water samples were collected from Yangtze River Estuary and its adjacent waters in 28th February-10th March, 2005, and the species composition of phytoplankton was analyzed by Utermöhl method. A total of 130 taxa (including 25 uncertain species) which belong to 67 genera of 5 phyla were identified. The phytoplankton community was mainly composed of Bacillariophyta, followed by Dinophyta. There were also a few species belonging to Chrysophyceae, Cyanophyceae and Chlorophyceae. The dominant species were Paralia sulcata, Skeletonema costatum, Thalassiosira rotula, Bleakeleya notata, Coscinodiscus radiatus and Thalassiosira excentrica. The cell abundance of phytoplankton ranged from 0.1 to 90.0 cells x ml(-1), with an average of 10.1 cells x ml(-1). Horizontally, the cell abundance was relatively high in inshore and low in offshore; while vertically, it was high in surface water and decreased slightly with increasing water depth. The cell abundance and chl a concentration of phytoplankton positively correlated with the concentrations of nitrate, nitrite, ammonium, phosphate and silicate in water, but negatively correlated with water salinity. The Shannon-Wiener diversity index and Pielou evenness index were higher in the center of survey area but lower in northeast part and inshore area.

  14. Estimated water use in the Southwest Florida Water Management District and adjacent areas, 1980

    USGS Publications Warehouse

    Duerr, A.D.; Trommer, J.T.

    1981-01-01

    Water-use data for 1980 are summarized in this report for 16 counties in the Southwest Florida Water Management District. Data include total use of ground water and surface water for each of five water-use categories. The 1980 withdrawals for each category were as follows: 290 million gallons per day for public supply, 63 million gallons per day for rural, 325 million gallons per day for industry, 416 million gallons per day for irrigation, and 6,605 million gallons per day for thermoelectric power generation. Withdrawals totaled 7,699 million gallons per day and included 983 million gallons per day of ground water and 6,716 million gallons per day of surface water. Excluding thermoelectric power generation, all water withdrawn was freshwater except 38 million gallons per day of saline ground water withdrawn for industrial use in Hillsborough County. (USGS)

  15. Adsorption structure of water molecules on the Be(0001) surface

    SciTech Connect

    Yang, Yu; Li, Yanfang; Wang, Shuangxi; Zhang, Ping

    2014-06-07

    By using density functional theory calculations, we systematically investigate the adsorption of water molecules at different coverages on the Be(0001) surface. The coverage dependence of the prototype water structures and energetics for water adlayer growth are systematically studied. The structures, energetics, and electronic properties are calculated and compared with other available studies. Through our systematic investigations, we find that water molecules form clusters or chains on the Be(0001) surface at low coverages. When increasing the water coverage, water molecules tend to form a 2 × 2 hexagonal network on the Be(0001) surface.

  16. Water quality in the lower Puyallup River valley and adjacent uplands, Pierce County, Washington

    USGS Publications Warehouse

    Ebbert, J.C.; Bortleson, Gilbert C.; Fuste, L.A.; Prych, E.A.

    1987-01-01

    The quality of most ground and surface water within and adjacent to the lower Puyallup River valley is suitable for most typical uses; however, some degradation of shallow groundwater quality has occurred. High concentrations of iron and manganese were found in groundwater, sampled at depths of < 40 ft, from wells tapping alluvial aquifers and in a few wells tapping deeper aquifers. Volatile and acid- and base/neutral-extractable organic compounds were not detected in either shallow or deep groundwater samples. The quality of shallow groundwater was generally poorer than that of deep water. Deep ground water (wells set below 100 ft) appears suitable as a supplementary water supply for fish-hatchery needs. Some degradation of water quality, was observed downstream from river mile 1.7 where a municipal wastewater-treatment plant discharges into the river. In the Puyallup River, the highest concentrations of most trace elements were found in bed sediments collected downstream from river mile 1.7. Median concentrations of arsenic, lead, and zinc were higher in bed sediments from small streams compared with those from the Puyallup River, possibly because the small stream drainages, which are almost entirely within developed areas, receive more urban runoff as a percentage of total flow. Total-recoverable trace-element concentrations exceeded water-quality criteria for acute toxicity in the Puyallup River and in some of the small streams. In most cases, high concentrations of total-recoverable trace elements occurred when suspended-sediment concentrations were high. Temperatures in all streams except Wapato Creek and Fife Dutch were within limits (18 C) for Washington State class A water. Minimum dissolved oxygen concentrations were relatively low at 5.6 and 2.0 mg/L, respectively, for Wapato Creek and Fife Dutch. The poorest surface-water quality, which can be characterized as generally unsuitable for fish, was in Fife Dutch, a manmade channel and therefore

  17. Concentration of hydrocarbons associated with particles in the shelf waters adjacent to the entrance of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Wade, T. L.; Oertel, G. F.

    1981-01-01

    Particulate hydrocarbon concentrations were measured in 94 water samples. The concentrations ranged from below the detection limit ( 0.7 micro-G/L) to 32 micro-g/l. The mean for all samples was 5.6 micro-g/l. Particulate hydrocarbon concentrations are higher in the Bay mouth and lower in the shelf waters adjacent to the entrance of Chesapeake Bay. No coherent particulate hydrocarbon distribution is seen with depth in the water column. The Bay is postulated as one of the possible chronic sources of particulate hydrocarbons for the adjacent shelf waters.

  18. [Phytoplankton Light Absorption Properties During the Blooms in Adjacent Waters of the Changjiang Estuary].

    PubMed

    Liu, Yang-yang; Shen, Fang; Li, Xiu-zhen

    2015-06-01

    Phytoplankton dominant species and their light absorption properties during the blooms occurred in August 2013 in adjacent waters of the Changjiang Estuary were analyzed. The results showed that phytoplankton blooms broke out in 10 out of 34 investigation stations, among which diatom blooms occurred in 6 stations while 3 stations were predominated by dinoflagellate. Phytoplankton absorption coefficients of both bloom and non-bloom waters exhibited large variations, with respective ranges of 0.199-0.832 m(-1) and 0.012-0.109 m(-1), while phytoplankton specific absorption coefficients spanned much narrower range, with the average values of bloom and non-bloom waters being 0.023 and 0.035 m2 x mg(-1), respectively. When transitioned from bloom to non-bloom waters, the proportion of phytoplankton with larger cell size lowered while that of smaller phytoplankton elevated, causing a less extent of package effect and thus higher specific absorption coefficients. Distinctive absorption spectra were observed between different types of bloom (such as diatom and dinoflagellate blooms) with similar phytoplankton cell size, mostly attributed to distinctive accessory pigment composition. The ratios of diadinoxanthin and chlorophyll-c2 concentrations to chlorophyll-a concentration in dinoflagellate blooms were higher than those in diatom blooms, which largely contributed to the shoulder peaks at 465 nm in dinoflagellate blooms.

  19. [Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters].

    PubMed

    Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang

    2011-09-01

    The events of red tide were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red tide, the distribution map was generated accordingly. The results show: (1) There are three red tide-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red tide occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red tide were significantly increasing; (2) The frequent occurrence of red tide was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red tide plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red tides caused by these species were 38, 35, 15, 10 times separately.

  20. Ground-water resources of southern Tangipahoa Parish and adjacent areas, Louisiana

    USGS Publications Warehouse

    Rapp, T.R.

    1994-01-01

    Groundwater resources in southern Tangipahoa Parish and adjacent areas were studied to determine their potential for development as an alternative to the Mississippi River as a water-supply source for Jefferson Parish. Eight major aquifers consisting of thick sand units that underlie the study area are, in descending order: (1) shallow, (2) upper Ponchatoula, (3) lower Ponchatoula, (4) Abita, (5) Covington, (6) Tchefuncta, (7) Hammond, and (8) Amite. A fault zone, referred to as the Baton Rouge fault, crosses southern Tangipahoa Parish. Analyses of geophysical logs indicated that the deep aquifers south of the fault zone had been displaced from 350 to 400 feet, and that the deeper aquifers were not in hydraulic connection with the flow system north of the fault. The groundwater resources of southeastern Louisiana are immense and the quality of groundwater in Tangipahoa Parish is suitable for most uses. The quality of water in these aquifers generally meets the U.S. Environmental Protection Agency's standards for public supply. The hydrologic system underlying Tangipahoa Parish and adjacent areas in 1990 supplied about 19 Mgal/d of water that was suitable for public supply. However, substantial increases in pumping from the aquifer system would result in renewed water-level declines throughout the hydrologic system until a new equilibrium is established. A test we11 in southern Tangipahoa Parish, penetrated all eight aquifers. Total thickness of freshwater sand beds penetrated by the 3003-ft test hole was more than 1900 ft. Resistivity values from an electric log of the test typically averaged 200 ohm-meters, which indicates that the water has low dissolved-solids and chloride concentrations. An analysis of the Abita aquifer at Ruddock in St. John the Baptist Parish, for two of three hypothetical well fields, indicated that for a hypothetical we11 field with a pumping rate of 112 Mgal/d, the freshwater/saltwater interface could arrive at the outer perimeter we11 in

  1. Giant pumping of single-file water molecules in a carbon nanotube.

    PubMed

    Wang, Y; Zhao, Y J; Huang, J P

    2011-11-17

    Achieving a fast, unidirectional flow of single-file water molecules (UFSWM) across nanochannels is important for membrane-based water purification or seawater desalination. For this purpose, electro-osmosis methods are recognized as a very promising approach and have been extensively discussed in the literature. Utilizing molecular dynamics simulations, here we propose a design for pumping water molecules in a single-walled carbon nanotube in the presence of a linearly gradient electric (GE) field. Such a GE field is inspired by GE fields generated from charged ions located adjacent to biological membrane water nanochannels that can conduct water in and out of cells and can be experimentally achieved by using the charged tip of an atomic force microscope. As a result, the maximum speed of the UFSWM can be 1 or 2 orders of magnitude larger than that in a uniform electric (UE) field. Also, inverse transportation of water molecules does not exist in case of the GE field but can appear for the UE field. Thus, the GE field yields a much more efficient UFSWM than the UE field. The giant pumping ability as revealed is attributed to the nonzero net electrostatic force acting on each water molecule confined in the nanotube. These observations have significance for the design of nanoscale devices for readily achieving controllable UFSWM at high speed. PMID:21977917

  2. Giant pumping of single-file water molecules in a carbon nanotube.

    PubMed

    Wang, Y; Zhao, Y J; Huang, J P

    2011-11-17

    Achieving a fast, unidirectional flow of single-file water molecules (UFSWM) across nanochannels is important for membrane-based water purification or seawater desalination. For this purpose, electro-osmosis methods are recognized as a very promising approach and have been extensively discussed in the literature. Utilizing molecular dynamics simulations, here we propose a design for pumping water molecules in a single-walled carbon nanotube in the presence of a linearly gradient electric (GE) field. Such a GE field is inspired by GE fields generated from charged ions located adjacent to biological membrane water nanochannels that can conduct water in and out of cells and can be experimentally achieved by using the charged tip of an atomic force microscope. As a result, the maximum speed of the UFSWM can be 1 or 2 orders of magnitude larger than that in a uniform electric (UE) field. Also, inverse transportation of water molecules does not exist in case of the GE field but can appear for the UE field. Thus, the GE field yields a much more efficient UFSWM than the UE field. The giant pumping ability as revealed is attributed to the nonzero net electrostatic force acting on each water molecule confined in the nanotube. These observations have significance for the design of nanoscale devices for readily achieving controllable UFSWM at high speed.

  3. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  4. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  5. 33 CFR 334.410 - Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Albemarle Sound, Pamlico Sound... AND RESTRICTED AREA REGULATIONS § 334.410 Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations. (a) Target areas—(1) North Landing River (Currituck...

  6. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  7. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  8. 33 CFR 334.412 - Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Albemarle Sound, Pamlico Sound... REGULATIONS § 334.412 Albemarle Sound, Pamlico Sound, Harvey Point and adjacent waters, NC; restricted area. (a) The area. Beginning on the north shore of Albemarle Sound and the easternmost tip of Harvey...

  9. Water resources of the Rincon and Mesilla Valleys and adjacent areas, New Mexico

    USGS Publications Warehouse

    Wilson, Clyde A.; White, Robert R.; Orr, Brennon R.; Roybal, R. Gary

    1981-01-01

    valleys in the adjacent upland areas. Ground water moves southeastward beneath the West Mesa area, converging with ground-water flow in the southern end of the Mesilla Valley. Good hydraulic connection exists between sediments of the West Mesa and Mesilla Valley areas. Ground water in the southern end of the Jornada del Muerto moves generally to the northwest, converges with south-flowing ground water near Point of Rocks, and moves westward into Rincon Valley sediments near Rincon. A small amount of ground water flows westward from the southern end of the Jornada del Muerto across a subsurface igneous body into the Mesilla Valley. Ground-water discharge occurs throughout the Rincon and Mesilla Valleys as drain flow to the river and evapotranspiration. Dissolved-solids concentrations in the water in the flood-plain alluvium of the Rincon and Mesilla Valleys are generally greater than 1,000 milligrams per liter. A freshwater zone, with dissolved-solids concentrations less than 1,000 milligrams per liter, underlies this thin, slightly saline zone beneath much of the Mesilla Valley. This freshwater zone, occurring in the Santa Fe Group, is surrounded by saline water. Within the study area, major dissolved ions in ground water include sodium, calcium, bicarbonate, and sulfate. The Rio Grande is a gainlng stream in the northern parts of the Rincon and Mesilla Valleys and a losing stream in the southern part of the Mesilla Valley. Gains and losses result from a close interconnection with ground-water flow systems. Large surface-water irrigation allotments increase ground-water recharge. Increased recharge raises ground-water levels and improves shallow ground-water quality adjacent to these recharge areas. Shallow ground-water discharges to drains, which flow into the Rio Grande. Dissolved-solids concentrations in the Rio Grande increase by as much as 60 percent between Caballo Reservoir and the southern end of the study area.

  10. Microbial water quality before and after the repair of a failing onsite wastewater treatment system adjacent to coastal waters

    USGS Publications Warehouse

    Conn, K.E.; Habteselassie, M.Y.; Denene, Blackwood A.; Noble, R.T.

    2012-01-01

    Aims: The objective was to assess the impacts of repairing a failing onsite wastewater treatment system (OWTS, i.e., septic system) as related to coastal microbial water quality. Methods and Results: Wastewater, groundwater and surface water were monitored for environmental parameters, faecal indicator bacteria (total coliforms, Escherichia coli, enterococci) and the viral tracer MS2 before and after repairing a failing OWTS. MS2 results using plaque enumeration and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) often agreed, but inhibition limited the qRT-PCR assay sensitivity. Prerepair, MS2 persisted in groundwater and was detected in the nearby creek; postrepair, it was not detected. In groundwater, total coliform concentrations were lower and E.??coli was not detected, while enterococci concentrations were similar to prerepair levels. E.??coli and enterococci surface water concentrations were elevated both before and after the repair. Conclusions: Repairing the failing OWTS improved groundwater microbial water quality, although persistence of bacteria in surface water suggests that the OWTS was not the singular faecal contributor to adjacent coastal waters. A suite of tracers is needed to fully assess OWTS performance in treating microbial contaminants and related impacts on receiving waters. Molecular methods like qRT-PCR have potential but require optimization. Significance and Impact of Study: This is the first before and after study of a failing OWTS and provides guidance on selection of microbial tracers and methods. ?? 2011 The Authors. Journal of Applied Microbiology ?? 2011 The Society for Applied Microbiology.

  11. [Distribution of picophytoplanktons in Qingdao offshore and its adjacent waters in winter].

    PubMed

    Wang, Min; Liang, Yan-tao; Bai, Xiao-ge; Jiang, Xue-jiao; Wang, Fang; Qiao, Qian

    2008-11-01

    Picophytoplankton (0.2-2.0 microm in size) is the smallest group of autotrophic plankton, being abundant and widespread in the world ocean and playing an important role in the organic matter cycling in ocean. By the method of epifluorescence microscopy (EFM), the abundance and its spatial and diurnal variations of the picophytoplanktons in Qingdao offshore and its adjacent waters in winter were investigated. The results showed that in the study area in winter, phycoerythrin-rich (PE) Synechococcus cells were dominant, followed by Picoeukaryote (Euk) cells, while the abundance of phycocyanin-rich (PC) Synechococcus cells was low and no Prochlorococcus (Pro) cells were observed. The abundance of Synechococcus (Syn) and Euk varied from 8.97 x 10(3) to 1.95 x 10(5) cells x ml(-1) (averaged 4.67 x 10(4) cells x ml(-1) and from 1.95 x 10(2) to 1.01 x 10(4) cells x m(l-1)(averaged 2.39 x 10(3) cells x ml(1) respectively. There was a high-value of Syn abundance in Jiaonan offshore and a low-value in Jimo and southeast Laoshan off-shores, while a high-value of Euk abundance in Rizhao offshore and a low-value in Laoshan offshore. No significant difference was observed in the vertical distribution of Syn and Euk abundance among four water layers (P>0.05) at a continuous station located in the center of Jiaozhou Bay, the abundance had an obvious diurnal fluctuation. Pearson correlation analysis indicated that Syn was positively correlated with water temperature and electrical conductivity (P<0.01) but negatively correlated with dissolved oxygen concentration (P<0.01) and Euk was negatively correlated with water salinity and dissolved oxygen concentration. In the study area in winter, picophytoplankton contributed about 20% to the total phytoplanktonic biomass. PMID:19238842

  12. Helium isotopes and heavier noble gas abundances of water in adjacent sea of Japan

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Takahata, N.; Watanabe, T.; Shirai, K.; Nishizawa, M.

    2003-12-01

    We have measured helium isotopic ratios of water samples collected with various depths in adjacent sea of Japan. The 3He/4He ratios vary significantly from 0.989 Ratm to 1.242 Ratm where Ratm is the atmospheric ratio of 1.39x10-6. It is confirmed that all deep sea water (2000 - 2500 m) of western North Pacific is affected by the mantle helium with a high 3He/4He ratio. More precisely mid-depth (750 - 1500 m) profiles of 3He/4He ratios of northwestern Philippine Sea (Nansei Trench) and east of East China Sea (northeast and southwest of Okinawa Trough) are higher than those of western North Pacific (Off Joban) and comparable to those of northern Philippine Sea (Nankai Trough). Excess 3He of the mid-depth samples may be attributable to the subduction-type mantle helium originated from high-temperature hydrothermal sites in the Okinawa Trough. Noble gas abundances (neon, argon, krypton and xenon) were measured in water samples collected in western North Pacific and northwestern Philippine Sea. Neon abundances show slight excess relative to air saturated sea water at ambient temperature and salinity. This may be due to either air bubble effect or contamination during the sampling. When these effects are corrected using the neon anomaly, heavier noble gas abundances (argon, krypton and xenon) of samples with the temperature higher than 5° C (shallower than 500m) agree well with those of calculated air saturated seawater, while the lower temperature samples (deeper than 500 m) indicate anomaly of -7% to +10%.

  13. Simulation of Integrated Surface-Water/Ground-Water Flow and Salinity for a Coastal Wetland and Adjacent Estuary

    USGS Publications Warehouse

    Langevin, Christian D.; Swain, Eric D.; Melinda A., Wolfert

    2004-01-01

    The SWIFT2D surface-water flow and transport code, which solves the St. Venant equations in two dimensions, was coupled with the SEAWAT variable-density ground-water code to represent hydrologic processes in coastal wetlands and adjacent estuaries. The integrated code was applied to the southern Everglades of Florida to quantify flow and salinity patterns and to evaluate effects of hydrologic processes. Results indicate that most surface water within Taylor Slough flows through Joe Bay and into Florida Bay through Trout Creek. Overtopping of the Buttonwood Embankment, a narrow but continuous ridge that separates the coastal wetlands from Florida Bay, does occur in response to tropical storms, but the net overflow is only 1.5 percent of creek discharge. The net leakage rate for the coastal wetland is about zero with nearly equal upward (17.1 cm/yr) and downward (17.4 cm/yr) rates. During the dry season, the coastal wetland increases in salinity to 30-35 practical salinity units but is flushed each year with the onset of the wet season. Model results demonstrate that surface-water/ground-water interactions, density-dependent flow, and wind affect flow and salinity patterns.

  14. [Temporal and spatial distribution of red tide in Yangtze River Estuary and adjacent waters].

    PubMed

    Liu, Lu-San; Li, Zi-Cheng; Zhou, Juan; Zheng, Bing-Hui; Tang, Jing-Liang

    2011-09-01

    The events of red tide were collected in Yangtze River Estuary and adjacent waters from 1972 to 2009. Based on geographic information system (GIS) analysis on the temporal and spatial distribution of red tide, the distribution map was generated accordingly. The results show: (1) There are three red tide-prone areas, which are outside the Yangtze River estuary and the eastern of Sheshan, Huaniaoshan-Shengshan-Gouqi, Zhoushan and the eastern of Zhujiajian. The red tide occurred 174 times in total, in which there were 25 times covered the area was larger than 1 000 km2. After 2000, the frequency of red tide were significantly increasing; (2) The frequent occurrence of red tide was in May (51% of total occurrence) and June (20% of total occurrence); (3) In all of the red tide plankton, the dominant species were Prorocentrum danghaiense, Skeletonema costatum, Prorocentrum dantatum, Nactiluca scientillans. The red tides caused by these species were 38, 35, 15, 10 times separately. PMID:22165212

  15. Distribution patterns of phytoplankton in the Changjiang River estuary and adjacent waters in spring 2009

    NASA Astrophysics Data System (ADS)

    Kong, Fanzhou; Xu, Zijun; Yu, Rencheng; Yuan, Yongquan; Zhou, Mingjiang

    2016-09-01

    The Changjiang River estuary and adjacent waters are one of the most notable regions for red tides/harmful algal blooms in China's coastal waters. In this study, phytoplankton samples were collected and analyzed during the outbreak stage of red tides in May 2009. It was found that dinoflagellates, Prorocentrum donghaiense and Karenia mikimotoi, and diatoms, Skeletonema spp. and Paralia sulcata, were the major taxa dominating the phytoplankton community. Cluster analysis, non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) was conducted on a data matrix including taxa composition and cell abundance of the phytoplankton samples. The analyses categorized the samples into three groups at a similarity level of 30%. Group I was characterized by estuarine diatoms and distributed mainly in the highly turbid estuarine region. Group II, which was dominated by the diatom Skeletonema spp. and represented the red tide of Skeletonema spp., was situated around Group I in the sea area west of 122°50'E. Group III was characterized by a high proportion of dinoflagellates and was found further offshore compared with Groups I and II. Group III was further divided into two subgroups (III-S1 and III-S2) at a similarity level of 40%. Group III-S1 was characterized by the presence of the benthic diatom P. sulcata, representing phytoplankton samples collected either from the bottom or from the sea area affected by upwelling. Group III-S2 was dominated by dinoflagellates and represented red tides formed by P. donghaiense and K. mikimotoi. A gradual change of red-tide causative species was observed from the estuary to the offshore sea area, from diatoms to armored dinoflagellates and then unarmored dinoflagellates. Environmental factors associated with each group, and thus affecting the distribution of phytoplankton and red tides, are discussed.

  16. On the Several Molecules and Nanostructures of Water

    PubMed Central

    Whitney, Cynthia Kolb

    2012-01-01

    This paper investigates the water molecule from a variety of viewpoints. Water can involve different isotopes of Hydrogen and Oxygen, it can form differently shaped isomer molecules, and, when frozen, it occupies space differently than most other substances do. The tool for conducting the investigation of all this is called ‘Algebraic Chemistry’. This tool is a quantitative model for predicting the energy budget for all sorts of changes between different ionization states of atoms that are involved in chemical reactions and in changes of physical state. The model is based on consistent patterns seen in empirical data about ionization potentials, together with rational scaling laws that can interpolate and extrapolate for situations where no data are available. The results of the investigation of the water molecule include comments, both positive and negative, about technologies involving heavy water, poly water, Brown’s gas, and cold fusion. PMID:22312305

  17. Quantum Behavior of Water Molecules Confined to Nanocavities in Gemstones.

    PubMed

    Gorshunov, Boris P; Zhukova, Elena S; Torgashev, Victor I; Lebedev, Vladimir V; Shakurov, Gil'man S; Kremer, Reinhard K; Pestrjakov, Efim V; Thomas, Victor G; Fursenko, Dimitry A; Dressel, Martin

    2013-06-20

    When water is confined to nanocavities, its quantum mechanical behavior can be revealed by terahertz spectroscopy. We place H2O molecules in the nanopores of a beryl crystal lattice and observe a rich and highly anisotropic set of absorption lines in the terahertz spectral range. Two bands can be identified, which originate from translational and librational motions of the water molecule isolated within the cage; they correspond to the analogous broad bands in liquid water and ice. In the present case of well-defined and highly symmetric nanocavities, the observed fine structure can be explained by macroscopic tunneling of the H2O molecules within a six-fold potential caused by the interaction of the molecule with the cavity walls.

  18. Quantum Behavior of Water Molecules Confined to Nanocavities in Gemstones.

    PubMed

    Gorshunov, Boris P; Zhukova, Elena S; Torgashev, Victor I; Lebedev, Vladimir V; Shakurov, Gil'man S; Kremer, Reinhard K; Pestrjakov, Efim V; Thomas, Victor G; Fursenko, Dimitry A; Dressel, Martin

    2013-06-20

    When water is confined to nanocavities, its quantum mechanical behavior can be revealed by terahertz spectroscopy. We place H2O molecules in the nanopores of a beryl crystal lattice and observe a rich and highly anisotropic set of absorption lines in the terahertz spectral range. Two bands can be identified, which originate from translational and librational motions of the water molecule isolated within the cage; they correspond to the analogous broad bands in liquid water and ice. In the present case of well-defined and highly symmetric nanocavities, the observed fine structure can be explained by macroscopic tunneling of the H2O molecules within a six-fold potential caused by the interaction of the molecule with the cavity walls. PMID:26283245

  19. 33 CFR 334.410 - Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AND RESTRICTED AREA REGULATIONS § 334.410 Albemarle Sound, Pamlico Sound, and adjacent waters, NC; danger zones for naval aircraft operations. (a) Target areas—(1) North Landing River (Currituck Sound...°31′00″, longitude 76°01′40″. (2) Northern part of Currituck Sound. Beginning at a point bearing...

  20. A benchmark-multi-disciplinary study of the interaction between the Chesapeake Bay and adjacent waters of the Virginian Sea

    NASA Technical Reports Server (NTRS)

    Hargis, W. J., Jr.

    1981-01-01

    The social and economic importance of estuaries are discussed. Major focus is on the Chesapeake Bay and its interaction with the adjacent waters of the Virginia Sea. Associated multiple use development and management problems as well as their internal physical, geological, chemical, and biological complexities are described.

  1. [Community structure of phytoplankton in Haizhou bay and adjacent waters and its relationships with environmental factors].

    PubMed

    Yang, Xiao-Gai; Xue, Ying; Zan, Xiao-Xiao; Ren, Yi-Ping

    2014-07-01

    Based on the data collected from four seasonal surveys in 2011 in Haizhou Bay and adjacent waters, community structure of phytoplankton was studied and their relationships with environmental factors were evaluated by canonical correlation analysis (CCA). A total of 113 phytoplankton species belonging to 3 phyla and 44 genera were collected, among which Bacillariophyta species were the most abundant species, which included 39 genera and 99 species, accounting for 87.6% of total taxa, followed by Pyrrophyta, which included 4 genera and 13 species, accounting for 11.5 percent of total taxa. And the least abundant species were Chrysophyta species, which had only 1 species belonging to 1 genus. Among these dominant species, Coscinodiscus and Chaetoceros were the dominant groups in Bacillariophyta, while Ceratium was the dominant group in Dinophyta, and the dominant species were Meuniera membranacea, Coscinodiscus subtilis var. subtilis, Eucampia zodiacus and Bacillaria paxillifera. There were obvious seasonal variations in the species composition and predominant species. The abundances of phytoplankton in all the stations ranged from 0.08 x 10(5) cells m(-3) to 108.48 x 10(5) cells x m(-3) in Haizhou Bay. The average annual density of phytoplankton was 10.71 x 10(5) cells x m(-3), being the highest in autumn (29.08 x 10(5) cells x m(-3)) and the lowest in summer (1.69 x 10(5) cells x m(-3)). The Shannon index, Pielou index and Margalef index of the phytoplankton community were higher in summer and autumn than in winter and spring. CCA suggested that the main factors affecting the phytoplankton community were sea surface temperature (SST), followed by nutrients (NO(3-)-N, PO4(3-)-P, SiO3(2-)-Si) and dissolved oxygen (DO). The abundances and distribution of some dominant species were closely related with these main factors.

  2. Local order and mobility of water molecules around ambivalent helices.

    PubMed

    Bhattacharjee, Nicholus; Biswas, Parbati

    2011-10-27

    Water on a protein surface plays a key role in determining the structure and dynamics of proteins. Compared to the properties of bulk water, many aspects of the structure and dynamics of the water surrounding the proteins are less understood. It is interesting therefore to explore how the properties of the water within the solvation shell around the peptide molecule depend on its specific secondary structure. In this work we investigate the orientational order and residence times of the water molecules to characterize the structure, energetics, and dynamics of the hydration shell water around ambivalent peptides. Ambivalent sequences are identical sequences which display multiple secondary structures in different proteins. Molecular dynamics simulations of representative proteins containing variable helix, variable nonhelix, and conserved helix are also used to explore the local structure and mobility of water molecules in their vicinity. The results, for the first time, depict a different water distribution pattern around the conserved and variable helices. The water molecules surrounding the helical segments in variable helices are found to possess a less locally ordered structure compared to those around their corresponding nonhelical counterparts and conserved helices. The long conserved helices exhibit extremely high local residence times compared to the helical conformations of the variable helices, whereas the residence times of the nonhelical conformations of the variable helices are comparable to those of the short conserved helices. This differential pattern of the structure and dynamics of water molecules in the vicinity of conserved/variable helices may lend valuable insights for understanding the role of solvent effects in determining sequence ambivalency and help in improving the accuracy of water models used in the simulations of proteins.

  3. Molecules to Materials for PEC Water Splitting

    SciTech Connect

    Neale, N. R.; Ruddy, D. A.; Lee, K.; Seabold, J. A.; Deutsch, T. G.; Dukovic, G.

    2013-01-01

    Advances in heterogeneous catalysis are driven by the formation of structure-property relationships at solid-liquid and solid-gaseous interfaces. The establishment of these relationships relies on cooperative research efforts on several fronts: prediction and analysis using high-level theoretical models, the development of new synthetic methods to prepare specific solid-state compositions and structures, new analytical methods to identify the active site and define interfacial properties, and mechanistic analysis of functioning catalysts. However, customized materials that allow for fine control of the interfacial properties at solid-liquid boundaries represent difficult synthetic targets. We have been investigating molecular synthons as precursors to advanced materials to address this challenge. In this presentation, we will discuss (1) the chemistry of molecular inorganic complexes, (2) their conversion to mixed-metal oxides, and (3) structure-property relationships of the resulting oxides relevant to PEC water splitting.

  4. Roles of water molecules in trapping carbon dioxide molecules inside the interlayer space of graphene oxides.

    PubMed

    Yumura, Takashi; Yamasaki, Ayumi

    2014-05-28

    Density functional theory (DFT) calculations were employed to investigate the energetics of carbon dioxide migration within hydrated or anhydrous graphene oxides (GOs). When anhydrous GO structures contain a carbon dioxide molecule, the carbon dioxide interacts repulsively with the GO layers to increase the interlayer spacing. The repulsive electrostatic interactions are reduced by the insertion of water molecules into CO2-containing GO structures due to the occurrence of attractive water-layer interactions through hydrogen bonding. Consequently, the interlayer spacings in CO2-containing hydrated structures are shortened compared with those in the anhydrous structures. The results indicate that the intercalated water molecules have the ability to connect the GO layers in the presence of carbon dioxide. Furthermore, the DFT calculations indicated that the GO interlayer spacings, which are influenced by the intercalation of water molecules, control carbon dioxide migration within the GO layers. The importance of the interlayer spacings on the migration of carbon dioxide arises from the occurrence of repulsive interactions between CO2 and oxygen-containing groups attached on the graphene sheets. When the GO interlayer spacings are short due to the presence of intercalated water molecules, the repulsive interactions between carbon dioxide and the GO layers are strong enough to prevent CO2 from migrating from its original position. Such repulsive interactions do not occur during the migration of CO2 within anhydrous GO structures because of the relatively longer interlayer spacing. Accordingly, CO2 migrates within anhydrous GO with a less significant barrier, indicating that carbon dioxide molecules are easily released from the GO.

  5. Dynamics of Confined Water Molecules in Aqueous Salt Hydrates

    SciTech Connect

    Werhahn, Jasper C.; Pandelov, S.; Yoo, Soohaeng; Xantheas, Sotiris S.; Iglev, H.

    2011-04-01

    The unusual properties of water are largely dictated by the dynamics of the H bond network. A single water molecule has more H bonding sites than atoms, hence new experimental and theoretical investigations about this peculiar liquid have not ceased to appear. Confinement of water to nanodroplets or small molecular clusters drastically changes many of the liquid’s properties. Such confined water plays a major role in the solvation of macro molecules such as proteins and can even be essential to their properties. Despite the vast results available on bulk and confined water, discussions about the correlation between spectral and structural properties continue to this day. The fast relaxation of the OH stretching vibration in bulk water, and the variance of sample geometries in the experiments on confined water obfuscate definite interpretation of the spectroscopic results in terms of structural parameters. We present first time-resolved investigations on a new model system that is ideally suited to overcome many of the problems faced in spectroscopical investigation of the H bond network of water. Aqueous hydrates of inorganic salts provide water molecules in a crystal grid, that enables unambiguous correlations of spectroscopic and structural features. Furthermore, the confined water clusters are well isolated from each other in the crystal matrix, so different degrees of confinement can be achieved by selection of the appropriate salt.

  6. Radium Isotope Ratios as Tracers for Estimating the Influence of Changjiang Outflow Water to the Adjacent Seas

    NASA Astrophysics Data System (ADS)

    Kim, K.; Kim, S.

    2006-12-01

    In order to understand the influence of Changjiang (Yangtze River) outflow water to the adjacent seas during rainy and draught seasons, we studied the origin and mixing of surface water masses in the East China Sea and the South Sea of Korea. We used Ra-228/Ra-226 activity ratio and salinity as two conservative tracers in three end-members: Changjiang water (CW); Yellow Sea water (YSW); and Kuroshio water (KW). Radium isotopes in each 300-liter of surface water samples were extracted by passing through manganese-fiber cartridges, dissolved in hydroxylamine hydrochloride solution, coprecipitated as barium sulfate, dried and measured by gamma-ray spectroscopy. Results show that surface water of the East China Sea includes all three end-member waters during the rainy season, in the order of KW (50-80%), YSW (20-50%) and CW (5-15%). Surface water of the South Sea of Korea, however, includes a little fraction of, or almost no, CW in drought season. These are the preliminary results from an ongoing 6-year project ending in 2009 which aims to predict the influence of heavily polluted Changjiang outflow water to the adjacent seas after the completion of the gigantic Three Gorges (Sanxia) Dam.

  7. Dynamics of water interacting with interfaces, molecules, and ions.

    PubMed

    Fayer, Michael D

    2012-01-17

    Water is a critical component of many chemical processes, in fields as diverse as biology and geology. Water in chemical, biological, and other systems frequently occurs in very crowded situations: the confined water must interact with a variety of interfaces and molecular groups, often on a characteristic length scale of nanometers. Water's behavior in diverse environments is an important contributor to the functioning of chemical systems. In biology, water is found in cells, where it hydrates membranes and large biomolecules. In geology, interfacial water molecules can control ion adsorption and mineral dissolution. Embedded water molecules can change the structure of zeolites. In chemistry, water is an important polar solvent that is often in contact with interfaces, for example, in ion-exchange resin systems. Water is a very small molecule; its unusual properties for its size are attributable to the formation of extended hydrogen bond networks. A water molecule is similar in mass and volume to methane, but methane is a gas at room temperature, with melting and boiling points of 91 and 112 K, respectively. This is in contrast to water, with melting and boiling points of 273 and 373 K, respectively. The difference is that water forms up to four hydrogen bonds with approximately tetrahedral geometry. Water's hydrogen bond network is not static. Hydrogen bonds are constantly forming and breaking. In bulk water, the time scale for hydrogen bond randomization through concerted formation and dissociation of hydrogen bonds is approximately 2 ps. Water's rapid hydrogen bond rearrangement makes possible many of the processes that occur in water, such as protein folding and ion solvation. However, many processes involving water do not take place in pure bulk water, and water's hydrogen bond structural dynamics can be substantially influenced by the presence of, for example, interfaces, ions, and large molecules. In this Account, spectroscopic studies that have been used

  8. Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters

    NASA Astrophysics Data System (ADS)

    Shan, Xiujuan; Jin, Xianshi; Yuan, Wei

    2010-05-01

    Fish assemblage structure in the hypoxic zone in the Changjiang (Yangtze River) estuary and its adjacent waters were analyzed based on data from bottom trawl surveys conducted on the R/V Beidou in June, August and October 2006. Four fish assemblages were identified in each survey using two-way indicator species analysis (TWIA). High fish biomass was found in the northern part, central part and coastal waters of the survey area; in contrast, high fish diversity was found in the southern part of the survey area and the Changjiang estuary outer waters. Therefore, it is difficult to maintain high fishery production when high fish diversity is evenly distributed in the fish community. Fish became smaller and fish size spectra tended to be narrower because of fish species variations and differences in growth characteristics. Fish diversity increased, the age to maturity was reduced and some migrant species were not collected in the surveys. Fish with low economic value, small size, simple age structure and low tropic level were predominant in fish assemblages in the Changjiang estuary and its adjacent waters. The lowest hypoxic value decreased in the Changjiang estuary and its adjacent waters.

  9. Unprecedentedly rapid transport of single-file rolling water molecules

    NASA Astrophysics Data System (ADS)

    Qiu, Tong; Huang, Ji-Ping

    2015-10-01

    The realization of rapid and unidirectional single-file water-molecule flow in nanochannels has posed a challenge to date. Here, we report unprecedentedly rapid unidirectional single-file water-molecule flow under a translational terahertz electric field, which is obtained by developing a Debye doublerelaxation theory. In addition, we demonstrate that all the single-file molecules undergo both stable translation and rotation, behaving like high-speed train wheels moving along a railway track. Independent molecular dynamics simulations help to confirm these theoretical results. The mechanism involves the resonant relaxation dynamics of H and O atoms. Further, an experimental demonstration is suggested and discussed. This work has implications for the design of high-efficiency nanochannels or smaller nanomachines in the field of nanotechnology, and the findings also aid in the understanding and control of water flow across biological nanochannels in biology-related research.

  10. Adjacent effect and cross talk of land surfaces on coastal water in the Aster VNIR and SWIR

    NASA Astrophysics Data System (ADS)

    Takashima, Tsutomu; Masuda, Kazuhiko; Sato, Isao; Tsuchida, Satoshi

    2002-12-01

    The adjacency effect is discussed at coastal areas of main land and peninsula using VNIR and SWIR on ASTER sensor, although the cross-talk phenomenon is apparently noted on some SWIR. The purpose of the analysis is to derive optical characteristics of atmospheric aerosol. The aerosol model is in accordance to the dust-like model. This model is adopted to ASTER and MISR on Terra satellite. Data is the Atsumi Peninsula near Nagoya (34° 40'N, 134° 00'E) GMT1.55 on July 10,2000. The ASTER SWIR(1.65μm-2.395μm) cross-talk phenomenon is noted in the data. This is known as a result of a structure of ASTER sensor. It is relatively large (5-6 DN counts and 100 lines or 3km length). On the other hands, when ASTER observe heterogeneous surface of coastal water, the adjacency effect due to the scattering by atmosphere might partly be contaminated to the above effect. In the SWIR region of spectrum, molecular scattering is practically neglected. However, some aerosol model indicates strong scattering effect at SWIR wavelengths. The main results are (1) The Japan Main land indicates 6~20 times more effect than the peninsula on adjacent radiance from ocean water. (2) SWIR & VNIR exhibit similar adjacent effect which might indicate aerosol or large particles.

  11. Transport behavior of water molecules through two-dimensional nanopores.

    PubMed

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  12. Transport behavior of water molecules through two-dimensional nanopores

    SciTech Connect

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  13. Structures of water molecules in carbon nanotubes under electric fields

    SciTech Connect

    Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-03-28

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate.

  14. Structures of water molecules in carbon nanotubes under electric fields

    NASA Astrophysics Data System (ADS)

    Winarto, Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-03-01

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate.

  15. [Investigation of membrane permeability of carp spermatozoa for water molecules].

    PubMed

    Pugovkin, A Iu; Kopeĭka, E F; Nardid, O A; Cherkashina, Ia O

    2014-01-01

    The fundamentals of a photometry method for determination of membrane permeability of some fish spermatozoa for water molecules are presented. Osmotic tolerance of carp spermatozoa membranes was studied using EPR-spectroscopy and photometric analysis methods. It was shown that carp spermatozoa look like the ideal osmometers in their reaction on media of different osmolarity. The value of membrane permeability of carp spermatozoa for water molecules was determined. Data obtained can be used in cryobiology for creating cryoprotective media and regimes of fish sperm cryopreservation. PMID:25715589

  16. An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. The synoptic repetitive coverage of the multispectral imagery from the ERTS-1 satellite, when photographically reprocessed using the state-of-the-art techniques, has given indication of spectral differences in Block Island and adjacent New England waters which were heretofore unknown. Of particular interest was the possible detection of relatively small amounts of phytoplankton prior to the occurrence of the red tide in Massachusetts waters. Preparation of spatial and temporal hydrographic charts using ERTS-1 imagery and ground truth analysis will hopefully determine the environmental impact on New York coastal waters.

  17. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, T.B.

    1984-01-01

    A study was conducted to evaluate water-resource problems related to abandoned lead and zinc mines in Cherokee County, and adjacent areas in Oklahoma and Missouri. Discontinuities and perforations, which were produced by mining in the confining shale west of the Pennsylvanian-Mississippian geologic contact, have created artificial groundwater recharge and discharge areas. Abandoned wells and drill holes present the greatest contamination hazard to water supplies in the deep aquifer. There is a potential for downward movement from the shallow to the deep aquifer throughout the study area, with greatest potential in Ottawa County, Oklahoma. Principal effects of abandoned mines on groundwater quality are lowered pH and increased concentrations of sulfate and trace metals of water in the mines. No conclusive evidence of lateral migration of contaminated mine water from the mines into the water-supply wells adjacent to the mines was found. Analyses of water from the deep aquifer did not indicate trace-metal contamination. The effects of abandoned mines on streamwater quality are most severe in Short Creek and Tar Creek. Increased concentrations of zinc and manganese were observed in the Spring River below Short Creek Kansas. (USGS)

  18. [Fish community structure and its relationships with environmental factors in Haizhou Bay and adjacent waters of East China in winter].

    PubMed

    Wang, Xiao-Lin; Xu, Bin-Duo; Ji, Yu-Peng; Ren, Yi-Ping

    2013-06-01

    Based on the bottom trawl survey and environmental investigation data in December 2011, and by using species diversity indices and multi-element analysis, this paper studied the species composition, species diversity, and spatial pattern of fish community as well as their relationships with environmental factors in Haizhou Bay and adjacent waters. A total of 60 fish species were captured, belonging to 51 genera, 34 families, and 10 orders, and mainly composed of warm temperature and warm water demersal fishes. The Margalef species richness index, Shannon diversity index, and Pielou evenness index ranged from 1.14 to 2.84, 1.08 to 2.64, and 0.41 to 0.83, respectively. Cluster analysis and non-metric multidimensional scaling (MDS) analysis showed that the fish community could be spatially clustered into three groups. Group I was in the north of 35 N, group II was in the inshore waters near bay-head, and group III was in the south of 35 degrees N. ANOSIM analysis showed that there existed highly significant differences (R = 0.45-0.91) in the fish species composition among the groups. The canonical correspondence analysis (CCA) indicated that the bottom water temperature, water depth, and sea surface salinity were the most important environmental variables affecting the spatial pattern of fish community in Haizhou Bay and adjacent waters in winter.

  19. Chemical Interactions of Uranium in Water, Sediments, and Plants Along a Watershed Adjacent to the Abandoned Jackpile Mine

    NASA Astrophysics Data System (ADS)

    Blake, J.; De Vore, C. L.; Avasarala, S.; Ali, A.; Roldan, C.; Bowers, F.; Spilde, M.; Artyushkova, K.; Cerrato, J.

    2015-12-01

    The chemical interactions, mobility, and plant uptake of uranium (U) near abandoned mine wastes was investigated along the Rio Paguate, adjacent to the Jackpile Mine, located in Laguna Pueblo, New Mexico. Elevated U concentrations in surface water adjacent to mine waste range from 30 to 710 μg/L seasonally and decrease to 5.77 to 10.0 μg/L at a wetland 4.5 kilometers downstream of the mine. Although U concentrations in stream water are elevated, aqua regia acid digestions performed on co-located stream bed and stream bank sediments reveal that there is limited U accumulation on sediments along the reach between the mine and wetland, with most sediment concentrations being near the 3 mg/kg crustal average. However, U concentrations in sediments in the wetland are 4 times the background concentrations in the area. Individual results from salt cedar roots, stems, and leaves collected along the river transect show higher U concentrations in the roots adjacent to the mine waste (20 and 55 mg/kg) and lower in the stems and leaves. Translocation values calculated below 1 are evident in many of the plant samples, suggesting that U root to shoot translocation is minimal and U is accumulating in the roots. Concentrations of U in salt cedar roots from downstream of the mine waste decrease to 15 mg/kg. X-ray photoelectron spectroscopy analysis on sediment samples adjacent to the mine waste show a 75:25% ratio of Fe(III) to Fe(II), which can have an effect on adsorption properties. Electron microprobe results suggest that the ore in this area is present as a uranium-phosphate phase. Our results suggest that dilution, uptake by plants, and U sorption to wetland sediments are the dominant factors that help to decrease the U concentrations downstream of the mine.

  20. Water-quality, water-level, and lake-bottom-sediment data collected from the defense fuel supply point and adjacent properties, Hanahan, South Carolina, 1990-96

    USGS Publications Warehouse

    Petkewich, M.D.; Vroblesky, D.A.; Robertson, J.F.; Bradley, P.M.

    1997-01-01

    A 9-year scientific investigation to determine the potential for biore-mediation of ground-water contamination and to monitor the effectiveness of an engineered bioremediation system located at the Defense Fuel Supply Point and adjacent properties in Hanahan, S.C., has culminated in the collection of abundant water-quality and water-level data.This report presents the analytical results of the study that monitored the changes in surface- and ground-water quality and water-table elevations in the study area from December 1990 to January 1996. This report also presents analytical results of lake-bottom sediments collected in the study area.

  1. Potentiometric surface of Floridan aquifer, Southwest Florida Water Management District and adjacent areas, September 1977

    USGS Publications Warehouse

    Ryder, P.D.; Mills, L.R.; Laughlin, C.P.

    1978-01-01

    A potentiometric-surface map of the Southwest Florida Water Management District depicts the annual high water-level period. Potentiometric levels increased 15 to 30 feet between May 1977 and September 1977 in the citrus and farming sections of southeastern Hillsborough, northern Hardee, and southwestern Polk Counties. These areas are widely affected by pumpage for irrigation and have the greatest range in water-level fluctuations between the low and high water-level periods. Water-level rises in coastal, northern, and southern areas of the Water Management District ranged from 0 to 15 feet. (Woodard-USGS)

  2. Hadronic chemistry applied to hydrogen and water molecules

    NASA Astrophysics Data System (ADS)

    Tangde, Vijay M.

    2012-09-01

    The decades of research of R M Santilli resulted into the formulation of iso-, geno- and hyper- mathematics [1, 2] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry, for example, the theories of relativity, quantum mechanics (chemistry), astrophysics, particle physics, and so on. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic m Mechanics based on Santilli's mathematics for the first time has removed the very fundamental limitations of quantum chemistry [3, 4] [2, 3, 4]. Herein, we review a Santilli-Shillady model[3, 4, 5] of hydrogen and water molecules characterized by a bond at short distances of the two valance electrons into a singlet quasi-particle state called isoelectronium for hydrogen molecule and two isoelctronia (one per H-O dimer) in case of water molecule. We especially emphasis on: the numerically exact representation of binding energies from unadulterated first axiomatic principle, the reduction of the hydrogen molecule to a restricted three body problem that admits exact analytic solutions and the reduction of computer time by at least a factor of 1000 folds due to a much faster convergent series.

  3. Hydrogeology of recharge areas and water quality of the principal aquifers along the Wasatch Front and adjacent areas, Utah

    USGS Publications Warehouse

    Anderson, P.B.; Susong, D.D.; Wold, S.R.; Heilweil, V.M.; Baskin, R.L.

    1994-01-01

    The principal basin-fill aquifers in Cache Valley, the lower Bear River area, and along the Wasatch Front provide ground water to about 84 percent of the population of Utah. Recharge areas for the principal aquifers were mapped to provide information needed for the implementation of ground-water quality regulations and a State ground-water protection plan. Water samples were collected and analyzed to provide baseline water- quality data for the principal aquifers. The study area includes five subareas: Cache Valley, the 1ower Bear River area, the East Shore area, Salt Lake Valley, and Utah and Goshen Valleys. Basin-fill deposits in each subarea are lithologically heterogeneous. The principal aquifers in most of the subareas are composed of multiple discontinuous unconfined and confined aquifers and confining layers. Primary recharge areas generally are located along adjacent mountain fronts and extend into the valleys at the mouths of major drainages. Secondary recharge areas are located on the benches and uplands of the valleys. Ground-water flow generally is from these recharge areas to the discharge areas in the topographically low parts of the valleys. In general, dissolved-solids concentrations in ground water range from less than 500 mg/L to about 3,000 mg/L. Of 73 water samples, 5 contained inorganic constituents in concentrations that exceeded State of Utah water-quality standards. None of the samples contained concentrations of organic compounds that exceeded State standards.

  4. Potentiometric surface of the Floridan Aquifer, Southwest Florida Water Management District and adjacent areas, September 1978

    USGS Publications Warehouse

    Wolansky, R.M.; Mills, L.R.; Woodham, W.M.; Laughlin, C.P.

    1978-01-01

    A September 1978 potentiometric-surface map depicts the annual high water-level period of the Floridan aquifer in the Southwest Florida Management District. Potentiometric levels increased 10 to 25 feet between May 1978 and September 1978, in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk and Manatee Counties. These areas are widely affected by pumping for irrigation and have the greatest fluctuations in water-levels between the low and high water-level periods. Water-level rises in coastal, northern and southern areas of the Water Management District ranged from 0 to 10 feet. (Woodard-USGS)

  5. A Revision of the Stylasteridae (Cnidaria, Hydrozoa, Filifera) from Alaska and Adjacent Waters

    PubMed Central

    Cairns, Stephen D.; Lindner, Alberto

    2011-01-01

    Abstract The stylasterid fauna of Alaska is revised, consisting of the description or redescription and illustration of 21 species, one additional subspecies, and a geographically adjacent species: Stylaster venustus. Six new species and one new subspecies are described: Errinopora fisheri, Errinopora undulata, Errinopora disticha, Errinopora dichotoma, Stylaster crassiseptum, Stylaster repandus, and Stylaster parageus columbiensis. Four subspecies are raised to species rank: Stylaster leptostylus, Stylaster trachystomus, Stylaster parageus, and Distichopora japonica, and five species and one subspecies were synonymized. A dichotomous key to the Errinopora species and tabular keys to the Errinopora and Alaskan Stylaster species are provided. The focus of the study was on the stylasterids from Alaska, primarily those from the diverse Aleutian Islands, but also including records from British Columbia. This is the first revisionary work on this fauna since the seminal report by Fisher in 1938. PMID:22303109

  6. Sediment load from major rivers into Puget Sound and its adjacent waters

    USGS Publications Warehouse

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Grossman, Eric E.; Curran, Christopher A.; Gendaszek, Andrew S.; Dinicola, Richard S.

    2011-01-01

    Each year, an estimated load of 6.5 million tons of sediment is transported by rivers to Puget Sound and its adjacent waters—enough to cover a football field to the height of six Space Needles. This estimated load is highly uncertain because sediment studies and available sediment-load data are sparse and historically limited to specific rivers, short time frames, and a narrow range of hydrologic conditions. The largest sediment loads are carried by rivers with glaciated volcanoes in their headwaters. Research suggests 70 percent of the sediment load delivered to Puget Sound is from rivers and 30 percent is from shoreline erosion, but the magnitude of specific contributions is highly uncertain. Most of a river's sediment load occurs during floods.

  7. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base... Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. (a) The danger zones—(1) Prohibited area. Waters of Santa Rosa Sound and Gulf of...

  8. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Armament Center...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gulf of Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla. 334.730... Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla. (a) The areas—(1) The... CFR part 329, including the waters of Santa Rosa Sound and Gulf of Mexico within a circle one...

  9. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Armament Center...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Gulf of Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla. 334.730... Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla. (a) The areas—(1) The... CFR part 329, including the waters of Santa Rosa Sound and Gulf of Mexico within a circle one...

  10. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base... Sound and Gulf of Mexico adjacent to Santa Rosa Island, Air Force Proving Ground Command, Eglin Air Force Base, Fla. (a) The danger zones—(1) Prohibited area. Waters of Santa Rosa Sound and Gulf of...

  11. Quantum behaviour of water molecule in gemstone: terahertz fingerprints

    NASA Astrophysics Data System (ADS)

    Zhukova, Elena S.; Gorshunov, Boris P.; Torgashev, Victor I.; Lebedev, Vladimir V.; Shakurov, Gil'man S.; Kremer, Reinhard K.; Pestrjakov, Efim V.; Thomas, Victor G.; Fursenko, Dimitry A.; Dressel, Martin

    2014-03-01

    We have shown that a weak interaction of a lone H2O molecule with the ''walls'' of nano-sized crystalline cage of gemstone (beryl) results in emergence of a rich set of molecular vibrational states. By analogy with translational and librational bands in liquid water and ice corresponding absorption bands are explained as due to translational (T) and librational (L) movements of the H2O molecule which is hydrogen bonded to the cage walls. In beryl crystal lattice, however, the six-fold symmetry of the cage brings about additional effect of splitting of the T and L bands into fine structure due to tunnelling within the six-well potential relief. The presented results will be of use for analysis of more complicated systems with confined water molecules like H2O chains in carbon nano-tubes, molecular clusters in e.g. zeolites, clays, silica gels and other natural or synthetic frameworks, as well as for interfacial water in biological systems.

  12. [Assessment of ecosystem energy flow and carrying capacity of swimming crab enhancement in the Yellow River estuary and adjacent waters].

    PubMed

    Lin Qun; Wang, Jun; Li, Zhong-yi; Wu, Qiang

    2015-11-01

    Stock enhancement is increasingly proved to be an important measure of the fishery resources conservation, and the assessment of carrying capacity is the decisive factor of the effects of stock enhancement. Meanwhile, the variations in the energy flow patterns of releasing species and ecosystem were the basis for assessing carrying capacity of stock enhancement. So, in the present study, based on the survey data collected from the Yellow River estuary and adjacent waters during 2012-2013, three Ecopath mass-balance models were established in June, August and October, and the variations in ecosystem energy flow in these months were analyzed, as well as the assessment of carrying capacity of swimming crab enhancement. The energy flow mainly concentrated on trophic level I-III in Yellow River estuary and adjacent waters, and was relatively less on trophic level IV or above. The system flow proportion on the trophic level I was the highest in June, and was the lowest in August. The highest system flow proportion on the trophic level II was found in August, and the lowest in June. The relative and absolute energy flow of swimming crab mainly concentrated on the trophic level III, and the mean trophic level of swimming crab among June, August and October were 3.28. Surplus production was relatively higher in Yellow River estuary and adjacent waters, the highest value was found in June, and the lowest value in August. The ratios of total primary production/total respiration (TPP/TR) were 5.49, 2.47 and 3.01 in June, August and October, respectively, and the ratios of total primary production/total biomass (TPP/B) were 47.61, 33.30 and 29.78, respectively. Combined with the low Finn' s cycling index (FCI: 0.03-0.06), these changes indicated that the Yellow River estuary ecosystem was at an early development stage with higher vulnerability. The energy conversion efficiency of system was from 7.3% to 11.5%, the mean trophic levels of the catch were 3.23, 2.97 and 2.82 in

  13. [Assessment of ecosystem energy flow and carrying capacity of swimming crab enhancement in the Yellow River estuary and adjacent waters].

    PubMed

    Lin Qun; Wang, Jun; Li, Zhong-yi; Wu, Qiang

    2015-11-01

    Stock enhancement is increasingly proved to be an important measure of the fishery resources conservation, and the assessment of carrying capacity is the decisive factor of the effects of stock enhancement. Meanwhile, the variations in the energy flow patterns of releasing species and ecosystem were the basis for assessing carrying capacity of stock enhancement. So, in the present study, based on the survey data collected from the Yellow River estuary and adjacent waters during 2012-2013, three Ecopath mass-balance models were established in June, August and October, and the variations in ecosystem energy flow in these months were analyzed, as well as the assessment of carrying capacity of swimming crab enhancement. The energy flow mainly concentrated on trophic level I-III in Yellow River estuary and adjacent waters, and was relatively less on trophic level IV or above. The system flow proportion on the trophic level I was the highest in June, and was the lowest in August. The highest system flow proportion on the trophic level II was found in August, and the lowest in June. The relative and absolute energy flow of swimming crab mainly concentrated on the trophic level III, and the mean trophic level of swimming crab among June, August and October were 3.28. Surplus production was relatively higher in Yellow River estuary and adjacent waters, the highest value was found in June, and the lowest value in August. The ratios of total primary production/total respiration (TPP/TR) were 5.49, 2.47 and 3.01 in June, August and October, respectively, and the ratios of total primary production/total biomass (TPP/B) were 47.61, 33.30 and 29.78, respectively. Combined with the low Finn' s cycling index (FCI: 0.03-0.06), these changes indicated that the Yellow River estuary ecosystem was at an early development stage with higher vulnerability. The energy conversion efficiency of system was from 7.3% to 11.5%, the mean trophic levels of the catch were 3.23, 2.97 and 2.82 in

  14. Molecular dynamics simulations of trehalose as a 'dynamic reducer' for solvent water molecules in the hydration shell.

    PubMed

    Choi, Youngjin; Cho, Kum Won; Jeong, Karpjoo; Jung, Seunho

    2006-06-12

    Systematic computational work for a series of 13 disaccharides was performed to provide an atomic-level insight of unique biochemical role of the alpha,alpha-(1-->1)-linked glucopyranoside dimer over the other glycosidically linked sugars. Superior osmotic and cryoprotective abilities of trehalose were explained on the basis of conformational and hydration characteristics of the trehalose molecule. Analyses of the hydration number and radial distribution function of solvent water molecules showed that there was very little hydration adjacent to the glycosidic oxygen of trehalose and that the dynamic conformation of trehalose was less flexible than any of the other sugars due to this anisotropic hydration. The remarkable conformational rigidity that allowed trehalose to act as a sugar template was required for stable interactions with hydrogen-bonded water molecules. Trehalose made an average of 2.8 long-lived hydrogen bonds per each MD step, which was much larger than the average of 2.1 for the other sugars. The stable hydrogen-bond network is derived from the formation of long-lived water bridges at the expense of decreasing the dynamics of the water molecules. Evidence for this dynamic reduction of water by trehalose was also established based on each of the lowest translational diffusion coefficients and the lowest intermolecular coulombic energy of the water molecules around trehalose. Overall results indicate that trehalose functions as a 'dynamic reducer' for solvent water molecules based on its anisotropic hydration and conformational rigidity, suggesting that macroscopic solvent properties could be modulated by changes in the type of glycosidic linkages in sugar molecules.

  15. Ground-water resources in the tri-state region adjacent to the Lower Delaware River

    USGS Publications Warehouse

    Barksdale, Henry C.; Greenman, David W.; Lang, Solomon Max; Hilton, George Stockbridge; Outlaw, Donald E.

    1958-01-01

    The maximum beneficial utilization of the ground-water resources cannot be accomplished in haphazard fashion. It must be planned and controlled on the basis of sound, current information about the hydrology of the various aquifers. Continued and, in some areas, intensified investigations of the ground-water resources of the region should form the basis for such planning and control.

  16. Emergency ground-water supplies in the Seattle-Tacoma urban complex and adjacent areas, Washington

    USGS Publications Warehouse

    Foxworthy, B.L.

    1972-01-01

    Urban areas that are supplied from surface-water sources are especially vulnerable to major disruption of their water supplies. Such disruption could result from natural disasters such as earthquakes, floods, or landslides or from such other causes as dam failures fallout of radioactive material or other toxic substance from the atmosphere or other toxic substances from the atmosphere or direct introduction (either accidental or deliberate) of any substance that would render the water unfit for use. Prolonged disruption of public water supplies not only causes personal hardships but also endangers health and safety unless suitable alternative emergency supplies can be provided. The degree of hardship and danger generally increases in direct relation to the population density. Ground water because it occurs beneath protective soil and rock materials is less subject to sudden major contamination than are surface-water bodies. For this reason and also because of its widespread availability in the Puget Sound region ground water is especially desireable as a sources of emergency supplies for drinking or other uses requiring water of good quality. In much of the area existing wells would be suitable as safe sources of emergency supplies.

  17. Water resources of the Tulalip Indian Reservation and adjacent area, Snohomish County, Washington, 2001-03

    USGS Publications Warehouse

    Frans, Lonna M.; Kresch, David L.

    2004-01-01

    This study was undertaken to improve the understanding of water resources of the Tulalip Plateau area, with a primary emphasis on the Tulalip Indian Reservation, in order to address concerns of the Tulalip Tribes about the effects of current and future development, both on and off the Reservation, on their water resources. The drinking-water supply for the Reservation comes almost entirely from ground water, so increasing population will continue to put more pressure on this resource. The study evaluated the current state of ground- and surface-water resources and comparing results with those of studies in the 1970s and 1980s. The study included updating descriptions of the hydrologic framework and ground-water system, determining if discharge and base flow in streams and lake stage have changed significantly since the 1970s, and preparing new estimates of the water budget. The hydrogeologic framework was described using data collected from 255 wells, including their location and lithology. Data collected for the Reservation water budget included continuous and periodic streamflow measurements, micrometeorological data including daily precipitation, temperature, and solar radiation, water-use data, and atmospheric chloride deposition collected under both wet- and dry-deposition conditions to estimate ground-water recharge. The Tulalip Plateau is composed of unconsolidated sediments of Quaternary age that are mostly of glacial origin. There are three aquifers and two confining units as well as two smaller units that are only localized in extent. The Vashon recessional outwash (Qvr) is the smallest of the three aquifers and lies in the Marysville Trough on the eastern part of the study area. The primary aquifer in terms of use is the Vashon advance outwash (Qva). The Vashon till (Qvt) and the transitional beds (Qtb) act as confining units. The Vashon till overlies Qva and the transitional beds underlie Qva and separate it from the undifferentiated sediments (Qu

  18. The spontaneous synchronized dance of pairs of water molecules

    SciTech Connect

    Roncaratti, Luiz F.; Cappelletti, David Pirani, Fernando

    2014-03-28

    Molecular beam scattering experiments have been performed to study the effect of long-range anisotropic forces on the collision dynamics of two small polar molecules. The main focus of this paper is on water, but also ammonia and hydrogen sulphide molecules have been investigated, and some results will be anticipated. The intermolecular distances mainly probed are of the order of 1 nm and therefore much larger than the molecular dimensions. In particular, we have found that the natural electric field gradient, generated by different spatial orientations of the permanent electric dipoles, is able to promote the transformation of free rotations into coupled pendular states, letting the molecular partners involved in the collision complex swinging to and fro around the field direction. This long-ranged concerted motion manifested itself as large increases of the magnitude of the total integral cross section. The experimental findings and the theoretical treatment developed to shed light on the details of the process suggest that the transformation from free rotations to pendular states depends on the rotational level of both molecules, on the impact parameter, on the relative collision velocity, on the dipole moment product and occurs in the time scale of picoseconds. The consequences of this intriguing phenomenon may be important for the interpretation and, in perspective, for the control of elementary chemical and biological processes, given by polar molecules, ions, and free radicals, occurring in several environments under various conditions.

  19. The spontaneous synchronized dance of pairs of water molecules

    NASA Astrophysics Data System (ADS)

    Roncaratti, Luiz F.; Cappelletti, David; Pirani, Fernando

    2014-03-01

    Molecular beam scattering experiments have been performed to study the effect of long-range anisotropic forces on the collision dynamics of two small polar molecules. The main focus of this paper is on water, but also ammonia and hydrogen sulphide molecules have been investigated, and some results will be anticipated. The intermolecular distances mainly probed are of the order of 1 nm and therefore much larger than the molecular dimensions. In particular, we have found that the natural electric field gradient, generated by different spatial orientations of the permanent electric dipoles, is able to promote the transformation of free rotations into coupled pendular states, letting the molecular partners involved in the collision complex swinging to and fro around the field direction. This long-ranged concerted motion manifested itself as large increases of the magnitude of the total integral cross section. The experimental findings and the theoretical treatment developed to shed light on the details of the process suggest that the transformation from free rotations to pendular states depends on the rotational level of both molecules, on the impact parameter, on the relative collision velocity, on the dipole moment product and occurs in the time scale of picoseconds. The consequences of this intriguing phenomenon may be important for the interpretation and, in perspective, for the control of elementary chemical and biological processes, given by polar molecules, ions, and free radicals, occurring in several environments under various conditions.

  20. Sticking of Molecules on Nonporous Amorphous Water Ice

    NASA Astrophysics Data System (ADS)

    He, Jiao; Acharyya, Kinsuk; Vidali, Gianfranco

    2016-05-01

    Accurate modeling of physical and chemical processes in the interstellar medium (ISM) requires detailed knowledge of how atoms and molecules adsorb on dust grains. However, the sticking coefficient, a number between 0 and 1 that measures the first step in the interaction of a particle with a surface, is usually assumed in simulations of ISM environments to be either 0.5 or 1. Here we report on the determination of the sticking coefficient of H2, D2, N2, O2, CO, CH4, and CO2 on nonporous amorphous solid water. The sticking coefficient was measured over a wide range of surface temperatures using a highly collimated molecular beam. We showed that the standard way of measuring the sticking coefficient—the King-Wells method—leads to the underestimation of trapping events in which there is incomplete energy accommodation of the molecule on the surface. Surface scattering experiments with the use of a pulsed molecular beam are used instead to measure the sticking coefficient. Based on the values of the measured sticking coefficient, we suggest a useful general formula of the sticking coefficient as a function of grain temperature and molecule-surface binding energy. We use this formula in a simulation of ISM gas-grain chemistry to find the effect of sticking on the abundance of key molecules both on grains and in the gas phase.

  1. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States.

    PubMed

    Battaglin, W A; Smalling, K L; Anderson, C; Calhoun, D; Chestnut, T; Muths, E

    2016-10-01

    To investigate interactions among disease, pesticides, water quality, and adjacent land cover, we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for >90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-km buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature. Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to survive.

  2. Potential interactions among disease, pesticides, water quality and adjacent land cover in amphibian habitats in the United States.

    PubMed

    Battaglin, W A; Smalling, K L; Anderson, C; Calhoun, D; Chestnut, T; Muths, E

    2016-10-01

    To investigate interactions among disease, pesticides, water quality, and adjacent land cover, we collected samples of water, sediment, and frog tissue from 21 sites in 7 States in the United States (US) representing a variety of amphibian habitats. All samples were analyzed for >90 pesticides and pesticide degradates, and water and frogs were screened for the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) using molecular methods. Pesticides and pesticide degradates were detected frequently in frog breeding habitats (water and sediment) as well as in frog tissue. Fungicides occurred more frequently in water, sediment, and tissue than was expected based upon their limited use relative to herbicides or insecticides. Pesticide occurrence in water or sediment was not a strong predictor of occurrence in tissue, but pesticide concentrations in tissue were correlated positively to agricultural and urban land, and negatively to forested land in 2-km buffers around the sites. Bd was detected in water at 45% of sites, and on 34% of swabbed frogs. Bd detections in water were not associated with differences in land use around sites, but sites with detections had colder water. Frogs that tested positive for Bd were associated with sites that had higher total fungicide concentrations in water and sediment, but lower insecticide concentrations in sediments relative to frogs that were Bd negative. Bd concentrations on frog swabs were positively correlated to dissolved organic carbon, and total nitrogen and phosphorus, and negatively correlated to pH and water temperature. Data were collected from a range of locations and amphibian habitats and represent some of the first field-collected information aimed at understanding the interactions between pesticides, land use, and amphibian disease. These interactions are of particular interest to conservation efforts as many amphibians live in altered habitats and may depend on wetlands embedded in these landscapes to survive

  3. Potentiometric surface of Floridan Aquifer, Southwest Florida Water Management District and adjacent areas, May 1979

    USGS Publications Warehouse

    Wolansky, R.M.; Mills, L.R.; Woodham, W.M.; Laughlin, C.P.

    1979-01-01

    A May 1979 potentiometric-surface map depicts the annual low water-level period. Potentiometric levels declined 4 to 21 feet between September 1978 and May 1979, in the citrus and farming sections of southern Hillsborough, northern Hardee, southwestern Polk, northwestern DeSoto, and Manatee Counties. Water levels in these areas are widely affected by pumping for irrigation and have the greatest range in fluctuations. Water-level declines ranged from 0 to 6 feet in coastal, northern, and southern areas of the Water Management District. Generally potentiometric levels were higher than previous May levels due to heavy rains in April and May. In parts of Hillsborough, Pasco, and Pinellas Counties, May 1979 potentiometric levels were 18 feet higher than those of September 1978. (USGS)

  4. Paleoenvironments and hydrocarbon potential of Upper Jurassic Norphlet Formation of southwestern Alabama and adjacent coastal water area

    SciTech Connect

    Mancini, E.A.; Mink, R.M.; Bearden, B.L.

    1984-09-01

    Upper Jurassic Norphlet sediments in southwestern Alabama and the adjacent coastal water area accumulated under arid climatic conditions. The Appalachian Mountains of the eastern United States extended into southwestern Alabama, providing a barrier for air and water circulation during Norphlet deposition. Norphlet paleogeography was dominated by a broad desert plain rimmed to the north and east by the Appalachians and to the south by a developing shallow sea. Initiation of Norphlet sedimentation was a result of erosion of the southern Appalachians. Norphlet conglomerates were deposited in coalescing alluvial fans in proximity to an Appalachian source. The conglomeratic sandstones grade downdip into red-bed lithofacies that accumulated in distal portions of alluvial fan and wadi systems. Quartzose sandstones (Denkman Member) were deposited as dune and interdune sediments on a broad desert plain. The source of the sand was the updip and adjacent alluvial fan, plain, and wadi deposits. A marine transgression was initiated late in Denkman deposition, resulting in the reworking of previously deposited Norphlet sediments. Norphlet hydrocarbon potential in southwestern and offshore Alabama is excellent with four oil and gas fields already established. Petroleum traps discovered to date are primarily structural traps involving salt anticlines, faulted salt anticlines, and extensional fault traps associated with salt movement. Reservoir rocks consist of quartzose sandstones, which are principally eolian in origin. Smackover algal carbonate mudstones were probably the source for the Norphlet hydrocarbons.

  5. An ecological study of the KSC Turning Basin and adjacent waters

    NASA Technical Reports Server (NTRS)

    Nevin, T. A.; Lasater, J. A.; Clark, K. B.; Kalajian, E. H.

    1974-01-01

    The conditions existing in the waters and bottoms of the Turning Basin, the borrow pit near Pad 39A, and the Barge Canal connecting them were investigated to determine the ecological significance of the chemical, biological, and microbiological parameters. The water quality, biological, microbiological findings are discussed. It is recommended that future dredging activities be limited in depth, and that fill materials should not be removed down to the clay strata.

  6. Two regimes of cloud water over the Okhotsk Sea and the adjacent regions around Japan in summer

    NASA Astrophysics Data System (ADS)

    Shimada, Teruhisa; Iwasaki, Toshiki

    2015-03-01

    This study derived two regimes of cloud water with a dipole structure between over the Okhotsk Sea and over the adjacent regions around Japan in summer by using a climate index for cool summer. When the Okhotsk high develops, clouds are confined to a thin low-level layer owing to the enhanced stability in the lower atmosphere induced by the downward motion associated with the Okhotsk high. The resulting optically thin clouds allow more downward shortwave radiation to reach the surface of the Okhotsk Sea. In contrast, the low-level easterly winds blowing toward the Japanese Islands and the Eurasian continent enhance cloud formation. This is due to the convergence of the water vapor flux induced by the easterly winds associated with the Okhotsk high and the southerly winds associated with the Baiu frontal zone and the Pacific high and due to the orographic uplift of air mass. When a cyclonic circulation occurs over the Okhotsk Sea, a thick layer of low-level clouds extending close to the sea surface is formed. The convergence of the water vapor flux over the subarctic sea surface temperature (SST) frontal zone and the cool SST promote fog formation, and upward motion associated with the cyclonic circulation supports the high cloud water content from the lower to the upper troposphere. The resulting optically thick clouds reduce the downward shortwave radiation at the surface of the Okhotsk Sea. Over the regions around Japan, water vapor flux diverges owing to dry air originating from land and cloud water decreases.

  7. Trace Element Mobility in Water and Sediments in a Hyporheic Zone Adjacent to an Abandoned Uranium Mine

    NASA Astrophysics Data System (ADS)

    Roldan, C.; Blake, J.; Cerrato, J.; Ali, A.; Cabaniss, S.

    2015-12-01

    The legacy of abandoned uranium mines lead to community concerns about environmental and health effects. This study focuses on a cross section of the Rio Paguate, adjacent to the Jackpile Mine on the Laguna Reservation, west-central New Mexico. Often, the geochemical interactions that occur in the hyporheic zone adjacent to these abandoned mines play an important role in trace element mobility. In order to understand the mobility of uranium (U), arsenic (As), and vanadium (V) in the Rio Paguate; surface water, hyporheic zone water, and core sediment samples were analyzed using inductively coupled plasma mass spectroscopy (ICP-MS). All water samples were filtered through 0.45μm and 0.22μm filters and analyzed. The results show that there is no major difference in concentrations of U (378-496μg/L), As (0.872-6.78μg/L), and V (2.94-5.01μg/L) between the filter sizes or with depth (8cm and 15cm) in the hyporheic zone. The unfiltered hyporheic zone water samples were analyzed after acid digestion to assess the particulate fraction. These results show a decrease in U concentration (153-202μg/L) and an increase in As (33.2-219μg/L) and V (169-1130μg/L) concentrations compared to the filtered waters. Surface water concentrations of U(171-184μg/L) are lower than the filtered hyporheic zone waters while As(1.32-8.68μg/L) and V(1.75-2.38μg/L) are significantly lower than the hyporheic zone waters and particulates combined. Concentrations of As in the sediment core samples are higher in the first 15cm below the water-sediment interface (14.3-3.82μg/L) and decrease (0.382μg/L) with depth. Uranium concentrations are consistent (0.047-0.050μg/L) at all depths. The over all data suggest that U is mobile in the dissolved phase and both As and V are mobile in the particular phase as they travel through the system.

  8. Corals persisting in naturally turbid waters adjacent to a pristine catchment in Solomon Islands.

    PubMed

    Albert, Simon; Fisher, Paul L; Gibbes, Badin; Grinham, Alistair

    2015-05-15

    Few water quality measurements exist from pristine environments, with fewer reported studies of coastal water quality from Solomon Islands. Water quality benchmarks for the Solomons have relied on data from other geographic regions, often from quite different higher latitude developed nations, with large land masses. We present the first data of inshore turbidity and sedimentation rate for a pristine catchment on Isabel Island. Surveys recorded relatively high coral cover. The lowest cover was recorded at 22.7% (Jejevo) despite this site having a mean turbidity (continuous monitoring) of 32 NTU. However, a similar site (Jihro) was significantly less turbid (2.1 mean NTU) over the same period. This difference in turbidity is likely due to natural features of the Jihro River promoting sedimentation before reaching coastal sites. We provide an important baseline for Solomon Island inshore systems, whilst demonstrating the importance of continuous monitoring to capture episodic high turbidity events. PMID:25752531

  9. Effects of Withdrawals on Ground-Water Levels in Southern Maryland and the Adjacent Eastern Shore, 1980-2005

    USGS Publications Warehouse

    Soeder, Daniel J.; Raffensperger, Jeff P.; Nardi, Mark R.

    2007-01-01

    Ground water is the primary source of water supply in most areas of Maryland?s Atlantic Coastal Plain, including Southern Maryland. The counties in this area are experiencing some of the most rapid growth and development in the State, resulting in an increased demand for ground-water production. The cooperative, basic water-data program of the U.S. Geological Survey and the Maryland Geological Survey has collected long-term observations of ground-water levels in Southern Maryland and parts of the Eastern Shore for many decades. Additional water-level observations were made by both agencies beginning in the 1970s, under the Power Plant Research Program of the Maryland Department of Natural Resources. These long-term water levels commonly show significant declines over several decades, which are attributed to ground-water withdrawals. Ground-water-level trends since 1980 in major Coastal Plain aquifers such as the Piney Point-Nanjemoy, Aquia, Magothy, upper Patapsco, lower Patapsco, and Patuxent were compared to water use and withdrawal data. Potentiometric surface maps show that most of the declines in ground-water levels can be directly related to effects from major pumping centers. There is also evidence that deep drawdowns in some pumped aquifers may be causing declines in adjacent, unpumped aquifers. Water-level hydrographs of many wells in Southern Maryland show linear declines in levels year after year, instead of the gradual leveling-off that would be expected as the aquifers equilibrate with pumping. A continual increase in the volumes of water being withdrawn from the aquifers is one explanation for why they are not reaching equilibrium. Although reported ground-water production in Southern Maryland has increased somewhat over the past several decades, the reported increases are often not large enough to account for the observed water-level declines. Numerical modeling simulations indicate that a steady, annual increase in the number of small wells could

  10. Electric Dipole Moments of Nanosolvated Acid Molecules in Water Clusters

    NASA Astrophysics Data System (ADS)

    Guggemos, Nicholas; Slavíček, Petr; Kresin, Vitaly V.

    2015-01-01

    The electric dipole moments of (H2O)nDCl (n =3 - 9 ) clusters have been measured by the beam-deflection method. Reflecting the (dynamical) charge distribution within the system, the dipole moment contributes information about the microscopic structure of nanoscale solvation. The addition of a DCl molecule to a water cluster results in a strongly enhanced susceptibility. There is evidence for a noticeable rise in the dipole moment occurring at n ≈5 - 6 . This size is consistent with predictions for the onset of ionic dissociation. Additionally, a molecular-dynamics model suggests that even with a nominally bound impurity an enhanced dipole moment can arise due to the thermal and zero-point motion of the proton and the water molecules. The experimental measurements and the calculations draw attention to the importance of fluctuations in defining the polarity of water-based nanoclusters and generally to the essential role played by motional effects in determining the response of fluxional nanoscale systems under realistic conditions.

  11. High-harmonic generation in aligned water molecules

    NASA Astrophysics Data System (ADS)

    Wang, Song; Devin, Julien; Hoffmann, Matthias; Cryan, James; Kaldun, Andreas; Bucksbaum, Philip

    2016-05-01

    In recent years, the use of high harmonic generation (HHG) in aligned molecular vapors has become a powerful tool to study ultrafast dynamics of electronic and nuclear wave packets. In our new experimental setup, we are able to orient H2 O and D2 O molecules using a single cycle terahertz (THz) pulse. Aligning water is especially interesting as the highest occupied molecular orbital (HOMO) of water contains a node in the xz plane of the molecular frame, allowing us to perform HHG from second highest occupied molecular orbital (HOMO-1) only, by setting the polarization of the fundamental laser along the z-axis of the aligned water molecules. We are particularly interested in the HOMO-1 state, as there is fast motion of the H-O-H angle leading to sub-wavelength dynamics. On this poster we present our all-optical alignment setup where HHG and single-cycle THz generation take place in high-vacuum, where measurements with arbitrary polarization angles between the two are possible. In addition, we discuss the effects of the molecular orientation on HHG, including symmetry breaking that could produce even harmonics and isotope effects between H2 O and D2 O due to different vibrational energies. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  12. 33 CFR 110.168 - Hampton Roads, Virginia and adjacent waters (Datum: NAD 83).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Bay, Thimble Shoals Channel Anchorages. (i) Anchorage B . The waters bounded by a line connecting the... explosives, as defined in 49 CFR 173.50. Dangerous cargo means “certain dangerous cargo” as defined in § 160... Bridge Tunnel or Monitor-Merrimac Bridge Tunnel (MMBT) must be capable of getting underway within...

  13. 33 CFR 110.168 - Hampton Roads, Virginia and adjacent waters (Datum: NAD 83).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Bay, Thimble Shoals Channel Anchorages. (i) Anchorage B . The waters bounded by a line connecting the... explosives, as defined in 49 CFR 173.50. Dangerous cargo means “certain dangerous cargo” as defined in § 160... Bridge Tunnel or Monitor-Merrimac Bridge Tunnel (MMBT) must be capable of getting underway within...

  14. 33 CFR 110.168 - Hampton Roads, Virginia and adjacent waters (Datum: NAD 83).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Bay, Thimble Shoals Channel Anchorages. (i) Anchorage B . The waters bounded by a line connecting the... explosives, as defined in 49 CFR 173.50. Dangerous cargo means “certain dangerous cargo” as defined in § 160... Bridge Tunnel or Monitor-Merrimac Bridge Tunnel (MMBT) must be capable of getting underway within...

  15. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... or buoyant work vests in compliance with U.S. Coast Guard requirements in 46 CFR 160.047, 160.052, and 160.053. Life preservers in compliance with U.S. Coast Guard requirements in 46 CFR 160.055 shall... conditions, including weather, water speed, and terrain, merit additional protection, the skiff or boat...

  16. 49 CFR 214.107 - Working over or adjacent to water.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... or buoyant work vests in compliance with U.S. Coast Guard requirements in 46 CFR 160.047, 160.052, and 160.053. Life preservers in compliance with U.S. Coast Guard requirements in 46 CFR 160.055 shall... conditions, including weather, water speed, and terrain, merit additional protection, the skiff or boat...

  17. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA... Ocean in vicinity of No Mans Land—(1) The area. The waters surrounding No Mans Land within an area... 41°15′30″, longitude 70°51′30″; thence northeasterly to latitude 41°17′30″, longitude...

  18. 33 CFR 334.70 - Buzzards Bay, and adjacent waters, Mass.; danger zones for naval operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA... Ocean in vicinity of No Mans Land—(1) The area. The waters surrounding No Mans Land within an area... 41°15′30″, longitude 70°51′30″; thence northeasterly to latitude 41°17′30″, longitude...

  19. Ground-water data in Orange County and adjacent counties, Texas, 1985-90

    USGS Publications Warehouse

    Kasmarek, Mark C.

    1999-01-01

    The lower unit of the Chicot aquifer is a major source of freshwater for Orange County, Texas. In 1989, the average rate of ground-water withdrawal from the lower unit of the Chicot aquifer in Orange County for municipal and industrial use was 13.8 million gallons per day, a substantial decrease from the historical high of 23.1 million gallons per day in 1972. The average withdrawal for industrial use decreased substantially from 14.4 million gallons per day during 1963?84 to 6.9 million gallons per day during 1985?89. The average withdrawal for municipal use during 1985?89 was 6.8 million gallons per day, similar to the average withdrawal of 5.8 million gallons per day during 1963?84. Water levels in wells in most of the study area rose during 1985?90. The largest rise in water levels was more than 10 feet in parts of Orange and Pinehurst, north of site B (one of three areas of ground-water withdrawal for industrial use), while the largest decline in water levels was a localized decline of more than 60 feet at site C in south-central Orange County (also an area of withdrawal for industrial use). Chemical analyses of ground-water samples from the lower Chicot aquifer during 1985?90 indicate that the aquifer contained mostly freshwater (dissolved solids concentrations less than 1,000 milligrams per liter). Dissolved chloride concentrations remained relatively constant in most wells during 1985?90 but could vary greatly between wells within short distances. Saline-water encroachment continued to occur during 1985?89 but at a slower rate than in the 1970s and early 1980s. On the basis of chemical data collected during 1985?89, a relation was determined between specific conductance and dissolved chloride concentration that can be used to estimate dissolved chloride by multiplying the specific conductance by different factors for low or high conductances.

  20. From single molecules to water networks: Dynamics of water adsorption on Pt(111)

    NASA Astrophysics Data System (ADS)

    Naderian, Maryam; Groß, Axel

    2016-09-01

    The adsorption dynamics of water on Pt(111) was studied using ab initio molecular dynamics simulations based on density functional theory calculations including dispersion corrections. Sticking probabilities were derived as a function of initial kinetic energy and water coverage. In addition, the energy distribution upon adsorption was monitored in order to analyze the energy dissipation process. We find that on the water pre-covered surface the sticking probability is enhanced because of the attractive water-water interaction and the additional effective energy dissipation channels to the adsorbed water molecules. The water structures forming directly after the adsorption on the pre-covered surfaces do not necessarily correspond to energy minimum structures.

  1. Hydrogeochemistry and stable isotopes of ground and surface waters from two adjacent closed basins, Atacama Desert, northern Chile

    USGS Publications Warehouse

    Alpers, C.N.; Whittemore, D.O.

    1990-01-01

    The geochemistry and stable isotopes of groundwaters, surface waters, and precipitation indicate different sources of some dissolved constituents, but a common source of recharge and other constituents in two adjacent closed basins in the Atacama Desert region of northern Chile (24??15???-24??45???S). Waters from artesian wells, trenches, and ephemeral streams in the Punta Negra Basin are characterized by concentrations of Na>Ca>Mg and Cl ???SO4, with TDS Mg ??? Ca and SO4 > Cl, with TDS also Mg ??? Ca and SO4 > Cl, but with TDS up to 40 g/l. The deep mine waters have pH between 3.2 and 3.9, and are high in dissolved CO2 (??13 C = -4.8%PDB), indicating probable interaction with oxidizing sulfides. The deep mine waters have ??18O values of ???-1.8%.compared with values < -3.5??? for other Hamburgo Basin waters; thus the mine waters may represent a mixture of meteoric waters with deeper "metamorphic" waters, which had interacted with rocks and exchanged oxygen isotopes at elevated temperatures. Alternatively, the deep mine waters may represent fossil meteoric waters which evolved isotopically along an evaporative trend starting from values quite depleted in ??18O and ??Dd relative to either precipitation or shallow groundwaters. High I/Br ratios in the Hamburgo Basin waters and La Escondida mine waters are consistent with regionally high I in surficial deposits in the Atacama Desert region and may represent dissolution of a wind-blown evaporite component. Rain and snow collected during June 1984, indicate systematic ??18O and ??D fractionation with increasing elevation between 3150 and 4180 m a.s.l. (-0.21??.??18O and -1.7??.??D per 100 m). Excluding the deep mine waters from La Escondida, the waters from the Hamburgo and Punta Negra Basins have similar ??D and ??18O values and together show a distinct evaporative trend (??D = 5.0 ??18O - 20.2). Snowmelt from the central Andes Cordillera to the east is the most likely source of recharge to both basins. Some of the

  2. Ionization of water molecules by fast charged projectiles

    SciTech Connect

    Dubois, A.; Carniato, S.; Fainstein, P. D.; Hansen, J. P.

    2011-07-15

    Single-ionization cross sections of water molecules colliding with fast protons are calculated from lowest-order perturbation theory by taking all electrons and molecular orientations consistently into account. Explicit analytical formulas based on the peaking approximation are obtained for differential ionization cross sections with the partial contribution from the various electron orbitals accounted for. The results, which are in very good agreement with total and partial cross sections at high electron and projectile energies, display a strong variation on molecular orientation and molecular orbitals.

  3. Interannual to Decadal Variability of Atlantic Water in the Nordic and Adjacent Seas

    NASA Technical Reports Server (NTRS)

    Carton, James A.; Chepurin, Gennady A.; Reagan, James; Haekkinen, Sirpa

    2011-01-01

    Warm salty Atlantic Water is the main source water for the Arctic Ocean and thus plays an important role in the mass and heat budget of the Arctic. This study explores interannual to decadal variability of Atlantic Water properties in the Nordic Seas area where Atlantic Water enters the Arctic, based on a reexamination of the historical hydrographic record for the years 1950-2009, obtained by combining multiple data sets. The analysis shows a succession of four multi-year warm events where temperature anomalies at 100m depth exceed 0.4oC, and three cold events. Three of the four warm events lasted 3-4 years, while the fourth began in 1999 and persists at least through 2009. This most recent warm event is anomalous in other ways as well, being the strongest, having the broadest geographic extent, being surface-intensified, and occurring under exceptional meteorological conditions. Three of the four warm events were accompanied by elevated salinities consistent with enhanced ocean transport into the Nordic Seas, with the exception of the event spanning July 1989-July 1993. Of the three cold events, two lasted for four years, while the third lasted for nearly 14 years. Two of the three cold events are associated with reduced salinities, but the cold event of the 1960s had elevated salinities. The relationship of these events to meteorological conditions is examined. The results show that local surface heat flux variations act in some cases to reinforce the anomalies, but are too weak to be the sole cause.

  4. Interannual to decadal variability of Atlantic Water in the Nordic and adjacent seas

    NASA Astrophysics Data System (ADS)

    Carton, James A.; Chepurin, Gennady A.; Reagan, James; HäKkinen, Sirpa

    2011-11-01

    Warm salty Atlantic Water is the main source water for the Arctic Ocean and thus plays an important role in the mass and heat budget of the Arctic. This study explores interannual to decadal variability of Atlantic Water properties in the Nordic Seas area where Atlantic Water enters the Arctic, based on a reexamination of the historical hydrographic record for the years 1950-2009, obtained by combining multiple data sets. The analysis shows a succession of four multiyear warm events where temperature anomalies at 100 m depth exceed 0.4°C, and three cold events. Three of the four warm events lasted 3-4 years, while the fourth began in 1999 and persists at least through 2009. This most recent warm event is anomalous in other ways as well, being the strongest, having the broadest geographic extent, being surface-intensified, and occurring under exceptional meteorological conditions. Three of the four warm events were accompanied by elevated salinities consistent with enhanced ocean transport into the Nordic Seas, with the exception of the event spanning July 1989-July 1993. Of the three cold events, two lasted for 4 years, while the third lasted for nearly 14 years. Two of the three cold events are associated with reduced salinities, but the cold event of the 1960s had elevated salinities. The relationship of these events to meteorological conditions is examined. The results show that local surface heat flux variations act in some cases to reinforce the anomalies, but are too weak to be the sole cause.

  5. Selenium in waters in and adjacent to the Kendrick Project, Natrona County, Wyoming

    USGS Publications Warehouse

    Crist, Marvin A.

    1975-01-01

    Selenium in concentrations exceeding the maximum limit, 0.01 milligrams per liter or 10 micrograms per liter, recommended by the U.S. Public Health Service in 'Drinking-Water Standards, 1962,' Public Health Pub. 956, is present in waters in areas near Casper, Wyo. Some streams containing selenium flow into the North Platte River upstream from several municipalities that obtain water from the river and the alluvium along the river. The area of this investigation includes about 725 square miles in Natrona County in central Wyoming. Study effort was most intensive within the area bounded by the North Platte River, Casper Creek, and Casper Canal, the approximate boundaries of the Kendrick irrigation project. Geologic formations in the area contain selenium that may have been derived from deposits of seleniferous material or from volcanic emanations brought down by rain. Formations older than Cretaceous age were not considered as important sources of selenium in waters of the area, because no irrigation water is applied to areas underlain by these rocks. The selenium concentration in 82 samples of Cretaceous rocks ranged from less than 10 to 4,200 ?g/kg (micrograms per kilogram of sample); no correlation was found between selenium concentration and the depth at which the sample was collected. Of four samples of Tertiary rocks analyzed, three contained no selenium and one had a selenium concentration of 40 ?g/kg. The selenium concentration in 93 samples of Quaternary rocks ranged from less than 10 to 52.0 ?g/kg, and the highest selenium concentration was generally found at depths less than 4 feet. No geologic formation has consistently high concentrations of selenium, but high concentrations were found at points throughout the study area. Probably the rocks in any locality could be the source of selenium in the water in the surrounding vicinity. The selenium concentration in water from some wells fluctuates widely. It is concluded that the selenium concentrations in the

  6. Spatial and seasonal patterns of ichthyoplankton assemblages in the Haizhou Bay and its adjacent waters of China

    NASA Astrophysics Data System (ADS)

    Li, Zengguang; Ye, Zhenjiang; Wan, Rong

    2015-12-01

    Surveys were conducted in five voyages in Haizhou Bay and its adjacent coastal area from March to December 2011 during full moon spring tides. The ichthyoplankton assemblages and the environmental factors that affect their spatial and seasonal patterns were determined. Totally 35 and 12 fish egg and larvae taxa were identified, respectively. Over the past several decades, the egg and larval species composition has significantly changed in Haizhou Bay and its adjacent waters, most likely corresponding with the alteration of fishery resources, which are strongly affected by anthropogenic activities and climate change. The Bray-Curtis dissimilarity index identified four assemblages: near-shore bay assemblage, middle bay assemblage and two closely related assemblages (near-shore/middle bay assemblage and middle/edge of bay assemblage). The primary species of each assemblage principally reflected the spawning strategies of adult fish. The near-shore bay assemblage generally occurred in near-shore bay, with depths measuring <20 m, and the middle bay assemblage generally occurred in the middle of bay, with depths measuring 20 to 40 m. Spatial and seasonal variations in ichthyoplankton in each assemblage were determined by interactions between biological behavioral traits and oceanographic features, particularly the variation of local conditions within the constraint of a general reproductive strategy. The results of Spearman's rank correlation analysis indicated that both fish egg and larval abundance were positively correlated with depth, which is critical to the oceanographic features in Haizhou Bay.

  7. Assessment of the fresh-and brackish-water resources underlying Dunedin and adjacent areas on northern Pinellas County, Florida

    USGS Publications Warehouse

    Knochenmus, L.A.; Swenson, E.S.

    1996-01-01

    The city of Dunedin is enhancing their potable ground-water resources through desalination of brackish ground water. An assessment of the fresh- and brackish-water resources in the Upper Floridan aquifer was needed to estimate the changes that may result from brackish-water development. The complex hydrogeologic framework underlying Dunedin and adjacent areas of northern Pinellas County is conceptualized as a multilayered sequence of permeable zones and confining and semiconfining units. The permeable zones contain vertically spaced, discrete, water-producing zones with differing water quality. Water levels, water-level responses, and water quality are highly variable among the different permeable zones. The Upper Floridan aquifer is best characterized as a local flow system in most of northern Pinellas County. Pumping from the Dunedin well field is probably not influencing water levels in the aquifer outside Dunedin, but has resulted in localized depressions in the potentiometric surface surrounding production-well clusters. The complex geologic layering combined with the effects of production-well distribution probably contribute to the spatial and temporal variability in chloride concentrations in the Dunedin well field. Chloride concentrations in ground water underlying the Dunedin well field vary both vertically and laterally. In general, water-quality rapidly changes below depths of 400 feet below sea level. Additionally, randomly distributed water-producing zones with higher chloride concentrations may occur at shallow, discrete intervals above 400 feet. A relation between chloride concentration and distance from St. Joseph Sound is not apparent; however, a possible relation exists between chloride concentration and production-well density. Chloride-concentration data from production wells show a consistently increasing pattern that has accelerated since the late 1980's. Chloride-concentration data from 15 observation wells show increasing trends for 6 wells

  8. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    USGS Publications Warehouse

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  9. Comparison of fish communities in a clean-water stream and an adjacent polluted stream

    SciTech Connect

    Reash, R.J.; Berra, T.M. )

    1987-10-01

    Fish populations were studied in two parallel tributaries of the Mohican River, Ohio: Clear Fork, relatively undisturbed; and Rocky Fork, which receives industrial discharges and sewage effluent. Water quality in Rocky Fork was significantly worse than the control stream with respect to heavy metals (Cr, Cu, Fe, Ni, and Zn) and ammonia concentrations. Fish species richness and diversity increased downstream in Clear Fork but decreased downstream in Rocky Fork. Pollution-intolerant species were present in the headwaters of Rocky Fork and at all sites of Clear Fork. Fish community similarity of fish communities between corresponding headwater sites was significantly greater than similarity of corresponding downstream reaches, using polluted and unpolluted sites for comparison. Both headwater sites were dominated numerically by generalized invertebrate-feeding fish. At downstream sites in Clear Fork benthic insectivores became dominant in Rocky Fork, generalized invertebrate-feeding fish were present. Fish communities at polluted sites had comparatively lower variability of both trophic structure rank and relative abundance. The smaller populations of fish in these sites were dominated by a few pollution-tolerant species.

  10. Quantum Tunneling of Water in Beryl: A New State of the Water Molecule

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani; Prisk, Timothy R.; Mamontov, Eugene; Podlesnyak, Andrey; Ehlers, George; Seel, Andrew G.; Wesolowski, David J.; Anovitz, Lawrence M.

    2016-04-01

    Using neutron scattering and ab initio simulations, we document the discovery of a new "quantum tunneling state" of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. In addition, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.

  11. Geochemistry of waters from springs, wells, and snowpack on and adjacent to Medicine Lake volcano, northern California

    USGS Publications Warehouse

    Mariner, R.H.; Lowenstern, Jacob B.

    1999-01-01

    Chemical analyses of waters from cold springs and wells of the Medicine Lake volcano and surrounding region indicate small chloride anomalies that may be due to water-rock interaction or limited mixing with high-temperature geothermal fluids. The Fall River Springs (FRS) with a combined discharge of approximately 37 m3/s, show a negative correlation between chloride (Cl) and temperature, implying that the Cl is not derived from a high-temperature geothermal fluid. The high discharge from the FRS indicates recharge over a large geographic region. Chemical and isotopic variations in the FRS show that they contain a mixture of three distinct waters. The isotopic composition of recharge on and adjacent to the volcano are estimated from the isotopic composition of snow and precipitation amounts adjusted for evapotranspiration. Enough recharge of the required isotopic composition (-100 parts per thousand ??D) is available from a combination of the Medicine Lake caldera, the Fall River basin and the Long Bell basin to support the slightly warmer components of the FRS (32 m3/s). The cold-dilute part of the FRS (approximately 5 m3/s) may recharge in the Bear Creek basin or at lower elevations in the Fall River basin.

  12. Interaction between bound water molecules and local protein structures: A statistical analysis of the hydrogen bond structures around bound water molecules.

    PubMed

    Hong, Seungpyo; Kim, Dongsup

    2016-01-01

    Water molecules play an important role in protein folding and protein interactions through their structural association with proteins. Examples of such structural association can be found in protein crystal structures, and can often explain protein functionality in the context of structure. We herein report the systematic analysis of the local structures of proteins interacting with water molecules, and the characterization of their geometric features. We first examined the interaction of water molecules with a large local interaction environment by comparing the preference of water molecules in three regions, namely, the protein-protein interaction (PPI) interfaces, the crystal contact (CC) interfaces, and the non-interfacial regions. High preference of water molecules to the PPI and CC interfaces was found. In addition, the bound water on the PPI interface was more favorably associated with the complex interaction structure, implying that such water-mediated structures may participate in the shaping of the PPI interface. The pairwise water-mediated interaction was then investigated, and the water-mediated residue-residue interaction potential was derived. Subsequently, the types of polar atoms surrounding the water molecules were analyzed, and the preference of the hydrogen bond acceptor was observed. Furthermore, the geometries of the structures interacting with water were analyzed, and it was found that the major structure on the protein surface exhibited planar geometry rather than tetrahedral geometry. Several previously undiscovered characteristics of water-protein interactions were unfolded in this study, and are expected to lead to a better understanding of protein structure and function.

  13. Evaluation of ground-water contribution to streamflow in coastal Georgia and adjacent parts of Florida and South Carolina

    USGS Publications Warehouse

    Priest, Sherlyn

    2004-01-01

    Stream-aquifer relations in the coastal area of Georgia and adjacent parts of Florida and South Carolina were evaluated as part of the Coastal Georgia Sound Science Initiative, the Georgia Environmental Protection Division's strategy to protect the Upper Floridan aquifer from saltwater intrusion. Ground-water discharge to streams was estimated using three methods: hydrograph separation, drought-streamflow measurements, and linear-regression analysis of streamflow duration. Ground-water discharge during the drought years of 1954, 1981, and 2000 was analyzed for minimum ground-water contribution to streamflow. Hydrograph separation was used to estimate baseflow at eight streamflow gaging stations during the 31-year period 1971?2001. Six additional streamflow gaging stations were evaluated using linear-regression analysis of flow duration to determine mean annual baseflow. The study area centers on three major river systems ? the Salkehatchie?Savannah?Ogeechee, Altamaha?Satilla?St Marys, and Suwannee ? that interact with the underlying ground-water system to varying degrees, largely based on the degree of incision of the river into the aquifer and on the topography. Results presented in this report are being used to calibrate a regional ground-water flow model to evaluate ground-water flow and stream-aquifer relations of the Upper Floridan aquifer. Hydrograph separation indicated decreased baseflow to streams during drought periods as water levels declined in the aquifer. Average mean annual baseflow ranged from 39 to 74 percent of mean annual streamflow, with a mean contribution of 58 percent for the period 1971?2001. In a wet year (1997), baseflow composed from 33 to 70 percent of mean annual streamflow. Drought-streamflow analysis estimated baseflow contribution to streamflow ranged from 0 to 24 percent of mean annual streamflow. Linear-regression analysis of streamflow duration estimated the Q35 (flow that is equaled or exceeded 35 percent of the time) as the most

  14. 33 CFR 334.730 - Waters of Santa Rosa Sound and Gulf of Mexico adjacent to Santa Rosa Island, Armament Center...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR part 329, including the waters of Santa Rosa Sound and Gulf of Mexico within a circle one nautical... defined at 33 CFR part 329, including the waters of Santa Rosa Sound and Gulf of Mexico, surrounding the... Gulf of Mexico adjacent to Santa Rosa Island, Armament Center, Eglin Air Force Base, Fla.......

  15. Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China.

    PubMed

    Liu, Lusan; Zhou, Juan; Zheng, Binghui; Cai, Wenqian; Lin, Kuixuan; Tang, Jingliang

    2013-07-15

    Between 1972 and 2009, evidence of red tide outbreaks in the Yangtze River Estuary and adjacent waters was collected. A geographic information system (GIS) was used to analyze the temporal and spatial distribution of these red tides, and it was subsequently used to map the distribution of these events. The results show that the following findings. (1) There were three red tide-prone areas: outside the Yangtze River Estuary and the eastern coast of Sheshan, the Huaniaoshan-Shengshan-Gouqi waters, and the Zhoushan areas and eastern coast of Zhujiajian. In these areas, red tides occurred 174 total times, 25 of which were larger than 1000 km(2) in areal extent. After 2000, the frequency of red tide outbreaks increased significantly. (2) During the months of May and June, the red tide occurrence in these areas was 51% and 20%, respectively. (3) Outbreaks of the dominant red tide plankton species Prorocentrum dong-haiense, Skeletonema costatum, Prorocentrum dantatum, and Noctiluca scientillan occurred 38, 35, 15, and 10 times, respectively, during the study interval.

  16. Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China.

    PubMed

    Liu, Lusan; Zhou, Juan; Zheng, Binghui; Cai, Wenqian; Lin, Kuixuan; Tang, Jingliang

    2013-07-15

    Between 1972 and 2009, evidence of red tide outbreaks in the Yangtze River Estuary and adjacent waters was collected. A geographic information system (GIS) was used to analyze the temporal and spatial distribution of these red tides, and it was subsequently used to map the distribution of these events. The results show that the following findings. (1) There were three red tide-prone areas: outside the Yangtze River Estuary and the eastern coast of Sheshan, the Huaniaoshan-Shengshan-Gouqi waters, and the Zhoushan areas and eastern coast of Zhujiajian. In these areas, red tides occurred 174 total times, 25 of which were larger than 1000 km(2) in areal extent. After 2000, the frequency of red tide outbreaks increased significantly. (2) During the months of May and June, the red tide occurrence in these areas was 51% and 20%, respectively. (3) Outbreaks of the dominant red tide plankton species Prorocentrum dong-haiense, Skeletonema costatum, Prorocentrum dantatum, and Noctiluca scientillan occurred 38, 35, 15, and 10 times, respectively, during the study interval. PMID:23628547

  17. A review of Pseudo-nitzschia, with special reference to the Skagerrak, North Atlantic, and adjacent waters

    NASA Astrophysics Data System (ADS)

    Hasle, G. R.; Lange, C. B.; Syvertsen, E. E.

    1996-06-01

    The Pseudo-nitzschia flora of the Skagerrak, North Atlantic, and adjacent waters, comprising P. pungens, P. multiseries, P. seriata, P. fraudulenta, P. heimii, P. delicatissima, and P. pseudodelicatissima, has been examined. Except for P. australis, all Pseudo-nitzschia species shown to produce the toxin domoic acid are present in the area although an outbreak of amnesic shellfish poisoning has never been reported. For comparison of morphological and taxonomic characters, Pseudo-nitzschia seriata f. obtusa, P. australis, P. subfraudulenta, P. subpacifica, P. lineola, P. inflatula, and P. cuspidata have been included in this investigation. Fine details of band structure and poroid occlusions, previously ignored or unresolved, have proven to add to the morphological distinction between P. pungens and P. multiseries, P. seriata and P. fraudulenta, P. seriata and P. australis, and P. delicatissima and P. pseudodelicatissima. Additional information on the structure of the proximal mantle compared to that of the valve face has revealed similarities in most of the species but differences between P. pungens and P. multiseries. The species seasonal and long-term distributional patterns during the sampling period (October 1978 through September 1993) in the Skagerrak area are outlined. The greatest abundances of P. seriata, a cold-water species most likely restricted to the northern hemisphere, occurred in the spring, and those of the presumably cosmopolitan diatoms P. pungens, P. multiseries and P. pseudodelicatissima, in the autumn. Whereas P. multiseries seems to have decreased in abundance in the 1990s, P. pseudodelicatissima has apparently increased.

  18. Geomorphic data collected within and adjacent to Nebraska Public Power District's Cottonwood Ranch Property, Platte River, Nebraska, Water Year 2001

    USGS Publications Warehouse

    Kinzel, Paul; Parker, Randolph; Nelson, Johnathan; Burman, R.; Heckman, Aashley

    2003-01-01

    River-channel topographic surveys were conducted and bed-material samples were collected along transects across the Platte River during water year 2001 (October 1, 2000 to September 30, 2001). A total of 57 transect lines or cross sections were established within three study reaches located along the middle channel of the Platte River in a 2,650-acre parcel of land owned by the Nebraska Public Power District (NPPD), hereinafter referred to as the Cottonwood Ranch Property. Five additional cross sections were established downstream of the Cottonwood Ranch Property across the entire width of the Platte River as a component of a proposed future general monitoring program. A development and enhancement plan is proposed by NPPD on the Cottonwood Ranch Property to satisfy their Federal Energy Regulatory Commission (FERC) relicensing guidelines. The goal of the plan is to improve habitat along this reach for endangered species. The United States Geological Survey (USGS) designed a monitoring and research program to study and detect what effects, if any, these channel management actions have on channel morphology and sediment transport within and adjacent to the Cottonwood Ranch Property. This report presents the data-collection methods and summarizes the geomorphic data collected in support of the monitoring program for water year 2001.

  19. Geochemistry of ground water in alluvial basins of Arizona and adjacent parts of Nevada, New Mexico, and California

    USGS Publications Warehouse

    Robertson, Frederick N.

    1991-01-01

    Chemical and isotope analyses of ground water from 28 basins in the Basin and Range physiographic province of Arizona and parts of adjacent States were used to evaluate ground-water quality, determine processes that control ground-water chemistry, provide independent insight into the hydrologic flow system, and develop information transfer. The area is characterized by north- to northwest-trending mountains separated by alluvial basins that form a regional topography of alternating mountains and valleys. On the basis of ground-water divides or zones of minimal basin interconnection, the area was divided into 72 basins, each representing an individual aquifer system. These systems are joined in a dendritic pattern and collectively constitute the major water resource in the region. Geochemical models were developed to identify reactions and mass transfer responsible for the chemical evolution of the ground water. On the basis of mineralogy and chemistry of the two major rock associations of the area, a felsic model and a mafic model were developed to illustrate geologic, climatic, and physiographic effects on ground-water chemistry. Two distinct hydrochemical processes were identified: (1) reactions of meteoric water with minerals and gases in recharge areas and (2) reactions of ground water as it moves down the hydraulic gradient. Reactions occurring in recharge and downgradient areas can be described by a 13-component system. Major reactions are the dissolution and precipitation of calcite and dolomite, the weathering of feldspars and ferromagnesian minerals, the formation of montmorillonite, iron oxyhydroxides, and probably silica, and, in some basins, ion exchange. The geochemical modeling demonstrated that relatively few phases are required to derive the ground-water chemistry; 14 phases-12 mineral and 2 gas-consistently account for the chemical evolution in each basin. The final phases were selected through analysis of X-ray diffraction and fluorescence data

  20. Shallow ground-water quality adjacent to burley tobacco fields in northeastern Tennessee and southwestern Virginia, spring 1997

    USGS Publications Warehouse

    Johnson, G.C.; Connell, J.F.

    2001-01-01

    In 1994, the U.S. Geological Survey began an assessment of the upper Tennessee River Basin as part of the National Water-Quality Assessment (NAWQA) Program. A ground-water land-use study conducted in 1996 focused on areas with burley tobacco production in northeastern Tennessee and southwestern Virginia. Land-use studies are designed to focus on specific land uses and to examine natural and human factors that affect the quality of shallow ground water underlying specific types of land use. Thirty wells were drilled in shallow regolith adjacent to and downgradient of tobacco fields in the Valley and Ridge Physiographic Province of the upper Tennessee River Basin. Ground-water samples were collected between June 4 and July 9, 1997, to coincide with the application of the majority of pesticides and fertilizers used in tobacco production. Ground-water samples were analyzed for nutrients, major ions, 79 pesticides, 7 pesticide degradation products, 86 volatile organic compounds, and dissolved organic carbon. Nutrient concentrations were lower than the levels found in similar NAWQA studies across the United States during 1993-95. Five of 30 upper Tennessee River Basin wells (16.7 percent) had nitrate levels exceeding 10 mg/L while 19 percent of agricultural land-use wells nationally and 7.9 percent in the Southeast had nitrate concentrations exceeding 10 mg/L. Median nutrient concentrations were equal to or less than national median concentrations. All pesticide concentrations in the basin were less than established drinking water standards, and pesticides were detected less frequently than average for other NAWQA study units. Atrazine was detected at 8 of 30 (27 percent) of the wells, and deethylatrazine (an atrazine degradation product) was found in 9 (30 percent) of the wells. Metalaxyl was found in 17 percent of the wells, and prometon, flumetralin, dimethomorph, 2,4,5-T, 2,4-D, dichlorprop, and silvex were detected once each (3 percent). Volatile organic compounds

  1. Characterization of surface-water resources in the Great Basin National Park area and their susceptibility to ground-water withdrawals in adjacent valleys, White Pine County, Nevada

    USGS Publications Warehouse

    Elliott, Peggy E.; Beck, David A.; Prudic, David E.

    2006-01-01

    Eight drainage basins and one spring within the Great Basin National Park area were monitored continually from October 2002 to September 2004 to quantify stream discharge and assess the natural variability in flow. Mean annual discharge for the stream drainages ranged from 0 cubic feet per second at Decathon Canyon to 9.08 cubic feet per second at Baker Creek. Seasonal variability in streamflow generally was uniform throughout the network. Minimum and maximum mean monthly discharges occurred in February and June, respectively, at all but one of the perennial streamflow sites. Synoptic-discharge, specific-conductance, and water- and air-temperature measurements were collected during the spring, summer, and autumn of 2003 along selected reaches of Strawberry, Shingle, Lehman, Baker, and Snake Creeks, and Big Wash to determine areas where surface-water resources would be susceptible to ground-water withdrawals in adjacent valleys. Comparison of streamflow and water-property data to the geology along each stream indicated areas where surface-water resources likely or potentially would be susceptible to ground-water withdrawals. These areas consist of reaches where streams (1) are in contact with permeable rocks or sediments, or (2) receive water from either spring discharge or ground-water inflow.

  2. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    SciTech Connect

    Chempath, Shaji; Pratt, Lawrence R

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  3. From single molecules to water networks: Dynamics of water adsorption on Pt(111).

    PubMed

    Naderian, Maryam; Groß, Axel

    2016-09-01

    The adsorption dynamics of water on Pt(111) was studied using ab initio molecular dynamics simulations based on density functional theory calculations including dispersion corrections. Sticking probabilities were derived as a function of initial kinetic energy and water coverage. In addition, the energy distribution upon adsorption was monitored in order to analyze the energy dissipation process. We find that on the water pre-covered surface the sticking probability is enhanced because of the attractive water-water interaction and the additional effective energy dissipation channels to the adsorbed water molecules. The water structures forming directly after the adsorption on the pre-covered surfaces do not necessarily correspond to energy minimum structures. PMID:27609006

  4. Approximate altitude of water levels in wells completed in the Chicot and Evangeline aquifers in Fort Bend County and adjacent areas, Texas,January-February 1991

    USGS Publications Warehouse

    Locke, Glenn L.

    1993-01-01

    This report was prepared in cooperation with the Fort Bend Subsidence District, and presents maps of the approximate altitude of water levels in wells completed in the Chicot and Evangeline aquifers (figs. -2) during January-February 1991 in Fort Bend County and adjacent areas, Texas.  These approximate altitudes of water levels give an approximate depth to potable ground water within Fort Bend County and can be used to estimate depth for installing well pumps.

  5. Dynamical behavior of one-dimensional water molecule chains in zeolites: Nanosecond time-scale molecular dynamics simulations of bikitaite

    NASA Astrophysics Data System (ADS)

    Demontis, Pierfranco; Stara, Giovanna; Suffritti, Giuseppe B.

    2004-05-01

    Nanosecond scale molecular dynamics simulations of the behavior of the one-dimensional water molecule chains adsorbed in the parallel nanochannels of bikitaite, a rare lithium containing zeolite, were performed at different temperatures and for the fully and partially hydrated material. New empirical potential functions have been developed for representing lithium-water interactions. The structure and the vibrational spectrum of bikitaite were in agreement both with experimental data and Car-Parrinello molecular dynamics results. Classical molecular dynamics simulations were extended to the nanosecond time scale in order to study the flip motion of water molecules around the hydrogen bonds connecting adjacent molecules in the chains, which has been observed by NMR experiments, and the dehydration mechanism at high temperature. Computed relaxation times of the flip motion follow the Arrhenius behavior found experimentally, but the activation energy of the simulated system is slightly underestimated. Based on the results of the simulations, it may be suggested that the dehydration proceeds by a defect-driven stepwise diffusion. The diffusive mechanism appears as a single-file motion: the molecules never pass one another, even at temperatures as high as about 1000 K, nor can they switch between different channels. However, the mean square displacement (MSD) of the molecules, computed with respect to the center of mass of the simulated system, shows an irregular trend from which the single-file diffusion cannot be clearly evidenced. If the MSDs are evaluated with respect to the center of mass of the molecules hosted in each channel, the expected dependence on the square root of time finally appears.

  6. Taxonomic review of Hadromerida (Porifera, Demospongiae) from British Columbia, Canada, and adjacent waters, with the description of nine new species.

    PubMed

    Austin, William C; Ott, Bruce S; Reiswig, Henry M; Romagosa, Paula; Mcdaniel, Neil G

    2014-06-26

    The history of sponge collecting and systematics in British Columbia is reviewed over the period 1878 to 1966. Recent additions and changes are provided in an on-line species list: www.mareco/org/kml/projects/NEsponges.asp. Hadromerids are the focus of this paper as eight of 19 species in British Columbia are considered new. An additional new species is described from southern California to clarify the status of Tethya californiana in BC. An update is timely for hadromerids in BC as there is new material and renewed interest, while existing descriptions are often inadequate. We describe new species and provide additions to previous descriptions for sponges of the order Hadromerida (Porifera: Demospongiae) in the cold temperate NE Pacific off British Columbia and adjacent waters. We propose one range extension and one new species in Clionaidae; two range extensions and five new species in Polymastiidae; one range extension, two name changes and two new species in Suberitidae; and one new species in Tethyidae. New species include Pione gibraltarensis n.sp., Polymastia piscesae n. sp., Radiella endeavourensis n. sp., Sphaerotylus raphidophora n. sp., Sphaerotylus verenae n. sp., Weberella perlucida n. sp., Prosuberites saanichensis n. sp., Suberites lambei n. sp., and Tethya vacua n. sp..

  7. The influence of mariculture on mercury distribution in sediments and fish around Hong Kong and adjacent mainland China waters.

    PubMed

    Liang, Peng; Shao, Ding-Ding; Wu, Sheng-Chun; Shi, Jian-Bo; Sun, Xiao-lin; Wu, Fu-Yong; Lo, S C L; Wang, Wen-Xiong; Wong, Ming H

    2011-02-01

    To study the influence of mariculture on mercury (Hg) speciation and distribution in sediments and cultured fish around Hong Kong and adjacent mainland China waters, sediment samples were collected from six mariculture sites and the corresponding reference sites, 200-300 m away from the mariculture sites. Mariculture activities increased total mercury, organic matter, carbon, nitrogen and sulfur concentrations in the surface sediments underneath mariculture sites, possibly due to the accumulation of unconsumed fish feed and fish excretion. However, methylmercury (MeHg) concentrations and the ratio of MeHg to THg (% MeHg) in sediments underneath mariculture sites were lower than the corresponding reference sites. The % MeHg in sediments was negatively correlated (r = -0.579, p < 0.05) with organic matter (OM) content among all sites, indicating that OM may have inhibited Hg methylation in surface sediments. Three mariculture fish species were collected from each mariculture site, including red snapper (Lutjanus campechanus), orange-spotted grouper (Epinephelus coioides) and snubnose pompano (Trachinotus blochii). The average MeHg concentration in fish muscle was 75 μg kg⁻¹ (wet weight), and the dietary intake of MeHg through fish consumption for Hong Kong residents was 0.37 μg kg⁻¹ week⁻¹, which was lower than the corresponding WHO limits (500 μg kg⁻¹ and 1.6 μg kg⁻¹ week⁻¹).

  8. Water temperature, streamflow, and ground-water elevation in and adjacent to the Russian river between Hopland and Guerneville, California from 1998-2002

    USGS Publications Warehouse

    Cox, Marisa H.; Hatch, Christine

    2003-01-01

    Temperature, water level elevation, stage height, and river discharge data for this report were collected in and adjacent to the Russian River from Hopland to Guerneville, CA over a four-year period from 1998 to 2002 to establish baselines for long-term water quality, water supply and habitat. Data files presented in this report were collected by the USGS and the Sonoma County Water Agency's Engineering Resource and Planning, and Natural Resource Divisions. Temperature data were collected in single-channel submersible microloggers or temperature data were collected simultaneously with water-elevation data in dual-channel down-hole data loggers. Stream stage and streamflow data were collected at USGS stream gaging stations located near Hopland, Healdsburg, and Guerneville over a 130 km reach of the Russian River. During the period of record stream flow ranged from 3 to 1458 m3/s. Stream temperature ranged from 8 to 29 oC while groundwater temperature ranged from 10 to 38 oC. Stream stage varied 5 m seasonly, while ground-water level varied 19 m over the same time scale.

  9. Modelling impact of northerly wind-generated waves on sediments resuspensions in the Dover Strait and adjacent waters

    NASA Astrophysics Data System (ADS)

    Guillou, Nicolas; Chapalain, Georges

    2011-11-01

    A numerical approach based on the coupling of the wave propagation module SWAN (Simulating WAves Nearshore) with the three-dimensional circulation module COHERENS (COupled Hydrodynamical-Ecological model for RegioNal and Shelf seas) is developed to simulate the impact of a northerly wind-generated storm on the resuspensions of heterogeneous sediments in the Dover Strait and adjacent waters. Suspended sediment transport is computed for the four grain-size classes of silts (d1=25μm), very fine sands (d2=75μm), fine sands (d3=150μm) and medium sands (d4=350μm). Predicted times histories of wave variables and the near-bottom mean current and total suspended sediment concentration (SSC) are compared with field data collected off Merlimont Beach, in the south of Boulogne-sur-Mer. Mappings of the growth of the near-bottom total SSC during the storm are produced. The total SSC increases by four at the Merlimont site. The multiplying factor reaches 40 along the exposed northern French coastline revealing the Flandres bed features. This increase is limited to five in deep waters of the southern Dover Strait with local strengthening on the top of the Vergoyer and the Bassure de Baas sandbanks. The storm modifies the granulometric composition of suspended materials by increasing the contribution of medium sands. Main modifications appear at the south-western entrance of the Dover Strait and in the exposed southern North Sea. The near-bottom resuspensions remain elsewhere dominated by the local resuspensions of fine sands added to remote resuspended silts advected by currents.

  10. [Effects of macro-jellyfish abundance dynamics on fishery resource structure in the Yangtze River estuary and its adjacent waters].

    PubMed

    Shan, Xiu-Juan; Zhuang, Zhi-Meng; Jin, Xian-Shi; Dai, Fang-Qun

    2011-12-01

    Based on the bottom trawl survey data in May 2007 and May and June 2008, this paper analyzed the effects of the abundance dynamics of macro-jellyfish on the species composition, distribution, and abundance of fishery resource in the Yangtze River estuary and its adjacent waters. From May 2007 to June 2008, the average catch per haul and the top catch per haul of macro-jellyfish increased, up to 222.2 kg x h(-1) and 1800 kg x h(-1) in June 2008, respectively. The macro-jellyfish were mainly distributed in the areas around 50 m isobath, and not beyond 100 m isobath where was the joint front of the coastal waters of East China Sea, Yangtze River runoff, and Taiwan Warm Current. The main distribution area of macro-jellyfish in June migrated northward, as compared with that in May, and the highest catches of macro-jellyfish in May 2007 and May 2008 were found in the same sampling station (122.5 degrees E, 28.5 degrees N). In the sampling stations with higher abundance of macro-jellyfish, the fishery abundance was low, and the fishery species also changed greatly, mainly composed by small-sized species (Trachurus japonicus, Harpadon nehereus, and Acropoma japonicum) and pelagic species (Psenopsis anomala, Octopus variabilis) and Trichiurus japonicus, and P. anomala accounted for 23.7% of the total catch in June 2008. Larimichthys polyactis also occupied higher proportion of the total catch in sampling stations with higher macro-jellyfish abundance, but the demersal species Lophius litulon was not found, and a few crustaceans were collected. This study showed that macro-jellyfish had definite negative effects on the fishery community structure and abundance in the Yangtze River estuary fishery ecosystem, and further, changed the energy flow patterns of the ecosystem through cascading trophic interactions. Therefore, macro-jellyfish was strongly suggested to be an independent ecological group when the corresponding fishery management measures were considered.

  11. Disorder of Hydrofluorocarbon Molecules Entrapped in the Water Cages of Structure I Clathrate Hydrate.

    PubMed

    Takeya, Satoshi; Udachin, Konstantin A; Moudrakovski, Igor L; Ohmura, Ryo; Ripmeester, John A

    2016-05-23

    Water versus fluorine: Clathrate hydrates encaging hydrofluorocarbons as guests show both isotropic and anisotropic distributions within host water cages, depending on the number of fluorine atoms in the guest molecule; this is caused by changes in intermolecular interactions to host water molecules in the hydrates. PMID:27105807

  12. Relationships of surface water, pore water, and sediment chemistry in wetlands adjacent to Great Salt Lake, Utah, and potential impacts on plant community health.

    PubMed

    Carling, Gregory T; Richards, David C; Hoven, Heidi; Miller, Theron; Fernandez, Diego P; Rudd, Abigail; Pazmino, Eddy; Johnson, William P

    2013-01-15

    We collected surface water, pore water, and sediment samples at five impounded wetlands adjacent to Great Salt Lake, Utah, during 2010 and 2011 in order to characterize pond chemistry and to compare chemistry with plant community health metrics. We also collected pore water and sediment samples along multiple transects at two sheet flow wetlands during 2011 to investigate a potential link between wetland chemistry and encroachment of invasive emergent plant species. Samples were analyzed for a suite of trace and major elements, nutrients, and relevant field parameters. The extensive sampling campaign provides a broad assessment of Great Salt Lake wetlands, including a range of conditions from reference to highly degraded. We used nonmetric multidimensional scaling (NMS) to characterize the wetland sites based on the multiple parameters measured in surface water, pore water, and sediment. NMS results showed that the impounded wetlands fall along a gradient of high salinity/low trace element concentrations to low salinity/high trace element concentrations, whereas the sheet flow wetlands have both elevated salinity and high trace element concentrations, reflecting either different sources of element loading or different biogeochemical/hydrological processes operating within the wetlands. Other geochemical distinctions were found among the wetlands, including Fe-reducing conditions at two sites and sulfate-reducing conditions at the remaining sites. Plant community health metrics in the impounded wetlands showed negative correlations with specific metal concentrations in sediment (THg, Cu, Zn, Cd, Sb, Pb, Ag, Tl), and negative correlations with nutrient concentrations in surface water (nitrite, phosphate, nitrate). In the sheet flow wetlands, invasive plant species were inversely correlated with pore water salinity. These results indicate that sediment and pore water chemistry play an important role in wetland plant community health, and that monitoring and

  13. Quantum Tunneling of Water in Beryl. A New State of the Water Molecule

    DOE PAGES

    Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani; Prisk, Timothy R.; Mamontov, Eugene; Podlesnyak, Andrey; Ehlers, George; Seel, Andrew G.; Wesolowski, David J.; Anovitz, Lawrence M.

    2016-04-22

    When using neutron scattering and ab initio simulations, we document the discovery of a new “quantum tunneling state” of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. Additionally, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.

  14. Electron capture by bare ions on water molecules

    NASA Astrophysics Data System (ADS)

    Rivarola, Roberto; Montenegro, Pablo; Monti, Juan; Fojón, Omar

    2016-05-01

    Single electron capture from water molecules by impact of bare ions is theoretically investigated at intermediate and high collision energies. This reaction is of fundamental importance to determine the deposition of energy in biological matter irradiated with ion beams (hadrontherapy), dominating other ionizing processes of the target at low-intermediate impact velocities and giving principal contributions to the energetic region where electronic stopping power maximizes. The dynamics of the interaction between the aggregates is described within the one active-electron continuum distorted wave-eikonal initial state theory. The orbitals of the target in the ground state are represented using the approximate self-consistent complete neglect of differential orbitals (SC-CNDO) model. The contribution of different molecular orbitals on the partial cross sections to selected n-principal quantum number projectile states is discriminated as well as the collaboration of these n-states on total cross sections. The latter ones are dominated by capture to n=1 states at high enough energies decreasing their contribution as n increases.

  15. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    USGS Publications Warehouse

    Spruill, Timothy B.

    1987-01-01

    A study was conducted to evaluate water-resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the hydrogeology of the area. Lead and zinc mining has caused discontinuities and perforations in the confining shale west of the Pennsylvanian-Mississippian geologic contact (referred to as the western area), which have created artificial ground-water recharge and discharge areas. Recharge to the shallow aquifer (rocks of Mississippian age) through collapses, shafts, and drill holes in the shale has caused the formation of a ground-water 'mound' in the vicinity of the Picher Field in Kansas and Oklahoma. Discharge of mine-contaminated ground water to Tar Creek occurs in Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Mining of ore in the shallow aquifer has resulted in extensive fracturing and removal of material, which has created highly transmissive zones and voids and increased ground-water storage properties of the aquifer. In the area east of the Pennsylvanian-Mississippian geologic contact (referred to as the eastern area), fractured rock and tailings on the land surface increased the amount of water available for infiltration to the shallow aquifer; in the western area, tailings on the impermeable shale created artificial, perched aquifer systems that slowly drain to surface streams. Pumping of the deep aquifer (rocks of Cambrian and Ordovician age) by towns and industries, which developed as a result of the mining industry, has resulted in a potential for downward movement of water from the shallow aquifer. The potential is greatest in Ottawa County, Oklahoma. Because of the large volume of water that may be transported from the shallow to the deep aquifer, open drill holes or casings present the greatest contamination hazard to water supplies in the deep aquifer. Mining

  16. Seasonal dynamics of particulate organic matter in the Changjiang Estuary and adjacent coastal waters illustrated by amino acid enantiomers

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Liu, Zongguang; Hu, Jun; Zhu, Zhuoyi; Liu, Sumei; Zhang, Jing

    2016-02-01

    Total suspended matter (TSM) was collected in the Changjiang Estuary and adjacent areas of the East China Sea in July, August, and November 2011, to study the composition and fate of particulate organic nitrogen (PON) during an August typhoon event and bottom trawling activities. Concentrations of particulate organic carbon (POC), particulate nitrogen (PN), and hydrolyzable particulate amino acids (PAA, D- and L-enantiomers) were higher during July and August than during November; however, D-arginine and alanine levels were significantly higher in November. Seasonal trends in the composition of PAAs indicate that in situ production is a key factor in their temporal distribution. No significant increase in TSM or decrease in labile organic matter was observed during the transit period following a typhoon event in August. In contrast, higher primary production was observed at this time as a result of the penetration of Changjiang Diluted Water caused by the typhoon event. Trawling effects were studied by comparing the calm season (July) with the bottom-trawling period (November) at similar sampling sites. The effect of trawling on the composition of bottom organic matter was studied by comparing D-amino acids concentrations and C/N ratios in the calm season (July) with the bottom-trawling period (November). A substantial contribution of microbial organic matter during the November cruise was indicated by a decrease in glutamic acid, an increase in TSM and D-alanine, and a lower carbon/nitrogen (C/N) ratio. In shallow coastal regions, anthropogenic activities (bottom trawling) may enhance the transfer of low-nutritional-value particulate organic matter into the benthic food chain.

  17. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, County Durham, UK.

    PubMed

    Mayes, W M; Large, A R G; Younger, P L

    2005-12-01

    Although quarrying is often cited as a potential threat to wetland systems, there is a lack of relevant, quantitative case studies in the literature. The impact of pumped groundwater discharged from a quarry into a wetland area was assessed relative to reference conditions in an adjacent fen wetland that receives only natural runoff. Analysis of vegetation patterns at the quarry wetland site, using Detrended Correspondence Analysis and the species indicator values of Ellenberg, revealed a clear disparity between community transitions in the quarry wetland and the reference site. Limited establishment of moisture-sensitive taxa, the preferential proliferation of robust wetland species and an overall shift towards lower species diversity in the quarry wetland were explicable primarily by the physico-chemical environment created by quarry dewatering. This encompassed high pH (up to 12.8), sediment-rich effluent creating a nutrient-poor substrate with poor moisture retention in the quarry wetland, and large fluctuations in water levels.

  18. Key Role of Active-Site Water Molecules in Bacteriorhodopsin Proton-Transfer Reactions

    SciTech Connect

    Bondar, A.N.; Baudry, Jerome Y; Suhai, Sandor; Fischer, S.; Smith, Jeremy C

    2008-10-01

    The functional mechanism of the light-driven proton pump protein bacteriorhodopsin depends on the location of water molecules in the active site at various stages of the photocycle and on their roles in the proton-transfer steps. Here, free energy computations indicate that electrostatic interactions favor the presence of a cytoplasmic-side water molecule hydrogen bonding to the retinal Schiff base in the state preceding proton transfer from the retinal Schiff base to Asp85. However, the nonequilibrium nature of the pumping process means that the probability of occupancy of a water molecule in a given site depends both on the free energies of insertion of the water molecule in this and other sites during the preceding photocycle steps and on the kinetic accessibility of these sites on the time scale of the reaction steps. The presence of the cytoplasmic-side water molecule has a dramatic effect on the mechanism of proton transfer: the proton is channeled on the Thr89 side of the retinal, whereas the transfer on the Asp212 side is hindered. Reaction-path simulations and molecular dynamics simulations indicate that the presence of the cytoplasmic-side water molecule permits a low-energy bacteriorhodopsin conformer in which the water molecule bridges the twisted retinal Schiff base and the proton acceptor Asp85. From this low-energy conformer, proton transfer occurs via a concerted mechanism in which the water molecule participates as an intermediate proton carrier.

  19. Study of water molecule decomposition in plasma by diode laser spectroscopy and optical actinometry methods

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Lagunov, V. V.; Ochkin, V. N.; Tskhai, S. N.

    2016-07-01

    The methods of diode laser radiation absorption at vibrational–rotational molecule transitions and optical actinometry with measurements of its electron emission spectra are used independently to study water molecule dissociation in glow discharge plasma in a mixture of water vapor and inert gases at reduced pressure. The methods yield close results. The dissociation reaches 98%.

  20. Adsorption of Small Molecules at Water--Hexane and Water--Membrane Interfaces

    NASA Astrophysics Data System (ADS)

    Wilson, Michael A.

    1996-03-01

    The interaction of solutes with aqueous interfaces plays a significant role in a variety of physical processes, including general anesthesia and atmospheric chemistry. We present molecular dynamics results for the transfer of several small solutes across water liquid--vapor, water--hexane and water--GMO bilayer membrane interfaces. (A. Pohorille and M. A. Wilson, J. Chem. Phys. (in press, 1995).)^, (A. Pohorille, P. CIeplak, and M. A. Wilson, Chem. Phys. (in press, 1995).) The free energies of transferring small polar molecules across the interface exhibit fairly deep minima while those of nonpolar molecules do not. This is due to a balance between nonelectrostatic contributions --- primarily the work required to create a cavity large enough to accommodate the solute --- and the solute--solvent electrostatic interactions.^1 The surface excess of solute is calculated and compared with experimental results from the Gibbs adsorption isotherm. The interfacial solubilities correlate with measured anesthetic potencies of these compounds, implying that the binding sites for anesthetics are located near the water--membrane interface.

  1. Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes

    SciTech Connect

    Mugarza, Aitor; Shimizu, Tomoko K.; Ogletree, D. Frank; Salmeron, Miquel

    2009-05-07

    Tunneling electrons in a scanning tunneling microscope were used to excite specific vibrational quantum states of adsorbed water and hydroxyl molecules on a Ru(0 0 0 1) surface. The excited molecules relaxed by transfer of energy to lower energy modes, resulting in diffusion, dissociation, desorption, and surface-tip transfer processes. Diffusion of H{sub 2}O molecules could be induced by excitation of the O-H stretch vibration mode at 445 meV. Isolated molecules required excitation of one single quantum while molecules bonded to a C atom required at least two quanta. Dissociation of single H{sub 2}O molecules into H and OH required electron energies of 1 eV or higher while dissociation of OH required at least 2 eV electrons. In contrast, water molecules forming part of a cluster could be dissociated with electron energies of 0.5 eV.

  2. Design of crystalline helices of short oligopeptides as a possible model for nucleation of alpha-helix: role of water molecules in stabilizing helices.

    PubMed

    Parthasarathy, R; Chaturvedi, S; Go, K

    1990-02-01

    We have designed, synthesized, crystallized, and performed x-ray analysis of several hydrophobic tripeptides that show an extended near alpha-helical structure in the crystalline state. All of the tripeptides that show this remarkably stable helix crystallize with two or three water molecules; they all have glycine at the N terminus and have increasing hydrophobicity as one moves from the N to C terminus. Even though three residues in the oligomer are not sufficient to complete a turn, one of the water molecules acts as an added residue and links up adjacent tripeptide segments along the helix axis so that in the crystal, the helix appears effectively as one long continuous helix. Two of these tripeptides are stabilized by two water molecules that enable the peptides to complete a turn of the helix and extend the helical structure throughout the crystal by linking translationally related peptides by hydrogen bonds. In two other peptides, these roles are played by three rather than two water molecules. Though these tripeptides have different crystal symmetry, they all show the basic pattern of hydrated helix and packing, indicating the strong conformational preference for a stable structure even for these tripeptides. Such conformationally stable hydrated structures for short specific related sequences illustrate their possible importance in nucleating protein folding and in the role water molecules play in such events.

  3. Multispectral actinometry of water and water-derivative molecules in moist, inert gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.; Kochetov, I. V.

    2016-10-01

    A new version of optical actinometry (OA) is used to determine the concentrations of water molecules and their fragments in hollow cathode discharge plasma in moist inert gases. Use is made of two actinometer particles, namely, the atoms Xe and Ar, for concurrent measurements of the concentrations of the H2O molecule and its fragments O, H, and OH. A self-consistent method is suggested for the determination of particle concentrations with due regard for the quenching of the emitting states. The temporal behavior of particles during discharge glow is studied. Noted are fast variations (lasting from a few to a few tens of s) in the concentrations of all the particles, followed by their stabilization (within a few to a few tens of mins). The scheme of the processes responsible for the observed dynamics of the plasma composition is discussed.

  4. Accelerated exchange of a buried water molecule in selectively disulfide-reduced bovine pancreatic trypsin inhibitor.

    PubMed

    Denisov, Vladimir P; Peters, Jörg; Hörlein, Hans Dietrich; Halle, Bertil

    2004-09-28

    Using magnetic relaxation dispersion (MRD), we have previously shown that the four internal water molecules in bovine pancreatic trypsin inhibitor (BPTI) exchange with bulk water on time scales between 10(-8) and 10(-4) s at room temperature. Because this exchange is controlled by the protein structure, internal water molecules can be used to probe rare conformational fluctuations. Here, we report (2)H and (17)O MRD data at three temperatures for wild-type BPTI and two BPTI variants where the 14-38 disulfide bond has been cleaved by a double Cys --> Ser mutation or by disulfide reduction and carboxamidomethylation. The MRD data show that the internal water molecules are conserved on disulfide cleavage. However, the exchange rate of the water molecule buried near the disulfide bond is enhanced by 2-4 orders of magnitude. The relation of water exchange to other dynamic processes in BPTI is discussed.

  5. Reduced coupling of water molecules near the surface of reverse micelles.

    PubMed

    Bakulin, Artem A; Pshenichnikov, Maxim S

    2011-11-21

    We report on vibrational dynamics of water near the surface of AOT reverse micelles studied by narrow-band excitation, mid-IR pump-probe spectroscopy. Evidence of OH-stretch frequency splitting into the symmetric and asymmetric modes is clearly observed for the interfacial H(2)O molecules. The polarization memory of interfacial waters is preserved over an exceptionally extended >10 ps timescale which is a factor of 100 longer than in bulk water. These observations point towards negligibly small intermolecular vibrational coupling between the water molecules as well as strongly reduced water rotational mobility within the interfacial water layer. PMID:21959913

  6. Water disinfection: microbes versus molecules - an introduction of issues

    SciTech Connect

    Fowle, J.R. III, Kopfler, F.C.

    1986-11-01

    If the chemicals used to rid drinking water of disease-causing microbes are themselves potentially harmful, is drinking water safe. What trade-offs are acceptable with respect to microbial versus chemical water quality. This conference deals with current thinking about these topics. The subjects discussed reflect the evolution of thinking, both scientifically and socially, about how best to supply the public with safe, pure potable water. The goal of this paper is to introduce the issues associated with disinfectants and disinfectant by-products in water. This will be done by presenting a historical overview of the use of chemical disinfectants to purify drinking water and the subsequent awareness of potential health concerns. Historically, the major health issue associated with water has been the demonstrated role that water has played in spreading infectious disease. Waterborne infectious agents remain in the environment, and new ones emerge through evolution of humans and microorganisms and because of changing exposure patterns.

  7. Implication of crystal water molecules in inhibitor binding at ALR2 active site.

    PubMed

    Hymavati; Kumar, Vivek; Sobhia, M Elizabeth

    2012-01-01

    Water molecules play a crucial role in mediating the interaction between a ligand and a macromolecule. The solvent environment around such biomolecule controls their structure and plays important role in protein-ligand interactions. An understanding of the nature and role of these water molecules in the active site of a protein could greatly increase the efficiency of rational drug design approaches. We have performed the comparative crystal structure analysis of aldose reductase to understand the role of crystal water in protein-ligand interaction. Molecular dynamics simulation has shown the versatile nature of water molecules in bridge H bonding during interaction. Occupancy and life time of water molecules depend on the type of cocrystallized ligand present in the structure. The information may be useful in rational approach to customize the ligand, and thereby longer occupancy and life time for bridge H-bonding. PMID:22649481

  8. Quantifying the Entropy of Binding for Water Molecules in Protein Cavities by Computing Correlations

    PubMed Central

    Huggins, David J.

    2015-01-01

    Protein structural analysis demonstrates that water molecules are commonly found in the internal cavities of proteins. Analysis of experimental data on the entropies of inorganic crystals suggests that the entropic cost of transferring such a water molecule to a protein cavity will not typically be greater than 7.0 cal/mol/K per water molecule, corresponding to a contribution of approximately +2.0 kcal/mol to the free energy. In this study, we employ the statistical mechanical method of inhomogeneous fluid solvation theory to quantify the enthalpic and entropic contributions of individual water molecules in 19 protein cavities across five different proteins. We utilize information theory to develop a rigorous estimate of the total two-particle entropy, yielding a complete framework to calculate hydration free energies. We show that predictions from inhomogeneous fluid solvation theory are in excellent agreement with predictions from free energy perturbation (FEP) and that these predictions are consistent with experimental estimates. However, the results suggest that water molecules in protein cavities containing charged residues may be subject to entropy changes that contribute more than +2.0 kcal/mol to the free energy. In all cases, these unfavorable entropy changes are predicted to be dominated by highly favorable enthalpy changes. These findings are relevant to the study of bridging water molecules at protein-protein interfaces as well as in complexes with cognate ligands and small-molecule inhibitors. PMID:25692597

  9. A computational study of the interactions of the caespitate molecule with water

    NASA Astrophysics Data System (ADS)

    Mammino, Liliana; Kabanda, Mwadham M.

    The water solvent effects on the caespitate molecule - an acylated and prenylated phloroglucinol of natural origin exhibiting antibacterial and antifungal activities - are investigated both as bulk effects and considering explicit water molecules H-bonded to its donor and acceptor centers. All calculations are performed at HF/6-31G(d,p) level and the bulk effect of the solvent is calculated with the PCM method. PCM calculations without explicit water molecules show a change in the relative energy pattern, for which the five lowest energy conformers have only the intramolecular hydrogen bond involving the carbonyl O atom of the acyl chain and one of the neighboring OH groups of the phloroglucinol moiety (first H-bond), whereas in vacuo, the 24 lowest energy conformers (accounting for practically all the population) have also the intramolecular hydrogen bond (second H-bond) involving an O atom of the ester function (with which the prenyl chain ends) and one of the neighboring OH groups of the phloroglucinol moiety. Calculations with explicit water molecules show that the first intramolecular H-bond is mostly maintained, whereas the second H-bond is not maintained on competition with intermolecular H-bonds with water molecules. Preferred geometrical arrangements of water molecules around the caespitate molecule are identified and the effects, on such geometrical preferences, of the presence of the two substituent chains are highlighted by comparison with the adducts of the parent compound.

  10. Fast transport of water molecules across carbon nanotubes induced by static electric fields

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Lin; Yang, Rong-Yao

    2016-01-01

    Water permeation across a single-walled carbon nanotube has been studied in the presence of static electric fields (SEFs) with different directions under hydrostatic pressures. With the angle between the SEF direction and tube axis increasing from 0∘ to 90∘, the water flux decreases gradually until almost vanishes, and the maximum value at 0∘ is approximately four times the case without SEFs. The phenomenon is attributed to the alignment of the polar water molecules along the SEF direction. We also show that water permeation properties are dependent on the field strength due mainly to thermal fluctuations of water molecules.

  11. Simulation and analysis of soil-water conditions in the Great Plains and adjacent areas, central United States, 1951-80

    USGS Publications Warehouse

    Dugan, Jack T.; Zelt, Ronald B.

    2000-01-01

    Ground-water recharge and consumptive-irrigation requirements in the Great Plains and adjacent areas largely depend upon an environment extrinsic to the ground-water system. This extrinsic environment, which includes climate, soils, and vegetation, determines the water demands of evapotranspiration, the availability of soil water to meet these demands, and the quantity of soil water remaining for potential ground-water recharge after these demands are met. The geographic extent of the Great Plains contributes to large regional differences among all elements composing the extrinsic environment, particularly the climatic factors. A soil-water simulation program, SWASP, which synthesizes selected climatic, soil, and vegetation factors, was used to simulate the regional soil-water conditions during 1951-80. The output from SWASP consists of several soil-water characteristics, including surface runoff, infiltration, consumptive water requirements, actual evapotranspiration, potential recharge or deep percolation under various conditions, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions. Simulation results indicate that regional patterns of potential recharge, consumptive irrigation requirements, and net fluxes from the ground-water system under irrigated conditions are largely determined by evapotranspiration and precipitation. The local effects of soils and vegetation on potential recharge cause potential recharge to vary by more than 50 percent in some areas having similar climatic conditions.

  12. Preliminary Geologic Map of the Southern Funeral Mountains and Adjacent Ground-Water Discharge Sites, Inyo County, California, and Nye County, Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.; Slate, Janet L.; Berry, M.E.; Machette, Michael N.

    2008-01-01

    This map covers the southern part of the Funeral Mountains, and adjacent parts of four structural basins - Furnace Creek, Amargosa Valley, Opera House, and central Death Valley. It extends over three full 7.5-minute quadrangles, and parts of eleven others - a total area of about 950 square kilometers. The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of ground water that discharges from the springs of the Furnace Creek wash area, in the west-central part of the map. These springs provide the major potable water supply for Death Valley National Park.

  13. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, County Durham, UK.

    PubMed

    Mayes, W M; Large, A R G; Younger, P L

    2005-12-01

    Although quarrying is often cited as a potential threat to wetland systems, there is a lack of relevant, quantitative case studies in the literature. The impact of pumped groundwater discharged from a quarry into a wetland area was assessed relative to reference conditions in an adjacent fen wetland that receives only natural runoff. Analysis of vegetation patterns at the quarry wetland site, using Detrended Correspondence Analysis and the species indicator values of Ellenberg, revealed a clear disparity between community transitions in the quarry wetland and the reference site. Limited establishment of moisture-sensitive taxa, the preferential proliferation of robust wetland species and an overall shift towards lower species diversity in the quarry wetland were explicable primarily by the physico-chemical environment created by quarry dewatering. This encompassed high pH (up to 12.8), sediment-rich effluent creating a nutrient-poor substrate with poor moisture retention in the quarry wetland, and large fluctuations in water levels. PMID:15993994

  14. What are preferred water-aromatic interactions in proteins and crystal structures of small molecules?

    PubMed

    Janjić, Goran V; Malkov, Saša N; Zivković, Miodrag V; Zarić, Snežana D

    2014-11-21

    The distribution of water molecules around aromatic rings in the protein structures and crystal structures of small molecules shows quite a small number of the strongest OH-π interactions, a larger number of parallel interactions, and the largest number of the weakest CH-O interactions.

  15. The putative role of some conserved water molecules in the structure and function of human transthyretin.

    PubMed

    Banerjee, Avik; Dasgupta, Subrata; Mukhopadhyay, Bishnu P; Sekar, Kanagaraj

    2015-11-01

    Human transthyretin (hTTR) is a multifunctional protein that is involved in several neurodegenerative diseases. Besides the transportation of thyroxin and vitamin A, it is also involved in the proteolysis of apolipoprotein A1 and Aβ peptide. Extensive analyses of 32 high-resolution X-ray and neutron diffraction structures of hTTR followed by molecular-dynamics simulation studies using a set of 15 selected structures affirmed the presence of 44 conserved water molecules in its dimeric structure. They are found to play several important roles in the structure and function of the protein. Eight water molecules stabilize the dimeric structure through an extensive hydrogen-bonding network. The absence of some of these water molecules in highly acidic conditions (pH ≤ 4.0) severely affects the interfacial hydrogen-bond network, which may destabilize the native tetrameric structure, leading to its dissociation. Three pairs of conserved water molecules contribute to maintaining the geometry of the ligand-binding cavities. Some other water molecules control the orientation and dynamics of different structural elements of hTTR. This systematic study of the location, absence, networking and interactions of the conserved water molecules may shed some light on various structural and functional aspects of the protein. The present study may also provide some rational clues about the conserved water-mediated architecture and stability of hTTR. PMID:26527142

  16. Unraveling the Sc(3+) Hydration Geometry: The Strange Case of the Far-Coordinated Water Molecule.

    PubMed

    Migliorati, Valentina; D'Angelo, Paola

    2016-07-01

    The hydration structure and dynamics of Sc(3+) in aqueous solution have been investigated using a combined approach based on quantum mechanical (QM) calculations, molecular dynamics (MD) simulations, and extended X-ray absorption fine structure (EXAFS) spectroscopy. An effective Sc-water two-body potential has been generated from QM calculations and then used in the MD simulation of Sc(3+) in water, and the reliability of the entire procedure has been assessed by comparing the theoretical structural results with the EXAFS experimental data. The outstanding outcome of this work is that the Sc(3+) ion forms a well-defined capped square antiprism (SAP) complex in aqueous solution, where the eight water molecules closest to the ion are located at the vertexes of a SAP polyhedron, while the ninth water molecule occupying the capping position is unusually found at a very long distance from the ion. This far-coordinated water molecule possesses a degree of structure comparable with the other first shell molecules surrounding the ion at much shorter distances, and its presence gave us the unique opportunity to easily identify the geometry of the Sc(3+) coordination polyhedron. Despite very strong ion-water interactions, the Sc(3+) hydration shell is very labile, as the far-coordinated ligand allows first shell water molecules to easily exchange their positions both inside the solvation shell and with the rest of the solvent molecules. PMID:27300102

  17. Asymmetric self-diffusion with orientation-dependence of water molecule in finite timescale

    NASA Astrophysics Data System (ADS)

    Wei, Xu; Sheng, Nan; Wan, RongZheng; Hu, GuoHui; Fang, HaiPing

    2016-07-01

    Self-diffusion of water has been investigated by molecular dynamics simulations. It was found that the preference of the direction in self-diffusion of water is orientation dependent in a finite time. For a time of ~100 ps, there are more possibilities for water molecules moving along the initial dipole orientation than in the opposite direction. This reveals that self-diffusion of water molecules is asymmetric in a finite time. We tested four water models and found that they all show similar asymmetric diffusion, indicating that asymmetric diffusion of water is intrinsic behavior rather than induced by the water model. These results are important for understanding and application of asymmetric diffusion in research fields such as biological water and confined water in small dimensions.

  18. Roles of water molecules in bacteria and viruses

    NASA Astrophysics Data System (ADS)

    Cox, C. S.

    1993-02-01

    In addition to water, microbes mainly comprise lipids, carbohydrates, proteins and nucleic acids. Their structure and function singularly and conjointly is affected by water activity. Desiccation leads to dramatic lipid phase changes whereas carbohydrates, proteins and nucleic acids initially suffer spontaneous, reversible low activation energy Maillard reactions forming products that more slowly re-arrange, cross-link etc. to give non-native states. While initial products spontaneously may reverse to native states by raising water activity, later products only do so through energy consumption and enzymatic activity eg. repair. Yet, native states of lipid membranes and associated enzymes are required to generate energy. Consequently, good reserves of high energy compounds (e.g. ATP) and of membrane stabilisers (e.g. trehalose) may be expected to enhance survival following drying and rehydration (e.g. anhydrobiotic organisms).

  19. 33 CFR 165.1301 - Puget Sound and Adjacent Waters in Northwestern Washington-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... displayed from at least three feet above the surface of the water. (3) Vessels engaged in fishing, including... precautionary area shall tend nets or other gear placed in the water so as to facilitate the movement of the... 11 knots through the water. (3) Vessels engaged in fishing, including gillnet and purse seine...

  20. Development of ground-water resources in Orange County, Texas, and adjacent areas in Texas and Louisiana, 1971-80

    USGS Publications Warehouse

    Bonnet, C.W.; Gabrysch, R.K.

    1982-01-01

    Although saltwater encroachment is evident in parts of southern Orange County, the encroachment is not expected to be detrimental if the ground-water pumping remains stable and the projected increase in demands for water is met with surface-water supplies.

  1. Availability and chemistry of ground water on the Bruneau Plateau and adjacent eastern plain in Twin Falls County, south-central Idaho

    USGS Publications Warehouse

    Moffatt, R.L.; Jones, M.L.

    1984-01-01

    The Bruneau plateau in south-central Idaho consists of about 889 ,600 acres of potentially irrigable land. About 112,200 of these acres have been developed for agriculture; 11,200 acres are irrigated with ground water, and the remaining acreage is irrigated with water from the Snake and Bruneau rivers and Salmon Falls Creek. On the basis of present usage, about 158,000 acre-feet of water per year are needed to develop an additional 63,000 acres. About 438,000 acre-feet per year are needed to irrigate existing and newly developed lands in dry years when streamflow in the Snake River at Milner Dam is inadequate to meet appropriated needs. Pumping lifts of about 400-600 feet and low well yields on the Bruneau plateau probably preclude large-scale irrigation development solely from local ground-water resources. However, supplemental sources of irrigation water are available from a perched-water aquifer, a thermal aquifer, and the regional aquifer adjacent to the plateau. About 100,000-115,000 acre-feet per year of water probably could be withdrawn from the perched and regional aquifers and conveyed to the plateau without serious impact on local ground-water resources. The amount of water that could be safely withdrawn from the thermal aquifer was not determined. (USGS)

  2. Analytical model for three-dimensional Mercedes-Benz water molecules

    PubMed Central

    Urbic, T.

    2013-01-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100

  3. Analytical model for three-dimensional Mercedes-Benz water molecules

    NASA Astrophysics Data System (ADS)

    Urbic, T.

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  4. Analytical model for three-dimensional Mercedes-Benz water molecules.

    PubMed

    Urbic, T

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

  5. Analytical model for three-dimensional Mercedes-Benz water molecules.

    PubMed

    Urbic, T

    2012-06-01

    We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature. PMID:23005100

  6. Heterogeneity of the state and functionality of water molecules sorbed in an amorphous sugar matrix.

    PubMed

    Imamura, Koreyoshi; Kagotani, Ryo; Nomura, Mayo; Kinugawa, Kohshi; Nakanishi, Kazuhiro

    2012-04-01

    An amorphous matrix, comprised of sugar molecules, is frequently used in the pharmaceutical industry. An amorphous sugar matrix exhibits high hygroscopicity, and it has been established that the sorbed water lowers the glass transition temperature T(g) of the amorphous sugar matrix. It is naturally expected that the random allocation and configuration of sugar molecules would result in heterogeneity of states for sorbed water. However, most analyses of the behavior of water, when sorbed to an amorphous sugar matrix, have implicitly assumed that all of the sorbed water molecules are in a single state. In this study, the states of water molecules sorbed in an amorphous sugar matrix were analyzed by Fourier-transform IR spectroscopy and a Fourier self-deconvolution technique. When sorbed water molecules were classified into five states, according to the extent to which they are restricted, three of the states resulted in a lowering of T(g) of an amorphous sugar matrix, while the other two were independent of the plasticization of the matrix. This finding provides an explanation for the paradoxical fact that compression at several hundreds of MPa significantly decreases the equilibrium water content at a given RH, while the T(g) remains unchanged.

  7. Protein-bound water molecules in primate red- and green-sensitive visual pigments.

    PubMed

    Katayama, Kota; Furutani, Yuji; Imai, Hiroo; Kandori, Hideki

    2012-02-14

    Protein-bound water molecules play crucial roles in the structure and function of proteins. The functional role of water molecules has been discussed for rhodopsin, the light sensor for twilight vision, on the basis of X-ray crystallography, Fourier transform infrared (FTIR) spectroscopy, and a radiolytic labeling method, but nothing is known about the protein-bound waters in our color visual pigments. Here we apply low-temperature FTIR spectroscopy to monkey red (MR)- and green (MG)-sensitive color pigments at 77 K and successfully identify water vibrations using D(2)O and D(2)(18)O in the whole midinfrared region. The observed water vibrations are 6-8 for MR and MG, indicating that several water molecules are present near the retinal chromophore and change their hydrogen bonds upon retinal photoisomerization. In this sense, color visual pigments possess protein-bound water molecules essentially similar to those of rhodopsin. The absence of strongly hydrogen-bonded water molecules (O-D stretch at <2400 cm(-1)) is common between rhodopsin and color pigments, which greatly contrasts with the case of proton-pumping microbial rhodopsins. On the other hand, two important differences are observed in water signal between rhodopsin and color pigments. First, the water vibrations are identical between the 11-cis and 9-cis forms of rhodopsin, but different vibrational bands are observed at >2550 cm(-1) for both MR and MG. Second, strongly hydrogen-bonded water molecules (2303 cm(-1) for MR and 2308 cm(-1) for MG) are observed for the all-trans form after retinal photoisomerization, which is not the case for rhodopsin. These specific features of MR and MG can be explained by the presence of water molecules in the Cl(-)-biding site, which are located near positions C11 and C9 of the retinal chromophore. The averaged frequencies of the observed water O-D stretching vibrations for MR and MG are lower as the λ(max) is red-shifted, suggesting that water molecules are involved in

  8. [Spatial pattern of fish assemblage and the relationship with environmental factors in Yellow River Estuary and its adjacent waters in summer].

    PubMed

    Zhai, Lu; Xu, Bin-duo; Ji, Yu-peng; Ren, Yi-ping

    2015-09-01

    The fish community structure and its relationship with the environment in the Yellow River Estuary and its adjacent waters were studied using the data collected from bottom trawl surveys in summer (June, July, August) , 2013. A total of 44 fish species were sampled in the survey, belonging to 40 genera, 25 families, and 11 orders, and mainly composed of warm temperate and demersal fishes. Cluster analysis showed that fish assemblage in Yellow River Estuary in summer could be divided into three groups. ANOSIM (analysis of similarity) indicated that the fish species composition in Yellow River Estuary and its adjacent waters varied significantly among different groups in summer. The SIMPER (similarity of percentage) analysis revealed that Chaeturichthys stigmatias, Clupanodon punctatus, Cynoglossus joyneri and Engraulis japonica were the main species in each group and the primary discriminating species between groups for the fish assemblage in each month. The canonical correspondence analysis (CCA) suggested that the main environmental factors affecting the spatial patterns of fish assemblage in summer were salinity, bottom water temperature and depth.

  9. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-04-01

    As part of the Hanford Environmental Dose Reconstruction Project, Pacific Northwest Laboratory reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Certain radionuclide concentration data were used in preliminary estimates of individual dose for the 1964--1966 time period. This report summarizes the literature and database review and the results of the preliminary dose estimates.

  10. Literature and data review for the surface-water pathway: Columbia River and adjacent coastal areas. Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Walters, W.H.; Dirkes, R.L.; Napier, B.A.

    1992-11-01

    As part of the Hanford Environmental Dose Reconstruction (HEDR) Project, Battelle, Pacific Northwest Laboratories reviewed literature and data on radionuclide concentrations and distribution in the water, sediment, and biota of the Columbia River and adjacent coastal areas. Over 600 documents were reviewed including Hanford reports, reports by offsite agencies, journal articles, and graduate theses. Radionuclide concentration data were used in preliminary estimates of individual dose for the period 1964 through 1966. This report summarizes the literature and database reviews and the results of the preliminary dose estimates.

  11. Water-quality, bed-sediment, and discharge data for the Mississippi River-Gulf Outlet and adjacent waterways, southeastern Louisiana, August 2008 through December 2009

    USGS Publications Warehouse

    Swarzenski, Christopher M.; Mize, Scott V.; Lovelace, John K.

    2012-01-01

    The Mississippi River-Gulf Outlet navigation channel (MRGO) was constructed in the early 1960s to provide a safer and shorter route between the Gulf of Mexico and the Port of New Orleans for deep-draft, ocean-going vessels and to promote the economic development of the Port of New Orleans. In 2006, the U.S. Army Corps of Engineers developed a plan to de-authorize the MRGO. The plan called for a rock barrier to be constructed across the MRGO near Bayou La Loutre. In 2008, the U.S. Geological Survey, in cooperation with the Louisiana Coastal Area Science and Technology Program began a study to document the impacts of the rock barrier on water-quality and flow before, during, and after its construction. Water-quality, bed-sediment, and discharge data were collected in the MRGO and adjacent water bodies from August 2008 through December 2009.

  12. Depositional and diagenetic history and petroleum geology of the Jurassic Norphlet Formation of the Alabama coastal waters area and adjacent federal waters area

    USGS Publications Warehouse

    Kugler, R.L.; Mink, R.M.

    1999-01-01

    The discovery of deep (>20,000 ft) gas reservoirs in eolian sandstone of the Upper Jurassic Norphlet Formation in Mobile Bay and offshore Alabama in the late 1970s represents one of the most significant hydrocarbon discoveries in the nation during the past several decades. Estimated original proved gas from Norphlet reservoirs in the Alabama coastal waters and adjacent federal waters is 7.462 trillion ft3 (Tcf) (75% recovery factor). Fifteen fields have been established in the offshore Alabama area. Norphlet sediment was deposited in an arid environment in alluvial fans, alluvial plains, and wadis in updip areas. In downdip areas, the Norphlet was deposited in a broad desert plain, with erg development in some areas. Marine transgression, near the end of Norphlet deposition, resulted in reworking of the upper part of the Norphlet Formation. Norphlet reservoir sandstone is arkose and subarkose, consisting of a simple assemblage of three minerals, quartz, albite, and K-feldspar. The present framework grain assemblage of the Norphlet is dominantly diagenetic, owing to albitization and dissolution of feldspar. Despite the simple framework composition, the diagenetic character of the Norphlet is complex. Important authigenic minerals include carbonate phases (calcite, dolomite, Fe-dolomite, and breunnerite), feldspar (albite and K-feldspar), evaporite minerals (anhydrite and halite), clay minerals (illite and chlorite), quartz, and pyrobitumen. The abundance and distribution of these minerals varies significantly between onshore and offshore regions of Norphlet production. The lack of sufficient internal sources of components for authigenic minerals, combined with unusual chemical compositions of chloride (Mg-rich), breunnerite, and some minor authigenic minerals, suggests that Louann-derived fluids influenced Norphlet diagenesis. In offshore Alabama reservoirs, porosity is dominantly modified primary porosity. Preservation of porosity in deep Norphlet reservoirs is due

  13. Spectroscopic and thermodynamic properties of hydrogen bonded water molecules in binary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Bricknell, B. C.; Ford, T. A.; Letcher, T. M.

    1997-03-01

    Some relationships have been found between the infrared spectroscopic properties of water molecules hydrogen bonded to a number of bases in binary liquid mixtures, and the partial eolar excess enthalpies at infinite dilution of water of the solutions. The results suggest a new approach to the use of the well-known Badger-Bauer relationship.

  14. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen.

    PubMed

    Shinagawa, Tatsuya; Takanabe, Kazuhiro

    2015-06-21

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction.

  15. Auger spectrum of a water molecule after single and double core ionization.

    PubMed

    Inhester, L; Burmeister, C F; Groenhof, G; Grubmüller, H

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schrödinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  16. Auger spectrum of a water molecule after single and double core ionization

    SciTech Connect

    Inhester, L.; Burmeister, C. F.; Groenhof, G.; Grubmueller, H.

    2012-04-14

    The high intensity of free electron lasers opens up the possibility to perform single-shot molecule scattering experiments. However, even for small molecules, radiation damage induced by absorption of high intense x-ray radiation is not yet fully understood. One of the striking effects which occurs under intense x-ray illumination is the creation of double core ionized molecules in considerable quantity. To provide insight into this process, we have studied the dynamics of water molecules in single and double core ionized states by means of electronic transition rate calculations and ab initio molecular dynamics (MD) simulations. From the MD trajectories, photoionization and Auger transition rates were computed based on electronic continuum wavefunctions obtained by explicit integration of the coupled radial Schroedinger equations. These rates served to solve the master equations for the populations of the relevant electronic states. To account for the nuclear dynamics during the core hole lifetime, the calculated electron emission spectra for different molecular geometries were incoherently accumulated according to the obtained time-dependent populations, thus neglecting possible interference effects between different decay pathways. We find that, in contrast to the single core ionized water molecule, the nuclear dynamics for the double core ionized water molecule during the core hole lifetime leaves a clear fingerprint in the resulting electron emission spectra. The lifetime of the double core ionized water was found to be significantly shorter than half of the single core hole lifetime.

  17. Water-Level Data for the Albuquerque Basin and Adjacent Areas, Central New Mexico, Period of Record Through 2004

    USGS Publications Warehouse

    DeWees, R.K.

    2006-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the Albuquerque Basin are obtained solely from ground-water resources. An increase of approximately 20 percent in the population from 1991 to present also resulted in an increased demand for water. From April 1982 through September 1983, a network of wells was established to monitor changes in ground-water levels throughout the Albuquerque Basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly. Currently (2004), the network consists of 234 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 155 sites through 2004. Water-level and other data for 71 sites are collected by other agencies. Water-level data for 8 sites of the 155 sites measured by the U.S. Geological Survey were not available for this report.

  18. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... including publication in the Federal Register as practicable, in accordance with 33 CFR 165.7(a). Such means... Vessel does not include vessels inspected and certificated under 46 CFR, Chapter I, Subchapter T such as.... Navigable waters of the United States means those waters defined as such in 33 CFR part 2. Navigation...

  19. 33 CFR 165.1317 - Security and Safety Zone; Large Passenger Vessel Protection, Puget Sound and adjacent waters...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... including publication in the Federal Register as practicable, in accordance with 33 CFR 165.7(a). Such means... Vessel does not include vessels inspected and certificated under 46 CFR, Chapter I, Subchapter T such as.... Navigable waters of the United States means those waters defined as such in 33 CFR part 2. Navigation...

  20. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CFR 165.7(a). Such means of notification may also include but are not limited to, Broadcast Notice to... United States. (2) Navigable waters of the United States means those waters defined as such in 33 CFR...), (d), (f), (g), (h), (j), and (k) of this section. (j) Exception. 33 CFR Part 161 promulgates...

  1. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CFR 165.7(a). Such means of notification may also include but are not limited to, Broadcast Notice to... United States. (2) Navigable waters of the United States means those waters defined as such in 33 CFR...), (d), (f), (g), (h), (j), and (k) of this section. (j) Exception. 33 CFR Part 161 promulgates...

  2. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CFR 165.7(a). Such means of notification may also include but are not limited to, Broadcast Notice to... United States. (2) Navigable waters of the United States means those waters defined as such in 33 CFR...), (d), (f), (g), (h), (j), and (k) of this section. (j) Exception. 33 CFR Part 161 promulgates...

  3. 33 CFR 165.1313 - Security zone regulations, tank ship protection, Puget Sound and adjacent waters, Washington

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CFR 165.7(a). Such means of notification may also include but are not limited to, Broadcast Notice to... United States. (2) Navigable waters of the United States means those waters defined as such in 33 CFR...), (d), (f), (g), (h), (j), and (k) of this section. (j) Exception. 33 CFR Part 161 promulgates...

  4. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    PubMed Central

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-01-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole–dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole–dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie–Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices. PMID:27687693

  5. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    NASA Astrophysics Data System (ADS)

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-09-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

  6. Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice

    SciTech Connect

    Zhukova, Elena S. Gorshunov, Boris P.; Torgashev, Victor I.; Lebedev, Vladimir V.; Shakurov, Gil'man S.; Pestrjakov, Efim V.; Prokhorov, Anatoly S.; Dressel, Martin

    2014-06-14

    Low-energy excitations of a single water molecule are studied when confined within a nano-size cavity formed by the ionic crystal lattice. Optical spectra are measured of manganese doped beryl single crystal Mn:Be{sub 3}Al{sub 2}Si{sub 6}O{sub 18}, that contains water molecules individually isolated in 0.51 nm diameter voids within the crystal lattice. Two types of orientation are distinguished: water-I molecules have their dipole moments aligned perpendicular to the c axis and dipole moments of water-II molecules are parallel to the c-axis. The optical conductivity σ(ν) and permittivity ε{sup ′}(ν) spectra are recorded in terahertz and infrared ranges, at frequencies from several wavenumbers up to ν = 7000 cm{sup −1}, at temperatures 5–300 K and for two polarizations, when the electric vector E of the radiation is parallel and perpendicular to the c-axis. Comparative experiments on as-grown and on dehydrated samples allow to identify the spectra of σ(ν) and ε{sup ′}(ν) caused exclusively by water molecules. In the infrared range, well-known internal modes ν{sub 1}, ν{sub 2}, and ν{sub 3} of the H{sub 2}O molecule are observed for both polarizations, indicating the presence of water-I and water-II molecules in the crystal. Spectra recorded below 1000 cm{sup −1} reveal a rich set of highly anisotropic features in the low-energy response of H{sub 2}O molecule in a crystalline nano-cavity. While for E∥c only two absorption peaks are detected, at ∼90 cm{sup −1} and ∼160 cm{sup −1}, several absorption bands are discovered for E⊥c, each consisting of narrower resonances. The bands are assigned to librational (400–500 cm{sup −1}) and translational (150–200 cm{sup −1}) vibrations of water-I molecule that is weakly coupled to the nano-cavity “walls.” A model is presented that explains the “fine structure” of the bands by a splitting of the energy levels due to quantum tunneling between the minima in a six-well potential

  7. Water-level altitudes 1998 and water-level changes 1990-98 and 1997-98 in the Chicot and Evangeline aquifers, Fort Bend County and adjacent areas, Texas

    USGS Publications Warehouse

    Coplin, L.S.; Santos, H.X.

    1998-01-01

    This report is one in an annual series of reports that depicts water-level altitudes and water-level changes since 1990 in the Chicot and Evangeline aquifers in Fort Bend County and adjacent areas, Texas. The report, prepared in cooperation with the Ford Bend Subsidence District, presents maps for the Chicot and Evangeline aquifers showing the approximate water-level altitudes in wells in 1998 and approximate water-level changes in wells from 1990 to 1998 and from 1997 to 1998. The most recent previously published water-level-altitude maps and water-level-change maps for the two aquifers are by Coplin and others (1997). The earliest water-level-altitude maps and water-level-change maps for the Chicot aquifer are by Wesselman (1972). The first maps of water-level altitudes and water-level changes for the Chicot and Evangeline aquifers are by Locke (1990).

  8. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  9. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  10. Water and Small-Molecule Permeation of Dormant Bacillus subtilis Spores

    PubMed Central

    Cermak, Nathan; Feijó Delgado, Francisco; Setlow, Barbara; Setlow, Peter

    2015-01-01

    ABSTRACT We use a suspended microchannel resonator to characterize the water and small-molecule permeability of Bacillus subtilis spores based on spores' buoyant mass in different solutions. Consistent with previous results, we found that the spore coat is not a significant barrier to small molecules, and the extent to which small molecules may enter the spore is size dependent. We have developed a method to directly observe the exchange kinetics of intraspore water with deuterium oxide, and we applied this method to wild-type spores and a panel of congenic mutants with deficiencies in the assembly or structure of the coat. Compared to wild-type spores, which exchange in approximately 1 s, several coat mutant spores were found to have relatively high water permeability with exchange times below the ∼200-ms temporal resolution of our assay. In addition, we found that the water permeability of the spore correlates with the ability of spores to germinate with dodecylamine and with the ability of TbCl3 to inhibit germination with l-valine. These results suggest that the structure of the coat may be necessary for maintaining low water permeability. IMPORTANCE Spores of Bacillus species cause food spoilage and disease and are extremely resistant to standard decontamination methods. This hardiness is partly due to spores' extremely low permeability to chemicals, including water. We present a method to directly monitor the uptake of molecules into B. subtilis spores by weighing spores in fluid. The results demonstrate the exchange of core water with subsecond resolution and show a correlation between water permeability and the rate at which small molecules can initiate or inhibit germination in coat-damaged spores. The ability to directly measure the uptake of molecules in the context of spores with known structural or genetic deficiencies is expected to provide insight into the determinants of spores' extreme resistance. PMID:26483518

  11. Hydroxyl and water molecule orientations in trypsin: Comparison to molecular dynamics structures

    SciTech Connect

    McDowell, R.S.; Kossiakoff, A.A.

    1994-12-31

    A comparison is presented of experimentally observed hydroxyl and water hydrogens in trypsin determined from neutron density maps with the results of a 140ps molecular dynamics (MD) simulation. Experimental determination of hydrogen and deuterium atom positions in molecules as large as proteins is a unique capability of neutron diffraction. The comparison addresses the degree to which a standard force-field approach can adequately describe the local electrostatic and van der Waals forces that determine the orientations of these hydrogens. Neutron densities, derived from 2.1{Angstrom} D{sub 2}O-H{sub 2}O difference Fourier maps, provide a database of 27 well-ordered hydroxyl hydrogens. Most of the simulated hydroxyl orientations are within a standard deviation of the experimentally-observed positions, including several examples in which both the simulation and the neutron density indicate that a hydroxyl group is shifted from a {open_quote}standard{close_quote} rotamer. For the most highly ordered water molecules, the hydrogen distributions calculated from the trajectory were in good agreement with neutron density; simulated water molecules that displayed multiple hydrogen bonding networks had correspondingly broadened neutron density profiles. This comparison was facilitated by development of a method to construct a pseudo 2{Angstrom} density map based on the hydrogen atom distributions from the simulation. The degree of disorder of internal water molecules is shown to result primarily from the electrostatic environment surrounding that water molecule as opposed to the cavity size available to the molecule. A method is presented for comparing the discrete observations sampled in a dynamics trajectory with the time- averaged data obtained from X-ray or neutron diffraction studies. This method is particularly useful for statically-disordered water molecules, in which the average location assigned from a trajectory may represent a site of relatively low occupancy.

  12. Fish diversity in the Río de la Plata and adjacent waters: an overview of environmental influences on its spatial and temporal structure.

    PubMed

    Jaureguizar, A J; Solari, A; Cortés, F; Milessi, A C; Militelli, M I; Camiolo, M D; Luz Clara, M; García, M

    2016-07-01

    The fish diversity and the main environmental factors affecting the spatial distribution of species, life history stages and community structure in the Río de la Plata (RdP) and adjacent waters are reviewed and analysed, with emphasis on the functional guild classification. The functional guild classification indicated that most species in the RdP were marine stragglers, zoobenthivores and oviparous species, although the biomass was dominated by estuarine species. Salinity had a stronger influence than temperature on the spatial pattern for all life stages, shallower and fresher waters are the preferred habitats of neonates and juveniles. During the breeding season (spring-summer), adults showed an intrusion into the inner part of RdP or to its adjacent nearshore waters from the offshore waters for spawning or mating, respectively. Variations in river discharge and wind patterns greatly affected the spatial extent of estuarine water, which ultimately influenced the domain of the main life-history stages (juveniles or adults) for both marine and estuarine fishes, as well as species and fish assemblage composition. The strong environmental gradient restricts some species and life-history stages to a particular section and defines three main fish assemblage areas. The composition of the fish assemblage is indicative of the recruitment of freshwater and marine species to the estuary in opposite ways, determined by the vertical stratification. Seasonal changes in the species composition were related to migration as a result of salinity and temperature variations and reproductive migrations to spawning and mating areas. This overview reveals that the RdP is under environmental variations that are likely to produce modifications to fish distribution and abundance that affect its fisheries. This context plus fish stock declines and changes in exploitation patterns could amplify the magnitude of the variations in the fisheries resources availability and affect the

  13. Utilization by fishes of the Alviso Island ponds and adjacent waters in south san francisco bay following restoration to tidal influence

    USGS Publications Warehouse

    Saiki, M.K.; Mejia, F.H.

    2009-01-01

    Earthen levees of three isolated salt ponds known locally as the Alviso Island Ponds were intentionally breached in March 2006 to allow tidal exchange of the ponds with water from Coyote Creek. The water exchange transformed the previously fishless hypersaline ponds into lower salinity habitats suitable for fish life. This study documented fish utilization of the ponds, adjacent reaches of Coyote Creek, and an upstream reach in nearby Artesian Slough during May-July 2006. By the time the study was initiated, water quality conditions in the ponds were similar to conditions in adjacent reaches of Coyote Creek. The only variable exhibiting a strong gradient within the study area was salinity, which increased progressively from upstream to downstream in Coyote Creek. A total of 4,034 fish represented by 18 species from 14 families was caught during the study. Judging from cluster analysis of presence-absence data that excluded rare fish species, the 10 sampling units (3 ponds, 6 reaches in Coyote Creek, and 1 reach in Artesian Slough) formed two clusters or groups, suggesting two species assemblages. The existence of two groups was also suggested by ordination with non-metric multidimensional scaling (NMS). One group, which was composed of the three ponds and four of the lowermost reaches of Coyote Creek, was characterized by mostly estuarine or marine species (e.g., topsmelt, Atherinops affinis; northern anchovy, Engraulis mordax; and longjaw mudsucker, Gillichthys mirabilis). The second group, which was composed of the two uppermost reaches of Coyote Creek and the one reach of Artesian Slough, was characterized by freshwater species (e.g., Sacramento sucker, Catostomus occidentalis) and by an absence of the estuarine/marine species noted in the first assemblage. Judging from a joint plot of selected water quality variables overlaying the ordination results, salinity was the only important variable associated with spatial distribution of fish species. Water

  14. Fish diversity in the Río de la Plata and adjacent waters: an overview of environmental influences on its spatial and temporal structure.

    PubMed

    Jaureguizar, A J; Solari, A; Cortés, F; Milessi, A C; Militelli, M I; Camiolo, M D; Luz Clara, M; García, M

    2016-07-01

    The fish diversity and the main environmental factors affecting the spatial distribution of species, life history stages and community structure in the Río de la Plata (RdP) and adjacent waters are reviewed and analysed, with emphasis on the functional guild classification. The functional guild classification indicated that most species in the RdP were marine stragglers, zoobenthivores and oviparous species, although the biomass was dominated by estuarine species. Salinity had a stronger influence than temperature on the spatial pattern for all life stages, shallower and fresher waters are the preferred habitats of neonates and juveniles. During the breeding season (spring-summer), adults showed an intrusion into the inner part of RdP or to its adjacent nearshore waters from the offshore waters for spawning or mating, respectively. Variations in river discharge and wind patterns greatly affected the spatial extent of estuarine water, which ultimately influenced the domain of the main life-history stages (juveniles or adults) for both marine and estuarine fishes, as well as species and fish assemblage composition. The strong environmental gradient restricts some species and life-history stages to a particular section and defines three main fish assemblage areas. The composition of the fish assemblage is indicative of the recruitment of freshwater and marine species to the estuary in opposite ways, determined by the vertical stratification. Seasonal changes in the species composition were related to migration as a result of salinity and temperature variations and reproductive migrations to spawning and mating areas. This overview reveals that the RdP is under environmental variations that are likely to produce modifications to fish distribution and abundance that affect its fisheries. This context plus fish stock declines and changes in exploitation patterns could amplify the magnitude of the variations in the fisheries resources availability and affect the

  15. Characteristics of the δ ^{15} N_{NO_3 } distribution and its drivers in the Changjiang River estuary and adjacent waters

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Yu, Zhiming; Song, Xiuxian; Wu, Zaixing; Yuan, Yongquan; Zhou, Peng; Cao, Xihua

    2016-05-01

    In this study, we conducted investigations in the Changjiang (Yangtze) River estuary and adjacent waters (CREAW) in June and November of 2014. We collected water samples from different depths to analyze the nitrogen isotopic compositions of nitrate, nutrient concentrations (including inorganic N, P, and Si), and other physical and biological parameters, along with the vertical distribution and seasonal variations of these parameters. The compositions of nitrogen isotope in nitrate were measured with the denitrifier method. Results show that the Changjiang River diluted water (CDW) was the main factor aff ecting the shallow waters (above 10 m) of the CREAW, and CDW tended to influence the northern areas in June and the southern areas in November. δ ^{15} N_{NO_3 } values in CDW ranged from 3.21‰-3.55‰. In contrast, the deep waters (below 30 m) were aff ected by the subsurface water of the Kuroshio Current, which intruded into the waters near 31°N in June. The δ ^{15} N_{NO_3 } values of these waters were 6.03‰-7.6‰, slightly higher than the values of the Kuroshio Current. Nitrate assimilation by phytoplankton in the shallow waters of the study area varied seasonally. Because of the favorable temperature and nutrient conditions in June, abundant phytoplankton growth resulted in harmful algae blooms (HABs). Therefore, nitrate assimilation was strong in June and weak in November. The δ ^{15} N_{NO_3 } fractionations caused by assimilation of phytoplankton were 4.57‰ and 4.41‰ in the shallow waters in June and November, respectively. These results are consistent with previous laboratory cultures and in situ investigations. Nitrification processes were observed in some deep waters of the study area, and they were more apparent in November than in June. The fractionation values of nitrification ranged from 24‰-25‰, which agrees with results for Nitrosospira tenuis reported by previous studies.

  16. Water molecules inside protein structure affect binding of monosaccharides with HIV-1 antibody 2G12.

    PubMed

    Ueno-Noto, Kaori; Takano, Keiko

    2016-10-01

    Water molecules inside biomolecules constitute integral parts of their structure and participate in the functions of the proteins. Some of the X-ray crystallographic data are insufficient for analyzing a series of ligand-protein complexes in the same condition. We theoretically investigated antibody binding abilities of saccharide ligands and the effects of the inner water molecules of ligand-antibody complexes. Classical molecular dynamics and quantum chemical simulations using a model with possible water molecules inside the protein were performed with saccharide ligands and Human Immunodeficiency Virus 1 neutralizing antibody 2G12 complexes to estimate how inner water molecules of the protein affect the dynamics of the complexes as well as the ligand-antibody interaction. Our results indicate the fact that d-fructose's strong affinity to the antibody was partly due to the good retentiveness of solvent water molecules of the ligand and its stability of the ligand's conformation and relative position in the active site. © 2016 Wiley Periodicals, Inc.

  17. Water molecules inside protein structure affect binding of monosaccharides with HIV-1 antibody 2G12.

    PubMed

    Ueno-Noto, Kaori; Takano, Keiko

    2016-10-01

    Water molecules inside biomolecules constitute integral parts of their structure and participate in the functions of the proteins. Some of the X-ray crystallographic data are insufficient for analyzing a series of ligand-protein complexes in the same condition. We theoretically investigated antibody binding abilities of saccharide ligands and the effects of the inner water molecules of ligand-antibody complexes. Classical molecular dynamics and quantum chemical simulations using a model with possible water molecules inside the protein were performed with saccharide ligands and Human Immunodeficiency Virus 1 neutralizing antibody 2G12 complexes to estimate how inner water molecules of the protein affect the dynamics of the complexes as well as the ligand-antibody interaction. Our results indicate the fact that d-fructose's strong affinity to the antibody was partly due to the good retentiveness of solvent water molecules of the ligand and its stability of the ligand's conformation and relative position in the active site. © 2016 Wiley Periodicals, Inc. PMID:27388036

  18. Enhanced permeation of single-file water molecules across a noncylindrical nanochannel

    NASA Astrophysics Data System (ADS)

    Meng, X. W.; Huang, J. P.

    2013-07-01

    We utilize molecular dynamics simulations to study the effect of noncylindrical shapes of a nanochannel (which are inspired from the shape of real biological water nanochannels) on the permeation of single-file water molecules across the nanochannel. Compared with the cylindrical shape that has been tremendously adopted in the literature, the noncylindrical shapes play a crucial role in enhancing water permeation. Remarkably, the maximal enhancement ratio reaches a value of 6.28 (enhancement behavior). Meanwhile, the enhancement becomes saturated when the volume of the noncylindrical shape continues to increase (saturation behavior). The analysis of average diffusivity of water molecules helps to reveal the mechanism underlying the two behaviors whereas Poiseuille's law fails to explain them. These results pave a way for designing high-flow nanochannels and provide insight into water permeation across biological water nanochannels.

  19. Enhanced permeation of single-file water molecules across a noncylindrical nanochannel.

    PubMed

    Meng, X W; Huang, J P

    2013-07-01

    We utilize molecular dynamics simulations to study the effect of noncylindrical shapes of a nanochannel (which are inspired from the shape of real biological water nanochannels) on the permeation of single-file water molecules across the nanochannel. Compared with the cylindrical shape that has been tremendously adopted in the literature, the noncylindrical shapes play a crucial role in enhancing water permeation. Remarkably, the maximal enhancement ratio reaches a value of 6.28 (enhancement behavior). Meanwhile, the enhancement becomes saturated when the volume of the noncylindrical shape continues to increase (saturation behavior). The analysis of average diffusivity of water molecules helps to reveal the mechanism underlying the two behaviors whereas Poiseuille's law fails to explain them. These results pave a way for designing high-flow nanochannels and provide insight into water permeation across biological water nanochannels.

  20. Structure detection in a libration vibration spectrum of water molecules by methods of nonlinear optics

    NASA Astrophysics Data System (ADS)

    Babenko, V. A.; Sychev, Andrei A.

    2012-09-01

    In exciting water possessing an enhanced optical strength by the radiation of a YAG : Nd3+ laser with 20-ps pulses, nonlinear scattering of light was detected in the frequency range of the optical second harmonic. A relationship was established of the signal of the nonlinear scattering with a stimulated Raman scattering (SRS) of the laser radiation in water. Near the SRS threshold, the structure was observed in the spectrum of nonlinear scattering, which is related to intermolecular libration vibrations of water molecules.

  1. Preliminary digital model of ground-water flow in the Madison Group, Powder River Basin and adjacent areas, Wyoming, Montana, South Dakota, North Dakota, and Nebraska

    USGS Publications Warehouse

    Konikow, L.F.

    1976-01-01

    A digital simulation model was used to analyze regional ground-water flow in the Madison Group aquifer in the Powder River Basin in Montana and Wyoming and adjacent areas. Most recharge to the aquifer originates in or near the outcrop areas of the Madison in the Bighorn Mountains and Black Hills, and most discharge occurs through springs and wells. Flow through the aquifer in the modeled areas was approximately 200 cubic feet per second. The aquifer can probably sustain increased ground-water withdrawals of up to several tens of cubic feet per second, but these withdrawals probably would significantly lower the potentiometric surface in the Madison aquifer in a large part of the basin. (Woodard-USGS)

  2. Rotation of water molecules in plastic phase at extreme conditions from first principles molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Tasaka, Tomofumi; Tsumuraya, Kazuo

    2014-03-01

    Water has a variety of polymorphs in wide ranges of temperature and pressure. Ice VII phase transforms to ice X with increased pressure. However the ice VII transforms to a superionic phase at higher temperatures around 2000K and pressure 30GPa in which the protons migrate in the body centered cubic lattice of oxygens. The ice VII transforms into rotator phase (so called plastic phase at lower temperatures around 600K and 5 to 50GPa. The formation of the phase has been confirmed only with the empirical potentials, whereas the experimental confirmation has been postponed until now. The present study elucidates the mechanism of the rotation of the water molecules and the correlation between the molecules during the rotation with the first principles molecular dynamics method. The water molecules rotate around each oxygen atom to conserve the ice VII positions of the protons.

  3. Temperature dependent adsorption and dissociation of water molecules on the Si(001)- (2 × 1) surface

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Yong; Kim, Yong-Sung; Kim, Hanchul; Yu, Sang-Yong

    2011-03-01

    The dissociative adsorption of water molecules on the Si(001)- (2 × 1) surface was studied up to 850 K by scanning tunneling microscopy (STM). A water molecule is dissociated into on-dimer (OD) and inter-dimer (ID) configurations and the population ratio nID / nOD changes from ~ 5 at room temperature to ~ 0.5 above 500 K. A quantitative analysis was made by considering the flipping motion of Si dimers to overcome the discrepancy between the experiment and theoretical estimations from the model of simple energy barrier. The flipping motion of Si dimers plays a dominant role in the dissociation of water molecules on the Si (001)- (2 × 1) surface.

  4. Interaction of water molecules with hexagonal 2D systems. A DFT study

    NASA Astrophysics Data System (ADS)

    Rojas, Ángela; Rey, Rafael

    Over the years water sources have been contaminated with many chemical agents, becoming issues that affect health of the world population. The advances of the nanoscience and nanotechnology in the development new materials constitute an alternative for design molecular filters with great efficiencies and low cost for water treatment and purification. In the nanoscale, the process of filtration or separation of inorganic and organic pollutants from water requires to study interactions of these atoms or molecules with different nano-materials. Specifically, it is necessary to understand the role of these interactions in physical and chemical properties of the nano-materials. In this work, the main interest is to do a theoretical study of interaction between water molecules and 2D graphene-like systems, such as silicene (h-Si) or germanene (h-Ge). Using Density Functional Theory we calculate total energy curves as function of separation between of water molecules and 2D systems. Different spatial configurations of water molecules relative to 2D systems are considered. Structural relaxation effects and changes of electronic charge density also are reported. Universidad Nacional de Colombia.

  5. Proton transfer via a transient linear water-molecule chain in a membrane protein

    PubMed Central

    Freier, Erik; Wolf, Steffen; Gerwert, Klaus

    2011-01-01

    High-resolution protein ground-state structures of proton pumps and channels have revealed internal protein-bound water molecules. Their possible active involvement in protein function has recently come into focus. An illustration of the formation of a protonated protein-bound water cluster that is actively involved in proton transfer was described for the membrane protein bacteriorhodopsin (bR) [Garczarek F, Gerwert K (2006) Nature 439:109–112]. Here we show through a combination of time-resolved FTIR spectroscopy and molecular dynamics simulations that three protein-bound water molecules are rearranged by a protein conformational change that resulted in a transient Grotthuss-type proton-transfer chain extending through a hydrophobic protein region of bR. This transient linear water chain facilitates proton transfer at an intermediate conformation only, thereby directing proton transfer within the protein. The rearrangement of protein-bound water molecules that we describe, from inactive positions in the ground state to an active chain in an intermediate state, appears to be energetically favored relative to transient incorporation of water molecules from the bulk. Our discovery provides insight into proton-transfer mechanisms through hydrophobic core regions of ubiquitous membrane spanning proteins such as G-protein coupled receptors or cytochrome C oxidases. PMID:21709261

  6. Coprostanol as a potential tracer of particulate sewage effluent to shelf waters adjacent to the Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; Wade, T. L.

    1981-01-01

    Samples were collected in the Chesapeake Bay entrance and contiguous shelf waters and were subsequently analyzed for particulate coprostanol and cholesterol concentrations. Surface coprostanol concentrations were fairly uniform, with a slight increase with depth. This increase with depth may be due to sewage-associated particulates settling as they leave the Bay, or the resuspension of contaminated sediment. Preliminary findings indicate sewage-associated materials are being transported from the Chesapeake Bay to shelf waters, where they may have a detrimental affect on living marine resources.

  7. An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E. F. (Principal Investigator); Hollman, R.; Alexander, J.; Nuzzi, R.

    1974-01-01

    The author has identified the following significant results. Photo-optical additive color quantitative measurements were made of ERTS-1 reprocessed positives of New York Bight and Block Island Sound. Regression of these data on almost simultaneous ship sample data of water's physical, chemical, biological, and optical properties showed that ERTS bands 5 and 6 can be used to predict the absolute value of the total number of particles and bands 4 and 5 to predict the relative extinction coefficient in New York Bight. Water masses and mixing patterns in Block Island Sound heretofore considered transient were found to be persistent phenomena requiring revision of existing mathematical and hydraulic models.

  8. Intracomplex {pi}-{pi} stacking interaction between adjacent phenanthroline molecules in complexes with rare-earth nitrates: Crystal and molecular structures of bis(1,10-Phenanthroline)trinitratoytterbium and bis(1,10-Phenanthroline)trinitratolanthanum

    SciTech Connect

    Sadikov, G. G. Antsyshkina, A. S.; Rodnikova, M. N.; Solonina, I. A.

    2009-01-15

    Crystals of the compounds Yb(NO{sub 3}){sub 3}(Phen){sub 2} and La(NO{sub 3}){sub 3}(Phen){sub 2} (Phen = 1,10-phenanthroline) are investigated using X-ray diffraction. It is established that there exist two different crystalline modifications: the main modification (phase 1) is characteristic of all members of the isostructural series, and the second modification (phase 2) is observed only for the Eu, Er, and Yb elements. It is assumed that the stability and universality of main phase 1 are associated with the occurrence of the nonbonded {pi}-{pi} stacking interactions between the adjacent phenanthroline ligands in the complexes. The indication of the interactions is a distortion of the planar shape of the Phen molecule (the folding of the metallocycle along the N-N line with a folding angle of 11{sup o}-13{sup o} and its 'boomerang' distortion). The assumption regarding the {pi}-{pi} stacking interaction is very consistent with the shape of the ellipsoids of atomic thermal vibrations, as well as with the data obtained from thermography and IR spectroscopy. An analysis of the structures of a number of rare-earth compounds has demonstrated that the intracomplex {pi}-{pi} stacking interactions directly contribute to the formation of supramolecular associates in the crystals, such as molecular dimers, supramolecules, chain and layered ensembles, and framework systems.

  9. 33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The waters.... Upon being so warned vessels working in the area shall leave the area immediately. (b) Bombing, rocket... bombing, rocket firing, and strafing areas. Live and dummy ammunition will be used. The area shall...

  10. 33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The waters.... Upon being so warned vessels working in the area shall leave the area immediately. (b) Bombing, rocket... regulations. (i) The area described in paragraph (b)(1) of this section will be used as bombing, rocket...

  11. 33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The waters.... Upon being so warned vessels working in the area shall leave the area immediately. (b) Bombing, rocket... regulations. (i) The area described in paragraph (b)(1) of this section will be used as bombing, rocket...

  12. 33 CFR 334.420 - Pamlico Sound and adjacent waters, N.C.; danger zones for Marine Corps operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Bombing and rocket firing area in Pamlico Sound in vicinity of Brant Island—(1) The area. The waters.... Upon being so warned vessels working in the area shall leave the area immediately. (b) Bombing, rocket... regulations. (i) The area described in paragraph (b)(1) of this section will be used as bombing, rocket...

  13. Whales, Dolphins, and Porpoises of the Eastern North Pacific and Adjacent Arctic Waters: A Guide to Their Identification.

    ERIC Educational Resources Information Center

    Leatherwood, Stephen; And Others

    This field guide is designed to permit observers to identify the cetaceans (whales, dolphins, and porpoises) they see in the waters of the eastern North Pacific, including the Gulf of California, Hawaii, and the western Arctic of North America. The animals described are grouped not by scientific relationships but by similarities in appearance in…

  14. WATER-ROCK INTERACTIONS INFLUENCING MERCURY FATE AND TRANSPORT FROM AN ABANDONED MINE SITE TO AN ADJACENT AQUATIC ECOSYSTEM

    EPA Science Inventory

    Clear Lake, located 150 km north of San Francisco, is one of the largest fresh water lakes in California and is an important economic resource for the region. Elevated mercury levels in fish in Clear Lake were identified in the late 1970s, resulting in a fish consumption advisor...

  15. Water Formation for the Metalation of Porphyrin Molecules on Oxidized Cu(111).

    PubMed

    Verdini, Alberto; Shinde, Prashant; Montanari, Gian Luca; Suran-Brunelli, Simone Tommaso; Caputo, Marco; Di Santo, Giovanni; Pignedoli, Carlo A; Floreano, Luca; Passerone, Daniele; Goldoni, Andrea

    2016-10-01

    Herein the formation of water molecules in the intermediate step of the redox reaction of porphyrins self-metalation on O/Cu(111) is demonstrated. Photoemission measurements show that the temperature on which porphyrins pick-up a substrate metal atom on O/Cu(111) is reduced by about 185±15 K with respect to the pure Cu(111). DFT calculations clearly indicate that the formation of a water molecule is less expensive than the formation of H2 on the O/Cu(111) substrate and, in some cases, it can be also exothermic. PMID:27555424

  16. Effects of water molecules on binding kinetics of peptide receptor on a piezoelectric microcantilever

    NASA Astrophysics Data System (ADS)

    Hui Kim, Sang; Kyoung Yoo, Yong; Chae, Myung-Sic; Yoon Kang, Ji; Song Kim, Tae; Seon Hwang, Kyo; Hoon Lee, Jeong

    2012-12-01

    The use of highly selective reversible peptide receptors is essential for cantilever-based electronic nose systems. Here, we present the effects of water molecules on the binding kinetics of 2,4-dinitrotoluene (DNT) molecules with DNT selective peptide receptors linked with a tri(ethylene glycol)-based (TEG) self-assembled monolayer (SAM) in a gas phase in a piezoelectric microcantilever sensor. We observed 1.5-times faster reaction kinetics in wet conditions compared with dry conditions. In a dissociation step, distinctive differences in the recovery time were observed in wet conditions, which could be attributed to water retention efficiency of TEG-linkers for the conformation of biomolecules.

  17. Orientation of the water molecules of hydration of human serum albumin.

    PubMed

    van Oss, C J; Good, R J

    1988-04-01

    Through contact-angle measurements with a number of liquids, on layers of hydrated human serum albumin (HSA), built on anisotropic ultrafilter membranes, the apolar, Lifshitz-van der Waals surface tension component, as well as the polar, electron-acceptor and electron-donor parameters of the hydrated layers could be determined. From these data, it was found that the degree of orientation of the water molecules of hydration of HSA is approximately 98% in the first layer of hydration and approximately 30% of the second layer. The water molecules of hydration are oriented with the H atoms closest to, and the O atoms farthest from, the protein surface.

  18. Ground-water quality and discharge to Chincoteague and Sinepuxent Bays adjacent to Assateague Island National Seashore, Maryland

    USGS Publications Warehouse

    Dillow, Jonathan J.A.; Banks, William S.L.; Smigaj, Michael J.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the shallow aquifer in the Piedmont Physiographic Province in Baltimore and Harford Counties, Maryland. Two hundred sixty-three small public water-supply wells were in operation in these counties during the spring of 2000. Ninety-one of these sites were selected for sampling using a methodology that distributed the samples evenly over the population and the spatial extent of the study area. Each site, and its potential susceptibility to microbiological contamination, was evaluated with regard to hole depth, casing interval, and open interval. Each site was evaluated using characteristics such as on-site geology and on-site land use.Samples were collected by pumping between 200 and 400 gallons of untreated well water through an electropositive cartridge filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect viral ribonucleic acid; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci, Escherichia coli, total coliforms, total oxidized nitrogen, nitrite, organic nitrogen, total phosphate, ortho-phosphate, calcium, magnesium, sodium, potas-sium, chloride, sulfate, iron, acid-neutralizing capacity, pH, specific conductance, temperature, and dissolved oxygen.One sample tested positive for the presence of the ribonucleic acid of rotavirus through poly-merase chain-reaction analysis. Twenty-nine per-cent of the samples (26 of 90) had bacterial con-tamination. About 7 percent of the samples (6 of 90) were contaminated with either male-specific coliphage

  19. Femtosecond mid-infrared study of the dynamics of water molecules in water-acetone and water-dimethyl sulfoxide mixtures.

    PubMed

    Lotze, S; Groot, C C M; Vennehaug, C; Bakker, H J

    2015-04-23

    We study the vibrational relaxation dynamics and the reorientation dynamics of HDO molecules in binary water-dimethyl sulfoxide (DMSO) and water-acetone mixtures with polarization-resolved femtosecond mid-infrared spectroscopy. For low solute concentrations we observe a slowing down of the reorientation of part of the water molecules that hydrate the hydrophobic methyl groups of DMSO and acetone. For water-DMSO mixtures the fraction of slowed-down water molecules rises much steeper with solute concentration than for water-acetone mixtures, showing that acetone molecules show significant aggregation already at low concentrations. At high solute concentrations, the vibrational and reorientation dynamics of both water-DMSO and water-acetone mixtures show a clear distinction between the dynamics of water molecules donating hydrogen bonds to other water molecules and the dynamics of water donating a hydrogen bond to the S═O/C═O group of the solute. For water-DMSO mixtures both types of water molecules show a very slow reorientation. The water molecules forming hydrogen bonds to the S═O group reorient with a time constant that decreases from 46 ± 14 ps at XDMSO = 0.33 to 13 ± 2 ps at XDMSO = 0.95. The water molecules forming hydrogen bonds to the C═O group of acetone show a much faster reorientation with a time constant that decreases from 6.1 ± 0.2 ps at Xacet = 0.3 to 2.96 ± 0.05 ps at Xacet = 0.9. The large difference in reorientation time constant of the solute-bound water for DMSO and acetone can be explained from the fact that the hydrogen bond between water and the S═O group of DMSO is much stronger than the hydrogen bond between water and the C═O group of acetone. We attribute the strongly different behavior of water in DMSO-rich and acetone-rich mixtures to their difference in molecular shape.

  20. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    SciTech Connect

    Lin, Jau-Wen

    2014-08-07

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied.

  1. An interdisciplinary study of the estaurine and coastal oceanography of Block Island Sound and adjacent New York coastal waters

    NASA Technical Reports Server (NTRS)

    Yost, E.; Hollman, R.; Alexander, J.; Nuzzi, R.

    1974-01-01

    ERTS-1 photographic data products have been analyzed using additive color viewing and electronic image analysis techniques. Satellite data were compared to water sample data collected simultaneously with the data of ERTS-1 coverage in New York Bight. Prediction of the absolute value of total suspended particles can be made using composites of positives of MSS bands 5 and 6 which have been precisely made using the step wedge supplied on the imagery. Predictions of the relative value of the extinction coefficient can be made using bands 4 and 5. Thematic charts of total suspended particles (particles per litre) and extinction coefficient provide scientists conducting state and federal water sampling programs in New York Bight with data which improves the performance of these programs.

  2. Modeling of structure H hydrate equilibria for methane, intermediate hydrocarbon molecules and water systems

    SciTech Connect

    Thomas, M.; Behar, E.

    1996-12-31

    Clathrate hydrates are inclusion compounds in which guest molecules are engaged by water molecules under favorable conditions of pressure and temperature. The well known structures 1 and 2 have been discovered since last century, while a new structure called H has been recently described in the literature. Since that time, structure H hydrate equilibrium data involving methane and different intermediate liquid hydrocarbon molecules have been published. The equilibrium calculations involving hydrates are based on the fact that the chemical potential of water in the aqueous liquid phase is equal to the one in the hydrate phase. The chemical potential of water in the liquid aqueous phase can be easily described by classical thermodynamic relations, while the chemical potential of water in the hydrates phase is described by the expressions proposed by Van der Walls and Platteeuw derived from an adsorption model based on statistical thermodynamics. The authors present in this paper a set of Kihara potential parameters which enable the calculation of Langmuir constants which characterize the adsorption of some naphthenic and iso-paraffinic intermediate hydrocarbons in the larger cage of structure H hydrates. This work thus allows the computation of structural H hydrate equilibrium conditions for systems made of methane, intermediate hydrocarbon molecules and water.

  3. Local lateral environment of the molecules at the surface of DMSO-water mixtures.

    PubMed

    Fábián, Balázs; Idrissi, Abdenacer; Marekha, Bogdan; Jedlovszky, Pál

    2016-10-12

    Molecular dynamics simulations of the liquid-vapour interface of dimethyl sulphoxide (DMSO)-water mixtures of 11 different compositions, including two neat systems are performed on the canonical (N, V, T) ensemble at 298 K. The molecules constituting the surface layer of these systems are selected by means of the identification of the truly interfacial molecules (ITIM) method, and their local lateral environment at the liquid surface is investigated by performing Voronoi analysis. The obtained results reveal that both molecules prefer to be in a mixed local environment, consisting of both kinds of molecules, at the liquid surface, and this preference is even stronger here than in the bulk liquid phase. Neat-like patches, in which a molecule is surrounded by like neighbours, are not found. However, vacancies that are surrounded solely by water molecules are observed at the liquid surface. Our results show that strongly hydrogen bonded DMSO·H2O complexes, known to exist in the bulk phase of these mixtures, are absent from the liquid surface. PMID:27506283

  4. Local lateral environment of the molecules at the surface of DMSO-water mixtures

    NASA Astrophysics Data System (ADS)

    Fábián, Balázs; Idrissi, Abdenacer; Marekha, Bogdan; Jedlovszky, Pál

    2016-10-01

    Molecular dynamics simulations of the liquid-vapour interface of dimethyl sulphoxide (DMSO)-water mixtures of 11 different compositions, including two neat systems are performed on the canonical (N, V, T) ensemble at 298 K. The molecules constituting the surface layer of these systems are selected by means of the identification of the truly interfacial molecules (ITIM) method, and their local lateral environment at the liquid surface is investigated by performing Voronoi analysis. The obtained results reveal that both molecules prefer to be in a mixed local environment, consisting of both kinds of molecules, at the liquid surface, and this preference is even stronger here than in the bulk liquid phase. Neat-like patches, in which a molecule is surrounded by like neighbours, are not found. However, vacancies that are surrounded solely by water molecules are observed at the liquid surface. Our results show that strongly hydrogen bonded DMSO·H2O complexes, known to exist in the bulk phase of these mixtures, are absent from the liquid surface.

  5. An ab initio molecular dynamics study on hydrogen bonds between water molecules.

    PubMed

    Pan, Zhang; Chen, Jing; Lü, Gang; Geng, Yi-Zhao; Zhang, Hui; Ji, Qing

    2012-04-28

    The quantitative estimation of the total interaction energy of a molecular system containing hydrogen bonds (H bonds) depends largely on how to identify H bonding. The conventional geometric criteria of H bonding are simple and convenient in application, but a certain amount of non-H bonding cases are also identified as H bonding. In order to investigate the wrong identification, we carry out a systematic calculation on the interaction energy of two water molecules at various orientation angles and distances using ab initio molecular dynamics method with the dispersion correction for the Becke-Lee-Yang-Parr (BLYP) functionals. It is shown that, at many orientation angles and distances, the interaction energies of the two water molecules exceed the energy criterion of the H bond, but they are still identified as H-bonded by the conventional "distance-angle" criteria. It is found that in these non-H bonding cases the wrong identification is mainly caused by short-range interaction between the two neighbouring water molecules. We thus propose that, in addition to the conventional distance and angle criteria of H bonding, the distance d(H···H) between the two neighbouring hydrogen atoms of the two water molecules should also be taken as a criterion, and the distance r(O···H) between the hydrogen atom of the H-bond donor molecule and the oxygen atom of the acceptor molecule should be restricted by a lower limit. When d(H···H) and r(O···H) are small (e.g., d(H···H) < 2.0 Å and r(O···H) < 1.62 Å), the repulsion between the two neighbouring atoms increases the total energy of the two water molecules dramatically and apparently weakens the binding of the water dimer. A statistical analysis and comparison of the numbers of the H bonds identified by using different criteria have been conducted on a Car-Parrinello ab initio molecular dynamics simulation with dispersion correction for a system of 64 water molecules at near-ambient temperature. They show that

  6. An ab initio molecular dynamics study on hydrogen bonds between water molecules

    NASA Astrophysics Data System (ADS)

    Pan, Zhang; Chen, Jing; Lü, Gang; Geng, Yi-Zhao; Zhang, Hui; Ji, Qing

    2012-04-01

    The quantitative estimation of the total interaction energy of a molecular system containing hydrogen bonds (H bonds) depends largely on how to identify H bonding. The conventional geometric criteria of H bonding are simple and convenient in application, but a certain amount of non-H bonding cases are also identified as H bonding. In order to investigate the wrong identification, we carry out a systematic calculation on the interaction energy of two water molecules at various orientation angles and distances using ab initio molecular dynamics method with the dispersion correction for the Becke-Lee-Yang-Parr (BLYP) functionals. It is shown that, at many orientation angles and distances, the interaction energies of the two water molecules exceed the energy criterion of the H bond, but they are still identified as H-bonded by the conventional "distance-angle" criteria. It is found that in these non-H bonding cases the wrong identification is mainly caused by short-range interaction between the two neighbouring water molecules. We thus propose that, in addition to the conventional distance and angle criteria of H bonding, the distance dHṡṡṡH between the two neighbouring hydrogen atoms of the two water molecules should also be taken as a criterion, and the distance rOṡṡṡH between the hydrogen atom of the H-bond donor molecule and the oxygen atom of the acceptor molecule should be restricted by a lower limit. When dHṡṡṡH and rOṡṡṡH are small (e.g., dHṡṡṡH < 2.0 Å and rOṡṡṡH < 1.62 Å), the repulsion between the two neighbouring atoms increases the total energy of the two water molecules dramatically and apparently weakens the binding of the water dimer. A statistical analysis and comparison of the numbers of the H bonds identified by using different criteria have been conducted on a Car-Parrinello ab initio molecular dynamics simulation with dispersion correction for a system of 64 water molecules at near-ambient temperature. They

  7. Proton transfer in hydrogen-bonded network of phenol molecules: intracluster formation of water.

    PubMed

    Lengyel, Jozef; Gorejová, Radka; Herman, Zdeněk; Fárník, Michal

    2013-11-01

    Electron ionization and time-of-flight mass spectrometry was used to investigate the phenol clusters (PhOH)n of different size from single molecule to large clusters: in coexpansion with He, the dimers n = 2 are mostly generated; in Ar, large species of n ≥ 10 also occur. Besides [(PhOH)n](+•) cluster ion series, hydrated phenol cluster ions [(PhOH)n·xH2O](+•) with up to x = 3 water molecules and dehydrated phenol clusters [(PhOH)n-H2O](+•) were observed. The hydrated phenol series exhibits minima and maxima that are interpreted as evidence for proton transfer between the hydrogen bonded cluster ions of cyclic structures. The proton transfer leads to a water generation within the clusters, and subsequent elimination of the diphenyl ether molecule(s) from the cluster yields the hydrated phenol cluster ions. Alternatively, a water molecule release yields a series of dehydrated phenols, among which the diphenyl ether ion [PhOPh](+•) (n = 2) constitutes the maximum.

  8. Marine bird populations of the Strait of Juan de Fuca, Strait of Georgia and adjacent waters in 1978 and 1979

    SciTech Connect

    Wahl, T.R.; Speich, S.M.; Manuwal, D.A.; Hirsch, K.V.; Miller, C.

    1981-10-01

    The threat of oil pollution in the Strait of Juan de Fuca has prompted this study of marine birds in Washington State. The study was conducted from 1 January 1978 to 31 December 1979 in the Strait of Juan de Fuca north to the San Juan Islands and Point Roberts and west to Sidney, British Columbia. Major objectives were to determine the time of occurrence, distribution, abundance, and locations of important concentrations of marine birds. Data were obtained on breeding marine birds on 99 geographic units in American waters.

  9. Turnover and release of P-, N-, Si-nutrients in the Mexicali Valley (Mexico): interactions between the lower Colorado River and adjacent ground- and surface water systems.

    PubMed

    Orozco-Durán, A; Daesslé, L W; Camacho-Ibar, V F; Ortiz-Campos, E; Barth, J A C

    2015-04-15

    A study on dissolved nitrate, ammonium, phosphate and silicate concentrations was carried out in various water compartments (rivers, drains, channels, springs, wetland, groundwater, tidal floodplains and ocean water) in the Mexicali Valley and the Colorado River delta between 2012 and 2013, to assess modern potential nutrient sources into the marine system after river damming. While nitrate and silicate appear to have a significant input into the coastal ocean, phosphate is rapidly transformed into a particulate phase. Nitrate is, in general, rapidly bio-consumed in the surface waters rich in micro algae, but its excess (up to 2.02 mg L(-1) of N from NO3 in winter) in the Santa Clara Wetland represents a potential average annual source to the coast of 59.4×10(3)kg N-NO3. Despite such localized inputs, continuous regional groundwater flow does not appear to be a source of nitrate to the estuary and coastal ocean. Silicate is associated with groundwaters that are also geothermally influenced. A silicate receiving agricultural drain adjacent to the tidal floodplain had maximum silicate concentrations of 16.1 mg L(-1) Si-SiO2. Seepage of drain water and/or mixing with seawater during high spring tides represents a potential source of dissolved silicate and nitrate into the Gulf of California. PMID:25617998

  10. Turnover and release of P-, N-, Si-nutrients in the Mexicali Valley (Mexico): interactions between the lower Colorado River and adjacent ground- and surface water systems.

    PubMed

    Orozco-Durán, A; Daesslé, L W; Camacho-Ibar, V F; Ortiz-Campos, E; Barth, J A C

    2015-04-15

    A study on dissolved nitrate, ammonium, phosphate and silicate concentrations was carried out in various water compartments (rivers, drains, channels, springs, wetland, groundwater, tidal floodplains and ocean water) in the Mexicali Valley and the Colorado River delta between 2012 and 2013, to assess modern potential nutrient sources into the marine system after river damming. While nitrate and silicate appear to have a significant input into the coastal ocean, phosphate is rapidly transformed into a particulate phase. Nitrate is, in general, rapidly bio-consumed in the surface waters rich in micro algae, but its excess (up to 2.02 mg L(-1) of N from NO3 in winter) in the Santa Clara Wetland represents a potential average annual source to the coast of 59.4×10(3)kg N-NO3. Despite such localized inputs, continuous regional groundwater flow does not appear to be a source of nitrate to the estuary and coastal ocean. Silicate is associated with groundwaters that are also geothermally influenced. A silicate receiving agricultural drain adjacent to the tidal floodplain had maximum silicate concentrations of 16.1 mg L(-1) Si-SiO2. Seepage of drain water and/or mixing with seawater during high spring tides represents a potential source of dissolved silicate and nitrate into the Gulf of California.

  11. The influence of climate cycles on the water regime and carbonate profile in chernozems of Central European Russia and adjacent territories

    NASA Astrophysics Data System (ADS)

    Bazykina, G. S.; Ovechkin, S. V.

    2016-04-01

    The influence of long-term "dry" and "wet" climatic cycles on the water regime, hydrological parameters, and carbonate profiles of chernozems in Central European Russia and adjacent territories was studied. The hydrological and carbonate profiles were found to change during the wet cycle. However, the upper part of the hydrological profile is basically unchanging, whereas in its lower part, the number of hydrological horizons and contrast in their moistening decrease in the forest-steppe chernozems and increase in the steppe chernozems. The frequency of through wetting of chernozems increases during the wet cycles. The vertical lithological heterogeneity of the parent material affects the soil moisture status. In the wet climatic cycle, the moisture content above the lithological contact increases resulting in the development of the features of soil hydromorphism. In the carbonate profile, the character of pedofeatures is changing: some carbonate neoformations disappear, while the other ones develop. Possible variations of the periodically percolative water regime were revealed in chernozems. The classification of water regime proposed by A.A. Rode may be updated based on the data obtained during the dry climatic cycle. Rode's hypothesis about cyclic variations in the soil water regime is confirmed.

  12. [Phytoplankton in Yangtze River estuary and its adjacent waters in spring in 2009: species composition and size-fractionated chlorophyll a].

    PubMed

    Sun, Jun; Tian, Wei

    2011-01-01

    Based on the multidisciplinary cruise investigation in the Yangtze River estuary and its adjacent waters in April 2009, the phytoplankton species and their abundance were analyzed by the Utermöhl method, and the size-fractionated chlorophyll a concentrations were determined. In the meantime, the relationships between the dominant phytoplankton species and environmental physicochemical factors were explored by Canonical Correspondence Analysis (CCA). A total of 3 phyla, 46 genera, and 64 species (not including uncertain species) were found, mostly diatoms and dinoflagellates, with diatoms dominant. Most of these species were temperate and coastal, but a few brackish and oceanic species also presented. There were 33 diatom genera including 45 species. The dominant species were Skeletonema dohrnii, Paralia sulcata, Thalassionema nitzschioides, Pseudo-nitzschia pungens, Melosira granulata var. angustissima, Pseudo-nitzschia delicatissima, and Guinardia delicatula. The phytoplankton cell abundance ranged from 0.3 to 13447.7 cells x ml(-1), with an average of 1142.385 cells x ml(-1). Concerning the horizontal distribution, cell abundance was the highest in the middle-northern part of the survey area, with S. dohrnii dominant. The phytoplankton cell abundance was high in the surface layer water, and decreased with increasing depth. The Shannon diversity index and Pielou evenness index were consistently low in the middle-northern part of the survey area, in contrast to the trend of phytoplankton cell abundance. The chlorophyll a concentrations ranged from 0.34 to 29 g x L(-1), with an average of 3.3 g x L(-1), consistent with the cell abundance distribution. Size-fractionated chlorophyll a results showed that the biomass in the middle-northern part of the survey area was mainly composed of microphytoplankton (> 20 microm), while that in offshore waters was mainly composed of nanophytoplankton (2-20 microm) and picophytoplankton (< 2 microm). The CCA showed that the

  13. Review of samples of sediment, tailings, and waters adjacent to the Cactus Queen gold mine, Kern County, California

    USGS Publications Warehouse

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Cactus Queen Mine is located in the western Mojave Desert in Kern County, California. The Cactus Queen gold-silver (Au-Ag) deposit is similar to other Au-Ag deposits hosted in Miocene volcanic rocks that consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions. The volcanic rocks were emplaced onto a basement of Mesozoic silicic intrusive rocks. A part of the Cactus Queen Mine is located on Federal land managed by the U.S. Bureau of Land Management (BLM). Staff from the BLM initially sampled the mine area and documented elevated concentrations of arsenic (As) in tailings and sediment. BLM then requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure and characterize As and other geochemical constituents in sediment, tailings, and waters on the part of the mine on Federal lands. This report is made in response to the request by the BLM, the lead agency mandated to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) - Removal Site Investigation (RSI). The RSI applies to the potential removal of As-contaminated mine waste from the Cactus Queen Mine as a means of reducing As release and exposure to humans and biota. This report summarizes data obtained from field sampling of sediments, mine tailings, and surface waters at the Cactus Queen Mine on January 27, 2008. Our results provide a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  14. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering

    DOE PAGES

    Bahadur, Jitendra; Contescu, Cristian I.; Rai, Durgesh K.; Gallego, Nidia C.; Melnichenko, Yuri B.

    2016-10-19

    The adsorption of water is central to most of the applications of microporous carbon as adsorbent material. We report early kinetics of water adsorption in the microporous carbon using in-situ small-angle neutron scattering. It is observed that adsorption of water occurs via cluster formation of molecules. Interestingly, the cluster size remains constant throughout the adsorption process whereas number density of clusters increases with time. The role of surface chemistry of microporous carbon on the early kinetics of adsorption process was also investigated. Lastly, the present study provides direct experimental evidence for cluster assisted adsorption of water molecules in microporous carbonmore » (Do-Do model).« less

  15. Chemically accurate energy barriers of small gas molecules moving through hexagonal water rings.

    PubMed

    Hjertenæs, Eirik; Trinh, Thuat T; Koch, Henrik

    2016-07-21

    We present chemically accurate potential energy curves of CH4, CO2 and H2 moving through hexagonal water rings, calculated by CCSD(T)/aug-cc-pVTZ with counterpoise correction. The barriers are extracted from a potential energy surface obtained by allowing the water ring to expand while the gas molecule diffuses through. State-of-the-art XC-functionals are evaluated against the CCSD(T) potential energy surface.

  16. The formation of acid rain in the atmosphere, adjacent to the TTP with the joint-condensing of sulfur dioxide and water vapor

    NASA Astrophysics Data System (ADS)

    Gvozdyakov, D. V.; Gubin, V. E.; Matveeva, A. A.

    2014-08-01

    Presents the results of mathematical simulation of the condensation process of sulphur dioxide and water vapor on the condensation nuclei surface under the action of natural factors. Numerical investigations were carried out for the summer at a moderate speed of the wind. The influence of the parameter of condensation on the speed of the process of sulfuric acid drops formation in the air space was analyzed. Time ranges, sufficient for the formation of the acid rain sedimentation in the atmosphere, adjacent to the areas of thermal power station work were established. It is shown that the speed of air masses movement effects on the process of acid anthropogenic admixtures dispersion in the atmosphere. Approbation of the obtained results was carried out by checking the difference scheme conservative and solution of test problems.

  17. Proton Migration in Clusters Consisting of Protonated Pyridine Solvated by Water Molecules.

    PubMed

    Berthias, Francis; Feketeová, Linda; Chermette, Henry; Forquet, Valérian; Morell, Christophe; Abdoul-Carime, Hassan; Farizon, Bernadette; Farizon, Michel; Märk, Tilmann D

    2015-10-26

    Proton transfer (PT) from protonated pyridine to water molecules is observed after excitation of microhydrated protonated pyridine (Py) clusters PyH(+) (H2 O)n (n=0-5) is induced by a single collision with an Ar atom at high incident velocity (95×10(3)  m s(-1) ). Besides the fragmentation channel associated with the evaporation of water molecules, the charged-fragment mass spectrum shows competition between the production of the PyH(+) ion (or its corresponding charged fragments) and the production of H(+) (H2 O) or H(+) (H2 O)2 ions. The increase in the production of protonated water fragments as a function of the number of H2 O molecules in the parent cluster ion as well sd the observation of a stable H(+) (H2 O)2 fragment, even in the case of the dissociation of PyH(+) (H2 O)2 , are evidence of the crucial role of PT in the relaxation process, even for a small number of solvating water molecules. PMID:26289662

  18. Theoretical study of the decomposition of formamide in the presence of water molecules.

    PubMed

    Nguyen, Vinh Son; Orlando, Thomas M; Leszczynski, Jerzy; Nguyen, Minh Tho

    2013-03-28

    Formamide (NH2CHO, FM) has been considered an active key precursor in prebiotic chemistry on early Earth. Under certain conditions such as dry lagoons, FM can decompose to produce reactants that lead to formation of more complex biomolecules. Specifically, FM decomposition follows many reactive channels producing small molecules such as H2, CO, H2O, HCN, HNC, NH3, and HNCO with comparable energy barriers in the range of 73-82 kcal/mol. Due to the likely presence of water on prebiotic Earth and the intrinsic presence of water following FM decomposition, we explore the effects of water oligomers, (H2O)n with n = 1-3, on its dehydration, dehydrogenation, and decarbonylation reactions using quantum chemical computations. Geometries are optimized using MP2/aug-cc-pVxZ calculations (x = D,T), and relative energies are evaluated using coupled-cluster theory CCSD(T) with the aug-cc-pVxZ basis sets (x = D, T, Q). Where possible the coupled-cluster energies are extrapolated to the complete basis set limit (CBS). Water classically acts as an efficient bifunctional catalyst for decomposition. With the presence of one water molecule, the dehydration pathway leading to HCN is favored. When two and three water molecules are involved, dehydration remains energetically favored over other channels and attains an energy barrier of ~30 kcal/mol. PMID:23461351

  19. Temperature dependence of the transport of single-file water molecules through a hydrophobic channel.

    PubMed

    Su, Jiaye; Yang, Keda

    2016-05-01

    Although great effort has been made on the transport properties of water molecules through nanometer channels, our understanding on the effect of some basic parameters are still rather poor. In this article, we use molecular dynamics simulations to study the temperature effect on the transport of single-file water molecules through a hydrophobic channel. Of particular interest is that the water flow and average translocation time both exhibit exponential relations with the temperature. Based on the continuous-time random-walk model and Arrhenius equation, we explore some new physical insights on these exponential behaviors. With the increase of temperature, the water dipoles flip more frequently, since the estimated flipping barrier is less than 2 kB T. Specifically, the flipping frequency also shows an exponential relation with the temperature. Furthermore, the water-water interaction and water occupancy demonstrate linear relations with the temperature, and the water density profiles along the channel axis can be slightly affected by the temperature. These results not only enhance our knowledge about the temperature effect on the single-file water transport, but also have potential implications for the design of controllable nanofluidic machines.

  20. The Dynamics, energetics and selectivity of water chain-containing aquapores created by the self-assembly of aquafoldamer molecules.

    PubMed

    Ma, Wenliang; Wang, Chunquan; Li, Juntong; Zhang, Kun; Lu, Yu-Jing; Huo, Yanping; Zeng, Huaqiang

    2015-11-21

    Through a series of crystallographic snapshots of water chain-containing aquapores formed from numerous one-dimensionally aligned aquafoldamer molecules 2, we demonstrated here (1) a preferential recognition of the water molecules over methanol molecules by the assembled cavity-containing aquapores with a selectivity factor of at least 17.7, (2) the dynamic nature of the water chains and the aquapores in response to varying external stimuli that exert the most influential impact on the aromatic π-π stacking in the aquapores and (3) the aquapores undergo a significant rearrangement in order to accommodate water, rather than methanol, molecules. PMID:26381358

  1. Nd isotopic composition and REE pattern in the surface waters of the eastern Indian Ocean and its adjacent seas

    SciTech Connect

    Amakawa, Hiroshi; Alibo, D.S.; Nozaki, Yoshiyuki

    2000-05-01

    The Nd isotopic composition and dissolved rare earth elements (REEs) have been measured in the surface waters along the 1996/97 R.V. Hakuho-Maru Expedition route from Tokyo to the Southern Ocean, southwest of Australia, through the Philippine and Indonesian Archipelago, the eastern Indian Ocean, the Bay of Bengal and the South China Sea. The radiogenic {epsilon}{sub Nd} values of {minus}1.3 and {minus}1.4 were found in the Sulu Sea and near the Lombok Strait, indicating the strong influence of surrounding volcanic islands, whereas non-radiogenic {epsilon}{sub Nd} values of less than {minus}10 were found in the Southern Ocean and the Bay of Bengal suggesting Nd of continental origin. The dissolved Nd concentrations also showed a wide range of variation from 2.8 to 19.6 pmol/kg and the trivalent REE patterns exhibited characteristic features that can be grouped into each different oceanic province. The geographical distribution of dissolved Nd is different from that of atmospherically derived {sup 210}Pb, but generally resembles that of coastally derived {sup 228}Ra. This strongly suggests that fluvial and coastal input predominates over eolian input for dissolved Nd in the surface ocean. However, the riverine dissolved Nd flux appears to be relatively minor, and remobilization of Nd from coastal and shelf sediments may play an important role in the total Nd input to the ocean. By modeling the distributions of the isotopic composition and concentration of Nd together with the activity ratio of {sup 228}Ra/{sup 226}Ra in the southeastern Indian Ocean, the authors estimate a mean residence time of Nd in the surface mixed layer to be 1.5--2.6 years. The short mean residence time is comparable with, or slightly longer than that of {sup 210}Pb suggesting similar chemical reactivity.

  2. Evaluation of cracking in feedwater piping adjacent to the steam generators in Nine Pressurized Water Reactor Plants

    SciTech Connect

    Goldberg, A.; Streit, R.D.; Scott, R.G.

    1980-06-25

    Cracking in ASTM A106-B and A106-C feedwater piping was detected near the inlet to the steam generators in a number of pressurized water reactor plants. We received sections with cracks from nine of the plants with the objective of identifying the cracking mechanism and assessing various factors that might contribute to this cracking. Variations were observed in piping surface irregularities, corrosion-product, pit, and crack morphology, surface elmental and crystal structure analyses, and steel microstructures and mechanical properties. However, with but two exceptions, namely, arrest bands and major surface irregularities, we were unable to relate the extent of cracking to any of these factors. Tensile and fracture toughness (J/sub Ic/ and tearing modulus) properties were measured over a range of temperatures and strain rates. No unusual properties or microstructures were observed that could be related to the cracking problem. All crack surfaces contained thick oxide deposits and showed evidence of cyclic events in the form of arrest bands. Transmission electron microscopy revealed fatigue striations on replicas of cleaned crack surfaces from one plant and possibly from three others. Calculations based on the observed striation spacings gave a value of ..delta..sigma = 150 MPa (22 ksi) for one of the major cracks. The direction of crack propagation was invariably related to the piping surface and not to the piping axis. These two factors are consistent with the proposed concept of thermally induced, cyclic, tensile surface stresses. Although surface irregularities and corrosion pits were sources for crack initiation and corrosion may have contributed to crack propagation, it is proposed that the overriding factor in the cracking problem is the presence of unforeseen cyclic loads.

  3. Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters

    SciTech Connect

    PAT GRANDELLI, P.E.; GREG ROCHELEAU; JOHN HAMRICK, Ph.D.; MATT CHURCH, Ph.D.; BRIAN POWELL, Ph.D.

    2012-09-29

    This paper describes the modeling work by Makai Ocean Engineering, Inc. to simulate the biochemical effects of of the nutrient-enhanced seawater plumes that are discharged by one or several 100 megawatt OTEC plants. The modeling is needed to properly design OTEC plants that can operate sustainably with acceptably low biological impact. In order to quantify the effect of discharge configuration and phytoplankton response, Makai Ocean Engineering implemented a biological and physical model for the waters surrounding O`ahu, Hawai`i, using the EPA-approved Environmental Fluid Dynamics Code (EFDC). Each EFDC grid cell was approximately 1 square kilometer by 20 meters deep, and used a time step of three hours. The biological model was set up to simulate the biochemical response for three classes of organisms: Picoplankton (< 2 um) such as prochlorococccus, nanoplankton (2-20 um), and microplankton (> 20 um) e.g., diatoms. The dynamic biological phytoplankton model was calibrated using chemical and biological data collected for the Hawaii Ocean Time Series (HOTS) project. Peer review of the biological modeling was performed. The physical oceanography model uses boundary conditions from a surrounding Hawai'i Regional Ocean Model, (ROM) operated by the University of Hawai`i and the National Atmospheric and Oceanic Administration. The ROM provided tides, basin scale circulation, mesoscale variability, and atmospheric forcing into the edges of the EFDC computational domain. This model is the most accurate and sophisticated Hawai'ian Regional Ocean Model presently available, assimilating real-time oceanographic observations, as well as model calibration based upon temperature, current and salinity data collected during 2010 near the simulated OTEC site. The ROM program manager peer-reviewed Makai's implementation of the ROM output into our EFDC model. The supporting oceanographic data was collected for a Naval Facilities Engineering Command / Makai project. Results: The model

  4. Local order, energy, and mobility of water molecules in the hydration shell of small peptides.

    PubMed

    Agarwal, Manish; Kushwaha, Hemant R; Chakravarty, Charusita

    2010-01-14

    The extent to which the presence of a biomolecular solute modifies the local energetics of water molecules, as measured by the tagged molecule potential energy (TPE), is examined using molecular dynamics simulations of the beta-hairpin of 2GB1 and the alpha-helix of deca-alanine in water. The CHARMM22 force field, in conjunction with the TIP3P solvent water model, is used for the peptides, with simulations of TIP3P and SPC/E water used as benchmarks for the behavior of bulk solvent. TIP3P water is shown to have significantly lower local tetrahedral order and higher binding energy than SPC/E at the same state point. The TIP3P and SPC/E water models show very similar dynamical correlations in the TPE fluctuations on frequency scales greater than 0.1 cm(-1). In addition, the two models show the same linear correlation between mean tetrahedral order and binding energy, suggesting that the relationship between choice of water models and simulated hydration behavior may involve a complex interplay of static and dynamic factors. The introduction of a peptide in water modifies the local TPE of water molecules as a function of distance from the biomolecular interface. There is an oscillatory variation in the TPE with distance from the peptide for water molecules lying outside a 3 A radius and extending to at least 10 A. These variations are of the order of 2-5% of the bulk TPE value and are anticorrelated with variations in local tetrahedral order in terms of locations of maxima and minima, which may be understood in terms of the relative contribution of van der Waals and Coulombic contributions to the TPE. The distance-dependent variations in local order and energetics are essentially the same for the beta-hairpin of 2GB1 as well as deca-alanine. Within a radius of 3 A, the perturbation of the solvent structure is very significant with local TPEs that are 10-15% lower than the bulk value. The chemical identity of side-chain residues and the secondary structure play an

  5. Depletion of water molecules during ethanol wet-bonding with etch and rinse dental adhesives.

    PubMed

    Grégoire, Geneviève; Sharrock, Patrick; Delannée, Mathieu; Delisle, Marie-Bernadette

    2013-01-01

    The treatment of demineralized dentin with ethanol has been proposed as a way to improve hydrophobic monomer penetration into otherwise water saturated collagen fibrils. The ethanol rinse is expected to preserve the fibrils from collapsing while optimizing resin constituent infiltration for better long term adhesion. The physico-chemical investigations of demineralized dentin confirmed objectively these working hypotheses. Namely, Differential Scanning Calorimetry (DSC) measurements of the melting point of water molecules pointed to the presence of free and bound water states. Unfreezable water was the main type of water remaining following a rinsing step with absolute ethanol. Two different liquid water phases were also observed by Magic Angle Spinning (MAS) solid state Nuclear magnetic Resonance (NMR) spectroscopy. Infrared spectra of ethanol treated specimens illustrated differences with the fully hydrated specimens concerning the polar carbonyl vibrations. Optical microscopy observations as well as scanning electron microscopy showed an improved dentin-adhesive interface with ethanol wet bonding. The results indicate that water can be confined to strongly bound structural molecules when excess water is removed with ethanol prior to adhesive application. This should preserve collagen from hydrolysis upon aging of the hybrid layer.

  6. Disintegration of water molecules in a steam-plasma torch powered by microwaves

    SciTech Connect

    Uhm, Han S.; Kim, Jong H.; Hong, Yong C.

    2007-07-15

    A pure steam torch is generated by making use of 2.45 GHz microwave. Steam from a steam generator enters the discharge tube as a swirl gas at a temperature higher than 150 deg. C. This steam becomes a working gas and produces a stable steam torch. The torch volume is almost linearly proportional to the microwave power. The temperature of the torch flame is measured by making use of optical spectroscopy and a thermocouple device. Two distinctive regions are exhibited, a bright, whitish region of a high-temperature zone and a reddish, dimmer region of a relatively low-temperature zone. The bright, whitish region is a typical torch based on plasma species and the reddish, dimmer region is hydrogen burning in oxygen. Study of water molecule disintegration and gas temperature effects on the molecular fraction characteristics in steam-plasma of a microwave plasma torch at the atmospheric pressure is carried out. An analytical investigation of water disintegration indicates that a substantial fraction of water molecules disintegrate and form other compounds at high temperatures in the steam-plasma torch. Emission profiles of the hydroxide radical and water molecules confirm the theoretical predictions of water disintegration in the torch.

  7. Polarization induced water molecule dissociation below the first-order electronic-phase transition temperature.

    PubMed

    Das Arulsamy, Andrew; Kregar, Zlatko; Eleršič, Kristina; Modic, Martina; Subramani, Uma Shankar

    2011-09-01

    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature.

  8. Trapping and desorption of complex organic molecules in water at 20 K

    NASA Astrophysics Data System (ADS)

    Burke, Daren J.; Puletti, Fabrizio; Woods, Paul M.; Viti, Serena; Slater, Ben; Brown, Wendy A.

    2015-10-01

    The formation, chemical, and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate, and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence, the interaction of these species with water ice is crucially important in dictating their behaviour. Here, we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate, and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H, and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices.

  9. Trapping and desorption of complex organic molecules in water at 20 K.

    PubMed

    Burke, Daren J; Puletti, Fabrizio; Woods, Paul M; Viti, Serena; Slater, Ben; Brown, Wendy A

    2015-10-28

    The formation, chemical, and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate, and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence, the interaction of these species with water ice is crucially important in dictating their behaviour. Here, we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate, and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H, and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices. PMID:26520540

  10. A full nine-dimensional potential-energy surface for hydrogen molecule-water collisions.

    PubMed

    Faure, Alexandre; Valiron, Pierre; Wernli, Michael; Wiesenfeld, Laurent; Rist, Claire; Noga, Josef; Tennyson, Jonathan

    2005-06-01

    The hydrogen and water molecules are ubiquitous in the Universe. Their mutual collisions drive water masers and other line emission in various astronomical environments, notably molecular clouds and star-forming regions. We report here a full nine-dimensional interaction potential for H2O-H2 calibrated using high-accuracy, explicitly correlated wave functions. All degrees of freedom are included using a systematic procedure transferable to other small molecules of astrophysical or atmospherical relevance. As a first application, we present rate constants for the vibrational relaxation of the upsilon2 bending mode of H2O obtained from quasiclassical trajectory calculations in the temperature range of 500-4000 K. Our high-temperature (T > or = 1500 K) results are found compatible with the single experimental value at 295 K. Our rates are also significantly larger than those currently used in the astrophysical literature and will lead to a thorough reinterpretation of vibrationally excited water emission spectra from space.

  11. Distribution and ecological risk assessment of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River estuary and the adjacent area, China.

    PubMed

    Zheng, Binghui; Wang, Liping; Lei, Kun; Nan, Bingxu

    2016-04-01

    Polycyclic aromatic hydrocarbons (PAHs) contamination was investigated in concurrently sampled surface water, suspended particulate matter (SPM) and sediment of Daliao River estuary and the adjacent area, China. The total concentrations of PAHs ranged from 71.12 to 4255.43 ng/L in water, from 1969.95 to 11612.21 ng/L in SPM, and from 374.84 to 11588.85 ng/g dry weight (dw) in sediment. Although the 2-3 ring PAHs were main PAH congeners in water and SPM, the 4-6 ring PAHs were also detected and their distribution was site-specific, indicating a very recent PAHs input around the area since they were hydrophobic. The PAHs pollution was identified as mixed combustion and petroleum sources. Based on species sensitivity distribution (SSD), the ecological risk in SPM from 82% stations was found to be higher obviously than that in water. The risk in water was basically ranked as medium, while the risk in SPM was ranked as high. Analysis with sediment quality guidelines (SQGs) indicated that negative eco-risk occasionally occurred in about 50% stations, while negative eco-risk frequently occurred in about 3% stations only caused by Phenanthrene(Phe) and Dibenzo(a,h)anthracene(DBA). Here freshwater acute effects data together with saltwater data were used for SSD model. And this method could quickly give the rational risk information, and achieved our objective that compared the spatial difference of risk levels among three compartments. The results confirmed that the use of freshwater acute effects data from the ECOTOX database together with saltwater effects data is acceptable for risk assessment purposes in estuary. PMID:26855211

  12. Monte Carlo simulation of several biologically relevant molecules and zwitterions in water

    NASA Astrophysics Data System (ADS)

    Patuwo, Michael Y.; Bettens, Ryan P. A.

    2012-02-01

    In this work, we study the hydration free energies of butane, zwitterionic alanine, valine, serine, threonine, and asparagine, and two neuraminidase inhibitors by means of Monte Carlo (MC) simulation. The solute molecule, represented in the form of distributed multipoles and modified 6-12 potential, was varied from a non-interacting 'ghost' molecule to its full potential functions in TIP4P water. Intermediate systems with soft-core solute-solvent interaction potentials are simulated separately and then subjected to Bennett's Acceptance ratio (BAR) for the free energy calculation. Hydration shells surrounding the solute particles were used to assess the quality of potential functions.

  13. Structure detection in a libration vibration spectrum of water molecules by methods of nonlinear optics

    SciTech Connect

    Babenko, V A; Sychev, Andrei A

    2012-09-30

    In exciting water possessing an enhanced optical strength by the radiation of a YAG : Nd{sup 3+} laser with 20-ps pulses, nonlinear scattering of light was detected in the frequency range of the optical second harmonic. A relationship was established of the signal of the nonlinear scattering with a stimulated Raman scattering (SRS) of the laser radiation in water. Near the SRS threshold, the structure was observed in the spectrum of nonlinear scattering, which is related to intermolecular libration vibrations of water molecules. (laser applications and other topics in quantum electronics)

  14. Formation of prebiotic molecules in liquid water environments on the surface of Titan

    NASA Astrophysics Data System (ADS)

    Neish, Catherine Dorothy

    Saturn's moon Titan represents a unique locale for studying prebiotic chemistry. Reactions occurring in its thick nitrogen-methane atmosphere produce a wide variety of carbon, hydrogen, and nitrogen containing organic molecules. If these molecules are exposed to liquid water, they may react further to produce oxygen-containing species, a key step in the formation of terrestrial biomolecules. On average, Titan's surface is too cold for liquid water. However, models indicate that melting caused by impacts and/or cryovolcanism may lead to its episodic availability. One possible cryovolcanic dome, Ganesa Macula, was identified in early observations by the Cassini spacecraft. In this work, I estimate the height and morphology of this feature using a synthetic aperture radar (SAR) image. I then use a thermal conduction code to calculate the freezing timescale for an initially liquid dome, yielding freezing timescales of ~10^2 - 10^5 years. To determine how far aqueous organic chemistry can proceed in liquid water environments on Titan, I measure the rate coefficients of Titan analogue organic molecules ("tholins") with low temperature aqueous solutions to produce oxygenated species. These reactions display first-order kinetics with half- lives between 0.4 and 7 days at 273 K (in water) and between 0.3 and 14 days at 253 K (in 13 wt. % ammonia-water). Tholin hydrolysis in aqueous solutions is thus very fast compared to the freezing timescales of impact melts and volcanic sites on Titan, which take hundreds to thousands of years to freeze. The fast incorporation of oxygen, along with new chemistry made available by the introduction of ammonia, may lead to the formation of molecules of prebiotic interest in these transient liquid water environments. This chemistry makes impact craters and cryovolcanoes important targets for future missions to Titan.

  15. Water-inducing molecular self-assembly of amphiphilic molecules into nanofibers

    SciTech Connect

    Zhang, Weiguang; Zhao, Pusu; Song, Jie

    2011-12-15

    Graphical abstract: TPDP nanofibers with smooth surfaces can be obtained by reprecipitation method using ethanol as good solvent and water as poor solvent. In the self-assembly process, during the water adding to the amphiphilic molecules' saturated solution, the amphiphilic molecules firstly assembled into needle-like small rods. With an increase in the self-assembled time, a large number of the nanofibers are produced. The assembly behavior was revealed in the course of direct in situ monitoring of its growth with optical microscopy. Highlights: Black-Right-Pointing-Pointer 2,3,6,7-Tetramethoxy-9,10-di(4-pyridyl)-9,10-dihydroanthracen (TPDP) was synthesized. Black-Right-Pointing-Pointer TPDP nanofibers can be obtained by reprecipitation method. Black-Right-Pointing-Pointer The assembly behavior was revealed in situ monitoring with optical microscopy. -- Abstract: We present investigations on the microcosmic self-assembly process of new synthesized amphiphilic TPDP molecules. It can be seen that pure TPDP nanofibers with smooth surfaces can be obtained by reprecipitation method using ethanol as good solvent and water as poor solvent. In the self-assembly process, during the water adding to the amphiphilic molecules' saturated solution, the amphiphilic molecules firstly assembled into needle-like small rods. With an increase in the self-assembled time, a large number of the nanofibers are produced. The assembly behavior was revealed in the course of direct in situ monitoring of its growth with optical microscopy. Field emission scanning electron microscopy was adopted to characterize the morphologies of the products.

  16. Controlled supramolecular oligomerization of C3-symmetrical molecules in water: the impact of hydrophobic shielding.

    PubMed

    Besenius, Pol; van den Hout, Kelly P; Albers, Harald M H G; de Greef, Tom F A; Olijve, Luuk L C; Hermans, Thomas M; de Waal, Bas F M; Bomans, Paul H H; Sommerdijk, Nico A J M; Portale, Giuseppe; Palmans, Anja R A; van Genderen, Marcel H P; Vekemans, Jef A J M; Meijer, E W

    2011-04-26

    The supramolecular oligomerization of three water-soluble C(3)-symmetrical discotic molecules is reported. The compounds all possess benzene-1,3,5-tricarboxamide cores and peripheral Gd(III)-DTPA (diethylene triamine pentaacetic acid) moieties, but differ in their linker units and thus in their propensity to undergo secondary interactions in H(2)O. The self-assembly behavior of these molecules was studied in solution using circular dichroism, UV/Vis spectroscopy, nuclear magnetic resonance, and cryogenic transmission electron microscopy. The aggregation concentration of these molecules depends on the number of secondary interactions and on the solvophobic character of the polymerizing moieties. Hydrophobic shielding of the hydrogen-bonding motif in the core of the discotic is of paramount importance for yielding stable, helical aggregates that are designed to be restricted in size through anti-cooperative, electrostatic, repulsive interactions.

  17. Theoretical and experimental investigation of the interactions between [emim]Ac and water molecules

    NASA Astrophysics Data System (ADS)

    Ding, Zhen-Dong; Chi, Zhen; Gu, Wen-Xiu; Gu, Sheng-Ming; Wang, Hai-Jun

    2012-05-01

    Density functional theory (DFT) calculations, atom in molecules (AIM) theory, natural bond orbital (NBO) analysis and infrared (IR) spectroscopy were performed to investigate the interactions between water molecules and ionic liquid 1-ethyl-3-methylimidazolium acetate ([emim]Ac). It was found that [emim]Ac interacts with water molecules mainly via H-bonds, and the anionic part of [emim]Ac plays a major role in the interaction with H2O. The energies of H-bonds were estimated from spectral shifts of hydroxy antisymmetric stretching vibration. Moreover, the experimental results also indicated that hydroxy of water mainly interacts with the COO- of [emim]Ac. Further studies indicated that the intensity of hydroxy stretching vibrations tend to be stronger with the increase of the concentration of water. In addition, the frequency of hydroxy stretching vibrations showed clearly red-shift, and the COO- vibrational frequency gradually shifted to the lower wavenumber region, which were indicative of extended hydrogen bonded network.

  18. INTERSTELLAR ICES AS WITNESSES OF STAR FORMATION: SELECTIVE DEUTERATION OF WATER AND ORGANIC MOLECULES UNVEILED

    SciTech Connect

    Cazaux, S.; Spaans, M.; Caselli, P.

    2011-11-10

    Observations of star-forming environments revealed that the abundances of some deuterated interstellar molecules are markedly larger than the cosmic D/H ratio of 10{sup -5}. Possible reasons for this pointed to grain surface chemistry. However, organic molecules and water, which are both ice constituents, do not enjoy the same deuteration. For example, deuterated formaldehyde is very abundant in comets and star-forming regions, while deuterated water rarely is. In this paper, we explain this selective deuteration by following the formation of ices (using the rate equation method) in translucent clouds, as well as their evolution as the cloud collapses to form a star. Ices start with the deposition of gas-phase CO and O onto dust grains. While reaction of oxygen with atoms (H or D) or molecules (H{sub 2}) yields H{sub 2}O (HDO), CO only reacts with atoms (H and D) to form H{sub 2}CO (HDCO, D{sub 2}CO). As a result, the deuteration of formaldehyde is sensitive to the gas D/H ratio as the cloud undergoes gravitational collapse, while the deuteration of water strongly depends on the dust temperature at the time of ice formation. These results reproduce well the deuterium fractionation of formaldehyde observed in comets and star-forming regions and can explain the wide spread of deuterium fractionation of water observed in these environments.

  19. Effects of brush management on the hydrologic budget and water quality in and adjacent to Honey Creek State Natural Area, Comal County, Texas, 2001--10

    USGS Publications Warehouse

    Banta, J. Ryan; Slattery, Richard N.

    2012-01-01

    Woody vegetation, including ashe juniper (Juniperus ashei), has encroached on some areas in central Texas that were historically oak grassland savannah. Encroachment of woody vegetation is generally attributed to overgrazing and fire suppression. Removing the ashe juniper and allowing native grasses to reestablish in the area as a brush management conservation practice (hereinafter referred to as "brush management") might change the hydrology in the watershed. These hydrologic changes might include changes to surface-water runoff, evapotranspiration, or groundwater recharge. The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local partners, examined the hydrologic effects of brush management in two adjacent watersheds in Comal County, Tex. Hydrologic data were collected in the watersheds for 3-4 years (pre-treatment) depending on the type of data, after which brush management occurred on one watershed (treatment watershed) and the other was left in its original condition (reference watershed). Hydrologic data were collected in the study area for another 6 years (post-treatment). These hydrologic data included rainfall, streamflow, evapotranspiration, and water quality. Groundwater recharge was not directly measured, but potential groundwater recharge was calculated by using a simplified mass balance approach. This fact sheet summarizes highlights of the study from the USGS Scientific Investigations Report on which it is based.

  20. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles

    NASA Astrophysics Data System (ADS)

    Moulin, F.; Picaud, S.; Hoang, P. N. M.; Jedlovszky, P.

    2007-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. The soot particles are modeled by graphite-type layers arranged in an onionlike structure that contains randomly distributed hydrophilic sites, such as OH and COOH groups. The calculated water adsorption isotherm at 298K exhibits different characteristic shapes depending both on the type and the location of the hydrophilic sites and also on the size of the pores inside the soot particle. The different shapes of the adsorption isotherms result from different ways of water aggregation in or/and around the soot particle. The present results show the very weak influence of the OH sites on the water adsorption process when compared to the COOH sites. The results of these simulations can help in interpreting the experimental isotherms of water adsorbed on aircraft soot.

  1. Temperature dependence of local solubility of hydrophobic molecules in the liquid-vapor interface of water.

    PubMed

    Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro

    2014-11-14

    One important aspect of the hydrophobic effect is that solubility of small, nonpolar molecules in liquid water decreases with increasing temperature. We investigate here how the characteristic temperature dependence in liquid water persists or changes in the vicinity of the liquid-vapor interface. From the molecular dynamics simulation and the test-particle insertion method, the local solubility Σ of methane in the liquid-vapor interface of water as well as Σ of nonpolar solutes in the interface of simple liquids are calculated as a function of the distance z from the interface. We then examine the temperature dependence of Σ under two conditions: variation of Σ at fixed position z and that at fixed local solvent density around the solute molecule. It is found that the temperature dependence of Σ at fixed z depends on the position z and the system, whereas Σ at fixed local density decreases with increasing temperature for all the model solutions at any fixed density between vapor and liquid phases. The monotonic decrease of Σ under the fixed-density condition in the liquid-vapor interface is in accord with what we know for the solubility of nonpolar molecules in bulk liquid water under the fixed-volume condition but it is much robust since the solvent density to be fixed can be anything between the coexisting vapor and liquid phases. A unique feature found in the water interface is that there is a minimum in the local solubility profile Σ(z) on the liquid side of the interface. We find that with decreasing temperature the minimum of Σ grows and at the same time the first peak in the oscillatory density profile of water develops. It is likely that the minimum of Σ is due to the layering structure of the free interface of water.

  2. Structure and dynamics of water and lipid molecules in charged anionic DMPG lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Rønnest, A. K.; Peters, G. H.; Hansen, F. Y.; Taub, H.; Miskowiec, A.

    2016-04-01

    Molecular dynamics simulations have been used to investigate the influence of the valency of counter-ions on the structure of freestanding bilayer membranes of the anionic 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) lipid at 310 K and 1 atm. At this temperature, the membrane is in the fluid phase with a monovalent counter-ion and in the gel phase with a divalent counter-ion. The diffusion constant of water as a function of its depth in the membrane has been determined from mean-square-displacement calculations. Also, calculated incoherent quasielastic neutron scattering functions have been compared to experimental results and used to determine an average diffusion constant for all water molecules in the system. On extrapolating the diffusion constants inferred experimentally to a temperature of 310 K, reasonable agreement with the simulations is obtained. However, the experiments do not have the sensitivity to confirm the diffusion of a small component of water bound to the lipids as found in the simulations. In addition, the orientation of the dipole moment of the water molecules has been determined as a function of their depth in the membrane. Previous indirect estimates of the electrostatic potential within phospholipid membranes imply an enormous electric field of 108-109 V m-1, which is likely to have great significance in controlling the conformation of translocating membrane proteins and in the transfer of ions and molecules across the membrane. We have calculated the membrane potential for DMPG bilayers and found ˜1 V (˜2 ṡ 108 V m-1) when in the fluid phase with a monovalent counter-ion and ˜1.4 V (˜2.8 ṡ 108 V m-1) when in the gel phase with a divalent counter-ion. The number of water molecules for a fully hydrated DMPG membrane has been estimated to be 9.7 molecules per lipid in the gel phase and 17.5 molecules in the fluid phase, considerably smaller than inferred experimentally for 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC

  3. Local thermodynamics of the water molecules around single- and double-stranded DNA studied by grid inhomogeneous solvation theory

    NASA Astrophysics Data System (ADS)

    Nakano, Miki; Tateishi-Karimata, Hisae; Tanaka, Shigenori; Tama, Florence; Miyashita, Osamu; Nakano, Shu-ichi; Sugimoto, Naoki

    2016-09-01

    Thermodynamic properties of water molecules around single- and double-stranded DNAs (ssDNAs and dsDNAs) with different sequences were investigated using grid inhomogeneous solvation theory. Free energies of water molecules solvating the minor groove of dsDNAs are lower than those near ssDNAs, while water molecules should be released during the formation of dsDNA. Free energies of water molecules around dsDNA are lower than those around ssDNA even in the second and third hydration shells. Our findings will help to clarify the role of water molecules in the formation of dsDNA from ssDNAs, thus facilitating the designs of drugs or nanomaterials using DNA.

  4. Orientation and alignment effects in electron-induced ionization of a single oriented water molecule

    SciTech Connect

    Champion, C.; Rivarola, R. D.

    2010-10-15

    We here report a theoretical study about the orientation effect on the total ionization cross sections for a single oriented water molecule. The theoretical description of the ionization process is performed within the first Born framework with a collisional system including an initial state composed of a projectile and a water target molecule described by a plane wave and an accurate one-center molecular wave function, respectively, and a final state constituted by a slow ejected electron represented by a Coulomb wave and a scattered (fast) electron projectile described by a plane wave. Secondary electron energetic distributions as well as total cross sections are then compared for particular target configurations pointing out strong alignment and orientation effects on the description of the ionization process.

  5. Diagrammatic perturbation theory applied to the ground state of the water molecule

    NASA Technical Reports Server (NTRS)

    Silver, D. M.; Wilson, S.

    1977-01-01

    The diagrammatic many-body perturbation theory is applied to the ground state of the water molecule within the algebraic approximation. Using four different basis sets, the total energy, the equilibrium OH bond length, and the equilibrium HOH bond angle are examined. The latter is found to be a particularly sensitive test of the convergence of perturbation expansions. Certain third-order results, which incorporate all two-, three-, and four-body effects, show evidence of good convergence properties.

  6. Double ionization of single oriented water molecules by electron impact: Second-order Born description

    SciTech Connect

    Dal Cappello, C.; Champion, C.; Kada, I.; Mansouri, A.

    2011-06-15

    The double ionization of isolated water molecules fixed in space is investigated within a theoretical approach based on the second-order Born approximation. Electron angular distributions have been studied for specific kinematical conditions. The three usual mechanisms, the shake-off and the two two-step mechanisms, have been identified. A significant contribution of the two-step mechanism is clearly visible for some particular kinematics.

  7. Recovery from slow inactivation in K+ channels is controlled by water molecules.

    PubMed

    Ostmeyer, Jared; Chakrapani, Sudha; Pan, Albert C; Perozo, Eduardo; Roux, Benoît

    2013-09-01

    Application of a specific stimulus opens the intracellular gate of a K(+) channel (activation), yielding a transient period of ion conduction until the selectivity filter spontaneously undergoes a conformational change towards a non-conductive state (inactivation). Removal of the stimulus closes the gate and allows the selectivity filter to interconvert back to its conductive conformation (recovery). Given that the structural differences between the conductive and inactivated filter are very small, it is unclear why the recovery process can take up to several seconds. The bacterial K(+) channel KcsA from Streptomyces lividans can be used to help elucidate questions about channel inactivation and recovery at the atomic level. Although KcsA contains only a pore domain, without voltage-sensing machinery, it has the structural elements necessary for ion conduction, activation and inactivation. Here we reveal, by means of a series of long molecular dynamics simulations, how the selectivity filter is sterically locked in the inactive conformation by buried water molecules bound behind the selectivity filter. Potential of mean force calculations show how the recovery process is affected by the buried water molecules and the rebinding of an external K(+) ion. A kinetic model deduced from the simulations shows how releasing the buried water molecules can stretch the timescale of recovery to seconds. This leads to the prediction that reducing the occupancy of the buried water molecules by imposing a high osmotic stress should accelerate the rate of recovery, which was verified experimentally by measuring the recovery rate in the presence of a 2-molar sucrose concentration.

  8. Aquatic risk assessment of pesticides in surface waters in and adjacent to the Everglades and Biscayne National Parks: II. Probabilistic analyses.

    PubMed

    Carriger, John F; Rand, Gary M

    2008-10-01

    A screening-level aquatic probabilistic risk assessment was completed to determine the potential risks of organic pesticides found in surface waters of the C-111 freshwater basin (11 sites at the east boundary of the Everglades National Park) and adjacent estuarine tidal zones (two sites in northeast Florida Bay, one site in south Biscayne Bay) in south Florida. It followed the US Environmental Protection Agency (USEPA) ecological risk framework and focused only on the acute and chronic risks of endosulfan and chlorpyrifos individually and jointly with atrazine, metolachlor, and malathion by comparing distributions of surface water exposure concentrations with the distributions of species toxicity data. The highest risk of acute effects was associated with endosulfan exposure to freshwater arthropods at S-178/site C on the C-111 system, followed by endosulfan effects to estuarine arthropods at Joe Bay in northeast Florida Bay. The highest risk of acute effects from joint toxicity of pesticides was to estuarine arthropods in Joe Bay followed by freshwater arthropods in S-178/site C. For fish, the highest acute risk was for endosulfan at S-178/site C. There was low potential for acute risk of endosulfan to fish at estuarine sites. Joint probability curves indicated that the majority of potential risks to arthropods and fish were due to endosulfan concentrations and not to chlorpyrifos, at S-178/site C. In addition, the highest risk of acute effects for saltwater organisms was in Joe Bay, which receives water from the C-111. The potential risk of chronic effects from pesticide exposures was minimal at fresh- and saltwater sites except at S-178/site C, where endosulfan concentrations showed the highest exceedence of species toxicity values. In general, potential risks were higher in February than June.

  9. Organic molecules on the surface of water droplets--an energetic perspective.

    PubMed

    Hub, Jochen S; Caleman, Carl; van der Spoel, David

    2012-07-21

    The solubility of organic molecules is a well established property, founded on decades of measurements, the results of which have been tabulated in handbooks. Under atmospheric conditions water droplets may form containing small amounts of other molecules. Such droplets typically have a very large area to volume ratio, which may shift the solvation equilibrium towards molecules residing on the droplet surface. The presence of organic molecules on droplet surfaces is extremely important for reactivity--it is well established that certain chemical reactions are more prevalent under atmospheric conditions than in bulk. Here we present a thermodynamic rationalization of the surface solvation properties of methanol, ethanol, propanoic acid, n-butylamine, diethyl ether, and neopentane based on potential of mean force (PMF) calculations--we have previously demonstrated that an energetic description is a very powerful means of disentangling the factors governing solvation (Caleman et al., Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 6838-6842). All organic molecules investigated here are preferentially solvated on the surface of the droplets rather than in the inside, yet the magnitude of surface preference may differ by orders of magnitude. In order to dissect the energetic contributions that govern surface preference, we decompose the PMF into enthalpic and entropic components, and, in a second step, into contributions from water-water and solute-water interactions. The analysis demonstrates that surface preference is primarily an enthalpic effect, but the magnitude of surface preference of solutes containing large apolar groups is enhanced due to entropy. We introduce an analysis of the droplet PMFs that allows one to extrapolate the results to larger droplets. From this we can estimate the solubility of the solutes in water droplets, demonstrating that the solubility in droplets can be orders of magnitude larger than in bulk water. Our findings have implications for

  10. Geology and ground-water resources of the Two Medicine unit and adjacent areas, Blackfeet Indian Reservation, Montana, with a section on chemical quality of water

    USGS Publications Warehouse

    Paulson, Q.F.; Zimmerman, Tom V.; Langford, Russell H.

    1965-01-01

    The Two Medicine Irrigation Unit, on the Blackfeet Indian Reservation of northern Montana, is irrigated by water diverted from Two Medicine Creek. Waterlogging because of overapplication of water and locally inadequate subsurface drainage is a serious problem. This study was undertaken by the U.S. Geological Survey in cooperation with the U.S. Bureau of Indian Affairs to evaluate the problem and to suggest remedies. For this study, the geology was mapped, and data concerning 129 wells and test holes were gathered. The water level in 63 wells was measured periodically. Three test holes were drilled and 4 single-well and 1 multiple-well pump tests were made. Nineteen samples of ground water were collected and analyzed chemically, and applied irrigation water was analyzed periodically.

  11. Adsorption of water molecules on selected charged sodium-chloride clusters.

    PubMed

    Bradshaw, James A; Gordon, Sidney L; Leavitt, Andrew J; Whetten, Robert L

    2012-01-12

    The adsorption of water molecules (H(2)O) on sodium chloride cluster cations and anions was studied at 298 K over a mass range of 100-1200 amu using a custom-built laser desorption ionization reactor and mass spectrometer. Under the conditions used, the cations Na(3)Cl(2)(+) and Na(4)Cl(3)(+) bind up to three water molecules, whereas the larger cations, Na(5)Cl(4)(+) to Na(19)Cl(18)(+), formed hydrates with one or two only. The overall trend is a decrease in hydration with increasing cluster size, with an abrupt drop occurring at the closed-shell Na(14)Cl(13)(+). As compared to the cluster cations, the cluster anions showed almost no adsorption. Among smaller clusters, a weak adsorption of one water molecule was observed for the cluster anions Na(6)Cl(7)(-) and Na(7)Cl(8)(-). In the higher mass region, a substantial adsorption of one water molecule was observed for Na(14)Cl(15)(-). Density functional theory (DFT) computations were carried out for the adsorption of one molecule of H(2)O on the cations Na(n)Cl(n-1)(+), for n = 2-8, and the anions Na(n)Cl(n+1)(-), for n = 1-7. For each ion, the structure of the hydrate, the hydration energy, and the standard-state enthalpy, entropy, and Gibbs energy of hydration at 298 K were computed. In addition, it was useful to compute the distortion energy, defined as the electronic energy lost due to weakening of the Na-Cl bonds upon adsorption of H(2)O. The results show that strong adsorption of a H(2)O molecule occurs for the linear cations only at an end Na ion and for the nonlinear cations only at a corner Na ion bonded to two Cl ions. An unexpected result of the theoretical investigation for the anions is that certain low-energy isomers of Na(6)Cl(7)(-) and Na(7)Cl(8)(-) bind H(2)O strongly enough to produce the observed weak adsorption. The possible implications of these results for the initial hydration of extended NaCl surfaces are discussed.

  12. Infrared spectroscopy of water clusters co-adsorbed with hydrogen molecules on a sodium chloride film

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Fukutani, Katsuyuki

    2016-06-01

    Hydrogen gas containing a trace of water vapor was dosed on a vacuum-evaporated sodium chloride film at 13 K, and water clusters formed on the substrate were investigated by infrared absorption spectroscopy. Absorption bands due to (H2O)n clusters with n = 3-6 and an induced absorption band due to hydrogen were clearly observed. With increasing gas dosage, the intensities of the cluster bands increased linearly while the intensity of the hydrogen band was constant. This suggests that the water clusters were formed in two-dimensional matrices of hydrogen. We found that the water clusters did exist on the surface upon heating even after the hydrogen molecules had desorbed. A further rise of the substrate temperature up to 27 K yielded the formation of larger clusters, (H2O)n with n > 6 . We also discuss the origins of the two bands of the trimer in terms of pseudorotation and a metastable isomer.

  13. Experimental Evaluation of Proposed Small-Molecule Inhibitors of Water Channel Aquaporin-1.

    PubMed

    Esteva-Font, Cristina; Jin, Byung-Ju; Lee, Sujin; Phuan, Puay-Wah; Anderson, Marc O; Verkman, A S

    2016-06-01

    The aquaporin-1 (AQP1) water channel is a potentially important drug target, as AQP1 inhibition is predicted to have therapeutic action in edema, tumor growth, glaucoma, and other conditions. Here, we measured the AQP1 inhibition efficacy of 12 putative small-molecule AQP1 inhibitors reported in six recent studies, and one AQP1 activator. Osmotic water permeability was measured by stopped-flow light scattering in human and rat erythrocytes that natively express AQP1, in hemoglobin-free membrane vesicles from rat and human erythrocytes, and in plasma membrane vesicles isolated from AQP1-transfected Chinese hamster ovary cell cultures. As a positive control, 0.3 mM HgCl2 inhibited AQP1 water permeability by >95%. We found that none of the tested compounds at 50 µM significantly inhibited or increased AQP1 water permeability in these assays. Identification of AQP1 inhibitors remains an important priority. PMID:26993802

  14. Geologic Assessment of Undiscovered, Technically Recoverable Coalbed-Gas Resources in Cretaceous and Tertiary Rocks, North Slope and Adjacent State Waters, Alaska

    USGS Publications Warehouse

    Roberts, Stephen B.

    2008-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geology-based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States, focusing on the distribution, quantity, and availability of oil and natural gas resources. The USGS has completed an assessment of the undiscovered, technically recoverable coalbed-gas resources in Cretaceous and Tertiary rocks underlying the North Slope and adjacent State waters of Alaska (USGS Northern Alaska Province 5001). The province is a priority Energy Policy and Conservation Act (EPCA) province for the National Assessment because of its potential for oil and gas resources. The assessment of this province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (stratigraphy, sedimentology, petrophysical properties), and hydrocarbon traps (trap formation and timing). In the Northern Alaska Province, the USGS used this geologic framework to define one composite coalbed gas total petroleum system and three coalbed gas assessment units within the petroleum system, and quantitatively estimated the undiscovered coalbed-gas resources within each assessment unit.

  15. Large-scale spatial patterns of benthic assemblages in the SW Atlantic: the Rı´o de la Plata estuary and adjacent shelf waters

    NASA Astrophysics Data System (ADS)

    Giberto, D. A.; Bremec, C. S.; Acha, E. M.; Mianzan, H.

    2004-09-01

    This study deals with the spatial distribution of macrobenthic communities (biomass and abundance) in the Rı´o de la Plata estuary, Argentina-Uruguay, and the adjacent shelf waters. The benthic invertebrates were caught with an epibenthic dredge (41 samples). Multivariate analysis (cluster, MDS), SIMPER and BIO-ENV analyses were applied to analyze benthic community structure and their relationships with environmental variables. A consistent large-scale diversity pattern was found: a distinctive estuarine zone could be distinguished, with muddy sediments and a wide range of salinity, characterized by higher abundance of fauna and lower diversity, dominated by the deposit-feeding bivalve Mactra isabelleana; and a marine zone, with sandy-shell debris sediments and higher and less variable salinity values, with higher values of diversity. Major presence of deposit feeders was related to higher particulate organic matter in the estuarine area. Bottom type, salinity and the presence of a turbidity front are considered the main physical variables in structuring benthic communities of the Rı´o de la Plata estuary.

  16. Simulation of ground-water flow and the movement of saline water in the Hueco Bolson aquifer, El Paso, Texas, and adjacent areas

    USGS Publications Warehouse

    Groschen, George E.

    1994-01-01

    Results of the projected withdrawal simulations from 1984-2000 indicate that the general historical trend of saline-water movement probably will continue. The saline water in the Rio Grande alluvium is the major source of saline-water intrusion into the freshwater zone throughout the historical period and into the future on the basis of simulation results. Some saline water probably will continue to move downward from the Rio Grande alluvium to the freshwater below. Injection of treated sewage effluent into some wells will create a small zone of freshwater containing slightly increased amounts of dissolved solids in the northern area of the Texas part of the Hueco bolson aquifer. Many factors, such as well interference, pumping schedules, and other factors not specifically represented in the regional simulation, can substantially affect dissolved-solids concentrations at individual wells.

  17. Adjacent segment disease.

    PubMed

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  18. Effects of brush management on the hydrologic budget and water quality in and adjacent to Honey Creek State Natural Area, Comal County, Texas, 2001-10

    USGS Publications Warehouse

    Banta, J. Ryan; Slattery, Richard N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service, the Edwards Region Grazing Lands Conservation Initiative, the Texas State Soil and Water Conservation Board, the San Antonio River Authority, the Edwards Aquifer Authority, Texas Parks and Wildlife, the Guadalupe Blanco River Authority, and the San Antonio Water System, evaluated the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in and adjacent to the Honey Creek State Natural Area in Comal County, Tex. By removing the ashe juniper and allowing native grasses to reestablish in the area as a brush management conservation practice, the hydrology in the watershed might change. Using a simplified mass balance approach of the hydrologic cycle, the incoming rainfall was distributed to surface water runoff, evapotranspiration, or groundwater recharge. After hydrologic data were collected in adjacent watersheds for 3 years, brush management occurred on the treatment watershed while the reference watershed was left in its original condition. Hydrologic data were collected for another 6 years. Hydrologic data include rainfall, streamflow, evapotranspiration, and water quality. Groundwater recharge was not directly measured but potential groundwater recharge was calculated using a simplified mass balance approach. The resulting hydrologic datasets were examined for differences between the watersheds and between pre- and post-treatment periods to assess the effects of brush management. The streamflow to rainfall relation (expressed as event unit runoff to event rainfall relation) did not change between the watersheds during pre- and post-treatment periods. The daily evapotranspiration rates at the reference watershed and treatment watershed sites exhibited a seasonal cycle during the pre- and post-treatment periods, with intra- and interannual variability. Statistical analyses indicate the mean

  19. Biodiversity and ecological composition of macrobenthos on cold-water coral mounds and adjacent off-mound habitat in the bathyal Porcupine Seabight, NE Atlantic

    NASA Astrophysics Data System (ADS)

    Henry, Lea-Anne; Roberts, J. Murray

    2007-04-01

    The cold-water scleractinian corals Lophelia pertusa and Madrepora oculata form mound structures on the continental shelf and slope in the NE Atlantic. This study is the first to compare the taxonomic biodiversity and ecological composition of the macrobenthos between on- and off-mound habitats. Seven box cores from the summits of three mounds and four cores from an adjacent off-mound area in the Belgica Mound Province in the Porcupine Seabight yielded 349 species, including 10 undescribed species. On-mound habitat was three times more speciose, and was richer with higher evenness and significantly greater Shannon's diversity than off-mound. Species composition differed significantly between habitats and the four best discriminating species were Pliobothrus symmetricus (more frequent off-mound), Crisia nov. sp, Aphrocallistes bocagei and Lophelia pertusa (all more frequent on-mound). Filter/suspension feeders were significantly more abundant on-mound, while deposit feeders were significantly more abundant off-mound. Species composition did not significantly differ between mounds, but similarity within replicates decreased from Galway Moundwater coral biodiversity across larger spatio-temporal scales.

  20. Isotope geochemistry and fluxes of carbon and organic matter in tropical small mountainous river systems and adjacent coastal waters of the Caribbean

    USGS Publications Warehouse

    Moyer, Ryan; Bauer, James; Grottoli, Andrea

    2012-01-01

    Recent studies have shown that small mountainous rivers (SMRs) may act as sources of aged and/or refractory carbon (C) to the coastal ocean, which may increase organic C burial at sea and subsidize coastal food webs and heterotrophy. However, the characteristics and spatial and temporal variability of C and organic matter (OM) exported from tropical SMR systems remain poorly constrained. To address this, the abundance and isotopic character (δ13C and Δ14C) of the three major C pools were measured in two Puerto Rico SMRs with catchments dominated by different land uses (agricultural vs. non-agricultural recovering forest). The abundance and character of C pools in associated estuaries and adjacent coastal waters were also examined. Riverine dissolved and particulate organic C (DOC and POC, respectively) concentrations were highly variable with respect to land use and sampling month, while dissolved inorganic C (DIC) was significantly higher at all times in the agricultural catchment. In both systems, riverine DOC and POC ranged from modern to highly aged (2,340 years before present), while DIC was always modern. The agricultural river and irrigation canals contained very old DOC (1,184 and 2,340 years before present, respectively), which is consistent with findings in temperate SMRs and indicates that these tropical SMRs provide a source of aged DOC to the ocean. During months of high river discharge, OM in estuarine and coastal waters had C isotope signatures reflective of direct terrestrial input, indicating that relatively unaltered OM is transported to the coastal ocean at these times. This is also consistent with findings in temperate SMRs and indicates that C transported to the coastal ocean by SMRs may differ from that of larger rivers because it is exported from smaller catchments that have steeper terrains and fewer land-use types.

  1. Single-Molecule Imaging of DNAs with Sticky Ends at Water/Fused Silica Interface

    SciTech Connect

    Isailovic, Slavica

    2005-01-01

    Total internal reflection fluorescence microscopy (TIRFM) was used to study intermolecular interactions of DNAs with unpaired (sticky) ends of different lengths at water/fused silica interface at the single-molecule level. Evanescent field residence time, linear velocity and adsorption/desorption frequency were measured in a microchannel for individual DNA molecules from T7, Lambda, and PSP3 phages at various pH values. The longest residence times and the highest adsorption/desorption frequencies at the constant flow at pH 5.5 were found for PSP3 DNA, followed by lower values for Lambda DNA, and the lowest values for T7 DNA. Since T7, Lambda, and PSP3 DNA molecules contain none, twelve and nineteen unpaired bases, respectively, it was concluded that the affinity of DNAs for the surface increases with the length of the sticky ends. This confirms that hydrophobic and hydrogen-bonding interactions between sticky ends and fused-silica surface are driving forces for DNA adsorption at the fused-silica surface. Described single-molecule methodology and results therein can be valuable for investigation of interactions in liquid chromatography, as well as for design of DNA hybridization sensors and drug delivery systems.

  2. Does soil water saturation mobilize metals from riparian soils to adjacent surface water? A field monitoring study in a metal contaminated region.

    PubMed

    Van Laer, Liesbeth; Smolders, Erik

    2013-06-01

    In the Noorderkempen (NW Belgium), a large area (about 280 km(2)) is contaminated with cadmium (Cd) and zinc (Zn) due to historical pollution by the Zn smelters. Direct aquatic emissions of metals have diminished over time, however the surface water metal concentration largely exceeds quality standards, mainly during winter periods. Monitoring data were analyzed to reveal whether these fluctuations are related to seasonal redox reactions in associated contaminated riparian soils that drain into the rivers. A field survey was set up with soil pore-water and groundwater monitored for three years in transects of soil monitoring points perpendicular to rivers at contaminated and non-contaminated sites. Site averaged surface water concentrations of a 15 year dataset exceeded local quality standards 4 to 200-fold. Winter averaged metal concentrations significantly exceeded the corresponding summer values 1.3-1.8 (Zn) and 1.5-2.4 fold (Cd). Zinc and Cd concentrations in water were positively related to Fe and Mn but not to Ca, K or Na suggesting that redox reactions and not dilution processes are involved. In ground- and pore-water of the associated riparian soils, the concentrations of Zn fluctuate by the same order of magnitude as in surface water but were generally smaller than in the corresponding contaminated rivers. In addition, correlations of dissolved Zn with Fe and Mn were lacking. This analysis suggests that redox reactions in streams, and not in riparian soils, explain the seasonal trends of Zn and Cd in surface water. Hence, river sediments and not riparian soils may be the cause of the winter peaks of Zn and Cd in these rivers.

  3. Simulation of ground-water flow in coastal Georgia and adjacent parts of South Carolina and Florida-predevelopment, 1980, and 2000

    USGS Publications Warehouse

    Payne, Dorothy F.; Rumman, Malek Abu; Clarke, John S.

    2005-01-01

    A digital model was developed to simulate steady-state ground-water flow in a 42,155-square-mile area of coastal Georgia and adjacent parts of South Carolina and Florida. The model was developed to (1) understand and refine the conceptual model of regional ground-water flow, (2) serve as a framework for the development of digital subregional ground-water flow and solute-transport models, and (3) serve as a tool for future evaluations of hypothetical pumping scenarios used to facilitate water management in the coastal area. Single-density ground-water flow was simulated using the U.S. Geological Survey finite-difference code MODFLOW-2000 for mean-annual conditions during predevelopment (pre?1900) and the years 1980 and 2000. The model comprises seven layers: the surficial aquifer system, the Brunswick aquifer system, the Upper Floridan aquifer, the Lower Floridan aquifer, and the intervening confining units. A combination of boundary conditions was applied, including a general-head boundary condition on the top active cells of the model and a time-variable fixed-head boundary condition along part of the southern lateral boundary. Simulated heads for 1980 and 2000 conditions indicate a good match to observed values, based on a plus-or-minus 10-foot (ft) calibration target and calibration statistics. The root-mean square of residual water levels for the Upper Floridan aquifer was 13.0 ft for the 1980 calibration and 9.94 ft for the 2000 calibration. Some spatial patterns of residuals were indicated for the 1980 and 2000 simulations, and are likely a result of model-grid cell size and insufficiently detailed hydraulic-property and pumpage data in some areas. Simulated potentiometric surfaces for predevelopment, 1980, and 2000 conditions all show major flow system features that are indicated by estimated peotentiometric maps. During 1980?2000, simulated water levels at the centers of pumping at Savannah and Brunswick rose more than 20 ft and 8 ft, respectively, in

  4. Vibrational spectra and molecular dynamics of hydrogen peroxide molecules at quartz/water interfaces

    NASA Astrophysics Data System (ADS)

    Lv, Ye-qing; Zheng, Shi-li; Wang, Shao-na; Yan, Wen-yi; Zhang, Yi; Du, Hao

    2016-06-01

    The influence of H2O2 on the water vibration at quartz interface was examined using sum-frequency generation (SFG) spectroscopy, and the effect of H2O2 concentration has been systematically studied. Further, the number density and radical distribution of water molecules, H2O2 molecules, and quartz surface silanol groups were calculated using molecular dynamics (MD) simulation to provide molecular level interpretation for the SFG spectra. It is concluded from this study that the hydrogen peroxide molecules prefers to donate H-bonds to the in-plane silanol groups rather than accepting H-bonds from out-of-plane silanol groups, as evidenced by the strengthening of the peak located at 3400 cm-1 assigned to "liquid-like" hydrogen-bonding network. The SFG results have been supported by the MD calculation results, which demonstrate that the relative intensity of the peak located at 3400 cm-1 to that of located at 3200 cm-1 increases monotonously with the increase in the number of hydrogen peroxide in the first hydration shell of silanol.

  5. Dangling OH Vibrations of Water Molecules in Aqueous Solutions of Aprotic Polar Compounds Observed in the Near-Infrared Regime.

    PubMed

    Sagawa, Naoya; Shikata, Toshiyuki

    2015-06-25

    Near-infrared (NIR) absorption spectrum measurements over a frequency range from 4000 to 12000 cm(-1) were employed to investigate the effects of the presence of solute compounds to vibrational modes of water molecules in aqueous solutions of some aprotic hydroneutral polar compounds with large dipole moments, such as nitro compounds and nitriles. The obtained NIR spectra for the aqueous solutions were decomposed into three components: free water, solute, and water molecules affected by the presence of solutes. Newly determined NIR spectra of affected water molecules were well-described with at least four absorption modes observed at 7040, 6850, 6450, and 5640 cm(-1) for both the nitro compounds and nitriles. The highest frequency mode at 7040 cm(-1) possessing the strongest intensity was assigned to the first stretching overtone of affected water hydroxy (O-H) groups, which are nonhydrogen bonded to other water molecules and dangling. The second highest frequency mode at 6850 cm(-1) was assigned to the first stretching overtone of affected water O-H groups hydrated to other (free) water molecules. The third mode at 6400 cm(-1) was attributed to a combination mode of the fundamental stretching of O-H and the first overtone of the O-H bending mode of the affected water molecules. The lowest frequency mode at 5640 cm(-1) was assigned to the combination mode of the fundamental O-H stretching mode, the fundamental O-H bending mode, and the hindered rotational (libration) mode of the affected water molecules. Because absorption intensities of the third and lowest frequency modes for water molecules affected by the solutes depended on the sizes of alkyl groups of polar solutes, these two modes possibly result from the contribution of hydrophobic hydration effects.

  6. Effects of a single water molecule on the OH + H2O2 reaction.

    PubMed

    Buszek, Robert J; Torrent-Sucarrat, Miquel; Anglada, Josep M; Francisco, Joseph S

    2012-06-21

    The effect of a single water molecule on the reaction between H(2)O(2) and HO has been investigated by employing MP2 and CCSD(T) theoretical approaches in connection with the aug-cc-PVDZ, aug-cc-PVTZ, and aug-cc-PVQZ basis sets and extrapolation to an ∞ basis set. The reaction without water has two elementary reaction paths that differ from each other in the orientation of the hydrogen atom of the hydroxyl radical moiety. Our computed rate constant, at 298 K, is 1.56 × 10(-12) cm(3) molecule(-1) s(-1), in excellent agreement with the suggested value by the NASA/JPL evaluation. The influence of water vapor has been investigated by considering either that H(2)O(2) first forms a complex with water that reacts with hydroxyl radical or that H(2)O(2) reacts with a previously formed H(2)O·OH complex. With the addition of water, the reaction mechanism becomes much more complex, yielding four different reaction paths. Two pathways do not undergo the oxidation reaction but an exchange reaction where there is an interchange between H(2)O(2)·H(2)O and H(2)O·OH complexes. The other two pathways oxidize H(2)O(2), with a computed total rate constant of 4.09 × 10(-12) cm(3) molecule(-1) s(-1) at 298 K, 2.6 times the value of the rate constant of the unassisted reaction. However, the true effect of water vapor requires taking into account the concentration of the prereactive bimolecular complex, namely, H(2)O(2)·H(2)O. With this consideration, water can actually slow down the oxidation of H(2)O(2) by OH between 1840 and 20.5 times in the 240-425 K temperature range. This is an example that demonstrates how water could be a catalyst in an atmospheric reaction in the laboratory but is slow under atmospheric conditions. PMID:22455374

  7. Effects of a single water molecule on the OH + H2O2 reaction.

    PubMed

    Buszek, Robert J; Torrent-Sucarrat, Miquel; Anglada, Josep M; Francisco, Joseph S

    2012-06-21

    The effect of a single water molecule on the reaction between H(2)O(2) and HO has been investigated by employing MP2 and CCSD(T) theoretical approaches in connection with the aug-cc-PVDZ, aug-cc-PVTZ, and aug-cc-PVQZ basis sets and extrapolation to an ∞ basis set. The reaction without water has two elementary reaction paths that differ from each other in the orientation of the hydrogen atom of the hydroxyl radical moiety. Our computed rate constant, at 298 K, is 1.56 × 10(-12) cm(3) molecule(-1) s(-1), in excellent agreement with the suggested value by the NASA/JPL evaluation. The influence of water vapor has been investigated by considering either that H(2)O(2) first forms a complex with water that reacts with hydroxyl radical or that H(2)O(2) reacts with a previously formed H(2)O·OH complex. With the addition of water, the reaction mechanism becomes much more complex, yielding four different reaction paths. Two pathways do not undergo the oxidation reaction but an exchange reaction where there is an interchange between H(2)O(2)·H(2)O and H(2)O·OH complexes. The other two pathways oxidize H(2)O(2), with a computed total rate constant of 4.09 × 10(-12) cm(3) molecule(-1) s(-1) at 298 K, 2.6 times the value of the rate constant of the unassisted reaction. However, the true effect of water vapor requires taking into account the concentration of the prereactive bimolecular complex, namely, H(2)O(2)·H(2)O. With this consideration, water can actually slow down the oxidation of H(2)O(2) by OH between 1840 and 20.5 times in the 240-425 K temperature range. This is an example that demonstrates how water could be a catalyst in an atmospheric reaction in the laboratory but is slow under atmospheric conditions.

  8. Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smectite

    USGS Publications Warehouse

    Lee, J.; Mortland, M.M.; Boyd, S.A.; Chiou, C.T.

    1989-01-01

    The adsorption of aromatic compounds by smectite exchanged with tetramethylammonium (TMA) has been studied. Aromatic compounds adsorbed by TMA-smectite are assumed to adopt a tilted orientation in a face-to-face arrangment with the TMA tetrahedra. The sorptive characteristics of TMA-smectite were influenced strongly by the presence of water. The dry TMA-smectite showed little selectivity in the uptake of benzen, toluene and xylene. In the presence of water, TMA-smectite showed a high degree of selectivity based on molecular size/shape, resulting in high uptake of benzene and progressively lower uptake of larger aromatic molecules. This selectivity appeared to result from the shrinkage of interlamellar cavities by water.

  9. Interactions of water, methanol and diethyl ether molecules with the surface of oxidized activated carbon

    NASA Astrophysics Data System (ADS)

    Salame, Issa I.; Bandosz, Teresa J.

    Two samples of oxidized activated carbon of wood origin were used as adsorbents of water, methanol, and diethyl ether. Structural and chemical characteristics of the samples' surfaces were obtained using adsorption of nitrogen and Boehm titration. The adsorption isotherms of water and methanol were measured using a volumetric apparatus whereas the adsorption of diethyl ether was studied by means of inverse gas chromatography at finite concentration. Then the isotherms at three different temperatures were used to calculate the isosteric heats of adsorption. The results showed that the strength of interaction depends on the porosity of the sample and its surface chemistry. The effect of surface chemistry and the presence of oxygenated groups are predominant in the case of water and the least important in the case of diethyl ether. This is the result of the chemical nature of the molecules, their sizes, and the relative strengths of the dispersive interactions in small pores in comparison with hydrogen bonding to surface functional groups.

  10. Influence of the water molecules near surface of viral protein on virus activation process

    NASA Astrophysics Data System (ADS)

    Shepelenko, S. O.; Salnikov, A. S.; Rak, S. V.; Goncharova, E. P.; Ryzhikov, A. B.

    2009-06-01

    The infection of a cell with influenza virus comprises the stages of receptor binding to the cell membrane, endocytosis of virus particle, and fusion of the virus envelope and cell endosome membrane, which is determined by the conformational changes in hemagglutinin, a virus envelope protein, caused by pH decrease within the endosome. The pH value that induces conformation rearrangements of hemagglutinin molecule considerably varies for different influenza virus strains, first and foremost, due to the differences in amino acid structure of the corresponding proteins. The main goal of this study was to construct a model making it possible to assess the critical pH value characterizing the fusogenic activity of influenza virus hemagglutinin from the data on hemagglutinin structure and experimental verification of this model. Under this model, we assume that when the electrostatic force between interacting hemagglutinin molecules in the virus envelop exceeds a certain value, the hemagglutinin HA1 subunits are arranged so that they form a cavity sufficient for penetration of water molecules. This event leads to an irreversible hydration of the inner fragments of hemagglutinin molecule in a trimer and to the completion of conformational changes. The geometry of electrostatic field in hemagglutinin trimer was calculated taking into account the polarization effects near the interface of two dielectrics, aqueous medium and protein macromolecule. The critical pH values for the conformational changes in hemagglutinin were measured by the erythrocyte hemolysis induced by influenza virus particles when decreasing pH. The critical pH value conditionally separating the pH range into the regions with and without the conformational changes was calculated for several influenza virus H1N1 and H3N2 strains based on the data on the amino acid structure of the corresponding hemagglutinin molecules. Comparison of the theoretical and experimental values of critical pH values for

  11. Effects of Disaccharide Sugars on Dynamics of Water Molecules: Dynamic Light Scattering and Dielectric Loss Spectroscopy Studies

    NASA Astrophysics Data System (ADS)

    Seo, Jeong-Ah; Kwon, Hyun-Joung; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2008-02-01

    We studied the effects of disaccharide sugars (trehalose, sucrose, and maltose) on the dynamics of water molecules in sugar-water mixtures. We measured the acoustic phonons in sugar-water mixtures with different sugar contents by using a Sandercock Tandem 6-pass Febry-Petor interferometer and found that the Brillouin peak positions shifted to higher frequencies as the sugar concentration increased. We also measured the dielectric loss of hydrogen bonds in water molecules in sugar-water mixtures by using a Network analyzer with different sugar contents. The loss peak position in the dielectric loss spectra moved to lower frequencies as the sugar contents increased. The trehalose-water mixture showed the largest Brillouin peak shift and relaxation time change with increasing sugar content among three disaccharides indicating that the effect of trehalose on the dynamics of water molecules is the strongest. This unique property of trehalose sugar might be the origin of the superior bio-protection ability of trehalose.

  12. Size-fractionated phytoplankton biomass in autumn of the Changjiang (Yangtze) River Estuary and its adjacent waters after the Three Gorges Dam construction

    NASA Astrophysics Data System (ADS)

    Song, Shuqun; Sun, Jun; Luan, Qingshan; Shen, Zhiliang

    2008-08-01

    A cruise was undertaken from 3rd to 8th November 2004 in Changjiang (Yangtze) River Estuary and its adjacent waters to investigate the spatial biomass distribution and size composition of phytoplankton. Chlorophyll- a (Chl- a) concentration ranged 0.42-1.17 μg L-1 and 0.41-10.43 μg L-1 inside and outside the river mouth, with the mean value 0.73 μg L-1 and 1.86 μg L-1, respectively. Compared with the Chl- a concentration in summer of 2004, the mean value was much lower inside, and a little higher outside the river mouth. The maximal Chl- a was 10.43 μg L-1 at station 18 (122.67°E, 31.25°N), and the region of high Chl- a concentration was observed in the central survey area between 122.5°E and 123.0°E. In the stations located east of 122.5°E, Chl- a concentration was generally high in the upper layers above 5 m due to water stratification. In the survey area, the average Chl- a in sizes of >20 μm and <20 μm was 0.28 μg L-1 and 1.40 μg L-1, respectively. High Chl- a concentration of <20 μm size-fraction indicated that the nanophytoplankton and picophytoplankton contributed the most to the biomass of phytoplankton. Skeletonema costatum, Prorocentrum micans and Scrippsiella trochoidea were the dominant species in surface water. The spatial distribution of cell abundance of phytoplankton was patchy and did not agree well with that of Chl- a, as the cell abundance could not distinguish the differences in shape and size of phytoplankton cells. Nitrate and silicate behaved conservatively, but the former could probably be the limitation factor to algal biomass at offshore stations. The distribution of phosphate scattered considerably, and its relation to the phytoplankton biomass was complicated.

  13. Pesticides in surface water, bed sediment, and ground water adjacent to commercial cranberry bogs, Lac du Flambeau Reservation, Vilas County, Wisconsin

    USGS Publications Warehouse

    Saad, David A.

    2005-01-01

    In samples from the Trout River, which is used as a source of water to maintain lake levels in the Corn Lakes, the only pesticides detected were the non-targeted compounds atrazine and deethyl atrazine, indicating it was not a source of targeted compounds detected in the Corn Lakes. Only two pesticides (chlorpyrifos and metolachlor) were detected in bed-sediment samples collected from the lakes; chlorpyrifos from Little Trout Lake and metolachlor from the Corn Lakes. Four pesticides (the targeted compounds napropamide and norflurazon and the non-targeted compounds atrazine and deethyl atrazine) were detected in ground-water samples from two of four sampled monitor wells. The highest ground-water concentrations (up to 0.14 ?g/L napropamide and 0.56 ?g/L norflurazon) were measured in samples from the monitoring well located directly downgradient from the Corn Lakes and commercial cranberry operations. No pesticides were detected in samples from the reference well located upgradient from the Corn Lakes and cranberry operations. Further study is needed to identify additional pesticides as well as chronic effects on aquatic organisms to determine whether cranberry-related pesticides affect the lake ecosystems of the Lac du Flambeau Reservation.

  14. The Effect of Water Molecules on Mechanical Properties of Bamboo Microfibrils

    NASA Astrophysics Data System (ADS)

    Rahbar, Nima

    Bamboo fibers have higher strength-to-weight ratios than steel and concrete. The unique properties of bamboo fibers come from their natural composite structures that comprise mainly cellulose nanofibrils in a matrix of intertwined hemicellulose and lignin called lignin-carbohydrate complex (LCC). Here, we have utilized atomistic simulations to investigate the mechanical properties and mechanisms of interactions between these materials, in the presence of water molecules. Our results suggest that hemicellulose exhibits better mechanical properties and lignin shows greater tendency to adhere to cellulose nanofibrils. Consequently, the role of hemicellulose found to be enhancing the mechanical properties and lignin found to be providing the strength of bamboo fibers. The abundance of Hbonds in hemicellulose chains is responsible for improving the mechanical behavior of LCC. The strong van der Waals forces between lignin molecules and cellulose nanofibrils is responsible for higher adhesion energy between LCC/cellulose nanofibrils. We also found out that the amorphous regions of cellulose nanofibrils is the weakest interface in bamboo Microfibrils. In presence of water, the elastic modulus of lignin increases at low water content (less than 10 NSF CAREER Grant No. 1261284.

  15. Fall diets of red-breasted merganser (Mergus serrator) and walleye (Sander vitreus) in Sandusky Bay and adjacent waters of western Lake Erie

    USGS Publications Warehouse

    Bur, M.T.; Stapanian, M.A.; Bernhardt, G.; Turner, M.W.

    2008-01-01

    Although published studies indicate the contrary, there is concern among many sport anglers that migrating red-breasted mergansers (Mergus serrator) and other waterbirds pose a competitive threat to sport fish species such as walleye (Sander vitreus) in Lake Erie. We quantified the diet of autumn-migrant mergansers and walleye during 1998-2000 in Sandusky Bay and adjacent waters of western Lake Erie. We hypothesized that the diets of both predators would be similar in species composition, but because of different foraging ecologies their diets would differ markedly in size of prey consumed. In addition to predator samples, we used trawl data from the same general area as an index of prey availability. We found that mergansers fed almost exclusively on fish (nine species). Gizzard shad (Dorosoma cepedianum), emerald shiner (Notropis atherinoides) and round goby (Neogobius melanostomus) were consumed in the greatest numbers, most frequently and comprised the greatest biomass. Walleye fed exclusively on fish: gizzard shad, alewife (Alosa psuedoharengus) and emerald shiner were consumed in the greatest numbers, most frequently and comprised the greatest biomass. Diet overlap between mergansers and walleye was 67% by weight and 66% by species frequency. Mean total lengths of gizzard shad, emerald shiner and round goby found in walleye stomachs exceeded those captured in trawls by 47%, on average. Mean total lengths of gizzard shad, emerald shiner and round goby were greater in walleye stomachs than in merganser stomachs. Mean total lengths of emerald shiner and round goby were less in merganser stomachs than in trawls. Our results suggest that although the diets of walleye and mergansers overlapped considerably, mergansers generally consumed smaller fish than walleye. Given the abundance and diversity of prey species available, and the transient nature of mergansers on Lake Erie during migration, we conclude that competition for food between these species is minimal.

  16. Explicit Consideration of Water Molecules to Study Vibrational Circular DICHROÎSM of Monosaccharide's

    NASA Astrophysics Data System (ADS)

    Moussi, Sofiane; Ouamerali, Ourida

    2014-06-01

    Carbohydrates have multiples roles in biological systems. It has been found that the glycoside bond is fundamentally important in many aspects of chemistry and biology and forms the basis of carbohydrate chemistry. That means the stereochemical information, namely, glycosidic linkages α or β, gives an significant features of the carbohydrate glycosidation position of the glycosylic acceptor. For these reasons, much effort was made for the synthesis and analysis of the glycoside bond. Vibrational circular dichroism VCD has some advantages over conventional electronic circular dichroism (ECD) due to the applicability to all organic molecules and the reliability of ab initio quantum calculation. However, for a molecule with many chiral centers such as carbohydrates, determination of the absolute configuration tends to be difficult because the information from each stereochemical center is mixed and averaged over the spectrum. In the CH stretching region, only two VCD studies on carbohydrates have been reported and spectra--structure correlation, as determined for the glycoside band, remains to be investigated. T. Taniguchi and collaborators report that methyl glycosides exhibit a characteristic VCD peak, the sign of which solely reflects the C-1 absolute configuration. This work is a theoretical contribution to study the behaviour of VCD spectrum's of the monosaccharides when the water molecules are taken explicitly. This study is focused on six different monosaccharides in theirs absolute configuration R and S. We used the method of density functional theory DFT by means of the B3LYP hybrid functional and 6-31G * basis set.

  17. Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH.

    PubMed

    Meiering, E M; Wagner, G

    1995-03-24

    The locations of long-lived bound water molecules in the binary complex of human dihydrofolate reductase (hDHFR) with methotrexate (MTX) and the ternary complex of hDHFR with MTX and NADPH have been investigated using 15N-resolved, three-dimensional ROESY-HMQC and NOESY-HSQC spectra acquired at 25 degrees C and 8 degrees C. NOEs with NH groups of the protein are detected for five bound water molecules in the binary complex and six bound water molecules in the ternary complex. Inspection of crystal structures of hDHFR reveals that the bound water molecules perform structural and functional roles in the complexes. Two water molecules located outside the active site, WatA and WatB, have similar NOEs in the binary and ternary complexes. These water molecules from multiple hydrogen bonds bridging loops and/or secondary structural elements in crystal structures of hDHFR and so stabilize the tertiary fold of the enzyme. Two water molecules in the active site, WatC and WatD, also have similar NOEs in both complexes. In crystal structures of hDHFR, WatC is involved in MTX binding by forming hydrogen bonds to the ligand and protein, while WatD stabilizes WatC by hydrogen bonding to it and the protein. A third active-site water molecule, WatE, has a markedly stronger NOE in the ternary complex than in the binary complex. Differences in the binding of WatE in the binary and ternary complexes are important for understanding the mechanism of DHFR, since this water molecule is believed to be involved in substrate protonation. Although the increased NOE intensity for WatE could be caused by a change in the position of water molecule, it may also be caused by an increase in its lifetime, since structural fluctuations in the active site are decreased upon cofactor binding. NOEs for one other water molecule, WatF, may be observed in the ternary complex but not the binary complex. WatF forms hydrogen bonds bridging the cofactor and the protein in crystal structures of hDHFR.

  18. Difference of Ecosystem and Hydrological control on Long-term water quality between adjacent subcatchments in a forested catchment in central Japan

    NASA Astrophysics Data System (ADS)

    Katsuyama, M.; Iwasaki, K.; Nagano, R.; Takaki, K.; Tanaka, Y.

    2014-12-01

    ecosystem. Therefore, it is important to continue the monitoring and to consider the mechanisms. We will discuss about the mechanisms and the differences between adjacent subcatchments considering the water quality of the precipitation and the groundwater as well as the hydrological parameters at the coming meeting.

  19. Combining solvent thermodynamic profiles with functionality maps of the Hsp90 binding site to predict the displacement of water molecules.

    PubMed

    Haider, Kamran; Huggins, David J

    2013-10-28

    Intermolecular interactions in the aqueous phase must compete with the interactions between the two binding partners and their solvating water molecules. In biological systems, water molecules in protein binding sites cluster at well-defined hydration sites and can form strong hydrogen-bonding interactions with backbone and side-chain atoms. Displacement of such water molecules is only favorable when the ligand can form strong compensating hydrogen bonds. Conversely, water molecules in hydrophobic regions of protein binding sites make only weak interactions, and the requirements for favorable displacement are less stringent. The propensity of water molecules for displacement can be identified using inhomogeneous fluid solvation theory (IFST), a statistical mechanical method that decomposes the solvation free energy of a solute into the contributions from different spatial regions and identifies potential binding hotspots. In this study, we employed IFST to study the displacement of water molecules from the ATP binding site of Hsp90, using a test set of 103 ligands. The predicted contribution of a hydration site to the hydration free energy was found to correlate well with the observed displacement. Additionally, we investigated if this correlation could be improved by using the energetic scores of favorable probe groups binding at the location of hydration sites, derived from a multiple copy simultaneous search (MCSS) method. The probe binding scores were not highly predictive of the observed displacement and did not improve the predictivity when used in combination with IFST-based hydration free energies. The results show that IFST alone can be used to reliably predict the observed displacement of water molecules in Hsp90. However, MCSS can augment IFST calculations by suggesting which functional groups should be used to replace highly displaceable water molecules. Such an approach could be very useful in improving the hit-to-lead process for new drug targets.

  20. Patterns of deep-water coral diversity in the Caribbean Basin and adjacent southern waters: an approach based on records from the R/V Pillsbury expeditions.

    PubMed

    Hernández-Ávila, Iván

    2014-01-01

    The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200-2000 m depth) than on the upper continental shelf (60-200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges. PMID:24671156

  1. Patterns of Deep-Water Coral Diversity in the Caribbean Basin and Adjacent Southern Waters: An Approach based on Records from the R/V Pillsbury Expeditions

    PubMed Central

    Hernández-Ávila, Iván

    2014-01-01

    The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200–2000 m depth) than on the upper continental shelf (60–200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges. PMID:24671156

  2. Patterns of deep-water coral diversity in the Caribbean Basin and adjacent southern waters: an approach based on records from the R/V Pillsbury expeditions.

    PubMed

    Hernández-Ávila, Iván

    2014-01-01

    The diversity of deep-water corals in the Caribbean Sea was studied using records from oceanographic expeditions performed by the R/V Pillsbury. Sampled stations were sorted according to broad depth ranges and ecoregions and were analyzed in terms of species accumulation curves, variance in the species composition and contributions to alpha, beta and gamma diversity. According to the analysis of species accumulation curves using the Chao2 estimator, more diversity occurs on the continental slope (200-2000 m depth) than on the upper continental shelf (60-200 m depth). In addition to the effect of depth sampling, differences in species composition related to depth ranges were detected. However, the differences between ecoregions are dependent on depth ranges, there were fewer differences among ecoregions on the continental slope than on the upper continental shelf. Indicator species for distinctness of ecoregions were, in general, Alcyonaria and Antipatharia for the upper continental shelf, but also the scleractinians Madracis myriabilis and Cladocora debilis. In the continental slope, the alcyonarian Placogorgia and the scleractinians Stephanocyathus and Fungiacyathus were important for the distinction of ecoregions. Beta diversity was the most important component of gamma diversity in the Caribbean Basin. The contribution of ecoregions to alpha, beta and gamma diversity differed with depth range. On the upper continental shelf, the Southern Caribbean ecoregion contributed substantially to all components of diversity. In contrast, the northern ecoregions contributed substantially to the diversity of the Continental Slope. Strategies for the conservation of deep-water coral diversity in the Caribbean Basin must consider the variation between ecoregions and depth ranges.

  3. Conserved hydrogen bonds and water molecules in MDR HIV-1 protease substrate complexes

    SciTech Connect

    Liu, Zhigang; Wang, Yong; Yedidi, Ravikiran S.; Dewdney, Tamaria G.; Reiter, Samuel J.; Brunzelle, Joseph S.; Kovari, Iulia A.; Kovari, Ladislau C.

    2012-12-19

    Success of highly active antiretroviral therapy (HAART) in anti-HIV therapy is severely compromised by the rapidly developing drug resistance. HIV-1 protease inhibitors, part of HAART, are losing their potency and efficacy in inhibiting the target. Multi-drug resistant (MDR) 769 HIV-1 protease (resistant mutations at residues 10, 36, 46, 54, 62, 63, 71, 82, 84, 90) was selected for the present study to understand the binding to its natural substrates. The nine crystal structures of MDR769 HIV-1 protease substrate hepta-peptide complexes were analyzed in order to reveal the conserved structural elements for the purpose of drug design against MDR HIV-1 protease. Our structural studies demonstrated that highly conserved hydrogen bonds between the protease and substrate peptides, together with the conserved crystallographic water molecules, played a crucial role in the substrate recognition, substrate stabilization and protease stabilization. Additionally, the absence of the key flap-ligand bridging water molecule might imply a different catalytic mechanism of MDR769 HIV-1 protease compared to that of wild type (WT) HIV-1 protease.

  4. Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: Water and other small molecules

    NASA Astrophysics Data System (ADS)

    Al-Hamdani, Yasmine S.; Alfè, Dario; von Lilienfeld, O. Anatole; Michaelides, Angelos

    2016-04-01

    Novel uses for 2-dimensional materials like graphene and hexagonal boron nitride (h-BN) are being frequently discovered especially for membrane and catalysis applications. Still however, a great deal remains to be understood about the interaction of environmentally and industrially relevant molecules such as water with these materials. Taking inspiration from advances in hybridising graphene and h-BN, we explore using density functional theory, the dissociation of water, hydrogen, methane, and methanol on graphene, h-BN, and their isoelectronic doped counterparts: BN doped graphene and C doped h-BN. We find that doped surfaces are considerably more reactive than their pristine counterparts and by comparing the reactivity of several small molecules, we develop a general framework for dissociative adsorption. From this a particularly attractive consequence of isoelectronic doping emerges: substrates can be doped to enhance their reactivity specifically towards either polar or non-polar adsorbates. As such, these substrates are potentially viable candidates for selective catalysts and membranes, with the implication that a range of tuneable materials can be designed.

  5. Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: Water and other small molecules.

    PubMed

    Al-Hamdani, Yasmine S; Alfè, Dario; von Lilienfeld, O Anatole; Michaelides, Angelos

    2016-04-21

    Novel uses for 2-dimensional materials like graphene and hexagonal boron nitride (h-BN) are being frequently discovered especially for membrane and catalysis applications. Still however, a great deal remains to be understood about the interaction of environmentally and industrially relevant molecules such as water with these materials. Taking inspiration from advances in hybridising graphene and h-BN, we explore using density functional theory, the dissociation of water, hydrogen, methane, and methanol on graphene, h-BN, and their isoelectronic doped counterparts: BN dopedgraphene and C doped h-BN. We find that dopedsurfaces are considerably more reactive than their pristine counterparts and by comparing the reactivity of several small molecules, we develop a general framework for dissociative adsorption. From this a particularly attractive consequence of isoelectronic doping emerges: substrates can be doped to enhance their reactivity specifically towards either polar or non-polar adsorbates. As such, these substrates are potentially viable candidates for selective catalysts and membranes, with the implication that a range of tuneable materials can be designed. PMID:27389233

  6. Thermodynamics of water condensation on a primary marine aerosol coated by surfactant organic molecules.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2014-10-23

    A large subset of primary marine aerosols can be initially (immediately upon formation) treated using an "inverted micelle" model. We study the thermodynamics of heterogeneous water condensation on such a marine aerosol. Its hydrophobic organic coating can be processed by chemical reactions with atmospheric species; this enables the marine aerosol to serve as a nucleating center for water condensation. The most probable pathway of such "aging" involves atmospheric hydroxyl radicals that abstract hydrogen atoms from organic molecules coating the aerosol (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on a marine aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous droplets on marine aerosols is most likely to occur via Köhler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for the Köhler activation of such aerosols. Numerical results also corroborate previous suggestions that one can omit some chemical species of aerosols (and other details of their chemical composition) in investigating aerosol effects on climate.

  7. The binding energies of one and two water molecules to the first transition-row metal positive ions. II

    NASA Technical Reports Server (NTRS)

    Rosi, Marzio; Bauschlicher, Charles W., Jr.

    1990-01-01

    The present investigation of H2O's binding energy to transition-metal ions proceeds from the D(2h) structure and bends the two water molecules out of plane. The molecule is constrained to have C(2v) symmetry, so that each water molecule and metal ion lies on a plane. The ground states are bent only for Mn(H2O)2(+) and Zn(H2O)2(+), where only 4s4p hybridization is energetically favorable; 4s4p hybridization reduces repulsion.

  8. Geometrically centered region: a "wet" model of protein binding hot spots not excluding water molecules.

    PubMed

    Li, Zhenhua; Li, Jinyan

    2010-12-01

    A protein interface can be as "wet" as a protein surface in terms of the number of immobilized water molecules. This important water information has not been explicitly taken by computational methods to model and identify protein binding hot spots, overlooking the water role in forming interface hydrogen bonds and in filing cavities. Hot spot residues are usually clustered at the core of the protein binding interfaces. However, traditional machine learning methods often identify the hot spot residues individually, breaking the cooperativity of the energetic contribution. Our idea in this work is to explore the role of immobilized water and meanwhile to capture two essential properties of hot spots: the compactness in contact and the far distance from bulk solvent. Our model is named geometrically centered region (GCR). The detection of GCRs is based on novel tripartite graphs, and atom burial levels which are a concept more intuitive than SASA. Applying to a data set containing 355 mutations, we achieved an F measure of 0.6414 when ΔΔG ≥ 1.0 kcal/mol was used to define hot spots. This performance is better than Robetta, a benchmark method in the field. We found that all but only one of the GCRs contain water to a certain degree, and most of the outstanding hot spot residues have water-mediated contacts. If the water is excluded, the burial level values are poorly related to the ΔΔG, and the model loses its performance remarkably. We also presented a definition for the O-ring of a GCR as the set of immediate neighbors of the residues in the GCR. Comparative analysis between the O-rings and GCRs reveals that the newly defined O-ring is indeed energetically less important than the GCR hot spot, confirming a long-standing hypothesis. PMID:20818601

  9. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.

    PubMed

    Su, Jiaye; Guo, Hongxia

    2011-01-25

    The transport of water molecules through nanopores is not only crucial to biological activities but also useful for designing novel nanofluidic devices. Despite considerable effort and progress that has been made, a controllable and unidirectional water flow is still difficult to achieve and the underlying mechanism is far from being understood. In this paper, using molecular dynamics simulations, we systematically investigate the effects of an external electric field on the transport of single-file water molecules through a carbon nanotube (CNT). We find that the orientation of water molecules inside the CNT can be well-tuned by the electric field and is strongly coupled to the water flux. This orientation-induced water flux is energetically due to the asymmetrical water-water interaction along the CNT axis. The wavelike water density profiles are disturbed under strong field strengths. The frequency of flipping for the water dipoles will decrease as the field strength is increased, and the flipping events vanish completely for the relatively large field strengths. Most importantly, a critical field strength E(c) related to the water flux is found. The water flux is increased as E is increased for E ≤ E(c), while it is almost unchanged for E > E(c). Thus, the electric field offers a level of governing for unidirectional water flow, which may have some biological applications and provides a route for designing efficient nanopumps.

  10. [Interactions of DNA bases with individual water molecules. Molecular mechanics and quantum mechanics computation results vs. experimental data].

    PubMed

    Gonzalez, E; Lino, J; Deriabina, A; Herrera, J N F; Poltev, V I

    2013-01-01

    To elucidate details of the DNA-water interactions we performed the calculations and systemaitic search for minima of interaction energy of the systems consisting of one of DNA bases and one or two water molecules. The results of calculations using two force fields of molecular mechanics (MM) and correlated ab initio method MP2/6-31G(d, p) of quantum mechanics (QM) have been compared with one another and with experimental data. The calculations demonstrated a qualitative agreement between geometry characteristics of the most of local energy minima obtained via different methods. The deepest minima revealed by MM and QM methods correspond to water molecule position between two neighbor hydrophilic centers of the base and to the formation by water molecule of hydrogen bonds with them. Nevertheless, the relative depth of some minima and peculiarities of mutual water-base positions in' these minima depend on the method used. The analysis revealed insignificance of some differences in the results of calculations performed via different methods and the importance of other ones for the description of DNA hydration. The calculations via MM methods enable us to reproduce quantitatively all the experimental data on the enthalpies of complex formation of single water molecule with the set of mono-, di-, and trimethylated bases, as well as on water molecule locations near base hydrophilic atoms in the crystals of DNA duplex fragments, while some of these data cannot be rationalized by QM calculations.

  11. On the reactive uptake of gaseous PAH molecules by micron-sized atmospheric water droplets

    NASA Astrophysics Data System (ADS)

    Raja, S.; Valsaraj, K. T.

    2006-10-01

    A falling droplet reactor was used to study the heterogeneous oxidation of gaseous PAH molecules adsorbed on a 92 μm diameter water droplet by ozone. The dynamic partition constant for the PAH between the droplet and air and the first-order surface rate constant was measured. The increase in uptake with ozone concentration was due to increased mass transfer via surface reaction of co-adsorbed ozone and PAH. The surface rate constant was rationalized through the Langmuir-Hinshelwood mechanism. The rate constant was smaller for phenanthrene than naphthalene. The main reaction products identified in the aqueous phase indicated the peroxidic route for surface reaction of ozone with PAH. The heterogeneous reaction rate of ozone with adsorbed phenanthrene at the air-water interface of a 92-μm droplet was estimated to be 9300 times larger than the homogeneous reaction of ozone with phenanthrene in the gas phase and it was 76 times larger than the homogeneous oxidation by hydroxyl radical in the gas phase. For naphthalene that is more volatile, however, the homogeneous reaction with hydroxyl was more important. Increased organic carbon added to the droplet increased both the partition constant for phenanthrene and surface reaction with ozone. The partition constant for a droplet formed from actual fog water was much larger than for pure distilled water.

  12. Pseudorhabdosynochus species (Monogenoidea, Diplectanidae) parasitizing groupers (Serranidae, Epinephelinae, Epinephelini) in the western Atlantic Ocean and adjacent waters, with descriptions of 13 new species

    PubMed Central

    Kritsky, Delane C.; Bakenhaster, Micah D.; Adams, Douglas H.

    2015-01-01

    Seventeen of twenty-three species of groupers collected from the western Atlantic Ocean and adjacent waters were infected with 19 identified species (13 new) of Pseudorhabdosynochus Yamaguti, 1958 (Dactylogyridea, Diplectanidae); specimens of the Spanish flag Gonioplectrus hispanus, coney Cephalopholis fulva, marbled grouper Dermatolepis inermis, mutton hamlet Alphestes afer, and misty grouper Hyporthodus mystacinus were not infected; the yellowmouth grouper Mycteroperca interstitialis and yellowfin grouper Mycteroperca venenosa were infected with unidentified species of Pseudorhabdosynochus; the Atlantic creolefish Paranthias furcifer was infected with an unidentified species of Diplectanidae that could not be accommodated in Pseudorhabdosynochus. The following species of Pseudorhabdosynochus are described or redescribed based entirely or in part on new collections: Pseudorhabdosynochus americanus (Price, 1937) Kritsky & Beverley-Burton, 1986 from Atlantic goliath grouper Epinephelus itajara; Pseudorhabdosynochus yucatanensis Vidal-Martínez, Aguirre-Macedo & Mendoza-Franco, 1997 and Pseudorhabdosynochus justinella n. sp. from red grouper Epinephelus morio; Pseudorhabdosynochus kritskyi Dyer, Williams & Bunkley-Williams, 1995 from gag Mycteroperca microlepis; Pseudorhabdosynochus capurroi Vidal-Martínez & Mendoza-Franco, 1998 from black grouper Mycteroperca bonaci; Pseudorhabdosynochus hyphessometochus n. sp. from Mycteroperca interstitialis; Pseudorhabdosynochus sulamericanus Santos, Buchmann & Gibson, 2000 from snowy grouper Hyporthodus niveatus and Warsaw grouper Hyporthodus nigritus (new host record); Pseudorhabdosynochus firmicoleatus n. sp. from yellowedge grouper Hyporthodus flavolimbatus and snowy grouper H. niveatus; Pseudorhabdosynochus mcmichaeli n. sp., Pseudorhabdosynochus contubernalis n. sp., and Pseudorhabdosynochus vascellum n. sp. from scamp Mycteroperca phenax; Pseudorhabdosynochus meganmarieae n. sp. from graysby Cephalopholis cruentata

  13. Pseudorhabdosynochus species (Monogenoidea, Diplectanidae) parasitizing groupers (Serranidae, Epinephelinae, Epinephelini) in the western Atlantic Ocean and adjacent waters, with descriptions of 13 new species.

    PubMed

    Kritsky, Delane C; Bakenhaster, Micah D; Adams, Douglas H

    2015-01-01

    Seventeen of twenty-three species of groupers collected from the western Atlantic Ocean and adjacent waters were infected with 19 identified species (13 new) of Pseudorhabdosynochus Yamaguti, 1958 (Dactylogyridea, Diplectanidae); specimens of the Spanish flag Gonioplectrus hispanus, coney Cephalopholis fulva, marbled grouper Dermatolepis inermis, mutton hamlet Alphestes afer, and misty grouper Hyporthodus mystacinus were not infected; the yellowmouth grouper Mycteroperca interstitialis and yellowfin grouper Mycteroperca venenosa were infected with unidentified species of Pseudorhabdosynochus; the Atlantic creolefish Paranthias furcifer was infected with an unidentified species of Diplectanidae that could not be accommodated in Pseudorhabdosynochus. The following species of Pseudorhabdosynochus are described or redescribed based entirely or in part on new collections: Pseudorhabdosynochus americanus (Price, 1937) Kritsky & Beverley-Burton, 1986 from Atlantic goliath grouper Epinephelus itajara; Pseudorhabdosynochus yucatanensis Vidal-Martínez, Aguirre-Macedo & Mendoza-Franco, 1997 and Pseudorhabdosynochus justinella n. sp. from red grouper Epinephelus morio; Pseudorhabdosynochus kritskyi Dyer, Williams & Bunkley-Williams, 1995 from gag Mycteroperca microlepis; Pseudorhabdosynochus capurroi Vidal-Martínez & Mendoza-Franco, 1998 from black grouper Mycteroperca bonaci; Pseudorhabdosynochus hyphessometochus n. sp. from Mycteroperca interstitialis; Pseudorhabdosynochus sulamericanus Santos, Buchmann & Gibson, 2000 from snowy grouper Hyporthodus niveatus and Warsaw grouper Hyporthodus nigritus (new host record); Pseudorhabdosynochus firmicoleatus n. sp. from yellowedge grouper Hyporthodus flavolimbatus and snowy grouper H. niveatus; Pseudorhabdosynochus mcmichaeli n. sp., Pseudorhabdosynochus contubernalis n. sp., and Pseudorhabdosynochus vascellum n. sp. from scamp Mycteroperca phenax; Pseudorhabdosynochus meganmarieae n. sp. from graysby Cephalopholis cruentata

  14. Pseudorhabdosynochus species (Monogenoidea, Diplectanidae) parasitizing groupers (Serranidae, Epinephelinae, Epinephelini) in the western Atlantic Ocean and adjacent waters, with descriptions of 13 new species.

    PubMed

    Kritsky, Delane C; Bakenhaster, Micah D; Adams, Douglas H

    2015-01-01

    Seventeen of twenty-three species of groupers collected from the western Atlantic Ocean and adjacent waters were infected with 19 identified species (13 new) of Pseudorhabdosynochus Yamaguti, 1958 (Dactylogyridea, Diplectanidae); specimens of the Spanish flag Gonioplectrus hispanus, coney Cephalopholis fulva, marbled grouper Dermatolepis inermis, mutton hamlet Alphestes afer, and misty grouper Hyporthodus mystacinus were not infected; the yellowmouth grouper Mycteroperca interstitialis and yellowfin grouper Mycteroperca venenosa were infected with unidentified species of Pseudorhabdosynochus; the Atlantic creolefish Paranthias furcifer was infected with an unidentified species of Diplectanidae that could not be accommodated in Pseudorhabdosynochus. The following species of Pseudorhabdosynochus are described or redescribed based entirely or in part on new collections: Pseudorhabdosynochus americanus (Price, 1937) Kritsky & Beverley-Burton, 1986 from Atlantic goliath grouper Epinephelus itajara; Pseudorhabdosynochus yucatanensis Vidal-Martínez, Aguirre-Macedo & Mendoza-Franco, 1997 and Pseudorhabdosynochus justinella n. sp. from red grouper Epinephelus morio; Pseudorhabdosynochus kritskyi Dyer, Williams & Bunkley-Williams, 1995 from gag Mycteroperca microlepis; Pseudorhabdosynochus capurroi Vidal-Martínez & Mendoza-Franco, 1998 from black grouper Mycteroperca bonaci; Pseudorhabdosynochus hyphessometochus n. sp. from Mycteroperca interstitialis; Pseudorhabdosynochus sulamericanus Santos, Buchmann & Gibson, 2000 from snowy grouper Hyporthodus niveatus and Warsaw grouper Hyporthodus nigritus (new host record); Pseudorhabdosynochus firmicoleatus n. sp. from yellowedge grouper Hyporthodus flavolimbatus and snowy grouper H. niveatus; Pseudorhabdosynochus mcmichaeli n. sp., Pseudorhabdosynochus contubernalis n. sp., and Pseudorhabdosynochus vascellum n. sp. from scamp Mycteroperca phenax; Pseudorhabdosynochus meganmarieae n. sp. from graysby Cephalopholis cruentata

  15. Climatology of the oceanography in the northern South China Sea Shelf-sea (NoSoCS) and adjacent waters: Observations from satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Pan, X.; Wong, G. T.; Tai, J.; Ho, T.

    2013-12-01

    By using the observations from multiple satellite sensors, the climatology of the oceanography, including the surface wind vector, sea surface temperature (SST), surface chlorophyll a concentration (Chl_a), and vertically integrated net primary production (PPeu), in the northern South China Sea Shelf-sea (NoSoCS) and adjacent waters is evaluated. Regional and sub-regional mechanisms in driving the coastal processes, which influence the spatial and temporal distributional patterns in water component, are assessed. Seasonal vertical convective mixing by wind and surface heating/cooling is the primary force in driving the annual changes in SST and Chl_a in the open South China Sea (SCS), in which highly negative correlation coefficients between Chl_a and SST and moderately positive correlation coefficients between Chl_a and wind speed are found. Together, the seasonal variations in SST and wind speed account for about 80% of the seasonal variation in Chl_a. In the NoSoCS as a whole, however, the contribution is reduced to about 40%, primarily due to the effect of the Pearl River plume. A tongue of water extending eastward from the mouth of the River into the middle shelf with positive correlation coefficients between Chl_a and SST and around zero or slightly negative correlation coefficients between Chl_a and wind is the most striking feature in the NoSoCS. The westward and eastward propagations of the Pearl River plume are both very small during the northeast monsoonal season, driven primarily by the Coriolis effect. The abrupt increase in the areal coverage of the River plume, which is much more pronounced in the eastward propagation, between June and August can be attributed to the prevailing southwest monsoon as well as the annual peak of the river flow. Coastal upwelling is another sub-regional phenomenon in the NoSoCS. The upwelling at the shelf edge off the Taiwan Bank may be characterized by its elevated Chl_a. Its areal coverage and average Chl_a do not vary

  16. ORGANIC MOLECULES AND WATER IN THE INNER DISKS OF T TAURI STARS

    SciTech Connect

    Carr, John S.; Najita, Joan R. E-mail: najita@noao.edu

    2011-06-01

    We report high signal-to-noise Spitzer Infrared Spectrograph spectra of a sample of 11 classical T Tauri stars. Molecular emission from rotational transitions of H{sub 2}O and OH and rovibrational bands of simple organic molecules (CO{sub 2}, HCN, C{sub 2}H{sub 2}) is common among the sources in the sample. The emission shows a range in both flux and line-to-continuum ratio for each molecule and in the flux ratios of different molecular species. The gas temperatures (200-800 K) and emitting areas we derive are consistent with the emission originating in a warm disk atmosphere in the inner planet formation region at radii <2 AU. The H{sub 2}O emission appears to form under a limited range of excitation conditions, as demonstrated by the similarity in relative strengths of H{sub 2}O features from star to star and the narrow range in derived temperature and column density. Emission from highly excited rotational levels of OH is present in all stars; the OH emission flux increases with the stellar accretion rate, and the OH/H{sub 2}O flux ratio shows a relatively small scatter. We interpret these results as evidence for OH production via FUV photodissociation of H{sub 2}O in the disk surface layers. No obvious explanation is found for the observed range in the relative emission strengths of different organic molecules or in their strength with respect to water. We put forward the possibility that these variations reflect a diversity in organic abundances due to star-to-star differences in the C/O ratio of the inner disk gas. Stars with the largest HCN/H{sub 2}O flux ratios in our sample have the largest disk masses. While larger samples are required to confirm this, we speculate that such a trend could result if higher mass disks are more efficient at planetesimal formation and sequestration of water in the outer disk, leading to enhanced C/O ratios and abundances of organic molecules in the inner disk. A comparison of our derived HCN-to-H{sub 2}O column density ratio

  17. Dynamic and Static Water Molecules Complement the TN16 Conformational Heterogeneity inside the Tubulin Cavity.

    PubMed

    Majumdar, Sarmistha; Maiti, Satyabrata; Ghosh Dastidar, Shubhra

    2016-01-19

    TN16 is one of the most promising inhibitors of α, β dimer of tubulin that occupies the cavity in the β-subunit located at the dimeric interface, known as the colchicine binding site. The experimentally determined structure of the complex (Protein Data Bank entry 3HKD) presents the conformation and position of the ligand based on the "best fit", keeping the controversy of other significant binding modes open for further investigation. Computation has already revealed that TN16 experiences fluctuations within the binding pocket, but the insight from that previous report was limited by the shorter windows of sampling and by the approximations on the surrounding environment by implicit solvation. This article reports that in most of the cases straightforward MMGBSA calculations of binding energy revealed a gradual loss of stabilization that was inconsistent with the structural observations, and thus, it indicated the lack of consideration of stabilizing factors with appropriate weightage. Consideration of the structurally packed water molecules in the space between the ligand and receptor successfully eliminated such discrepancies between the structure and stability, serving as the "litmus test" of the importance of explicit consideration of such structurally packed water in the calculations. Such consideration has further evidenced a quasi-degenerate character of the different binding modes of TN16 that has rationalized the observed intrinsic fluctuations of TN16 within the pocket, which is likely to be the most critical insight into its entropy-dominated binding. Quantum mechanical calculations have revealed a relay of electron density from TN16 to the protein via a water molecule in a concerted manner. PMID:26666704

  18. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule.

    PubMed

    Foresti, Roberta; Hammad, Jehad; Clark, James E; Johnson, Tony R; Mann, Brian E; Friebe, Andreas; Green, Colin J; Motterlini, Roberto

    2004-06-01

    1 Carbon monoxide (CO), one of the end products of heme catabolism by heme oxygenase, possesses antihypertensive and vasodilatory characteristics. We have recently discovered that certain transition metal carbonyls are capable of releasing CO in biological fluids and modulate physiological functions via the delivery of CO. Because the initial compounds identified were not water soluble, we have synthesized new CO-releasing molecules that are chemically modified to allow solubility in water. The aim of this study was to assess the vasoactive properties of tricarbonylchloro(glycinato)ruthenium(II) (CORM-3) in vitro and in vivo. 2 CORM-3 produced a concentration-dependent relaxation in vessels precontracted with phenylephrine, exerting significant vasodilatation starting at concentrations of 25-50 microm. Inactive CORM-3, which does not release CO, did not affect vascular tone. 3 Blockers of ATP-dependent potassium channels (glibenclamide) or guanylate cyclase activity (ODQ) considerably reduced CORM-3-dependent relaxation, confirming that potassium channels activation and cGMP partly mediate the vasoactive properties of CO. In fact, increased levels of cGMP were detected in aortas following CORM-3 stimulation. 4 The in vitro and in vivo vasorelaxant activities of CORM-3 were further enhanced in the presence of YC-1, a benzylindazole derivative which is known to sensitize guanylate cyclase to activation by CO. Interestingly, inhibiting nitric oxide production or removing the endothelium significantly decreased vasodilatation by CORM-3, suggesting that factors produced by the endothelium influence CORM-3 vascular activities. 5 These results, together with our previous findings on the cardioprotective functions of CORM-3, indicate that this molecule is an excellent prototype of water-soluble CO carriers for studying the pharmacological and biological features of CO. PMID:15148243

  19. Orbiting Water Molecules Dance to Tune Of Galaxy's "Central Engine," Astronomers Say

    NASA Astrophysics Data System (ADS)

    2000-01-01

    A disk of water molecules orbiting a supermassive black hole at the core of a galaxy 60 million light-years away is "reverberating" in response to variations in the energy output from the galaxy's powerful "central engine" close to the black hole, astronomers say. The team of astronomers used the National Science Foundation's (NSF) Very Large Array (VLA) radio telescope in New Mexico and the 100-meter-diameter radio telescope of the Max Planck Institute for Radio Astronomy at Effelsberg, Germany, to observe the galaxy NGC 1068 in the constellation Cetus. They announced their findings today at the American Astronomical Society's meeting in Atlanta. The water molecules, in a disk some 5 light-years in diameter, are acting as a set of giant cosmic radio-wave amplifiers, called masers. Using energy radiated by the galaxy's "central engine," the molecules strengthen, or brighten, radio emission at a particular frequency as seen from Earth. "We have seen variations in the radio 'brightness' of these cosmic amplifiers that we believe were caused by variations in the energy output of the central engine," said Jack Gallimore, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, VA. "This could provide us with a valuable new tool for learning about the central engine itself," he added. Gallimore worked with Stefi Baum of the Space Telescope Science Institute in Baltimore, MD; Christian Henkel of the Max Planck Institute for Radio Astronomy in Bonn, Germany; Ian Glass of the South African Astronomical Observatory; Mark Claussen of the NRAO in Socorro, NM; and Almudena Prieto of the European Southern Observatory in Munich, Germany. "Our observations show that NGC 1068 is the second-known case of a giant disk of water molecules orbiting a supermassive black hole at a galaxy's core," Gallimore said. The first case was the galaxy NGC 4258 (Messier 106), whose disk of radio-amplifying water molecules was measured by the NSF's Very Long Baseline

  20. Excited-state hydrogen-atom transfer along solvent wires: water molecules stop the transfer.

    PubMed

    Tanner, Christian; Thut, Markus; Steinlin, Andreas; Manca, Carine; Leutwyler, Samuel

    2006-02-01

    Excited-state hydrogen-atom transfer (ESHAT) along a hydrogen-bonded solvent wire occurs for the supersonically cooled n = 3 ammonia-wire cluster attached to the scaffold molecule 7-hydroxyquinoline (7HQ) [Tanner, C.; et al. Science 2003, 302, 1736]. Here, we study the analogous three-membered solvent-wire clusters 7HQ.(NH3)n.(H2O)m, n + m = 3, using resonant two-photon ionization (R2PI) and UV-UV hole-burning spectroscopies. Substitution of H2O for NH3 has a dramatic effect on the excited-state H-atom transfer: The threshold for the ESHAT reaction is approximately 200 cm(-1) for 7HQ.(NH3)3, approximately 350 cm(-1) for both isomers of the 7HQ.(NH3)2.H2O cluster, and approximately 600 cm(-1) for 7HQ.NH3.(H2O)2 but increases to approximately 2000 cm(-1) for the pure 7HQ.(H2O)3 water-wire cluster. To understand the effect of the chemical composition of the solvent wire on the H-atom transfer, the reaction profiles of the low-lying electronic excited states of the n = 3 pure and mixed solvent-wire clusters are calculated with the configuration interaction singles (CIS) method. For those solvent wires with an NH3 molecule at the first position, injection of the H atom into the wire can occur by tunneling. However, further H-atom transfer is blocked by a high barrier at the first (and second) H2O molecule along the solvent wire. H-atom transfer along the entire length of the solvent wire, leading to formation of the 7-ketoquinoline (7KQ) tautomer, cannot occur for any of the H2O-containing clusters, in agreement with experimentally observed absence of 7KQ fluorescence.

  1. A water molecule identified as a substrate of enzymatic hydrolysis of cellulose: A statistical-mechanics study

    NASA Astrophysics Data System (ADS)

    Ikuta, Yasuhiro; Karita, Shuichi; Kitago, Yu; Watanabe, Nobuhisa; Hirata, Fumio

    2008-11-01

    We calculated three-dimensional (3D) distribution of water molecules around and inside a complex of a cellulase, Cel44A, with a cellohexaose, based on the 3D-RISM theory. A distinct peak is observed in the 3D-distribution of water at the position within the hydrogen-bond distance from the two residues Glu186 and Glu359 in the enzyme. We identified the water molecule as a substrate of the enzymatic hydrolysis reaction. The finding provides strong support to one of the proposed mechanisms concerning the reaction, that is the retention process.

  2. Calculations for ion-impact induced ionization and fragmentation of water molecules

    NASA Astrophysics Data System (ADS)

    Kirchner, Tom; Murakami, Mitsuko; Horbatsch, Marko; Jürgen Lüdde, Hans

    2012-10-01

    Charge-state correlated cross sections for single- and multiple-electron removal processes in proton-water-molecule collisions are calculated by using the non-perturbative basis generator method adapted for ion-molecule collisions [1,2]. A fragmentation model is then applied to calculate the yields of H2O^+, OH^+, H^+, and O^+ ions emerging after H2O^q+ formation [3]. A detailed comparison is made with experimental data from three groups covering the energy range from 20--5000 keV. It is found that multiple electron processes with q<=3 play an important role at the lower end of this range and are calculated accurately within an independent particle model. We are currently completing the analogous analysis for He^+-H2O collisions for which the presence of the projectile electron poses some additional challenges. [4pt] [1] H.J. L"udde et al, Phys. Rev. A 80, 060702(R) (2009)[0pt] [2] M. Murakami et al, Phys. Rev. A 85, 052704 (2012)[0pt] [3] M. Murakami et al, Phys. Rev. A 85, 052713 (2012)

  3. Rate-Enhancing Roles of Water Molecules in Methyltrioxorhenium-Catalyzed Olefin Epoxidation by Hydrogen Peroxide.

    PubMed

    Goldsmith, Bryan R; Hwang, Taeho; Seritan, Stefan; Peters, Baron; Scott, Susannah L

    2015-08-01

    Olefin epoxidation catalyzed by methyltrioxorhenium (MTO, CH3ReO3) is strongly accelerated in the presence of H2O. The participation of H2O in each of the elementary steps of the catalytic cycle, involving the formation of the peroxo complexes (CH3ReO2(η(2)-O2), A, and CH3ReO(η(2)-O2)2(H2O), B), as well as in their subsequent epoxidation of cyclohexene, was examined in aqueous acetonitrile. Experimental measurements demonstrate that the epoxidation steps exhibit only weak [H2O] dependence, attributed by DFT calculations to hydrogen bonding between uncoordinated H2O and a peroxo ligand. The primary cause of the observed H2O acceleration is the strong co-catalytic effect of water on the rates at which A and B are regenerated and consequently on the relative abundances of the three interconverting Re-containing species at steady state. Proton transfer from weakly coordinated H2O2 to the oxo ligands of MTO and A, resulting in peroxo complex formation, is directly mediated by solvent H2O molecules. Computed activation parameters and kinetic isotope effects, in combination with proton-inventory experiments, suggest a proton shuttle involving one or (most favorably) two H2O molecules in the key ligand-exchange steps to form A and B from MTO and A, respectively.

  4. Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules.

    PubMed

    Kwon, Oh In; Jeong, Woo Chul; Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je

    2014-06-21

    Magnetic resonance electrical impedance tomography (MREIT) is an emerging method to visualize electrical conductivity and/or current density images at low frequencies (below 1 KHz). Injecting currents into an imaging object, one component of the induced magnetic flux density is acquired using an MRI scanner for isotropic conductivity image reconstructions. Diffusion tensor MRI (DT-MRI) measures the intrinsic three-dimensional diffusion property of water molecules within a tissue. It characterizes the anisotropic water transport by the effective diffusion tensor. Combining the DT-MRI and MREIT techniques, we propose a novel direct method for absolute conductivity tensor image reconstructions based on a linear relationship between the water diffusion tensor and the electrical conductivity tensor. We first recover the projected current density, which is the best approximation of the internal current density one can obtain from the measured single component of the induced magnetic flux density. This enables us to estimate a scale factor between the diffusion tensor and the conductivity tensor. Combining these values at all pixels with the acquired diffusion tensor map, we can quantitatively recover the anisotropic conductivity tensor map. From numerical simulations and experimental verifications using a biological tissue phantom, we found that the new method overcomes the limitations of each method and successfully reconstructs both the direction and magnitude of the conductivity tensor for both the anisotropic and isotropic regions.

  5. Adsorption of apolar molecules at the water liquid-vapor interface: A Monte Carlo simulations study of the water-n-octane system

    NASA Astrophysics Data System (ADS)

    Jedlovszky, Pál; Varga, Imre; Gilányi, Tibor

    2003-07-01

    The adsorption of n-octane at the water liquid-vapor interface has been investigated by Monte Carlo computer simulation. For this purpose, simulation of five different water-apolar interfacial systems have been performed, in which the number of n-octane molecules has been varied. The results clearly show that the apolar n-octane molecules are adsorbed from the vapor phase at the interface. The adsorption is driven by the weak attraction due to the dispersion forces acting between the water molecules and the methyl and methylene groups of the octanes. This weak attraction is, however, amplified by the fact that it is added up for the CH2 and CH3 groups belonging to the same molecule. Consistently, the n-octane molecules located closest to the aqueous phase are found to prefer all-trans conformation and parallel alignment with the plane of the interface. On the other hand, entropic effects become more important among the molecules of the outer part of the adsorption layer. Hence, the preferred orientation of these molecules is perpendicular to the interface, as they can be extended toward the less dense region of the apolar phase; and gauche dihedrals appear more frequently here than among the molecules located next to the aqueous phase.

  6. Vibrational-excitation cross sections of water molecules by electron impact

    NASA Technical Reports Server (NTRS)

    Shyn, T. W.; Cho, S. Y.; Cravens, T. E.

    1988-01-01

    A crossed-beam technique was used to measure absolute differential cross sections for the vibrational excitation of water-vapor molecules. The energy and angular range were from 2.2 to 20 eV and from 30 to 150 deg. Vibrational-excitation cross sections were determined for the bending (010) and stretching (100 and 001) modes of the electronic ground state. It is shown that the integral cross sections are generally larger than those of Seng and Linder (1976) by 10-20 percent for both the bending and stretching modes. It is noted that the results obtained are of interest in connection with the theoretical modeling of cometary ionospheres.

  7. Design, revision, and application of ground-water flow models for simulation of selected water-management scenarios in the coastal area of Georgia and adjacent parts of South Carolina and Florida

    USGS Publications Warehouse

    Clarke, John S.; Krause, Richard E.

    2000-01-01

    Ground-water flow models of the Floridan aquifer system in the coastal area of Georgia and adjacent parts of South Carolina and Florida, were revised and updated to ensure consistency among the various models used, and to facilitate evaluation of the effects of pumping on the ground-water level near areas of saltwater contamination. The revised models, developed as part of regional and areal assessments of ground-water resources in coastal Georgia, are--the Regional Aquifer-System Analysis (RASA) model, the Glynn County area (Glynn) model, and the Savannah area (Savannah) model. Changes were made to hydraulic-property arrays of the RASA and Glynn models to ensure consistency among all of the models; results of theses changes are evidenced in revised water budgets and calibration statistics. Following revision, the three models were used to simulate 32 scenarios of hypothetical changes in pumpage that ranged from about 82 million gallons per day (Mgal/d) lower to about 438 Mgal/d higher, than the May 1985 pumping rate of 308 Mgal/d. The scenarios were developed by the Georgia Department of Natural Resources, Environmental Protection Division and the Chatham County-Savannah Metropolitan Planning Commission to evaluate water-management alternatives in coastal Georgia. Maps showing simulated ground-water-level decline and diagrams presenting changes in simulated flow rates are presented for each scenario. Scenarios were grouped on the basis of pumping location--entire 24-county area, central subarea, Glynn-Wayne-Camden County subarea, and Savannah-Hilton Head Island subarea. For those scenarios that simulated decreased pumpage, the water level at both Brunswick and Hilton Head Island rose, decreasing the hydraulic gradient and reducing the potential for saltwater contamination. Conversely, in response to scenarios of increased pumpage, the water level at both locations declined, increasing the hydraulic gradient and increasing the potential for saltwater contamination

  8. Measurements of the number density of water molecules in plasma by using a combined spectral-probe method

    NASA Astrophysics Data System (ADS)

    Bernatskiy, A. V.; Ochkin, V. N.; Afonin, O. N.; Antipenkov, A. B.

    2015-09-01

    A novel method for measuring the number density of water molecules in low-temperature plasma is developed. The absolute intensities of rotational lines of the (0,0) band of the OH( A 2Σ- X 2П) transition are used. Lines with sufficiently large rotational quantum numbers referring to the so-called "hot" group of molecules produced by electron-impact dissociative excitation of water molecules are chosen for measurements. The excitation rate of a process with a known cross section is determined by measuring the parameters of plasma electrons by means of the probe method. The measured number densities of molecules are compared with those in the initial plasma-forming mixture. The time evolution of the particle densities in plasma is investigated. The problems of the sensitivity and applicability of the absolute spectral method are considered.

  9. Measurements of the number density of water molecules in plasma by using a combined spectral−probe method

    SciTech Connect

    Bernatskiy, A. V. Ochkin, V. N.; Afonin, O. N.; Antipenkov, A. B.

    2015-09-15

    A novel method for measuring the number density of water molecules in low-temperature plasma is developed. The absolute intensities of rotational lines of the (0,0) band of the OH(A{sup 2}Σ–X{sup 2}Π) transition are used. Lines with sufficiently large rotational quantum numbers referring to the so-called “hot” group of molecules produced by electron-impact dissociative excitation of water molecules are chosen for measurements. The excitation rate of a process with a known cross section is determined by measuring the parameters of plasma electrons by means of the probe method. The measured number densities of molecules are compared with those in the initial plasma-forming mixture. The time evolution of the particle densities in plasma is investigated. The problems of the sensitivity and applicability of the absolute spectral method are considered.

  10. Effect of nanotube-length on the transport properties of single-file water molecules: Transition from bidirectional to unidirectional

    NASA Astrophysics Data System (ADS)

    Su, Jiaye; Guo, Hongxia

    2011-06-01

    We use molecular dynamics (MD) simulations to study the transport of single-file water molecules through carbon nanotubes (CNTs) with various lengths in an electric field. Most importantly, we find that even the water dipoles inside the CNT are maintained along the field direction, a large amount of water molecules can still transport against the field direction for short CNTs, leading to a low unidirectional transport efficiency (η). As the CNT length increases, the efficiency η will increase remarkably, and achieves the maximum value of 1.0 at or exceeding a critical CNT length. Consequently, the transition from bidirectional to unidirectional transport is observed and is found to be relevant to thermal fluctuations of the two reservoirs, which is explored by the interaction between water molecules inside and outside the CNT. We also find that the water flow vs CNT length follows an exponential decay of f ˜ exp ( - L/L0), and the average translocation time of individual water molecules yields to a power law of τtrans ˜ Lυ, where L0 and ν are constant and slightly depend on the field strength. We further compare our results with the continuous-time random-walk (CTRW) model and find that the water flow can also be described by a power law of f ˜ L-μ modified from CTRW. Our results provide some new physical insights into the biased transport of single-file water molecules, which show the feasibility of using CNTs with any length to pump water in an electric field. The mechanism is important for designing efficient nanofluidic apparatuses.

  11. The local environment of the molecules in water-DMSO mixtures, as seen from computer simulations and Voronoi polyhedra analysis.

    PubMed

    Idrissi, Abdenacer; Marekha, B; Kiselev, M; Jedlovszky, Pál

    2015-02-01

    Molecular dynamics simulations of water-DMSO mixtures, containing 10, 20, 30, 40, 50, 60, 70, 80, and 90 mol% DMSO, respectively, have been performed on the isothermal-isobaric (N,p,T) ensemble at T = 298 K and at the pressure equal to the experimental vapor pressure at each mixture composition. In addition, simulations of the two neat systems have also been performed for reference. The potential models used in the simulations are known to excellently reproduce the mixing properties of these compounds. The simulation results have been analyzed in detail by means of the Voronoi polyhedra (VP) of the molecules. Distributions of the VP volume and the asphericity parameter as well as that of the radius of the spherical intermolecular voids have been calculated. Detailed analyses of these distributions have revealed that both molecules prefer to be in an environment consisting of both types of molecules, but the affinity of DMSO for mixing with water is clearly stronger than that of water for mixing with DMSO. As a consequence, the dilution of the two neat liquids by the other component has been found to follow different mechanisms: when DMSO is added to neat water small domains of neat-like water persist up to the equimolar composition, whereas no such domains are found when neat DMSO is diluted by water. The observed behaviour is also in line with the fact that the main thermodynamic driving force behind the full miscibility of water and DMSO is the energy change accompanying their mixing, and that the entropy change accompanying this mixing is negative in systems of low and positive in systems of high DMSO mole fractions. Finally, we have found a direct evidence for the existence of strong hydrogen bonded complexes formed by one DMSO and two water molecules, but it has also been shown that these complexes are in equilibrium with single (monomeric) water and DMSO molecules in the mixed systems. PMID:25533427

  12. Effect of nanotube-length on the transport properties of single-file water molecules: transition from bidirectional to unidirectional.

    PubMed

    Su, Jiaye; Guo, Hongxia

    2011-06-28

    We use molecular dynamics (MD) simulations to study the transport of single-file water molecules through carbon nanotubes (CNTs) with various lengths in an electric field. Most importantly, we find that even the water dipoles inside the CNT are maintained along the field direction, a large amount of water molecules can still transport against the field direction for short CNTs, leading to a low unidirectional transport efficiency (η). As the CNT length increases, the efficiency η will increase remarkably, and achieves the maximum value of 1.0 at or exceeding a critical CNT length. Consequently, the transition from bidirectional to unidirectional transport is observed and is found to be relevant to thermal fluctuations of the two reservoirs, which is explored by the interaction between water molecules inside and outside the CNT. We also find that the water flow vs CNT length follows an exponential decay of f  ∼  exp (- L/L(0)), and the average translocation time of individual water molecules yields to a power law of τ(trans)  ∼  L(υ), where L(0) and ν are constant and slightly depend on the field strength. We further compare our results with the continuous-time random-walk (CTRW) model and find that the water flow can also be described by a power law of f  ∼  L(-μ) modified from CTRW. Our results provide some new physical insights into the biased transport of single-file water molecules, which show the feasibility of using CNTs with any length to pump water in an electric field. The mechanism is important for designing efficient nanofluidic apparatuses.

  13. A proactive role of water molecules in acceptor recognition by Protein-O-fucosyltransferase 2

    PubMed Central

    Valero-González, Jessika; Leonhard-Melief, Christina; Lira-Navarrete, Erandi; Jiménez-Osés, Gonzalo; Hernández-Ruiz, Cristina; Pallarés, María Carmen; Yruela, Inmaculada; Vasudevan, Deepika; Lostao, Anabel; Corzana, Francisco; Takeuchi, Hideyuki; Haltiwanger, Robert S.; Hurtado-Guerrero, Ramon

    2016-01-01

    Protein O-fucosyltransferase 2 (POFUT2) is an essential enzyme that fucosylates serine/threonine residues of folded thrombospondin type 1 repeats (TSRs). To date, the mechanism by which this enzyme recognizes very dissimilar TSRs remained unclear. By engineering of a fusion protein, we report the crystal structure of Caenorhabditis elegans POFUT2 (CePOFUT2) in complex with GDP and human TSR1 that suggests an inverting mechanism for fucose transfer assisted by a catalytic base, and shows that nearly half of the TSR1 is embraced by CePOFUT2. A small number of direct interactions and a large network of water molecules maintain the complex. Site-directed mutagenesis demonstrates that POFUT2 fucosylates threonine preferentially over serine and relies on folded TSRs containing the minimal consensus sequence CXX(S/T)C. Crystallographic and mutagenesis data together with atomic-level simulations uncover an unprecedented binding mechanism by which POFUT2 promiscuously recognizes the structural fingerprint of poorly homologous TSRs through a dynamic network of water-mediated interactions. PMID:26854667

  14. A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2.

    PubMed

    Valero-González, Jessika; Leonhard-Melief, Christina; Lira-Navarrete, Erandi; Jiménez-Osés, Gonzalo; Hernández-Ruiz, Cristina; Pallarés, María Carmen; Yruela, Inmaculada; Vasudevan, Deepika; Lostao, Anabel; Corzana, Francisco; Takeuchi, Hideyuki; Haltiwanger, Robert S; Hurtado-Guerrero, Ramon

    2016-04-01

    Protein O-fucosyltransferase 2 (POFUT2) is an essential enzyme that fucosylates serine and threonine residues of folded thrombospondin type 1 repeats (TSRs). To date, the mechanism by which this enzyme recognizes very dissimilar TSRs has been unclear. By engineering a fusion protein, we report the crystal structure of Caenorhabditis elegans POFUT2 (CePOFUT2) in complex with GDP and human TSR1 that suggests an inverting mechanism for fucose transfer assisted by a catalytic base and shows that nearly half of the TSR1 is embraced by CePOFUT2. A small number of direct interactions and a large network of water molecules maintain the complex. Site-directed mutagenesis demonstrates that POFUT2 fucosylates threonine preferentially over serine and relies on folded TSRs containing the minimal consensus sequence C-X-X-S/T-C. Crystallographic and mutagenesis data, together with atomic-level simulations, uncover a binding mechanism by which POFUT2 promiscuously recognizes the structural fingerprint of poorly homologous TSRs through a dynamic network of water-mediated interactions. PMID:26854667

  15. A proactive role of water molecules in acceptor recognition by protein O-fucosyltransferase 2.

    PubMed

    Valero-González, Jessika; Leonhard-Melief, Christina; Lira-Navarrete, Erandi; Jiménez-Osés, Gonzalo; Hernández-Ruiz, Cristina; Pallarés, María Carmen; Yruela, Inmaculada; Vasudevan, Deepika; Lostao, Anabel; Corzana, Francisco; Takeuchi, Hideyuki; Haltiwanger, Robert S; Hurtado-Guerrero, Ramon

    2016-04-01

    Protein O-fucosyltransferase 2 (POFUT2) is an essential enzyme that fucosylates serine and threonine residues of folded thrombospondin type 1 repeats (TSRs). To date, the mechanism by which this enzyme recognizes very dissimilar TSRs has been unclear. By engineering a fusion protein, we report the crystal structure of Caenorhabditis elegans POFUT2 (CePOFUT2) in complex with GDP and human TSR1 that suggests an inverting mechanism for fucose transfer assisted by a catalytic base and shows that nearly half of the TSR1 is embraced by CePOFUT2. A small number of direct interactions and a large network of water molecules maintain the complex. Site-directed mutagenesis demonstrates that POFUT2 fucosylates threonine preferentially over serine and relies on folded TSRs containing the minimal consensus sequence C-X-X-S/T-C. Crystallographic and mutagenesis data, together with atomic-level simulations, uncover a binding mechanism by which POFUT2 promiscuously recognizes the structural fingerprint of poorly homologous TSRs through a dynamic network of water-mediated interactions.

  16. Transition energies of benzoquinone anions are immune to symmetry breaking by a single water molecule.

    PubMed

    Stockett, Mark H; Nielsen, Steen Brøndsted

    2016-03-14

    p-Benzoquinone is the prototypical member of the quinone class of molecules with a basic functionality relevant for the primary reactions of photosynthesis. As electronically excited quinone anions are formed in near-resonant electron transfer, key issues are how the local environment affects excited-state energy levels and deexcitation times. The former we address here with action spectroscopy of mass-selected bare radical anions (pBQ(-)) and one-water pBQ(-)·H2O complexes, isolated in vacuo. The complex represents a precursor for internal proton transfer to form the semiquinone free radical, the first chemical product in the light-driven electron transport chain. Both ions display bands in the visible and ultraviolet with, importantly, almost identical maxima. Despite localizing negative charge, thereby breaking the high orbital symmetries, water is surprisingly innocent. This finding implies that natural fluctuations in the quinone microenvironment cause only minor variations in excited-state energies and thus electron-transfer rates. Hence quinones are robust participants in electron transport. PMID:26490302

  17. Hydrogen-bonding alterations of the protonated Schiff base and water molecule in the chloride pump of Natronobacterium pharaonis.

    PubMed

    Shibata, Mikihiro; Muneda, Norikazu; Sasaki, Takanori; Shimono, Kazumi; Kamo, Naoki; Demura, Makoto; Kandori, Hideki

    2005-09-20

    Halorhodopsin is a light-driven chloride ion pump. Chloride ion is bound in the Schiff base region of the retinal chromophore, and unidirectional chloride transport is probably enforced by the specific hydrogen-bonding interaction with the protonated Schiff base and internal water molecules. In this article, we study hydrogen-bonding alterations of the Schiff base and water molecules in halorhodopsin of Natronobacterium pharaonis (pHR) by assigning their N-D and O-D stretching vibrations in D(2)O, respectively. Highly accurate low-temperature Fourier transform infrared spectroscopy revealed that hydrogen bonds of the Schiff base and water molecules are weak in the unphotolyzed state, whereas they are strengthened upon retinal photoisomerization. Halide dependence of the stretching vibrations enabled us to conclude that the Schiff base forms a direct hydrogen bond with Cl(-) only in the K intermediate. Hydrogen bond of the Schiff base is further strengthened in the L(1) intermediate, whereas the halide dependence revealed that the acceptor is not Cl(-), but presumably a water molecule. Thus, it is concluded that the hydrogen-bonding interaction between the Schiff base and Cl(-) is not a driving force of the motion of Cl(-). Rather, the removal of its hydrogen bonds with the Schiff base and water(s) makes the environment around Cl(-) less polar in the L(1) intermediate, which presumably drives the motion of Cl(-) from its binding site to the cytoplasmic domain.

  18. Free Energy Calculations of Mutations Involving a Tightly Bound Water Molecule and Ligand Substitutions in a Ligand-Protein Complex.

    PubMed

    García-Sosa, Alfonso T; Mancera, Ricardo L

    2010-09-17

    The accurate calculation of the free energy of interaction of protein-water-ligand systems has an important role in molecular recognition and drug design that is often not fully considered. We report free energy thermodynamic integration calculations used to evaluate the effects of inclusion, neglect, and targeting and removal (i.e., systematic substitution by ligand functional groups) of an important, tightly bound, water molecule in the SH3 domain of Abl tyrosine kinase. The effects of this water molecule on the free energies of interaction of several Abl-SH3 domain-ligand systems reveal that there is an unfavourable free energy change associated with its removal into the bulk solvent. Only three substitutions by an additional functional group (out of methyl, ethyl, hydroxyl, amino, and amide groups) in the phenyl ring of a tyrosine in the peptide ligand resulted in a favourable change in the free energy of binding upon replacement of the ordered water molecule. This computational approach provides a direct route to the systematic and rigorous prediction of the thermodynamic influence of ordered, structural water molecules on ligand modification and optimization in drug design by calculating free energy changes in protein-water-ligand systems. PMID:27463454

  19. State of Water Molecules and Silanol Groups in Opal Minerals: a Near Infrared Spectroscopic Study of Opals from Slovakia

    NASA Astrophysics Data System (ADS)

    Bobon, Miroslav; Christy, Alfred A.; Kluvanec, Daniel; Illasova, L'udmila

    2011-06-01

    Recently near infrared spectroscopy in combination with double derivative technique has been effectively used by Christy [1] to differentiate between free silanol groups and hydrogen bonded silanol groups on silica gel. The method has given some insight into the type of functionalities and their location in silica gel samples. The inportant information in this respect comes from the overtones of the OH groups of water molecules hydrogen bonded to free silanol groups, and hydrogen bonded silanol groups absorbing in the region 5500- 5100 Cm-1 region. The approach was adapted to study the state of water and silanol functionalities and their locations in opals from Slovakia. Twenty opal samples classified into CT and A classes and one quartz sample were used in this work. The samples were crushed using a hydrolic press and powderised. Each sample was then subjected to evacuation process to remove surface adsorbed water at 200°C and the near infrared spectrum of the sample was measured using a Perkin Elmer NTS near infrared spectrometer equipped with a transflectance accessory. The detailed analysis of the sample was carried out using the second derivative profile of the spectrum. The samples were also heated to 750°C to study the state of water molecules in Opal minerals. The results indicate that the opal samples contain 1) surface adsorbed water 2) free and hydrogen bonded silanol groups on the surface 3) Trapped water in the bulk 4) free and hydrogen bonded silanol groups in the cavity surfaces in the bulk. A part of the water molecules found in the bulk of opal minerals are free molecules and the rest are found in hydrogen bonded state to free and hydrogen bonded silanol groups. [1] A. A. Christy, New insights into the surface functionalities and adsorption evolution of water molecules on silica gel surface: A study by second derivative Near Infrared Spectroscopy, Vib. Spectrosc. 54 (2010) 42-49.

  20. The structure and activation of substrate water molecules in Sr(2+)-substituted photosystem II.

    PubMed

    Chatterjee, Ruchira; Milikisiyants, Sergey; Coates, Christopher S; Koua, Faisal H M; Shen, Jian-Ren; Lakshmi, K V

    2014-10-14

    The mechanism of solar water oxidation by photosystem II (PSII) is of fundamental interest and it is the object of extensive studies both in the past and present. The solar water oxidation reaction of PSII occurs in the oxygen-evolving complex (OEC). The OEC consists of a tetranuclear manganese calcium-oxo (Mn4Ca-oxo) cluster that is surrounded by amino acid residues and inorganic cofactors. The role of the Ca(2+) ion in the water oxidation reaction is one of the most interesting questions that is yet to be answered. In this study, we probe the structural and functional differences induced by metal ion substitution in the Mn4Ca-oxo cluster by substituting the Ca(2+) ion in the OEC by a Sr(2+) ion. We apply two-dimensional (2D) hyperfine sublevel correlation (HYSCORE) spectroscopy to detect weak magnetic interactions between the paramagnetic Mn4Sr-oxo cluster and the surrounding protons in the S2 state of the OEC of Sr(2+)-substituted PSII. We identify three groups of protons that are magnetically interacting with the Mn4Sr-oxo cluster. Using the recently reported 1.9 Å resolution X-ray structure of the OEC in the S1 state [Umena et al.] and the high-resolution 2D HYSCORE spectroscopy studies of the S2 state of the OEC of Ca(2+)-containing PSII [Milikisiyants et al., Energy Environ. Sci., 2012, 5, 7747], we discuss the assignments of the three groups of protons that are magnetically coupled to the Mn4Sr-oxo cluster. Since hyperfine interactions are highly sensitive to small perturbations in the electronic and geometric structure of paramagnetic centers, a comparison of the 2D HYSCORE spectra of Sr(2+)-substituted and Ca(2+)-containing PSII allows us to draw important conclusions with respect to the structure of the substrate water molecules in the OEC and the role of the Ca(2+) ion in the water oxidation reaction. In addition, for the first time, we determine the experimental value of the spin projection factor for the Mn(III) ion of the Mn4Ca-oxo cluster as ρ1

  1. Association between Arsenic Exposure from Drinking Water and Plasma Levels of Soluble Cell Adhesion Molecules

    PubMed Central

    Chen, Yu; Santella, Regina M.; Kibriya, Muhammad G.; Wang, Qiao; Kappil, Maya; Verret, Wendy J.; Graziano, Joseph H.; Ahsan, Habibul

    2007-01-01

    Background Epidemiologic studies of cardiovascular disease risk factors and appropriate biomarkers in populations exposed to a wide range of arsenic levels are a public health research priority. Objective We investigated the relationship between inorganic arsenic exposure from drinking water and plasma levels of soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular adhesion molecule-1 (sVCAM-1), both markers of endothelial dysfunction and vascular inflammation, in an arsenic-exposed population in Araihazar, Bangladesh. Methods The study participants included 115 individuals with arsenic-related skin lesions participating in a 2 × 2 randomized, placebo-controlled, double-blind trial of vitamin E and selenium supplementation. Arsenic exposure status and plasma levels of sICAM-1 and sVCAM-1 were assessed at baseline and after 6 months of follow-up. Results Baseline well arsenic, a long-term measure of arsenic exposure, was positively associated with baseline levels of both sICAM-1 and sVCAM-1 and with changes in the two markers over time. At baseline, for every 1-μg/L increase in well arsenic there was an increase of 0.10 ng/mL [95% confidence interval (CI), 0.00–0.20] and 0.33 ng/mL (95% CI, 0.15–0.51) in plasma sICAM-1 and sVCAM-1, respectively. Every 1-μg/L increase in well arsenic was associated with a rise of 0.11 ng/mL (95% CI, 0.01–0.22) and 0.17 ng/mL (95% CI, 0.00–0.35) in sICAM-1 and sVCAM-1 from baseline to follow-up, respectively, in spite of recent changes in urinary arsenic as well as vitamin E and selenium supplementation during the study period. Conclusions The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation that persists over time and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease. PMID:17938729

  2. Hydration of gelatin molecules in glycerol-water solvent and phase diagram of gelatin organogels.

    PubMed

    Sanwlani, Shilpa; Kumar, Pradip; Bohidar, H B

    2011-06-01

    We present a systematic investigation of hydration and gelation of the polypeptide gelatin in water-glycerol mixed solvent (glycerol solutions). Raman spectroscopy results indicated enhancement in water structure in glycerol solutions and the depletion of glycerol density close to hydration sheath of the protein molecule. Gelation concentration (c(g)) was observed to decrease from 1.92 to 1.15% (w/v) while the gelation temperature (T(g)) was observed to increase from 31.4 to 40.7 °C with increase in glycerol concentration. Data on hand established the formation of organogels having interconnected networks, and the universal gelation mechanism could be described through an anomalous percolation model. The viscosity of sol diverged as η ∼ (1 - c(g)/c)(-k) as c(g) was approached from below (c < c(g)), while the elastic storage modulus grew as G' ∼ (c/c(g) - 1)(t) (for c > c(g)). It is important to note that values determined for critical exponents k and t were universal; that is, they did not depend on the microscopic details. The measured values were k = 0.38 ± 0.10 and t = 0.92 ± 0.17 whereas the percolation model predicts k = 0.7-1.3 and t = 1.9. Isothermal frequency sweep studies showed power-law dependence of gel storage modulus (G') and loss modulus (G'') on oscillation frequency ω given as G'(ω) ∼ ω(n') and G''(ω) ∼ ω(n''), and consistent with percolation model prediction it was found that n' ≈ n'' ≈ δ ≈ 0.73 close to gelation concentration. We propose a unique 3D phase diagram for the gelatin organogels. Circular dichroism data revealed that the gelatin molecules retained their biological activity in these solvents. Thus, it is shown that the thermomechanical properties of these organogels could be systematically tuned and customized as per application requirement.

  3. Nucleation of Mixed Nitric Acid-Water Ice Nanoparticles in Molecular Beams that Starts with a HNO3 Molecule.

    PubMed

    Lengyel, Jozef; Pysanenko, Andriy; Kočišek, Jaroslav; Poterya, Viktoriya; Pradzynski, Christoph C; Zeuch, Thomas; Slavíček, Petr; Fárník, Michal

    2012-11-01

    Mixed (HNO3)m(H2O)n clusters generated in supersonic expansion of nitric acid vapor are investigated in two different experiments, (1) time-of-flight mass spectrometry after electron ionization and (2) Na doping and photoionization. This combination of complementary methods reveals that only clusters containing at least one acid molecule are generated, that is, the acid molecule serves as the nucleation center in the expansion. The experiments also suggest that at least four water molecules are needed for HNO3 acidic dissociation. The clusters are undoubtedly generated, as proved by electron ionization; however, they are not detected by the Na doping due to a fast charge-transfer reaction between the Na atom and HNO3. This points to limitations of the Na doping recently advocated as a general method for atmospheric aerosol detection. On the other hand, the combination of the two methods introduces a tool for detecting molecules with sizable electron affinity in clusters.

  4. State of water molecules and silanol groups in opal minerals: a near infrared spectroscopic study of opals from Slovakia

    NASA Astrophysics Data System (ADS)

    Boboň, Miroslav; Christy, Alfred A.; Kluvanec, Daniel; Illášová, L'udmila

    2011-12-01

    Recently, near infrared spectroscopy in combination with double derivative technique has been effectively used by Christy (Vib Spectrosc 54:42-49, 2010) to study and differentiate between free and hydrogen bonded silanol groups on silica gel surface. The method has given some insight into the type of functionalities, their location in silica gel samples, and the way the water molecules bind onto the silanol groups. The important information in this respect comes from the overtones of the OH groups of water molecules hydrogen-bonded to free silanol groups, and hydrogen-bonded silanol groups absorbing in the region 5,500-5,100 cm-1. Chemically, opal minerals are hydrated silica and the same approach was adapted to study the state of water molecules, silanol functionalities, and their locations in opal samples from Slovakia. Twenty opal samples classified into CT and A classes and one quartz sample were used in this work. The samples were crushed using a hydraulic press and powderized. Each sample was then subjected to evacuation process to remove surface-adsorbed water at 200°C, and the near infrared spectrum of each sample was measured using a Perkin Elmer NTS FT-NIR spectrometer equipped with a transflectance accessory and a DTGS detector. The samples were also heated to 750°C to remove the hydrogen-bonded silanol groups on the surface to reveal their locality. Second derivative profiles of the near infrared reflectance spectra were obtained using the instrument's software and used in the detailed analysis of the samples. The analysis of the near infrared spectra and their second derivative profiles had the aim in finding relationships between the surface chemical structure and the classification of opal samples. The dry opal samples were also tested for their surface adsorption effectivity toward water molecules. The results indicate that the opal samples contain (1) surface-adsorbed water, (2) free and hydrogen-bonded silanol groups on the surface, (3) trapped

  5. Effects of Arginine-82 on the interactions of internal water molecules in bacteriorhodopsin

    SciTech Connect

    Hatanaka, Minoru; Sasaki, Jun; Kandori, Hideki

    1996-05-21

    Arg82, one of the residues near the protonated Schiff base of bacteriorhodopsin, facilitates proton release to the medium during the L-to-M reaction of the photocycle, but retards the rate of proton transfer from the Schiff base to Asp85. In order to understand the role of Arg82 in these processes, the structural changes upon formation of the M intermediated were studied by Fourier transform infrared spectroscopy of the hydrated films of Arg82 mutants at pH 9.5. The negative band at 1700 cm{sup {minus}1} in the BR{r_arrow}M spectrum due to the deprotonation of Glu204 was absent when Arg82 was replaced with alanine (R82A), but present with small amplitude when residue 82 was a flutamine (R82Q), or a lysine (R82K), with a shift to 1696 cm{sup {minus}1}. The O-H stretch of water at 3643 cm{sup {minus}1} is shifted toward a lower frequency in R82Q, R82K, and R82A in the unphotolyzed state. However, R82Q retains a fraction of the unshifted band. Another O-H stretch is prominent in R82Q around 3625 cm{sup {minus}1} but absent in R82A and probably in R82K. In parallel, R82Q retains a fraction of the slow component of the formation of the M intermediate, which is almost completely absent in R82K and R82A. These results, along with previous data for the mutants of Glu204, suggest that the guanidum group of Arg82 influences the H-bonding of water molecules located close to Asp85 and Arg82-Glu204 regions, and the rate of proton transfer form the Schiff base to Asp85. The amide group of Gln82 can substitute for it but weakly. 35 refs., 4 figs.

  6. Single-molecule analysis of ultradilute solutions with guided streams of 1-{mu}m water droplets

    SciTech Connect

    Kung, C.; Barnes, M.D.; Lermer, N.; Whitten, W.B.; Ramsey, J.M.

    1999-03-01

    We describe instrumentation for real-time detection of single-molecule fluorescence in guided streams of 1-{mu}m (nominal) water droplets. In this technique, target molecules were confined to droplets whose volumes were comparable with illumination volumes in diffraction-limited fluorescence microscopy and guided to the waist of a cw probe laser with an electrostatic potential. Concentration detection limits for Rhodamine 6G in water were determined to be {approximately}1 fM, roughly 3 orders of magnitude lower than corresponding limits determined recently with diffraction-limited microscopy techniques for a chemical separation of similar dyes. In addition to its utility as a vehicle for probing single molecules, instrumentation for producing and focusing stable streams of 1{endash}2-{mu}m-diameter droplets may have other important analytical applications as well. {copyright} 1999 Optical Society of America

  7. Two-dimensional description of surface-bounded exospheres with application to the migration of water molecules on the Moon.

    PubMed

    Schorghofer, Norbert

    2015-05-01

    On the Moon, water molecules and other volatiles are thought to migrate along ballistic trajectories. Here, this migration process is described in terms of a two-dimensional partial differential equation for the surface concentration, based on the probability distribution of thermal ballistic hops. A random-walk model, a corresponding diffusion coefficient, and a continuum description are provided. In other words, a surface-bounded exosphere is described purely in terms of quantities on the surface, which can provide computational and conceptual advantages. The derived continuum equation can be used to calculate the steady-state distribution of the surface concentration of volatile water molecules. An analytic steady-state solution is obtained for an equatorial ring; it reveals the width and mass of the pileup of molecules at the morning terminator. PMID:26066166

  8. A theoretical study on reactivity of singlet phosphinidene by its reacting with polar water molecule

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Wang, Zhi-Lin; Bai, Zhi-Ping; Li, Chong-De; Xin, Xin-Quan

    2001-02-01

    The reaction mechanism of singlet phosphinidene with polar water molecule has been studied by ab initio molecular orbital theory at the HF/6-31G(d), MP2(full)/6-31G(d) and G2 levels to better understand the reactivity of the singlet phosphinidene. The results show that there are two parallel reaction channels: channel A is an addition reaction which forms the three-membered ring transition state (TS) and obtains the product H 2POH; channel B is a dehydrogenation reaction taking place along a TS described by a four-membered ring and yielding (POH+H 2). The general statistical thermodynamics and Eyring TS theory with Wigner correction are also used to examine the thermodynamic and kinetic properties of these two reaction channels during the range of 100-1100 K. It is concluded that channel A has thermodynamic advantage while channel B has dynamic advantage, especially at low temperatures, while at 1100 K channel A is dominant for it has much larger equilibrium constant and the rate coefficients of both reactions are almost equal.

  9. Computing the energy of a water molecule using multideterminants: A simple, efficient algorithm

    SciTech Connect

    Clark, Bryan K.; Morales, Miguel A; Mcminis, Jeremy; Kim, Jeongnim; Scuseria, Gustavo E

    2011-01-01

    Quantum Monte Carlo (QMC) methods such as variational Monte Carlo and fixed node diffusion Monte Carlo depend heavily on the quality of the trial wave function. Although Slater-Jastrow wave functions are the most commonly used variational ansatz in electronic structure, more sophisticated wave functions are critical to ascertaining new physics. One such wave function is the multi-Slater- Jastrow wave function which consists of a Jastrow function multiplied by the sum of Slater deter- minants. In this paper we describe a method for working with these wave functions in QMC codes that is easy to implement, efficient both in computational speed as well as memory, and easily par- allelized. The computational cost scales quadratically with particle number making this scaling no worse than the single determinant case and linear with the total number of excitations. Addition- ally, we implement this method and use it to compute the ground state energy of a water molecule. 2011 American Institute of Physics. [doi:10.1063/1.3665391

  10. Modeling the impacts of winter cover crops on water quality in two adjacent sub-watersheds within the Chesapeake Bay Watershed, Maryland, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Choptank River on Maryland’s Eastern Shore has been designated by the USEPA as “impaired waters” under Section 303(d) of the Federal Clean Water Act of 1972, mainly because of significant nutrient loads that resulted in not meeting the EPA water quality standards. This water quality deteriorati...

  11. [Study of biological molecules in water by using the resonance raman spectra in liquid-core optical fiber].

    PubMed

    Jia, Li-Hua; Wang, Yi-Ding; Sun, Cheng-Lin; Li, Zhan-Long; Li, Zuo-Wei; Wang, Li-Jun

    2009-10-01

    Raman spectrum is an important and effective method for the study of biological molecules in water. Measuring the Raman spectra for biological molecules in water, however, is very difficult because of the small Raman scattering cross section and the high electronic excitation energy of water molecules. In the present paper, the authors applied both technologies of liquid-core optical fiber and the resonance Raman spectra, then the intensity of Raman spectra was enhanced to a great extent. In this experiment, we chose the laser wavelength 514.5 of Ar+ ion laser as excitation laser, because we could obtain the maximal intensity of resonance Raman spectra at this wavelength. The experiment results show that, for the trace inspecting study of beta-carotene biological molecules in water, the concentration in the range of 10(-7)-10(-9) mol x L(-1) can be detected by quartz liquid-core optical fiber and the concentration in the range of 10(-9)-10(-10) mol x L(-1) by Teflon liquid-core optical fiber. The detecting utmost will be further reduced if improving the quality of optical fiber. PMID:20038038

  12. The impact of variations in oceanographic conditions on distribution of redfish in the Irminger Sea and adjacent waters - the temperature is as major factor such cause according to analysis of climatic variability and SST Satellite Data

    NASA Astrophysics Data System (ADS)

    Vanyushin, Georgy; Melnikov, Sergey; Bulatova, Tatiana; Krovnin, Andrey; Troshkov, Anatoly

    2016-04-01

    In this study, for the first time, the data of satellite ("NOAA" and "Meteosat") monitoring of the Irminger Sea and adjacent waters were used to estimate the impact of the Sea surface temperature (SST) on distribution and density of redfish concentrations. We made analytical calculations of the average values of SST for the reference zone of the Irminger Sea, integral acoustic values (SA) for the reference zone, and the average values of the SA only for those sites on the reference zone where redfish were found in the layer 0-500 m. The strong correlation between SST and average values of redfish density for real situations shows that the lower SST values correspond to the lower integral and average values of redfish density. The area of the Irminger Sea and adjacent waters is characterized by considerable interannual and decadal climatic variability associated with the state of the NAO (the North Atlantic Oscillation) and phase of the AMO (the Atlantic Multidecadal Oscillation). This results in corresponding variations of the thermal parameters in the upper 500-m layer. The further investigations are needed to identify mechanisms of transfer of physical anomalies controlled by the NAO and AMO, from the sea surface into the intermediate and deep layers of water column. The climatic variability leads to permanent spatial redistribution of redfish concentrations. The results obtained confirm that environmental processes, rather than fishery, have the greater impact on estimates of redfish distribution. Key words: satellite monitoring of SST, climatic variability, the North Atlantic, the Irminger Sea, redfish distribution.

  13. Water-Level Data for the Albuquerque Basin and Adjacent Areas, Central New Mexico, Period of Record Through September 30, 2006

    USGS Publications Warehouse

    Beman, Joseph E.

    2007-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin are currently (2007) obtained solely from ground-water resources. An increase of about 20 percent in the population from 1990 to 2000 also resulted in an increased demand for water. From April 1982 through September 1983, a network of wells was established to monitor changes in ground-water levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly. Currently (2007), the network consists of 133 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 133 sites through 2007.

  14. Water-Level Data for the Albuquerque Basin and Adjacent Areas, Central New Mexico, Period of Record Through September 30, 2007

    USGS Publications Warehouse

    Beman, Joseph E.

    2008-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin are currently (2007) obtained solely from ground-water resources. An increase of about 20 percent in the population from 1990 to 2000 also resulted in an increased demand for water. A network of wells was established to monitor changes in ground-water levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2007), the network consists of 131 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 131 sites through water-year 2007. Data from five sites (Sites 9, 10, 31, 71 and 78) were not measured during the 2007 water-year, but are included in this report because recent data are useful for comparison and (or) data have been collected that will be included in the water-year 2008 report.

  15. Limnological characteristics of selected lakes in the Nebraska sandhills, U.S.A., and their relation to chemical characteristics of adjacent ground water

    USGS Publications Warehouse

    La Baugh, J.W.

    1986-01-01

    Limnological characteristics of Crane, Hackberry, Island and Roundup Lakes, and chemical characteristics of shallow ground water, within the Crescent Lake National Wildlife Refuge, western Nebraska, were determined during a preliminary investigation of the interaction between lakes and ground water in this study area between 1980 and 1984. When ice cover was absent, the lakes were well-mixed vertically, regardless of season. Depth to which 1% of surface illumination penetrated was commonly less than 1m. Variability in light penetration, as measured by Secchidisk transparency, appeared to be unrelated to changes in algal biomass, even though algal biomass, measured as chlorophyll a, varied seasonally within a two-order-of-magnitude range. Blue-green algae were the most abundant phytoplankton; this condition occurred most often when the ratio of total nitrogen to total phosphorus in the lakes' water was less than 29. Although rotifers and copepod naupli commonly were the most abundant zooplankton in the lakes, cladocerans were dominant occasionally. Either sodium or calcium was the most abundant cation, and bicarbonate was the most abundant anion, in water from water-table wells and lakes sampled during the study. The second most abundant cation in the ground water was related to the location of the sampled well within the ground-water system. The lakes were a source of dissolved organic carbon seeping to ground water. Chemical and hydrologic data indicate there is interaction between lakes and ground water in the study area. ?? 1986.

  16. Simulated effects of impoundment of lake seminole on ground-water flow in the upper Floridan Aquifer in southwestern Georgia and adjacent parts of Alabama and Florida

    USGS Publications Warehouse

    Jones, L. Elliott; Torak, Lynn J.

    2004-01-01

    Hydrologic implications of the impoundment of Lake Seminole in southwest Georgia and its effect on components of the surface- and ground-water flow systems of the lower Apalachicola?Chattahoochee?Flint (ACF) River Basin were investigated using a ground-water model. Comparison of simulation results of postimpoundment drought conditions (October 1986) with results of hypothetical preimpoundment conditions (a similar drought prior to 1955) provides a qualitative measure of the changes in hydraulic head and ground-water flow to and from streams and Lake Seminole, and across State lines caused by the impoundment. Based on the simulation results, the impoundment of Lake Seminole changed ground-water flow directions within about 20?30 miles of the lake, reducing the amount of ground water flowing from Florida to Georgia southeast of the lake. Ground-water storage was increased by the impoundment, as indicated by a simulated increase of as much as 26 feet in the water level in the Upper Floridan aquifer. The impoundment of Lake Seminole caused changes to simulated components of the ground-water budget, including reduced discharge from the Upper Floridan aquifer to streams (315 million gallons per day); reduced recharge from or increased discharge to regional ground-water flow at external model boundaries (totaling 183 million gallons per day); and reduced recharge from or increased discharge to the undifferentiated overburden (totaling 129 million gallons per day).

  17. Label‐Free Fluctuation Spectroscopy Based on Coherent Anti‐Stokes Raman Scattering from Bulk Water Molecules

    PubMed Central

    Rabasovic, M. D.; Sisamakis, E.

    2016-01-01

    Abstract Nanoparticles (NPs) and molecules can be analyzed by inverse fluorescence correlation spectroscopy (iFCS) as they pass through an open detection volume, displacing fractions of the fluorescence‐emitting solution in which they are dissolved. iFCS does not require the NPs or molecules to be labeled. However, fluorophores in μm–mm concentrations are needed for the solution signal. Here, we instead use coherent anti‐Stokes Raman scattering (CARS) from plain water molecules as the signal from the solution. By this fully label‐free approach, termed inverse CARS‐based correlation spectroscopy (iCARS‐CS), NPs that are a few tenths of nm in diameter and at pM concentrations can be analyzed, and their absolute volumes/concentrations can be determined. Likewise, lipid vesicles can be analyzed as they diffuse/flow through the detection volume by using CARS fluctuations from the surrounding water molecules. iCARS–CS could likely offer a broadly applicable, label‐free characterization technique of, for example, NPs, small lipid exosomes, or microparticles in biomolecular diagnostics and screening, and can also utilize CARS signals from biologically relevant media other than water. PMID:26819085

  18. The Formation of Oxygen-Containing Molecules in Liquid Water Environments on the Surface of Titan (Invited)

    NASA Astrophysics Data System (ADS)

    Neish, C.

    2010-12-01

    Saturn’s moon Titan represents a unique locale for studying prebiotic chemistry. Reactions occurring in its thick nitrogen - methane atmosphere produce a wide variety of organic molecules. Observations by the Voyager spacecraft found evidence for six gas-phase hydrocarbons and three nitriles, along with an enveloping haze layer shrouding the surface of the moon (Hanel et al., 1981; Kunde et al., 1981; Maguire et al., 1981). More recently, the INMS instrument on the Cassini spacecraft has found evidence for organic molecules up to its mass limit of 100 Da at altitudes as high as 1200 km (Waite et al., 2005; Vuitton et al. 2007). Laboratory experiments that simulate the reactions occurring in Titan’s atmosphere produce many of the same organic molecules observed by Voyager and Cassini, along with organic precipitates known as tholins. Tholins have the general formula CxHyNz and are spectrally similar to Titan’s haze (Khare et al., 1984). Though interesting from the point of view of organic chemistry, the molecules found in Titan’s atmosphere stop short of addressing questions related to the origins of life. Oxygen - a key element for most known biological molecules - is generally lacking in Titan’s atmosphere. The most abundant oxygenated molecule, CO, is present at only ~50 ppm (de Kok et al., 2007). However, if Titan’s atmospheric organic molecules mix with water found in cryovolcanic lavas or impact melts, they may react to produce oxygen-containing, prebiotic species. In this paper, I will show that reactions between Titan tholins and low temperature aqueous solutions produce a wide variety of oxygen-containing species. These reactions display first-order kinetic behaviour with half-lives between 0.4 to 7 days at 273 K (in water) and between 0.3 and 14 days at 253 K (in 13 wt. % ammonia-water). Tholin hydrolysis is thus very fast compared to the freezing timescales of impact melts and volcanic sites on Titan, which take hundreds to thousands of years

  19. Extraction of Organic Molecules from Terrestrial Material: Quantitative Yields from Heat and Water Extractions

    NASA Technical Reports Server (NTRS)

    Beegle, L. W.; Abbey, W. A.; Tsapin, A. T.; Dragoi, D.; Kanik, I.

    2004-01-01

    In the robotic search for life on Mars, different proposed missions will analyze the chemical and biological signatures of life using different platforms. The analysis of samples via analytical instrumentation on the surface of Mars has thus far only been attempted by the two Viking missions. Robotic arms scooped relogith material into a pyrolysis oven attached to a GC/MS. No trace of organic material was found on any of the two different samples at either of the two different landing sites. This null result puts an upper limit on the amount of organics that might be present in Martian soil/rocks, although the level of detection for each individual molecular species is still debated. Determining the absolute limit of detection for each analytical instrument is essential so that null results can be understood. This includes investigating the trade off of using pyrolysis versus liquid solvent extraction to release organic materials (in terms of extraction efficiencies and the complexity of the sample extraction process.) Extraction of organics from field samples can be accomplished by a variety of methods such utilizing various solvents including HCl, pure water, supercritical fluid and Soxhelt extraction. Utilizing 6N HCl is one of the most commonly used method and frequently utilized for extraction of organics from meteorites but it is probably infeasible for robotic exploration due to difficulty of storage and transport. Extraction utilizing H2O is promising, but it could be less efficient than 6N HCl. Both supercritical fluid and Soxhelt extraction methods require bulky hardware and require complex steps, inappropriate for inclusion on rover spacecraft. This investigation reports the efficiencies of pyrolysis and solvent extraction methods for amino acids for different terrestrial samples. The samples studied here, initially created in aqueous environments, are sedimentary in nature. These particular samples were chosen because they possibly represent one of the

  20. Structural Order of Water Molecules around Hydrophobic Solutes: Length-Scale Dependence and Solute-Solvent Coupling.

    PubMed

    Hande, Vrushali R; Chakrabarty, Suman

    2015-08-27

    It has been suggested that the structure and thermodynamics of the water molecules in the hydration layer of simple hydrophobic solutes undergo an order-disorder transition around a nanometer length-scale of the solute size. Using extensive atomistic molecular dynamics (MD) and replica exchange molecular dynamics (REMD) simulation studies, we have probed this order-disorder transition around model hydrophobic solutes of varying size and shape (spherical, planar, and linear), as well as flexible hydrophobic homopolymer chains (n-alkanes), where the conformational fluctuations are likely to create both spatial and temporal heterogeneity on the solvent accessible surface. We have explored the structural response of the water molecules in the hydration shell due to the local variations of the length-scale (or curvature) upon hydrophobic collapse and/or local conformational changes of these polymers. We have shown that the tetrahedral order of the water molecules in the hydration shell is practically independent of the polymer size in the extended state of the polymer due to the availability of a subnanometer cross-sectional length-scale, allowing the water molecules to form hydrogen bonds around the polymer chain. Beyond a certain length of the polymer chains, the collapsed states (associated with larger solute length-scale) start to induce disorder in the surface water molecules. We demonstrate that the local structure (both local number density and tetrahedral order) of the hydration layer is dynamically coupled to the local topology of the polymer. Thus, we envisage that in a flexible (bio)polymer, the hydration shell properties will be sensitive to the local conformational state of the molecule (both spatially and temporally), and the overall observed water structure and dynamics will be dependent on the topological/chemical heterogeneity, and the time-scale of fluctuations in the local curvature (length-scale) of the solvent accessible surface. Moreover, we have

  1. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2011

    USGS Publications Warehouse

    Beman, Joseph E.

    2012-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the basin human population from 1990 to 2000 and of about 22 percent increase from 2000 to 2010 also resulted in an increased demand for water. A network of wells was established by the U.S. Geological Survey in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2011), the network consists of 126 wells and piezometers (a piezometer is a specialized well open to a specific depth in the aquifer and is often of small diameter and nested with other piezometers open to different depths). This report presents water-level data collected by U.S. Geological Survey personnel at those 126 sites through water year 2011 to better help the Albuquerque Bernalillo County Water Utility Authority manage water use.

  2. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2010

    USGS Publications Warehouse

    Beman, Joseph E.

    2011-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25-40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the basin human population from 1990 to 2000 and about a 22 percent increase from 2000 to 2010 also resulted in an increased demand for water. A network of wells was established by the U.S. Geological Survey in cooperation with the City of Albuquerque to monitor changes in groundwater levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2010), the network consists of 124 wells and piezometers (a piezometer is a small-diameter subwell usually nested within a larger well). To better help the Albuquerque Bernalillo County Water Utility Authority manage water use, this report presents water-level data collected by U.S. Geological Survey personnel at those 124 sites through water year 2010.

  3. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2012

    USGS Publications Warehouse

    Beman, Joseph E.

    2013-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25-40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. A population increase of about 20 percent in the basin from 1990 to 2000 and a 22 percent increase from 2000 to 2010 resulted in an increased demand for water. An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2012), the network consists of 126 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (ABCWUA), currently (2012) measures and reports water levels from the 126 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 126 sites through water year 2012.

  4. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2013

    USGS Publications Warehouse

    Beman, Joseph E.

    2014-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when treatment and distribution of surface water from the Rio Grande began. A population increase of about 20 percent in the basin from 1990 to 2000 and a 22-percent increase from 2000 to 2010 resulted in an increased demand for water. An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2013), the network consists of 123 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, currently (2013) measures and reports water levels from the 123 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 123 sites through water year 2013.

  5. Hydrology and water quality of a field and riparian buffer adjacent to a mangrove wetland in Jobos Bay Watershed, Puerto Rico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Models that estimate the effects of agricultural conservation practices on water quantity and quality have become increasingly important tools for short- and long-term assessments. In this study, we simulated the water quality and hydrology of a portion of the Jobos Bay watershed, Puerto Rico using...

  6. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2014

    USGS Publications Warehouse

    Beman, Joseph E.

    2015-10-21

    An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the basin. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. The network currently (2014) consists of 125 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, currently (2014) measures and reports water levels from the 125 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 125 sites through water year 2014 (October 1, 2013, to September 30, 2014).

  7. Reaction Kinetics of Water Molecules with Oxygen Vacancies on Rutile TiO2(110)

    SciTech Connect

    Petrik, Nikolay G.; Kimmel, Gregory A.

    2015-09-16

    The formation of bridging hydroxyls (OHb) via reactions of water molecules with oxygen vacancies (VO) on reduced TiO2(110) surfaces is studied using infrared reflection-absorption spectroscopy (IRAS), electron-stimulated desorption (ESD), and photon-stimulated desorption (PSD). Narrow IRAS peaks at 2737 cm-1 and 3711 cm-1 are observed for stretching vibrations of ODb and OHb on TiO2(110), respectively. IRAS measurements with s- and p-polarized light demonstrate that the bridging hydroxyls are oriented normal to the (110) surface. The IR peaks disappear after the sample is exposed to O2 or annealed in the temperature range of 400 – 600 K (correlating with the temperature at which pairs of OHb’s reform water and then desorb), which is consistent with their identification as bridging hydroxyls. We have studied the kinetics of water reacting with the vacancies by monitoring the formation of bridging hydroxyls (using IRAS) as a function of the annealing temperature for a small amount of water initially dosed on the TiO2(110) at low temperature. Separate experiments have also monitored the loss of water molecules (using water ESD) and vacancies (using the CO photooxidation reaction) due to the reactions of water molecules with the vacancies. All three techniques show that the reaction rate becomes appreciable for T > 150 K and that the reactions largely complete for T > 250 K. The temperature-dependent water-VO reaction kinetics are consistent with a Gaussian distribution of activation energies with Ea = 0.545 eV, ΔEa(FWHM) = 0.125 eV, and a “normal” prefactor, v = 1012 s-1. In contrast, a single activation energy with a physically reasonable prefactor does not fit the data well. Our experimental activation energy is close to theoretical estimates for the diffusion of water molecules along the Ti5c rows on the reduced TiO2

  8. Water-Level Data for the Albuquerque Basin and Adjacent Areas, Central New Mexico, Period of Record Through September 30, 2008

    USGS Publications Warehouse

    Beman, Joseph E.

    2009-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin are currently (2008) obtained soley from ground-water resources. An increase of about 20 percent in the population from 1990 to 2000 also resulted in an increased demand for water. A network of wells was established to monitor changes in ground-water levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2008), the network consists of 144 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 125 sites through water-year 2008. In addition, data from 19 wells (Sites 127-30, 132-134, 136, 138-142 and 144-149) owned, maintained, and measured by Sandia National Laboratories are presented in this report.

  9. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2015

    USGS Publications Warehouse

    Beman, Joseph E.; Bryant, Christina F.

    2016-10-27

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25–40 miles wide. The basin is hydrologically defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompasses the structural Rio Grande Rift between San Acacia to the south and Cochiti Lake to the north. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) began treatment and distribution of surface water from the Rio Grande through the San Juan-Chama Drinking Water Project. A 20-percent population increase in the basin from 1990 to 2000 and a 22-percent population increase from 2000 to 2010 may have resulted in an increased demand for water in areas within the basin.An initial network of wells was established by the U.S. Geological Survey (USGS) in cooperation with the City of Albuquerque from April 1982 through September 1983 to monitor changes in groundwater levels throughout the Albuquerque Basin. In 1983, this network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly. The network currently (2015) consists of 124 wells and piezometers. (A piezometer is a specialized well open to a specific depth in the aquifer, often of small diameter and nested with other piezometers open to different depths.) The USGS, in cooperation with the ABCWUA, currently (2015) measures and reports water levels from the 124 wells and piezometers in the network; this report presents water-level data collected by USGS personnel at those 124 sites through water year 2015 (October 1, 2014, through September 30, 2015).

  10. Discharge, suspended sediment, and salinity in the Gulf Intracoastal Waterway and adjacent surface waters in South-Central Louisiana, 1997–2008

    USGS Publications Warehouse

    Swarzenski, Christopher M.; Perrien, Scott M.

    2015-10-19

    River water penetrates much of the Louisiana coast, as demonstrated by the large year-to-year fluctuations in salinity regimes of intradistributary basins in response to differences in flow regimes of the Mississippi and the Atchafalaya Rivers. This occurs directly through inflow along the GIWW and through controlled diversions and indirectly by transport into basin interiors after mixing with the Gulf of Mexico. The GIWW plays an important role in moderating salinity in intradistributary basins; for example, salinity in surface waters just south of the GIWW between Bayou Boeuf and the Houma Navigation Canal remained low even during a year with prolonged low water (2000).

  11. Discharge, suspended sediment, and salinity in the Gulf Intracoastal Waterway and adjacent surface waters in South-Central Louisiana, 1997–2008

    USGS Publications Warehouse

    Swarzenski, Christopher M.; Perrien, Scott M.

    2015-01-01

    River water penetrates much of the Louisiana coast, as demonstrated by the large year-to-year fluctuations in salinity regimes of intradistributary basins in response to differences in flow regimes of the Mississippi and the Atchafalaya Rivers. This occurs directly through inflow along the GIWW and through controlled diversions and indirectly by transport into basin interiors after mixing with the Gulf of Mexico. The GIWW plays an important role in moderating salinity in intradistributary basins; for example, salinity in surface waters just south of the GIWW between Bayou Boeuf and the Houma Navigation Canal remained low even during a year with prolonged low water (2000).

  12. Localization and orientation of functional water molecules in bacteriorhodopsin as revealed by polarized Fourier transform infrared spectroscopy.

    PubMed

    Hatanaka, M; Kandori, H; Maeda, A

    1997-08-01

    Linear dichroic difference Fourier transform infrared spectra upon formation of the M photointermediate were recorded with oriented purple membranes. The purpose was to determine the angle of the directions of the dipole moments of 1) the water molecule whose O-H stretching vibration appears at 3643 cm-1 for the unphotolyzed state and 3671 cm-1 for the M intermediate, and 2) the C=O bond of protonated Asp85 in the M intermediate. The angle of 36 degrees we find for the C=O of the protonated Asp85 in the M intermediate is not markedly different from 26 degrees for unprotonated Asp85 in the model based on cryoelectron diffraction, indicating the absence of gross orientation changes in Asp85 upon its protonation. The O-H band at 3671 cm-1 of a water molecule in the M intermediate, although its position has not determined, is fixed almost parallel to the membrane plane. For the unphotolyzed state the angle of the water O-H to the membrane normal was determined to be 60 degrees. On the basis of these data and the structural model, we place the water molecule in the unphotolyzed state at a position where it forms hydrogen bonds with the Schiff base, Asp85, Asp212, and Trp86.

  13. Cooperative effect of water molecules in the self-catalyzed neutral hydrolysis of isocyanic acid: a comprehensive theoretical study.

    PubMed

    Wei, Xi-Guang; Sun, Xiao-Ming; Wu, Xiao-Peng; Geng, Song; Ren, Yi; Wong, Ning-Bew; Li, Wai-Kee

    2011-08-01

    The detailed reaction mechanism for the water-assisted hydrolysis of isocyanic acid, HNCO + (n + 1) H(2)O → CO(2) + NH(3) + nH(2)O (n = 0-6), taking place in the gas phase, has been investigated. All structures were optimized and characterized at the MP2/6-31 + G level of theory, and then re-optimized at MP2/6-311++G. The seven explicit water molecules participating in the hydrolysis can be divided into two groups, one directly involved in the proton relay, and the other located in the vicinity of the substrate playing the cooperative role by engaging in hydrogen-bonding to HN = C = O. Two possible reaction pathways, the addition of water molecule across the C = N bond or across the C = O bond, are discussed, and the former is proved to be more favorable energetically. Our calculations suggest that, in the most kinetically favorable pathway for the titled hydrolysis, three water molecules are directly participating in the hydrogen transfer via an eight-membered cyclic transition state, while the other four water molecules catalyze the hydrolysis of HN = C = O by forming three eight-membered cooperative loops near the substrate. This strain-free hydrogen-bond network leads to the best estimated rate-determining activation energy of 24.9 kJ mol(-1) at 600 K, in excellent agreement with the gas-phase kinetic experimental result, 25.8 kJ mol(-1). PMID:21161555

  14. Approximate water-level changes in wells completed in the Chicot and Evangeline aquifers, 1991-92, Fort Bend County and adjacent areas, Texas

    USGS Publications Warehouse

    Locke, Glenn L.; Santos, Horatio X.

    1992-01-01

    This report was prepared in cooperation with the Fort Bend Subsidence District, and presents data on water-level changes during 1991-92 in the Chicot and Evangeline aquifer (fig. 1-2) in Fort Bend County.  Water-level change maps were prepared previously by Locke (1990),and Locke and Barbie (1991), for both aquifers, and by Wesselman (1972) for the Chicot aquifer.

  15. Water-level data for the Albuquerque Basin and adjacent areas, central New Mexico, period of record through September 30, 2009

    USGS Publications Warehouse

    Beman, Joseph E.; Torres, Leeanna T.

    2010-01-01

    The Albuquerque Basin, located in central New Mexico, is about 100 miles long and 25 to 40 miles wide. The basin is defined as the extent of consolidated and unconsolidated deposits of Tertiary and Quaternary age that encompass the structural Rio Grande Rift within the basin. Drinking-water supplies throughout the basin were obtained solely from groundwater resources until December 2008, when surface water from the Rio Grande began being treated and integrated into the system. An increase of about 20 percent in the population from 1990 to 2000 also resulted in an increased demand for water. A network of wells was established to monitor changes in groundwater levels throughout the basin from April 1982 through September 1983. This network consisted of 6 wells with analog-to-digital recorders and 27 wells where water levels were measured monthly in 1983. Currently (2009), the network consists of 131 wells and piezometers. This report presents water-level data collected by U.S. Geological Survey personnel at 123 sites through water year 2009. In addition, data from four wells (Sites 140, 147, 148, and 149) owned, maintained, and measured by Sandia National Laboratories and three from Kirtland Air Force Base (Sites 119, 125, and 126) are presented in this report.

  16. Dynamics of pyrenesemicarbazide and pyrenethiosemicarbazide in reverse micelle of AOT in n-heptane: Probing critical penetration of water molecules toward the palisade

    NASA Astrophysics Data System (ADS)

    Maity, Arnab; Das, Shrabanti; Ghosh, Prasun; Das, Tarasankar; Seth, Sourav Kanti; Mondal, Somen; Gupta, Parna; Purkayastha, Pradipta

    2013-11-01

    In the present work, we have introduced two similar probe molecules with pyrene tags that can reside in different positions in the reverse micelles and show opposite dynamism on excitation. Herein, we have changed the concentration of water in the reverse micellar core gradually and monitored the spectrochemical changes in the dynamism of the two designed probe molecules. The results indicate that water molecules penetrate through the interface of the reverse micelles up a certain critical amount.

  17. Water and Streambed Sediment Quality, and Ecotoxicology of a Stream along the Blue Ridge Parkway, Adjacent to a Closed Landfill, near Roanoke, Virginia: 1999

    USGS Publications Warehouse

    Ebner, Donna Belval; Cherry, Donald S.; Currie, Rebecca J.

    2004-01-01

    A study was done of the effects of a closed landfill on the quality of water and streambed sediment and the benthic macroinvertebrate community of an unnamed stream and its tributary that flow through Blue Ridge Parkway lands in west-central Virginia. The primary water source for the tributary is a 4-inch polyvinyl chloride (PVC) pipe that protrudes from the slope at the base of the embankment bordering the landfill. An unusual expanse of precipitate was observed in the stream near the PVC pipe. Stream discharge was measured and water and streambed sediment samples were collected at a nearby reference site and at three sites downstream of the landfill in April and September 1999. Water samples were analyzed for major ions, nitrate, total and dissolved metals, total dissolved solids, total organic carbon, and volatile and semivolatile organic compounds, including organochlorine pesticides and polychlorinated biphenyls (PCBs). Streambed sediment samples were analyzed for total metals, total organic carbon, percent moisture, and volatile and semivolatile organic compounds, including organochlorine pesticides and PCBs. The benthic macroinvertebrate community within the stream channel also was sampled at the four chemical sampling sites and at one additional site in April and September. Each of the five sites was assessed for physical habitat quality. Water collected periodically at the PVC pipe discharge between November 1998 and November 1999 was used to conduct 48-hour acute and 7-day chronic toxicity tests using selected laboratory test organisms. Two 10-day chronic toxicity tests of streambed sediments collected near the discharge pipe also were conducted. Analyses showed that organic and inorganic constituents in water from beneath the landfill were discharged into the sampled tributary. In April, 79 percent of inorganic constituents detected in water had their highest concentrations at the site closest to the landfill; at the same site, 59 percent of inorganic

  18. Degradation of Bacterial Quorum Sensing Signaling Molecules by the Microscopic Yeast Trichosporon loubieri Isolated from Tropical Wetland Waters

    PubMed Central

    Wong, Cheng-Siang; Koh, Chong-Lek; Sam, Choon-Kook; Chen, Jian Woon; Chong, Yee Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast. PMID:24072030

  19. A reconnaissance of the water resources of the Shoalwater Bay Indian Reservation and adjacent areas, Pacific County, Washington, 1978-1979

    USGS Publications Warehouse

    Lum, W.E.

    1984-01-01

    A 1978-79 reconnaissance of the quantity and quality of water in the Shoalwater Bay Indian Reservation yielded information needed by the Shoalwater Bay Indian Tribe to plan future use of these resources. Ground water from the local artesian aquifer is suitable for most uses and it is estimated that yield can be as much as 100 to 500 gallons per minute. Long-term yields cannot be calculated from available data. Data from 1968-80 show no measurable declines in water levels or rates of flow due to pumping from the aquifer. Analysis of ground-water samples indicated no seawater intrusion into the aquifer. Mean monthly flows of two streams in the study area ranged from 0.53 to 3.28 cubic feet per second in February 1979. Estimated average 7-day low flows with a recurrance interval of 2 years ranged from 0.3 to 3.0 cubic feet per second. Analyses of surface-water samples indicated concentrations of Aldrin, DDD, DDT, Dieldrin, Diazinon , and Ethyl Parathion that exceeded EPA limits for protection of marine life. Samples of the stream-bottom material in one stream had high concentrations of Aldrin, DDD, DDE, DDT, Dichlobenil, and Dieldrin. Tribally owned tidelands into which these streams flow may be contaminated by these toxic chemicals. (USGS)

  20. How water molecules affect the catalytic activity of hydrolases--a XANES study of the local structures of peptide deformylase.

    PubMed

    Cui, Peixin; Wang, Yu; Chu, Wangsheng; Guo, Xiaoyun; Yang, Feifei; Yu, Meijuan; Zhao, Haifeng; Dong, Yuhui; Xie, Yaning; Gong, Weimin; Wu, Ziyu

    2014-12-12

    Peptide deformylase (PDF) is a prokaryotic enzyme that catalyzes the deformylation of nascent peptides generated during protein synthesis and water molecules play a key role in these hydrolases. Using X-ray absorption near edge spectroscopy (XANES) and ab initio calculations we accurately probe the local atomic environment of the metal ion binding in the active site of PDF at different pH values and with different metal ions. This new approach is an effective way to monitor existing correlations among functions and structural changes. We show for the first time that the enzymatic activity depends on pH values and metal ions via the bond length of the nearest coordinating water (Wat1) to the metal ion. Combining experimental and theoretical data we may claim that PDF exhibits an enhanced enzymatic activity only when the distance of the Wat1 molecule with the metal ion falls in the limited range from 2.15 to 2.55 Å.

  1. Molecular orientation effect on the differential cross sections for the electron-impact double ionization of oriented water molecules

    SciTech Connect

    Champion, C.; Dal Cappello, C.; Oubaziz, D.; Aouchiche, H.; Popov, Yu. V.

    2010-03-15

    Double ionization of isolated water molecules fixed in space is here investigated in a theoretical approach based on the first Born approximation. Secondary electron angular distributions are reported for particular (e,3e) kinematical conditions and compared in terms of shape and magnitude. Strong dependence of the fivefold differential cross sections on the molecular target orientation is clearly observed in (e,3-1e) as well as (e,3e) channels. Furthermore, for the major part of the kinematics considered, we identified the different mechanisms involved in the double ionization of water molecule, namely, the direct shake-off process as well as the two-step1 process. They are both discussed and analyzed with respect to the molecular target orientation.

  2. Passive water-lipid peptide translocators with conformational switches: from single-molecule probe to cellular assay.

    PubMed

    Fernández, Ariel; Crespo, Alejandro; Blau, Axel

    2007-12-20

    Peptide design for unassisted passive water-lipid translocation remains a challenge, notwithstanding its importance for drug delivery. We introduce a design paradigm based on conformational switches operating as passive translocation vehicles. The interfacial behavior of the molecular prototype, probed in single-molecule AFM experiments, reveals a near-barrierless translocation. The associated free-energy agrees with mesoscopic measurements, and the in vitro behavior is quantitatively reproduced in cellular assays. The prototypes herald the advent of novel nanobiomaterials for passive translocation.

  3. Dependence of the number of hydrogen bonds per water molecule on its distance to a hydrophobic surface and a thereupon-based model for hydrophobic attraction.

    PubMed

    Djikaev, Y S; Ruckenstein, Eli

    2010-11-21

    A water molecule in the vicinity of a hydrophobic surface forms fewer hydrogen bonds than a bulk molecule because the surface restricts the space available for other water molecules necessary for its hydrogen-bonding. In this vicinity, the number of hydrogen bonds per water molecule depends on its distance to the surface. Considering the number of hydrogen bonds per bulk water molecule (available experimentally) as the only reference quantity, we propose an improved probabilistic approach to water hydrogen-bonding that allows one to obtain an analytic expression for this dependence. (The original version of this approach [Y. S. Djikaev and E. Ruckenstein, J. Chem. Phys. 130, 124713 (2009)] provides the number of hydrogen bonds per water molecule in the vicinity of a hydrophobic surface as an average over all possible locations and orientations of the molecule.) This function (the number of hydrogen bonds per water molecule versus its distance to a hydrophobic surface) can be used to develop analytic models for the effect of hydrogen-bonding on the hydration of hydrophobic particles and their solvent-mediated interaction. Presenting a model for the latter, we also examine the temperature effect on the solvent-mediated interaction of two parallel hydrophobic plates.

  4. Distributions of single-molecule properties as tools for the study of dynamical heterogeneities in nanoconfined water.

    PubMed

    Suffritti, G B; Demontis, P; Gulín-González, J; Masia, M

    2014-04-16

    The explicit trend of the distribution functions of single-molecule rotational relaxation constants and atomic mean-square displacement are used to study the dynamical heterogeneities in nanoconfined water. The trend of the single-molecule properties distributions is related to the dynamic heterogeneities, and to the dynamic crossovers found in water clusters of different shapes and sizes and confined in a variety of zeolites. This was true in all the cases that were considered, in spite of the various shapes and sizes of the clusters. It is confirmed that the high temperature dynamical crossover occurring in the temperature range 200-230 K can be interpreted at a molecular level as the formation of almost translationally rigid clusters, characterized by some rotational freedom, hydrogen bond exchange and translational jumps as cage-to-cage processes. We also suggest a mechanism for the low temperature dynamical crossover (LTDC), falling in the temperature range 150-185 K, through which the adsorbed water clusters are made of nearly rigid sub-clusters, slightly mismatched, and thus permitting a relatively free librational motion at their borders. It appears that the condition required for LTDC to occur is the presence of highly heterogeneous environments for the adsorbed molecules, with some dangling hydrogen bonds or weaker than water-water hydrogen bonds. Under these conditions some dynamics are permitted at very low temperature, although most rotational motion is frozen. Therefore, it is unlikely, though not entirely excluded, that LTDC will be found in supercooled bulk water where no heterogeneous interface is present.

  5. Detection of a water molecule in the active-site of bacteriorhodopsin: hydrogen bonding changes during the primary photoreaction.

    PubMed

    Fischer, W B; Sonar, S; Marti, T; Khorana, H G; Rothschild, K J

    1994-11-01

    FTIR-difference spectroscopy in combination with site-directed mutagenesis has been used to investigate the role of water during the photocycle of bacteriorhodopsin. At least one water molecule is detected which undergoes an increase in H-bonding during the primary bR-->K phototransition. Bands due to water appear in the OH stretch region of the bR-->K FTIR-difference spectrum which downshift by approximately 12 cm-1 when the sample is hydrated with H2(18)O. In contrast to 2H2O, the H2(18)O-induced shift is not complete, even after 24 h of hydration. This indicates that even though water is still able to exchange protons with the outside medium, it is partially trapped in the interior of the protein. In the mutant Y57D, these bands are absent while a new set of bands appear at much lower frequencies which undergo H2(18)O-induced shifts. It is concluded that the water molecule we detect is located inside the bR active-site and may interact with Tyr-57. The change in its hydrogen-bonding strength is most likely due to the photoinduced all-trans-->13-cis isomerization of the retinal chromophore and the associated movement of the positively charged Schiff base during the bR-->K transition. In contrast, a second water molecule, whose infrared difference bands are not affected by the Y57D mutation, appears to undergo a decrease in hydrogen bonding during the K-->L and L-->M transitions.

  6. Evaluation of low-temperature geothermal potential in Utah and Goshen Valleys and adjacent areas, Utah. Part II. Water temperature and chemistry

    SciTech Connect

    Klauk, R.H.; Davis, D.A.

    1984-12-01

    Geothermal reconnaissance techniques have identified five areas in Utah County warranting further investigation for low-temperature geothermal resources. One area in northern Utah Valley is along Utah Lake fault zone and includes Saratoga Hot Springs. Water temperatures within this area range from 21 to 43/sup 0/C. Common ion analyses as well as B and Li concentrations indicate waters sampled in this area are anomalous when compared to other samples from the same aquifer. Two other areas in southern Utah Valley also coincide with the Utah Lake fault zone. Common ion analyses, trace element concentrations, and C1/HCO/sub 3/ ratios distinguish these areas from all other waters in this valley. Temperatures within these southern areas range from 21 to 32/sup 0/C. All three thermal areas are possibly the result of deep circulation of meteoric water being warmed and subsequently migrating upward within the Utah Lake fault zone. The Castilla Hot Springs area has been expanded by this study to include a spring located 3 mi further up Spanish Fork Canyon near the Thistle earthflow. A temperature of 50/sup 0/C was recorded for this spring and chemistry is similar to Castilla. In Goshen Valley, the fifth geothermal area identified, measured temperatures range from 20 to 27/sup 0/C for some wells and springs. Chemical analyses, however, do not discern the location of low-temperature geothermal reservoirs. 18 refs., 7 figs., 5 tabs.

  7. Water adsorption on non polar ZnO surfaces: from single molecules to multilayers

    NASA Astrophysics Data System (ADS)

    Kenmoe, Stephane; Biedermann, P. Ulrich

    2015-03-01

    The interface between water and ZnO plays an important role in many domains of technological relevance. Following the vital role of adsorbed water on substrate properties and the fascinating properties of interfacial water, there is a great interest in characterizing this interface. We use DFT to study the possible aggregation regimes that can form on the ZnO non-polar low-index (1010) and (1120) surfaces. We study the adsorption of water monomers, small water clusters like water dimers, water chains, ladder-like water structures, water thin films and water multilayers. Based on this, trends in binding energy as well as the binding mechanisms are analyzed to understand the driving forces and the nature of the fundamental interactions that stabilize the adsorbed layers.

  8. Velocity of a Molecule Evaporated from a Water Nanodroplet: Maxwell–Boltzmann Statistics versus Non-Ergodic Events

    PubMed Central

    Abdoul-Carime, Hassan; Berthias, Francis; Feketeová, Linda; Marciante, Mathieu; Calvo, Florent; Forquet, Valérian; Chermette, Henry; Farizon, Bernadette; Farizon, Michel; Märk, Tilmann D

    2015-01-01

    The velocity of a molecule evaporated from a mass-selected protonated water nanodroplet is measured by velocity map imaging in combination with a recently developed mass spectrometry technique. The measured velocity distributions allow probing statistical energy redistribution in ultimately small water nanodroplets after ultrafast electronic excitation. As the droplet size increases, the velocity distribution rapidly approaches the behavior expected for macroscopic droplets. However, a distinct high-velocity contribution provides evidence of molecular evaporation before complete energy redistribution, corresponding to non-ergodic events. PMID:26473406

  9. In situ spectroradiometric calibration of EREP imagery and estuarine and coastal oceanography of Block Island sound and adjacent New York coastal waters. [Willcox, Arizona

    NASA Technical Reports Server (NTRS)

    Yost, E. F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The first part of the study resulted in photographic procedures for making multispectral positive images which greatly enhance the color differences in land detail using an additive color viewer. An additive color analysis of the geologic features near Willcox, Arizona using enhanced black and white multispectral positives allowed compilation of a significant number of unmapped geologic units which do not appear on geologic maps of the area. The second part demonstrated the feasibility of utilizing Skylab remote sensor data to monitor and manage the coastal environment by relating physical, chemical, and biological ship sampled data to S190A, S190B, and S192 image characteristics. Photographic reprocessing techniques were developed which greatly enhanced subtle low brightness water detail. Using these photographic contrast-stretch techniques, two water masses having an extinction coefficient difference of only 0.07 measured simultaneously with the acquisition of S190A data were readily differentiated.

  10. Aquatic risk assessment of pesticides in surface waters in and adjacent to the Everglades and Biscayne National Parks: I. Hazard assessment and problem formulation.

    PubMed

    Carriger, John F; Rand, Gary M

    2008-10-01

    An aquatic risk assessment under the U.S. Environment Protection Agency (EPA) ecological risk framework was conducted for atrazine, metolachlor, malathion, chlorpyrifos, and endosulfan in the C-111 freshwater basin (eastern boundary of the Everglades National Park), northeast Florida Bay, and south Biscayne Bay in South Florida. Based on the use of the hazard quotient approach, measured concentrations of chlorpyrifos and endosulfan in surface waters suggest potential hazards to aquatic organisms and were, therefore, considered as chemicals of potential ecological concern (COPECs). The problem formulation included an overview of the physical/chemical and environmental fate characteristics and aquatic toxicology of the COPECs. Background surface water exposure concentrations of endosulfan and toxicity data from laboratory and field studies indicate that fish and invertebrate mortality may be a concern when endosulfan is applied in agricultural areas near aquatic ecosystems.

  11. Observations on the distribution of freshwater mollusca and chemistry of the natural waters in the south-eastern Transvaal and adjacent northern Swaziland*

    PubMed Central

    Schutte, C. H. J.; Frank, G. H.

    1964-01-01

    An extensive survey of the molluscan fauna and of the chemistry of the freshwaters of the Eastern Transvaal Lowveld has revealed no simple correlation between the two. The waters fall into four fairly distinct and geographically associated groups chiefly characterized by their calcium and magnesium content. The frequency of the two intermediate hosts of bilharziasis was found to be roughly proportional to the hardness of the water but as the latter, in this area, is associated with altitude and this again with temperature and stream gradient it is thought highly probable that the distribution of these snails is the result of the interaction of a complex of factors. None of the individual chemical constituents in any of the waters examined is regarded as outside the tolerance range of these snails. It is also concluded that under natural conditions this area would have had few waterbodies suitable for colonization by these snails but that the expansion of irrigation schemes has created ideal conditions for their rapid establishment throughout the area. PMID:14163962

  12. Effects of water molecules on the chemical stability of MAGeI3 perovskite explored from a theoretical viewpoint.

    PubMed

    Sun, Ping-Ping; Chi, Wei-Jie; Li, Ze-Sheng

    2016-09-21

    The stability of perovskite in humid environments is one of the biggest obstacles for its potential applications in light harvesting and electroluminescent displays. Understanding the detailed degradation mechanism of MAGeI3 in moisture is a critical way to explore the practicability of MAGeI3 perovskite. In this study, we report a quantitative and systematic investigation of MAGeI3 degradation processes by exploring the effects of H2O molecules on the structural and electronic properties of the most stable MAGeI3(101) surface under various simulated environmental conditions with different water coverage based on first-principles calculations. The results show that H2O molecules can easily diffuse into the inner side of the perovskite and gradually corrode the structure as the number of H2O molecules increases. As a result of the interactions between perovskite and H2O molecules, a hydrated intermediate will be generated as the first step in the degradation mechanism; the perovskite will further decompose to HI and GeI2. In terms of one MAGeI3 molecule, it will be dissociated completely to GeI2 as a result of hydrolysis reactions with a minimum of 4H2O molecules. In addition, the degradation of the perovskite will also affect the electronic structure, causing a decrease in optical absorption across the visible region of the spectrum and a distinct deformation change in the crystal structure of the material. These findings further illustrate the degradation of the hydrolysis process of MAGeI3 perovskite in humid environments, which should be helpful to inspire experimentalists to take action to prolong the lifetimes of perovskite solar cells to achieve high conversion efficiency in their applications. PMID:27539944

  13. The Arctic Ocean Boundary Current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports and transformations from moored instruments

    NASA Astrophysics Data System (ADS)

    Woodgate, Rebecca A.; Aagaard, Knut; Muench, Robin D.; Gunn, John; Björk, Göran; Rudels, Bert; Roach, A. T.; Schauer, Ursula

    2001-08-01

    Year-long (summer 1995 to 1996) time series of temperature, salinity and current velocity from three slope sites spanning the junction of the Lomonosov Ridge with the Eurasian continent are used to quantify the water properties, transformations and transport of the boundary current of the Arctic Ocean. The mean flow is cyclonic, weak (1 to 5 cm s -1), predominantly aligned along isobaths and has an equivalent barotropic structure in the vertical. We estimate the transport of the boundary current in the Eurasian Basin to be 5±1 Sv. About half of this flow is diverted north along the Eurasian Basin side of the Lomonosov Ridge. The warm waters (>1.4°C) of the Atlantic layer are also found on the Canadian Basin side of the ridge south of 86.5°N, but not north of this latitude. This suggests that the Atlantic layer crosses the ridge at various latitudes south of 86.5°N and flows southward along the Canadian Basin side of the ridge. Temperature and salinity records indicate a small (0.02 Sv), episodic flow of Canadian Basin deep water into the Eurasian Basin at ˜1700 m, providing a possible source for an anomalous eddy observed in the Amundsen Basin in 1996. There is also a similar flow of Eurasian Basin deep water into the Canadian Basin. Both flows probably pass through a gap in the Lomonosov Ridge at 80.4°N. A cooling and freshening of the Atlantic layer, observed at all three moorings, is attributed to changes (in temperature and salinity and/or volume) in the outflow from the Barents Sea the previous winter, possibly caused by an observed increased flow of ice from the Arctic Ocean into the Barents Sea. The change in water properties, which advects at ˜5 cm s -1 along the southern edge of the Eurasian Basin, also strengthens the cold halocline layer and increases the stability of the upper ocean. This suggests a feedback in which ice exported from the Arctic Ocean into the Barents Sea promotes ice growth elsewhere in the Arctic Ocean. The strongest currents

  14. Control of water molecule aggregations in copper 1,4-cyclohexanedicarboxylate coordination polymers containing pyridyl-piperazine type ligands

    NASA Astrophysics Data System (ADS)

    Qiblawi, Sultan H.; LaDuca, Robert L.

    2014-01-01

    A series of layered divalent copper coordination polymers containing 1,4-cyclohexanedicarboxylate and long-spanning pyridyl-piperazine type ligands exhibits greatly different co-crystallized water molecule aggregations depending on the specific ligands used. Both [Cu(t-14cdc)(4-bpmp)]n (1, t-14cdc = trans-1,4-cyclohexanedicarboxylate, 4-bpmp = bis(4-pyridylmethyl)piperazine) and {[Cu(t-14cdc)(4-bpfp)(H2O)2]·6H2O}n (2, 4-bpfp = bis(4-pyridylformyl)piperazine) possess 2D (4,4) coordination polymer grids. However 1 lacks any co-crystallized water and has pinched grid apertures, while 2 manifests infinite water tapes with T6(2)4(2) classification and rectangular grid apertures. {[Cu2(c-14cdc)2(4-bpmp)]·2H2O}n (3, c-14cdc = cis-1,4-cyclohexanedicarboxylate) has [Cu2(c-14cdc)]2 ribbons with paddlewheel dimeric units linked into 2D slabs by 4-bpmp tethers, along with isolated water molecule pairs. In contrast, {[Cu2(c-14cdc)2(4-bpfp)]·10H2O}n (4) shows a very similar underlying coordination polymer topology but entrains unique decameric water molecule clusters. The minor product {[Cu2(c-14cdcH)2(t-1,4-cdc)(4-bpfp)2(H2O)2]·2H2O}n (5) was isolated along with 4; this compound underwent some in situ cis to trans cyclohexane-dicarboxylate ligand isomerization and exhibits a ladder polymer motif.

  15. Counting ion and water molecules in a streaming file through the open-filter structure of the K channel.

    PubMed

    Iwamoto, Masayuki; Oiki, Shigetoshi

    2011-08-24

    The mechanisms underlying the selective permeation of ions through channel molecules are a fundamental issue related to understanding how neurons exert their functions. The "knock-on" mechanism, in which multiple ions in the selectivity filter are hit by an incoming ion, is one of the leading concepts. This mechanism has been supported by crystallographic studies that demonstrated ion distribution in the structure of the Streptomyces lividans (KcsA) potassium channel. These still pictures under equilibrium conditions, however, do not provide a snapshot of the actual, ongoing permeation processes. To understand the dynamics of permeation, we determined the ratio of the ion and water flow [the water-ion coupling ratio (CR(w-i))] through the KcsA channel by measuring the streaming potential (V(stream)) electrophysiologically. The V(stream) value was converted to the CR(w-i) value, which reveals how individual ion and water molecules are queued in the narrow and short filter during permeation. At high K(+) concentrations, the CR(w-i) value was 1.0, indicating that turnover between the alternating ion and water arrays occurs in a single-file manner. At low K(+), the CR(w-i) value was increased to a point over 2.2, suggesting that the filter contained mostly one ion at a time. These average behaviors of permeation were kinetically analyzed for a more detailed understanding of the permeation process. Here, we envisioned the permeation as queues of ion and water molecules and sequential transitions between different patterns of arrays. Under physiological conditions, we predicted that the knock-on mechanism may not be predominant.

  16. Selenium and Other Elements in Water and Adjacent Rock and Sediment of Toll Gate Creek, Aurora, Arapahoe County, Colorado, December 2003 through March 2004

    USGS Publications Warehouse

    Herring, J.R.; Walton-Day, Katherine

    2007-01-01

    Streamwater and solid samples (rock, unconsolidated sediment, stream sediment, and efflorescent material) in the Toll Gate Creek watershed, Colorado, were collected and analyzed for major and trace elements to determine trace-element concentrations and stream loads from December 2003 through March 2004, a period of seasonally low flow. Special emphasis was given to selenium (Se) concentrations because historic Se concentrations exceeded current (2004) stream standards. The goal of the project was to assess the distribution of Se concentration and loads in Toll Gate Creek and to determine the potential for rock and unconsolidated sediment in the basin to be sources of Se to the streamwater. Streamwater samples and discharge measurements were collected during December 2003 and March 2004 along Toll Gate Creek and its two primary tributaries - West Toll Gate Creek and East Toll Gate Creek. During both sampling periods, discharge ranged from 2.5 liters per second to 138 liters per second in the watershed. Discharge was greater in March 2004 than December 2003, but both periods represent low flow in Toll Gate Creek, and results of this study should not be extended to periods of higher flow. Discharge decreased moving downstream in East Toll Gate Creek but increased moving downstream along West Toll Gate Creek and the main stem of Toll Gate Creek, indicating that these two streams gain flow from ground water. Se concentrations in streamwater samples ranged from 7 to 70 micrograms per liter, were elevated in the upstream-most samples, and were greater than the State stream standard of 4.6 micrograms per liter. Se loads ranged from 6 grams per day to 250 grams per day, decreased in a downstream direction along East Toll Gate Creek, and increased in a downstream direction along West Toll Gate Creek and Toll Gate Creek. The largest Se-load increases occurred between two sampling locations on West Toll Gate Creek during both sampling periods and between the two sampling

  17. Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Guo, Pan; Tu, Yusong; Yang, Jinrong; Wang, Chunlei; Sheng, Nan; Fang, Haiping

    2015-10-01

    By combining molecular dynamics simulations and quantum mechanics calculations, we show the formation of a composite structure composed of embedded water molecules and the COOH matrix on carboxyl-terminated self-assembled monolayers (COOH SAMs) with appropriate packing densities. This composite structure with an integrated hydrogen bond network inside reduces the hydrogen bonds with the water above. This explains the seeming contradiction on the stability of the surface water on COOH SAMs observed in experiments. The existence of the composite structure at appropriate packing densities results in the two-step distribution of contact angles of water droplets on COOH SAMs, around 0° and 35°, which compares favorably to the experimental measurements of contact angles collected from forty research articles over the past 25 years. These findings provide a molecular-level understanding of water on surfaces (including surfaces on biomolecules) with hydrophilic functional groups.

  18. Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers.

    PubMed

    Guo, Pan; Tu, Yusong; Yang, Jinrong; Wang, Chunlei; Sheng, Nan; Fang, Haiping

    2015-10-30

    By combining molecular dynamics simulations and quantum mechanics calculations, we show the formation of a composite structure composed of embedded water molecules and the COOH matrix on carboxyl-terminated self-assembled monolayers (COOH SAMs) with appropriate packing densities. This composite structure with an integrated hydrogen bond network inside reduces the hydrogen bonds with the water above. This explains the seeming contradiction on the stability of the surface water on COOH SAMs observed in experiments. The existence of the composite structure at appropriate packing densities results in the two-step distribution of contact angles of water droplets on COOH SAMs, around 0° and 35°, which compares favorably to the experimental measurements of contact angles collected from forty research articles over the past 25 years. These findings provide a molecular-level understanding of water on surfaces (including surfaces on biomolecules) with hydrophilic functional groups.

  19. Nucleation of Mixed Nitric Acid-Water Ice Nanoparticles in Molecular Beams that Starts with a HNO3 Molecule.

    PubMed

    Lengyel, Jozef; Pysanenko, Andriy; Kočišek, Jaroslav; Poterya, Viktoriya; Pradzynski, Christoph C; Zeuch, Thomas; Slavíček, Petr; Fárník, Michal

    2012-11-01

    Mixed (HNO3)m(H2O)n clusters generated in supersonic expansion of nitric acid vapor are investigated in two different experiments, (1) time-of-flight mass spectrometry after electron ionization and (2) Na doping and photoionization. This combination of complementary methods reveals that only clusters containing at least one acid molecule are generated, that is, the acid molecule serves as the nucleation center in the expansion. The experiments also suggest that at least four water molecules are needed for HNO3 acidic dissociation. The clusters are undoubtedly generated, as proved by electron ionization; however, they are not detected by the Na doping due to a fast charge-transfer reaction between the Na atom and HNO3. This points to limitations of the Na doping recently advocated as a general method for atmospheric aerosol detection. On the other hand, the combination of the two methods introduces a tool for detecting molecules with sizable electron affinity in clusters. PMID:26296012

  20. Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81

    USGS Publications Warehouse

    Hochreiter, Joseph J.

    1982-01-01

    This report presents chemical-quality data collected from May 1980 to January 1981 at several locations within the Delaware River estuary and selected New Jersey tributaries. Samples of surface water were analyzed Environmental Protection Agency ' priority pollutants, ' including acid extractable, base/neutral extractable and volatile organic compounds, in addition to selected dissolved inorganic constituents. Surficial bed material at selected locations was examined for trace metals, insecticides, polychlorinated biphenyls, and base/neutral extractable organic compounds. Trace levels (1-50 micrograms per liter) of purgeable organic compounds, particularly those associated with the occurrence of hydrocarbons, were found in about 60% of the water samples taken. DDT, DDD, DDE, PCB 's and chlordane are present in most surficial bed material samples. Diazinon was the only organophosphorous insecticide detected in the study (1.6 micrograms per kilogram at one location). High values for select trace metals in bed material were discovered at two locations. Of the 10 sites sampled, the surficial bed material containing the most contamination was found along one cross section of Raccoon Creek at Bridgeport. An additional analysis of Raccoon Creek revealed bed material containing toluene, oil and grease, and trace quantities of 15 base/neutral extractable organic compounds, including polynuclear aromatic hydrocarbons, phthalate esters, and chlorinated benzenes.

  1. Water-surface profile and flood boundaries for the computed 100-year flood, Big Muddy Creek, Fort Peck Indian Reservation and adjacent area, Montana

    USGS Publications Warehouse

    Omang, R.J.

    1996-01-01

    Hydrologic and hydraulic evaluations of Big Muddy Creek were made to determine the magnitude of the 100-year flood and the extent of flooding that would occur as the result of this flood. The magnitude of the 100-year flood was determined to range from 13,600 to 20,400 ft3/s, depending on location. Field surveys were made at 39 cross sections along a 41-mile reach of Big Muddy Creek. An additional two cross sections along the same reach were synthesized. Data from the surveys were used to calculate the water-surface elevation at each cross section using a computer program (WSPRO) developed by the U.S. Geological Survey. The water-surface profile of the computed 100-year flood elevations was then drawn. The profile also shows the streambed elevation and the location of the bridges and cross sections. The computed 100-year flood elevation at each cross section was used to delineate the width of the flood plain at that section. Flood boundaries between cross sections were interpolated using contour lines on topographic maps.

  2. Potential effects of groundwater pumping on water levels, phreatophytes, and spring discharges in Spring and Snake Valleys, White Pine County, Nevada, and adjacent areas in Nevada and Utah

    USGS Publications Warehouse

    Halford, Keith J.; Plume, Russell W.

    2011-01-01

    Assessing hydrologic effects of developing groundwater supplies in Snake Valley required numerical, groundwater-flow models to estimate the timing and magnitude of capture from streams, springs, wetlands, and phreatophytes. Estimating general water-table decline also required groundwater simulation. The hydraulic conductivity of basin fill and transmissivity of basement-rock distributions in Spring and Snake Valleys were refined by calibrating a steady state, three-dimensional, MODFLOW model of the carbonate-rock province to predevelopment conditions. Hydraulic properties and boundary conditions were defined primarily from the Regional Aquifer-System Analysis (RASA) model except in Spring and Snake Valleys. This locally refined model was referred to as the Great Basin National Park calibration (GBNP-C) model. Groundwater discharges from phreatophyte areas and springs in Spring and Snake Valleys were simulated as specified discharges in the GBNP-C model. These discharges equaled mapped rates and measured discharges, respectively. Recharge, hydraulic conductivity, and transmissivity were distributed throughout Spring and Snake Valleys with pilot points and interpolated to model cells with kriging in geologically similar areas. Transmissivity of the basement rocks was estimated because thickness is correlated poorly with transmissivity. Transmissivity estimates were constrained by aquifer-test results in basin-fill and carbonate-rock aquifers. Recharge, hydraulic conductivity, and transmissivity distributions of the GBNP-C model were estimated by minimizing a weighted composite, sum-of-squares objective function that included measurement and Tikhonov regularization observations. Tikhonov regularization observations were equations that defined preferred relations between the pilot points. Measured water levels, water levels that were simulated with RASA, depth-to-water beneath distributed groundwater and spring discharges, land-surface altitudes, spring discharge at

  3. Role of Interfacial Water Molecules in Proline-rich Ligand Recognition by the Src Homology 3 Domain of Abl*

    PubMed Central

    Palencia, Andres; Camara-Artigas, Ana; Pisabarro, M. Teresa; Martinez, Jose C.; Luque, Irene

    2010-01-01

    The interaction of Abl-Src homology 3 domain (SH3) with the high affinity peptide p41 is the most notable example of the inconsistency existing between the currently accepted description of SH3 complexes and their binding thermodynamic signature. We had previously hypothesized that the presence of interfacial water molecules is partially responsible for this thermodynamic behavior. We present here a thermodynamic, structural, and molecular dynamics simulation study of the interaction of p41 with Abl-SH3 and a set of mutants designed to alter the water-mediated interaction network. Our results provide a detailed description of the dynamic properties of the interfacial water molecules and a molecular interpretation of the thermodynamic effects elicited by the mutations in terms of the modulation of the water-mediated hydrogen bond network. In the light of these results, a new dual binding mechanism is proposed that provides a better description of proline-rich ligand recognition by Abl-SH3 and that has important implications for rational design. PMID:19906645

  4. Effects of water molecules on tribological behavior and property measurements in nano-indentation processes - a numerical analysis

    PubMed Central

    2013-01-01

    Nano/micro-manufacturing under wet condition is an important consideration for various tool-based processes such as indentation, scratching, and machining. The existence of liquids adds complexity to the system, changes the tool/work interfacial condition, and affects material behaviors. For indentation, it may also affect material property measurements. However, little effort has been made to study this challenging issue at nano- or atomistic scale. In this study, we tackle this challenge by investigating nano-indentation processes submerged in water using the molecular dynamics (MD) simulation approach. Compared with dry indentation in which no water molecules are present, the existence of water molecules causes the increase of indentation force in initial penetration, but the decrease of indentation force in full penetration. It also reduces the sticking phenomenon between the work and tool atoms during indenter retraction, such that the indentation geometry can be better retained. Meanwhile, nano-indentation under wet condition exhibits the indentation size effect, while dry nano-indentation exhibits the reverse indentation size effect. The existence of water leads to higher computed hardness values at low indentation loads and a smaller value of Young's modulus. In addition, the friction along the tool/work interface is significantly reduced under wet indentation. PMID:24044504

  5. Fast rotational motion of water molecules increases ordering of hydrophobes in solutions and may cause hydrophobic chains to collapse.

    PubMed

    Mohorič, Tomaž; Bren, Urban; Vlachy, Vojko

    2015-12-28

    Using the molecular dynamics simulations with separate thermostats for translational and rotational degrees of freedom, we investigate the effects of water's rotational motion on the interaction among Lennard-Jones solutes. The situation with rotational temperature higher than the translational one (TR > TT) is mimicking the effects of microwaves on model solutions. Molecular dynamics simulations suggest that solutions of Lennard-Jones solutes become increasingly more structured with the rise in TR, while keeping the TT constant. This is evidenced by an increase of the first and the second peak of the solute-solute radial distribution function. In addition, the first peak moves toward slightly larger distances; the effect seems to be caused by the destabilization of water molecules in the first hydration shell around hydrophobic solutes. More evidence of strong effects of the rotationally excited water is provided by the simulations of short hydrophobic polymers, which upon an increase in TR assume more compact conformations. In these simulations, we see the re-distribution of water molecules, which escape from hydrophobic "pockets" to better solvate the solvent exposed monomers.

  6. Fast rotational motion of water molecules increases ordering of hydrophobes in solutions and may cause hydrophobic chains to collapse

    NASA Astrophysics Data System (ADS)

    Mohorič, Tomaž; Bren, Urban; Vlachy, Vojko

    2015-12-01

    Using the molecular dynamics simulations with separate thermostats for translational and rotational degrees of freedom, we investigate the effects of water's rotational motion on the interaction among Lennard-Jones solutes. The situation with rotational temperature higher than the translational one (TR > TT) is mimicking the effects of microwaves on model solutions. Molecular dynamics simulations suggest that solutions of Lennard-Jones solutes become increasingly more structured with the rise in TR, while keeping the TT constant. This is evidenced by an increase of the first and the second peak of the solute-solute radial distribution function. In addition, the first peak moves toward slightly larger distances; the effect seems to be caused by the destabilization of water molecules in the first hydration shell around hydrophobic solutes. More evidence of strong effects of the rotationally excited water is provided by the simulations of short hydrophobic polymers, which upon an increase in TR assume more compact conformations. In these simulations, we see the re-distribution of water molecules, which escape from hydrophobic "pockets" to better solvate the solvent exposed monomers.

  7. Can a single water molecule really affect the HO2 + NO2 hydrogen abstraction reaction under tropospheric conditions?

    PubMed

    Zhang, Tianlei; Wang, Rui; Chen, Hao; Min, Suotian; Wang, Zhiyin; Zhao, Caibin; Xu, Qiong; Jin, Lingxia; Wang, Wenliang; Wang, Zhuqing

    2015-06-14

    The effect of a single water molecule on the HO2 + NO2 hydrogen abstraction reaction has been investigated by employing B3LYP and CCSD(T) theoretical approaches with the aug-cc-pVTZ basis set. The reaction without water has three types of reaction channels on both singlet and triplet potential energy surfaces, depending on how the HO2 radical approaches NO2. These correspond to the formation of trans-HONO + O2, cis-HONO + O2 and HNO2 + O2. Our calculated results show that triplet reaction channels are favorable and their total rate constant, at 298 K, is 2.01 × 10(-15) cm(3) molecule(-1) s(-1), which is in good agreement with experimental values. A single water molecule affects each one of these triplet reaction channels in the three different reactions of H2O···HO2 + NO2, HO2···H2O + NO2 and NO2···H2O + HO2, depending on the way the water interacts. Interestingly, the water molecule in these reactions not only acts as a catalyst giving the same products as the naked reaction, but also as a reactant giving the product of HONO2 + H2O2. The total rate constant of the H2O···HO2 + NO2 reaction is estimated to be slower than the naked reaction by 6 orders of magnitude at 298 K. However, the total rate constants of the HO2···H2O + NO2 and NO2···H2O + HO2 reactions are faster than the naked reaction by 4 and 3 orders of magnitude at 298 K, respectively. Their total effective rate constant is predicted to be 1.2 times that of the corresponding total rate constant without water at 298 K, which is in agreement with the prediction reported by Li et al. (science, 2014, 344, 292-296).

  8. SET7/9 Catalytic Mutants Reveal the Role of Active Site Water Molecules in Lysine Multiple Methylation*

    PubMed Central

    Del Rizzo, Paul A.; Couture, Jean-François; Dirk, Lynnette M. A.; Strunk, Bethany S.; Roiko, Marijo S.; Brunzelle, Joseph S.; Houtz, Robert L.; Trievel, Raymond C.

    2010-01-01

    SET domain lysine methyltransferases (KMTs) methylate specific lysine residues in histone and non-histone substrates. These enzymes also display product specificity by catalyzing distinct degrees of methylation of the lysine ϵ-amino group. To elucidate the molecular mechanism underlying this specificity, we have characterized the Y245A and Y305F mutants of the human KMT SET7/9 (also known as KMT7) that alter its product specificity from a monomethyltransferase to a di- and a trimethyltransferase, respectively. Crystal structures of these mutants in complex with peptides bearing unmodified, mono-, di-, and trimethylated lysines illustrate the roles of active site water molecules in aligning the lysine ϵ-amino group for methyl transfer with S-adenosylmethionine. Displacement or dissociation of these solvent molecules enlarges the diameter of the active site, accommodating the increasing size of the methylated ϵ-amino group during successive methyl transfer reactions. Together, these results furnish new insights into the roles of active site water molecules in modulating lysine multiple methylation by SET domain KMTs and provide the first molecular snapshots of the mono-, di-, and trimethyl transfer reactions catalyzed by these enzymes. PMID:20675860

  9. Water adsorption on MnO:ZnO(001) — From single molecules to bilayer coverage

    NASA Astrophysics Data System (ADS)

    Kanan, Dalal K.; Keith, John A.; Carter, Emily A.

    2013-11-01

    Improving photochemical water oxidation processes on sunlight absorbing materials requires understanding the photoelectrode-solution interface. We use ab initio density functional theory (DFT) + U to investigate the structure and energetics of water adsorbed on MnO:ZnO(001), a potential photoanode material we previously identified as having suitable band gaps and band edge placements for visible light induced water splitting. Our calculations show that there is a preference for molecular adsorption at water coverages of less than half a monolayer (ML). At higher coverages, cooperative water-water interactions facilitate water dissociation at the interface. We find that the work function is very sensitive to water dipole orientation and/or presence of hydroxyls on the surface. The computed phase diagram reveals the surface to be fairly hydrophilic with a preference for the first water ML to be 33% dissociated at 0.75 ML, 50% dissociated at 1 ML, and 50% dissociated at 2 ML water coverage under various conditions away from water-poor conditions.

  10. Body condition of the deep water demersal resources at two adjacent oligotrophic areas of the western Mediterranean and the influence of the environmental features

    NASA Astrophysics Data System (ADS)

    Rueda, L.; Moranta, J.; Abelló, P.; Balbín, R.; Barberá, C.; Fernández de Puelles, M. L.; Olivar, M. P.; Ordines, F.; Ramón, M.; Torres, A. P.; Valls, M.; Massutí, E.

    2014-10-01

    Body condition indices not only are often used as reliable indicators of the nutritional status of individuals but also can they be utilized to provide insights regarding food availability and habitat quality. The aim of this study was to evaluate the connection between the body condition of the demersal species and the environmental features in the water column (i.e. the hydrographic conditions and the potential trophic resources) in two proximate areas, the north and south regions of the Balearic Islands (western Mediterranean), viz., the Balearic sub-basin (BsB) and the Algerian sub-basin (AsB), respectively, with different geomorphological and hydrodynamic features. Body condition indices were calculated for individuals of 21 demersal species including 11 teleosts, 4 elasmobranchs, 3 cephalopods and 3 crustaceans, which represented > 70-77% of the deep water resources, captured by bottom trawling. The morphometric indices, viz., Relative Condition Index (Kn) and Standardised Residuals (SR) from the length-weight relationship, were used. The results for each one of the 21 species indicated a significantly better condition in terms of Kn and SR in the BsB, for 7 and 9 species, respectively. In addition, a general model, including the 21 species together, showed better body condition in the BsB, and during the summer. The spatial and temporal differences in the body condition are discussed in the context of the environmental variables characterising both the study areas, which showed significant variations, for some of the hydrographic features (chlorophyll a, dissolved oxygen, salinity, potential density and temperature), as well as for some of the potential trophic resources (mesopelagic and epibenthic fauna). These findings suggest an environmental effect on the body condition of the deep-water resources in the Balearic Islands, one of the most oligotrophic areas of the western Mediterranean, and reveal more suitable environmental conditions for these species

  11. Determination of selected pesticides in water samples adjacent to agricultural fields and removal of organophosphorus insecticide chlorpyrifos using soil bacterial isolates

    NASA Astrophysics Data System (ADS)

    Hossain, M. S.; Chowdhury, M. Alamgir Zaman; Pramanik, Md. Kamruzzaman; Rahman, M. A.; Fakhruddin, A. N. M.; Alam, M. Khorshed

    2015-06-01

    The use of pesticide for crops leads to serious environmental pollution, therefore, it is essential to monitor and develop approaches to remove pesticide from contaminated environment. In this study, water samples were collected to monitor pesticide residues, and degradation of chlorpyrifos was also performed using soil bacteria. Identification of pesticide residues and determination of their levels were performed by high-performance liquid chromatography with photodiode array detector. Among 12 samples, 10 samples were found contaminated with pesticides. Chlorpyrifos was detected in four tested samples and concentrations ranged from 3.27 to 9.31 μg/l whereas fenitrothion ranging from (Below Detection Limit, <0.1 μg/l) to 33.41 μg/l in the tested samples. Parathion was found in two tested samples at the concentration of 0.73 and 6.23 μg/l. None of the tested samples was found contaminated with Methoxychlor, DDT and Ethion. Three soil bacterial isolates, Pseudomonas peli BG1, Burkholderia caryophylli BG4 and Brevundimonas diminuta PD6 degraded chlorpyrifos completely in 8, 10 and 10 days, respectively, when 20 mg/l chlorpyrifos was supplied as sole source of carbon. Whereas, BG1, BG4 and PD6 took 14, 16 and 16 days, respectively, for complete removal of 50 mg/l chlorpyrifos. Chlorpyrifos degradation rates were found maximum by all three isolates at 2nd day of incubation for both tested concentrations. The results of the present study suggest the need for regular monitoring of pesticide residues in water, to protect the aquatic environment. Chlorpyrifos degrading bacterial isolates can be used to clean up environmental samples contaminated with the organophosphate pesticides.

  12. Density Functional Theory Study of the Complexation of the Uranyl Dication with Anionic Phosphate Ligands with and without Water Molecules

    SciTech Connect

    Jackson, Virgil E.; Gutowski, Keith E.; Dixon, David A.

    2013-08-01

    The structures, vibrational frequencies and energetics of anhydrous and hydrated complexes of UO2 2+ with the phosphate anions H2PO4 -, HPO4 2-, and PO4 3- were predicted at the density functional theory (DFT) and MP2 molecular orbital theory levels as isolated gas phase species and in aqueous solution by using self-consistent reaction field (SCRF) calculations with different solvation models. The geometries and vibrational frequencies of the major binding modes for these complexes are compared to experiment where possible and good agreement is found. The uranyl moiety is nonlinear in many of the complexes, and the coordination number (CN) 5 in the equatorial plane is the predominant binding motif. The phosphates are found to bind in both monodentate and bidentate binding modes depending on the charge and the number of water molecules. The SCRF calculations were done with a variety of approaches, and different SCRF approaches were found to be optimal for different reaction types. The acidities of HxPO4 3-x in HxPO4 3-x(H2O)4, x = 0-3 complexes were calculated with different SCRF models and compared to experiment. Phosphate anions can displace water molecules from the first solvation shell at the uranyl exothermically. The addition of water molecules can cause the bonding of H2PO4 - and HPO4 2- to change from bidentate to monodentate exothermically while maintaining CN 5. The addition of water can generate monodentate structures capable of cross-linking to other uranyl phosphates to form the types of structures found in the solid state. [UO2(HPO4)(H2O)3] is predicted to be a strong base in the gas phase and in aqueous solution. It is predicted to be a much weaker acid than H3PO4 in the gas phase and in solution.

  13. A theoretical investigation on the conformation and the interaction of CHF₂OCF₂CHF₂ (desflurane II) with one water molecule.

    PubMed

    Sutradhar, Dipankar; Zeegers-Huyskens, Therese; Chandra, Asit K

    2013-11-01

    The conformation and the interaction of CHF₂OCF₂CHF₂ (desflurane II) with one water molecule is investigated theoretically using the ab initio MP2/aug-cc-pvdz and DFT-based M062X/6-311++G(d,p) methods. The calculations include the optimized geometries, the harmonic frequencies of relevant vibrational modes along with a natural bond orbital (NBO) analysis including the NBO charges, the hybridization of the C atom and the intra- and intermolecular hyperconjugation energies. In the two most stable conformers, the CH bond of the F2HCO- group occupies the gauche position. The hyperconjugation energies are about the same for both conformers and the conformational preference depends on the interaction between the non-bonded F and H atoms. The deprotonation enthalpies of the CH bonds are about the same for both conformers, the proton affinity of the less stable conformer being 3 kcal mol−1 higher. Both conformers of desflurane II interact with water forming cyclic complexes characterized by CH…O and OH…F hydrogen bonds. The binding energies are moderate, ranging from −2.4 to −3.2 kcal mol−1 at the MP2 level. The origin of the blue shifts of the ν(CH) vibrations is analyzed. In three of the complexes, the water molecule acts as an electron donor. Interestingly, in these cases a charge transfer is also directed to the non bonded OH group of the water molecule. This effect seems to be a property of polyfluorinated ethers.

  14. Relationships between membrane water molecules and Patman equilibration kinetics at temperatures far above the phosphatidylcholine melting point.

    PubMed

    Vaughn, Alexandra R; Bell, Thomas A; Gibbons, Elizabeth; Askew, Caitlin; Franchino, Hannabeth; Hirsche, Kelsey; Kemsley, Linea; Melchor, Stephanie; Moulton, Emma; Schwab, Morgan; Nelson, Jennifer; Bell, John D

    2015-04-01

    The naphthalene-based fluorescent probes Patman and Laurdan detect bilayer polarity at the level of the phospholipid glycerol backbone. This polarity increases with temperature in the liquid-crystalline phase of phosphatidylcholines and was observed even 90°C above the melting temperature. This study explores mechanisms associated with this phenomenon. Measurements of probe anisotropy and experiments conducted at 1M NaCl or KCl (to reduce water permittivity) revealed that this effect represents interactions of water molecules with the probes without proportional increases in probe mobility. Furthermore, comparison of emission spectra to Monte Carlo simulations indicated that the increased polarity represents elevation in probe access to water molecules rather than increased mobility of relevant bilayer waters. Equilibration of these probes with the membrane involves at least two steps which were distinguished by the membrane microenvironment reported by the probe. The difference in those microenvironments also changed with temperature in the liquid-crystalline phase in that the equilibrium state was less polar than the initial environment detected by Patman at temperatures near the melting point, more polar at higher temperatures, and again less polar as temperature was raised further. Laurdan also displayed this level of complexity during equilibration, although the relationship to temperature differed quantitatively from that experienced by Patman. This kinetic approach provides a novel way to study in molecular detail basic principles of what happens to the membrane environment around an individual amphipathic molecule as it penetrates the bilayer. Moreover, it provides evidence of unexpected and interesting membrane behaviors far from the phase transition.

  15. Expressional Changes of Water Transport-related Molecules in the Efferent Ductules and Initial Segment of Mouse Treated with Bisphenol A-Containing Drinking Water for Two Generations.

    PubMed

    Han, Su-Yong; Lee, Ki-Ho

    2013-09-01

    Bisphenol A (BPA) is an estrogenic endocrine disrupter. However, depending on a way of treatment, the harmful effects of BPA have not been confirmed. Also, trans-generational effects of BPA on male reproduction are still controversial. Because the reabsorption of testicular fluid in the efferent ductules (ED) and initial segment (IS) is important for sperm maturation, the present study was designed to determine trans-generational effect of BPA administrated orally on expression of water transport-related molecules in the mouse ED and IS. Ethanol-dissolved BPA was diluted in water to be 100 ng (low), 10 μg (medium), and 1 mg/Ml water (high). BPA-containing water was provided for two generations. Expression of ion transporters and water channels in the ED and IS were measured by relative real-time PCR analysis. In the ED, BPA treatment caused expressional increases of carbonic anhydrase II, cystic fibrosis transmembrane regulator, Na(+)/K(+) ATPase α1 subunit, and aquaporin (AQP) 1. No change of Na(+)/H(+) exchange (NHE) 3 expression was detected. BPA treatment at medium dose resulted in an increase of AQP9 expression. In the IS, the highest expressional levels of all molecules tested were observed in medium-dose BPA treatment. Generally, high-dose BPA treatment resulted in a decrease or no change of gene expression. Fluctuation of NHE3 gene expression by BPA treatment at different concentrations was detected. These findings suggest that trans-generational exposure to BPA, even at low dose, could affect gene expression of water-transport related molecules. However, such effects of BPA would be differentially occurred in the ED and IS.

  16. DFT study of N-H···O hydrogen bond between model dehydropeptides and water molecule

    NASA Astrophysics Data System (ADS)

    Buczek, Aneta; Broda, Małgorzata A.

    2014-03-01

    The strength of the hydrogen bond formed between a water molecule and two α,β-dehydroalanine derivatives including Ac-ΔAla-NMe2 (1) and Ac-ΔAla-NHMe (2) in comparison with standard amino acid Ac-Ala-NMe2 (3) is studied by density functional theory (with M06-2X and B3LYP functionals). Calculations were conducted for two different conformations of the peptides: extended (C5) and bent (β) with polyproline II backbone dihedral angles. The obtained results show that both dehydro and standard peptides in bent conformation form stronger hydrogen bonds with water than in the extended ones. Moreover, due to higher polarity of the N-H group of α,β-dehydroalanine residues, the H-bond in their complexes with water are stronger than for standard alanine.

  17. Probing Shear Thinning Behaviors of IgG Molecules at the Air-Water Interface via Rheological Methods.

    PubMed

    Gleason, Camille; Yee, Chanel; Masatani, Peter; Middaugh, C Russell; Vance, Aylin

    2016-01-19

    Shear thinning behavior, often observed in shear viscosity tests of IgG therapeutic molecules, could lead to significant disparities in the projections for the viscosity profile of a molecule. Despite its importance, molecular determinants of sheer thinning in protein suspensions are largely unknown. To better understand the factors influencing sheer thinning, viscosity profiles of IgG1 and IgG2 molecules were monitored over a wide range of bulk concentrations (0.007-70 mg/mL). The degree of shear-thinning of 70 and 0.007 mg/mL samples was minimal in comparison to the 0.7 mg/mL solution for both IgG molecules. These observations suggest that bulk concentration alone does not determine the degree of sheer thinning, and additional factors play a role. Additional data reveals, within a threshold range of concentrations, that a strong correlation exists between the degree of shear thinning and the surface area to volume (SA:V) ratio of an IgG sample exposed to the interface. The influence of the interface, however, diminishes when the bulk concentration falls outside this concentration window. Also revealed by interfacial oscillatory rheological testing, both IgG molecules showed solid-like behavior (G'i) at the air-water interface at 0.7 mg/mL, whereas liquid-like behavior (G″i) was dominant at 0.007 and 70 mg/mL concentrations. These observations imply that the lack of solid-like behavior was due to the absence of a network structure. Likewise the addition of polysorbate 20 (PS20) to the 0.7 mg/mL solutions decreased the degree of shear thinning by disrupting the network structure at the interface. Taken together, the results presented here suggest that, although shear thinning behavior is a manifestation of an interfacial, rather than a bulk, phenomenon, the extent of it depends on how susceptible the surface molecules are to the air-water interface, where the surface molecular structures are influenced by the bulk properties.

  18. Metagenomics of Water Column Microbes Near Brine Pool NR1 and adjacent regions of the Northern Gulf of Mexico Collected in Fall 2009

    NASA Astrophysics Data System (ADS)

    Wood, A. M.; Goodwin, K. D.; Brami, D.; Schwartz, A.; Toledo, G.

    2012-12-01

    High-throughput sequencing was applied to eight water column samples collected from the Gulf of Mexico in 2009 in regions SW and west of the 2010 Macondo oil spill. Samples were collected by Niskin-equipped CTD (~200 and ~650 m depths) at two locations, including a site over a methane brine pool (Brine Pool NR1). In addition, seawater was collected ~3m lateral of the pool (649m depth) via Niskin bottle equipped on the Johnson-Sea-Link submersible. Unassembled reads were submitted to the Synthetic Genomics bioinformatics pipeline for taxonomic analysis. The distribution of Bacteria (56-73%), Archae (7-16%), Eukaryotes (12-23%), and unclassified sequences (6-10%) were similar for all samples. However, certain taxonomic classifications were relatively more abundant in deeper samples, and differences were noted for samples collected by submersible. For example, Methylophaga was classified as 38% of the order Thiotrichales for the Niskin/submersible sample compared to 0% in the 200m-depth samples and 3-11% in the 650m samples. Methylophaga is a genus of indigenous methylotrophs reported to respond during the Deepwater Horizon event of 2010. In contrast, sequence abundance for Oceanospirillales, also reported to respond during the event, was similar for all samples (6-9% of the gamma-proteobacteria).

  19. Dual reorientation relaxation routes of water molecules in oxyanion's hydration shell: A molecular geometry perspective.

    PubMed

    Xie, Wen Jun; Yang, Yi Isaac; Gao, Yi Qin

    2015-12-14

    In this study, we examine how complex ions such as oxyanions influence the dynamic properties of water and whether differences exist between simple halide anions and oxyanions. Nitrate anion is taken as an example to investigate the hydration properties of oxyanions. Reorientation relaxation of its hydration water can occur through two different routes: water can either break its hydrogen bond with the nitrate to form one with another water or switch between two oxygen atoms of the same nitrate. The latter molecular mechanism increases the residence time of oxyanion's hydration water and thus nitrate anion slows down the translational motion of neighbouring water. But it is also a "structure breaker" in that it accelerates the reorientation relaxation of hydration water. Such a result illustrates that differences do exist between the hydration of oxyanions and simple halide anions as a result of different molecular geometries. Furthermore, the rotation of the nitrate solute is coupled with the hydrogen bond rearrangement of its hydration water. The nitrate anion can either tilt along the axis perpendicularly to the plane or rotate in the plane. We find that the two reorientation relaxation routes of the hydration water lead to different relaxation dynamics in each of the two above movements of the nitrate solute. The current study suggests that molecular geometry could play an important role in solute hydration and dynamics.

  20. Inter-annual variability in the biosphere-atmosphere exchange of carbon dioxide and water vapor in adjacent pine and hardwood forests: links to drought, disturbance, and seasonality

    NASA Astrophysics Data System (ADS)

    Novick, K. A.; Ward, E. J.; Oishi, A. C.; Stoy, P. C.

    2012-12-01

    Understanding the variation in long-term biosphere-atmosphere fluxes of carbon dioxide and water vapor is necessary to characterize the benefits and services of terrestrial ecosystems, including the highly productive forests of the Southeastern United States. This study quantifies flux variability at inter-annual times scales using eight-year eddy covariance records from two co-located ecosystems in the Duke Forest (North Carolina, USA): a hardwood deciduous forest (HW) and a pine plantation (PP), which together represent the dominant forest types in the region. When averaged across the study period, annual net ecosystem exchange of CO2 (NEE) was similar in PP and HW (NEE = -560 and -520 g C m-2 y-1 in PP and HW, respectively). Variation in annual NEE was high in both ecosystems, but higher in the pine site (CV = 0.38) as compared to the hardwood site (CV = 0.23). Gross ecosystem productivity (GEP) and ecosystem respiration (RE), which together represent the primary components of NEE, were not necessarily more variable in the pine site; however, the coupling between annual GEP and RE was weaker in PP as compared to HW, contributing to higher overall variability in PP NEE. Our results identify at least two factors contributing to this decoupling: 1) an ice storm event, which reduced PP GEP while increasing or having no effect on PP RE, and 2) two severe drought events, which cause large reductions in PP GEP but not RE. Additionally, in both ecosystems, variability in GEP and NEE is strongly related to the length of the active season (r2 = 0.60 - 0.93), a variable reflecting the seasonality of carbon assimilation that is largely independent from patterns of leaf area development.

  1. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket

    SciTech Connect

    Debler, Erik W.; Müller, Roger; Hilvert, Donald; Wilson, Ian A.

    2009-12-01

    Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes Asp{sup H35} and Glu{sup L34} to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the Glu{sup L34} to alanine mutant, leads to an impressive 10{sup 9}-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations.

  2. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket.

    PubMed

    Debler, Erik W; Müller, Roger; Hilvert, Donald; Wilson, Ian A

    2009-11-01

    Design of catalysts featuring multiple functional groups is a desirable, yet formidable goal. Antibody 13G5, which accelerates the cleavage of unactivated benzisoxazoles, is one of few artificial enzymes that harness an acid and a base to achieve efficient proton transfer. X-ray structures of the Fab-hapten complexes of wild-type 13G5 and active-site variants now afford detailed insights into its mechanism. The parent antibody preorganizes Asp(H35) and Glu(L34) to abstract a proton from substrate and to orient a water molecule for leaving group stabilization, respectively. Remodeling the environment of the hydrogen bond donor with a compensatory network of ordered waters, as seen in the Glu(L34) to alanine mutant, leads to an impressive 10(9)-fold rate acceleration over the nonenzymatic reaction with acetate, illustrating the utility of buried water molecules in bifunctional catalysis. Generalization of these design principles may aid in creation of catalysts for other important chemical transformations.

  3. Binding site identification and role of permanent water molecule of PIM-3 kinase: A molecular dynamics study.

    PubMed

    Ul-Haq, Zaheer; Gul, Sana; Usmani, Saman; Wadood, Abdul; Khan, Waqasuddin

    2015-11-01

    The kinome is a protein kinase complement of the human genome, categorized as serine/threonine and tyrosine kinases. These kinases catalyze phosphorylation reaction by using ATP as phosphoryl donor. Proviral Integration Site for Moloney Murine Leukemia Virus (PIM) kinase encodes serine/threonine protein kinases that recognized as proto-oncogene, responsible for rapid growth of cancerous cells. It is implicated in cell survival and function via cell cycle progression and its metabolism. PIM-3, sub-member of PIM kinases is a proto-oncogene, its overexpression inhibits apoptosis, and results in progression of hepatocellular carcinoma. PIM-3 is considered as a promising drug target but attempts to develop its specific inhibitors is slowed down due to the lack of 3D structure by any experimental technique. In silico techniques generally facilitate scientist to explore hidden structural features in order to improve drug discovery. In the present study, homology modeling, molecular docking and MD simulation techniques were utilized to explore the structure and dynamics of PIM-3 kinase. Induction of water molecules during molecular docking simulation explored differences in the hinge region between PIM-1 and PIM-3 kinases that may be responsible for specificity. Furthermore, role of water molecules in the active site was also explored via radial distribution function (RDF) after a 10 ns molecular dynamics (MD) simulations. Generated RDF plots exhibited the importance of water for inhibitor binding through their bridging capability that links the ligand with binding site residues.

  4. Binding site identification and role of permanent water molecule of PIM-3 kinase: A molecular dynamics study.

    PubMed

    Ul-Haq, Zaheer; Gul, Sana; Usmani, Saman; Wadood, Abdul; Khan, Waqasuddin

    2015-11-01

    The kinome is a protein kinase complement of the human genome, categorized as serine/threonine and tyrosine kinases. These kinases catalyze phosphorylation reaction by using ATP as phosphoryl donor. Proviral Integration Site for Moloney Murine Leukemia Virus (PIM) kinase encodes serine/threonine protein kinases that recognized as proto-oncogene, responsible for rapid growth of cancerous cells. It is implicated in cell survival and function via cell cycle progression and its metabolism. PIM-3, sub-member of PIM kinases is a proto-oncogene, its overexpression inhibits apoptosis, and results in progression of hepatocellular carcinoma. PIM-3 is considered as a promising drug target but attempts to develop its specific inhibitors is slowed down due to the lack of 3D structure by any experimental technique. In silico techniques generally facilitate scientist to explore hidden structural features in order to improve drug discovery. In the present study, homology modeling, molecular docking and MD simulation techniques were utilized to explore the structure and dynamics of PIM-3 kinase. Induction of water molecules during molecular docking simulation explored differences in the hinge region between PIM-1 and PIM-3 kinases that may be responsible for specificity. Furthermore, role of water molecules in the active site was also explored via radial distribution function (RDF) after a 10 ns molecular dynamics (MD) simulations. Generated RDF plots exhibited the importance of water for inhibitor binding through their bridging capability that links the ligand with binding site residues. PMID:26529487

  5. 52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. EASTSIDE PLANT: GENERAL VIEW OF GOVERNOR ADJACENT TO GENERATOR - American Falls Water, Power & Light Company, Island Power Plant, Snake River, below American Falls Dam, American Falls, Power County, ID

  6. Investigation of N-acyl homoserine lactone (AHL) molecule production in Gram-negative bacteria isolated from cooling tower water and biofilm samples.

    PubMed

    Haslan, Ezgi; Kimiran-Erdem, Ayten

    2013-09-01

    In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p < 0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria. PMID:23250628

  7. Possible interstellar formation of glycine from the reaction of CH2=NH, CO and H2O: catalysis by extra water molecules through the hydrogen relay transport.

    PubMed

    Nhlabatsi, Zanele P; Bhasi, Priya; Sitha, Sanyasi

    2016-01-01

    "How the fundamental life elements are created in the interstellar medium (ISM)?" is one of the intriguing questions related to the genesis of life. Using computational calculations, we have discussed the reaction of CH2=NH, CO and H2O for the formation of glycine, the simplest life element. This reaction proceeds through a concerted mechanism with reasonably large barriers for the cases with one and two water molecules as reactants. For the two water case we found that the extra water molecule exhibits some catalytic role through the hydrogen transport relay effect and the barrier height is reduced substantially compared to the case with one water molecule. These two cases can be treated as ideal cases for the hot-core formation of the interstellar glycine. With an increasing number of water molecules as the reactants, we found that when the numbers of water molecules are three or more than three, the barrier height reduced so drastically that the transition states were more stable than the reactants. Such a situation gives a clear indication that with excess water molecules as the reactants, this reaction will be feasible even under the low temperature conditions existing in the cold interstellar clouds and the exothermic nature of the reaction will be the driving force.

  8. Double ionization of the water molecule: Influence of the target orientation on the secondary-electron angular distributions

    SciTech Connect

    Oubaziz, D.; Aouchiche, H.; Champion, C.

    2011-01-15

    Fivefold differential cross sections for electron-induced double ionization of isolated oriented water molecules are reported. The theoretical investigation is performed within the first Born approximation by describing the initial molecular state by means of single-center wave functions. The contributions of each final state to the double-ionization process, i.e., with target electrons ejected from similar and/or different molecular subshells, are studied and compared in terms of shape and magnitude. Furthermore, for the particular target orientations investigated, we identify clearly the signature of the main scenarios involved in (e,3e) reactions, namely, the shake-off and the two-step 1 mechanisms.

  9. Product distributions and rate constants for ion-molecule reactions in water, hydrogen sulfide, ammonia, and methane

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Pinizzotto, R. F., Jr.

    1973-01-01

    The thermal energy, bimolecular ion-molecule reactions occurring in gaseous water, hydrogen sulfide, ammonia, and methane have been identified and their rate constants determined using ion cyclotron resonance methods. Absolute rate constants were determined for the disappearance of the primary ions by using the trapped ion method, and product distributions were determined for these reactions by using the cyclotron ejection method. Previous measurements are reviewed and compared with the results using the present methods. The relative rate constants for hydrogen-atom abstraction, proton transfer, and charge transfer are also determined for reactions of the parent ions.

  10. Passive water-lipid peptide translocators with conformational switches: From single-molecule probe to cellular assay

    PubMed Central

    Fernández, Ariel; Crespo, Alejandro; Blau, Axel

    2008-01-01

    Peptide design for unassisted passive water/lipid translocation remains a challenge, notwithstanding its importance for drug delivery. We introduce a design paradigm based on conformational switches operating as passive translocation vehicles. The interfacial behavior of the molecular prototype, probed in single-molecule AFM experiments, reveals a near-barrierless translocation. The associated free-energy agrees with mesoscopic measurements, and the in vitro behavior is quantitatively reproduced in cellular assays. The prototypes herald the advent of novel nano-biomaterials for passive translocation. PMID:18044863

  11. Computational study of the interaction of indole-like molecules with water and hydrogen sulfide.

    PubMed

    Cabaleiro-Lago, Enrique M; Rodríguez-Otero, Jesús; Peña-Gallego, Ángeles

    2011-10-01

    The characteristics of the interaction between water and hydrogen sulfide with indole and a series of analogs obtained by substituting the NH group of indole by different heteroatoms have been studied by means of ab initio calculations. In all cases, minima were found corresponding to structures where water and hydrogen sulfide interact by means of X-H···π contacts. The interaction energies for all these π complexes are quite similar, spanning from -13.5 to -18.8 kJ/mol, and exhibiting the stability sequence NH > CH(2) ≈ PH > Se ≈ S > O, for both water and hydrogen sulfide. Though interaction energies are similar, hydrogen sulfide complexes are slightly favored over their water counterparts when interacting with the π cloud. σ-Type complexes were also considered for the systems studied, but only in the case of water complexes this kind of complexes is relevant. Only for complexes formed by water and indole, a significantly more stable σ-type complex was found with an interaction energy amounting to -23.6 kJ/mol. Oxygen and phosphorous derivatives also form σ-type complexes of similar stability as that observed for π ones. Despite the similar interaction energies exhibited by complexes with water and hydrogen sulfide, the nature of the interaction is very different. For π complexes with water the main contributions to the interaction energy are electrostatic and dispersive contributing with similar amounts, though slightly more from electrostatics. On the contrary, in hydrogen sulfide complexes dispersion is by far the main stabilizing contribution. For the σ-type complexes, the interaction is clearly dominated by the electrostatic contribution, especially in the indole-water complex.

  12. Interaction of Excess Electrons with Water Molecules at the Early Stage of Laser-Induced Plasma Generation in Water

    NASA Astrophysics Data System (ADS)

    Yui, Hiroharu; Sawada, Tsuguo

    2000-10-01

    Forward and backward stimulated Raman scattering (SRS) of OH stretching vibrations are measured when an intense 40 ps pulsed beam is focused into water. Characteristic features related to the interaction of OH groups with excess electrons generated by the strong laser irradiation are observed. The SRS spectra are indicative of the important role which excess electrons play in transient enhancement of the SRS at the initial stage of laser-induced plasma generation in water. The hydration structures around the excess electrons in water are also discussed.

  13. Interaction of excess electrons with water molecules at the early stage of laser-induced plasma generation in water

    PubMed

    Yui; Sawada

    2000-10-16

    Forward and backward stimulated Raman scattering (SRS) of OH stretching vibrations are measured when an intense 40 ps pulsed beam is focused into water. Characteristic features related to the interaction of OH groups with excess electrons generated by the strong laser irradiation are observed. The SRS spectra are indicative of the important role which excess electrons play in transient enhancement of the SRS at the initial stage of laser-induced plasma generation in water. The hydration structures around the excess electrons in water are also discussed.

  14. Boltzmann equation analysis of electron-molecule collision cross sections in water vapor and ammonia

    NASA Astrophysics Data System (ADS)

    Yousfi, M.; Benabdessadok, M. D.

    1996-12-01

    Sets of electron-molecule collision cross sections for H2O and NH3 have been determined from a classical technique of electron swarm parameter unfolding. This deconvolution method is based on a simplex algorithm using a powerful multiterm Boltzmann equation analysis established in the framework of the classical hydrodynamic approximation. It is well adapted for the simulation of the different classes of swarm experiments (i.e., time resolved, time of flight, and steady state experiments). The sets of collision cross sections that exist in the literature are reviewed and analyzed. Fitted sets of cross sections are determined for H2O and NH3 which exhibit features characteristic of polar molecules such as high rotational excitation collision cross sections. The hydrodynamic swarm parameters (i.e., drift velocity, longitudinal and transverse diffusion coefficients, ionization and attachment coefficients) calculated from the fitted sets are in excellent agreement with the measured ones. These sets are finally used to calculate the transport and reaction coefficients needed for discharge modeling in two cases of typical gas mixtures for which experimental swarm data are very sparse or nonexistent (i.e., flue gas mixtures and gas mixtures for rf plasma surface treatment).

  15. Rotational dynamics of water molecules near biological surfaces with implications for nuclear quadrupole relaxation.

    PubMed

    Braun, Daniel; Schmollngruber, Michael; Steinhauser, Othmar

    2016-09-21

    Based on Molecular Dynamics simulations of two different systems, the protein ubiquitin dissolved in water and an AOT reverse micelle, we present a broad analysis of the single particle rotational dynamics of water. A comprehensive connection to NQR, which is a prominent experimental method in this field, is developed, based on a reformulation of its theoretical framework. Interpretation of experimental NQR results requires a model which usually assumes that the NQR experiences retardation only in the first hydration shell. Indeed, the present study shows that this first-shell model is correct. Moreover, previous experimental retardation factors are quantitatively reproduced. All of this is seemingly contradicted by results of other methods, e.g., dielectric spectroscopy, responsible for a long-standing debate in this field. Our detailed analysis shows that NQR omits important information contained in overall water dynamics, most notably, the retardation of the water dipole axis in the electric field exerted by a biological surface. PMID:27546227

  16. Rotational dynamics of water molecules near biological surfaces with implications for nuclear quadrupole relaxation.

    PubMed

    Braun, Daniel; Schmollngruber, Michael; Steinhauser, Othmar

    2016-09-21

    Based on Molecular Dynamics simulations of two different systems, the protein ubiquitin dissolved in water and an AOT reverse micelle, we present a broad analysis of the single particle rotational dynamics of water. A comprehensive connection to NQR, which is a prominent experimental method in this field, is developed, based on a reformulation of its theoretical framework. Interpretation of experimental NQR results requires a model which usually assumes that the NQR experiences retardation only in the first hydration shell. Indeed, the present study shows that this first-shell model is correct. Moreover, previous experimental retardation factors are quantitatively reproduced. All of this is seemingly contradicted by results of other methods, e.g., dielectric spectroscopy, responsible for a long-standing debate in this field. Our detailed analysis shows that NQR omits important information contained in overall water dynamics, most notably, the retardation of the water dipole axis in the electric field exerted by a biological surface.

  17. Size-dependent molecule-like to plasmonic transition in water-soluble glutathione stabilized gold nanomolecules

    NASA Astrophysics Data System (ADS)

    Kothalawala, Nuwan; Lee West, James, IV; Dass, Amala

    2013-12-01

    A size-dependent transition from molecule-like to plasmonic behaviour is demonstrated in the case of water soluble Au:SG nanomolecules. This was achieved using PAGE separation of smaller and larger nanomolecules, resulting in an unprecedented 26 bands, in a wide-range from 10's to 1000's of Au-atoms. PAGE separation of larger plasmonic nanomolecules is demonstrated for the first time. High resolution ESI-MS, with isotopic resolution, of smaller nanoparticles is reported, including the first time report of Au43(SG)26. This report will aid in the fundamental understanding of size-dependent properties of nanomolecules. The synthetic procedure employs a green approach with non-toxic chemicals and processes. The water solubility, non-toxicity and biocompatibility will lead to applications in biomedicine.A size-dependent transition from molecule-like to plasmonic behaviour is demonstrated in the case of water soluble Au:SG nanomolecules. This was achieved using PAGE separation of smaller and larger nanomolecules, resulting in an unprecedented 26 bands, in a wide-range from 10's to 1000's of Au-atoms. PAGE separation of larger plasmonic nanomolecules is demonstrated for the first time. High resolution ESI-MS, with isotopic resolution, of smaller nanoparticles is reported, including the first time report of Au43(SG)26. This report will aid in the fundamental understanding of size-dependent properties of nanomolecules. The synthetic procedure employs a green approach with non-toxic chemicals and processes. The water solubility, non-toxicity and biocompatibility will lead to applications in biomedicine. Electronic supplementary information (ESI) available: Detailed synthetic conditions, expanded MS, and optical spectra. This material is available free of charge via the Internet at http://pubs.acs.org. See DOI: 10.1039/c3nr03657j

  18. Premelted liquid water in frozen soils and its interaction with bio-molecules

    NASA Astrophysics Data System (ADS)

    Hansen-Goos, H.; Wettlaufer, J. S.

    2011-12-01

    While liquid water in bulk is unstable on the surface of Mars, there is a possibility for the persistence of thin films of liquid water in the Martian regolith as a result of interfacial forces between the interstitial ice and the soil grains even below the bulk melting temperature. This is referred to as premelting. We present a calculation of the liquid fraction of frozen soils which takes into account premelting in combination with the effect of ionic impurities and the curvature induced freezing point depression (Gibbs-Thomson effect). We introduce a revised density functional theory which accurately treats a simple model for confined liquid water. We use the theory to study how biological matter (antifreeze proteins in particular) inside a narrow liquid cavity in ice interacts with the surrounding ice-water interface. Because in this case the interface is concave and hence the Gibbs-Thomson effect is antagonistic to the liquid phase, the protein-ice interaction is responsible for the persistence of liquid water.

  19. Electrospray tandem quadrupole fragmentation of quinolone drugs and related ions. On the reversibility of water loss from protonated molecules.

    PubMed

    Neta, Pedatsur; Godugu, Bhaskar; Liang, Yuxue; Simón-Manso, Yamil; Yang, Xiaoyu; Stein, Stephen E

    2010-11-30

    Selected reaction monitoring (SRM) of quinolone drugs showed different sensitivities in aqueous solution vs. biological extract. The authors suggested formation of two singly protonated molecules with different behavior, one undergoing loss of H(2)O and the other loss of CO(2), so that SRM transitions might depend on the ratios of these forms generated by the electrospray. These surprising results prompted us to re-examine several quinolone drugs and some simpler compounds to further elucidate the mechanisms. We find that the relative contributions of loss of H(2)O vs. loss of CO(2) in tandem mass spectrometric (MS/MS) experiments depend not only on molecular structure and collision energy, but also, in certain cases, on the cone voltage. We further find that many product ions formed by loss of H(2)O can reattach a water molecule in the collision cell, whereas ions formed by loss of CO(2) do not. Since reattachment of H(2)O can occur after water loss in the cone region and prior to selection of the precursor ion, this effect leads to the dependence of MS/MS spectra on the cone voltage used in creating the precursor ion, which explains the formerly observed effect on SRM ratios. Our results support the earlier conclusion that varying amounts of two ions of the same m/z value are responsible for problems in the analysis of these drugs, but the origin is in dehydration/rehydration reactions. Thus, SRM transitions for certain complex compounds may be comparable only when monitored under equivalent ion-forming conditions, including the voltage used in the production of the protonated molecules in the electrospray ionization (ESI) source.

  20. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules

    PubMed Central

    Davidge, Kelly S; Singh, Sandip; Bowman, Lesley AH; Tinajero-Trejo, Mariana; Carballal, Sebastián; Radi, Rafael; Poole, Robert K; Dikshit, Kanak; Estrin, Dario A; Marti, Marcelo A; Boechi, Leonardo

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and •NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels that are partially blocked by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify •NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, •NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations introduce modifications in both tunnel topologies and affect the incoming ligand capacity to displace retained water molecules at the active site. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site. PMID:26478812

  1. Ligand uptake in Mycobacterium tuberculosis truncated hemoglobins is controlled by both internal tunnels and active site water molecules.

    PubMed

    Boron, Ignacio; Bustamante, Juan Pablo; Davidge, Kelly S; Singh, Sandip; Bowman, Lesley Ah; Tinajero-Trejo, Mariana; Carballal, Sebastián; Radi, Rafael; Poole, Robert K; Dikshit, Kanak; Estrin, Dario A; Marti, Marcelo A; Boechi, Leonardo

    2015-01-01

    Mycobacterium tuberculosis, the causative agent of human tuberculosis, has two proteins belonging to the truncated hemoglobin (trHb) family. Mt-trHbN presents well-defined internal hydrophobic tunnels that allow O 2 and (•)NO to migrate easily from the solvent to the active site, whereas Mt-trHbO possesses tunnels that are partially blocked by a few bulky residues, particularly a tryptophan at position G8. Differential ligand migration rates allow Mt-trHbN to detoxify (•)NO, a crucial step for pathogen survival once under attack by the immune system, much more efficiently than Mt-trHbO. In order to investigate the differences between these proteins, we performed experimental kinetic measurements, (•)NO decomposition, as well as molecular dynamics simulations of the wild type Mt-trHbN and two mutants, VG8F and VG8W. These mutations introduce modifications in both tunnel topologies and affect the incoming ligand capacity to displace retained water molecules at the active site. We found that a single mutation allows Mt-trHbN to acquire ligand migration rates comparable to those observed for Mt-trHbO, confirming that ligand migration is regulated by the internal tunnel architecture as well as by water molecules stabilized in the active site.

  2. What interactions can distort the orientational distribution of interfacial water molecules as probed by second harmonic and sum frequency generation?

    PubMed

    de Beer, Alex G F; Roke, Sylvie

    2016-07-28

    Aqueous interfaces are omnipresent in nature. Nonlinear optical methods such as second harmonic and sum frequency generation (SHG/SFG) are valuable techniques to access molecular level information from these interfaces. In the interpretation of SHG and SFG data for both scattering and reflection mode experiments, the relation between the second-order hyperpolarizability tensor β(2), a molecular property, and the surface second-order susceptibility χ(2), a surface averaged property, plays a central role. To correctly describe the molecular details of the interface, it needs to be determined how molecules are oriented, and what the influence is of interfacial electrostatic fields and H-bonding on the orientational distribution. Here, we revisit the relations between β(2) and χ(2) and show, by means of a Boltzmann average, that significant energy differences are needed to generate measurable changes in the molecular orientational distribution at the interface. In practice, H-bonding and surface pressure such as applied in a Langmuir trough can be strong enough to alter the shape of the orientational distribution function of water. In contrast, electrostatic fields, such as those present in the Stern layer, will not have a significant impact on the shape of the orientational distribution function of water molecules. PMID:27475384

  3. What interactions can distort the orientational distribution of interfacial water molecules as probed by second harmonic and sum frequency generation?

    NASA Astrophysics Data System (ADS)

    de Beer, Alex G. F.; Roke, Sylvie

    2016-07-01

    Aqueous interfaces are omnipresent in nature. Nonlinear optical methods such as second harmonic and sum frequency generation (SHG/SFG) are valuable techniques to access molecular level information from these interfaces. In the interpretation of SHG and SFG data for both scattering and reflection mode experiments, the relation between the second-order hyperpolarizability tensor β(2), a molecular property, and the surface second-order susceptibility (" separators=" χ(2), a surface averaged property, plays a central role. To correctly describe the molecular details of the interface, it needs to be determined how molecules are oriented, and what the influence is of interfacial electrostatic fields and H-bonding on the orientational distribution. Here, we revisit the relations between β(2) and χ(2) and show, by means of a Boltzmann average, that significant energy differences are needed to generate measurable changes in the molecular orientational distribution at the interface. In practice, H-bonding and surface pressure such as applied in a Langmuir trough can be strong enough to alter the shape of the orientational distribution function of water. In contrast, electrostatic fields, such as those present in the Stern layer, will not have a significant impact on the shape of the orientational distribution function of water molecules.

  4. Prototropic tautomerism of 4-Methyl 1,2,4-Triazole-3-Thione molecule in solvent water medium: DFT and Car-Parrinello molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Dutta, Bipan; De, Rina; Chowdhury, Joydeep

    2015-12-01

    The ground state prototropic tautomerism of 4-Methyl 1,2,4-Triazole-3-Thione molecule in solvent water medium has been investigated with the aid of DFT and Car-Parrinello molecular dynamics (CPMD) simulation studies. The CPMD simulations envisage the possibility of proton transfer reactions of the molecule through the solvent water medium. Probable proton transfer pathways have been predicted from the DFT calculations which are substantiated by the natural bond orbital analyses. The evolution and breaking of the concerned bonds of the molecule for different proton transfer reaction pathways are also estimated.

  5. Dynamics of molecules in a supercooled water nanoparticle during the ice accretion on the aircraft surface

    NASA Astrophysics Data System (ADS)

    Amelyushkin, I. A.; Stasenko, A. L.

    2015-06-01

    The principal aim of this work is to elaborate a robust physical model and the corresponding numerical code for prediction of the icing startup due to numerous water nanoparticles in the supercooled humid air. For this purpose, a scientified approach was used which is based not on the quantum-mechanics considerations but on the information about intermolecular potentials (especially, Lennard-Jones (LJ), etc.) tightly connected with the state equations of the corresponding specie (e. g., van der Waals for air and water and Mie-Grünaisen for circumfluent body). u In other words, the principal idea of this work is to adequately ascribe certain macroscopic characteristics of a water nanoparticle which may significantly differ from those indicated in physical reference books for bulk materials.

  6. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations.

    PubMed

    Urbic, T; Holovko, M F

    2011-10-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied.

  7. Mercedes–Benz water molecules near hydrophobic wall: Integral equation theories vs Monte Carlo simulations

    PubMed Central

    Urbic, T.; Holovko, M. F.

    2011-01-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes–Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. PMID:21992334

  8. Mercedes-Benz water molecules near hydrophobic wall: Integral equation theories vs Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Urbic, T.; Holovko, M. F.

    2011-10-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied.

  9. Mercedes-Benz water molecules near hydrophobic wall: integral equation theories vs Monte Carlo simulations.

    PubMed

    Urbic, T; Holovko, M F

    2011-10-01

    Associative version of Henderson-Abraham-Barker theory is applied for the study of Mercedes-Benz model of water near hydrophobic surface. We calculated density profiles and adsorption coefficients using Percus-Yevick and soft mean spherical associative approximations. The results are compared with Monte Carlo simulation data. It is shown that at higher temperatures both approximations satisfactory reproduce the simulation data. For lower temperatures, soft mean spherical approximation gives good agreement at low and at high densities while in at mid range densities, the prediction is only qualitative. The formation of a depletion layer between water and hydrophobic surface was also demonstrated and studied. PMID:21992334

  10. Recombination time of an RF discharge plasma in the presence of water molecules

    SciTech Connect

    Protasevich, E.T.

    1986-05-01

    The authors show that the introduction of water vapor into an electrodeless rf discharge noticeably reduces the excitation temperature and substantially increases the recombination time of the plasma. An attempt is made to explain the physical processes associated with these phenomena.

  11. The AM05 density functional applied to the water molecule, dimer, and bulk liquid

    NASA Astrophysics Data System (ADS)

    Mattsson, Ann E.; Mattsson, Thomas R.

    2009-03-01

    We show that the AM05 exchange-correlation density functional (Armiento and Mattsson, Phys. Rev. B 72, 085108 (2005)) yields a H2O dimer binding energy of 4.9 kcal/mol. The result is thus within 0.15 kcal/mol of CCSD(T) level theory (5.02 ±0.05 kcal/mol). We compare the AM05 results with those of five other functionals: LDA, PBE, PBEsol, RPBE, and BLYP. For liquid water, AM05 yields an O-O pair correlation function that is more structured than the ones of PBE and BLYP, which, in turn, are more structured than the one of RPBE. However, LDA and PBEsol yields more structured water than AM05. We confirm that accuracy in the water dimer binding energy is not a strong indicator for the fidelity of the resulting structure of liquid water. We will also report on the performance of AM05 for other systems and discuss the sub-system functional scheme used in the construction of AM05. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Geology and ground-water features of salt springs, seeps, and plains in the Arkansas and Red River basins of western Oklahoma and adjacent parts of Kansas and Texas

    USGS Publications Warehouse

    Ward, P.E.

    1963-01-01

    The salt springs, seeps, and plains described in this report are in the Arkansas and Red River basins in western Oklahoma and adjacent areas in Kansas and Texas. The springs and seeps contribute significantly to the generally poor water quality of the rivers by bringing salt (HaCI) to the surface at an estimated daily rate of more than 8,000 tons. The region investigated is characterized by low hills and rolling plains. Many of the rivers are eroded 100 feet or more below the .surrounding upland surface and in places the valleys are bordered by steep bluffs. The alluvial plains of the major rivers are wide and the river channels are shallow and unstable. The flow of many surface streams is intermittent, especially in the western part of the area. All the natural salt-contributing areas studied are within the outcrop area of rocks of Permian age. The Permian rocks, commonly termed red beds, are composed principally of red and gray gypsiferous shale, siltstone, sandstone, gypsum, anhydrite, and dolomite. Many of the formations contain halite in the subsurface. The halite occurs mostly as discontinuous lenses in shale, although some of the thicker, more massive beds are extensive. It underlies the entire region studied at depths ranging from about 30 feet to more than 2,000 feet. The salt and associated strata show evidence of extensive removal of salt through solution by ground water. Although the salt generally occurs in relatively impervious shale small joints and fractures ,allow the passage of small quantities of water which dissolves the salt. Salt water occurs in the report area at depths ranging from less than 100 feet to more than 1,000 feet. Salt water occurs both as meteoric and connate, but the water emerging as salt springs is meteoric. Tritium analyses show that the age of the water from several springs is less than 20 years. The salt springs, seeps, and plains are confined to 13 local areas. The flow of the springs and seeps is small, but the chloride

  13. Infrared photodissociation of a water molecule from a flexible molecule-H{sub 2}O complex: Rates and conformational product yields following XH stretch excitation

    SciTech Connect

    Clarkson, Jasper R.; Herbert, John M.; Zwier, Timothy S.

    2007-04-07

    Infrared-ultraviolet hole-burning and hole-filling spectroscopies have been used to study IR-induced dissociation of the tryptamine{center_dot}H{sub 2}O and tryptamine{center_dot}D{sub 2}O complexes. Upon complexation of a single water molecule, the seven conformational isomers of tryptamine collapse to a single structure that retains the same ethylamine side chain conformation present in the most highly populated conformer of tryptamine monomer. Infrared excitation of the tryptamine{center_dot}H{sub 2}O complex was carried out using a series of infrared absorptions spanning the range of 2470-3715 cm{sup -1}. The authors have determined the conformational product yield over this range and the dissociation rate near threshold, where it is slow enough to be measured by our methods. The observed threshold for dissociation occurred at 2872 cm{sup -1} in tryptamine{center_dot}H{sub 2}O and at 2869 cm{sup -1} in tryptamine{center_dot}D{sub 2}O, with no dissociation occurring on the time scale of the experiment ({approx}2 {mu}s) at 2745 cm{sup -1}. The dissociation time constants varied from {approx}200 ns for the 2869 cm{sup -1} band of tryptamine{center_dot}D{sub 2}O to {approx}25 ns for the 2872 cm{sup -1} band of tryptamine{center_dot}H{sub 2}O. This large isotope dependence is associated with a zero-point energy effect that increases the binding energy of the deuterated complex by {approx}190 cm{sup -1}, thereby reducing the excess energy available at the same excitation energy. At all higher energies, the dissociation lifetime was shorter than the pulse duration of our lasers (8 ns). At all wavelengths, the observed products in the presence of collisions are dominated by conformers A and B of tryptamine monomer, with small contributions from the other minor conformers. In addition, right at threshold (2869 cm{sup -1}), tryptamine{center_dot}D{sub 2}O dissociates exclusively to conformer A in the absence of collisions with helium, while both A and B conformational

  14. Spin-probe ESR study on the dynamics of liquid molecules in the MCM-41 nanochannel: temperature dependence on 2-propanol and water.

    PubMed

    Okazaki, Masaharu; Toriyama, Kazumi

    2005-07-14

    A spin-probe ESR study has been made on the dynamics of 2-propanol and water molecules in the nanochannel of MCM-41 at various temperatures. In the former system, 2-propanol is separated into two phases: one with molecules immobilized in the ESR time scale and the other with mobile ones, even at temperatures more than 40 degrees higher than the bulk melting point. In the case of water, on the other hand, only the "immobilized" water was detected at a temperature as high as 313 K. At higher temperature, spin-probe molecule undergoes anisotropic rotational diffusion to reduce resistance from the solvent molecules in the nanochannel. These results are explained in relation to the intermolecular network intensified in the nanochannel. Static as well as dynamic structures of these solutions have been discussed.

  15. Structure and energetics of model amphiphilic molecules at the water liquid-vapor interface - A molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Benjamin, Ilan

    1993-01-01

    A molecular dynamics study of adsorption of p-n-pentylphenol at infinite dilution at the water liquid-vapor interface is reported. The calculated free energy of adsorption is -8.8 +/- 0.7 kcal/mol, in good agreement with the experimental value of -7.3 kcal/mol. The transition between the interfacial region and the bulk solution is sharp and well-defined by energetic, conformational, and orientational criteria. At the water surface, the phenol head group is mostly immersed in aqueous solvent. The most frequent orientation of the hydrocarbon tail is parallel to the interface, due to dispersion interactions with the water surface. This arrangement of the phenol ring and the alkyl chain requires that the chain exhibits a kink. As the polar head group is being moved into the solvent, the chain length increases and the tail becomes increasingly aligned toward the surface normal, such that the nonpolar part of the molecule exposed to water is minimized. The same effect was achieved when phenol was replaced by a more polar head group, phenolate.

  16. Slow dynamics of water molecules in an aqueous solution of lithium chloride probed by neutron spin-echo.

    PubMed

    Mamontov, E; Ohl, M

    2013-07-14

    Aqueous solutions of lithium chloride are uniquely similar to pure water in the parameters such as glass transition temperature, Tg, yet they could be supercooled without freezing down to below 200 K even in the bulk state. This provides advantageous opportunity to study low-temperature dynamics of water molecules in water-like environment in the bulk rather than nano-confined state. Using high-resolution neutron spin-echo data, we argue that the critical temperature, Tc, which is also common between lithium chloride aqueous solutions and pure water, is associated with the split of a secondary relaxation from the main structural relaxation on cooling down. Our results do not allow distinguishing between a well-defined separate secondary relaxation process and the "excess wing" scenario, in which the temperature dependence of the secondary relaxation follows the main relaxation. Importantly, however, in either of these scenarios the secondary relaxation is associated with density-density fluctuations, measurable in a neutron scattering experiment. Neutron scattering could be the only experimental technique with the capability of providing information on the spatial characteristics of the secondary relaxation through the dependence of the signal on the scattering momentum transfer. We propose a simple method for such analysis. PMID:23689686

  17. Near-IR Band Strengths of Molecules Diluted in Nitrogen and Water Ices

    NASA Astrophysics Data System (ADS)

    Richey, Christina; Gerakines, P. A.

    2010-10-01

    In order to determine the column density of a component of an ice from its infrared absorption features, the strengths of these features must be known. The peak positions, widths, profiles, and strengths of a certain ice component's infrared absorption features are affected be the overall composition of the ice (Quirico et al. 1999). Many satellites within the solar system have surfaces that are dominated by either N2 or H2O (Roush 2001). The experiments presented here focus on the near -infrared absorption features of CO, CO2, CH4, and NH3 (λ =10,000-4,000 cm-1, ν =1-2.5 μm) and the effects of diluting these molecules in N2 and H2O ice (dilution of 5:1). This is a continuation of previous results published by the Astro- and Solar-System Program at UAB by Gerakines et al. (2005). These data may be used to determine ice abundances from observed near-IR spectra or to predict the sizes of near-IR features in astrophysical environments.

  18. Assessments of aquifer sensitivity on Navajo Nation and adjacent lands and ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project, Arizona, New Mexico, and Utah

    USGS Publications Warehouse

    Blanchard, Paul J.

    2002-01-01

    The U.S. Environmental Protection Agency requested that the Navajo Nation conduct an assessment of aquifer sensitivity on Navajo Nation lands and an assessment of ground-water vulnerability to pesticide contamination on the Navajo Indian Irrigation Project. Navajo Nation lands include about 17,000 square miles in northeastern Arizona, northwestern New Mexico, and southeastern Utah. The Navajo Indian Irrigation Project in northwestern New Mexico is the largest area of agriculture on the Navajo Nation. The Navajo Indian Irrigation Project began operation in 1976; presently (2001) about 62,000 acres are available for irrigated agriculture. Numerous pesticides have been used on the Navajo Indian Irrigation Project during its operation. Aquifer sensitivity is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest. Aquifer sensitivity is a function of the intrinsic characteristics of the geologic material in question, any underlying saturated materials, and the overlying unsaturated zone. Sensitivity is not dependent on agronomic practices or pesticide characteristics.' Ground-water vulnerability is defined by the U.S. Environmental Protection Agency as 'The relative ease with which a contaminant [pesticide] applied on or near a land surface can migrate to the aquifer of interest under a given set of agronomic management practices, pesticide characteristics, and aquifer sensitivity conditions.' The results of the aquifer sensitivity assessment on Navajo Nation and adjacent lands indicated relative sensitivity within the boundaries of the study area. About 22 percent of the study area was not an area of recharge to bedrock aquifers or an area of unconsolidated deposits and was thus assessed to have an insignificant potential for contamination. About 72 percent of the Navajo Nation study area was assessed to be in the categories of most potential

  19. Glyconanosomes: disk-shaped nanomaterials for the water solubilization and delivery of hydrophobic molecules.

    PubMed

    Assali, Mohyeddin; Cid, Juan-José; Pernía-Leal, Manuel; Muñoz-Bravo, Miguel; Fernández, Inmaculada; Wellinger, Ralf E; Khiar, Noureddine

    2013-03-26

    Herein, we describe the first report on a new class of disk-shaped and quite monodisperse water-soluble nanomaterials that we named glyconanosomes (GNS). GNSs were obtained by sliding out the cylindrical structures formed upon self-organization and photopolymerization of glycolipid 1 on single-walled carbon nanotube (SWCNT) sidewalls. GNSs present a sheltered hydrophobic inner cavity formed by the carbonated tails, surrounded by PEG and lactose moieties. The amphiphilic character of GNSs allows the water solubility of insoluble hydrophobic cargos such as a perylene-bisimide derivative, [60]fullerene, or the anti-carcinogenic drug camptothecin (CPT). GNS/C60 inclusion complexes are able to establish specific interactions between peanut agglutinin (PNA) lectin and the lactose moiety surrounding the complexes, while CPT solubilized by GNS shows higher cytotoxicity toward MCF7-type breast cancer cells than CPT alone. Thus, GNS represents an attractive extension of nanoparticle-based drug delivery systems.

  20. Ordering of protein and water molecules at their interfaces with chitin nano-crystals.

    PubMed

    Valverde Serrano, Clara; Leemreize, Hanna; Bar-On, Benny; Barth, Friedrich G; Fratzl, Peter; Zolotoyabko, Emil; Politi, Yael

    2016-02-01

    Synchrotron X-ray diffraction was applied to study the structure of biogenic α-chitin crystals composing the tendon of the spider Cupiennius salei. Measurements were carried out on pristine chitin crystals stabilized by proteins and water, as well as after their deproteinization and dehydration. We found substantial shifts (up to Δq/q=9% in the wave vector in q-space) in the (020) diffraction peak position between intact and purified chitin samples. However, chitin lattice parameters extracted from the set of reflections (hkl), which did not contain the (020)-reflection, showed no systematic variation between the pristine and the processed samples. The observed shifts in the (020) peak position are discussed in terms of the ordering-induced modulation of the protein and water electron density near the surface of the ultra-thin chitin fibrils due to strong protein/chitin and water/chitin interactions. The extracted modulation periods can be used as a quantitative parameter characterizing the interaction length.