Science.gov

Sample records for adjacent-level spinal kinematics

  1. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics.

    PubMed

    Cunningham, Bryan W; Hu, Nianbin; Zorn, Candace M; McAfee, Paul C

    2010-04-01

    The use of motion-preserving spinal implants versus conventional arthrodesis instrumentation systems, which stabilize operative segments, necessitates improved understanding of their effect on spinal kinematics and the biomechanically optimal method for surgical reconstruction. The primary objective of this study was to measure operative- and adjacent-level kinematics after single- and two-level cervical arthroplasty and compare them with those after anterior cervical arthrodesis. A secondary objective was to locate the centers of intervertebral rotation at the operative and adjacent levels after arthroplasty and compare them to those after arthrodesis. This biomechanical study used an in vitro human cadaveric model to compare the multidirectional flexibility kinematics of single- versus two-level cervical disc arthroplasty reconstructions. Eight cadaveric cervical spines (C2-T2) were biomechanically evaluated between Levels C4 and T1 in the intact condition and under the following reconstructions: single-level arthroplasty (C6-C7) using porous coated motion (PCM) device; single-level arthrodesis (C6-C7) using interbody cage with anterior plate; two-level arthroplasty (C5-C7) using PCM devices; two-level hybrid treatment of arthroplasty (C5-C6) using PCM device and arthrodesis (C6-C7) using cage/plate; and two-level arthrodesis (C5-C7) using cage/plate. Multidirectional flexibility testing used the Panjabi hybrid testing protocol, including pure moments for the intact condition with overall spinal motion replicated under displacement control for subsequent reconstructions. Unconstrained intact moments of +/-3.0 Nm were used for axial rotation, flexion-extension, and lateral bending testing with quantification of the operative- and adjacent-level range of motion (ROM) and neutral zone. The calculated centers of intervertebral rotation were compared for all intervertebral levels under flexion-extension conditions. Axial rotation loading demonstrated a significant

  2. Segmental kinematics and adjacent level degeneration following disc replacement versus fusion: RCT with three years of follow-up.

    PubMed

    Nabhan, A; Steudel, W I; Nabhan, Ah; Pape, D; Ishak, B

    2007-01-01

    Prospective, randomized and controlled clinical and radiological study. The aim of this study was to assess the segmental kinematics and clinical outcome of disc replacement with ProDisc C versus anterior cervical discectomy and fusion (ACDF) for monosegmental disease 3 years after surgery. Anterior cervical discectomy and fusion (ACDF), including plate fixation, is an accepted technique for treatment of symptomatic degenerative disc disease (DDD). However, various studies could show that fusion of a relative mobile spinal segment leads to heightens of stresses on the discs below and above fusion, which is manifested as adjacent level degeneration. Intervertebral disc replacement has been attempted to restore intervertebral disc height and to maintain segmental motion, which may be thought to avoid the accelerated degeneration to the adjacent level. In earlier studies, we could show that ProDisc C could maintain segmental motion for 1 year after surgery. 49 patients with cervical disc herniation underwent arthroplasty of a single level using ProDisc C disc prosthesis or received fusion using a cage and anterior titanium plate fixation. Clinical outcome was assessed using the visual analogue scale (VAS) and the neck disability index (NDI). Radiostereometry was performed immediately postoperative and then after 1, 2, and 3 years after surgery to quantify the segmental kinematics. The range of motion of the treated segment with prosthesis remained unchanged 3 years after surgery in comparison to the 1-year result. The prosthesis shows a significant segmental motion in contrast to the fusion group at each RSA examination time (p < 0.05). After both procedures, a significant pain reduction in neck and arm was observed, without significant differences between both groups. During the course of the 3 years follow-up, no patients of the prosthesis group required further surgical intervention.

  3. 3-Tesla Kinematic MRI of the Cervical Spine for Evaluation of Adjacent Level Disease After Monosegmental Anterior Cervical Discectomy and Arthroplasty: Results of 2-Year Follow-Up.

    PubMed

    Fleck, Steffen K; Langner, Soenke; Rosenstengel, Christian; Kessler, Rebecca; Matthes, Marc; Müller, Jan-Uwe; Langner, Inga; Marx, Sascha; Schroeder, Henry W S

    2017-02-15

    We prospectively evaluated adjacent disc levels after anterior cervical discectomy and arthroplasty (ACDA) using kinematic magnetic resonance imaging (MRI) and plain functional radiographs. ACDA is an established treatment for degenerative cervical disc disease. The objective of this study was to evaluate the use of kinematic MRI for assessing the range of motion (ROM) before and after ACDA compared with plain functional radiographs and to evaluate adjacent degenerative disc disease (aDDD) at mid-term follow-up. Twenty patients (12 females, 8 males; median age 45.6 ± 6.9 yrs) treated by ACDA (BryanDisc; Medtronic, MN) underwent plain functional radiography and kinematic MRI of the cervical spine at 3 T before and 6 and 24 months after surgery. A sagittal T2-weighted (T2w) 2D turbo spin echo (TSE) sequence and a 3D T2w dataset with secondary axial reconstruction were acquired. Signal intensity of all nonoperated discs was measured in regions of interest (ROI). Disc heights adjacent to the operated segment were measured. ROM was evaluated and compared with plain functional radiographs. Clinical outcome was evaluated using the visual analog scale (VAS) for head, neck and radicular pain, and the neck disability index (NDI). Mean ROM of the cervical spine on functional plain radiographs was 21.25 ± 8.19°, 22.29 ± 4.82°, and 26.0 ± 6.9° preoperatively and at 6-month and 24-month follow-up, respectively. Mean ROM at MRI was 27.1 ± 6.78°, 29.45 ± 9.51°, and 31.95 ± 9.58°, respectively. There was a good correlation between both techniques. Follow-up examinations demonstrated no signs of progressive degenerative disc disease of adjacent levels. All patients had clinical improvement up to 24 months after surgery. After ACDA, kinematic MRI allows evaluation of the ROM with excellent correlation to plain functional radiographs. Mid-term follow-up after ACDA is without evidence of progressive DDD of adjacent segments. 3.

  4. 3 Tesla Kinematic MRI of the Cervical Spine for Evaluation of Adjacent Level Disease after Monosegmental Anterior Cervical Discectomy and Arthroplasty: Results of 2-Year Follow-up".

    PubMed

    Fleck, Steffen; Langner, Soenke; Rosenstengel, Christian; Kessler, Rebecca; Matthes, Marc; Müller, Jan-Uwe; Langner, Inga; Marx, Sascha; Schroeder, Henry W S

    2016-05-23

    We prospectively evaluated adjacent disc levels after cervical discectomy and arthroplasty (ACDA) using kinematic magnetic resonance imaging (MRI) and plain functional radiographs. Anterior cervical discectomy and arthroplasty (ACDA) is an established treatment for degenerative cervical disc disease. The objective of this study was to evaluate the use of kinematic magnetic resonance imaging (MRI) for assessing the range of motion (ROM) before and after ACDA compared to plain functional radiographs and to evaluate adjacent degenerative disc disease (aDDD) at mid-term follow-up. Twenty patients (12 females, 8 males; median age 45.6 ± 6.9 years) treated by ACDA (BryanDisc®, Medtronic, Minneapolis, USA) underwent plain functional radiography and kinematic MRI of the cervical spine at 3T before and 6 and 24 months after surgery. A sagittal T2-weighted (T2w) 2D turbo spin echo (TSE) sequence and a 3D T2w dataset with secondary axial reconstruction were acquired. Signal intensity of all nonoperated discs was measured in regions of interest (ROI). Disc heights adjacent to the operated segment were measured. Range of motion (ROM) was evaluated and compared to plain functional radiographs. Clinical outcome was evaluated using the visual analog scale (VAS) for head, neck and radicular pain, and the neck disability index (NDI). Mean ROM of the cervical spine on functional plain radiographs was 21.25 ± 8.19, 22.29 ± 4.82 and 26.0 ± 6.9 degrees preoperatively and at 6-month and 24-month follow-up, respectively. Mean ROM at MRI was 27.1 ± 6.78, 29.45 ± 9.51 and 31.95 ± 9.58 degrees, respectively. There was good correlation between both techniques. Follow-up examinations demonstrated no signs of progressive degenerative disc disease of adjacent levels. All patients had clinical improvement up to 24 months after surgery. After ACDA, kinematic MRI allows evaluation of the ROM with excellent correlation to plain functional radiographs. Mid

  5. Adjacent-level arthroplasty following cervical fusion.

    PubMed

    Rajakumar, Deshpande V; Hari, Akshay; Krishna, Murali; Konar, Subhas; Sharma, Ankit

    2017-02-01

    OBJECTIVE Adjacent-level disc degeneration following cervical fusion has been well reported. This condition poses a major treatment dilemma when it becomes symptomatic. The potential application of cervical arthroplasty to preserve motion in the affected segment is not well documented, with few studies in the literature. The authors present their initial experience of analyzing clinical and radiological results in such patients who were treated with arthroplasty for new or persistent arm and/or neck symptoms related to neural compression due to adjacent-segment disease after anterior cervical discectomy and fusion (ACDF). METHODS During a 5-year period, 11 patients who had undergone ACDF anterior cervical discectomy and fusion (ACDF) and subsequently developed recurrent neck or arm pain related to adjacent-level cervical disc disease were treated with cervical arthroplasty at the authors' institution. A total of 15 devices were implanted (range of treated levels per patient: 1-3). Clinical evaluation was performed both before and after surgery, using a visual analog scale (VAS) for pain and the Neck Disability Index (NDI). Radiological outcomes were analyzed using pre- and postoperative flexion/extension lateral radiographs measuring Cobb angle (overall C2-7 sagittal alignment), functional spinal unit (FSU) angle, and range of motion (ROM). RESULTS There were no major perioperative complications or device-related failures. Statistically significant results, obtained in all cases, were reflected by an improvement in VAS scores for neck/arm pain and NDI scores for neck pain. Radiologically, statistically significant increases in the overall lordosis (as measured by Cobb angle) and ROM at the treated disc level were observed. Three patients were lost to follow-up within the first year after arthroplasty. In the remaining 8 cases, the duration of follow-up ranged from 1 to 3 years. None of these 8 patients required surgery for the same vertebral level during the follow

  6. Adjacent-Level Hypermobility and Instrumented-Level Fatigue Loosening With Titanium and PEEK Rods for a Pedicle Screw System: An In Vitro Study.

    PubMed

    Agarwal, Aakas; Ingels, Marcel; Kodigudla, Manoj; Momeni, Narjes; Goel, Vijay; Agarwal, Anand K

    2016-05-01

    Adjacent-level disease is a common iatrogenic complication seen among patients undergoing spinal fusion for low back pain. This is attributed to the postsurgical differences in stiffness between the spinal levels, which result in abnormal forces, stress shielding, and hypermobility at the adjacent levels. In addition, as most patients undergoing these surgeries are osteoporotic, screw loosening at the index level is a complication that commonly accompanies adjacent-level disease. Recent studies indicate that a rod with lower rigidity than that of titanium may help to overcome these detrimental effects at the adjacent level. The present study was conducted in vitro using 12 L1-S1 specimens divided into groups of six, with each group instrumented with either titanium rods or PEEK (polyetheretherketone) rods. The test protocol included subjecting intact specimens to pure moments of 10 Nm in extension and flexion using an FS20 Biomechanical Spine Test System (Applied Test Systems) followed by hybrid moments on the instrumented specimens to achieve the same L1-S1 motion as that of the intact specimens. During the protocol's later phase, the L4-L5 units from each specimen were segmented for cyclic loading followed by postfatigue kinematic analysis to highlight the differences in motion pre- and postfatigue. The objectives included the in vitro comparison of (1) the adjacent-level motion before and after instrumentation with PEEK and titanium rods and (2) the pre- and postfatigue motion at the instrumented level with PEEK and titanium rods. The results showed that the adjacent levels above the instrumentation caused increased flexion and extension with both PEEK and titanium rods. The postfatigue kinematic data showed that the motion at the instrumented level (L4-L5) increased significantly in both flexion and extension compared to prefatigue motion in titanium groups. However, there was no significant difference in motion between the pre- and postfatigue data in the PEEK

  7. Upper limb kinematics after cervical spinal cord injury: a review.

    PubMed

    Mateo, Sébastien; Roby-Brami, Agnès; Reilly, Karen T; Rossetti, Yves; Collet, Christian; Rode, Gilles

    2015-01-30

    Although a number of upper limb kinematic studies have been conducted, no review actually addresses the key-features of open-chain upper limb movements after cervical spinal cord injury (SCI). The aim of this literature review is to provide a clear understanding of motor control and kinematic changes during open-chain upper limb reaching, reach-to-grasp, overhead movements, and fast elbow flexion movements after tetraplegia. Using data from MEDLINE between 1966 and December 2014, we examined temporal and spatial kinematic measures and when available electromyographic recordings. We included fifteen control case and three series case studies with a total of 164 SCI participants and 131 healthy control participants. SCI participants efficiently performed a broad range of tasks with their upper limb and movements were planned and executed with strong kinematic invariants like movement endpoint accuracy and minimal cost. Our review revealed that elbow extension without triceps brachii relies on increased scapulothoracic and glenohumeral movements providing a dynamic coupling between shoulder and elbow. Furthermore, contrary to normal grasping patterns where grasping is prepared during the transport phase, reaching and grasping are performed successively after SCI. The prolonged transport phase ensures correct hand placement while the grasping relies on wrist extension eliciting either whole hand or lateral grip. One of the main kinematic characteristics observed after tetraplegia is motor slowing attested by increased movement time. This could be caused by (i) decreased strength, (ii) triceps brachii paralysis which disrupts normal agonist-antagonist co-contractions, (iii) accuracy preservation at movement endpoint, and/or (iv) grasping relying on tenodesis. Another feature is a reduction of maximal superior reaching during overhead movements which could be caused by i) strength deficit in agonist muscles like pectoralis major, ii) strength deficit in proximal synergic

  8. Multisegment Kinematics of the Spinal Column: Soft Tissue Artifacts Assessment.

    PubMed

    Mahallati, Sara; Rouhani, Hossein; Preuss, Richard; Masani, Kei; Popovic, Milos R

    2016-07-01

    A major challenge in the assessment of intersegmental spinal column angles during trunk motion is the inherent error in recording the movement of bony anatomical landmarks caused by soft tissue artifacts (STAs). This study aims to perform an uncertainty analysis and estimate the typical errors induced by STA into the intersegmental angles of a multisegment spinal column model during trunk bending in different directions by modeling the relative displacement between skin-mounted markers and actual bony landmarks during trunk bending. First, we modeled the maximum displacement of markers relative to the bony landmarks with a multivariate Gaussian distribution. In order to estimate the distribution parameters, we measured these relative displacements on five subjects at maximum trunk bending posture. Then, in order to model the error depending on trunk bending angle, we assumed that the error grows linearly as a function of the bending angle. Second, we applied our error model to the trunk motion measurement of 11 subjects to estimate the corrected trajectories of the bony landmarks and investigate the errors induced into the intersegmental angles of a multisegment spinal column model. For this purpose, the trunk was modeled as a seven-segment rigid-body system described using 23 reflective markers placed on various bony landmarks of the spinal column. Eleven seated subjects performed trunk bending in five directions and the three-dimensional (3D) intersegmental angles during trunk bending were calculated before and after error correction. While STA minimally affected the intersegmental angles in the sagittal plane (<16%), it considerably corrupted the intersegmental angles in the coronal (error ranged from 59% to 551%) and transverse (up to 161%) planes. Therefore, we recommend using the proposed error suppression technique for STA-induced error compensation as a tool to achieve more accurate spinal column kinematics measurements. Particularly, for intersegmental

  9. Does the new rugby union scrum sequence positively influence the hooker's in situ spinal kinematics?

    PubMed

    Swaminathan, Ramesh; Williams, Jonathan M; Jones, Michael D; Theobald, Peter S

    2016-01-01

    Scrummaging is unique to rugby union and involves 2 'packs' of 8 players competing to regain ball possession. Intending to serve as a quick and safe method to restart the game, injury prevalence during scrummaging necessitates further evaluation of this environment. The aim of this study was to determine the effect of scrummage engagement sequences on spinal kinematics of the hooker. The conditions investigated were: (1) live competitive scrummaging using the new 'crouch, bind, set' sequence; (2) live competitive scrummaging using the old 'crouch touch pause engage' sequence and (3) training scrummaging using a scrum machine. Inertial sensors provided three-dimensional kinematic data across 5 spinal regions. Participants (n=29) were adult, male community club and university-level hookers. Engagement sequence had no effect on resultant kinematics of any spinal region. Machine scrummaging resulted in lesser magnitudes of motion in the upper spinal regions. Around two-thirds of the total available cervical motion was utilised during live scrummaging. This study indicates that the most recent laws do not influence the spinal kinematics of the hooker during live scrummaging; however, there may be other benefits from these law changes that fall outside the scope of this investigation.

  10. Does the new rugby union scrum sequence positively influence the hooker's in situ spinal kinematics?

    PubMed Central

    Williams, Jonathan M; Jones, Michael D; Theobald, Peter S

    2016-01-01

    Background Scrummaging is unique to rugby union and involves 2 ‘packs’ of 8 players competing to regain ball possession. Intending to serve as a quick and safe method to restart the game, injury prevalence during scrummaging necessitates further evaluation of this environment. Aims The aim of this study was to determine the effect of scrummage engagement sequences on spinal kinematics of the hooker. The conditions investigated were: (1) live competitive scrummaging using the new ‘crouch, bind, set’ sequence; (2) live competitive scrummaging using the old ‘crouch touch pause engage’ sequence and (3) training scrummaging using a scrum machine. Methods Inertial sensors provided three-dimensional kinematic data across 5 spinal regions. Participants (n=29) were adult, male community club and university-level hookers. Results Engagement sequence had no effect on resultant kinematics of any spinal region. Machine scrummaging resulted in lesser magnitudes of motion in the upper spinal regions. Around two-thirds of the total available cervical motion was utilised during live scrummaging. Conclusions This study indicates that the most recent laws do not influence the spinal kinematics of the hooker during live scrummaging; however, there may be other benefits from these law changes that fall outside the scope of this investigation. PMID:27900153

  11. Quantifying spinal gait kinematics using an enhanced optical motion capture approach in adolescent idiopathic scoliosis.

    PubMed

    Schmid, Stefan; Studer, Daniel; Hasler, Carol-Claudius; Romkes, Jacqueline; Taylor, William R; Lorenzetti, Silvio; Brunner, Reinald

    2016-02-01

    The pathogenesis of adolescent idiopathic scoliosis (AIS) remains poorly understood. Previous research has indicated possible relationships between kinematics of the spine, pelvis and lower extremities during gait and the progression of AIS, but adequate evidence on spinal kinematics is lacking. The aim of this study was to provide a detailed assessment of spinal gait kinematics in AIS patients compared to asymptomatic controls. Fourteen AIS patients and 15 asymptomatic controls were included. Through introducing a previously validated enhanced trunk marker set, sagittal and frontal spinal curvature angles as well as general trunk kinematics were measured during gait using a 12-camera Vicon motion capture system. Group comparisons were conducted using T-tests and relationships between kinematic parameters and severity of scoliosis (Cobb angle) were investigated using regression analyses. The sagittal thoracic curvature angle in AIS patients showed on average 10.7° (4.2°, 17.3°) less kyphosis but 4.9° (2.3°, 7.6°) more range of motion (Cobb angle-dependent (R(2)=0.503)). In the frontal plane, thoracic and thoracolumbar/lumbar curvature angles indicated average lateral deviations in AIS patients. General trunk kinematics and spatio-temporal gait parameters, however, did not show any clinically relevant differences between the groups. This demonstrates that the dynamic functionality of the scoliotic spine can be assessed using advanced non-invasive optical approaches and that these should become standard in clinical gait analysis. Furthermore, curvature angle data might be used to drive sophisticated computer simulation models in order to gain an insight into the dynamic loading behavior of the scoliotic spine during gait. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Three-dimensional shoulder kinematics in individuals with C5-C6 spinal cord injury.

    PubMed

    Acosta, A M; Kirsch, R F; van der Helm, F C

    2001-01-01

    The shoulder kinematics of five able-bodied subjects and those of five arms in three subjects with spinal cord injuries at C5 or C6 levels were measured as the subjects elevated their arms in three different planes: coronal, scapular and sagittal. The range of humeral elevation was significantly reduced in all spinal cord injury (SCI) subjects relative to able-bodied subjects. Over this restricted range of humeral motion, the scapula of SCI subjects tended to be medially rotated, relative to able-bodied subjects, and the protraction and spinal tilt angles of the scapula of the SCI subjects indicated scapular winging. These results are consistent with paralysis or at least with significant weakness of the serratus anterior muscle. If further study confirms this hypothesis, functional neuromuscular stimulation of the serratus anterior muscle via a nerve cuff electrode may be an effective intervention for improving shoulder function in C5-C6 SCI.

  13. Kinematic evaluation of one- and two-level Maverick lumbar total disc replacement caudal to a long thoracolumbar spinal fusion.

    PubMed

    Zhu, Qingan; Itshayek, Eyal; Jones, Claire F; Schwab, Timothy; Larson, Chadwick R; Lenke, Lawrence G; Cripton, Peter A

    2012-06-01

    Adjacent level degeneration that occurs above and/or below long fusion constructs is a documented clinical problem that is widely believed to be associated with the considerable change in stiffness caused by the fusion. Some researchers have suggested that early degeneration at spinal joints adjacent to a fusion could be treated by implanting total disc replacements at these levels. It is thought that further degeneration could be prevented through the disc replacement's design aims to reproduce normal disc heights, kinematics and tissue loading. For this reason, there is a clinical need to evaluate if a total disc replacement can maintain both the quantity of motion (i.e. range) and the quality of motion (i.e. center of rotation and coupling) at segments adjacent to a long spinal fusion. The purpose of this study was to experimentally evaluate range of motion (ROM-the intervertebral motion measured) and helical axis of motion (HAM) changes due to one- and two-level Maverick total disc replacement (TDR) adjacent to a long spinal fusion. Seven spine specimens (T8-S1) were used in this study (66 ± 19 years old, 3F/4 M). A continuous pure moment of ±5.0 Nm was applied to the specimen in flexion-extension (FE), lateral bending (LB) and axial rotation (AR), with a compressive follower preload of 400 N. The 5.0 Nm data were analyzed to evaluate the operated segment biomechanics at the level of the disc replacements. The data were also analyzed at lower moments using a modified version of Panjabi's proposed "hybrid" method to evaluate adjacent segment kinematics (intervertebral motion at the segments adjacent to the fusion) under identical overall (T8-S1) specimen rotations. The motion of each vertebra was monitored with an optoelectronic camera system. The biomechanical test was completed for (1) the intact condition and repeated after each surgical technique was applied to the specimen, (2) capsulotomy at L4-L5 and L5-S1, (3) T8-L4 fusion and capsulotomy at L4

  14. A kinematic analysis of the lower limb with regard to restricted spinal motion during gait

    PubMed Central

    Song, Hyeon-Nam; Kim, Young Mi; Kim, Kyoung

    2017-01-01

    [Purpose] The purpose of this study was to investigate the effect of restricted spinal motion on kinematic changes in the lower extremities using a rigid thoracolumbosacral orthosis. [Subjects and Methods] Forty healthy males in their 20s were selected as the sample, which was randomly and evenly divided into two groups: (1) the WT group (with a thoracolumbosacral orthosis) and (2) the WOT group (without a thoracolumbosacral orthosis). The spinal orthosis used in this study was a thoracolumbosacral orthosis called a plastic body jacket. [Results] The sagittal plane; in the level ground walking measurements, significance differences were found at the H2 (Hip maximum flexion/extension in midstance phase) and K2 (Knee maximum flexion/extension in midstance phase) between the WT group and the WOT group. [Conclusion] It can be concluded that a spinal orthosis is useful in stabilizing the lower extremities during stair gaiting, and that appropriate application of the orthosis plays a supporting role in the activities of daily life and therapeutic intervention. PMID:28210045

  15. A kinematic analysis of the lower limb with regard to restricted spinal motion during gait.

    PubMed

    Song, Hyeon-Nam; Kim, Young Mi; Kim, Kyoung

    2017-01-01

    [Purpose] The purpose of this study was to investigate the effect of restricted spinal motion on kinematic changes in the lower extremities using a rigid thoracolumbosacral orthosis. [Subjects and Methods] Forty healthy males in their 20s were selected as the sample, which was randomly and evenly divided into two groups: (1) the WT group (with a thoracolumbosacral orthosis) and (2) the WOT group (without a thoracolumbosacral orthosis). The spinal orthosis used in this study was a thoracolumbosacral orthosis called a plastic body jacket. [Results] The sagittal plane; in the level ground walking measurements, significance differences were found at the H2 (Hip maximum flexion/extension in midstance phase) and K2 (Knee maximum flexion/extension in midstance phase) between the WT group and the WOT group. [Conclusion] It can be concluded that a spinal orthosis is useful in stabilizing the lower extremities during stair gaiting, and that appropriate application of the orthosis plays a supporting role in the activities of daily life and therapeutic intervention.

  16. [Kinematic analysis of the spine during placement on 2 transfer devices: a spinal backboard and a scoop stretcher].

    PubMed

    Gordillo Martín, Raquel; Alcaraz Ramón, Pedro E; Manzano Capel, Fulgencio; Freitas, Tomás T; Marín-Cascales, Elena; Juguera Rodríguez, Laura; Pardo Ríos, Manuel

    2017-02-01

    To analyze and compare measurements of spine kinematics during prehospital emergency responders' placement of a patient on a spinal backboard or a scoop stretcher. Cross sectional, quasi-experimental clinical simulation to compare misalignment (main endpoint) by means of data from a 3-dimensional motion capture system. Mean (SD) misalignment during placement on the 2 devices was 37.53° (14.15°). By device, mean misalignment was 31.08° (6.38°) for the scoop stretcher and 43.97° (7.97°) for the backboard (P=.048). Less misalignment occurs during placement on the scoop stretcher than on the spinal backboard.

  17. Kinematics of wheelchair propulsion in adults and children with spinal cord injury.

    PubMed

    Bednarczyk, J H; Sanderson, D J

    1994-12-01

    This study examined the kinematic features of wheelchair propulsion in two neurologically matched groups of adults and children with uncomplicated spinal cord injury. The average mass and age of the pediatric group was much smaller than the adult group (37.4kg and 11.3 years vs 68.5kg and 33.5 years). Each subject propelled his/her own chairs and new, low-mass wheelchairs at a steady, nominal speed of 2 m/sec across a level surface. Three dimensional video analysis determined the movement of upper body angles (elbow, shoulder, trunk, and shoulder abduction) based on reflective markers placed on the subjects' shoulder, elbow, wrist, and hip joints. Analysis of the temporal factors showed that although the average group overground velocities of the adult group (2.4m/sec) were significantly greater than the pediatric group (2.3 m/sec), the two groups spent comparable proportions of the wheeling cycle in propulsion (24%). Analysis of the angular kinematics (elbow, shoulder, and shoulder abduction angular changes over a time normalized wheeling cycle) showed that whereas the pediatric group did show significant absolute angular differences from the adult group, the angular changes over time were the same in both groups. The implications of this work are that, for the first time, it can be said that children propel their wheelchairs in the same manner as adults. In addition, these data were similar to those previously reported in athletic adult populations. We conclude that published data from adult wheelchair users may be applied to pediatric wheelchair users, thus providing a basis for pediatric wheelchair prescription.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. A novel spinal kinematic analysis using X-ray imaging and vicon motion analysis: a case study.

    PubMed

    Noh, Dong K; Lee, Nam G; You, Joshua H

    2014-01-01

    This study highlights a novel spinal kinematic analysis method and the feasibility of X-ray imaging measurements to accurately assess thoracic spine motion. The advanced X-ray Nash-Moe method and analysis were used to compute the segmental range of motion in thoracic vertebra pedicles in vivo. This Nash-Moe X-ray imaging method was compared with a standardized method using the Vicon 3-dimensional motion capture system. Linear regression analysis showed an excellent and significant correlation between the two methods (R2 = 0.99, p < 0.05), suggesting that the analysis of spinal segmental range of motion using X-ray imaging measurements was accurate and comparable to the conventional 3-dimensional motion analysis system. Clinically, this novel finding is compelling evidence demonstrating that measurements with X-ray imaging are useful to accurately decipher pathological spinal alignment and movement impairments in idiopathic scoliosis (IS).

  19. Kinematic, Muscular, and Metabolic Responses During Exoskeletal-, Elliptical-, or Therapist-Assisted Stepping in People With Incomplete Spinal Cord Injury

    PubMed Central

    Kinnaird, Catherine R.; Holleran, Carey L.; Rafferty, Miriam R.; Rodriguez, Kelly S.; Cain, Julie B.

    2012-01-01

    Background Robotic-assisted locomotor training has demonstrated some efficacy in individuals with neurological injury and is slowly gaining clinical acceptance. Both exoskeletal devices, which control individual joint movements, and elliptical devices, which control endpoint trajectories, have been utilized with specific patient populations and are available commercially. No studies have directly compared training efficacy or patient performance during stepping between devices. Objective The purpose of this study was to evaluate kinematic, electromyographic (EMG), and metabolic responses during elliptical- and exoskeletal-assisted stepping in individuals with incomplete spinal cord injury (SCI) compared with therapist-assisted stepping. Design A prospective, cross-sectional, repeated-measures design was used. Methods Participants with incomplete SCI (n=11) performed 3 separate bouts of exoskeletal-, elliptical-, or therapist-assisted stepping. Unilateral hip and knee sagittal-plane kinematics, lower-limb EMG recordings, and oxygen consumption were compared across stepping conditions and with control participants (n=10) during treadmill stepping. Results Exoskeletal stepping kinematics closely approximated normal gait patterns, whereas significantly greater hip and knee flexion postures were observed during elliptical-assisted stepping. Measures of kinematic variability indicated consistent patterns in control participants and during exoskeletal-assisted stepping, whereas therapist- and elliptical-assisted stepping kinematics were more variable. Despite specific differences, EMG patterns generally were similar across stepping conditions in the participants with SCI. In contrast, oxygen consumption was consistently greater during therapist-assisted stepping. Limitations Limitations included a small sample size, lack of ability to evaluate kinetics during stepping, unilateral EMG recordings, and sagittal-plane kinematics. Conclusions Despite specific differences in

  20. Limitations of kinematics in the assessment of wheelchair propulsion in adults and children with spinal cord injury.

    PubMed

    Bednarczyk, J H; Sanderson, D J

    1995-04-01

    Recently, there has been a trend for designers to reduce the weight of wheelchairs. Wheelchair performance is frequently evaluated in clinical as well as laboratory settings by kinematic motion analysis. The purpose of this study was to examine the effect of weight on the kinematics of wheelchair propulsion in nonathletic adults and children with spinal cord injury. The weight of identical new low-weight test chairs (9.3 kg) was manipulated by adding weight (5 and 10 kg) in two matched groups (n = 10) of adults and children with spinal cord injury. The three-dimensional coordinates of reflective markers were obtained as the subjects performed level wheeling at a speed of 2 m/s. The pediatric group was found to have significantly lower wheeling speeds than the adult group. The addition of weight, however, did not alter the wheeling speeds in either group. Neither the proportions of the wheeling cycle spent in propulsion (24%) nor the angular (shoulder flexion-extension, elbow flexion-extension, shoulder abduction, and trunk flexion-extension) kinematics of wheeling changed with additions of weight in either group. The angular kinematics of the pediatric group, however, were different than those of the adult group. These results indicate that adding weight in the range of 5 to 10 kg did not affect wheeling style under the level-wheeling, low-speed conditions of the study. It is possible that performance in wheelchair propulsion may be more appropriately determined by kinetic and energetic outcome measures than by kinematic measures.

  1. StabilimaxNZ® versus simulated fusion: evaluation of adjacent-level effects

    PubMed Central

    Henderson, Gweneth; James, Yue; Timm, Jens Peter

    2007-01-01

    Rationale behind motion preservation devices is to eliminate the accelerated adjacent-level effects (ALE) associated with spinal fusion. We evaluated multidirectional flexibilities and ALEs of StabilimaxNZ® and simulated fusion applied to a decompressed spine. StabilimaxNZ® was applied at L4–L5 after creating a decompression (laminectomy of L4 plus bilateral medial facetectomy at L4–L5). Multidirectional Flexibility and Hybrid tests were performed on six fresh cadaveric human specimens (T12–S1). Decompression increased average flexion–extension rotation to 124.0% of the intact. StabilimaxNZ® and simulated fusion decreased the motion to 62.4 and 23.8% of intact, respectively. In lateral bending, corresponding increase was 121.6% and decreases were 57.5 and 11.9%. In torsion, corresponding increase was 132.7%, and decreases were 36.3% for fusion, and none for StabilimaxNZ® ALE was defined as percentage increase over the intact. The ALE at L3–4 was 15.3% for StabilimaxNZ® versus 33.4% for fusion, while at L5–S1 the ALE were 5.0% vs. 11.3%, respectively. In lateral bending, the corresponding ALE values were 3.0% vs. 19.1%, and 11.3% vs. 35.8%, respectively. In torsion, the corresponding values were 3.7% vs. 20.6%, and 4.0% vs. 33.5%, respectively. In conclusion, this in vitro study using Flexibility and Hybrid test methods showed that StabilimaxNZ® stabilized the decompressed spinal level effectively in sagittal and frontal planes, while allowing a good portion of the normal rotation, and concurrently it did not produce significant ALEs as compared to the fusion. However, it did not stabilize the decompressed specimen in torsion. PMID:17924151

  2. Lumbar Facet Joint Motion in Patients with Degenerative Disc Disease at Affected and Adjacent Levels

    PubMed Central

    Li, Weishi; Wang, Shaobai; Xia, Qun; Passias, Peter; Kozanek, Michal; Wood, Kirkham; Li, Guoan

    2013-01-01

    Study Design Controlled laboratory study. Objective To evaluate the effect of lumbar degenerative disc diseases (DDDs) on motion of the facet joints during functional weight-bearing activities. Summary of Background Data It has been suggested that DDD adversely affects the biomechanical behavior of the facet joints. Altered facet joint motion, in turn, has been thought to associate with various types of lumbar spine pathology including facet degeneration, neural impingement, and DDD progression. However, to date, no data have been reported on the motion patterns of the lumbar facet joint in DDD patients. Methods Ten symptomatic patients of DDD at L4–S1 were studied. Each participant underwent magnetic resonance images to obtain three-dimensional models of the lumbar vertebrae (L2–S1) and dual fluoroscopic imaging during three characteristic trunk motions: left-right torsion, left-right bending, and flexion-extension. In vivo positions of the vertebrae were reproduced by matching the three-dimensional models of the vertebrae to their outlines on the fluoroscopic images. The kinematics of the facet joints and the ranges of motion (ROMs) were compared with a group of healthy participants reported in a previous study. Results In facet joints of the DDD patients, there was no predominant axis of rotation and no difference in ROMs was found between the different levels. During left-right torsion, the ROMs were similar between the DDD patients and the healthy participants. During left-right bending, the rotation around mediolateral axis at L4–L5, in the DDD patients, was significantly larger than that of the healthy participants. During flexion-extension, the rotations around anterioposterior axis at L4–L5 and around craniocaudal axis at the adjacent level (L3–L4), in the DDD patients, were also significantly larger, whereas the rotation around mediolateral axis at both L2–L3 and L3–L4 levels in the DDD patients were significantly smaller than those of the

  3. The role of preload forces in spinal manipulation: experimental investigation of kinematic and electromyographic responses in healthy adults.

    PubMed

    Nougarou, François; Dugas, Claude; Loranger, Michel; Pagé, Isabelle; Descarreaux, Martin

    2014-06-01

    Previous studies have identified preload forces and an important feature of skillful execution of spinal manipulative therapy (SMT) as performed by manual therapists (eg, doctors of chiropractic and osteopathy). It has been suggested that applying a gradual force before the thrust increases the spinal unit stiffness, minimizing displacement during the thrust. Therefore, the main objective of this study was to assess the vertebral unit biomechanical and neuromuscular responses to a graded increase of preload forces. Twenty-three participants underwent 4 different SMT force-time profiles delivered by a servo-controlled linear actuator motor and varying in their preload forces, respectively, set to 5, 50, 95, and 140N in 1 experimental session. Kinematic markers were place on T6, T7, and T8 and electromyographic electrodes were applied over paraspinal muscles on both sides of the spine. Increasing preload forces led to an increase in neuromuscular responses of thoracic paraspinal muscles and vertebral segmental displacements during the preload phase of SMT. Increasing the preload force also yielded a significant decrease in sagittal vertebral displacement and paraspinal muscle activity during and immediately after the thrust phase of spinal manipulation. Changes observed during the SMT thrust phase could be explained by the proportional increase in preload force or the related changes in rate of force application. Although only healthy participants were tested in this study, preload forces may be an important parameter underlying SMT mechanism of action. Future studies should investigate the clinical implications of varying SMT dosages. The present results suggest that neuromuscular and biomechanical responses to SMT may be modulated by preload through changes in the rate of force application. Overall, the present results suggest that preload and rate of force application may be important parameters underlying SMT mechanism of action. Copyright © 2014 National

  4. Altered spinal kinematics and muscle recruitment pattern of the cervical and thoracic spine in people with chronic neck pain during functional task.

    PubMed

    Tsang, Sharon M H; Szeto, Grace P Y; Lee, Raymond Y W

    2014-02-01

    Knowledge on the spinal kinematics and muscle activation of the cervical and thoracic spine during functional task would add to our understanding of the performance and interplay of these spinal regions during dynamic condition. The purpose of this study was to examine the influence of chronic neck pain on the three-dimensional kinematics and muscle recruitment pattern of the cervical and thoracic spine during an overhead reaching task involving a light weight transfer by the upper limb. Synchronized measurements of the three-dimensional spinal kinematics and electromyographic activities of cervical and thoracic spine were acquired in thirty individuals with chronic neck pain and thirty age- and gender-matched asymptomatic controls. Neck pain group showed a significantly decreased cervical velocity and acceleration while performing the task. They also displayed with a predominantly prolonged coactivation of cervical and thoracic muscles throughout the task cycle. The current findings highlighted the importance to examine differential kinematic variables of the spine which are associated with changes in the muscle recruitment in people with chronic neck pain. The results also provide an insight to the appropriate clinical intervention to promote the recovery of the functional disability commonly reported in patients with neck pain disorders.

  5. Micro-computed tomography-based three-dimensional kinematic analysis during lateral bending for spinal fusion assessment in a rat posterolateral lumbar fusion model.

    PubMed

    Yamaguchi, Tomonori; Inoue, Nozomu; Sah, Robert L; Lee, Yu-Po; Taborek, Alexander P; Williams, Gregory M; Moseley, Timothy A; Bae, Won C; Masuda, Koichi

    2014-07-01

    Rat posterolateral lumbar fusion (PLF) models have been used to assess the safety and effectiveness of new bone substitutes and osteoinductive growth factors using palpation, radiography, micro-computed tomography (μCT), and histology as standard methods to evaluate spinal fusion. Despite increased numbers of PLF studies involving alternative bone substitutes and growth factors, the quantitative assessment of treatment efficacy during spinal motion has been limited. The purpose of this study was to evaluate the effect of spinal fusion on lumbar spine segment stability during lateral bending using a μCT-based three-dimensional (3D) kinematic analysis in the rat PLF model. Fourteen athymic male rats underwent PLF surgery at L4/5 and received bone grafts harvested from the ilium and femurs of syngeneic rats (Isograft, n=7) or no graft (Sham, n=7). At 8 weeks after the PLF surgery, spinal fusion was assessed by manual palpation, plain radiography, μCT, and histology. To determine lumbar segmental motions at the operated level during lateral bending, 3D kinematic analysis was performed. The Isograft group, but not the Sham group, showed spinal fusion on manual palpation (6/7), solid fusion mass in radiographs (6/7), as well as bone bridging in μCT and histological images (5/7). Compared to the Sham group, the Isograft group revealed limited 3D lateral bending angular range of motion and lateral translation during lateral bending at the fused segment where disc height narrowing was observed. This μCT-based 3D kinematic analysis can provide a quantitative assessment of spinal fusion in a rat PLF model to complement current gold standard methods used for efficacy assessment of new therapeutic approaches.

  6. A novel stability and kinematics-driven trunk biomechanical model to estimate muscle and spinal forces.

    PubMed

    Hajihosseinali, M; Arjmand, N; Shirazi-Adl, A; Farahmand, F; Ghiasi, M S

    2014-10-01

    An anatomically detailed eighteen-rotational-degrees-of-freedom model of the human spine using optimization constrained to equilibrium and stability requirements is developed and used to simulate several symmetric tasks in upright and flexed standing postures. Predictions of this stability and kinematics-driven (S+KD) model for trunk muscle forces and spine compressive/shear loads are compared to those of our existing kinematics-driven (KD) model where both translational and rotational degrees-of-freedom are included but redundancy is resolved using equilibrium conditions alone. Unlike the KD model, the S+KD model predicted abdominal co-contractions that, in agreement with electromyography data, increased as lifting height increased at a constant horizontal moment arm. The S+KD model, however, could not fully explain the CNS strategy in activating antagonistic muscles for most of the remaining tasks. Despite quite distinct activities in individual muscles, both models predicted L4-L5 intradiscal pressure that matched the in vivo data, the L4-S1 compression loads, and the sum of all trunk muscle forces. For modeling applications in ergonomics, where the compressive spine loads are of interest, the two models yielded <15% difference. In the field of rehabilitation, where detailed muscle forces are required, the S+KD model explained more properly the CNS strategy in activating the antagonistic muscles for some tasks. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Kinematics and load-sharing of an anterior thoracolumbar spinal reconstruction construct with PEEK rods: An in vitro biomechanical study.

    PubMed

    Zhou, Ruozhou; Huang, Zhiping; Liu, Xiang; Tong, Jie; Ji, Wei; Liu, Sheting; Zhu, Qingan

    2016-12-01

    Polyetheretherketone rod constructs provide adequate spinal stability. Kinematics and load sharing of anterior thoracolumbar reconstruction with polyetheretherketone rods under preload remains unknown. Eight human cadaveric specimens (T11-L3) were subjected to a pure moment of 5.0Nm in flexion-extension, lateral bending and axial rotation, and flexion-extension with a compressive preload of 300N. An anterior reconstruction of L1 corpectomy was conducted with a surrogate bone graft and anterior rod constructs (polyetheretherketone or titanium rods). An axial load-cell was built in the surrogate bone graft to measure the compressive force in the graft. Range of motion, neutral zone and compressive force in the graft were compared between constructs. The polyetheretherketone rod construct resulted in more motion than the titanium rod construct, particularly in extension (P=0.011) and axial rotation (P=0.001), but less motion than the intact in all directions except in axial rotation. There was no difference in range of motion or neutral zone between constructs in flexion-extension under preload. The polyetheretherketone rod construct kept the graft compressed 52N which was similar to the titanium rod construct (63N), but allowed the graft compressed more under the preload (203N vs. 123N, P=0.003). The compressive forces fluctuated in flexion-extension without preload, but increased in flexion and decreased in extension under preload. The polyetheretherketone rod construct allowed more motion compared to the titanium rod construct, but provided stability in flexion and lateral bending without preload, and flexion and extension under preload. The anterior graft shared higher load under preload, particularly for the polyetheretherketone rod construct. The results of this study suggest that rigidity of rods in the anterior reconstruction affects kinematic behavior and load sharing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The kinematics of anterior cervical discectomy and fusion versus artificial cervical disc: a pilot study.

    PubMed

    Rabin, Doron; Pickett, Gwynedd E; Bisnaire, Lynn; Duggal, Neil

    2007-09-01

    Anterior cervical discectomy and fusion (ACDF) for the management of cervical spondylosis may contribute to further degenerative changes at adjacent levels secondary to abnormal spinal motion. Insertion of a Bryan Cervical Disc (AD) (Medtronic Sofamor Danek, Memphis, TN) may prevent this accelerated degeneration. This retrospective study compares the in vivo x-ray cervical spine kinematics in patients with ACDF and AD. Ten patients with single-level AD were matched to 10 patients with single-level ACDF based on age and sex. Lateral neutral, flexion and extension cervical x-rays were obtained preoperatively and at regular intervals up to 24 months postoperatively. Kinematic parameters, including range of motion, anteroposterior translation, and disc height, were assessed for all cervical functional spinal units using quantitative motion analysis software. Changes in these parameters were compared between matched patients from both groups using paired Student's t tests. The range of motion at the operated level was greater in the AD group compared with the ACDF group at early (6.9 versus 0.89 degrees, P < 0.01) and late (8.4 versus 0.53 degrees, P < 0.01) follow-up evaluations. Translation was greater at the operated level in patients with AD at late follow-up (6.8 versus 0.8%, P < 0.03) evaluation. No significant between-group kinematic differences were seen at adjacent levels. Patients with AD and those with ACDF demonstrated similar in vivo adjacent level kinematics within the first 24 months after anterior cervical decompression.

  9. A kinematic and kinetic analysis of spinal region in subjects with and without recurrent low back pain during one leg standing.

    PubMed

    Sung, Paul S; Leininger, Peter M

    2015-08-01

    The purpose of this study was to evaluate the relationship between normalized kinematic and kinetic stability indices for spinal regions with eyes-open and eyes-closed conditions during non-dominant leg standing between subjects with recurrent low back pain and control subjects. The kinematic stability index for the spinal regions (core spine model, lumbar spine, lower and upper thorax) and the kinetic stability index from force plate were measured. All participants were asked to maintain non-dominant leg standing with the dominant hip and knee flexed approximately 90 degrees for 25 seconds. Forty-two participants enrolled in the study, including 22 subjects with low back pain (12 male, 10 female) and 20 control subjects (12 male, 8 female). For the kinematic index for stability, the visual condition (F=30.06, p=0.0001) and spinal region (F=10.82, p=0.002) were statistically significant. The post hoc test results indicated a significant difference in the lumbar spine compared with the upper and lower thorax and the core spine model. The kinetic stability (average [standard deviation]) during the eyes-closed condition significantly decreased in the low back pain group (t=-3.24, p=0.002). The subjects with recurrent low back pain demonstrated higher lumbar spine stability in eyes-open condition. This higher stability of the lumbar spine might be due to a possible pain avoiding strategy from the standing limb. The low back pain group also significantly decreased kinetic stability during the eyes-closed condition. Clinicians need to consider both kinetic and kinematic indices while considering visual condition for lumbar spine stability in subjects with recurrent low back pain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Examination of the Combined Effects of Chondroitinase ABC, Growth Factors and Locomotor Training following Compressive Spinal Cord Injury on Neuroanatomical Plasticity and Kinematics

    PubMed Central

    Alluin, Olivier; Fehlings, Michael G.; Rossignol, Serge; Karimi-Abdolrezaee, Soheila

    2014-01-01

    While several cellular and pharmacological treatments have been evaluated following spinal cord injury (SCI) in animal models, it is increasingly recognized that approaches to address the glial scar, including the use of chondroitinase ABC (ChABC), can facilitate neuroanatomical plasticity. Moreover, increasing evidence suggests that combinatorial strategies are key to unlocking the plasticity that is enabled by ChABC. Given this, we evaluated the anatomical and functional consequences of ChABC in a combinatorial approach that also included growth factor (EGF, FGF2 and PDGF-AA) treatments and daily treadmill training on the recovery of hindlimb locomotion in rats with mid thoracic clip compression SCI. Using quantitative neuroanatomical and kinematic assessments, we demonstrate that the combined therapy significantly enhanced the neuroanatomical plasticity of major descending spinal tracts such as corticospinal and serotonergic-spinal pathways. Additionally, the pharmacological treatment attenuated chronic astrogliosis and inflammation at and adjacent to the lesion with the modest synergistic effects of treadmill training. We also observed a trend for earlier recovery of locomotion accompanied by an improvement of the overall angular excursions in rats treated with ChABC and growth factors in the first 4 weeks after SCI. At the end of the 7-week recovery period, rats from all groups exhibited an impressive spontaneous recovery of the kinematic parameters during locomotion on treadmill. However, although the combinatorial treatment led to clear chronic neuroanatomical plasticity, these structural changes did not translate to an additional long-term improvement of locomotor parameters studied including hindlimb-forelimb coupling. These findings demonstrate the beneficial effects of combined ChABC, growth factors and locomotor training on the plasticity of the injured spinal cord and the potential to induce earlier neurobehavioral recovery. However, additional

  11. Kinematic Magnetic Resonance Imaging Assessment of the Degenerative Cervical Spine: Changes after Anterior Decompression and Cage Fusion.

    PubMed

    Obradov, Marina; Bénard, Menno R; Janssen, Michiel M A; Anderson, Patricia G; Heesterbeek, Petra J C; Spruit, Maarten

    2016-11-01

    Study Design A prospective cohort study. Objective Decompression and fusion of cervical vertebrae is a combined procedure that has a high success rate in relieving radicular symptoms and stabilizing or improving cervical myelopathy. However, fusion may lead to increased motion of the adjacent vertebrae and cervical deformity. Both have been postulated to lead to adjacent segment pathology (ASP). Kinematic magnetic resonance imaging (MRI) has been increasingly used to evaluate range of motion (ROM) of the cervical spine and ASP. Our objective was to measure ASP, cervical curvature, and ROM of individual segments of the cervical spine using kinematic MRI before and 24 months after monosegmental cage fusion. Methods Eighteen patients who had single-level interbody fusion were included. ROM (using kinematic MRI) and degeneration, spinal stenosis, and cervical curvature were measured preoperatively and 24 months postoperatively. Results Using kinematic MRI, segmental motion of the cervical segments was measured with a precision of less than 3 degrees. The cervical fusion did not affect the ROM of adjacent levels. However, pre- and postoperative ROM was higher at the levels immediately adjacent to the fusion level compared with those further away. In addition, at 24 months postoperatively, the number of cases with ASP was higher at the levels immediately adjacent to fusion level. Conclusions Using kinematic MRI, ROM after spinal fusion can be measured with high precision. Kinematic MRI can be used not only in clinical practice, but also to study intervention and its effect on postoperative biomechanics and ASP of cervical vertebrae.

  12. Angle-ply biomaterial scaffold for annulus fibrosus repair replicates native tissue mechanical properties, restores spinal kinematics, and supports cell viability.

    PubMed

    Borem, Ryan; Madeline, Allison; Walters, Joshua; Mayo, Henry; Gill, Sanjitpal; Mercuri, Jeremy

    2017-08-01

    Annulus fibrosus (AF) damage commonly occurs due to intervertebral disc (IVD) degeneration/herniation. The dynamic mechanical role of the AF is essential for proper IVD function and thus it is imperative that biomaterials developed to repair the AF withstand the mechanical rigors of the native tissue. Furthermore, these biomaterials must resist accelerated degradation within the proteolytic environment of degenerate IVDs while supporting integration with host tissue. We have previously reported a novel approach for developing collagen-based, multi-laminate AF repair patches (AFRPs) that mimic the angle-ply architecture and basic tensile properties of the human AF. Herein, we further evaluate AFRPs for their: tensile fatigue and impact burst strength, IVD attachment strength, and contribution to functional spinal unit (FSU) kinematics following IVD repair. Additionally, AFRP resistance to collagenase degradation and cytocompatibility were assessed following chemical crosslinking. In summary, AFRPs demonstrated enhanced durability at high applied stress amplitudes compared to human AF and withstood radially-directed biaxial stresses commonly borne by the native tissue prior to failure/detachment from IVDs. Moreover, FSUs repaired with AFRPs and nucleus pulposus (NP) surrogates had their axial kinematic parameters restored to intact levels. Finally, carbodiimide crosslinked AFRPs resisted accelerated collagenase digestion without detrimentally effecting AFRP tensile properties or cytocompatibility. Taken together, AFRPs demonstrate the mechanical robustness and enzymatic stability required for implantation into the damaged/degenerate IVD while supporting AF cell infiltration and viability. The quality of life for millions of individuals globally is detrimentally impacted by IVD degeneration and herniation. These pathologies often result in the structural demise of IVD tissue, particularly the annulus fibrosus (AF). Biomaterials developed for AF repair have yet to

  13. Kinematic analysis of the daily activity of drinking from a glass in a population with cervical spinal cord injury.

    PubMed

    de los Reyes-Guzmán, Ana; Gil-Agudo, Angel; Peñasco-Martín, Benito; Solís-Mozos, Marta; del Ama-Espinosa, Antonio; Pérez-Rizo, Enrique

    2010-08-20

    Three-dimensional kinematic analysis equipment is a valuable instrument for studying the execution of movement during functional activities of the upper limbs. The aim of this study was to analyze the kinematic differences in the execution of a daily activity such as drinking from a glass between two groups of patients with tetraplegia and a control group. A total of 24 people were separated into three groups for analysis: 8 subjects with metameric level C6 tetraplegia, 8 subjects with metameric level C7 tetraplegia and 8 control subjects (CG). A set of active markers that emit infrared light were positioned on the upper limb. Two scanning units were used to record the sessions. The activity of drinking from a glass was broken down into a series of clearly identifiable phases to facilitate analysis. Movement times, velocities, and the joint angles of the shoulder, elbow and wrist in the three spatial planes were the variables analyzed. The most relevant differences between the three groups were in the wrist. Wrist palmar flexion during the back transport phase was greater in the patients with C6 and C7 tetraplegia than in the CG, whereas the highest wrist dorsal flexion values were in forward transport in the subjects with C6 or C7 tetraplegia, who required complete activation of the tenodesis effect to complete grasping. A detailed description was made of the three-dimensional kinematic analysis of the task of drinking from a glass in healthy subjects and in two groups of patients with tetraplegia. This was a useful application of kinematic analysis of upper limb movement in a clinical setting. Better knowledge of the execution of this movement in each of these groups allows therapeutic recommendations to be specifically adapted to the functional deficit present. This information can be useful in designing wearable robots to compensate the performance of AVD, such as drinking, in people with cervical SCI.

  14. Spontaneous Regression of Herniated Lumbar Disc with New Disc Protrusion in the Adjacent Level

    PubMed Central

    Gürcan, Serkan

    2016-01-01

    Spontaneous regression of herniated lumbar discs was reported occasionally. The mechanisms proposed for regression of disc herniation are still incomplete. This paper describes and discusses a case of spontaneous regression of herniated lumbar discs with a new disc protrusion in the adjacent level. A 41-year-old man was admitted with radiating pain and numbness in the left lower extremity with a left posterolateral disc extrusion at L5-S1 level. He was admitted to hospital with low back pain due to disc herniation caudally immigrating at L4-5 level three years ago. He refused the surgical intervention that was offered and was treated conservatively at that time. He had no neurological deficit and a history of spontaneous regression of the extruded lumbar disc; so, a conservative therapy, including bed rest, physical therapy, nonsteroidal anti-inflammatory drugs, and analgesics, was advised. In conclusion, herniated lumbar disc fragments may regress spontaneously. Reports are prone to advise conservative treatment for extruded or sequestrated lumbar disc herniations. However, these patients should be followed up closely; new herniation at adjacent/different level may occur. Furthermore, it is important to know which herniated disk should be removed and which should be treated conservatively, because disc herniation may cause serious complications as muscle weakness and cauda equine syndrome. PMID:27429818

  15. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study.

    PubMed

    Kadivar, Z; Sullivan, J L; Eng, D P; Pehlivan, A U; O'Malley, M K; Yozbatiran, N; Francisco, G E

    2011-01-01

    Regaining upper extremity function is the primary concern of persons with tetraplegia caused by spinal cord injury (SCI). Robotic rehabilitation has been inadequately tested and underutilized in rehabilitation of the upper extremity in the SCI population. Given the acceptance of robotic training in stroke rehabilitation and SCI gait training, coupled with recent evidence that the spinal cord, like the brain, demonstrates plasticity that can be catalyzed by repetitive movement training such as that available with robotic devices, it is probable that robotic upper-extremity training of persons with SCI could be clinically beneficial. The primary goal of this pilot study was to test the feasibility of using a novel robotic device for the upper extremity (RiceWrist) and to evaluate robotic rehabilitation using the RiceWrist in a tetraplegic person with incomplete SCI. A 24-year-old male with incomplete SCI participated in 10 sessions of robot-assisted therapy involving intensive upper limb training. The subject successfully completed all training sessions and showed improvements in movement smoothness, as well as in the hand function. Results from this study provide valuable information for further developments of robotic devices for upper limb rehabilitation in persons with SCI. © 2011 IEEE

  16. The effects of powered ankle-foot orthoses on joint kinematics and muscle activation during walking in individuals with incomplete spinal cord injury

    PubMed Central

    Sawicki, Gregory S; Domingo, Antoinette; Ferris, Daniel P

    2006-01-01

    -controlled the orthoses (p < 0.05). Muscle activation amplitudes were similar between the two powered conditions except for tibialis anterior (~31% lower for therapist-controlled; p < 0.05). Conclusion Mechanical assistance from powered ankle-foot orthoses improved ankle push-off kinematics without substantially reducing muscle activation during walking in subjects with incomplete spinal cord injury. These results suggest that robotic plantar flexion assistance could be used during gait rehabilitation without promoting patient passivity. PMID:16504172

  17. Trunk and Shoulder Kinematic and Kinetic and Electromyographic Adaptations to Slope Increase during Motorized Treadmill Propulsion among Manual Wheelchair Users with a Spinal Cord Injury

    PubMed Central

    Champagne, Audrey

    2015-01-01

    The main objective was to quantify the effects of five different slopes on trunk and shoulder kinematics as well as shoulder kinetic and muscular demands during manual wheelchair (MWC) propulsion on a motorized treadmill. Eighteen participants with spinal cord injury propelled their MWC at a self-selected constant speed on a motorized treadmill set at different slopes (0°, 2.7°, 3.6°, 4.8°, and 7.1°). Trunk and upper limb movements were recorded with a motion analysis system. Net shoulder joint moments were computed with the forces applied to the handrims measured with an instrumented wheel. To quantify muscular demand, the electromyographic activity (EMG) of the pectoralis major (clavicular and sternal portions) and deltoid (anterior and posterior fibers) was recorded during the experimental tasks and normalized against maximum EMG values obtained during static contractions. Overall, forward trunk flexion and shoulder flexion increased as the slope became steeper, whereas shoulder flexion, adduction, and internal rotation moments along with the muscular demand also increased as the slope became steeper. The results confirm that forward trunk flexion and shoulder flexion movement amplitudes, along with shoulder mechanical and muscular demands, generally increase when the slope of the treadmill increases despite some similarities between the 2.7° to 3.6° and 3.6° to 4.8° slope increments. PMID:25793200

  18. Trunk and shoulder kinematic and kinetic and electromyographic adaptations to slope increase during motorized treadmill propulsion among manual wheelchair users with a spinal cord injury.

    PubMed

    Gagnon, Dany; Babineau, Annie-Claude; Champagne, Audrey; Desroches, Guillaume; Aissaoui, Rachid

    2015-01-01

    The main objective was to quantify the effects of five different slopes on trunk and shoulder kinematics as well as shoulder kinetic and muscular demands during manual wheelchair (MWC) propulsion on a motorized treadmill. Eighteen participants with spinal cord injury propelled their MWC at a self-selected constant speed on a motorized treadmill set at different slopes (0°, 2.7°, 3.6°, 4.8°, and 7.1°). Trunk and upper limb movements were recorded with a motion analysis system. Net shoulder joint moments were computed with the forces applied to the handrims measured with an instrumented wheel. To quantify muscular demand, the electromyographic activity (EMG) of the pectoralis major (clavicular and sternal portions) and deltoid (anterior and posterior fibers) was recorded during the experimental tasks and normalized against maximum EMG values obtained during static contractions. Overall, forward trunk flexion and shoulder flexion increased as the slope became steeper, whereas shoulder flexion, adduction, and internal rotation moments along with the muscular demand also increased as the slope became steeper. The results confirm that forward trunk flexion and shoulder flexion movement amplitudes, along with shoulder mechanical and muscular demands, generally increase when the slope of the treadmill increases despite some similarities between the 2.7° to 3.6° and 3.6° to 4.8° slope increments.

  19. Influence of gravity compensation on kinematics and muscle activation patterns during reach and retrieval in subjects with cervical spinal cord injury: an explorative study.

    PubMed

    Kloosterman, Marieke G M; Snoek, Govert J; Kouwenhoven, Mirjam; Nene, Anand V; Jannink, Michiel J A

    2010-01-01

    Many interventions in upper-limb rehabilitation after cervical spinal cord injury (CSCI) use arm support (gravity compensation); however, its specific effects on kinematics and muscle activation characteristics in subjects with a CSCI are largely unknown. We conducted a cross-sectional explorative study to study these effects. Nine subjects with a CSCI performed two goal-directed arm movements (maximal reach, reach and retrieval) with and without gravity compensation. Angles at elbow and shoulder joints and muscle activation were measured and compared. Seven subjects reduced elbow extension (range 1.8°-4.5°) during the maximal reaching task with gravity compensation. In the reach and retrieval task with gravity compensation, all subjects decreased elbow extension (range 0.1°-11.0°). Eight subjects executed movement closer to the body. Regarding muscle activation, gravity compensation did not influence timing; however, the amplitude of activation decreased, especially in antigravity muscles, namely mean change +/- standard deviation of descending part of trapezius (18.2% +/- 37.5%), anterior part of deltoid (37.7% +/- 16.7%), posterior part of deltoid (32.0% +/- 13.9%), and long head biceps (49.6% +/- 20.0%). Clinical implications for the use of gravity compensation in rehabilitation (during activities of daily living or exercise therapy) should be further investigated with a larger population.

  20. Biomechanical implications of lumbar spinal ligament transection.

    PubMed

    Von Forell, Gregory A; Bowden, Anton E

    2014-11-01

    Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.

  1. Fusion angle affects intervertebral adjacent spinal segment joint forces-Model-based analysis of patient specific alignment.

    PubMed

    Senteler, Marco; Weisse, Bernhard; Rothenfluh, Dominique A; Farshad, Mazda T; Snedeker, Jess G

    2017-01-01

    This study addresses the hypothesis that adjacent segment intervertebral joint loads are sensitive to the degree of lordosis that is surgically imposed during vertebral fusion. Adjacent segment degeneration is often observed after lumbar fusion, but a causative mechanism is not yet clearly evident. Altered kinematics of the adjacent segments and potentially nonphysiological mechanical joint loads have been implicated in this process. However, little is known of how altered alignment and kinematics influence loading of the adjacent intervertebral joints under consideration of active muscle forces. This study investigated these effects by simulating L4/5 fusions using kinematics-driven musculoskeletal models of one generic and eight sagittal alignment-specific models. Models featured different spinopelvic configurations but were normalized by body height, masses, and muscle properties. Fusion of the L4/5 segment was implemented in an in situ (22°), hyperlordotic (32°), and hypolordotic (8°) fashion and kinematic input parameters were changed accordingly based on findings of an in vitro investigation. Bending motion from upright standing to 45° forward flexion and back was simulated for all models in intact and fused conditions. Joint loads at adjacent levels and moment arms of spinal muscles experienced changes after all types of fusion. Hypolordotic configuration led to an increase of adjacent segment (L3/4) shear forces of 29% on average, whereas hyperlordotic fusion reduced shear by 39%. Overall, L4/5 in situ fusion resulted in intervertebral joint forces closest to intact loading conditions. An artificial decrease in lumbar lordosis (minus 14° on average) caused by an L4/5 fusion lead to adverse loading conditions, particularly at the cranial adjacent levels, and altered muscle moment arms, in particular for muscles in the vicinity of the fusion. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:131-139, 2017. © 2016

  2. A novel approach to spinal 3-D kinematic assessment using inertial sensors: Towards effective quantitative evaluation of low back pain in clinical settings.

    PubMed

    Ashouri, Sajad; Abedi, Mohsen; Abdollahi, Masoud; Dehghan Manshadi, Farideh; Parnianpour, Mohamad; Khalaf, Kinda

    2017-08-04

    This paper presents a novel approach for evaluating LBP in various settings. The proposed system uses cost-effective inertial sensors, in conjunction with pattern recognition techniques, for identifying sensitive classifiers towards discriminate identification of LB patients. 24 healthy individuals and 28 low back pain patients performed trunk motion tasks in five different directions for validation. Four combinations of these motions were selected based on literature, and the corresponding kinematic data was collected. Upon filtering (4th order, low pass Butterworth filter) and normalizing the data, Principal Component Analysis was used for feature extraction, while Support Vector Machine classifier was applied for data classification. The results reveal that non-linear Kernel classification can be adequately employed for low back pain identification. Our preliminary results demonstrate that using a single inertial sensor placed on the thorax, in conjunction with a relatively simple test protocol, can identify low back pain with an accuracy of 96%, a sensitivity of %100, and specificity of 92%. While our approach shows promising results, further validation in a larger population is required towards using the methodology as a practical quantitative assessment tool for the detection of low back pain in clinical/rehabilitation settings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An optimization-based method for prediction of lumbar spine segmental kinematics from the measurements of thorax and pelvic kinematics.

    PubMed

    Shojaei, I; Arjmand, N; Bazrgari, B

    2015-12-01

    Given measurement difficulties, earlier modeling studies have often used some constant ratios to predict lumbar segmental kinematics from measurements of total lumbar kinematics. Recent imaging studies suggested distribution of lumbar kinematics across its vertebrae changes with trunk rotation, lumbar posture, and presence of load. An optimization-based method is presented and validated in this study to predict segmental kinematics from measured total lumbar kinematics. Specifically, a kinematics-driven biomechanical model of the spine is used in a heuristic optimization procedure to obtain a set of segmental kinematics that, when prescribed to the model, were associated with the minimum value for the sum of squared predicted muscle stresses across all the lower back muscles. Furthermore, spinal loads estimated using the predicted kinematics by the present method were compared with those estimated using constant ratios. Predicted segmental kinematics were in good agreement with those obtained by imaging with an average error of ~10%. Compared with those obtained using constant ratios, predicted spinal loads using segmental kinematics obtained here were in general smaller. In conclusion, the proposed method offers an alternative tool for improving model-based estimates of spinal loads where image-based measurement of lumbar kinematics is not feasible. Copyright © 2015 John Wiley & Sons, Ltd.

  4. A Longitudinal Cohort Investigation of the Development of Symptomatic Adjacent Level Compression Fractures Following Balloon-assisted Kyphoplasty in a Series of 726 Patients.

    PubMed

    Deibert, Christopher P; Gandhoke, Gurpreet S; Paschel, Erin E; Gerszten, Peter C

    2016-01-01

    Balloon-assisted kyphoplasty (BAK) is a well-accepted treatment for symptomatic vertebral compression fractures (VCF) secondary to osteoporosis. Some have raised a concern of an increased incidence of adjacent fractures due to alterations in spine biomechanics after cement augmentation. The incidence of subsequent VCFs following BAK is poorly understood. The aim of this study was to investigate the timing, location, and incidence of new VCFs following BAK and to identify risk factors associated specifically with the occurrence of new adjacent level fractures. The study was performed to determine the incidence of symptomatic subsequent adjacent and remote level compression fractures in a cohort of patients undergoing BAK. Longitudinal cohort investigation at an academic medical center and a central referral center for VCFs. A consecutive single surgeon series of 726 patients with osteoporotic compression fractures. A prospectively collected cohort of 726 patients who underwent BAK between 2001 and 2014 for osteoporotic VCFs was evaluated. Seventy-seven patients were identified who underwent a second BAK for a new compression fracture and were include in the present series. The indication for BAK treatment was pain unresponsive to non-surgical management for all cases. Variables were recorded for each patient, including the time between index and subsequent fracture, fracture level, and number of initial fractures as well as with tobacco use, body mass index (BMI), and chronic steroid use. Seventy-seven of 726 patients (10.6%) underwent a second BAK procedure on average 350 days following the initial procedure (range 21 to 2,691 days). Third and fourth procedures were less common, treated in 11 and 3 patients, respectively. Forty-eight of 77 patients (62%) suffered a fracture at a level immediately adjacent to the index level at mean time of 256 days. Remote level fractures were treated at a mean time of 489 days, but no statistical difference was noted. There was no

  5. Junctional disc herniation syndrome in post spinal fusion treated with endoscopic spine surgery.

    PubMed

    Chiu, John C; Clifford, Thomas; Princenthal, Robert; Shaw, Stephen

    2005-01-01

    Fusions of the cervical and lumbar spine are often followed within months or several years by protrusion of discs at the adjacent level or levels. Biomechanical alterations and mobility lost at the fused levels are thought to be transferring the stress to the adjacent segments or discs, which results in accelerated degeneration of the discs and causes disc protrusion. This post-spinal fusion "junctional disc herniation syndrome" (JDHS), or the post-spinal fusion "adjacent segment disease (ASD)" can occur from 15% to 52% of post-spinal fusion, in both superior and/or inferior adjacent levels. The ways in which endoscopic minimally invasive spinal discectomy procedure can be used to treat this JDHS and preserve spinal segmental motion are discussed herein. Also, case illustrations are presented.

  6. Effect of locomotor training in completely spinalized cats previously submitted to a spinal hemisection.

    PubMed

    Martinez, Marina; Delivet-Mongrain, Hugo; Leblond, Hugues; Rossignol, Serge

    2012-08-08

    After a spinal hemisection in cats, locomotor plasticity occurring at the spinal level can be revealed by performing, several weeks later, a complete spinalization below the first hemisection. Using this paradigm, we recently demonstrated that the hemisection induces durable changes in the symmetry of locomotor kinematics that persist after spinalization. Can this asymmetry be changed again in the spinal state by interventions such as treadmill locomotor training started within a few days after the spinalization? We performed, in 9 adult cats, a spinal hemisection at thoracic level 10 and then a complete spinalization at T13, 3 weeks later. Cats were not treadmill trained during the hemispinal period. After spinalization, 5 of 9 cats were not trained and served as control while 4 of 9 cats were trained on the treadmill for 20 min, 5 d a week for 3 weeks. Using detailed kinematic analyses, we showed that, without training, the asymmetrical state of locomotion induced by the hemisection was retained durably after the subsequent spinalization. By contrast, training cats after spinalization induced a reversal of the left/right asymmetries, suggesting that new plastic changes occurred within the spinal cord through locomotor training. Moreover, training was shown to improve the kinematic parameters and the performance of the hindlimb on the previously hemisected side. These results indicate that spinal locomotor circuits, previously modified by past experience such as required for adaptation to the hemisection, can remarkably respond to subsequent locomotor training and improve bilateral locomotor kinematics, clearly showing the benefits of locomotor training in the spinal state.

  7. Spinal Stenosis

    MedlinePlus

    ... and allows you to stand and bend. Spinal stenosis causes narrowing in your spine. The narrowing puts ... and spinal cord and can cause pain. Spinal stenosis occurs mostly in people older than 50. Younger ...

  8. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; hide

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  9. Retraining the injured spinal cord

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Leon, R. D.; Harkema, S. J.; Hodgson, J. A.; London, N.; Reinkensmeyer, D. J.; Roy, R. R.; Talmadge, R. J.; Tillakaratne, N. J.; Timoszyk, W.; Tobin, A.

    2001-01-01

    The present review presents a series of concepts that may be useful in developing rehabilitative strategies to enhance recovery of posture and locomotion following spinal cord injury. First, the loss of supraspinal input results in a marked change in the functional efficacy of the remaining synapses and neurons of intraspinal and peripheral afferent (dorsal root ganglion) origin. Second, following a complete transection the lumbrosacral spinal cord can recover greater levels of motor performance if it has been exposed to the afferent and intraspinal activation patterns that are associated with standing and stepping. Third, the spinal cord can more readily reacquire the ability to stand and step following spinal cord transection with repetitive exposure to standing and stepping. Fourth, robotic assistive devices can be used to guide the kinematics of the limbs and thus expose the spinal cord to the new normal activity patterns associated with a particular motor task following spinal cord injury. In addition, such robotic assistive devices can provide immediate quantification of the limb kinematics. Fifth, the behavioural and physiological effects of spinal cord transection are reflected in adaptations in most, if not all, neurotransmitter systems in the lumbosacral spinal cord. Evidence is presented that both the GABAergic and glycinergic inhibitory systems are up-regulated following complete spinal cord transection and that step training results in some aspects of these transmitter systems being down-regulated towards control levels. These concepts and observations demonstrate that (a) the spinal cord can interpret complex afferent information and generate the appropriate motor task; and (b) motor ability can be defined to a large degree by training.

  10. Kinematic resection

    NASA Astrophysics Data System (ADS)

    Shevlin, Fergal P.

    1995-01-01

    A new geometric formulation is given for the problem of determining position and orientation of a satellite scanner from error-prone ground control point observations in linear pushbroom imagery. The pushbroom satellite resection problem is significantly more complicated than that of the conventional frame camera because of irregular platform motion throughout the image capture period. Enough ephemeris data are typically available to reconstruct satellite trajectory and hence the interior orientation of the pushbroom imagery. The new approach to resection relies on the use of reconstructed scanner interior orientation to determine the relative orientations of a bundle of image rays. The absolute position and orientation which allows this bundle to minimize its distance from a corresponding set of ground control points may then be found. The interior orientation is represented as a kinematic chain of screw motions, implemented as dual-number quaternions. The motor algebra is used in the analysis since it provides a means of line, point, and motion manipulation. Its moment operator provides a metric of distance between the image ray and the ground control point.

  11. Axon kinematics change during growth and development.

    PubMed

    Hao, Hailing; Shreiber, David I

    2007-08-01

    The microkinematic response of axons to mechanical stretch was examined in the developing chick embryo spinal cord during a period of rapid growth and myelination. Spinal cords were isolated at different days of embryonic (E) development post-fertilization (E12, E14, E16, and E18) and stretched 0%, 5%, 10%, 15%, and 20%, respectively. During this period, the spinal cord grew approximately 55% in length, and white matter tracts were myelinated significantly. The spinal cords were fixed with paraformaldehyde at the stretched length, sectioned, stained immunohistochemically for neurofilament proteins, and imaged with epifluorescence microscopy. Axons in unstretched spinal cords were undulated, or tortuous, to varying degrees, and appeared to straighten with stretch. The degree of tortuosity (ratio of the segment's pathlength to its end-to-end length) was quantified in each spinal cord by tracing several hundred randomly selected axons. The change in tortuosity distributions with stretch indicated that axons switched from non-affine, uncoupled behavior at low stretch levels to affine, coupled behavior at high stretch levels, which was consistent with previous reports of axon behavior in the adult guinea pig optic nerve (Bain, Shreiber, and Meaney, J. Biomech. Eng., 125(6), pp. 798-804). A mathematical model previously proposed by Bain et al. was applied to quantify the transition in kinematic behavior. The results indicated that significant percentages of axons demonstrated purely non-affine behavior at each stage, but that this percentage decreased from 64% at E12 to 30% at E18. The decrease correlated negatively to increases in both length and myelination with development, but the change in axon kinematics could not be explained by stretch applied during physical growth of the spinal cord. The relationship between tissue-level and axonal-level deformation changes with development, which can have important implications in the response to physiological forces

  12. Leonardian fluid mechanics. Part 1: History of kinematics. Part 2: Inception of modern kinematics

    NASA Astrophysics Data System (ADS)

    Macagno, E.

    1991-08-01

    A history of kinematics is given. Empirical kinematics, theoretical kinematics, experimental kinematics, the inception of modern kinematics, kinematics before and after Ampere, and Ampere's contribution are discussed.

  13. Boundary kinematic space

    NASA Astrophysics Data System (ADS)

    Karch, Andreas; Sully, James; Uhlemann, Christoph F.; Walker, Devin G. E.

    2017-08-01

    We extend kinematic space to a simple scenario where the state is not fixed by conformal invariance: the vacuum of a conformal field theory with a boundary (bCFT). We identify the kinematic space associated with the boundary operator product expansion (bOPE) as a subspace of the full kinematic space. In addition, we establish representations of the corresponding bOPE blocks in a dual gravitational description. We show how the new kinematic dictionary and the dynamical data in bOPE allows one to reconstruct the bulk geometry. This is evidence that kinematic space may be a useful construction for understanding bulk physics beyond just kinematics.

  14. Spinal Stenosis

    MedlinePlus

    ... spurs and narrowing of the spinal canal A computed tomography (CT) scan, which takes more detailed images of the back and spinal canal A magnetic resonance imaging (MRI) scan of the spine to take pictures ...

  15. Spinal Stenosis

    MedlinePlus

    ... Staff Spinal stenosis is a narrowing of the open spaces within your spine, which can put pressure on ... only on the vertebrae in the neck. It opens up the space within the spinal canal by creating a hinge ...

  16. Spinal injury

    MedlinePlus

    ... and drive. Do not dive into pools, lakes, rivers, and other bodies of water, particularly if you cannot determine the depth of the ... Central nervous system Spinal cord injury Spinal anatomy Two person roll - ...

  17. Spinal Headaches

    MedlinePlus

    ... spinal cord and, in the lower spine, the lumbar and sacral nerve roots. During a spinal tap, a sample of ... injected into your spinal canal to numb the nerves in the lower half of your ... also known as post-lumbar puncture headaches — resolve on their own with no ...

  18. Spinal infections.

    PubMed

    Tay, Bobby K-B; Deckey, Jeffrey; Hu, Serena S

    2002-01-01

    Spinal infections can occur in a variety of clinical situations. Their presentation ranges from the infant with diskitis who is unwilling to crawl or walk to the adult who develops an infection after a spinal procedure. The most common types of spinal infections are hematogenous bacterial or fungal infections, pediatric diskitis, epidural abscess, and postoperative infections. Prompt and accurate diagnosis of spinal infections, the cornerstone of treatment, requires a high index of suspicion in at-risk patients and the appropriate evaluation to identify the organism and determine the extent of infection. Neurologic function and spinal stability also should be carefully evaluated. The goals of therapy should include eradicating the infection, relieving pain, preserving or restoring neurologic function, improving nutrition, and maintaining spinal stability.

  19. Spinal brucellosis.

    PubMed

    Tali, E Turgut; Koc, A Murat; Oner, A Yusuf

    2015-05-01

    Spinal involvement in human brucellosis is a common condition and a significant cause of morbidity and mortality, particularly in endemic areas, because it is often associated with therapeutic failure. Most chronic brucellosis cases are the result of inadequate treatment of the initial episode. Recognition of spinal brucellosis is challenging. Early diagnosis is important to ensure proper treatment and decrease morbidity and mortality. Radiologic evaluation has gained importance in diagnosis and treatment planning, including interventional procedures and monitoring of all spinal infections.

  20. Kinematic space and wormholes

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-dong; Chen, Bin

    2017-01-01

    The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the SL(2,R) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.

  1. Spinal hemangiomas.

    PubMed

    Healy, M; Herz, D A; Pearl, L

    1983-12-01

    Three new cases of spinal cord compression due to vertebral hemangioma are reported. The clinical presentation, with spinal pain, radicular radiation, and paraparesis, is similar to that of primary lymphoma, metastatic tumor, and disc disease. If the characteristic plain film changes of vertical trabeculations and striations are present, the preoperative diagnosis is facilitated, but in the majority of cases these are not seen. In some instances, vertebral body or pedicle erosion is present. A myelographic epidural block will be seen on further study. Spinal arteriography can prove helpful. Surgical decompression results in marked neurological improvement if intervention takes place before the onset of complete paralysis. The authors recommend that the diagnosis of vertebral hemangioma be considered in the differential diagnosis of epidural spinal cord compression whenever considered in the differential diagnosis of epidural spinal cord compression whenever a primary malignant neoplasm cannot be identified.

  2. Short-term effects of Mulligan mobilization with movement on pain, disability, and kinematic spinal movements in patients with nonspecific low back pain: a randomized placebo-controlled trial.

    PubMed

    Hidalgo, Benjamin; Pitance, Laurent; Hall, Toby; Detrembleur, Christine; Nielens, Henri

    2015-01-01

    The purpose of this clinical study was to compare the immediate- and short-term effects of lumbar Mulligan sustained natural apophyseal glides (SNAGs) on patients with nonspecific low back pain with respect to 2 new kinematic algorithms (KA) for range of motion and speed as well as pain, functional disability, and kinesiophobia. This was a 2-armed randomized placebo-controlled trial. Subjects, blinded to allocation, were randomized to either a real-SNAG group (n = 16) or a sham-SNAG group (n = 16). All patients were treated during a single session of real/sham SNAG (3 × 6 repetitions) to the lumbar spine from a sitting position in a flexion direction. Two new KA from a validated kinematic spine model were used and recorded with an optoelectronic device. Pain at rest and during flexion as well as functional disability and kinesiophobia was recorded by self-reported measures. These outcomes were blindly evaluated before, after treatment, and at 2-week follow-up in both groups. Of 6 variables, 4 demonstrated significant improvement with moderate-to-large effect sizes (ES) in favor of the real-SNAG group: KA-R (P = .014, between-groups ES Cliff δ = -.52), pain at rest and during flexion (visual analog scale, P < .001; ES = -.73/-.75), and functional-disability (Oswestry Disability Index, P = .003 and ES = -.61). Kinesiophobia was not considered to be significant (Tampa scale, P = .03) but presented moderate ES = -.46. Kinematic algorithms for speed was not significantly different between groups (P = .118) with a small ES = -.33. All 6 outcome measures were significantly different (P ≤ .008) during within-group analysis (before and after treatment) only in the real-SNAG group. No serious or moderate adverse events were reported. This study showed evidence that lumbar spine SNAGs had a short-term favorable effect on KA-R, pain, and function in patients with nonspecific low back pain. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc

  3. Treadmill training promotes spinal changes leading to locomotor recovery after partial spinal cord injury in cats.

    PubMed

    Martinez, Marina; Delivet-Mongrain, Hugo; Rossignol, Serge

    2013-06-01

    After a spinal hemisection at thoracic level in cats, the paretic hindlimb progressively recovers locomotion without treadmill training but asymmetries between hindlimbs persist for several weeks and can be seen even after a further complete spinal transection at T13. To promote optimal locomotor recovery after hemisection, such asymmetrical changes need to be corrected. In the present study we determined if the locomotor deficits induced by a spinal hemisection can be corrected by locomotor training and, if so, whether the spinal stepping after the complete spinal cord transection is also more symmetrical. This would indicate that locomotor training in the hemisected period induces efficient changes in the spinal cord itself. Sixteen adult cats were first submitted to a spinal hemisection at T10. One group received 3 wk of treadmill training, whereas the second group did not. Detailed kinematic and electromyographic analyses showed that a 3-wk period of locomotor training was sufficient to improve the quality and symmetry of walking of the hindlimbs. Moreover, after the complete spinal lesion was performed, all the trained cats reexpressed bilateral and symmetrical hindlimb locomotion within 24 h. By contrast, the locomotor pattern of the untrained cats remained asymmetrical, and the hindlimb on the side of the hemisection was still deficient. This study highlights the beneficial role of locomotor training in facilitating bilateral and symmetrical functional plastic changes within the spinal circuitry and in promoting locomotor recovery after an incomplete spinal cord injury.

  4. Effects of load on good morning kinematics and EMG activity.

    PubMed

    Vigotsky, Andrew David; Harper, Erin Nicole; Ryan, David Russell; Contreras, Bret

    2015-01-01

    Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG) activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm) were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM) in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises.

  5. Effects of load on good morning kinematics and EMG activity

    PubMed Central

    Harper, Erin Nicole; Ryan, David Russell; Contreras, Bret

    2015-01-01

    Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG) activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm) were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM) in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises. PMID:25653899

  6. Spinal Infections

    MedlinePlus

    ... spinal infection include fever, chills, headache, neck stiffness, pain, wound redness and tenderness, and wound drainage. In some cases, patients may notice new weakness, numbness or tingling sensations in the arms and/or legs. The symptoms ...

  7. Spinal stenosis

    MedlinePlus

    ... stenosis; Degenerative spine disease; Back pain - spinal stenosis; Low back pain - stenosis; LBP - stenosis ... Resnick DK, Shaffer WO, Loeser JD. Surgery for low back pain: a review of the evidence for an American ...

  8. Spinal tumor

    MedlinePlus

    ... Livingstone; 2014:chap 49. Read More Brain tumor - children Hodgkin lymphoma Metastasis Spinal cord trauma Review Date 8/15/2016 Updated by: Todd Gersten, MD, Hematology/Oncology, Florida Cancer Specialists & Research Institute, Wellington, FL. Review ...

  9. Spinal Fusion

    MedlinePlus

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... bone taken from the patient has a long history of use and results in predictable healing. Autograft ...

  10. Spinal Fusion

    MedlinePlus

    ... concept of fusion is similar to that of welding in industry. Spinal fusion surgery, however, does not ... bone taken from the patient has a long history of use and results in predictable healing. Autograft ...

  11. Spinal Stenosis

    MedlinePlus

    ... and which nerves are affected. In the neck (cervical spine) Numbness or tingling in a hand, arm, foot ... spine imaging with an MRI or CT. Spinal injuries. Car accidents and other trauma can cause dislocations ...

  12. Spinal deformity.

    PubMed

    Bunnell, W P

    1986-12-01

    Spinal deformity is a relatively common disorder, particularly in teenage girls. Early detection is possible by a simple, quick visual inspection that should be a standard part of the routine examination of all preteen and teenage patients. Follow-up observation will reveal those curvatures that are progressive and permit orthotic treatment to prevent further increase in the deformity. Spinal fusion offers correction and stabilization of more severe degrees of scoliosis.

  13. Spinal Cord Tumor

    MedlinePlus

    Spinal cord tumor Overview By Mayo Clinic Staff A spinal tumor is a growth that develops within your ... as vertebral tumors. Tumors that begin within the spinal cord itself are called spinal cord tumors. There are ...

  14. Spinal fusion - series (image)

    MedlinePlus

    ... vertebrae are the bones that make up the spinal column, which surrounds and protects the spinal cord. The ... cushions between vertebrae, and absorb energy while the spinal column flexes, extends, and twists. Nerves from the spinal ...

  15. Why variability facilitates spinal learning.

    PubMed

    Ziegler, Matthias D; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie

    2010-08-11

    Spinal Wistar Hannover rats trained to step bipedally on a treadmill with manual assistance of the hindlimbs have been shown to improve their stepping ability. Given the improvement in motor performance with practice and the ability of the spinal cord circuitry to learn to step more effectively when the mode of training allows variability, we examined why this intrinsic variability is an important factor. Intramuscular EMG electrodes were implanted to monitor and compare the patterns of activation of flexor (tibialis anterior) and extensor (soleus) muscles associated with a fixed-trajectory and assist-as-needed (AAN) step training paradigms in rats after a complete midthoracic (T8-T9) spinal cord transection. Both methods involved a robotic arm attached to each ankle of the rat to provide guidance during stepping. The fixed trajectory allowed little variance between steps, and the AAN provided guidance only when the ankle deviated a specified distance from the programmed trajectory. We hypothesized that an AAN paradigm would impose fewer disruptions of the control strategies intrinsic to the spinal locomotor circuitry compared with a fixed trajectory. Intrathecal injections of quipazine were given to each rat to facilitate stepping. Analysis confirmed that there were more corrections within a fixed-trajectory step cycle and consequently there was less coactivation of agonist and antagonist muscles during the AAN paradigm. These data suggest that some critical level of variation in the specific circuitry activated and the resulting kinematics reflect a fundamental feature of the neural control mechanisms even in a highly repetitive motor task.

  16. Three tooth kinematic coupling

    DOEpatents

    Hale, Layton C.

    2000-01-01

    A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  17. Qualitative Kinematics of Linkages

    DTIC Science & Technology

    1990-05-01

    links and the connections between them, the following algorithm computes an envisionment for that system . lotatioa(P1,P2) - CCV lotatioa(P1,P2) CCV...1988 Appendix A : Slider-Crank Envisionment Each qualitative state consists of a kinematic state representing the orientation of each link, and a...8 +++ 6 -- . f. 6 000 , 7 --0 7 ++0 8 +- -+ > 1 000 1 +0+ 8 000 8 000 7 --0 7 000 8 --- m 8 +++ Appendix B : Drag-Link Envisionment Kinematic State

  18. Spinal Tissue Loading Created by Different Methods of Spinal Manipulative Therapy Application.

    PubMed

    Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Gregory N

    2017-05-01

    Comparative study using robotic replication of spinal manipulative therapy (SMT) vertebral kinematics together with serial dissection. The aim of this study was to quantify loads created in cadaveric spinal tissues arising from three different forms of SMT application. There exist many distinct methods by which to apply SMT. It is not known presently whether different forms of SMT application have different effects on spinal tissues. Should the method of SMT application modulate spinal tissue loading, quantifying this relation may help explain the varied outcomes of SMT in terms of effect and safety. SMT was applied to the third lumbar vertebra in 12 porcine cadavers using three SMT techniques: a clinical device that applies forces through a hand-held instrument (INST), a manual technique of applying SMT clinically (MAN) and a research device that applies parameters of manual SMT through a servo-controlled linear actuator motor (SERVO). The resulting kinematics from each SMT application were tracked optically via indwelling bone pins. The L3/L4 segment was then removed, mounted in a parallel robot and the resulting kinematics from SMT replayed for each SMT application technique. Serial dissection of spinal structures was conducted to quantify loading characteristics of discrete spinal tissues. In terms of load magnitude, SMT application with MAN and SERVO created greater forces than INST in all conditions (P < 0.05). Additionally, MAN and SERVO created comparable posterior forces in the intact specimen, but MAN created greater posterior forces on IVD structures compared to SERVO (P < 0.05). Specific methods of SMT application create unique vertebral loading characteristics, which may help explain the varied outcomes of SMT in terms of effect and safety. N/A.

  19. Spinal Tissue Loading Created by Different Methods of Spinal Manipulative Therapy Application

    PubMed Central

    Funabashi, Martha; Nougarou, François; Descarreaux, Martin; Prasad, Narasimha; Kawchuk, Gregory N.

    2017-01-01

    Study Design. Comparative study using robotic replication of spinal manipulative therapy (SMT) vertebral kinematics together with serial dissection. Objective. The aim of this study was to quantify loads created in cadaveric spinal tissues arising from three different forms of SMT application. Summary of Background Data. There exist many distinct methods by which to apply SMT. It is not known presently whether different forms of SMT application have different effects on spinal tissues. Should the method of SMT application modulate spinal tissue loading, quantifying this relation may help explain the varied outcomes of SMT in terms of effect and safety. Methods. SMT was applied to the third lumbar vertebra in 12 porcine cadavers using three SMT techniques: a clinical device that applies forces through a hand-held instrument (INST), a manual technique of applying SMT clinically (MAN) and a research device that applies parameters of manual SMT through a servo-controlled linear actuator motor (SERVO). The resulting kinematics from each SMT application were tracked optically via indwelling bone pins. The L3/L4 segment was then removed, mounted in a parallel robot and the resulting kinematics from SMT replayed for each SMT application technique. Serial dissection of spinal structures was conducted to quantify loading characteristics of discrete spinal tissues. Results. In terms of load magnitude, SMT application with MAN and SERVO created greater forces than INST in all conditions (P < 0.05). Additionally, MAN and SERVO created comparable posterior forces in the intact specimen, but MAN created greater posterior forces on IVD structures compared to SERVO (P < 0.05). Conclusion. Specific methods of SMT application create unique vertebral loading characteristics, which may help explain the varied outcomes of SMT in terms of effect and safety. Level of Evidence: N/A PMID:28146021

  20. Teaching about Kinematics

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    2009-01-01

    Written by Jim and Jane Nelson, Teaching About Kinematics is the latest AAPT/PTRA resource book. Based on physics education research, the book provides teachers with the resources needed to introduce students to some of the fundamental building blocks of physics. It is a carefully thought-out, step-by-step laboratory-based introduction to the…

  1. Teaching about Kinematics

    ERIC Educational Resources Information Center

    Nelson, Jane Bray; Nelson, Jim

    2009-01-01

    Written by Jim and Jane Nelson, Teaching About Kinematics is the latest AAPT/PTRA resource book. Based on physics education research, the book provides teachers with the resources needed to introduce students to some of the fundamental building blocks of physics. It is a carefully thought-out, step-by-step laboratory-based introduction to the…

  2. Kinematics of Tape Recording.

    ERIC Educational Resources Information Center

    Coleman, J. J.

    1982-01-01

    Describes mathematics of the nonliner relationships between a constant-speed, capstan-driven magnetic tape transport mechanism and a constant-angular-velocity take-up reel. The relationship, derived from the sum of a partial, serves in recognition of a finite tape. Thickness can serve as an example of rotational kinematics. (Author/SK)

  3. Kinematically redundant robot manipulators

    NASA Technical Reports Server (NTRS)

    Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.

    1987-01-01

    Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.

  4. Spinal Osteosarcoma

    PubMed Central

    Katonis, P.; Datsis, G.; Karantanas, A.; Kampouroglou, A.; Lianoudakis, S.; Licoudis, S.; Papoutsopoulou, E.; Alpantaki, K.

    2013-01-01

    Although osteosarcoma represents the second most common primary bone tumor, spinal involvement is rare, accounting for 3%–5% of all osteosarcomas. The most frequent symptom of osteosarcoma is pain, which appears in almost all patients, whereas more than 70% exhibit neurologic deficit. At a molecular level, it is a tumor of great genetic complexity and several genetic disorders have been associated with its appearance. Early diagnosis and careful surgical staging are the most important factors in accomplishing sufficient management. Even though overall prognosis remains poor, en-block tumor removal combined with adjuvant radiotherapy and chemotherapy is currently the treatment of choice. This paper outlines histopathological classification, epidemiology, diagnostic procedures, and current concepts of management of spinal osteosarcoma. PMID:24179411

  5. Spinal Bracing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Dr. Arthur Copes of the Copes Foundation, Baton Rouge, LA, says that 35 percent of the 50 technical reports he received from the NASA/Southern University Industrial Applications Center in Baton Rouge and the Central Industrial Applications Center, Durant, OK, were vital to the development of his Copes Scoliosis Braces, which are custom designed and feature a novel pneumatic bladder that exerts constant corrective pressure to the torso to slowly reduce or eliminate the spinal curve.

  6. Spinal Cord Injury Map

    MedlinePlus

    ... Counseling About Blog Facing Disability Jeff Shannon Donate Spinal Cord Injury Map Loss of function depends on what ... control. Learn more about spinal cord injuries. A spinal cord injury affects the entire family FacingDisability is designed ...

  7. Spinal injury - resources

    MedlinePlus

    Resources - spinal injury ... The following organizations are good resources for information on spinal injury : National Institute of Neurological Disorders and Stroke -- www.ninds.nih.gov/Disorders/All-Disorders/Spinal-Cord- ...

  8. Spinal Cord Injury

    MedlinePlus

    ... Types of illnesses and disabilities Spinal cord injury Spinal cord injury Read advice from Dr. Jeffrey Rabin , a ... your health on a daily basis. Living with spinal cord injury — your questions answered top What are pediatric ...

  9. Spinal surgery -- cervical - series (image)

    MedlinePlus

    The cervical spinal column is made up of vertebral bodies which protect the spinal cord. ... spinal nerves, trauma, and narrowing (stenosis) of the spinal column around the spinal cord. Symptoms of cervical spine ...

  10. Learning about Spinal Muscular Atrophy

    MedlinePlus

    ... Disorders 2003 News Release Fischbeck Group Learning About Spinal Muscular Atrophy What is spinal muscular atrophy? What are the ... Additional Resources for Spinal Muscular Atrophy What is spinal muscular atrophy? Spinal muscular atrophy is a group of inherited ...

  11. A digital videofluoroscopic technique for spine kinematics.

    PubMed

    Breen, A; Allen, R; Morris, A

    1989-01-01

    The kinematic behaviour of the vertebral segments under the influence of spinal injury and other mechanical problems is difficult to quantify in patients. This paper describes the use of a calibration model and human subjects to investigate the accuracy of a method for determining lumbar intervertebral rotations using images digitized from an image intensifier. The main influences were found to be observer error in marking co-ordinates, scaling of the image presented by the computer's monitor, distortion caused by out-of-plane images and loss of image quality as a result of scattered radiation from the soft tissues. The technique may be valuable in the light of its efficiency and low X-ray exposure to patients.

  12. Kinematics of robot manipulators

    SciTech Connect

    McCarthy, J.M.

    1986-01-01

    The theory and methodology of design of general-purpose machines that may be controlled by a computer to perform all the tasks of a set of special-purpose machines is the focus of modern machine design research. These seventeen contributions chronicle recent activity in the analysis and design of robot manipulators that are the prototype of these general-purpose machines. They focus particularly on kinematics, the geometry of rigid-body motion, which is an integral part of machine design theory. The challenges to kinematics researchers presented by general-purpose machines such as the manipulator are leading to new perspectives in the design and control of simpler machines with two, three, and more degrees of freedom. Researchers are rethinking the uses of gear trains, planar mechanisms, adjustable mechanisms, and computer controlled actuators in the design of modern machines.

  13. Kinematic Stirling Engine Performance

    NASA Technical Reports Server (NTRS)

    Tew, J. R. C.

    1986-01-01

    Computer program developed for analyzing thermodynamic characteristics of kinematic Stirling engine. Computes time-varying piston positions, pressures, and gas temperatures in each of gas-control volumes into which engine working space is divided. Engine performance characterized by calculations of power and efficiency (both indicated and brake). Inputs to code are engine geometrical parameter, engine-operating conditions, and indexes that specify various options available.

  14. Spinal Muscular Atrophy

    MedlinePlus

    ... here Home » Disorders » Patient & Caregiver Education » Fact Sheets Spinal Muscular Atrophy Fact Sheet What is spinal muscular atrophy? What ... Where can I get more information? What is spinal muscular atrophy? Spinal muscular atrophy (SMA) is one of several ...

  15. Occupant Kinematics in Laboratory Rollover Tests: ATD Response and Biofidelity.

    PubMed

    Zhang, Qi; Lessley, David L; Riley, Patrick; Toczyski, Jacek; Lockerby, Jack; Foltz, Patrick; Overby, Brian; Seppi, Jeremy; Crandall, Jeff R; Kerrigan, Jason R

    2014-11-01

    Rollover crashes are a serious public health problem in United States, with one third of traffic fatalities occurring in crashes where rollover occurred. While it has been shown that occupant kinematics affect the injury risk in rollover crashes, no anthropomorphic test device (ATD) has yet demonstrated kinematic biofidelity in rollover crashes. Therefore, the primary goal of this study was to assess the kinematic response biofidelity of six ATDs (Hybrid III, Hybrid III Pedestrian, Hybrid III with Pedestrian Pelvis, WorldSID, Polar II and THOR) by comparing them to post mortem human surrogate (PMHS) kinematic response targets published concurrently; and the secondary goal was to evaluate and compare the kinematic response differences among these ATDs. Trajectories (head, T1, T4, T10, L1 and sacrum), spinal segment (head-to-T1, T1-to-T4, T4-T10, T10-L1, and L1-to-sacrum) rotations relative to the rollover buck, and spinal segment extension/compression were calculated from the collected kinematics data from an optical motion tracking system. Response differences among the ATDs were observed mainly due to the different lateral bending stiffness of the spine from their varied architecture, while the additional thoracic joint in Polar II and THOR did not seem to provide more flexion/extension compliance than the other ATDs. In addition, the ATD response data were compared to PMHS response corridors developed from similar tests for assessing ATD biofidelity. All of the ATDs, generally, drifted outboard and upward during the tests similar to the PMHS. However, accompanied with this upward and outward motion, the ATD head and upper torso pitched forward (~10 degrees) while the PMHS' head and upper torso pitching rearward (~10 to ~15 degrees), due to the absence of flexion/extension compliance in the ATD spine. The differences in these pitch motions resulted in a difference of 130 mm to 160 mm in the longitudinal position of the head at 195 degrees of roll angle. Finally

  16. Asymmetric changes in cutaneous reflexes after a partial spinal lesion and retention following spinalization during locomotion in the cat.

    PubMed

    Frigon, Alain; Barrière, Grégory; Leblond, Hugues; Rossignol, Serge

    2009-11-01

    Locomotion involves dynamic interactions between the spinal cord, supraspinal signals, and peripheral sensory inputs. After incomplete spinal cord injury (SCI), interactions are disrupted, and remnant structures must optimize function to maximize locomotion. We investigated if cutaneous reflexes are altered following a unilateral partial spinal lesion and whether changes are retained within spinal circuits after complete spinal transection (i.e., spinalization). Four cats were chronically implanted with recording and stimulating electrodes. Cutaneous reflexes were evoked with cuff electrodes placed around left and right superficial peroneal nerves. Control data, consisting of hindlimb kinematics and electromyography (bursts of muscular activity and cutaneous reflexes), were recorded during treadmill locomotion. After stable control data were achieved (53-67 days), a partial spinal lesion was made at the 10th or 11th thoracic segment (T(10)-T(11)) on the left side. Cats were trained to walk after the partial lesion, and following a recovery period (64-80 days), a spinalization was made at T(13). After the partial lesion, changes in short-latency excitatory (P1) homologous responses between hindlimbs, evoked during swing, were largely asymmetric in direction relative to control values, whereas changes in longer-latency excitatory (P2) and crossed responses were largely symmetric in direction. After spinalization, cats could display hindlimb locomotion within 1 day. Early after spinalization, reflex changes persisted a few days, but over time homologous P1 responses increased symmetrically toward or above control levels. Therefore changes in cutaneous reflexes after the partial lesion and retention following spinalization indicate an important spinal plasticity after incomplete SCI.

  17. Decoding intentions from movement kinematics

    PubMed Central

    Cavallo, Andrea; Koul, Atesh; Ansuini, Caterina; Capozzi, Francesca; Becchio, Cristina

    2016-01-01

    How do we understand the intentions of other people? There has been a longstanding controversy over whether it is possible to understand others’ intentions by simply observing their movements. Here, we show that indeed movement kinematics can form the basis for intention detection. By combining kinematics and psychophysical methods with classification and regression tree (CART) modeling, we found that observers utilized a subset of discriminant kinematic features over the total kinematic pattern in order to detect intention from observation of simple motor acts. Intention discriminability covaried with movement kinematics on a trial-by-trial basis, and was directly related to the expression of discriminative features in the observed movements. These findings demonstrate a definable and measurable relationship between the specific features of observed movements and the ability to discriminate intention, providing quantitative evidence of the significance of movement kinematics for anticipating others’ intentional actions. PMID:27845434

  18. Shot-put kinematics

    NASA Astrophysics Data System (ADS)

    DeLuca, R.

    2005-11-01

    The problem of the optimum throw in the shot-put discipline is analysed by relaxing the assumption that the height H, from which the athlete releases the shot, does not depend on the angle θ which the arm of the putter makes with the horizontal axis. In this context, the kinematics of the shot-put is studied and results are compared with the traditional analysis, which considers the height H, the angle θ and the modulus V0 of the initial velocity of the metal sphere as independent parameters.

  19. Variability in static alignment and kinematics for kinematically aligned TKA.

    PubMed

    Theodore, Willy; Twiggs, Joshua; Kolos, Elizabeth; Roe, Justin; Fritsch, Brett; Dickison, David; Liu, David; Salmon, Lucy; Miles, Brad; Howell, Stephen

    2017-08-01

    Total knee arthroplasty (TKA) significantly improves pain and restores a considerable degree of function. However, improvements are needed to increase patient satisfaction and restore kinematics to allow more physically demanding activities that active patients consider important. The aim of our study was to compare the alignment and motion of kinematically and mechanically aligned TKAs. A patient specific musculoskeletal computer simulation was used to compare the tibio-femoral and patello-femoral kinematics between mechanically aligned and kinematically aligned TKA in 20 patients. When kinematically aligned, femoral components on average resulted in more valgus alignment to the mechanical axis and internally rotated to surgical transepicondylar axis whereas tibia component on average resulted in more varus alignment to the mechanical axis and internally rotated to tibial AP rotational axis. With kinematic alignment, tibio-femoral motion displayed greater tibial external rotation and lateral femoral flexion facet centre (FFC) translation with knee flexion than mechanical aligned TKA. At the patellofemoral joint, patella lateral shift of kinematically aligned TKA plateaued after 20 to 30° flexion while in mechanically aligned TKA it decreased continuously through the whole range of motion. Kinematic alignment resulted in greater variation than mechanical alignment for all tibio-femoral and patello-femoral motion. Kinematic alignment places TKA components patient specific alignment which depends on the preoperative state of the knee resulting in greater variation in kinematics. The use of computational models has the potential to predict which alignment based on native alignment, kinematic or mechanical, could improve knee function for patient's undergoing TKA. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Kinematics of Strong Discontinuities

    NASA Technical Reports Server (NTRS)

    Peterson, K.; Nguyen, G.; Sulsky, D.

    2006-01-01

    Synthetic Aperture Radar (SAR) provides a detailed view of the Arctic ice cover. When processed with the RADARSAT Geophysical Processor System (RGPS), it provides estimates of sea ice motion and deformation over large regions of the Arctic for extended periods of time. The deformation is dominated by the appearance of linear kinematic features that have been associated with the presence of leads. The RGPS deformation products are based on the assumption that the displacement and velocity are smooth functions of the spatial coordinates. However, if the dominant deformation of multiyear ice results from the opening, closing and shearing of leads, then the displacement and velocity can be discontinuous. This presentation discusses the kinematics associated with strong discontinuities that describe possible jumps in displacement or velocity. Ice motion from SAR data are analyzed using this framework. It is assumed that RGPS cells deform due to the presence of a lead. The lead orientation is calculated to optimally account for the observed deformation. It is shown that almost all observed deformation can be represented by lead opening and shearing. The procedure used to reprocess motion data to account for leads will be described and applied to regions of the Beaufort Sea. The procedure not only provides a new view of ice deformation, it can be used to obtain information about the presence of leads for initialization and/or validation of numerical simulations.

  1. O-star kinematics

    SciTech Connect

    Karimova, D.K.; Pavlovskaya, E.D.

    1984-01-01

    Proper motions determined by the authors are utilized to study the kinematics of 79 O-type stars at distance r< or =2.5 kpc. The sample is divided into two groups, having space-velocity dispersions tau/sub I/roughly-equal10 km/sec, sigma/sub II/roughly-equal35 km/sec. Solutions for the velocity-field parameters for group I yield a galactic angular rotation speed ..omega../sub 0/ = 24.9 km sec/sup -1/ kpc/sup -1/ at the sun (for R/sub 0/ = 10.0 kpc) and an Oort constant A = 12.2 km sec/sup -1/ kpc/sup -1/. Most of the O stars exhibit a small z-velocity directed away from the galactic plane. The velocity-ellipsoid parameters and box-orbit elements are calculated.

  2. Kinematics in CTB 80

    NASA Astrophysics Data System (ADS)

    Greidanus, H.; Strom, R. G.

    1990-12-01

    This paper presents data describing the radial kinematics of the core of the complex object CTB 80, believed to be a supernova remnant. The radial velocity of the CTB 80 was found to extend between -130 and 95 km/sec (LSR), with the emission being brightest and most concentrated in filaments around -30 km/sec, and weaker at higher velocities. The character of the position-velocity diagrams was found to be consistent with models of expanding ellipsoidal shells. A comparison with these models indicated a short dimension for the core along the line of sight, and favors a momentum-driven expansion. This type of expansion is indicative of a neutron star excitation for the core of CTB 80, as opposed to a normal supernova shock.

  3. Rattlesnake strike behavior: kinematics

    PubMed

    Kardong; v

    1998-03-01

    The predatory behavior of rattlesnakes includes many distinctive preparatory phases leading to an extremely rapid strike, during which venom is injected. The rodent prey is then rapidly released, removing the snake's head from retaliation by the prey. The quick action of the venom makes possible the recovery of the dispatched prey during the ensuing poststrike period. The strike is usually completed in less than 0.5 s, placing a premium on an accurate strike that produces no significant errors in fang placement that could result in poor envenomation and subsequent loss of the prey. To clarify the basis for effective strike performance, we examined the basic kinematics of the rapid strike using high-speed film analysis. We scored numerous strike variables. Four major results were obtained. (1) Neurosensory control of the strike is based primarily upon sensory inputs via the eyes and facial pits to launch the strike, and upon tactile stimuli after contact. Correction for errors in targeting occurs not by a change in strike trajectory, but by fang repositioning after the jaws have made contact with the prey. (2) The rattlesnake strike is based upon great versatility and variation in recruitment of body segments and body postures. (3) Forces generated during acceleration of the head are transferred to posterior body sections to decelerate the head before contact with the prey, thereby reducing impact forces upon the snake's jaws. (4) Body acceleration is based on two patterns of body displacement, one in which acute sections of the body open like a gate, the other in which body segments flow around postural curves similar to movements seen during locomotion. There is one major implication of these results: recruitment of body segments, launch postures and kinematic features of the strike may be quite varied from strike to strike, but the overall predatory success of each strike by a rattlesnake is very consistent.

  4. Does total disc arthroplasty in C3/C4-segments change the kinematic features of axial rotation?

    PubMed

    Wachowski, Martin Michael; Wagner, Markus; Weiland, Jan; Dörner, Jochen; Raab, Björn Werner; Dathe, Henning; Gezzi, Riccardo; Kubein-Meesenburg, Dietmar; Nägerl, Hans

    2013-06-21

    We analyze how kinematic properties of C3/C4-segments are modified after total disc arthroplasty (TDA) with PRESTIGE(®) and BRYAN(®) Cervical Discs. The measurements were focused on small ranges of axial rotation (<0.8°) in order to investigate physiologic rotations, which frequently occur in vivo. Eight human segments were stimulated by triangularly varying, axially directed torque. By using a 6D-measuring device with high resolution the response of segmental motion was characterised by the instantaneous helical axis (IHA). Position, direction, and migration rate of the IHA were measured before and after TDA. External parameters: constant axially directed pre-load, constant flexional/extensional and lateral-flexional pre-torque. The applied axial torque and IHA-direction did not run parallel. The IHA-direction was found to be rotated backwards and largely independent of the rotational angle, amount of axial pre-load, size of pre-torque, and TDA. In the intact segments pre-flexion/extension hardly influenced IHA-positions. After TDA, IHA-position was shifted backwards significantly (BRYAN-TDA: ≈8mm; PRESTIGE-TDA: ≈6mm) and in some segments laterally as well. Furthermore it was significantly shifted ventrally by pre-flexion and dorsally by pre-extension. The rate of lateral IHA-migration increased significantly after BRYAN-TDA during rightward or leftward rotations. In conclusion after the TDA the IHA-positions shifted backwards with significant increase in variability of the IHA-positions after the BRYAN-TDA more than in PRESTIGE-TDA. The TDA-procedure altered the segment kinematics considerably. TDA causes additional translations of the vertebrae, which superimpose the kinematics of the adjacent levels. The occurrence of adjacent level disease (ALD) is not excluded after the TDA for kinematical reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input

    PubMed Central

    Courtine, Grégoire; Gerasimenko, Yury; van den Brand, Rubia; Yew, Aileen; Musienko, Pavel; Zhong, Hui; Song, Bingbing; Ao, Yan; Ichiyama, Ronaldo M; Lavrov, Igor; Roy, Roland R; Sofroniew, Michael V; Edgerton, V Reggie

    2010-01-01

    After complete spinal cord transections that removed all supraspinal inputs in adult rats, combinations of serotonergic agonists and epidural electrical stimulation were able to acutely transform spinal networks from nonfunctional to highly functional and adaptive states as early as 1 week after injury. Using kinematics, physiological and anatomical analyses, we found that these interventions could recruit specific populations of spinal circuits, refine their control via sensory input and functionally remodel these locomotor pathways when combined with training. The emergence of these new functional states enabled full weight-bearing treadmill locomotion in paralyzed rats that was almost indistinguishable from voluntary stepping. We propose that, in the absence of supraspinal input, spinal locomotion can emerge from a combination of central pattern-generating capability and the ability of these spinal circuits to use sensory afferent input to control stepping. These findings provide a strategy by which individuals with spinal cord injuries could regain substantial levels of motor control. PMID:19767747

  6. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input.

    PubMed

    Courtine, Grégoire; Gerasimenko, Yury; van den Brand, Rubia; Yew, Aileen; Musienko, Pavel; Zhong, Hui; Song, Bingbing; Ao, Yan; Ichiyama, Ronaldo M; Lavrov, Igor; Roy, Roland R; Sofroniew, Michael V; Edgerton, V Reggie

    2009-10-01

    After complete spinal cord transections that removed all supraspinal inputs in adult rats, combinations of serotonergic agonists and epidural electrical stimulation were able to acutely transform spinal networks from nonfunctional to highly functional and adaptive states as early as 1 week after injury. Using kinematics, physiological and anatomical analyses, we found that these interventions could recruit specific populations of spinal circuits, refine their control via sensory input and functionally remodel these locomotor pathways when combined with training. The emergence of these new functional states enabled full weight-bearing treadmill locomotion in paralyzed rats that was almost indistinguishable from voluntary stepping. We propose that, in the absence of supraspinal input, spinal locomotion can emerge from a combination of central pattern-generating capability and the ability of these spinal circuits to use sensory afferent input to control stepping. These findings provide a strategy by which individuals with spinal cord injuries could regain substantial levels of motor control.

  7. Tethered Spinal Cord Syndrome

    MedlinePlus

    ... Disparities Neural Interfaces Parkinson's Disease Spinal Cord Injury Stem Cells Traumatic Brain Injury Trans-Agency Activities Interagency Research ... Disparities Neural Interfaces Parkinson's Disease Spinal Cord Injury Stem Cells Traumatic Brain Injury Trans-Agency Activities Interagency Research ...

  8. Spinal muscular atrophy

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000996.htm Spinal muscular atrophy To use the sharing features on this page, please enable JavaScript. Spinal muscular atrophy is a group of disorders of the motor ...

  9. Spinal Muscular Atrophy (SMA)

    MedlinePlus

    ... Habits for TV, Video Games, and the Internet Spinal Muscular Atrophy (SMA) KidsHealth > For Parents > Spinal Muscular Atrophy (SMA) Print ... treatment for the disease's most troubling symptoms. About SMA Normally, healthy nerve cells in the brain called ...

  10. Spinal Cord Diseases

    MedlinePlus

    ... Degenerative diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy Symptoms vary but might include pain, numbness, loss of sensation and muscle weakness. These symptoms can occur around the spinal cord, and also in other areas such as ...

  11. Spinal Cord Injuries

    MedlinePlus

    ... your body and your brain. A spinal cord injury disrupts the signals. Spinal cord injuries usually begin with a blow that fractures or ... bone disks that make up your spine. Most injuries don't cut through your spinal cord. Instead, ...

  12. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  13. Factors affecting the incidence of symptomatic adjacent-level disease in cervical spine after total disc arthroplasty: 2- to 4-year follow-up of 3 prospective randomized trials.

    PubMed

    Nunley, Pierce D; Jawahar, Ajay; Kerr, Eubulus J; Gordon, Charles J; Cavanaugh, David A; Birdsong, Elisa M; Stocks, Marolyn; Danielson, Guy

    2012-03-15

    Prospective randomized clinical trials. To compare the outcome data with respect to clinical success rates and incidence of adjacent level disease (ALD) in patients after total disc arthroplasty (TDA) or anterior cervical fusion (ACDF) for 1- and 2-level cervical disc disease. Previously published studies have provided evidence that ACDF procedure for cervical degenerative disc disease (DDD) may increase the stress on the nonoperated adjacent cervical segments, thus possibly increasing the risk of degeneration at these levels. The theoretical assumption that TDA may reduce the incidence of future ALD by preserving motion at the affected segments has, however, never been validated by clinical evidence. One hundred seventy patients with established symptomatic cervical disc disease at 1 or 2 levels participated in 3 prospective randomized clinical trials at 2 institutions. Participating subjects were randomized to receive TDA (treatment; n = 113) or ACDF (control; n = 57) by 6 independent investigating surgeons. Visual analogue pain scores (0-100), Neck Disability Index, neurological examination, and cervical spine radiographs were collected at enrollment and then 6 weeks and 3, 6, 12, 24, 36, and 48 months after surgery. Patients with persistent symptoms during the follow-up period were investigated for adjacent segment disease (ASD) with computed tomography/magnetic resonance imaging of the cervical spine, neurophysiology, and subsequent active interventions. At the median follow-up of 42 months (range: 28-54 months), 9 (14.3%) ACDF and 19 (16.8%) TDA patients developed and were actively treated for ASD. Osteopenia dust energy x-ray absorptiometry T scores of -1.5 to -2.4) (P = 0.04; 95% confidence interval [CI]: 0.007-0.223) and concurrent lumbar degenerative disease (P = 0.02; 95% CI: 0.003-0.196) significantly increased the risk of ASD. The risk of developing adjacent segment degeneration was equivalent at median 38 months after both ACDF and TDA procedures in

  14. South China Sea kinematics

    NASA Astrophysics Data System (ADS)

    Sibuet, J. C.; Gao, J.; Zhao, M.; Wu, J.; Ding, W.; Yeh, Y. C.; Lee, C. S.

    2016-12-01

    Magnetic modeling shows that the age of the youngest South China Sea (SCS) oceanic crust is controversial (e.g. 15.5 Ma (Briais et al., JGR 1993) and 20.5 Ma (Barckhausen et al., MPG 2014)). Recently, Sibuet et al. (Tectonophysics 2016) pointed out that post-spreading magmatic activity ( 8-13 Ma) largely masks the spreading fabric, in particular near the previously identified E-W portion of the extinct ridge axis of the East sub-basin. Their compilation of available swath bathymetric data shows that, if post-spreading volcanics hide the seafloor spreading magnetic fabric mostly along and near the extinct spreading axis, the whole SCS is globally characterized by rift directions following three directions: N055°in the youngest portion of the SCS, N065° and N085° in the oldest portions of the SCS, suggesting the extinct ridge axis is N055° trending instead of E-W. We present an updated version of the whole SCS structural sketch based on previously published swath bathymetric trends and new detailed magnetic lineations trends compiled from an extremely dense set of magnetic data. The new structural sketch shows: - The distribution of conjugate kinematic domains, - The early opening of the NW and East sub-basins, before a jump of the rift axis, - A second ridge jump in the East basin, - The different expressions of the post-spreading magmatism in the East and SW sub-basins. In the East sub-basin, crustal magmatic intrusions led to the formation of extrusive basalts associated with the presence of numerous volcanoes (Wang et al., Geological Journal 2016). In the SW sub-basin, crustal magmatic intrusions deformed and uplifted the already formed oceanic crust and oldest overlying sediments, resulting in the formation of a double post-spreading ridge belt previously identified as the shoulders of the extinct spreading rift axis. This preliminary work will be used to identify magnetic lineations not polluted by the post-spreading magmatism. The unfolded Manila trench

  15. Occupant Kinematics in Laboratory Rollover Tests: PMHS Response.

    PubMed

    Lessley, David J; Riley, Patrick; Zhang, Qi; Foltz, Patrick; Overby, Brian; Heltzel, Sara; Sochor, Mark; Crandall, Jeff; Kerrigan, Jason R

    2014-11-01

    The objective of the current study was to characterize the whole-body kinematic response of restrained PMHS in controlled laboratory rollover tests. A dynamic rollover test system (DRoTS) and a parametric vehicle buck were used to conduct 36 rollover tests on four adult male PMHS with varied test conditions to study occupant kinematics during the rollover event. The DRoTS was used to drop/catch and rotate the test buck, which replicated the occupant compartment of a typical mid-sized SUV, around its center of gravity without roof-to-ground contact. The studied test conditions included a quasi-static inversion (4 tests), an inverted drop and catch that produced a 3 g vertical deceleration (4 tests), a pure dynamic roll at 360 degrees/second (11 tests), and a roll with a superimposed drop and catch produced vertical deceleration (17 tests). Each PMHS was restrained with a three-point belt and was tested in both leading-side and trailing-side front-row seating positions. Whole-body kinematics were measured using a 3D motion capture system that quantified occupant displacement relative to the vehicle buck for the X-axis (longitudinal), Y-axis (lateral), and Z-axis (vertical) directions. Additionally the spine was divided into five segments to describe intrasegmental kinematics of the spine, including segment rotations as well as spinal extension and compression. The reported data represent the most complete set of kinematic response targets for a restrained occupant in a variety of dynamic rollover conditions, and are immediately useful for efforts to evaluate and improve existing ATDs and computational models for use in the rollover crash environment.

  16. CME Kinematics and Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, C.-H.; Gallagher, P. T.

    The goal of this study is to investigate the driving mechanisms of CMEs and to infer the magnetic field properties at the onset of the instability. We use EIT 195 Å images and LASCO white-light coronagraph data of a CME event that occurred on 17 December 2006. It was a long-duration event, and was associated with an occulted C2.1 class flare. To determine the driving mechanism, we quantitatively and qualitatively compared the observationally obtained kinematic evolution with that predicted by three CME models: the breakout model (BO, see Antiochos et al. 1999; Lynch et al. 2008; DeVore and Antiochos 2008), the catastrophe model (CM, see Priest and Forbes 2000), and the toroidal instability model (TI, see Chen 1989; Kliem and Török 2006). Our results indicate that this CME is best represented by the CM model. We infer that, at the onset of the instability, the Alfvén speed is approximately 120 km s-1 and the height of the flux rope is roughly 100-200Mm. These parameter values are related to the magnetic environment and the loop geometry and can be used to infer the magnetic condition at the onset of the eruption.We intend to submit the full analysis to A&A.

  17. Treadmill Kinematics Baseline Data Collection

    NASA Image and Video Library

    2011-05-12

    PHOTO DATE: 5-12-11 LOCATION: Building 261 - Room 138 SUBJECT: Expedition 29 Preflight Training with Dan Burbank during Treadmill Kinematics Baseline Data Collection. WORK ORDER: 2011-1214 PHOTOGRAPHER: Lauren Harnett

  18. Tensor networks from kinematic space

    SciTech Connect

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Sully, James

    2016-07-20

    We point out that the MERA network for the ground state of a 1+1-dimensional conformal field theory has the same structural features as kinematic space — the geometry of CFT intervals. In holographic theories kinematic space becomes identified with the space of bulk geodesics studied in integral geometry. We argue that in these settings MERA is best viewed as a discretization of the space of bulk geodesics rather than of the bulk geometry itself. As a test of this kinematic proposal, we compare the MERA representation of the thermofield-double state with the space of geodesics in the two-sided BTZ geometry, obtaining a detailed agreement which includes the entwinement sector. In conclusion, we discuss how the kinematic proposal can be extended to excited states by generalizing MERA to a broader class of compression networks.

  19. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory. Previously announced in STAR as N82-32733

  20. Tensor networks from kinematic space

    DOE PAGES

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...

    2016-07-20

    We point out that the MERA network for the ground state of a 1+1-dimensional conformal field theory has the same structural features as kinematic space — the geometry of CFT intervals. In holographic theories kinematic space becomes identified with the space of bulk geodesics studied in integral geometry. We argue that in these settings MERA is best viewed as a discretization of the space of bulk geodesics rather than of the bulk geometry itself. As a test of this kinematic proposal, we compare the MERA representation of the thermofield-double state with the space of geodesics in the two-sided BTZ geometry,more » obtaining a detailed agreement which includes the entwinement sector. In conclusion, we discuss how the kinematic proposal can be extended to excited states by generalizing MERA to a broader class of compression networks.« less

  1. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1982-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory.

  2. Kinematic precision of gear trains

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Goldrich, R. N.; Coy, J. J.; Zaretsky, E. V.

    1983-01-01

    Kinematic precision is affected by errors which are the result of either intentional adjustments or accidental defects in manufacturing and assembly of gear trains. A method for the determination of kinematic precision of gear trains is described. The method is based on the exact kinematic relations for the contact point motions of the gear tooth surfaces under the influence of errors. An approximate method is also explained. Example applications of the general approximate methods are demonstrated for gear trains consisting of involute (spur and helical) gears, circular arc (Wildhaber-Novikov) gears, and spiral bevel gears. Gear noise measurements from a helicopter transmission are presented and discussed with relation to the kinematic precision theory. Previously announced in STAR as N82-32733

  3. Improved kinematic options in ALEGRA.

    SciTech Connect

    Farnsworth, Grant V.; Robinson, Allen Conrad

    2003-12-01

    Algorithms for higher order accuracy modeling of kinematic behavior within the ALEGRA framework are presented. These techniques improve the behavior of the code when kinematic errors are found, ensure orthonormality of the rotation tensor at each time step, and increase the accuracy of the Lagrangian stretch and rotation tensor update algorithm. The implementation of these improvements in ALEGRA is described. A short discussion of issues related to improving the accuracy of the stress update procedures is also included.

  4. Aero-optimum hovering kinematics.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2015-08-07

    Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible.

  5. Causes and control of spinal cord injury in automotive crashes.

    PubMed

    Viano, D C

    1992-01-01

    This paper provides a history of automotive safety and a review of biomedical research on human tolerance and occupant protection. It discusses current understanding of body kinematics and impact biomechanics that result in neck injury. Perspective is given on the linkage between mechanical forces that are the cause and physiologic disruptions that are the consequence of spinal cord injury. The public health aspects of injury and disability are discussed as well as the need for injury prevention.

  6. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis.

    PubMed

    Mahaudens, P; Banse, X; Mousny, M; Detrembleur, C

    2009-04-01

    Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. Consequently, AIS can modify human locomotion. Very few studies have investigated a simple activity like walking in a cohort of well-defined untreated patients with scoliosis. The first goal of this study is to evaluate the effects of scoliosis and scoliosis severity on kinematic and electromyographic (EMG) gait variables compared to an able-bodied population. The second goal is to look for any asymmetry in these parameters during walking. Thirteen healthy girls and 41 females with untreated AIS, with left thoracolumbar or lumbar primary structural curves were assessed. AIS patients were divided into three clinical subgroups (group 1 < 20 degrees, group 2 between 20 and 40 degrees, and group 3 > 40 degrees). Gait analysis included synchronous bilateral kinematic and EMG measurements. The subjects walked on a treadmill at 4 km/h (comfortable speed). The tridimensional (3D) shoulder, pelvis, and lower limb motions were measured using 22 reflective markers tracked by four infrared cameras. The EMG timing activity was measured using bipolar surface electrodes on quadratus lumborum, erector spinae, gluteus medius, rectus femoris, semitendinosus, tibialis anterior, and gastrocnemius muscles. Statistical comparisons (ANOVA) were performed across groups and sides for kinematic and EMG parameters. The step length was reduced in AIS compared to normal subjects (7% less). Frontal shoulder, pelvis, and hip motion and transversal hip motion were reduced in scoliosis patients (respectively, 21, 27, 28, and 22% less). The EMG recording during walking showed that the quadratus lumborum, erector spinae, gluteus medius, and semitendinosus muscles contracted during a longer part of the stride in scoliotic patients (46% of the stride) compared with normal subjects (35% of the stride). There was no significant difference between scoliosis groups 1

  7. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis

    PubMed Central

    Banse, X.; Mousny, M.; Detrembleur, C.

    2009-01-01

    Adolescent idiopathic scoliosis (AIS) is a progressive growth disease that affects spinal anatomy, mobility, and left-right trunk symmetry. Consequently, AIS can modify human locomotion. Very few studies have investigated a simple activity like walking in a cohort of well-defined untreated patients with scoliosis. The first goal of this study is to evaluate the effects of scoliosis and scoliosis severity on kinematic and electromyographic (EMG) gait variables compared to an able-bodied population. The second goal is to look for any asymmetry in these parameters during walking. Thirteen healthy girls and 41 females with untreated AIS, with left thoracolumbar or lumbar primary structural curves were assessed. AIS patients were divided into three clinical subgroups (group 1 < 20°, group 2 between 20 and 40°, and group 3 > 40°). Gait analysis included synchronous bilateral kinematic and EMG measurements. The subjects walked on a treadmill at 4 km/h (comfortable speed). The tridimensional (3D) shoulder, pelvis, and lower limb motions were measured using 22 reflective markers tracked by four infrared cameras. The EMG timing activity was measured using bipolar surface electrodes on quadratus lumborum, erector spinae, gluteus medius, rectus femoris, semitendinosus, tibialis anterior, and gastrocnemius muscles. Statistical comparisons (ANOVA) were performed across groups and sides for kinematic and EMG parameters. The step length was reduced in AIS compared to normal subjects (7% less). Frontal shoulder, pelvis, and hip motion and transversal hip motion were reduced in scoliosis patients (respectively, 21, 27, 28, and 22% less). The EMG recording during walking showed that the quadratus lumborum, erector spinae, gluteus medius, and semitendinosus muscles contracted during a longer part of the stride in scoliotic patients (46% of the stride) compared with normal subjects (35% of the stride). There was no significant difference between scoliosis groups 1, 2, and 3 for

  8. Kinematic comparison of Hybrid II test dummy to wheelchair user.

    PubMed

    Dvorznak, M J; Cooper, R A; O'Connor, T J; Boninger, M L; Fitzgerald, S G

    2001-05-01

    Hybrid test dummies provide a safe alternative to human subjects when investigating mechanisms of wheelchair tips and falls. The data that researchers acquire from these test dummies are more useful if the test dummy represents the population being studied. The goal of this study was to measure the validity of a 50th percentile Hybrid II test dummy (HTD) as an accurate representation of a wheelchair user. A test pilot with T8 paraplegia due to traumatic spinal cord injury served as a basis for validation. Simple modifications were made to the HTD to approximate the trunk stability characteristics of a person with a spinal cord injury. An HTD, a modified HTD, and a human test pilot were seated in an electric-powered wheelchair and several braking tests performed. The standard HTD underestimated the kinematics when compared to the test pilot. The modified HTD had less trunk stability than the standard HTD during all braking methods. The modified HTD and wheelchair test pilot had similar trunk stability characteristics during kill switch and joystick full-reverse braking conditions. The modified HTD is a satisfactory representation of a wheelchair user with a spinal cord injury; however, the modified test dummy underestimates the trunk dynamics during the less extreme joystick release braking. Work should continue on the development of a low-speed, low-impact test dummy that emulates the wheelchair user population.

  9. Influence of Fatigue in Neuromuscular Control of Spinal Stability

    PubMed Central

    Granata, Kevin P.; Slota, Greg P.; Wilson, Sara E.

    2006-01-01

    Lifting-induced fatigue may influence neuromuscular control of spinal stability. Stability is primarily controlled by muscle recruitment, active muscle stiffness, and reflex response. Fatigue has been observed to affect each of these neuromuscular parameters and may therefore affect spinal stability. A biomechanical model of spinal stability was implemented to evaluate the effects of fatigue on spinal stability. The model included a 6-degree-of-freedom representation of the spine controlled by 12 deformable muscles from which muscle recruitment was determined to simultaneously achieve equilibrium and stability. Fatigue-induced reduction in active muscle stiffness necessitated increased antagonistic cocontraction to maintain stability resulting in increased spinal compression with fatigue. Fatigueinduced reduction in force-generating capacity limited the feasible set of muscle recruitment patterns, thereby restricting the estimated stability of the spine. Electromyographic and trunk kinematics from 21 healthy participants were recorded during sudden-load trials in fatigued and unfatigued states. Empirical data supported the model predictions, demonstrating increased antagonistic cocontraction during fatigued exertions. Results suggest that biomechanical factors including spinal load and stability should be considered when performing ergonomic assessments of fatiguing lifting tasks. Potential applications of this research include a biomechanical tool for the design of administrative ergonomic controls in manual materials handling industries. PMID:15151156

  10. Acceleration of clinician hand movements during spinal manipulative therapy.

    PubMed

    Gelley, Geoffrey M; Passmore, Steven R; MacNeil, Brian J

    2015-04-01

    This study used an observational design to examine the kinematics of spinal manipulative therapy (SMT) by determining the acceleration characteristics of the manipulative input at the cervical, thoracic, and lumbar spinal regions. Studies of SMT have been restricted to measuring the forces that result from the manipulative input. Several studies have indicated the rate of force development is a key parameter of clinically delivered SMT. Despite this, the movement strategies employed during SMT, including acceleration, have not been directly measured. Participants (n = 29) were recruited from a private practice chiropractic clinic. A wireless accelerometer attached to the clinician's hand was used to characterize the thrust phase of the SMT treatments. Significant differences were found across each spinal region for acceleration amplitude parameters (p < 0.0001). Post-hoc analysis indicated that amplitudes significantly increased in order from thoracic to cervical to lumbar regions (p < 0.0001). Spinal level was also a significant factor in determining the temporal parameters of hand acceleration during SMT (p < 0.0005). This study provides a description of the acceleration properties of clinically delivered SMT. Consistent with that reported for SMT forces, acceleration amplitudes varied significantly across spinal regions with relatively little differences in acceleration latencies. Notably, acceleration amplitudes and latencies were not associated with each other within spinal regions. These findings indicate that changes in acceleration amplitude, rather than latency, are used to tailor SMT to individuals.

  11. Kinematics of the unrestrained vehicle occupants in side-impact crashes.

    PubMed

    Riley, P O; Arregui-Dalmases, C; Purtserov, S; Parent, D; Lessley, D J; Shaw, G; Crandall, J; Takayama, Shinichi; Ono, Koshiro; Kamiji, Koichi; Yasuki, Tsuyoshi

    2012-01-01

    A test series involving direct right-side impact of a moving wall on unsupported, unrestrained cadavers with no arms was undertaken to better understand human kinematics and injury mechanisms during side impact at realistic speeds. The tests conducted provided a unique opportunity for a detailed analysis of the kinematics resulting from side impact. Specifically, this study evaluated the 3-dimensional (3D) kinematics of 3 unrestrained male cadavers subjected to lateral impact by a multi-element load wall carried by a pneumatically propelled rail-mounted sled reproducing a conceptual side crash impact. Three translations and 3 rotations characterize the movement of a solid body in the space, the 6 degrees of freedom (6DoF) kinematics of 15 bone segments were obtained from the 3D marker motions and computed tomography (CT)-defined relationships between the maker array mounts and the bones. The moving wall initially made contact with the lateral aspect of the pelvis, which initiated lateral motion of the spinal segments beginning with the pelvis and moving sequentially up through the lumbar spine to the thorax. Analyzing the 6DoF motions kinematics of the ribs and sternum followed right shoulder contact with the wall. Overall thoracic motion was assessed by combining the thoracic bone segments as a single rigid body. The kinematic data presented in this research provides quantified subject responses and boundary condition interactions that are currently unavailable for lateral impact. Copyright © 2012 Taylor & Francis Group, LLC

  12. How the bending kinematics of swimming lampreys build negative pressure fields for suction thrust.

    PubMed

    Gemmell, Brad J; Fogerson, Stephanie M; Costello, John H; Morgan, Jennifer R; Dabiri, John O; Colin, Sean P

    2016-12-15

    Swimming animals commonly bend their bodies to generate thrust. For undulating animals such as eels and lampreys, their bodies bend in the form of waves that travel from head to tail. These kinematics accelerate the flow of adjacent fluids, which alters the pressure field in a manner that generates thrust. We used a comparative approach to evaluate the cause-and-effect relationships in this process by quantifying the hydrodynamic effects of body kinematics at the body-fluid interface of the lamprey, Petromyzon marinus, during steady-state swimming. We compared the kinematics and hydrodynamics of healthy control lampreys to lampreys whose spinal cord had been transected mid-body, resulting in passive kinematics along the posterior half of their body. Using high-speed particle image velocimetry (PIV) and a method for quantifying pressure fields, we detail how the active bending kinematics of the control lampreys were crucial for setting up strong negative pressure fields (relative to ambient fields) that generated high-thrust regions at the bends as they traveled all along the body. The passive kinematics of the transected lamprey were only able to generate significant thrust at the tail, relying on positive pressure fields. These different pressure and thrust scenarios are due to differences in how active versus passive body waves generated and controlled vorticity. This demonstrates why it is more effective for undulating lampreys to pull, rather than push, themselves through the fluid.

  13. Lumbar muscle inflammation alters spinally mediated locomotor recovery induced by training in a mouse model of complete spinal cord injury.

    PubMed

    Jeffrey-Gauthier, Renaud; Piché, Mathieu; Leblond, Hugues

    2017-09-17

    Locomotor networks after spinal cord injury (SCI) are shaped by training-activated proprioceptive and cutaneous inputs. Nociception from injured tissues may alter these changes but has largely been overlooked. The objective of the present study was to ascertain whether lumbar muscle inflammation hinders locomotion recovery in a mouse model of complete SCI. Lower limb kinematics during treadmill training was assessed before and after complete SCI at T8 (2, 7, 14, 21 and 28days post-injury). Locomotor recovery was compared in 4 groups of CD1 mice: control spinal mice; spinal mice with daily locomotor training; spinal mice with lumbar muscle inflammation (Complete Freund's Adjuvant (CFA) injection); and spinal mice with locomotor training and CFA. On day 28, H-reflex excitability and its inhibition at high-frequency stimulation (frequency-dependent depression: FDD) were compared between groups, all of which showed locomotor recovery. Recovery was enhanced by training, whereas lumbar muscle inflammation hindered these effects (knee angular excursion and paw drag: p's<0.05). In addition, lumbar muscle inflammation impaired hind limb coupling during locomotion (p<0.05) throughout recovery. Also, H-reflex disinhibition was prevented by training, with or without CFA injection (p's<0.05). Altogether, these results indicate that back muscle inflammation modulates spinally mediated locomotor recovery in mice with complete SCI, in part, by reducing adaptive changes induced by training. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Management of Spinal Meningiomas.

    PubMed

    Ravindra, Vijay M; Schmidt, Meic H

    2016-04-01

    Spinal meningiomas are the most common spinal tumors encountered in adults, and account for 6.5% of all craniospinal tumors. The treatment for these lesions is primarily surgical, but emerging modalities may include chemotherapy and radiosurgery. In this article, the current management of spinal meningiomas and the body of literature surrounding conventional treatment is reviewed and discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. [Spinal cord ischemia].

    PubMed

    Masson, C; Leys, D; Meder, J F; Dousset, V; Pruvo, J P

    2004-01-01

    Traditional data and recent advances in the field of spinal cord ischemia are reviewed, with special attention to clinical and radiological features, as well as underlying etiology, outcome, and pathophysiology. Acute spinal cord ischemia includes arterial and venous infarction and global ischemia resulting from cardiac arrest or severe hypotension. MRI has become the technique of choice for the imaging diagnosis of spinal cord infarction. Correlation of clinical and MRI data has allowed diagnosis of clinical syndromes due to small infarcts in the central or peripheral arterial territory of the spinal cord. Diffusion-weighted MR imaging may increase the sensitivity and specificity for diagnosis of acute spinal cord infarction. Diagnosis of venous spinal cord infarction remains difficult. As for global ischemia, neuropathological studies demonstrated a great sensitivity of spinal cord to ischemia, with selective vulnerability of lumbosacral neurons. Chronic spinal cord ischemia results in a syndrome of progressive myelopathy. The cause is usually an arteriovenous malformation. Most often, diagnosis may be suspected on MRI, leading to diagnostic, and eventually therapeutic, spinal angiography.

  16. Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury.

    PubMed

    Moraud, Eduardo Martin; Capogrosso, Marco; Formento, Emanuele; Wenger, Nikolaus; DiGiovanna, Jack; Courtine, Grégoire; Micera, Silvestro

    2016-02-17

    Epidural electrical stimulation of lumbar segments facilitates standing and walking in animal models and humans with spinal cord injury. However, the mechanisms through which this neuromodulation therapy engages spinal circuits remain enigmatic. Using computer simulations and behavioral experiments, we provide evidence that epidural electrical stimulation interacts with muscle spindle feedback circuits to modulate muscle activity during locomotion. Hypothesis-driven strategies emerging from simulations steered the design of stimulation protocols that adjust bilateral hindlimb kinematics throughout gait execution. These stimulation strategies corrected subject-specific gait and balance deficits in rats with incomplete and complete spinal cord injury. The conservation of muscle spindle feedback circuits across mammals suggests that the same mechanisms may facilitate motor control in humans. These results provide a conceptual framework to improve stimulation protocols for clinical applications.

  17. Cerebral spinal fluid (CSF) collection

    MedlinePlus

    Spinal tap; Ventricular puncture; Lumbar puncture; Cisternal puncture; Cerebrospinal fluid culture ... different ways to get a sample of CSF. Lumbar puncture (spinal tap) is the most common method. ...

  18. Lumbar spine visualisation based on kinematic analysis from videofluoroscopic imaging.

    PubMed

    Zheng, Y; Nixon, M S; Allen, R

    2003-04-01

    match the fluoroscopic image data. For animation, the spinal kinematic data from the motion study is incorporated.

  19. Kinematics of KPG 390

    NASA Astrophysics Data System (ADS)

    Repetto, P.; Rosado, M.; Gabbasov, R.; Fuentes-Carrera, I.

    2010-06-01

    In this work we present scanning Fabry-Perot Hα observations of the isolated interacting galaxy pair NGC 5278/9 obtained with the PUMA Fabry-Perot interferometer. We derived velocity fields, various kinematic parameters and rotation curves for both galaxies. Our kinematical results together with the fact that dust lanes have been detected in both galaxies, as well as the analysis of surface brightness profiles along the minor axis, allowed us to determine that both components of the interacting pair are trailing spirals.

  20. Kinematic sensitivity of robot manipulators

    NASA Technical Reports Server (NTRS)

    Vuskovic, Marko I.

    1989-01-01

    Kinematic sensitivity vectors and matrices for open-loop, n degrees-of-freedom manipulators are derived. First-order sensitivity vectors are defined as partial derivatives of the manipulator's position and orientation with respect to its geometrical parameters. The four-parameter kinematic model is considered, as well as the five-parameter model in case of nominally parallel joint axes. Sensitivity vectors are expressed in terms of coordinate axes of manipulator frames. Second-order sensitivity vectors, the partial derivatives of first-order sensitivity vectors, are also considered. It is shown that second-order sensitivity vectors can be expressed as vector products of the first-order sensitivity vectors.

  1. Cervical spinal meningioma mimicking intramedullary spinal tumor.

    PubMed

    Senturk, Senem; Guzel, Aslan; Guzel, Ebru; Bayrak, Aylin Hasanefendioğlu; Sav, Aydin

    2009-01-01

    Case report. To report a very unusual spinal meningioma, mimicking an intramedullary spinal tumor. Spinal meningiomas, usually associated with signs and symptoms of cord or nerve root compression, are generally encountered in women aged over 40. Radiologic diagnosis is often established by their intradural extramedullary location on magnetic resonance images. A 60-year-old woman had a 6-month history of progressive weakness in her upper extremities, difficulty in walking, and cervical pain radiating through both arms. Neurologic examination revealed motor strength deficiency in all her extremities, with extensor reflexes, clonus, and bilateral hyper-reflexiveness. A sensory deficit was present all over her body. Magnetic resonance images revealed that the spinal cord appeared expanded with an ill-defined, homogeneously contrast-enhanced, lobulated, eccentric mass at the C1-C3 level. The patient was operated with a preliminary diagnosis of an intramedullary tumor. At surgery, the mass was found to be extramedullary, and gross total resection was performed. Histopathological examination revealed a meningioma characterized by the presence of fibrous and meningothelial components. The patient was able to ambulate with a cane, and extremity strength and sensation improved 2 months after surgery. Spinal meningiomas can mimic intramedullary tumors, and should be considered in differential diagnosis of intradural tumors with atypical appearance.

  2. Irradiation of Spinal Metastases: Should We Continue to Include One Uninvolved Vertebral Body Above and Below in the Radiation Field?

    SciTech Connect

    Klish, Darren S.; Grossman, Patricia; Allen, Pamela K.; Rhines, Laurence D.; Chang, Eric L.

    2011-12-01

    Purpose: Historically, the appropriate target volume to be irradiated for spinal metastases is 1-2 vertebral bodies above and below the level of involvement for three reasons: (1) to avoid missing the correct level in the absence of simulation or (2) to account for the possibility of spread of disease to the adjacent level, and (3) to account for beam penumbra. In this study, we hypothesized that isolated failures occurring in the level adjacent to level treated with stereotactic body radiosurgery (SBRS) were infrequent and that with improved localization techniques with image-guided radiation therapy, treatment of only the involved level of spinal metastases may be more appropriate. Methods and Materials: Patients who had received SBRS treatments to only the involved level of the spine as part of a prospective trial for spinal metastases comprised the study population. Follow-up imaging with spine MRI was performed at 3-month intervals following initial treatment. Failures in the adjacent (V{+-}1, V{+-}2) and distant spine were identified and classified accordingly. Results: Fifty-eight patients met inclusion criteria for this study and harbored 65 distinct spinal metastases. At 18-month median follow-up, seven (10.7%) patients failed simultaneously at adjacent levels V{+-}1 and at multiple sites throughout the spine. Only two (3%) patients experienced isolated, solitary adjacent failures at 9 and 11 months, respectively. Conclusion: Isolated local failures of the unirradiated adjacent vertebral bodies may occur in <5% of patients with isolated spinal metastasis. On the basis of the data, the current practice of irradiating one vertebral body above and below seems unnecessary and could be revised to irradiate only the involved level(s) of the spine metastasis.

  3. Biomechanical Comparison of Spinal Fusion Methods Using Interspinous Process Compressor and Pedicle Screw Fixation System Based on Finite Element Method

    PubMed Central

    Choi, Jisoo; Kim, Sohee

    2016-01-01

    Objective To investigate the biomechanical effects of a newly proposed Interspinous Process Compressor (IPC) and compare with pedicle screw fixation at surgical and adjacent levels of lumbar spine. Methods A three dimensional finite element model of intact lumbar spine was constructed and two spinal fusion models using pedicle screw fixation system and a new type of interspinous devices, IPC, were developed. The biomechanical effects such as range of motion (ROM) and facet contact force were analyzed at surgical level (L3/4) and adjacent levels (L2/3, L4/5). In addition, the stress in adjacent intervertebral discs (D2, D4) was investigated. Results The entire results show biomechanical parameters such as ROM, facet contact force, and stress in adjacent intervertebral discs were similar between PLIF and IPC models in all motions based on the assumption that the implants were perfectly fused with the spine. Conclusion The newly proposed fusion device, IPC, had similar fusion effect at surgical level, and biomechanical effects at adjacent levels were also similar with those of pedicle screw fixation system. However, for clinical applications, real fusion effect between spinous process and hooks, duration of fusion, and influence on spinous process need to be investigated through clinical study. PMID:26962413

  4. Spinal tuberculosis: A review

    PubMed Central

    Garg, Ravindra Kumar; Somvanshi, Dilip Singh

    2011-01-01

    Spinal tuberculosis is a destructive form of tuberculosis. It accounts for approximately half of all cases of musculoskeletal tuberculosis. Spinal tuberculosis is more common in children and young adults. The incidence of spinal tuberculosis is increasing in developed nations. Genetic susceptibility to spinal tuberculosis has recently been demonstrated. Characteristically, there is destruction of the intervertebral disk space and the adjacent vertebral bodies, collapse of the spinal elements, and anterior wedging leading to kyphosis and gibbus formation. The thoracic region of vertebral column is most frequently affected. Formation of a ‘cold’ abscess around the lesion is another characteristic feature. The incidence of multi-level noncontiguous vertebral tuberculosis occurs more frequently than previously recognized. Common clinical manifestations include constitutional symptoms, back pain, spinal tenderness, paraplegia, and spinal deformities. For the diagnosis of spinal tuberculosis magnetic resonance imaging is more sensitive imaging technique than x-ray and more specific than computed tomography. Magnetic resonance imaging frequently demonstrates involvement of the vertebral bodies on either side of the disk, disk destruction, cold abscess, vertebral collapse, and presence of vertebral column deformities. Neuroimaging-guided needle biopsy from the affected site in the center of the vertebral body is the gold standard technique for early histopathological diagnosis. Antituberculous treatment remains the cornerstone of treatment. Surgery may be required in selected cases, e.g. large abscess formation, severe kyphosis, an evolving neurological deficit, or lack of response to medical treatment. With early diagnosis and early treatment, prognosis is generally good. PMID:22118251

  5. What Is Spinal Stenosis?

    MedlinePlus

    ... and problems with joints. Rheumatoid arthritis:  Affects most people at a younger age than osteoarthritis.  Causes the soft tissues of the joints to swell and can affect the internal organs and systems.  Is not a common cause of spinal ... Conditions Some people are born with conditions that cause spinal stenosis. ...

  6. Kinematic Parameters of Signed Verbs

    ERIC Educational Resources Information Center

    Malaia, Evie; Wilbur, Ronnie B.; Milkovic, Marina

    2013-01-01

    Purpose: Sign language users recruit physical properties of visual motion to convey linguistic information. Research on American Sign Language (ASL) indicates that signers systematically use kinematic features (e.g., velocity, deceleration) of dominant hand motion for distinguishing specific semantic properties of verb classes in production…

  7. Essential kinematics for autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Kelly, Alonzo

    1994-05-01

    A short tutorial on Homogeneous Transforms is presented covering the triple interpretation of a homogeneous transform as an operator, a coordinate frame, and a coordinate transform. The operator transform duality is derived and its use in the Denavit Hartenberg convention is explained. Forward, inverse, and differential kinematics are derived for a simple manipulator to illustrate concepts. A standard set of coordinate frames is proposed for wheeled mobile robots. It is shown that the RPY transform serves the same purpose as the DH matrix in this case. It serves to interface with vehicle position estimation systems of all kinds, to control and model pan/tilt mechanisms and stabilized platforms, and to model the rigid transforms from place to place on the vehicle. Forward and inverse kinematics and the Euler angle rate to the angular velocity transform are derived for the RPY transform. Projective kinematics for ideal video cameras and laser rangefinders, and the imaging Jacobian relating world space and image space is derived. Finally, the kinematics of the Ackerman steer vehicle is presented for reference purposes. This report is both a tutorial and a reference for the transforms used in the RANGER vehicle controller. It is both because the models keep evolving and it was necessary to provide the tools, mechanisms, and discipline required to continue the evolution.

  8. Top quark mass and kinematics

    SciTech Connect

    Barberis, Emanuela; /Northeastern U.

    2006-05-01

    A summary of the results on the measurement of the Top Quark mass and the study of the kinematics of the t{bar t} system at the Tevatron collider is presented here. Results from both the CDF and D0 collaborations are reported.

  9. [Spontaneous spinal cord herniation].

    PubMed

    Rivas, J J; de la Lama, A; Gonza Lez, P; Ramos, A; Zurdo, M; Alday, R

    2004-10-01

    Spontaneous spinal cord herniation through a dural defect is an unusual condition. This entity has been probably underestimated before the introduction of MRI. We report a case of a 49-year-old man with a progressive Brown-Sequard syndrome. MRI and CT myelogram showed a ventrally displaced spinal cord at level T6-T7 and expansion of the posterior subarachnoid space. Through a laminectomy, a spinal cord herniation was identified and reduced. The anterior dural defect was repaired with a patch of lyophilized dura. The patient recovered muscle power but there was no improvement of the sensory disturbance. The diagnosis of spontaneous spinal cord herniation must be considered when progressive myelopathy occurs in middle-aged patients, without signs of spinal cord compression and typical radiological findings. Surgical treatment may halt the progressive deficits and even yield improvement in many cases.

  10. Spinal Myoclonus After Spinal Cord Injury

    PubMed Central

    Calancie, Blair

    2006-01-01

    Background/Objective: In the course of examining spinal motor function in many hundreds of people with traumatic spinal cord injury, we encountered 6 individuals who developed involuntary and rhythmic contractions in muscles of their legs. Although there are many reports of unusual muscle activation patterns associated with different forms of myoclonus, we believe that certain aspects of the patterns seen with these 6 subjects have not been previously reported. These patterns share many features with those associated with a spinal central pattern generator for walking. Methods: Subjects in this case series had a history of chronic injury to the cervical spinal cord, resulting in either complete (ASIA A; n = 4) or incomplete (ASIA D; n = 2) quadriplegia. We used multi-channel electromyography recordings of trunk and leg muscles of each subject to document muscle activation patterns associated with different postures and as influenced by a variety of sensory stimuli. Results: Involuntary contractions spanned multiple leg muscles bilaterally, sometimes including weak abdominal contractions. Contractions were smooth and graded and were highly reproducible in rate for a given subject (contraction rates were 0.3–0.5 Hz). These movements did not resemble the brief rapid contractions (ie, "jerks") ascribed to some forms of spinal myoclonus. For all subjects, the onset of involuntary muscle contraction was dependent upon hip angle; contractions did not occur unless the hips (and knees) were extended (ie, subjects were supine). In the 4 ASIA A subjects, contractions occurred simultaneously in all muscles (agonists and antagonists) bilaterally. In sharp contrast, contractions in the 2 ASIA D subjects were reciprocal between agonists and antagonists within a limb and alternated between limbs, such that movements in these 2 subjects looked just like repetitive stepping. Finally, each of the 6 subjects had a distinct pathology of their spinal cord, nerve roots, distal trunk

  11. Kinematic analysis of the ARID manipulator

    NASA Technical Reports Server (NTRS)

    Doty, Keith L

    1992-01-01

    The kinematic structure of the ARID manipulator lends itself to simple forward and inverse kinematics analysis. The purpose of this paper is to fully document and verify an existing analysis. The symbolic software package MATHEMATICA was used to produce and verify the equations presented here. In the analysis to follow, the standard Devenit-Hartenberg kinematic parameters of the ARID were employed.

  12. Tissue loading created during spinal manipulation in comparison to loading created by passive spinal movements.

    PubMed

    Funabashi, Martha; Kawchuk, Gregory N; Vette, Albert H; Goldsmith, Peter; Prasad, Narasimha

    2016-12-01

    Spinal manipulative therapy (SMT) creates health benefits for some while for others, no benefit or even adverse events. Understanding these differential responses is important to optimize patient care and safety. Toward this, characterizing how loads created by SMT relate to those created by typical motions is fundamental. Using robotic testing, it is now possible to make these comparisons to determine if SMT generates unique loading scenarios. In 12 porcine cadavers, SMT and passive motions were applied to the L3/L4 segment and the resulting kinematics tracked. The L3/L4 segment was removed, mounted in a parallel robot and kinematics of SMT and passive movements replayed robotically. The resulting forces experienced by L3/L4 were collected. Overall, SMT created both significantly greater and smaller loads compared to passive motions, with SMT generating greater anterioposterior peak force (the direction of force application) compared to all passive motions. In some comparisons, SMT did not create significantly different loads in the intact specimen, but did so in specific spinal tissues. Despite methodological differences between studies, SMT forces and loading rates fell below published injury values. Future studies are warranted to understand if loading scenarios unique to SMT confer its differential therapeutic effects.

  13. Tissue loading created during spinal manipulation in comparison to loading created by passive spinal movements

    PubMed Central

    Funabashi, Martha; Kawchuk, Gregory N.; Vette, Albert H.; Goldsmith, Peter; Prasad, Narasimha

    2016-01-01

    Spinal manipulative therapy (SMT) creates health benefits for some while for others, no benefit or even adverse events. Understanding these differential responses is important to optimize patient care and safety. Toward this, characterizing how loads created by SMT relate to those created by typical motions is fundamental. Using robotic testing, it is now possible to make these comparisons to determine if SMT generates unique loading scenarios. In 12 porcine cadavers, SMT and passive motions were applied to the L3/L4 segment and the resulting kinematics tracked. The L3/L4 segment was removed, mounted in a parallel robot and kinematics of SMT and passive movements replayed robotically. The resulting forces experienced by L3/L4 were collected. Overall, SMT created both significantly greater and smaller loads compared to passive motions, with SMT generating greater anterioposterior peak force (the direction of force application) compared to all passive motions. In some comparisons, SMT did not create significantly different loads in the intact specimen, but did so in specific spinal tissues. Despite methodological differences between studies, SMT forces and loading rates fell below published injury values. Future studies are warranted to understand if loading scenarios unique to SMT confer its differential therapeutic effects. PMID:27905508

  14. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals

    PubMed Central

    2014-01-01

    Background Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural “intent”. A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of “intent” may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. Methods We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called “Motolink”, which detects these neural patterns and triggers a “spinal” stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for “Motolink” hardware. Results We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the “Motolink” system to detect the neural “intent” of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. Conclusion We present a direct cortical “intent”-driven electronic spinal

  15. Exploring MaNGA's kinematic maps

    NASA Astrophysics Data System (ADS)

    Weijmans, Anne-Marie; MaNGA Team

    2016-01-01

    Different galaxy formation processes leave different imprints on the gas and stellar kinematic patterns for a galaxy. With MaNGA, we now have after one year of observations an unprecedented sample of 1400 nearby galaxies for which we can study gas and stellar kinematics in much detail, based on integral-field spectroscopy. We are measuring kinematic quantities such as LambdaR (angular momentum) and their (possible) correlations with other galaxy properties such as mass, morphology and environment. By quantifying the kinematic (sub)structures in velocity and dispersion maps, we will construct a kinematic galaxy classification that can be linked to their formation processes.

  16. Spinal cordectomy: A new hope for morbid spinal conditions.

    PubMed

    Konar, Subhas K; Maiti, Tanmoy K; Bir, Shyamal C; Nanda, Anil

    2017-01-01

    A spinal cordectomy is a treatment option for several disorders of the spinal cord like post-traumatic syringomyelia, spinal cord tumor and myelomeningocele. We have done a systematic analysis of all reported cases of spinal cordectomy to investigate the possible outcomes and complications. A PubMed search was performed for literature published from 1949 to 2015 with search words "spinal cordectomy", "spinal cord transection" and "cordectomy for malignant spinal cord tumors" to select articles containing information about the indication, outcome and complication of spinal cordectomy performed for diverse etiologies. Spinal cordectomy was performed for post-traumatic syrinx (76 cases), SPAM (2 cases), Central pain of spinal cord origin (22 cases), Spasticity (8 cases), Spinal tumors (16 cases) and Myelomeningocele (30 cases). Among the 76 cases, 60 cases fulfilled the inclusion criteria for our outcome analysis in terms of improvement, stabilization or deterioration after spinal cordectomy. The results showed 78.3% excellent improvement, 13.4% stable and 8.3% (5 cases) deterioration. The reported causes of failure of spinal cordectomy for post-traumatic syrinx were scarring of a proximal stump and severe arachnoid adhesion. Sixteen cases of spinal cordectomy related with spinal cord tumors have been reported. Also reported were seven cases of GBM, two cases of AA and one each case of anaplastic tanycytic ependymoma, schwanoma, neurofibroma, atypical meningioma and malignant ganglioglioma. Cordectomy shouldbe strongly considered in patients having malignant spinal cord tumors with complete motor loss and sensory loss below the level of the lesion as a means of preventing the spread of disease from the original tumor focus. Spinal cordectomy is a treatment option with a good outcome for post-traumatic spinal morbidity, spinal cord tumors and myelomeningocele. However, since it is an invasive and irreversible procedure, it is only considered when other options have

  17. Spinal injuries in sports.

    PubMed

    Boden, Barry P; Jarvis, Christopher G

    2008-02-01

    Athletic competition has long been a known source of spinal injuries. Approximately 8.7% of all new cases of spinal cord injuries in the United States are related to sports activities. The sports activities that have the highest risk of catastrophic spinal injuries are football, ice hockey, wrestling, diving, skiing, snowboarding, rugby, and cheerleading. Axial compression forces to the top of the head can lead to cervical fracture and quadriplegia in any sport. It is critical for any medical personnel responsible for athletes in team sports to have a plan for stabilization and transfer of an athlete who sustains a cervical spine injury.

  18. Spinal injuries in sports.

    PubMed

    Boden, Barry P; Jarvis, Christopher G

    2009-02-01

    Athletic competition has long been a known source of spinal injuries. Approximately 8.7% of all new cases of spinal cord injuries in the United States are related to sports activities. The sports activities that have the highest risk of catastrophic spinal injuries are football, ice hockey, wrestling, diving, skiing, snowboarding, rugby, and cheerleading. Axial compression forces to the top of the head can lead to cervical fracture and quadriplegia in any sport. It is critical for any medical personnel responsible for athletes in team sports to have a plan for stabilization and transfer of an athlete who sustains a cervical spine injury.

  19. Spinal epidural abscess.

    PubMed

    Johnson, Katherine G

    2013-09-01

    Spinal epidural abscess is a rare bacterial infection located within the spinal canal. Early diagnosis and rapid treatment are important because of its potential to cause rapidly progressive spinal cord compression and irreversible paralysis. A staphylococcus bacterial infection is the cause in most cases. Treatment includes antibiotics and possible surgical drainage of the abscess. A favorable neurologic outcome correlates with the severity and duration of neurologic deficits before surgery and the timeliness of the chosen intervention. It is important for the critical care nurse to monitor the patient's neurologic status and provide appropriate interventions.

  20. Kinematic Fitting of Detached Vertices

    SciTech Connect

    Mattione, Paul

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  1. Kinematic dynamos in spheroidal geometries

    NASA Astrophysics Data System (ADS)

    Ivers, D. J.

    2017-10-01

    The kinematic dynamo problem is solved numerically for a spheroidal conducting fluid of possibly large aspect ratio with an insulating exterior. The solution method uses solenoidal representations of the magnetic field and the velocity by spheroidal toroidal and poloidal fields in a non-orthogonal coordinate system. Scaling of coordinates and fields to a spherical geometry leads to a modified form of the kinematic dynamo problem with a geometric anisotropic diffusion and an anisotropic current-free condition in the exterior, which is solved explicitly. The scaling allows the use of well-developed spherical harmonic techniques in angle. Dynamo solutions are found for three axisymmetric flows in oblate spheroids with semi-axis ratios 1≤a/c≤25. For larger aspect ratios strong magnetic fields may occur in any region of the spheroid, depending on the flow, but the external fields for all three flows are weak and concentrated near the axis or periphery of the spheroid.

  2. Contact kinematics of biomimetic scales

    SciTech Connect

    Ghosh, Ranajay; Ebrahimi, Hamid; Vaziri, Ashkan

    2014-12-08

    Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate.

  3. Effect of load carriage on lumbar spine kinematics.

    PubMed

    Rodríguez-Soto, Ana E; Jaworski, Rebecca; Jensen, Andrew; Niederberger, Brenda; Hargens, Alan R; Frank, Lawrence R; Kelly, Karen R; Ward, Samuel R

    2013-06-01

    Feasibility study on the acquisition of lumbar spine kinematic data from upright magnetic resonance images obtained under heavy load carrying conditions. To characterize the effect of the load on spinal kinematics of active Marines under typical load carrying conditions from a macroscopic and lumbar-level approach in active-duty US Marines. Military personnel carry heavy loads of up to 68 kg depending on duty position and nature of the mission or training; these loads are in excess of the recommended assault loads. Performance and injury associated with load carriage have been studied; however, knowledge of lumbar spine kinematic changes is still not incorporated into training. These data would provide guidance for setting load and duration limits and a tool to investigate the potential contribution of heavy load carrying on lumbar spine pathologies. Sagittal T2 magnetic resonance images of the lumbar spine were acquired on a 0.6-T upright magnetic resonance imaging scanner for 10 active-duty Marines. Each Marine was scanned without load (UN1), immediately after donning load (LO2), after 45 minutes of standing (LO3) and walking (LO4) with load, and after 45 minutes of side-lying recovery (UN5). Custom-made software was used to measure whole spine angles, intervertebral angles, and regional disc heights (L1-S1). Repeated measurements analysis of variance and post hoc Sidak tests were used to identify significant differences between tasks (α = 0.05). The position of the spine was significantly (P < 0.0001) more horizontal relative to the external reference frame and lordosis was reduced during all tasks with load. Superior levels became more lordotic, whereas inferior levels became more kyphotic. Heavy load induced lumbar spine flexion and only anterior disc and posterior intervertebral disc height changes were observed. All kinematic variables returned to baseline levels after 45 minutes of side-lying recovery. Superior and inferior lumbar levels showed different

  4. Kinematic Tests of Small Arms

    DTIC Science & Technology

    2016-03-15

    needed measurements can be made. g. In order to make these calculations, software should be able to output these positional values over time into a...other means, and (b) measuring the impulse and recoil of small- caliber weapons by a laser displacement measurement system, HSV, displacement...transducers, or other means. 15. SUBJECT TERMS kinematic, small arms, recoil measurements , laser tracking system 16. SECURITY CLASSIFICATION OF

  5. Of cilium and flagellum kinematics

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.; Hansen, Joshua C.

    2009-11-01

    The kinematics of propulsion of small animals such as paramecium and spermatozoa is considered. Larger scale models of the cilium and flagellum have been built and a four-motor apparatus has been constructed to reproduce their known periodic motions. The cilium model has transverse deformational ability in one plane only, while the flagellum model has such ability in two planes. When the flagellum model is given a push-pull in one diametral plane, instead of transverse deflection in one plane, it forms a coil. Berg & Anderson's postulation (Nature 245 1973) that a flagellum rotates, is recalled. The kinematics of cilia of paramecium, of the whipping motion of the spermatozoa flagella, and of the flapping motion (rolling and pitching) of the pectoral fins of much larger animals such penguins, have been reproduced in the same basic paramecium apparatus. The results suggest that each of the tiny individual paramecium propulsors have the intrinsic dormant kinematic and structural building blocks to optimize into higher Reynolds number propulsors. A synthetic hypothesis on how small might have become large is animated.

  6. Kinematic top analyses at CDF

    SciTech Connect

    Cobal-Grassman, M.; CDF Collaboration

    1996-01-01

    We present an update of the top quark analysis using kinematic techniques in {rho}{ovr string {rho}} collisions at {radical}s = 1.8 TeV with the Collider Detector at Fermilab (CDF). We reported before on a study which used 19.3 pb{sup -1} of data from the 1992-93 collider run, but now we use a larger data sample of 67 pb{sup -1}. First, we analyze the total transverse energy of the hard collision in W+{ge}3 jet events, showing the likely presence of a t{ovr string t} component in the event sample. Next, we compare in more detail the kinematic structure of W+{ge}3 jet events with expectations for top pair production and with background processes, predominantly direct W+ jet production. We again find W+{ge}3 jet events which cannot be explained in terms of background, but show kinematic features as expected from top. These events also show evidence for beauty quarks. The findings confirm the observation of top events made earlier in the data of the 1992-93 collider run.

  7. White dwarf kinematics versus mass

    NASA Astrophysics Data System (ADS)

    Wegg, Christopher; Phinney, E. Sterl

    2012-10-01

    We investigated the relationship between the kinematics and mass of young (<3 × 108 yr) white dwarfs using proper motions. Our sample is taken from the colour-selected catalogues of the Sloan Digital Sky Survey and the Palomar-Green Survey, both of which have spectroscopic temperature and gravity determinations. We find that the dispersion decreases with increasing white dwarf mass. This can be explained as a result of less scattering by objects in the Galactic disc during the shorter lifetime of their more massive progenitors. A direct result of this is that white dwarfs with high mass have a reduced scale height, and hence their local density is enhanced over their less massive counterparts. In addition, we have investigated whether the kinematics of the highest mass white dwarfs (>0.95 M⊙) are consistent with the expected relative contributions of single star evolution and mergers. We find that the kinematics are consistent with the majority of high-mass white dwarfs being formed through single star evolution.

  8. Identification of spinal tissues loaded by manual therapy: a robot-based serial dissection technique applied in porcine motion segments

    PubMed Central

    Kawchuk, Gregory N; Carrasco, Alejandro; Beecher, Grayson; Goertzen, Darrell; Prasad, Narasimha

    2010-01-01

    Study Design: Serial dissection of porcine motion segments during robotic control of vertebral kinematics. Objectives: To identify which spinal tissues are loaded in response to manual therapy (manipulation and mobilization) and to what magnitude. Summary of Background Data: Various theoretical constructs attempt to explain how manual therapies load specific spinal tissues. By using a parallel robot to control vertebral kinematics during serial dissection, it is possible to quantify the loads experienced by discrete spinal tissues undergoing common therapeutic procedures such as manual therapy. Methods In nine porcine cadavers, manual therapy was provided to L3 and the kinematic response of L3-4 recorded. The exact kinematic trajectory experienced by L3-4 in response to manual therapy was then replayed to the isolated segment by a parallel robot equipped with a 6 axis load cell. Discrete spinal tissues were then removed and the kinematic pathway replayed. The change in forces and moments following tissue removal were considered to be those applied to that specific tissue by manual therapy. Results: In this study, both manual therapies affected spinal tissues. The intervertebral disc experienced the greatest forces and moments arising from both manipulation and mobilization. Conclusions: This study is the first to identify which tissues are loaded in response to manual therapy. The observation that manual therapy loads some tissues to a much greater magnitude than others offers a possible explanation for its modest treatment effect; only conditions involving these tissues may be influenced by manual therapy. Future studies are planned to determine if manual therapy can be altered to target (or avoid) specific spinal tissues. PMID:20881661

  9. Identification of spinal tissues loaded by manual therapy: a robot-based serial dissection technique applied in porcine motion segments.

    PubMed

    Kawchuk, Gregory N; Carrasco, Alejandro; Beecher, Grayson; Goertzen, Darrell; Prasad, Narasimha

    2010-10-15

    Serial dissection of porcine motion segments during robotic control of vertebral kinematics. To identify which spinal tissues are loaded in response to manual therapy (manipulation and mobilization) and to what magnitude. Various theoretical constructs attempt to explain how manual therapies load specific spinal tissues. By using a parallel robot to control vertebral kinematics during serial dissection, it is possible to quantify the loads experienced by discrete spinal tissues undergoing common therapeutic procedures such as manual therapy. In 9 porcine cadavers, manual therapy was provided to L3 and the kinematic response of L3-L4 recorded. The exact kinematic trajectory experienced by L3-L4 in response to manual therapy was then replayed to the isolated segment by a parallel robot equipped with a 6-axis load cell. Discrete spinal tissues were then removed and the kinematic pathway replayed. The change in forces and moments following tissue removal were considered to be those applied to that specific tissue by manual therapy. In this study, both manual therapies affected spinal tissues. The intervertebral disc experienced the greatest forces and moments arising from both manipulation and mobilization. This study is the first to identify which tissues are loaded in response to manual therapy. The observation that manual therapy loads some tissues to a much greater magnitude than others offers a possible explanation for its modest treatment effect; only conditions involving these tissues may be influenced by manual therapy. Future studies are planned to determine if manual therapy can be altered to target (or avoid) specific spinal tissues.

  10. Activity-Dependent Increase in Neurotrophic Factors Is Associated with an Enhanced Modulation of Spinal Reflexes after Spinal Cord Injury

    PubMed Central

    Côté, Marie-Pascale; Azzam, Gregory A.; Lemay, Michel A.; Zhukareva, Victoria

    2011-01-01

    Abstract Activity-based therapies such as passive bicycling and step-training on a treadmill contribute to motor recovery after spinal cord injury (SCI), leading to a greater number of steps performed, improved gait kinematics, recovery of phase-dependent modulation of spinal reflexes, and prevention of decrease in muscle mass. Both tasks consist of alternating movements that rhythmically stretch and shorten hindlimb muscles. However, the paralyzed hindlimbs are passively moved by a motorized apparatus during bike-training, whereas locomotor movements during step-training are generated by spinal networks triggered by afferent feedback. Our objective was to compare the task-dependent effect of bike- and step-training after SCI on physiological measures of spinal cord plasticity in relation to changes in levels of neurotrophic factors. Thirty adult female Sprague-Dawley rats underwent complete spinal transection at a low thoracic level (T12). The rats were assigned to one of three groups: bike-training, step-training, or no training. The exercise regimen consisted of 15 min/d, 5 days/week, for 4 weeks, beginning 5 days after SCI. During a terminal experiment, H-reflexes were recorded from interosseus foot muscles following stimulation of the tibial nerve at 0.3, 5, or 10 Hz. The animals were sacrificed and the spinal cords were harvested for Western blot analysis of the expression of neurotrophic factors in the lumbar spinal cord. We provide evidence that bike- and step-training significantly increase the levels of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and NT-4 in the lumbar enlargement of SCI rats, whereas only step-training increased glial cell-derived neurotrophic factor (GDNF) levels. An increase in neurotrophic factor protein levels that positively correlated with the recovery of H-reflex frequency-dependent depression suggests a role for neurotrophic factors in reflex normalization. PMID:21083432

  11. Applications in spinal imbalance.

    PubMed

    Husson, J-L; Mallet, J-F; Parent, H; Cavagna, R; Vital, J-M; Blamoutier, A; Violas, P

    2010-05-04

    The pelvis may be seen as a single vertebra, between the spine and the femurs. The anatomy of this pelvic vertebra has changed with the evolution of species, notably with the transition to bipedalism, with the consequent appearance of lumbar lordosis. The lumbosacral angle, almost non-existent in other mammals, is at its greatest in humans. Pelvic and spinal radiological parameters reflect the sagittal balance of the spine in bipedal humanity. Applications in the management of spinal imbalance are numerous. Arthrogenic or degenerative kyphosis is the stereotypic example of spinal aging. Postoperative flat back following spine surgery is hard to prevent. Scoliosis surgery in adults should now take greater account of the patient's individual sagittal balance, by analyzing the pelvic and spinal parameters. The extent of arthrodeses performed during adolescence to manage idiopathic scoliosis may also induce problems of balance in adulthood if these elements are not taken into account. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  12. Spinal Cord Injury

    MedlinePlus

    ... Circulatory control. A spinal cord injury may cause circulatory problems ranging from low blood pressure when you rise ( ... deep vein thrombosis or a pulmonary embolus. Another problem with circulatory control is a potentially life-threatening rise in ...

  13. Spinal Cord Injury

    MedlinePlus

    ... almost complete recovery. Others will result in complete paralysis × Definition A spinal cord injury usually begins with ... almost complete recovery. Others will result in complete paralysis View Full Definition Treatment Improved emergency care for ...

  14. Spinal Cord Injury 101

    MedlinePlus Videos and Cool Tools

    ... is "Braingate" research? What is the status of stem-cell research? How would stem-cell therapies work in the treatment of spinal cord injuries? What does stem-cell research on animals tell us? When can we ...

  15. What Is Spinal Stenosis?

    MedlinePlus

    ... To order the Sports Injuries Handout on Health full-text version, please contact NIAMS using the contact information ... publication. To order the Spinal Stenosis Q&A full-text version, please contact NIAMS using the contact information ...

  16. Spinal Muscular Atrophy (SMA)

    MedlinePlus

    ... children with SMA develop spinal deformities, such as scoliosis (sideways curvature of the spine) and kyphosis (front- ... Magnetic Resonance Imaging (MRI) Brain and Nervous System Scoliosis Contact Us Print Resources Send to a friend ...

  17. [Meningitis after spinal anesthesia].

    PubMed

    Mouchrif, Issam; Berdaii, Adnane; Labib, Ismail; Harrandou, Moustapha

    2016-01-01

    Meningitis is a rare but serious complication of epidural and spinal anesthesia. Bacterial meningitis is mainly caused by Gram-positive cocci, implying an exogenous contamination which suggests a lack of asepsis. The evolution is usually favorable after treatment, but at the expense of increased health care costs and, sometimes, of significant neurological sequelae. We report a case of bacterial meningitis after spinal anesthesia for caesarean section.

  18. Canine spinal cord glioma.

    PubMed

    Rissi, Daniel R; Barber, Renee; Burnum, Annabelle; Miller, Andrew D

    2017-01-01

    Spinal cord glioma is uncommonly reported in dogs. We describe the clinicopathologic and diagnostic features of 7 cases of canine spinal cord glioma and briefly review the veterinary literature on this topic. The median age at presentation was 7.2 y. Six females and 1 male were affected and 4 dogs were brachycephalic. The clinical course lasted from 3 d to 12 wk, and clinical signs were progressive and associated with multiple suspected neuroanatomic locations in the spinal cord. Magnetic resonance imaging of 6 cases revealed T2-weighted hyperintense lesions with variable contrast enhancement in the spinal cord. All dogs had a presumptive clinical diagnosis of intraparenchymal neoplasia or myelitis based on history, advanced imaging, and cerebrospinal fluid analysis. Euthanasia was elected in all cases because of poor outcome despite anti-inflammatory or immunosuppressive treatment or because of poor prognosis at the time of diagnosis. Tumor location during autopsy ranged from C1 to L6, with no clear predilection for a specific spinal cord segment. The diagnosis was based on histopathology and the immunohistochemistry expression of glial fibrillary acidic protein, oligodendrocyte lineage transcription factor 2, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, neuron-specific enolase, synaptophysin, and Ki-67. Diagnoses consisted of 4 cases of oligodendroglioma, 2 cases of gliomatosis cerebri, and 1 astrocytoma. This case series further defines the clinicopathologic features of canine spinal glioma and highlights the need for comprehensive immunohistochemistry in addition to routine histopathology to confirm the diagnosis of these tumors.

  19. Modeling spinal cord biomechanics

    NASA Astrophysics Data System (ADS)

    Luna, Carlos; Shah, Sameer; Cohen, Avis; Aranda-Espinoza, Helim

    2012-02-01

    Regeneration after spinal cord injury is a serious health issue and there is no treatment for ailing patients. To understand regeneration of the spinal cord we used a system where regeneration occurs naturally, such as the lamprey. In this work, we analyzed the stress response of the spinal cord to tensile loading and obtained the mechanical properties of the cord both in vitro and in vivo. Physiological measurements showed that the spinal cord is pre-stressed to a strain of 10%, and during sinusoidal swimming, there is a local strain of 5% concentrated evenly at the mid-body and caudal sections. We found that the mechanical properties are homogeneous along the body and independent of the meninges. The mechanical behavior of the spinal cord can be characterized by a non-linear viscoelastic model, described by a modulus of 20 KPa for strains up to 15% and a modulus of 0.5 MPa for strains above 15%, in agreement with experimental data. However, this model does not offer a full understanding of the behavior of the spinal cord fibers. Using polymer physics we developed a model that relates the stress response as a function of the number of fibers.

  20. Spinal injury in a U.S. Army light observation helicopter.

    PubMed

    Shanahan, D F; Mastroianni, G R

    1984-01-01

    All accident reports involving U.S. Army OH-58 series helicopters were analyzed to determine vertical and horizontal velocity change at impact and the relationship of this kinematic data to the production of spinal injury. This analysis determined that spinal injury is related primarily to vertical velocity change at impact and is relatively independent of horizontal velocity change. The dramatic increase in the rate of spinal injury occurring just above the design sink speed of the aircraft landing gear (3.7 m/s) suggests that the fuselage and seat provide little additional impact attenuation capability above that of the gear alone. It is concluded that if this aircraft were modified to provide protection to the occupants for impacts up to 9.1 m/s (30 ft/s), approximately 80% of all spinal injury incurred in survivable accidents could be substantially mitigated. The incorporation of energy absorbing seats is recommended.

  1. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.

    PubMed

    Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia

    2014-12-18

    Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury.

  2. Use of autologous growth factors in lumbar spinal fusion.

    PubMed

    Lowery, G L; Kulkarni, S; Pennisi, A E

    1999-08-01

    The results of spinal fusion, especially posteriorly above the lumbosacral junction, have been mixed. Autologous growth factor concentrate (AGF) prepared by ultraconcentration of platelets contains multiple growth factors having a chemotactic and mitogenic effect on mesenchymal stem cells and osteoblasts and may play a role in initiating bone healing. The purpose of this retrospective study is to review our results with AGF in lumbar spinal fusions. To date, AGF has been used in 39 patients having lumbar spinal fusion. The study group consisted of the first 19 consecutive cases to allow at least 6 months follow-up. The average follow-up was 13 months (range 6 to 18 months). Follow-up compliance was 91%. There were 7 men and 12 women. Average age was 52 years (range 30-72 years). Nine patients had prior back surgery. There were 8 smokers. AGF was used in posterior (n = 15) or anterior intradiscal (n = 4) fusions. AGF was used with autograft and coraline hydroxyapatite in all posterior fusions, and autograft, coral, and intradiscal spacer (carbon fiber spinal fusion cages or Synthes femoral ring) in intradiscal fusions. Posterior stabilization was used in all cases. Eight cases were single-level fusions, 6 were two-level, and 1 was a three-level fusion. Autologous iliac crest bone graft was taken in 14 cases and local autograft used in 5 cases. Posteriorly, a total of 23 levels were fused; of these, nine were at L5-S1, eight at L4-L5, five at L3-L4, and one at L2-L3. No impending pseudoarthroses were noted on plain radiographic examination at last follow-up visit. Solid fusion was confirmed in 3 patients having routine hardware removal, and in 2 patients who had surgery at an adjacent level. There was one posterior wound infection, which was managed without sequelae. When used as an adjunct to autograft, AGF offers theoretical advantages that need to be examined in controlled studies. Further study is necessary to determine whether coralline hydroxyapatite used as a

  3. Adaptive changes of the locomotor pattern and cutaneous reflexes during locomotion studied in the same cats before and after spinalization

    PubMed Central

    Frigon, Alain; Rossignol, Serge

    2008-01-01

    Descending supraspinal inputs exert powerful influences on spinal reflex pathways in the legs. Removing these inputs by completely transecting the spinal cord changes the state (i.e. the configuration of the spinal circuitry) of the locomotor network and undoubtedly generates a reorganization of reflex pathways. To study changes in reflex pathways after a complete spinalization, we recorded spinal reflexes during locomotion before and after a complete transection of the spinal cord at the 13th thoracic segment in cats. We chronically implanted electrodes in three cats, to record electromyography (EMG) in several hindlimb muscles and around the left tibial (Tib) nerve at the ankle to elicit reflexes during locomotion before and after spinalization in the same cat. Control values of kinematics, EMGs and reflexes were obtained during intact locomotion for 33–60 days before spinalization. After spinalization, cats were trained 3–5 times a week on a motorized treadmill. Recordings resumed once a stable spinal locomotion was achieved (26–43 days), with consistent plantar foot placement and full hindquarter weight support without perineal stimulation. Changes in Tib nerve reflex responses after spinalization in the same cat during locomotion were found in all muscles studied and were often confined to specific phases of the step cycle. The most remarkable change was the appearance of short-latency excitatory responses in some ipsilateral ankle extensors during stance. Short-latency excitatory responses in the ipsilateral tibialis anterior were increased during stance, whereas in other flexors such as semitendinosus and sartorius, increases were mostly confined to swing. Longer-latency excitatory responses in ipsilateral flexors were absent or reduced. Responses evoked in limb muscles contralateral to stimulation were generally increased throughout the step cycle. These reflex changes after spinalization provide important clues regarding the functional reorganization

  4. Adaptive changes of the locomotor pattern and cutaneous reflexes during locomotion studied in the same cats before and after spinalization.

    PubMed

    Frigon, Alain; Rossignol, Serge

    2008-06-15

    Descending supraspinal inputs exert powerful influences on spinal reflex pathways in the legs. Removing these inputs by completely transecting the spinal cord changes the state (i.e. the configuration of the spinal circuitry) of the locomotor network and undoubtedly generates a reorganization of reflex pathways. To study changes in reflex pathways after a complete spinalization, we recorded spinal reflexes during locomotion before and after a complete transection of the spinal cord at the 13th thoracic segment in cats. We chronically implanted electrodes in three cats, to record electromyography (EMG) in several hindlimb muscles and around the left tibial (Tib) nerve at the ankle to elicit reflexes during locomotion before and after spinalization in the same cat. Control values of kinematics, EMGs and reflexes were obtained during intact locomotion for 33-60 days before spinalization. After spinalization, cats were trained 3-5 times a week on a motorized treadmill. Recordings resumed once a stable spinal locomotion was achieved (26-43 days), with consistent plantar foot placement and full hindquarter weight support without perineal stimulation. Changes in Tib nerve reflex responses after spinalization in the same cat during locomotion were found in all muscles studied and were often confined to specific phases of the step cycle. The most remarkable change was the appearance of short-latency excitatory responses in some ipsilateral ankle extensors during stance. Short-latency excitatory responses in the ipsilateral tibialis anterior were increased during stance, whereas in other flexors such as semitendinosus and sartorius, increases were mostly confined to swing. Longer-latency excitatory responses in ipsilateral flexors were absent or reduced. Responses evoked in limb muscles contralateral to stimulation were generally increased throughout the step cycle. These reflex changes after spinalization provide important clues regarding the functional reorganization of

  5. The brown dwarf kinematics project

    NASA Astrophysics Data System (ADS)

    Faherty, Jackie K.

    2010-10-01

    Brown dwarfs are a recent addition to the plethora of objects studied in Astronomy. With theoretical masses between 13 and 75 MJupiter , they lack sustained stable Hydrogen burning so they never join the stellar main sequence. They have physical properties similar to both planets and low-mass stars so studies of their population inform on both. The distances and kinematics of brown dwarfs provide key statistical constraints on their ages, moving group membership, absolute brightnesses, evolutionary trends, and multiplicity. Yet, until my thesis, fundamental measurements of parallax and proper motion were made for only a relatively small fraction of the known population. To address this deficiency, I initiated the Brown Dwarf Kinematics (BDKP). Over the past four years I have re-imaged the majority of spectroscopically confirmed field brown dwarfs (or ultracool dwarfs---UCDs) and created the largest proper motion catalog for ultracool dwarfs to date. Using new astrometric information I examined population characteristics such as ages calculated from velocity dispersions and correlations between kinematics and colors. Using proper motions, I identified several new wide co-moving companions and investigated binding energy (and hence formation) limitations as well as the frequency of hierarchical companions. Concurrently over the past four years I have been conducting a parallax survey of 84 UCDs including those showing spectral signatures of youth, metal-poor brown dwarfs, and those within 20 pc of the Sun. Using absolute magnitude relations in J,H, and K, I identified overluminous binary candidates and investigated known flux-reversal binaries. Using current evolutionary models, I compared the MK vs J-K color magnitude diagram to model predictions and found that the low-surface gravity dwarfs are significantly red-ward and underluminous of predictions and a handful of late-type T dwarfs may require thicker clouds to account for their scatter.

  6. Spinal subarachnoid haematoma after spinal anaesthesia: case report.

    PubMed

    Vidal, Marion; Strzelecki, Antoine; Houadec, Mireille; Krikken, Isabelle Ranz; Danielli, Antoine; Souza Neto, Edmundo Pereira de

    2016-01-01

    Subarachnoid haematoma after spinal anaesthesia is known to be very rare. In the majority of these cases, spinal anaesthesia was difficult to perform and/or unsuccessful; other risk factors included antiplatelet or anticoagulation therapy, and direct spinal cord trauma. We report a case of subarachnoid haematoma after spinal anaesthesia in a young patient without risk factors. Copyright © 2015 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Kinematic correction for roller skewing

    NASA Technical Reports Server (NTRS)

    Savage, M.; Loewenthal, S. H.

    1980-01-01

    A theory of kinematic stabilization of rolling cylinders is developed for high-speed cylindrical roller bearings. This stabilization requires race and roller crowning to product changes in the rolling geometry as the roller shifts axially. These changes put a reverse skew in the rolling elements by changing the rolling taper. Twelve basic possible bearing modifications are identified in this paper. Four have single transverse convex curvature in the rollers while eight have rollers with compound transverse curvature composed of a central cylindrical band of constant radius surrounded by symmetric bands with both slope and transverse curvature.

  8. Kinematically complete chemical reaction dynamics

    NASA Astrophysics Data System (ADS)

    Trippel, S.; Stei, M.; Otto, R.; Hlavenka, P.; Mikosch, J.; Eichhorn, C.; Lourderaj, U.; Zhang, J. X.; Hase, W. L.; Weidemüller, M.; Wester, R.

    2009-11-01

    Kinematically complete studies of molecular reactions offer an unprecedented level of insight into the dynamics and the different mechanisms by which chemical reactions occur. We have developed a scheme to study ion-molecule reactions by velocity map imaging at very low collision energies. Results for the elementary nucleophilic substitution (SN2) reaction Cl- + CH3I → ClCH3 + I- are presented and compared to high-level direct dynamics trajectory calculations. Furthermore, an improved design of the crossed-beam imaging spectrometer with full three-dimensional measurement capabilities is discussed and characterization measurements using photoionization of NH3 and photodissociation of CH3I are presented.

  9. On steady kinematic helical dynamos

    NASA Astrophysics Data System (ADS)

    Eltayeb, I. A.; Loper, D. E.

    The equations governing steady kinematic helical dynamos are studied, using the formalism of Benton (1979), when the flow has no radial component (in cylindrical coordinates). It is shown that all solutions must decay exponentially to zero at large distances, s, from the axis of the helix. When the flow depends on s only it is shown that a necessary condition for dynamo action is that the flow possesses components along both the primary and secondary helices. It is also found that periodic motion of one mode along the primary helix cannot support dynamo action even if the field is composed of mean and periodic parts.

  10. Epidural Injections for Spinal Pain

    MedlinePlus

    ... back or leg pain after spinal surgery) Other injuries to spinal nerves, vertebrae and surrounding tissues Bone ... Bleeding if a blood vessel is inadvertently damaged. Injury to the nerves at the injection site. Temporary ...

  11. Living with Spinal Cord Injury

    MedlinePlus

    ... to send and receive messages to and from the brain. About 200,000 people in the United States have spinal cord injuries. Most injuries occur from a traumatic event, according to the National Spinal Cord Injury ...

  12. Recovery from Chronic Spinal Cord Contusion after Nogo Receptor Intervention

    PubMed Central

    Wang, Xingxing; Duffy, Philip; McGee, Aaron W.; Hasan, Omar; Gould, Grahame; Tu, Nathan; Harel, Noam Y.; Huang, Yiyun; Carson, Richard E.; Weinzimmer, David; Ropchan, Jim; Benowitz, Larry I.; Cafferty, William B. J.; Strittmatter, Stephen M.

    2011-01-01

    Objective Several interventions promote axonal growth and functional recovery when initiated shortly after CNS injury, including blockade of myelin-derived inhibitors with soluble Nogo Receptor (NgR1, RTN4R) ‘decoy’ protein. We examined the efficacy of this intervention in the much more prevalent and refractory condition of chronic spinal cord injury. Methods We eliminated the NgR1 pathway genetically in mice by conditional gene targeting starting 8 weeks after spinal hemisection injury and monitored locomotion in the open field and by video kinematics over the ensuing 4 months. In a separate pharmacological experiment, intrathecal NgR1 decoy protein administration was initiated 3 months after spinal cord contusion injury. Locomotion and raphespinal axon growth were assessed during 3 months of treatment between 4 and 6 months after contusion injury. Results Conditional deletion of NgR1 in the chronic state results in gradual improvement of motor function accompanied by increased density of raphespinal axons in the caudal spinal cord. In chronic rat spinal contusion, NgR1 decoy treatment from 4–6 months after injury results in 29% (10 of 35) of rats recovering weight-bearing status compared to 0% (0 of 29) of control rats (P<0.05). Open field BBB locomotor scores showed a significant improvement in the NgR-treated group relative to the control group (P<0.005, repeated measures ANOVA). An increase in raphespinal axon density caudal to the injury is detected in NgR1-decoy-treated animals by immunohistology and by positron emission tomography using a serotonin reuptake ligand. Interpretation Antagonizing myelin-derived inhibitors signaling with NgR1 decoy augments recovery from chronic spinal cord injury. PMID:22162062

  13. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats

    PubMed Central

    2012-01-01

    Background A complete spinal cord transection results in loss of all supraspinal motor control below the level of the injury. The neural circuitry in the lumbosacral spinal cord, however, can generate locomotor patterns in the hindlimbs of rats and cats with the aid of motor training, epidural stimulation and/or administration of monoaminergic agonists. We hypothesized that there are patterns of EMG signals from the forelimbs during quadrupedal locomotion that uniquely represent a signal for the “intent” to step with the hindlimbs. These observations led us to determine whether this type of “indirect” volitional control of stepping can be achieved after a complete spinal cord injury. The objective of this study was to develop an electronic bridge across the lesion of the spinal cord to facilitate hindlimb stepping after a complete mid-thoracic spinal cord injury in adult rats. Methods We developed an electronic spinal bridge that can detect specific patterns of EMG activity from the forelimb muscles to initiate electrical-enabling motor control (eEmc) of the lumbosacral spinal cord to enable quadrupedal stepping after a complete spinal cord transection in rats. A moving window detection algorithm was implemented in a small microprocessor to detect biceps brachii EMG activity bilaterally that then was used to initiate and terminate epidural stimulation in the lumbosacral spinal cord. We found dominant frequencies of 180–220 Hz in the EMG of the forelimb muscles during active periods, whereas these frequencies were between 0–10 Hz when the muscles were inactive. Results and conclusions Once the algorithm was validated to represent kinematically appropriate quadrupedal stepping, we observed that the algorithm could reliably detect, initiate, and facilitate stepping under different pharmacological conditions and at various treadmill speeds. PMID:22691460

  14. Ballistic representation for kinematic access

    NASA Astrophysics Data System (ADS)

    Alfano, Salvatore

    2011-01-01

    This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket's burnout energy is used to find its equivalent initial velocity for a given launcher's altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.

  15. Computation of trunk muscle forces, spinal loads and stability in whole-body vibration

    NASA Astrophysics Data System (ADS)

    Bazrgari, B.; Shirazi-Adl, A.; Kasra, M.

    2008-12-01

    Whole-body vibration has been indicated as a risk factor in back disorders. Proper prevention and treatment management, however, requires a sound knowledge of associated muscle forces and loads on the spine. Previous trunk model studies have either neglected or over-simplified the trunk redundancy with time-varying unknown muscle forces. Trunk stability has neither been addressed. A novel iterative dynamic kinematics-driven approach was employed to evaluate muscle forces, spinal loads and system stability in a seated subject under a random vertical base excitation with ˜±1 g peak acceleration contents. This iterative approach satisfied equations of motion in all directions/levels while accounting for the nonlinear passive resistance of the ligamentous spine. The effect of posture, co-activity in abdominal muscles and changes in buttocks stiffness were also investigated. The computed vertical accelerations were in good agreement with measurements. The input base excitation, via inertial and muscle forces, substantially influenced spinal loads and system stability. The flexed posture in sitting increased the net moment, muscle forces and passive spinal loads while improving the trunk stability. Similarly, the introduction of low to moderate antagonistic coactivity in abdominal muscles increased the passive spinal loads and improved the spinal stability. A trade-off, hence, exists between lower muscle forces and spinal loads on one hand and more stable spine on the other. Base excitations with larger peak acceleration contents substantially increase muscle forces/spinal loads and, hence, the risk of injury.

  16. Thoracic Spine Manipulation in Individuals With Subacromial Impingement Syndrome Does Not Immediately Alter Thoracic Spine Kinematics, Thoracic Excursion, or Scapular Kinematics: A Randomized Controlled Trial.

    PubMed

    Kardouni, Joseph R; Pidcoe, Peter E; Shaffer, Scott W; Finucane, Sheryl D; Cheatham, Seth A; Sousa, Catarina O; Michener, Lori A

    2015-07-01

    Randomized controlled trial. To determine if thoracic spinal manipulative therapy (SMT) alters thoracic kinematics, thoracic excursion, and scapular kinematics compared to a sham SMT in individuals with subacromial impingement syndrome, and also to compare changes in patient-reported outcomes between treatment groups. Prior studies indicate that thoracic SMT can improve pain and disability in individuals with subacromial impingment syndrome. However, the mechanisms underlying these benefits are not well understood. Participants with shoulder impingement symptoms (n = 52) were randomly assigned to receive a single session of thoracic SMT or sham SMT. Thoracic and scapular kinematics during active arm elevation and overall thoracic excursion were measured before and after the intervention. Patient-reported outcomes measured were pain (numeric pain-rating scale), function (Penn Shoulder Score), and global rating of change. Following the intervention, there were no significant differences in changes between groups for thoracic kinematics or excursion, scapular kinematics, and patient-reported outcomes (P>.05). Both groups showed an increase in scapular internal rotation during arm raising (mean, 0.9°; 95% confidence interval [CI]: 0.3°, 1.6°; P = .003) and lowering (0.8°; 95% CI: 0.0°, 1.5°; P = .041), as well as improved pain reported on the numeric pain-rating scale (1.2 points; 95% CI: 0.3, 1.8; P<.001) and function on the Penn Shoulder Score (9.1 points; 95% CI: 6.5, 11.7; P<.001). Thoracic spine extension and excursion did not change significantly following thoracic SMT. There were small but likely not clinically meaningful changes in scapular internal rotation in both groups. Patient-reported pain and function improved in both groups; however, there were no significant differences in the changes between the SMT and the sham SMT groups. Overall, patient-reported outcomes improved in both groups without meaningful changes to thoracic or scapular motion

  17. Attributes of quiet stance in the chronic spinal cat.

    PubMed

    Fung, J; Macpherson, J M

    1999-12-01

    Standing is a dynamic task that requires antigravity support of the body mass and active regulation of the position of the body center of mass. This study examined the extent to which the chronic spinal cat can maintain postural orientation during stance and adapt to changes in stance distance (fore-hindpaw separation). Intact cats adapt to changes in stance distance by maintaining a constant horizontal orientation of the trunk and changing orientation of the limbs, while keeping intralimb geometry constant and aligning the ground reaction forces closely with the limb axes. Postural adaptation was compared in four cats before and after spinalization at the T(6) level, in terms of the forces exerted by each paw against the support, body geometry (kinematics) and electromyographic (EMG) activity recorded from chronic, indwelling electrodes, as well as the computed net torques in the fore and hindlimbs. Five fore-hindpaw distances spanning the preferred distance were tested before spinalization, with a total range of 20 cm from the shortest to the longest stance. After spinalization, the cats were trained on a daily basis to stand on the force platform, and all four cats were able to support their full body weight. Three of the four cats could adapt to changes in stance distance, but the range was smaller and biased toward the shorter distances. The fourth cat could stand only at one stance distance, which was 8 cm shorter than the preferred distance before spinalization. All cats shifted their center of pressure closer to the forelimbs after spinalization, but the amount of shift could largely be accounted for by the weight loss in the hindquarters. The three cats that could adapt to changes in stance distance used a similar strategy as the intact cat by constraining the trunk and changing orientation of the limb axes in close relation with the forces exerted by each limb. However, different postures in the fore- and hindlimbs were adopted, particularly at the

  18. Lumbar spinal stenosis.

    PubMed Central

    Ciricillo, S F; Weinstein, P R

    1993-01-01

    Lumbar spinal stenosis, the results of congenital and degenerative constriction of the neural canal and foramina leading to lumbosacral nerve root or cauda equina compression, is a common cause of disability in middle-aged and elderly patients. Advanced neuroradiologic imaging techniques have improved our ability to localize the site of nerve root entrapment in patients presenting with neurogenic claudication or painful radiculopathy. Although conservative medical management may be successful initially, surgical decompression by wide laminectomy or an intralaminar approach should be done in patients with serious or progressive pain or neurologic dysfunction. Because the early diagnosis and treatment of lumbar spinal stenosis may prevent intractable pain and the permanent neurologic sequelae of chronic nerve root entrapment, all physicians should be aware of the different neurologic presentations and the treatment options for patients with spinal stenosis. Images PMID:8434469

  19. Spinal Injuries in Children

    PubMed Central

    Basu, Saumyajit

    2012-01-01

    About 5% of spinal injuries occur in children – however the consequences to the society are devastating, all the more so because the cervical spine is more commonly affected. Anatomical differences with adults along with the inherent elasticity of the pediatric spine, makes these injuries a biomechanically separate entity. Hence clinical manifestations are unique, one of which is the Spinal Cord Injury Without Radiological Abnormality. With the advent of high quality MRI and CT scan along with digital X-ray, it is now possible to exactly delineate the anatomical location, geometrical configuration, and the pathological extent of the injury. This has improved the management strategies of these unfortunate children and the role of surgical stabilization in unstable injuries can be more sharply defined. However these patients should be followed up diligently because of the recognized long term complications of spinal deformity and syringomyelia. PMID:22855681

  20. A kinematic analysis of the spine during rugby scrummaging on natural and synthetic turfs

    PubMed Central

    Swaminathan, Ramesh; Williams, Jonathan M.; Jones, Michael D.; Theobald, Peter S.

    2016-01-01

    ABSTRACT Artificial surfaces are now an established alternative to grass (natural) surfaces in rugby union. Little is known, however, about their potential to reduce injury. This study characterises the spinal kinematics of rugby union hookers during scrummaging on third-generation synthetic (3G) and natural pitches. The spine was sectioned into five segments, with inertial sensors providing three-dimensional kinematic data sampled at 40 Hz/sensor. Twenty-two adult, male community club and university-level hookers were recruited. An equal number were analysed whilst scrummaging on natural or synthetic turf. Players scrummaging on synthetic turf demonstrated less angular velocity in the lower thoracic spine for right and left lateral bending and right rotation. The general reduction in the range of motion and velocities, extrapolated over a prolonged playing career, may mean that the synthetic turf could result in fewer degenerative injuries. It should be noted, however, that this conclusion considers only the scrummaging scenario. PMID:26375051

  1. A kinematic analysis of the spine during rugby scrummaging on natural and synthetic turfs.

    PubMed

    Swaminathan, Ramesh; Williams, Jonathan M; Jones, Michael D; Theobald, Peter S

    2016-01-01

    Artificial surfaces are now an established alternative to grass (natural) surfaces in rugby union. Little is known, however, about their potential to reduce injury. This study characterises the spinal kinematics of rugby union hookers during scrummaging on third-generation synthetic (3G) and natural pitches. The spine was sectioned into five segments, with inertial sensors providing three-dimensional kinematic data sampled at 40 Hz/sensor. Twenty-two adult, male community club and university-level hookers were recruited. An equal number were analysed whilst scrummaging on natural or synthetic turf. Players scrummaging on synthetic turf demonstrated less angular velocity in the lower thoracic spine for right and left lateral bending and right rotation. The general reduction in the range of motion and velocities, extrapolated over a prolonged playing career, may mean that the synthetic turf could result in fewer degenerative injuries. It should be noted, however, that this conclusion considers only the scrummaging scenario.

  2. A physiologically based hypothesis for learning proprioception and in approximating inverse kinematics.

    PubMed

    Simkins, Matt

    2016-05-01

    A long-standing problem in muscle control is the "curse of dimensionality". In part, this problem relates to the fact that coordinated movement is only achieved through the simultaneous contraction and extension of multitude muscles to specific lengths. Couched in robotics terms, the problem includes the determination of forward and inverse kinematics. Of the many neurophysiological discoveries in cortex is the existence of position gradients. Geometrically, position gradients are described by planes in Euclidean space whereby neuronal activity increases as the hand approaches locations that lie in a plane. This work demonstrates that position gradients, when coupled with known physiology in the spinal cord, allows for a way to approximate proprioception (forward kinematics) and to specify muscle lengths for goal-directed postures (inverse kinematics). Moreover, position gradients provide a means to learn and adjust kinematics as animals learn to move and grow. This hypothesis is demonstrated using computer simulation of a human arm. Finally, experimental predictions are described that might confirm or falsify the hypothesis.

  3. Changes in spinal alignment.

    PubMed

    Veintemillas Aráiz, M T; Beltrán Salazar, V P; Rivera Valladares, L; Marín Aznar, A; Melloni Ribas, P; Valls Pascual, R

    2016-04-01

    Spinal misalignments are a common reason for consultation at primary care centers and specialized departments. Misalignment has diverse causes and is influenced by multiple factors: in adolescence, the most frequent misalignment is scoliosis, which is idiopathic in 80% of cases and normally asymptomatic. In adults, the most common cause is degenerative. It is important to know the natural history and to detect factors that might predict progression. The correct diagnosis of spinal deformities requires specific imaging studies. The degree of deformity determines the type of treatment. The aim is to prevent progression of the deformity and to recover the flexibility and balance of the body.

  4. Spinal Muscular Atrophy.

    PubMed

    Kolb, Stephen J; Kissel, John T

    2015-11-01

    Spinal muscular atrophy is an autosomal-recessive disorder characterized by degeneration of motor neurons in the spinal cord and caused by mutations in the survival motor neuron 1 gene, SMN1. The severity of SMA is variable. The SMN2 gene produces a fraction of the SMN messenger RNA (mRNA) transcript produced by the SMN1 gene. There is an inverse correlation between SMN2 gene copy number and clinical severity. Clinical management focuses on multidisciplinary care. Preclinical models of SMA have led to an explosion of SMA clinical trials that hold great promise of effective therapy in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. International spinal cord injury spinal column injury basic data set.

    PubMed

    Dvorak, M F; Wing, P C; Fehlings, M G; Vaccaro, A R; Itshayek, E; Biering-Sorensen, F; Noonan, V K

    2012-11-01

    Survey of expert opinion, feedback and final consensus. To describe the development of the International Spinal Cord Injury (SCI) Spinal Column Injury Basic Data Set. International working group. A committee of experts was established to select and define data elements. The data set was then disseminated to the appropriate committees and organizations for comment. All suggested revisions were considered and the final version was endorsed by both the International Spinal Cord Society (ISCoS) and the American Spinal Injury Association (ASIA). The data set consists of seven variables: (1) penetrating or blunt injury, (2) spinal column injury(ies), (3) single or multiple level spinal column injury(ies), (4) spinal column injury level number, (5) spinal column injury level, (6) disc and/or posterior ligamentous complex injury and (7) traumatic translation. All variables are coded using numbers or characters. For variables 1, 2, 3, 4, 6 and 7, response categories are assigned a numeric point score. Variable 5 assigns both characters and numbers to identify level(s) of spinal injured vertebra(e). When there are several distinct and separate levels of injury, then each one is described using variables 4 through 7. The International SCI Spinal Column Injury Basic Data Set was developed to facilitate comparisons of spinal column injury data among studies, centres and countries. This data set is part of the National Institute of Neurological Disorders and Stroke Common Data Element project, and tools are now available to assist investigators in collecting this data in their SCI clinical studies.

  6. Kinematic Event Patterns in Speech: Special Problems.

    ERIC Educational Resources Information Center

    Westbury, John R.; Severson, Elizabeth J.; Lindstrom, Mary J.

    2000-01-01

    Results from a new analysis of synchronous acoustic and fleshpoint-kinematic data, recorded from 53 normal young-adult speakers of American English, are reported. The kinematic data represent speech-related actions of the tongue blade and dorsum, both lips, and the mandible, during the test words, "special" and "problem," and were drawn from an…

  7. Automated kinematic generator for surgical robotic systems.

    PubMed

    Jung, David L; Dixon, Warren E; Pin, François G

    2004-01-01

    Unlike traditional assembly line robotic systems that have a fixed kinematic structure associated with a single tool for a structured task, next-generation robotic surgical assist systems will be required to use an array of end-effector tools. Once a robot is connected with a tool, the kinematic equations of motion are altered. Given the need to accommodate evolving surgical challenges and to alleviate the restrictions imposed by the confined minimally invasive environment, new surgical tools may resemble small flexible snakes rather than rigid, cable driven instruments. Connecting to these developing articulated tools will significantly alter the overall kinematic structure of a robotic system. In this paper we present a technique for real-time automated generation and evaluation of manipulator kinematic equations that exhibits the combined advantages of existing methods-speed and flexibility to kinematic change--without their disadvantages.

  8. The history of spinal biomechanics.

    PubMed

    Sanan, A; Rengachary, S S

    1996-10-01

    The history of spinal biomechanics has its origins in antiquity. The Edwin Smith surgical papyrus, an Egyptian document written in the 17th century BC, described the difference between cervical sprain, fracture, and fracture-dislocation. By the time of Hippocrates (4th century BC), physical means such as traction or local pressure were being used to correct spinal deformities but the treatments were based on only a rudimentary knowledge of spinal biomechanics. The Renaissance produced the first serious attempts at understanding spinal biomechanics. Leonardo da Vinci (1452-1519) accurately described the anatomy of the spine and was perhaps the first to investigate spinal stability. The first comprehensive treatise on biomechanics, De Motu Animalium, was published by Giovanni Borelli in 1680, and it contained the first analysis of weight bearing by the spine. In this regard, Borelli can be considered the "Father of Spinal Biomechanics." By the end of the 19th century, the basic biomechanical concepts of spinal alignment and immobilization were well entrenched as therapies for spinal cord injury. Further anatomic delineation of spinal stability was sparked by the anatomic analyses of judicial hangings by Wood-Jones in 1913. By the 1960s, a two-column model of the spine was proposed by Holdsworth. The modern concept of Denis' three-column model of the spine is supported by more sophisticated testing of cadaver spines in modern biomechanical laboratories. The modern explosion of spinal instrumentation stems from a deeper understanding of the load-bearing structures of the spinal column.

  9. Bayesian kinematic earthquake source models

    NASA Astrophysics Data System (ADS)

    Minson, S. E.; Simons, M.; Beck, J. L.; Genrich, J. F.; Galetzka, J. E.; Chowdhury, F.; Owen, S. E.; Webb, F.; Comte, D.; Glass, B.; Leiva, C.; Ortega, F. H.

    2009-12-01

    Most coseismic, postseismic, and interseismic slip models are based on highly regularized optimizations which yield one solution which satisfies the data given a particular set of regularizing constraints. This regularization hampers our ability to answer basic questions such as whether seismic and aseismic slip overlap or instead rupture separate portions of the fault zone. We present a Bayesian methodology for generating kinematic earthquake source models with a focus on large subduction zone earthquakes. Unlike classical optimization approaches, Bayesian techniques sample the ensemble of all acceptable models presented as an a posteriori probability density function (PDF), and thus we can explore the entire solution space to determine, for example, which model parameters are well determined and which are not, or what is the likelihood that two slip distributions overlap in space. Bayesian sampling also has the advantage that all a priori knowledge of the source process can be used to mold the a posteriori ensemble of models. Although very powerful, Bayesian methods have up to now been of limited use in geophysical modeling because they are only computationally feasible for problems with a small number of free parameters due to what is called the "curse of dimensionality." However, our methodology can successfully sample solution spaces of many hundreds of parameters, which is sufficient to produce finite fault kinematic earthquake models. Our algorithm is a modification of the tempered Markov chain Monte Carlo (tempered MCMC or TMCMC) method. In our algorithm, we sample a "tempered" a posteriori PDF using many MCMC simulations running in parallel and evolutionary computation in which models which fit the data poorly are preferentially eliminated in favor of models which better predict the data. We present results for both synthetic test problems as well as for the 2007 Mw 7.8 Tocopilla, Chile earthquake, the latter of which is constrained by InSAR, local high

  10. Spinal tuberculosis: diagnosis and management.

    PubMed

    Rasouli, Mohammad R; Mirkoohi, Maryam; Vaccaro, Alexander R; Yarandi, Kourosh Karimi; Rahimi-Movaghar, Vafa

    2012-12-01

    The spinal column is involved in less than 1% of all cases of tuberculosis (TB). Spinal TB is a very dangerous type of skeletal TB as it can be associated with neurologic deficit due to compression of adjacent neural structures and significant spinal deformity. Therefore, early diagnosis and management of spinal TB has special importance in preventing these serious complications. In order to extract current trends in diagnosis and medical or surgical treatment of spinal TB we performed a narrative review with analysis of all the articles available for us which were published between 1990 and 2011. Althoug h the development of more accurate imaging modalities such as magnetic resonance imaging and advanced surgical techniques have made the early diagnosis and management of spinal TB much easier, these are still very challenging topics. In this review we aim to discuss the diagnosis and management of spinal TB based on studies with acceptable design, clearly explained results and justifiable conclusions.

  11. Maladaptive spinal plasticity opposes spinal learning and recovery in spinal cord injury

    PubMed Central

    Ferguson, Adam R.; Huie, J. Russell; Crown, Eric D.; Baumbauer, Kyle M.; Hook, Michelle A.; Garraway, Sandra M.; Lee, Kuan H.; Hoy, Kevin C.; Grau, James W.

    2012-01-01

    Synaptic plasticity within the spinal cord has great potential to facilitate recovery of function after spinal cord injury (SCI). Spinal plasticity can be induced in an activity-dependent manner even without input from the brain after complete SCI. A mechanistic basis for these effects is provided by research demonstrating that spinal synapses have many of the same plasticity mechanisms that are known to underlie learning and memory in the brain. In addition, the lumbar spinal cord can sustain several forms of learning and memory, including limb-position training. However, not all spinal plasticity promotes recovery of function. Central sensitization of nociceptive (pain) pathways in the spinal cord may emerge in response to various noxious inputs, demonstrating that plasticity within the spinal cord may contribute to maladaptive pain states. In this review we discuss interactions between adaptive and maladaptive forms of activity-dependent plasticity in the spinal cord below the level of SCI. The literature demonstrates that activity-dependent plasticity within the spinal cord must be carefully tuned to promote adaptive spinal training. Prior work from our group has shown that stimulation that is delivered in a limb position-dependent manner or on a fixed interval can induce adaptive plasticity that promotes future spinal cord learning and reduces nociceptive hyper-reactivity. On the other hand, stimulation that is delivered in an unsynchronized fashion, such as randomized electrical stimulation or peripheral skin injuries, can generate maladaptive spinal plasticity that undermines future spinal cord learning, reduces recovery of locomotor function, and promotes nociceptive hyper-reactivity after SCI. We review these basic phenomena, how these findings relate to the broader spinal plasticity literature, discuss the cellular and molecular mechanisms, and finally discuss implications of these and other findings for improved rehabilitative therapies after SCI. PMID

  12. Spinal epidural abscess.

    PubMed

    Miftode, E; Luca, V; Mihalache, D; Leca, D; Stefanidis, E; Anuţa, C; Sabadis, L

    2001-01-01

    In a retrospective study, 68 patients with Spinal Epidural Abscess (SEA) were reviewed. Of these, 66% had different predisposing factors such as staphylococcal skin infections, surgical procedures, rachicentesis, trauma, spondilodiscitis. Abscess had a lumbar region location in 53% of cases. Staphylococcus aureus was the most frequent etiological agent (81%). The overall rate of mortality in SEA patients was 13.2%.

  13. Lumbar Spinal Canal Stenosis

    MedlinePlus

    ... time. This narrowing is called “stenosis.” As the lumbar spinal canal narrows, the nerves that go through it are squeezed. This squeezing ... chest). It’s thought that these positions “open” the lumbar canal and take the pressure off the nerves that go to the legs. In severe cases, ...

  14. Spinal Muscular Atrophy

    MedlinePlus

    ... are most often affected. Complications include scoliosis and chronic shortening of muscles or tendons around joints. × Definition Spinal Muscular Atrophy (SMA) Types I, II, and III belong to a group of hereditary diseases that cause weakness and wasting of the voluntary muscles in the arms and ...

  15. Analysis of occupant kinematics and dynamics in nearside oblique impacts.

    PubMed

    López-Valdés, F J; Juste-Lorente, O; Maza-Frechin, M; Pipkorn, B; Sunnevang, C; Lorente, A; Aso-Vizan, A; Davidsson, J

    2016-09-01

    The objective of this article is to analyze the kinematics and dynamics of restrained postmortem human surrogates (PMHS) exposed to a nearside oblique impact and the injuries that were found after the tests. Three male PMHS of similar age (64 ± 4 years) and anthropometry (weight: 61 ± 9.6 kg; stature: 172 ± 2.7 cm) were exposed to a 30° nearside oblique impact at 34 km/h. The test fixture approximated the seating position of a front seat occupant. A rigid seat was designed to match the pelvic displacement in a vehicle seat. Surrogates were restrained by a 3-point seat belt consisting of a 2 kN pretensioner (PT), 4.5 kN force-limiting shoulder belt, and a 3.5 kN PT lap belt. The shoulder belt PT was not fired in one of the tests. Trajectories of the head, shoulder, and hip joint (bilaterally) were recorded at 1,000 Hz by a 3D motion capture system. The 3D acceleration and angular rate of the head, T1, and pelvis, and the 3D acceleration of selected spinal locations was measured at 10,000 Hz. Seat belt load cells measured the belt tension at 4 locations. PMHS donation and handling were performed with the approval of the relevant regional ethics review board. Activation of the shoulder PT reduced substantially the peak forward excursion of the head but did not influence the lateral displacement of the head center of gravity (CG). In all 3 subjects, the lateral excursion of the head CG (291.1, 290, 292.1 mm) was greater than the forward displacement (271.4, 216.7, 171.5 mm). The hip joint excursion of the PMHS that was not exposed to the shoulder PT seat belt was twice the magnitude observed for the other 2 subjects. The 3 PMHS sustained clavicle fractures on the shoulder loaded by the seat belt and 2 of them were diagnosed atlantoaxial subluxation in the radiologist examination. Avulsion fractures of the right lamina of T1, T2, T3, and T4 were found when the PT was not used. The 3 PMHS received multiple fractures spread over both aspects of the rib cage

  16. Kinematic analysis following implantation of the PRESTIGE LP

    PubMed Central

    Kowalczyk, Izabela; Chaudhary, Navjot; Duggal, Neil

    2013-01-01

    Background The clinical success of cervical arthroplasty hinges on the ability to preserve or improve the biomechanics of the functional spinal unit. The purpose of this study was to conduct a radiologic assessment of kinematic parameters preimplantation and postimplantation of the PRESTIGE LP Cervical Disc System (Medtronic, Memphis, Tennessee). Methods A total of 120 radiographs of 20 patients following single-level implantation of the PRESTIGE LP were retrospectively reviewed. Static and dynamic radiologic assessments were performed before surgery and at 1 year postoperation. Kinematic parameters including range of motion (ROM), horizontal translation, center of rotation (COR X, Y), anterior disc height and posterior disc height, and disc angle and shell angle were assessed for each spinal level using quantitative motion analysis software. Clinical outcomes were assessed using the short form health survey physical component scores and mental component scores. Results The mean physical component scores and mental component scores of the short form health survey (SF-36) improved significantly following surgery. At 1 year postoperation, ROM, translation, and COR X were preserved. The COR Y shifted superiorly from 3.17 ± 2.08 mm preoperation to 0.98 ± 2.23 mm postoperation (P < .001). The anterior disc height and posterior disc height were significantly increased following surgery (3.97 ± 1.01 to 4.78 ± 1.11 mm and 3.04 ± 0.69 to 3.66 ± 0.61 mm, respectively; P < .01). The preoperative disc angle was 3.32° ± 2.92° and the postoperative shell angle was 1.11° ± 4.29°, with a mean change of −2.22° ± 4.63° (P < .05). Conclusions The PRESTIGE LP maintained preoperative ROM, translation, and COR X values. The postoperative COR Y value changed significantly by shifting superiorly, accompanied by an increase in DH. There was a loss of lordosis at the level of surgery, with the PRESTIGE LP endplates having an almost parallel endplate configuration. PMID

  17. An In Vitro Spinal Cord–Hindlimb Preparation for Studying Behaviorally Relevant Rat Locomotor Function

    PubMed Central

    Hayes, Heather Brant; Chang, Young-Hui; Hochman, Shawn

    2009-01-01

    Although the spinal cord contains the pattern-generating circuitry for producing locomotion, sensory feedback reinforces and refines the spatiotemporal features of motor output to match environmental demands. In vitro preparations, such as the isolated rodent spinal cord, offer many advantages for investigating locomotor circuitry, but they lack the natural afferent feedback provided by ongoing locomotor movements. We developed a novel preparation consisting of an isolated in vitro neonatal rat spinal cord oriented dorsal-up with intact hindlimbs free to step on a custom-built treadmill. This preparation combines the neural accessibility of in vitro preparations with the modulatory influence of sensory feedback from physiological hindlimb movement. Locomotion induced by N-methyl d-aspartate and serotonin showed kinematics similar to that of normal adult rat locomotion. Changing orientation and ground interaction (dorsal-up locomotion vs ventral-up air-stepping) resulted in significant kinematic and electromyographic changes that were comparable to those reported under similar mechanical conditions in vivo. We then used two mechanosensory perturbations to demonstrate the influence of sensory feedback on in vitro motor output patterns. First, swing assistive forces induced more regular, robust muscle activation patterns. Second, altering treadmill speed induced corresponding changes in stride frequency, confirming that changes in sensory feedback can alter stride timing in vitro. In summary, intact hindlimbs in vitro can generate behaviorally appropriate locomotor kinematics and responses to sensory perturbations. Future studies combining the neural and chemical accessibility of the in vitro spinal cord with the influence of behaviorally appropriate hindlimb movements will provide further insight into the operation of spinal motor pattern-generating circuits. PMID:19073815

  18. Investigating The Kinematics of Canids and Felids

    NASA Astrophysics Data System (ADS)

    Sur, D.

    2016-12-01

    For all organisms, metabolic energy is critical for survival. While moving efficiently is a necessity for large carnivores, the influence of kinematics on energy demand remains poorly understood. We measured the kinematics of dogs, wolves, and pumas to detect any differences in their respective energy expenditures. Using 22 kinematic parameters measured on 78 videos, we used one-way ANOVAs and paired T-tests to compare 5 experimental treatments among gaits in dogs (n=11 in 3 breed groups), wolves (n=2), and pumas (n=2). Across the measured parameters, we found greater kinematic similarity than expected among dog breeds and no trend in any of the 22 parameters regarding the effect of steepness on locomotion mechanics. Similarly, treadmill kinematics were nearly identical to those measured during outdoor movement. However, in 3 inches of snow, we observed significant differences (p<0.05) in 5 of the 22 parameters for one wolf. When comparing canids (wolves and dogs) to a felid (pumas), we found that pumas and dogs are the most kinematically distinct (differing in 13 of 22 parameters, compared with 5 of 22 for wolves and pumas). Lastly, compared with wolves, walking pumas had larger head angles (p=0.0025), forelimb excursion angles (p=0.0045), and hindlimb excursion angles (p=0.0327). After comparing the energetics of pumas and dogs with their respective kinematics, we noted that less dynamic kinematics result in energy savings. Through tracking the locations and gait behavior of large carnivores, novel sensor technology can reveal how indoor kinematics applies to wild animals and improve the conservation of these species.

  19. Anisotropic superconductivity driven by kinematic interaction

    NASA Astrophysics Data System (ADS)

    Ivanov, V. A.

    2000-11-01

    We have analysed the effect of kinematic pairing on the symmetry of superconducting order parameter for a square lattice in the frame of the strongly correlated Hubbard model. It is argued that in the first perturbation order the kinematic interaction renormalizes the Hubbard-I dispersions and provides at low doping the mixed singlet (s + s*)-wave superconductivity, giving way at higher doping to the triplet p-wave superconductivity. The obtained phase diagram depends only on the hopping integral parameter. The influence of the Coulomb repulsion on the kinematic superconducting pairing has been estimated. The (s + s*)-wave gap and the thermodynamic critical magnetic field have been derived.

  20. Kinematic Analysis Procedures In Biomechanics Cinematography

    NASA Astrophysics Data System (ADS)

    Atwater, Anne E.

    1982-02-01

    The key to kinetic analysis procedures via cinematography is the determination of the kinematics of the situation under analysis. Calculation of kinematic parameters of a body, namely, its displacement, velocity, and acceleration, is dependent on the precise and accurate location of points in two- or three-dimensional space. To insure optimal precision (reliability) and accuracy (validity) of the resulting kinematic data, consideration must be given to the selection and implementation of appropriate photographic procedures, as well as to data reduction procedures that will minimize errors.

  1. Kinematic hardening in creep of Zircaloy

    NASA Astrophysics Data System (ADS)

    Sedláček, Radan; Deuble, Dietmar

    2016-10-01

    Results of biaxial creep tests with stress changes on Zircaloy-2 tube samples are presented. A Hollomon-type viscoplastic strain hardening model is extended by the Armstrong-Frederic nonlinear kinematic hardening law, resulting in a mixed (i.e. isotropic and kinematic) strain hardening model. The creep tests with stress changes and similar tests published in the literature are simulated by the models. It is shown that introduction of the kinematic strain hardening in the viscoplastic strain hardening model is sufficient to describe the creep transients following stress drops, stress reversals and stress removals.

  2. Kinematic determinants of human locomotion.

    PubMed Central

    Borghese, N A; Bianchi, L; Lacquaniti, F

    1996-01-01

    1. The aim of this study was to find kinematic patterns that are invariant across the normal range of locomotion speeds. Subjects walked at different, freely chosen speeds ranging from 0.9 to 2.1 m s-1, while motion and ground reaction forces on the right side of the body were recorded in three-dimensional space. 2. The time course of the anatomical angles of flexion-extension at the hip and ankle was variable not only across subjects, but even from trial to trial in the same subject. By contrast, the time course of the changes in the angles of elevation of each limb segment (pelvis, thigh, shank and foot) relative to the vertical was stereotyped across subjects. 3. To compare the waveforms across speeds, data were scaled in time relative to gait cycle duration. The pattern of ground reaction forces was highly speed dependent. Several distinct families of curves could be recognized in the flexion-extension angles at the hip and ankle. Instead, the waveforms of global length and elevation of the limb, elevation angles of all limb segments and flexion-extension at the knee were invariant with speed. 4. When gait trajectories at all speeds are plotted in the position space defined by the elevation angles of the limb segments, they describe regular loops on a plane. The statistical characteristics of these angular covariations were quantified by means of principal component analysis. The first two principal components accounted together for > 99% of the total experimental variance, and were quantitatively comparable in all subjects. 5. This constraint of planar covariation of the elevation angles is closely reminiscent of that previously described for the control of posture. The existence of laws of intersegmental co-ordination, common to the control of posture and locomotion, presumably assures the maintenance of dynamic equilibrium during forward progression, and the anticipatory adaptation to potentially destabilizing factors by means of co-ordinated kinematic

  3. Spinal Arteriovenous Fistula with Progressive Paraplegia after Spinal Anaesthesia

    PubMed Central

    Argyrakis, Nikolaos; Matis, Georgios K.; Mpata-Tshibemba, Stephanie

    2014-01-01

    A case of an iatrogenic spinal arteriovenous fistula with progressive paraplegia in a young woman is reported. The fistula was eventually created after repetitive lumbar punctures performed in the process of spinal anaesthesia. Her symptoms were progressed to paraplegia over a period of 2 years. The digital subtraction angiography demonstrated a single-hole fistula, involving the anterior spinal artery and vein. The lesion was occluded by embolization with immediate improvement. The potential mechanism is discussed. PMID:24653807

  4. [Therapy progress of spinal cord compression by metastatic spinal tumor].

    PubMed

    Liu, Yao-sheng; He, Qi-zhen; Liu, Shu-bin; Jiang, Wei-gang; Lei, Ming-xing

    2016-01-01

    Metastatic epidural compression of the spinal cord is a significant source of morbidity in patients with systemic cancer. With improvment of oncotheray, survival period in the patients is improving and metastatic cord compression is en- countered increasingly often. Surgical management performed for early circumferential decompression for the spinal cord com- pression with spine instability, and spine reconstruction performed. Patients with radiosensitive tumours without spine instabili- ty, radiotherapy is an effective therapy. Spinal stereotactic radiosurgery and minimally invasive techniques, such as vertebro- plasty and kyphoplasty, percutaneous pedicle screw fixation, radiofrequency ablation are promising options for treatment of cer- tain selected patients with spinal metastases.

  5. Kinematic dynamo of inertial waves

    NASA Astrophysics Data System (ADS)

    Herreman, Wietze; Le Gal, Patrice; Le Dizes, Stephane

    2008-11-01

    Inertial waves are natural oscillatory tridimensional perturbations in rapidly rotating flows. They can be driven to high amplitudes by an external oscillatory forcing such as precession, or by a parametric instability such as in the elliptical instability. Inertial waves were observed in a MHD-flow (Gans, 1971, JFM ; Kelley et al., 2008, GAFD) and could be responsable of dynamo action. For travelling waves, a constructive alpha-effect was identified (Moffatt, 1970, JFM), but it does not apply to confined inertial wave flows. Yet, recent numerical work demonstrated that precession driven MHD flows can sustain magnetic fields (Tilgner, 2005, POF; Wu & Roberts, 2008, GAFD). This motivates us to study more precisely how inertial waves can exhibit dynamo action. Using a numerical code in cylindrical geometry, we find that standing inertial waves can generate a kinematic dynamo. We show that the dynamo-action results from a second order interaction of the diffusive eigenmodes of the magnetic field with the inertial wave. Scaling laws are obtained, which allows us to to apply the results to flows of geophysical interest.

  6. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  7. Edge-driven microplate kinematics

    USGS Publications Warehouse

    Schouten, Hans; Klitgord, Kim D.; Gallo, David G.

    1993-01-01

    It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplate's motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplate's edges rather than by a shear flow of mantle underneath.

  8. Milky Way halo gas kinematics

    NASA Technical Reports Server (NTRS)

    Danly, L.

    1986-01-01

    Measurements of high resolution, short wavelength absorption data taken by IUE toward high latitude O and B stars are presented in a discussion of the large scale kinematic properties of Milky Way Halo gas. An analysis of these data demonstrates that: (1) the obsrved absorption widths (FWHM) of Si II are very large, ranging up to 150 Km/s for the most distant halo star; this is much larger than is generally appreciated from optical data; (2) the absorption is observed to be systematically negative in radial velocity, indicating that cool material is, on the whole, flowing toward the disk of the galaxy; (3) there is some evidence for asymmetry between the northern and southern galactic hemispheres, in accordance with the HI 21 cm data toward the galactic poles; (4) low column density gas with highly negative radial LSR velocity (V less than -70 km/s) can be found toward stars beyond 1-3 kpc in the northern galactic hemisphere in all four quadrants of galactic longitude; and (5) only the profiles toward stars in the direction of known high velocity HI features show a clear two component structure.

  9. Spinal Cord Monitoring Data in Pediatric Spinal Deformity Patients With Spinal Cord Pathology.

    PubMed

    Aleem, Alexander W; Thuet, Earl D; Padberg, Anne M; Wallendorf, Michael; Luhmann, Scott J

    2015-01-01

    Retrospective. The purpose of this study is to review the efficacy of monitoring data and outcomes in pediatric patients with spinal cord pathology. The incidence of spinal cord pathology in pediatric patients with scoliosis has been reported between 3% and 20%. Previous studies demonstrated that intraoperative spinal cord monitoring (IOM) during scoliosis surgery can be reliable despite underlying pathology. A single-center retrospective review of 119 spinal surgery procedures in 82 patients with spinal cord pathology was performed. Diagnoses included Arnold-Chiari malformation, syringomyelia, myelomeningocele, spinal cord tumor, tethered cord, and diastematomyelia. Baseline neurologic function and history of prior neurosurgical intervention were identified. Outcome measures included ability to obtain reliable monitoring data during surgery and presence of postoperative neurologic deficits. Results were compared for 82 patients with adolescent idiopathic scoliosis (AIS). Usable IOM data were obtained in 82% of cases (97/119). Twenty-two cases (18%) had no lower extremity data. Patients with Arnold-Chiari malformation or syringomyelia pathologies, in isolation or together, had a significantly higher rate of reliable data compared to other pathologies (p < .0001). Among study group cases with usable data, there were 1 false negative (1%) and 4 true positive (4%) outcomes. There were no permanent neurologic deficits. The spinal cord pathology group demonstrated 80% sensitivity and 92% specificity. Spinal cord monitoring is a valuable tool in pediatric patients with spinal cord pathology undergoing spinal deformity surgeries. When obtained, data allow to detect changes in spinal cord function. Patients with a diagnosis of Arnold-Chiari or syringomyelia have monitoring data similar to those patients with AIS. Patients with other spinal cord pathologies have less reliable data, and surgeons should have a lower threshold for performing wake-up tests to assess spinal cord

  10. Spinal epidural abscess.

    PubMed

    Krishnamohan, Prashanth; Berger, Joseph R

    2014-11-01

    Spinal epidural abscess (SEA) remains a relatively infrequent diagnosis. Staphylococcus aureus is the most common organism identified, and the infectious source in SEA emanates from skin and soft tissue infections in about 20 % of instances. The thoracic spine is most often involved followed by the lumbar spine. The classic triad of fever, spinal pain, and neurological deficit is present in but a minority of patients. The appearance of neurological deficits with SEA has a significant impact on the prognosis; therefore, early diagnosis is imperative. Magnetic resonance imaging has permitted earlier diagnosis, although significant delays in diagnosis are common due to the nonspecific symptoms that frequently attend the disorder. Due to the rarity of this condition, there have been few randomized controlled trials to evaluate new treatment strategies, and most recommendations regarding treatment are based on case series studies often derived from the experiences at a single center.

  11. Spontaneous spinal epidural abscess.

    PubMed

    Ellanti, P; Morris, S

    2011-10-01

    Spinal epidural abscess is an uncommon entity, the frequency of which is increasing. They occur spontaneously or as a complication of intervention. The classical triad of fever, back pain and neurological symptoms are not always present. High index of suspicion is key to diagnosis. Any delay in diagnosis and treatment can have significant neurological consequences. We present the case of a previously well man with a one month history of back pain resulting from an epidural abscess.

  12. Aspergillus spinal epidural abscess

    SciTech Connect

    Byrd, B.F. III; Weiner, M.H.; McGee, Z.A.

    1982-12-17

    A spinal epidural abscess developed in a renal transplant recipient; results of a serum radioimmunoassay for Aspergillus antigen were positive. Laminectomy disclosed an abscess of the L4-5 interspace and L-5 vertebral body that contained hyphal forms and from which Aspergillus species was cultured. Serum Aspergillus antigen radioimmunoassay may be a valuable, specific early diagnostic test when systemic aspergillosis is a consideration in an immunosuppressed host.

  13. Saybolt universal viscosity converted to kinematic

    SciTech Connect

    Anaya, C.; Bermudez, O.

    1987-09-21

    This article describes a program for personal and handheld computers, written in Basic, which has been developed for the conversion of Saybolt universal viscosity in Saybolt Universal Seconds (SSU or SUS) to kinematic viscosity in centistokes (cSt), at any selected temperature. It was developed using the mathematical relationship presented in the American Society for Testing and Materials (ASTM) standard D2161-82. In the standard, an equation is presented to convert kinematic viscosity to Saybolt universal viscosity, but nothing is presented to convert from Saybolt to kinematic because it is necessary to find the roots of a nonexplicit function. There are several numerical methods that can be used to determine the roots of the nonexplicit function, and therefore, convert Saybolt universal viscosity to kinematic viscosity. In the program, the first iteration of the second-order Newton-Raphson method is followed by the Wegstein method as a convergence accelerator.

  14. Spinal arteriovenous shunts in children.

    PubMed

    Davagnanam, Indran; Toma, Ahmed K; Brew, Stefan

    2013-11-01

    Pediatric spinal arteriovenous shunts are rare and, in contrast to those in adults, are often congenital or associated with underlying genetic disorders. These are thought to be a more severe and complete phenotypic spectrum of all spinal arteriovenous shunts seen in the overall spinal shunt population. The pediatric presentation thus accounts for its association with significant morbidity and, in general, a more challenging treatment process compared with the adult presentation.

  15. [Information analysis of spinal ganglia].

    PubMed

    Lobko, P I; Kovaleva, D V; Kovalchuk, I E; Pivchenko, P G; Rudenok, V V; Davydova, L A

    2000-01-01

    Information parameters (entropia and redundancy) of cervical and thoracic spinal ganglia of albino rat foetuses, mature animals (cat and dog) and human subjects were analysed. Information characteristics of spinal ganglia were shown to be level-specified and to depend on their functional peculiarities. Information parameters of thoracic spinal ganglia of man and different animals are specie specified and may be used in assessment of morphological structures as information systems.

  16. Traumatic spinal cord injury.

    PubMed

    Ahuja, Christopher S; Wilson, Jefferson R; Nori, Satoshi; Kotter, Mark R N; Druschel, Claudia; Curt, Armin; Fehlings, Michael G

    2017-04-27

    Traumatic spinal cord injury (SCI) has devastating consequences for the physical, social and vocational well-being of patients. The demographic of SCIs is shifting such that an increasing proportion of older individuals are being affected. Pathophysiologically, the initial mechanical trauma (the primary injury) permeabilizes neurons and glia and initiates a secondary injury cascade that leads to progressive cell death and spinal cord damage over the subsequent weeks. Over time, the lesion remodels and is composed of cystic cavitations and a glial scar, both of which potently inhibit regeneration. Several animal models and complementary behavioural tests of SCI have been developed to mimic this pathological process and form the basis for the development of preclinical and translational neuroprotective and neuroregenerative strategies. Diagnosis requires a thorough patient history, standardized neurological physical examination and radiographic imaging of the spinal cord. Following diagnosis, several interventions need to be rapidly applied, including haemodynamic monitoring in the intensive care unit, early surgical decompression, blood pressure augmentation and, potentially, the administration of methylprednisolone. Managing the complications of SCI, such as bowel and bladder dysfunction, the formation of pressure sores and infections, is key to address all facets of the patient's injury experience.

  17. Accommodation of the Spinal Cat to a Tripping Perturbation

    PubMed Central

    Zhong, Hui; Roy, Roland R.; Nakada, Kenneth K.; Zdunowski, Sharon; Khalili, Nicole; de Leon, Ray D.; Edgerton, V. Reggie

    2012-01-01

    Adult cats with a complete spinal cord transection at T12–T13 can relearn over a period of days-to-weeks how to generate full weight-bearing stepping on a treadmill or standing ability if trained specifically for that task. In the present study, we assessed short-term (milliseconds to minutes) adaptations by repetitively imposing a mechanical perturbation on the hindlimb of chronic spinal cats by placing a rod in the path of the leg during the swing phase to trigger a tripping response. The kinematics and EMG were recorded during control (10 steps), trip (1–60 steps with various patterns), and then release (without any tripping stimulus, 10–20 steps) sequences. Our data show that the muscle activation patterns and kinematics of the hindlimb in the step cycle immediately following the initial trip (mechanosensory stimulation of the dorsal surface of the paw) was modified in a way that increased the probability of avoiding the obstacle in the subsequent step. This indicates that the spinal sensorimotor circuitry reprogrammed the trajectory of the swing following a perturbation prior to the initiation of the swing phase of the subsequent step, in effect “attempting” to avoid the re-occurrence of the perturbation. The average height of the release steps was elevated compared to control regardless of the pattern and the length of the trip sequences. In addition, the average impact force on the tripping rod tended to be lower with repeated exposure to the tripping stimulus. EMG recordings suggest that the semitendinosus, a primary knee flexor, was a major contributor to the adaptive tripping response. These results demonstrate that the lumbosacral locomotor circuitry can modulate the activation patterns of the hindlimb motor pools within the time frame of single step in a manner that tends to minimize repeated perturbations. Furthermore, these adaptations remained evident for a number of steps after removal of the mechanosensory stimulation. PMID:22557975

  18. Accommodation of the spinal cat to a tripping perturbation.

    PubMed

    Zhong, Hui; Roy, Roland R; Nakada, Kenneth K; Zdunowski, Sharon; Khalili, Nicole; de Leon, Ray D; Edgerton, V Reggie

    2012-01-01

    Adult cats with a complete spinal cord transection at T12-T13 can relearn over a period of days-to-weeks how to generate full weight-bearing stepping on a treadmill or standing ability if trained specifically for that task. In the present study, we assessed short-term (milliseconds to minutes) adaptations by repetitively imposing a mechanical perturbation on the hindlimb of chronic spinal cats by placing a rod in the path of the leg during the swing phase to trigger a tripping response. The kinematics and EMG were recorded during control (10 steps), trip (1-60 steps with various patterns), and then release (without any tripping stimulus, 10-20 steps) sequences. Our data show that the muscle activation patterns and kinematics of the hindlimb in the step cycle immediately following the initial trip (mechanosensory stimulation of the dorsal surface of the paw) was modified in a way that increased the probability of avoiding the obstacle in the subsequent step. This indicates that the spinal sensorimotor circuitry reprogrammed the trajectory of the swing following a perturbation prior to the initiation of the swing phase of the subsequent step, in effect "attempting" to avoid the re-occurrence of the perturbation. The average height of the release steps was elevated compared to control regardless of the pattern and the length of the trip sequences. In addition, the average impact force on the tripping rod tended to be lower with repeated exposure to the tripping stimulus. EMG recordings suggest that the semitendinosus, a primary knee flexor, was a major contributor to the adaptive tripping response. These results demonstrate that the lumbosacral locomotor circuitry can modulate the activation patterns of the hindlimb motor pools within the time frame of single step in a manner that tends to minimize repeated perturbations. Furthermore, these adaptations remained evident for a number of steps after removal of the mechanosensory stimulation.

  19. Inverse Kinematics for a Parallel Myoelectric Elbow

    DTIC Science & Technology

    2001-10-25

    Inverse Kinematics for a Parallel Myoelectric Elbow A. Z. Escudero, Ja. Álvarez, L. Leija. Center of Research and Advanced Studies of the IPN...replacement above elbow are serial mechanisms driven by a DC motor and they include only one active articulation for the elbow [1]. Parallel mechanisms...are rather scarce [2]. The inverse kinematics model of a 3-degree of freedom parallel prosthetic elbow mechanism is reported. The mathematical

  20. Traumatic acute spinal subarachnoid hematoma.

    PubMed

    Jang, Woo-Youl; Lee, Jung-Kil; Moon, Kyung-Sub; Kwak, Hyung-Jun; Joo, Sung-Pil; Kim, In-Young; Kim, Jae-Hyoo; Kim, Soo-Han

    2007-01-01

    This report describes a 66-year-old man who presented with progressive paraparesis after a fall. Magnetic resonance imaging showed an acute spinal hematoma at T11-12 with spinal cord compression. The patient underwent an emergency left T11-12 hemilaminectomy. The hematoma was subarachnoid and the source of bleeding was an injured radicular vein. To the best of our knowledge, this is the first reported case of traumatic spinal subarachnoid hematoma. We discuss the possible mechanism and our case illustrates an injured radicular vein can be a source of traumatic spinal subarachnoid hematoma.

  1. Early experience with endoscopic revision of lumbar spinal fusions.

    PubMed

    McGrath, Lynn B; Madhavan, Karthik; Chieng, Lee Onn; Wang, Michael Y; Hofstetter, Christoph P

    2016-02-01

    Approximately half a million spinal fusion procedures are performed annually in the US. It is estimated that up to one-third of arthrodesis constructs require revision surgeries. In this study the authors present endoscopic treatment strategies targeting 3 types of complications following arthrodesis surgery: 1) adjacent-level foraminal stenosis; 2) foraminal stenosis at an arthrodesis segment; and 3) stenosis caused by a displaced interbody cage. A retrospective chart review of 11 patients with a mean age of 68 ± 15 years was performed (continuous variables are shown as the mean ± SEM). All patients had a history of lumbar arthrodesis surgery and suffered from unilateral radiculopathy. Endoscopic revision surgeries were done as outpatient procedures, and there were no intraoperative or perioperative complications. The cohort included 3 patients with foraminal stenosis at the level of previous arthrodesis. They presented with unilateral radicular leg pain (visual analog scale [VAS] score: 7.3 ± 2.1) and were severely disabled, as evidenced by an Oswestry Disability Index (ODI) of 46 ± 4.9. Transforaminal endoscopic foraminotomies were performed, and at a mean follow-up time of 9.0 ± 2.5 months VAS was reduced by an average of 6.3. The cohort also includes 7 patients suffering unilateral radiculopathy due to adjacent-level foraminal stenosis. Preoperative VAS for leg pain of the symptomatic side was 6.0 ± 1.6, VAS for back pain was 5.2 ± 1.7, and ODI was 40 ± 6.33. Endoscopic decompression led to reduction of the ipsilateral leg VAS score by an average of 5, resulting in leg pain of 1 ± 0.5 at an average of 8 months of follow-up. The severity of back pain remained stable (VAS 4.2 ± 1.4). Two of these patients required revision surgery for recurrent symptoms. Finally, this study includes 1 patient who presented with weakness and pain due to retropulsion of an L5/S1 interbody spacer. The patient underwent an endoscopic interlaminar approach with partial

  2. Automated quantification of lumbar vertebral kinematics from dynamic fluoroscopic sequences

    NASA Astrophysics Data System (ADS)

    Camp, Jon; Zhao, Kristin; Morel, Etienne; White, Dan; Magnuson, Dixon; Gay, Ralph; An, Kai-Nan; Robb, Richard

    2009-02-01

    We hypothesize that the vertebra-to-vertebra patterns of spinal flexion and extension motion of persons with lower back pain will differ from those of persons who are pain-free. Thus, it is our goal to measure the motion of individual lumbar vertebrae noninvasively from dynamic fluoroscopic sequences. Two-dimensional normalized mutual information-based image registration was used to track frame-to-frame motion. Software was developed that required the operator to identify each vertebra on the first frame of the sequence using a four-point "caliper" placed at the posterior and anterior edges of the inferior and superior end plates of the target vertebrae. The program then resolved the individual motions of each vertebra independently throughout the entire sequence. To validate the technique, 6 cadaveric lumbar spine specimens were potted in polymethylmethacrylate and instrumented with optoelectric sensors. The specimens were then placed in a custom dynamic spine simulator and moved through flexion-extension cycles while kinematic data and fluoroscopic sequences were simultaneously acquired. We found strong correlation between the absolute flexionextension range of motion of each vertebra as recorded by the optoelectric system and as determined from the fluoroscopic sequence via registration. We conclude that this method is a viable way of noninvasively assessing twodimensional vertebral motion.

  3. Medicolegal cases for spinal epidural hematoma and spinal epidural abscess.

    PubMed

    French, Keisha L; Daniels, Eldra W; Ahn, Uri M; Ahn, Nicholas U

    2013-01-01

    Spinal epidural hematoma and spinal epidural abscess are rare surgical emergencies resulting in significant neurologic deficits. Making the diagnosis for spinal epidural hematoma and spinal epidural abscess can be challenging; however, a delay in recognition and treatment can be devastating. The objective of this retrospective analysis study was to identify risk factors for an adverse outcome for the provider. The LexisNexis Academic legal search database was used to identify a total of 19 cases of spinal epidural hematoma and spinal epidural abscess filed against medical providers. Outcome data on trial verdicts, age, sex, initial site of injury, time to consultation, time to appropriate imaging studies, time to surgery, and whether a rectal examination was performed or not were recorded. The results demonstrated a significant association between time to surgery more than 48 hours and an unfavorable verdict for the provider. The degree of permanent neurologic impairment did not appear to affect the verdicts. Fifty-eight percent of the cases did not present with an initial deficit, including loss of bowel or bladder control. All medical professionals must maintain a high level of suspicion and act quickly. Physicians who are able to identify early clinical features, appropriately image, and treat within a 48 hour time frame have demonstrated a more favorable medicolegal outcome compared with their counterparts in filed lawsuits for spinal epidural hematoma and spinal epidural abscess cases.

  4. The relationship between lower neck shear force and facet joint kinematics during automotive rear impacts.

    PubMed

    Stemper, Brian D; Yoganandan, Narayan; Pintar, Frank A; Maiman, Dennis J

    2011-04-01

    A primary goal of biomechanical safety research is the definition of localized injury thresholds in terms of quantities that are repeatable and easily measureable during experimentation. Recent biomechanical experimentation using human cadavers has highlighted the role of lower cervical facet joints in the injury mechanism resulting from low-speed automotive rear impacts. The present study was conducted to correlate lower neck forces and moments with facet joint motions during simulated rear impacts in an effort to define facet joint injury tolerance thresholds that can be used to assess automobile safety. Four male and four female intact head-neck complexes were obtained from cadaveric specimens and subjected to simulated automotive rear impacts using a pendulum-minisled device. Cervical spine segmental angulations and localized facet joint kinematics were correlated to shear and axial forces, and bending moments at the cervico-thoracic junction using linear regression. R(2) coefficients indicated that spinal kinematics correlated well with lower neck shear force and bending moment. Correlation slope was steeper in female specimens, indicating greater facet joint motions for a given loading magnitude. This study demonstrated that lower neck loads can be used to predict lower cervical facet joint kinematics during automotive rear impacts. Higher correlation slope in female specimens corresponds to higher injury susceptibility in that population. Although lower neck shear force and bending moment demonstrated adequate correlation with lower cervical facet joint motions, shear force is likely the better predictor due to similarity in the timing of peak magnitudes with regard to maximum facet joint motions.

  5. Caution: the use of an electromagnetic device to measure trunk kinematics on rowing ergometers.

    PubMed

    Ng, Leo; Burnett, Angus; Campbell, Amity; O'Sullivan, Peter

    2009-09-01

    The aim of the study was to determine the accuracy and variability of an electromagnetic device in measuring spinal kinematics on a traditional and replica rowing ergometer. Kinematic data collected from the 3-Space Fastrak system using a Standard Concept II ergometer were compared with a replica ergometer that was in part, composed of non-ferrous materials (modified ergometer). The Fastrak's sensors were fixed to a wooden "spine" with known angles (as measured by an inclinometer). The mean inclinometer angle from four sensors (1 +/- 0.20) was significantly different than the mean angle recorded on the standard ergometer (-5.4 +/- 3.40) (p = 0.007) whilst the angles recorded on the modified ergometer (1.4 +/- 0.80) were statistically equivalent to the inclinometer recordings (p = 0.660). These results indicate that the presence of ferrous material in a standard ergometer reduced the accuracy and increased the variability of data collected with the electromagnetic device. However, information collected on largely non-ferrous ergometers can provide coaches, biomechanists and clinicians with a quick and effective way to measure trunk kinematics during ergometer rowing.

  6. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation.

    PubMed

    Cortés, Camilo; de Los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián

    2016-01-01

    Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types.

  7. Inverse Kinematics for Upper Limb Compound Movement Estimation in Exoskeleton-Assisted Rehabilitation

    PubMed Central

    Cortés, Camilo; de los Reyes-Guzmán, Ana; Scorza, Davide; Bertelsen, Álvaro; Carrasco, Eduardo; Gil-Agudo, Ángel; Ruiz-Salguero, Oscar; Flórez, Julián

    2016-01-01

    Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury). The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement. The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton. This approximation is rough since their kinematic structures differ. Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup. Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains. EIKPE has been tested with single DOF movements of the wrist and elbow joints. This paper presents the assessment of EIKPE with elbow-shoulder compound movements (i.e., object prehension). Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage). The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compound movement execution, especially for the shoulder joint angles. This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types. PMID:27403420

  8. Imaging modalities in spinal disorders

    SciTech Connect

    Kricun, M.E.

    1986-01-01

    This book provides an approach to the various imaging modalities used to view the spine. It discusses the indications, limitations and practical use of each in the diagnosis, work-up and staging of various spinal disorders, and compares each of them in various clinical settings. Topics covered include low back pain syndrome, disk disease, spinal cord lesions, congenital abnormalities, and trauma.

  9. Spinal Injury Rehabilitation in Singapore.

    ERIC Educational Resources Information Center

    Yen, H. L.; Chua, K.; Chan, W.

    1998-01-01

    This study reviewed 231 cases of spinal cord injury treated in Singapore. Data on demographic characteristics, common causes (mostly falls and traffic accidents), types of spinal damage, and outcomes are reported. Following rehabilitation, 68 patients were able to ambulate independently and 45 patients achieved independence in activities of daily…

  10. Totally ossified metaplastic spinal meningioma.

    PubMed

    Ju, Chang Il; Hida, Kazutoshi; Yamauchi, Tomohiro; Houkin, Kiyohiro

    2013-09-01

    A 61-year-old woman with a very rare case of totally ossified large thoracic spinal metaplastic meningioma, showing progressing myelopathy is presented. Computed tomographic images showed a large totally ossfied intradural round mass occupying the spinal canal on T9-10 level. Magnetic resonance imaging revealed a large T9-10 intradural extramedullary mass that was hypointense to spinal cord on T1- and T2-weighted sequences, partial enhancement was apparent after Gadolinium administration. The spinal cord was severely compressed and displaced toward the right at the level of T9-10. Surgical removal of the tumor was successfully accomplished via the posterior midline approach and the histological diagnosis verified an ossified metaplastic meningioma. The clinical neurological symptoms of patient were improved postoperatively. In this article we discuss the surgical and pathological aspects of rare case of spinal totally ossified metaplastic meningioma.

  11. [Extradural spinal meningioma: case report].

    PubMed

    Dagain, A; Dulou, R; Lahutte, M; Dutertre, G; Pouit, B; Delmas, J-M; Camparo, P; Pernot, P

    2009-12-01

    We report a case of purely extradural spinal meningioma and discuss the potential pitfalls in differential diagnosis. Spinal meningiomas account for 20-30% of all spinal neoplasms. Epidural meningiomas are infrequent intraspinal tumors that can be easily confused with malignant neoplasms or spinal schwannomas. A 62-year-old man with a previous history of malignant disease presented with back pain and weakness of the lower limbs. Magnetic resonance imaging revealed a well-enhanced T4 intraspinal lesion. The intraoperative histological examination showed a meningioma (confirmed by postoperative examination). Opening the dura mater confirmed the purely epidural location of the lesion. The postoperative course was uneventful with no recurrence 12 months after surgery. Purely extradural spinal meningiomas can mimic metastatic tumors or schwannomas. Intraoperative histology is mandatory for optimal surgical decision making.

  12. Totally Ossified Metaplastic Spinal Meningioma

    PubMed Central

    Hida, Kazutoshi; Yamauchi, Tomohiro; Houkin, Kiyohiro

    2013-01-01

    A 61-year-old woman with a very rare case of totally ossified large thoracic spinal metaplastic meningioma, showing progressing myelopathy is presented. Computed tomographic images showed a large totally ossfied intradural round mass occupying the spinal canal on T9-10 level. Magnetic resonance imaging revealed a large T9-10 intradural extramedullary mass that was hypointense to spinal cord on T1- and T2-weighted sequences, partial enhancement was apparent after Gadolinium administration. The spinal cord was severely compressed and displaced toward the right at the level of T9-10. Surgical removal of the tumor was successfully accomplished via the posterior midline approach and the histological diagnosis verified an ossified metaplastic meningioma. The clinical neurological symptoms of patient were improved postoperatively. In this article we discuss the surgical and pathological aspects of rare case of spinal totally ossified metaplastic meningioma. PMID:24278660

  13. Manual physical assessment of spinal segmental motion: intent and validity.

    PubMed

    Abbott, J Haxby; Flynn, Timothy W; Fritz, Julie M; Hing, Wayne A; Reid, Duncan; Whitman, Julie M

    2009-02-01

    Validity of a clinical test can be defined as the extent to which the test actually assesses what it is intended to assess. In order to investigate the validity of manual physical assessment of the spine, it is therefore essential to establish what physical therapists intend to assess when they are applying these tests. The aims of this study were to (1) establish what manual physical therapists are intending to assess while applying passive intervertebral motion tests; and (2) examine the face validity and content validity for manual physical assessment of the spine. We surveyed 1502 members of the national manual physical therapist organisations of New Zealand and the United States of America using a web-based survey instrument. Sixty-six percent of 466 respondents believed passive accessory intervertebral motion (PAIVM) tests were valid for assessing quantity of segmental motion, and 76% believed passive physiologic intervertebral motion (PPIVM) tests were valid for assessing quantity of segmental motion. Ninety-eight percent of manual physical therapists base treatment decisions at least in part on the results of segmental motion tests. Quality of resistance to passive segmental motion was considered of greater importance than quantity of kinematic motion during PAIVM tests, while the quality of complex kinematic motion was considered of greater importance than quantity of displacement kinematics during PPIVM tests. Manual physical therapists accept the face validity of manual physical assessment of spinal segmental motion to a great extent, however a minority voice scepticism. Content validity is dominated by concepts of segmental kinematics and the force-displacement relationship. Intent of assessment does, however, vary widely between therapists. These data will inform the design of concurrent validity studies. Further work is recommended to increase consistency of intent, methodology and terminology in manual physical assessment of the spine.

  14. Spinal adhesive arachnoiditis.

    PubMed

    Dolan, R A

    1993-06-01

    Forty-one cases of spinal adhesive arachnoiditis are presented. The key points are, first, that lumbar disc lesions, their investigations and surgical treatment and the use of nonabsorbable contrast materials are the most common etiological factors and, secondly, that operation is the best treatment. It is our contention that the majority of patients so treated do experience some improvement in what otherwise can be an unbearable amount of pain and disability. The use of adsorbable, nonirritative contrast materials such as Iohexol Parenteral will result in a marked reduction in the frequency of occurrence of arachnoiditis.

  15. CNS and spinal tumors.

    PubMed

    Furtado, Andre D; Panigrahy, Ashok; Fitz, Charles R

    2016-01-01

    Primary CNS tumors consist of a diverse group of neoplasms originating from various cell types in the CNS. Brain tumors are the most common solid malignancy in children under the age of 15 years and the second leading cause of cancer death after leukemia. The most common brain neoplasms in children differ consistently from those in older age groups. Pediatric brain tumors demonstrate distinct patterns of occurrence and biologic behavior according to sex, age, and race. This chapter highlights the imaging features of the most common tumors that affect the child's CNS (brain and spinal cord).

  16. Patterns of chronic adhesive arachnoiditis following Myodil myelography: the significance of spinal canal stenosis and previous surgery.

    PubMed

    Laitt, R; Jackson, A; Isherwood, I

    1996-08-01

    109 patients who had undergone Myodil myelography on at least one occasion were identified. The patterns of lumbar nerve root distribution in this group were examined using magnetic resonance imaging. The relationship between these patterns and the presence of spinal stenosis or previous surgery was investigated. Chronic adhesive arachnoiditic nerve root patterns were seen in 68 patients and were classified into three groups according to Delemarter et al. Central clumping of nerve roots (type 1) and complete opacification of the thecal sac (type 3), extending over at least one vertebral level, were significantly related to spinal stenosis at an adjacent level (p < 0.0001). Peripheral adhesion of nerve roots to the theca (type 2) was significantly related to previous surgery at the level of abnormality (p < 0.00005). Only a single case of arachnoiditic nerve root patterns was seen in the absence of stenosis or previous surgery. We conclude that chronic adhesive arachnoiditis is significantly related to previous Myodil myelography in the presence of spinal stenosis or previous surgery but that Myodil alone rarely produces these changes.

  17. Short term modulation of trunk neuromuscular responses following spinal manipulation: a control group study

    PubMed Central

    2013-01-01

    Background Low back pain (LBP) is one of the most frequent musculoskeletal conditions in industrialized countries and its economic impact is important. Spinal manipulation therapy (SMT) is believed to be a valid approach in the treatment of both acute and chronic LBP. It has also been shown that SMT can modulate the electromyographic (EMG) activity of the paraspinal muscle. The purpose of this study was to investigate, in a group of patients with low back pain, the persistence of changes observed in trunk neuromuscular responses after a spinal manipulation (SMT). Methods Sixty adult participants with LBP performed a block of 5 flexion-extension movements. Participants in the experimental group (n=30) received lumbar SMT whereas participants in the control group (n=30) were positioned similarly for the treatment but did not receive SMT. Blocks of flexion-extension movements were repeated immediately after the manipulation as well as 5 and 30 minutes after SMT (or control position). EMG activity of paraspinal muscles was recorded at L2 and L5 level and kinematic data were collected to evaluate the lumbo-pelvic kinematics. Pain intensity was noted after each block. Normalized EMG, pain intensity and lumbo-pelvic kinematics were compared across experimental conditions. Results Participants from the control group showed a significant increase in EMG activity during the last block (30 min) of flexion-extension trials in both flexion and full-flexion phases at L2. Increase in VAS scores was also observed in the last 2 blocks (5 min and 30 min) in the control group. No significant group x time interaction was seen at L5. No significant difference was observed in the lumbo-pelvic kinematics. Conclusion Changes in trunk neuromuscular control following HVLA spinal manipulation may reduce sensitization or muscle fatigue effects related to repetitive movement. Future studies should investigate short term changes in neuromuscular components, tissue properties and clinical

  18. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads

    PubMed Central

    Bazrgari, Babak; Arjmand, Navid

    2006-01-01

    Despite the well-recognized role of lifting in back injuries, the relative biomechanical merits of squat versus stoop lifting remain controversial. In vivo kinematics measurements and model studies are combined to estimate trunk muscle forces and internal spinal loads under dynamic squat and stoop lifts with and without load in hands. Measurements were performed on healthy subjects to collect segmental rotations during lifts needed as input data in subsequent model studies. The model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles to take curved paths in flexion and trunk dynamic characteristics (inertia and damping) while subject to measured kinematics and gravity/external loads. A dynamic kinematics-driven approach was employed accounting for the spinal synergy by simultaneous consideration of passive structures and muscle forces under given posture and loads. Results satisfied kinematics and dynamic equilibrium conditions at all levels and directions. Net moments, muscle forces at different levels, passive (muscle or ligamentous) forces and internal compression/shear forces were larger in stoop lifts than in squat ones. These were due to significantly larger thorax, lumbar and pelvis rotations in stoop lifts. For the relatively slow lifting tasks performed in this study with the lowering and lifting phases each lasting ∼2 s, the effect of inertia and damping was not, in general, important. Moreover, posterior shift in the position of the external load in stoop lift reaching the same lever arm with respect to the S1 as that in squat lift did not influence the conclusion of this study on the merits of squat lifts over stoop ones. Results, for the tasks considered, advocate squat lifting over stoop lifting as the technique of choice in reducing net moments, muscle forces and internal spinal loads (i.e., moment, compression and shear force). PMID:17103232

  19. Analysis of squat and stoop dynamic liftings: muscle forces and internal spinal loads.

    PubMed

    Bazrgari, Babak; Shirazi-Adl, Aboulfazl; Arjmand, Navid

    2007-05-01

    Despite the well-recognized role of lifting in back injuries, the relative biomechanical merits of squat versus stoop lifting remain controversial. In vivo kinematics measurements and model studies are combined to estimate trunk muscle forces and internal spinal loads under dynamic squat and stoop lifts with and without load in hands. Measurements were performed on healthy subjects to collect segmental rotations during lifts needed as input data in subsequent model studies. The model accounted for nonlinear properties of the ligamentous spine, wrapping of thoracic extensor muscles to take curved paths in flexion and trunk dynamic characteristics (inertia and damping) while subject to measured kinematics and gravity/external loads. A dynamic kinematics-driven approach was employed accounting for the spinal synergy by simultaneous consideration of passive structures and muscle forces under given posture and loads. Results satisfied kinematics and dynamic equilibrium conditions at all levels and directions. Net moments, muscle forces at different levels, passive (muscle or ligamentous) forces and internal compression/shear forces were larger in stoop lifts than in squat ones. These were due to significantly larger thorax, lumbar and pelvis rotations in stoop lifts. For the relatively slow lifting tasks performed in this study with the lowering and lifting phases each lasting approximately 2 s, the effect of inertia and damping was not, in general, important. Moreover, posterior shift in the position of the external load in stoop lift reaching the same lever arm with respect to the S1 as that in squat lift did not influence the conclusion of this study on the merits of squat lifts over stoop ones. Results, for the tasks considered, advocate squat lifting over stoop lifting as the technique of choice in reducing net moments, muscle forces and internal spinal loads (i.e., moment, compression and shear force).

  20. Assessment of in vivo 3D kinematics of cervical spine manipulation: Influence of practitioner experience and occurrence of cavitation noise.

    PubMed

    Van Geyt, Bernard; Dugailly, Pierre-Michel; Klein, Paul; Lepers, Yves; Beyer, Benoît; Feipel, Véronique

    2017-04-01

    Investigations on 3D kinematics during spinal manipulation are widely reported for assessing motion data, task reliability and clinical effects. However the link between cavitation occurrence and specific kinematics remains questionable. This paper investigates the 3D head-trunk kinematics during high velocity low amplitude (HVLA) manipulation for different practitioners with respect to the occurrence of cavitation. Head-trunk 3D motions were sampled during HVLA manipulation in twenty asymptomatic volunteers manipulated by four practitioners with different seniority (years of experience). Four target levels were selected, C3 and C5 on each side, and were randomly allocated to the different practitioners. The data was recorded before, during and after each set of trial in each anatomical plane. The number of trials with cavitation occurrence was collected for each practitioner. The manipulation task was performed using extension, ipsilateral side bending and contra-lateral axial rotation independent of side or target level. The displayed angular motion magnitudes did not exceed normal active ROM. Regardless cavitation occurrence, wide variations were observed between practitioners, especially in terms of velocity and acceleration. Cavitation occurrence was related to several kinematics features (i.e. frontal ROM and velocity, sagittal acceleration) and practitioner experience. In addition, multilevel cavitation was observed regularly. Kinematics of cervical manipulation is dependent on practitioner and years of experience. Cavitation occurrence could be related to particular kinematics features. These aspects should be further investigated in order to improve teaching and learning of cervical manipulation technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Diffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery

    PubMed Central

    Kelley, Brian J.; Harel, Noam Y.; Kim, Chang-Yeon; Papademetris, Xenophon; Coman, Daniel; Wang, Xingxing; Hasan, Omar; Kaufman, Adam; Globinsky, Ronen; Staib, Lawrence H.; Cafferty, William B.J.; Hyder, Fahmeed

    2014-01-01

    Abstract Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases. PMID

  2. KINEMATIC AND SPATIAL SUBSTRUCTURE IN NGC 2264

    SciTech Connect

    Tobin, John J.; Hartmann, Lee; Hsu, Wen-Hsin; Mateo, Mario; Fűrész, Gabor

    2015-04-15

    We present an expanded kinematic study of the young cluster NGC 2264 based upon optical radial velocities measured using multi-fiber echelle spectroscopy at the 6.5 m MMT and Magellan telescopes. We report radial velocities for 695 stars, of which approximately 407 stars are confirmed or very likely members. Our results more than double the number of members with radial velocities from Fűrész et al., resulting in a much better defined kinematic relationship between the stellar population and the associated molecular gas. In particular, we find that there is a significant subset of stars that are systematically blueshifted with respect to the molecular ({sup 13}CO) gas. The detection of Lithium absorption and/or infrared excesses in this blueshifted population suggests that at least some of these stars are cluster members; we suggest some speculative scenarios to explain their kinematics. Our results also more clearly define the redshifted population of stars in the northern end of the cluster; we suggest that the stellar and gas kinematics of this region are the result of a bubble driven by the wind from O7 star S Mon. Our results emphasize the complexity of the spatial and kinematic structure of NGC 2264, important for eventually building up a comprehensive picture of cluster formation.

  3. Inverse kinematic-based robot control

    NASA Technical Reports Server (NTRS)

    Wolovich, W. A.; Flueckiger, K. F.

    1987-01-01

    A fundamental problem which must be resolved in virtually all non-trivial robotic operations is the well-known inverse kinematic question. More specifically, most of the tasks which robots are called upon to perform are specified in Cartesian (x,y,z) space, such as simple tracking along one or more straight line paths or following a specified surfacer with compliant force sensors and/or visual feedback. In all cases, control is actually implemented through coordinated motion of the various links which comprise the manipulator; i.e., in link space. As a consequence, the control computer of every sophisticated anthropomorphic robot must contain provisions for solving the inverse kinematic problem which, in the case of simple, non-redundant position control, involves the determination of the first three link angles, theta sub 1, theta sub 2, and theta sub 3, which produce a desired wrist origin position P sub xw, P sub yw, and P sub zw at the end of link 3 relative to some fixed base frame. Researchers outline a new inverse kinematic solution and demonstrate its potential via some recent computer simulations. They also compare it to current inverse kinematic methods and outline some of the remaining problems which will be addressed in order to render it fully operational. Also discussed are a number of practical consequences of this technique beyond its obvious use in solving the inverse kinematic question.

  4. Attitudes Towards Individuals with Spinal Cord Injuries

    ERIC Educational Resources Information Center

    Conway, Cassandra Sligh D.; Gooden, Randy; Nowell, Jennifer; Wilson, Navodda

    2010-01-01

    This paper will shed light on the lives of persons with spinal cord injuries by revealing the literature on spinal cord injuries that focuses on research that can shed light on attitudes towards persons with spinal cord injuries. The background literature related to incidences, the definition of spinal cord injury, and vocational opportunities are…

  5. Spinal Cord Repair with Engineered Nervous Tissue

    DTIC Science & Technology

    2014-04-01

    in order to minimize scarring and injected dissociated adult DRGs rostral to a dorsal column transection of the spinal cord. From the sensory... columns were dissected and post-fixed overnight in 4% paraformaldehyde, and then spinal cords were dissected from spinal columns and cryoprotected...AD______________ Award Number: W81XWH-10-1-0941 TITLE: Spinal Cord Repair with Engineered Nervous Tissue

  6. [Surgical anatomy of spinal cord tumors].

    PubMed

    Peltier, J; Chenin, L; Hannequin, P; Page, C; Havet, É; Foulon, P; Le Gars, D

    2015-08-03

    In this article, we respectively describe the morphology of the spinal cord, spinal meningeal layers, main fiber tracts, and both arterial and venous distribution in order to explain signs of spinal cord compression. We will then describe a surgical technique for spinal cord tumor removal.

  7. Juxtafacet Spinal Synovial Cysts

    PubMed Central

    2016-01-01

    Study Design This was a retrospective study. Purpose To study the surgical outcome of synovial cysts of the lumbar spine through posterior laminectomy in combination with transpedicular screw fixation. Overview of Literature Synovial cysts of the lumbar spine contribute significantly to narrowing of the spinal canal and lateral thecal sac and nerve root compression. Cysts form as a result of arthrotic disruption of the facet joint, leading to degenerative spondylolisthesis in up to 40% of patients. Methods Retrospective data from 6 patients, treated during the period of March 2007 to February 2011, were analyzed. All preoperative and postoperative manifestations, extension/flexion radiographs, magnetic resonance imaging, and computed tomography records were reviewed. All underwent surgery for synovial cysts with excision and decompression combined with posterior fixation. The result of surgery was evaluated with Macnab's classification. An excellent or good outcome was considered as satisfactory. Japanese Orthopedic Association Scale was used for evaluation of back pain. Results All patients included in this study had excellent outcomes as regarding to improvement of all preoperative manifestations and returning to normal daily activities. Only 2 cases developed postoperative transient cerebro-spinal fluid leak and were treated conservatively and improved during the follow up period. Conclusions Although this study included a small number of cases and we could not have statistically significant results, the good outcome of decompression of synovial cysts combined with posterior fixation and fusion encouraged us to recommend this approach for patients with juxtafacet synovial cysts. PMID:26949457

  8. Kinematic analysis of 7-DOF manipulators

    NASA Technical Reports Server (NTRS)

    Kreutz-Delgado, Kenneth; Long, Mark; Seraji, Homayoun

    1992-01-01

    This article presents a kinematic analysis of seven-degree-of-freedom serial link spatial manipulators with revolute joints. To uniquely determine the joint angles for a given end-effector position and orientation, the redundancy is parameterized by a scalar variable that defines the angle between the arm plane and a reference plane. The forward kinematic mappings from joint space to end-effector coordinates and arm angle and the augmented Jacobian matrix that gives end-effector and arm angle rates as functions of joint rates are presented. Conditions under which the augmented Jacobian becomes singular are also given and are shown to correspond to the arm being either at a kinematically singular configuration or at a nonsingular configuration for which the arm angle ceases to parameterize the redundancy.

  9. Kinematic analysis of 7 DOF anthropomorphic arms

    NASA Technical Reports Server (NTRS)

    Kreutz-Delgado, K.; Long, M.; Seraji, H.

    1990-01-01

    A kinematic analysis of anthropomorphic seven-degree-of-freedom serial link spatial manipulators with revolute joints is presented. To uniquely determine joint angles for a given end-effector position and orientation, the redundancy is parameterized by a scalar variable which corresponds to the angle between the arm plane and a reference plane. The forward kinematic mappings from joint-space to end-effector coordinates and arm angle and the augmented Jacobian matrix which gives end-effector and arm angle rates as functions of joint rates are given. Conditions under which the augmented Jacobian becomes singular are given and are shown to correspond to the arm being either at a kinematically singular configuration or at a nonsingular configuration for which the arm angle ceases to parameterize the redundancy.

  10. Gas Kinematics in the Multiphase Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Nielsen, Nikole M.; Kacprzak, Glenn G.; Churchill, Christopher W.; Murphy, Michael T.; Muzahid, Sowgat; Charlton, Jane C.; Evans, Jessica L.

    2017-03-01

    We use high-resolution Keck, VLT, or Hubble Space Telescope spectra of background quasars to examine the kinematic properties of the multiphase, metal-enriched circumgalactic medium in the outskirts of galaxies at 0.08 < z gal < 1.0, focusing on the low-ionization Mgii and high-ionization Ovi doublets. The absorption kinematics of low-ionization gas in the circumgalactic medium depend strongly on the star formation activity and the location about the host galaxy, where the largest velocity dispersions are associated with blue, face-on galaxies probed along the minor axis. Conversely, high-ionization gas kinematics are independent of galaxy star formation activity and orientation.

  11. Highly damped kinematic coupling for precision instruments

    DOEpatents

    Hale, Layton C.; Jensen, Steven A.

    2001-01-01

    A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

  12. Kinematics of the Most Efficient Cilium

    NASA Astrophysics Data System (ADS)

    Eloy, Christophe; Lauga, Eric

    2012-07-01

    In a variety of biological processes, eukaryotic cells use cilia to transport flow. Although cilia have a remarkably conserved internal molecular structure, experimental observations report very diverse kinematics. To address this diversity, we determine numerically the kinematics and energetics of the most efficient cilium. Specifically, we compute the time-periodic deformation of a wall-bound elastic filament leading to transport of a surrounding fluid at minimum energetic cost, where the cost is taken to be the positive work done by all internal molecular motors. The optimal kinematics are found to strongly depend on the cilium bending rigidity through a single dimensionless number, the Sperm number, and closely resemble the two-stroke ciliary beating pattern observed experimentally.

  13. Optimal pumping kinematics of a cilium

    NASA Astrophysics Data System (ADS)

    Eloy, Christophe; Lauga, Eric

    2012-11-01

    In a variety of biological processes, eukaryotic cells use cilia to transport flow. Although the internal molecular structure of cilia has been remarkably conserved throughout evolution, experimental observations report qualitatively diverse kinematics in different species. To address this diversity, we have determined numerically the kinematics of the most efficient cilium. Specifically, we have computed the time-periodic deformation of a wall-bound elastic filament leading to transport of a surrounding fluid at minimum energetic cost. Here, the energetic cost is taken to be the sum of positive works done by the internal torques, such that elastic energy is not conservative. The optimal kinematics are found to strongly depend on the cilium bending rigidity through a single dimensionless number, the Sperm number Sp, and closely resemble the two-stroke ciliary beating pattern observed experimentally. We acknowledge supports from the EU (fellowship PIOF-GA-2009-252542 to C.E.) and the NSF (grant CBET-0746285 to E.L.).

  14. Inverse Kinematics of Concentric Tube Steerable Needles

    PubMed Central

    Sears, Patrick; Dupont, Pierre E.

    2013-01-01

    Prior papers have introduced steerable needles composed of precurved concentric tubes. The curvature and extent of these needles can be controlled by the relative rotation and translation of the individual tubes. Under certain assumptions on the geometry and design of these needles, the forward kinematics problem can be solved in closed form by means of algebraic equations. The inverse kinematics problem, however, is not as straightforward owing to the nonlinear map between relative tube displacements and needle tip configuration as well as to the multiplicity of solutions as the number of tubes increases. This paper presents a general approach to solving the inverse kinematics problem using a pseudoinverse solution together with gradients of nullspace potential functions to enforce geometric and mechanical constraints. PMID:23685532

  15. Temporal and kinematic consistency predict sequence awareness.

    PubMed

    Jaynes, Molly J; Schieber, Marc H; Mink, Jonathan W

    2016-10-01

    Many human motor skills can be represented as a hierarchical series of movement patterns. Awareness of underlying patterns can improve performance and decrease cognitive load. Subjects (n = 30) tapped a finger sequence with changing stimulus-to-response mapping and a common movement sequence. Thirteen subjects (43 %) became aware that they were tapping a familiar movement sequence during the experiment. Subjects who became aware of the underlying motor pattern tapped with greater kinematic and temporal consistency from task onset, but consistency was not sufficient for awareness. We found no effect of age, musical experience, tapping evenness, or inter-key-interval on awareness of the pattern in the motor response. We propose that temporal or kinematic consistency reinforces a pattern representation, but cognitive engagement with the contents of the sequence is necessary to bring the pattern to conscious awareness. These findings predict benefit for movement strategies that limit temporal and kinematic variability during motor learning.

  16. The correlation between movement of the center of mass and the kinematics of the spine, pelvis, and hip joints during body rotation.

    PubMed

    Wada, Osamu; Tateuchi, Hiroshige; Ichihashi, Noriaki

    2014-01-01

    Body rotation is associated with many activities. The concomitant movement of the center of mass (COM) is essential for effective body rotation. This movement is considered to be influenced by kinematic changes in the spine, pelvis, and hip joints. However, there is no research on the association between COM movement and kinematic changes during body rotation. We aimed to investigate the association between COM movement and the kinematics of the spine, pelvis, and hip joints during body rotation in standing. Twenty-four healthy men were included in the study. COM movement during active body rotation in a standing position was measured. We evaluated pelvic shift and changes in the angles of the spine, pelvis, and hip joints. We calculated the Pearson correlation coefficients to analyze the relationship between COM movement and kinematic changes in the spine, pelvis, and hip joints. There were significant correlations between lateral COM movement to the rotational side and pelvic shift to the rotational side, and between posterior COM movement and pelvic shift to the posterior side. In addition, lateral COM movement to the rotational side showed significant and negative correlation with spinal flexion and was significantly and positively correlated with the change in anterior pelvic tilt. Clinicians need to take particular note of both spinal and pelvic motion in the sagittal plane, as well as the pelvic shift, to speculate COM movement during body rotation in standing.

  17. SMACK - SMOOTHING FOR AIRCRAFT KINEMATICS

    NASA Technical Reports Server (NTRS)

    Bach, R.

    1994-01-01

    The computer program SMACK (SMoothing for AirCraft Kinematics) is designed to provide flightpath reconstruction of aircraft forces and motions from measurements that are noisy or incomplete. Additionally, SMACK provides a check on instrument accuracy and data consistency. The program can be used to analyze data from flight-test experiments prior to their use in performance, stability and control, or aerodynamic modeling calculations. It can also be used in the analysis of aircraft accidents, where the actual forces and motions may have to be determined from a very limited data set. Application of a state-estimation method for flightpath reconstruction is possible because aircraft forces and motions are related by well-known equations of motion. The task of postflight state estimation is known as a nonlinear, fixed-interval smoothing problem. SMACK utilizes a backward-filter, forward-smoother algorithm to solve the problem. The equations of motion are used to produce estimates that are compared with their corresponding measurement time histories. The procedure is iterative, providing improved state estimates until a minimum squared-error measure is achieved. In the SMACK program, the state and measurement models together represent a finite-difference approximation for the six-degree-of-freedom dynamics of a rigid body. The models are used to generate time histories which are likely to be found in a flight-test measurement set. These include onboard variables such as Euler angles, angular rates, and linear accelerations as well as tracking variables such as slant range, bearing, and elevation. Any bias or scale-factor errors associated with the state or measurement models are appended to the state vector and treated as constant but unknown parameters. The SMACK documentation covers the derivation of the solution algorithm, describes the state and measurement models, and presents several application examples that should help the analyst recognize the potential

  18. SMACK - SMOOTHING FOR AIRCRAFT KINEMATICS

    NASA Technical Reports Server (NTRS)

    Bach, R.

    1994-01-01

    The computer program SMACK (SMoothing for AirCraft Kinematics) is designed to provide flightpath reconstruction of aircraft forces and motions from measurements that are noisy or incomplete. Additionally, SMACK provides a check on instrument accuracy and data consistency. The program can be used to analyze data from flight-test experiments prior to their use in performance, stability and control, or aerodynamic modeling calculations. It can also be used in the analysis of aircraft accidents, where the actual forces and motions may have to be determined from a very limited data set. Application of a state-estimation method for flightpath reconstruction is possible because aircraft forces and motions are related by well-known equations of motion. The task of postflight state estimation is known as a nonlinear, fixed-interval smoothing problem. SMACK utilizes a backward-filter, forward-smoother algorithm to solve the problem. The equations of motion are used to produce estimates that are compared with their corresponding measurement time histories. The procedure is iterative, providing improved state estimates until a minimum squared-error measure is achieved. In the SMACK program, the state and measurement models together represent a finite-difference approximation for the six-degree-of-freedom dynamics of a rigid body. The models are used to generate time histories which are likely to be found in a flight-test measurement set. These include onboard variables such as Euler angles, angular rates, and linear accelerations as well as tracking variables such as slant range, bearing, and elevation. Any bias or scale-factor errors associated with the state or measurement models are appended to the state vector and treated as constant but unknown parameters. The SMACK documentation covers the derivation of the solution algorithm, describes the state and measurement models, and presents several application examples that should help the analyst recognize the potential

  19. Pyrenean orogeny and plate kinematics

    NASA Astrophysics Data System (ADS)

    Sibuet, J.-C.; Srivastava, S.; Spakman, W.

    2003-04-01

    The development of the Pyrenees, a range of mountain which lies between Iberia and Eurasia, has remained a subject of much debate between geologists and geophysicists for a long time. The debate concerns about the large amount of compressive motion which geophysicists estimate took place across the Pyrenees based on the plate kinematics of the North Atlantic during the opening of the Bay of Biscay with which geologists differ based on their interpretations of the observations made across the Pyrenees. The geologists maintain that only a limited amount of Aptian-Albian compression can be supported by surface observations while a large amount of strike- slip motion is implied in their models. To find satisfactory answer to this disagreement we have re-examined not only the large amount of magnetic data which exist for the Bay of Biscay but also some of the deep seismic and teleseismic data across the Pyrenees. Our re-examination of magnetic data in the Bay of Biscay has enabled us to identify seafloor spreading anomalies 33o to M3. By combining these anomaly identifications with the existing identification of similar anomalies in the North Atlantic we have derived a position of a mean pole of rotation for the entire opening of the Bay of Biscay whose position is constrained not only by the magnetic anomalies identified in the Bay of Biscay and the North Atlantic but also by the geometry of a triple junction which had remained at the mouth of the Bay of Biscay during this period. Such a pole of rotation implies that about 400 km of shortening took place between the Iberian and Eurasian plates in the Pyrenean domain during the opening of the Bay of Biscay from chrons M0 to 33o time (118 to 80 Ma). Shortening perhaps took place in the form of subduction of the oceanic crust below Eurasia as reflected in the deep seismic ECORS profile shot across the Pyrenees. Careful examination of these data has shown presence of two deep features which dips to the north. Further

  20. Leuprolide acetate induces structural and functional recovery of injured spinal cord in rats

    PubMed Central

    Díaz Galindo, Carmen; Gómez-González, Beatriz; Salinas, Eva; Calderón-Vallejo, Denisse; Hernández-Jasso, Irma; Bautista, Eduardo; Quintanar, J Luis

    2015-01-01

    Gonadotropin-releasing hormone (GnRH) and its synthetic analog leuprolide acetate, a GnRH agonist, have neurotrophic properties. This study was designed to determine whether administration of leuprolide acetate can improve locomotor behavior, gait, micturition reflex, spinal cord morphology and the amount of microglia in the lesion epicenter after spinal cord injury in rats. Rats with spinal cord compression injury were administered leuprolide acetate or saline solution for 5 weeks. At the 5th week, leuprolide acetate-treated rats showed locomotor activity recovery by 38%, had improvement in kinematic gait and exhibited voiding reflex recovery by 60%, as compared with the 1st week. By contrast, saline solution-treated rats showed locomotor activity recovery only by 7%, but voiding reflex did not recover. More importantly, leuprolide acetate treatment reduced microglial immunological reaction and induced a trend towards greater area of white and gray matter in the spinal cord. Therefore, leuprolide acetate has great potential to repair spinal cord injury. PMID:26807118

  1. Leuprolide acetate induces structural and functional recovery of injured spinal cord in rats.

    PubMed

    Díaz Galindo, Carmen; Gómez-González, Beatriz; Salinas, Eva; Calderón-Vallejo, Denisse; Hernández-Jasso, Irma; Bautista, Eduardo; Quintanar, J Luis

    2015-11-01

    Gonadotropin-releasing hormone (GnRH) and its synthetic analog leuprolide acetate, a GnRH agonist, have neurotrophic properties. This study was designed to determine whether administration of leuprolide acetate can improve locomotor behavior, gait, micturition reflex, spinal cord morphology and the amount of microglia in the lesion epicenter after spinal cord injury in rats. Rats with spinal cord compression injury were administered leuprolide acetate or saline solution for 5 weeks. At the 5(th) week, leuprolide acetate-treated rats showed locomotor activity recovery by 38%, had improvement in kinematic gait and exhibited voiding reflex recovery by 60%, as compared with the 1(st) week. By contrast, saline solution-treated rats showed locomotor activity recovery only by 7%, but voiding reflex did not recover. More importantly, leuprolide acetate treatment reduced microglial immunological reaction and induced a trend towards greater area of white and gray matter in the spinal cord. Therefore, leuprolide acetate has great potential to repair spinal cord injury.

  2. A portable inertial sensing-based spinal motion measurement system for low back pain assessment.

    PubMed

    Lee, Jung Keun; Desmoulin, Geoffrey T; Khan, Aslam H; Park, Edward J

    2011-01-01

    Spinal motion measurement during dynamic conditions may help identify differences between individuals with and without low back pain (LBP). The purpose of this paper is to demonstrate the feasibility of an inertial sensing based, portable spinal motion measurement system for investigating the differences of the spinal motions between an LBP group and a healthy control group. During a fast flexion/extension test, we measured 3D angular motions of the pelvis, lumbar spine and thoracic spine of the two groups using the inertial sensing based system. Range of motions (ROM) and peak angular velocities were investigated to determine which variables have significant differences between the two groups (p < 0.05). Also, a logistic regression analysis was carried out to see the classifying ability of the LBP patients from controls using the proposed system. The result shows that LBP was particularly associated with significant decreases in peak velocities of the lumbar spinal extension motion, having the maximum 90% sensitivity and 80% specificity in the classification according to the regression analysis. The result demonstrates the possibility of the proposed inertial sensing-based system to be served as an efficient tool in providing an accurate and continuous measurement of the spinal kinematics.

  3. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva.

    PubMed

    McDearmid, Jonathan R; Drapeau, Pierre

    2006-01-01

    We have examined the localization and activity of the neural circuitry that generates swimming behavior in developing zebrafish that were spinalized to isolate the spinal cord from descending brain inputs. We found that addition of the excitatory amino acid agonist N-methyl-d-aspartate (NMDA) to spinalized zebrafish at 3 days in development induced repeating episodes of rhythmic tail beating activity reminiscent of slow swimming behavior. The neural correlate of this activity, monitored by extracellular recording comprised repeating episodes of rhythmic, rostrocaudally progressing peripheral nerve discharges that alternated between the two sides of the body. Motoneuron recordings revealed an activity pattern comprising a slow oscillatory and a fast synaptic component that was consistent with fictive swimming behavior. Pharmacological and voltage-clamp analysis implicated glycine and glutamate in generation of motoneuron activity. Contralateral alternation of motor activity was disrupted with strychnine, indicating a role for glycine in coordinating left-right alternation during NMDA-induced locomotion. At embryonic stages, while rhythmic synaptic activity patterns could still be evoked in motoneurons, they were typically lower in frequency. Kinematic recordings revealed that prior to 3 days in development, NMDA was unable to reliably generate rhythmic tail beating behavior. We conclude that NMDA induces episodes of rhythmic motor activity in spinalized developing zebrafish that can be monitored physiologically in paralyzed preparations. Therefore as for other vertebrates, the zebrafish central pattern generator is intrinsic to the spinal cord and can operate in isolation provided a tonic source of excitation is given.

  4. Kinematics and Control of Robot Manipulators

    NASA Astrophysics Data System (ADS)

    Paden, Bradley Evan

    This dissertation focuses on the kinematics and control of robot manipulators. The contribution to kinematics is a fundamental theorem on the design of manipulators with six revolute joints. The theorem states, roughly speaking, that manipulators which have six revolute joints and are modeled after the human arm are optimal and essentially unique. In developing the mathematical framework to prove this theorem, we define precisely the notions of length of a manipulator, well-connected-workspace, and work-volume. We contribute to control a set of analysis techniques for the design of variable structure (sliding mode) controllers for manipulators. The organization of the dissertation is the following. After introductory remarks in chapter one, the group of proper rigid motions, G, is introduced in chapter two. The tangent bundle of G is introduced and it is shown that the velocity of a rigid body can be represented by an element in the Lie algebra of G (commonly called a twist). Further, rigid motions which are exponentials of twists are used to describe four commonly occurring subproblems in robot kinematics. In chapter three, the exponentials of twists are used to write the forward kinematic map of robot manipulators and the subproblems of chapter two are used to solve the Stanford manipulator and an elbow manipulator. Chapter four focuses on manipulator singularities. Twist coordinates are used to find critical points of the forward kinematic map. The contribution to kinematics is contained in chapter five where a mathematical framework for studying the relationship between the design of 6R manipulators and their performance is developed. Chapter seven contains the contribution to control. The work of A. F. Filippov on differential equations with discontinuous right-hand-side and the work of F. H. Clarke on generalized gradients are combined to obtain a calculus for analyzing nonsmooth gradient systems. The techniques developed are applied to design a simple

  5. Surgical management of spinal metastatic disease.

    PubMed

    Fanous, Andrew A; Fabiano, Andrew J

    2017-06-01

    Spinal metastatic disease is a common occurrence in oncology. Spinal metastases may result in pain, spinal deformity, and neurologic deterioration. Surgical intervention is a key component in the effective management of spinal metastatic disease. The principles of neural decompression and spinal stabilization are hallmarks of the surgical care for patients with metastatic spinal disease. Several classification systems exist for spinal metastatic disease to aid in assessing preoperative spinal instability and the need for operative intervention. Treatment modalities include separation surgery, stereotactic radiosurgery, conventional radiotherapy, vertebral body augmentation, and laser-interstitial thermal therapy. Various open surgical approaches exist that may be employed to achieve operative goals during separation surgery. The spinal surgeon should be intimately involved in the overall care of patients with spinal metastatic disease to ensure the best clinical outcomes.

  6. Primary extensive spinal subarachnoid cysticercosis.

    PubMed

    Shin, Sang-Ha; Hwang, Byeong-Wook; Lee, Sang-Jin; Lee, Sang-Ho

    2012-09-01

    A case report. To describe a patient with a primary extensive spinal subarachnoid cysticercosis that was successfully treated with a combination of surgical removal and albendazole. Neurocysticercosis (NCC) is the most common parasitic infection of the central nervous system. It is mostly intracranial, but primary cysticercosis, although rare, can occur in the spinal canal. Neurological morbidity can occur if NCC is not properly treated; therefore, NCC should be considered as a lesion of primary nerve compression, which occurs within spinal canal as well as cranial cavity. A 48-year-old male patient presented with an 18-month history of progressive lower limb weakness and urinary incontinence. Contrast-enhanced lumbar magnetic resonance image showed multiple intradural and extramedullary masses and cysts from T12 to S1. A cervicothoracic magnetic resonance image revealed whole cervical and upper thoracic involvement. The patient was treated with a combination of surgical removal and orally administered albendazole. A histopathological examination confirmed cysticercosis. After the treatment, cysticercosis had disappeared on follow-up. The patient's motor weakness in the lower limbs and urinary function were improved. Spinal subarachnoid cysticercosis can occur via direct hematogenous dissemination from a gastrointestinal tract. The primary spinal cysticercosis can be dropped distantly in the spinal cavity by cerebrospinal fluid circulation like intracranial cysticercosis, and extensive spinal subarachnoid cysticercosis can be successfully treated with a combination of surgical removal and cysticidal drugs.

  7. KINEMATIC DISTANCES OF GALACTIC PLANETARY NEBULAE

    SciTech Connect

    Yang, A. Y.; Tian, W. W.; Zhu, H.; Wu, D.; Leahy, D. A. E-mail: ayyang@bao.ac.cn

    2016-03-15

    We construct H i absorption spectra for 18 planetary nebulae (PNs) and their background sources using data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNs, among which 15 objects’ kinematic distances are obtained for the first time. The distance uncertainties of 13 PNs range from 10% to 50%, which is a significant improvement with uncertainties of a factor of two or three smaller than most previous distance measurements. We confirm that PN G030.2−00.1 is not a PN because of its large distance found here.

  8. Kinematic problem of rigid body orientation control

    NASA Astrophysics Data System (ADS)

    Plotnikov, P. K.; Sergeev, A. N.; Chelnokov, Iu. N.

    1991-10-01

    The problem of reducing a coordinate system linked with a rigid body to a reference coordinate system rotating with a specified (programmed) angular velocity is analyzed using a kinematic formulation. The mathematic model of motion includes kinematic equations of the angular motion of a rigid body in nonnormalized quaternions; used as the controls are projections of the absolute angular velocity of body rotation to the coordinate axes. Two kinds of correction are proposed which represent quaternion analogs of the positional and integral corrections. Linear error equations for the orientation control system are obtained for the types of correction proposed here.

  9. Calibration of parallel kinematic devices using sequential determination of kinematic parameters

    SciTech Connect

    JOKIEL JR.,BERNHARD; BIEG,LOTHAR F.; ZIEGERT,JOHN C.

    2000-04-06

    In PKM Machines, the Cartesian position and orientation of the tool point carried on the platform is obtained from a kinematic model of the particular machine. Accurate positioning of these machines relies on the accurate knowledge of the parameters of the kinematic model unique to the particular machine. The parameters in the kinematic model include the spatial locations of the joint centers on the machine base and moving platform, the initial strut lengths, and the strut displacements. The strut displacements are readily obtained from sensors on the machine. However, the remaining kinematic parameters (joint center locations, and initial strut lengths) are difficult to determine when these machines are in their fully assembled state. The size and complexity of these machines generally makes it difficult and somewhat undesirable to determine the remaining kinematic parameters by direct inspection such as in a coordinate measuring machine. In order for PKMs to be useful for precision positioning applications, techniques must be developed to quickly calibrate the machine by determining the kinematic parameters without disassembly of the machine. A number of authors have reported techniques for calibration of PKMs (Soons, Masory, Zhuang et. al., Ropponen). In two other papers, the authors have reported on work recently completed by the University of Florida and Sandia National Laboratories on calibration of PKMs, which describes a new technique to sequentially determine the kinematic parameters of an assembled parallel kinematic device. The technique described is intended to be used with a spatial coordinate measuring device such as a portable articulated CMM measuring arm (Romer, Faro, etc.), a Laser Ball Bar (LBB), or a laser tracker (SMX< API, etc.). The material to be presented is as follows: (1) methods to identify the kinematic parameters of 6--6 variant Stewart platform manipulators including joint center locations relative to the workable and spindle nose

  10. Potential Clinical Applications for Spinal Functional MRI

    PubMed Central

    Kornelsen, Jennifer; Mackey, Sean

    2010-01-01

    Functional MRI (fMRI) of the spinal cord is a noninvasive technique for obtaining information regarding spinal cord neuronal function. This article provides a brief overview of recent developments in spinal cord fMRI and outlines potential applications, as well as the limitations that must be overcome, for using spinal fMRI in the clinic. This technique is currently used for research purposes, but significant potential exists for spinal fMRI to become an important clinical tool. PMID:17504642

  11. Kinematics of the thoracic T10-T11 motion segment: locus of instantaneous axes of rotation in flexion and extension.

    PubMed

    Qiu, Tian-Xia; Teo, Ee-Chon; Lee, Kim-Kheng; Ng, Hong-Wan; Yang, Kai

    2004-04-01

    The purpose of this study was to determine the locations and loci of instantaneous axes of rotation (IARs) of the T10-T11 motion segment in flexion and extension. An anatomically accurate three-dimensional model of thoracic T10-T11 functional spinal unit (FSU) was developed and validated against published experimental data under flexion, extension, lateral bending, and axial rotation loading configurations. The validated model was exercised under six load configurations that produced motions only in the sagittal plane to characterize the loci of IARs for flexion and extension. The IARs for both flexion and extension under these six load types were directly below the geometric center of the moving vertebra, and all the loci of IARs were tracked superoanteriorly for flexion and inferoposteriorly for extension with rotation. These findings may offer an insight to better understanding of the kinematics of the human thoracic spine and provide clinically relevant information for the evaluation of spinal stability and implant device functionality.

  12. [Technical Tips for Spinal Anesthesia].

    PubMed

    Shima, Takeshi

    2015-09-01

    Spinal anesthesia is a standard technique for all anesthesiologists and surgeons. This review deals with basic knowledge and tips for spinal anesthesia in an empirical manner. It is important to understand practical knowledge about specific character of each local anesthetic, spread patterns of the anesthetics in the subarachnoid space and relation between anesthesia level and puncture site. This review also introduces tips for subarachnoid puncture and divided administration method of isobaric local anesthetic solution based on the literature. Anesthesiologists and surgeons have to recognize that it is necessary to take enough time to perform precious and optimal spinal anesthesia.

  13. DISCUSSION ON SPINAL INJURIES

    PubMed Central

    1928-01-01

    (1).—Varieties of spinal injuries, the three groups of common usage: fractures, dislocations, fracture-dislocations. Shall not refer in detail to fractures of the spinous or transverse processes. (2) Mechanics of injury to vertebræ. Two variables: (1) the nature of the bones; (2) the qualities of the force. Spinal injury usually caused by indirect violence. (3) The different results of injuries applied to the head; may break skull, failing that, the neck. Atlas fracture. Difference in qualities of the force causing atlas fracture and low cervical dislocation. (4) The compound nature of the vertebral body. The two columns, anterior, spongy; posterior, compact. The nature of wedge-compression of the vertebral body. Variations in the shape of the wedge. Reasons. Occur at all levels, including cervical spine. (5) Frequency of injury at different levels of vertebral column. “Localization” of injury. The two places of the graph of injury. The cervical at C. 5. Reason. The thoracic-lumbar peak at T. 12, L. 1 industrial. Is there a third peak at C. 2? (6) The effects of violent flexion of the spine: cervical flexion causes luxation at C. 5 or so. Extension causes fracture of odontoid. Violent flexion and extension therefore cause injury at very different levels. Thoracic region, why is there no “peak” of injury at T.6, 7? Lumbar region. (7) Displacement of fragments. Continuation of violence after the essential injury has been effected. Kümmell's disease, no inflammatory process involved. (8) Injury to the intervertebral discs, essential for displacement. Imperfect rupture a cause for difficulty in reducing luxations. The worst cases those in which it is most easily done, but most of these have cord damage. (9) Spinal injury from minimal violence. Examples of trivial cases, diving, brushing hair and so forth. Vertebral displacement in disease a much more serious thing. (10) Curious stability of many cervical luxations. Reasons. Locking of the inferior

  14. Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury

    PubMed Central

    Chen, Yi; Chen, Lu; Liu, Rongliang; Wang, Yu; Wolpaw, Jonathan R.

    2013-01-01

    When new motor learning changes neurons and synapses in the spinal cord, it may affect previously learned behaviors that depend on the same spinal neurons and synapses. To explore these effects, we used operant conditioning to strengthen or weaken the right soleus H-reflex pathway in rats in which a right spinal cord contusion had impaired locomotion. When up-conditioning increased the H-reflex, locomotion improved. Steps became longer, and step-cycle asymmetry (i.e., limping) disappeared. In contrast, when down-conditioning decreased the H-reflex, locomotion did not worsen. Steps did not become shorter, and asymmetry did not increase. Electromyographic and kinematic analyses explained how H-reflex increase improved locomotion and why H-reflex decrease did not further impair it. Although the impact of up-conditioning or down-conditioning on the H-reflex pathway was still present during locomotion, only up-conditioning affected the soleus locomotor burst. Additionally, compensatory plasticity apparently prevented the weaker H-reflex pathway caused by down-conditioning from weakening the locomotor burst and further impairing locomotion. The results support the hypothesis that the state of the spinal cord is a “negotiated equilibrium” that serves all the behaviors that depend on it. When new learning changes the spinal cord, old behaviors undergo concurrent relearning that preserves or improves their key features. Thus, if an old behavior has been impaired by trauma or disease, spinal reflex conditioning, by changing a specific pathway and triggering a new negotiation, may enable recovery beyond that achieved simply by practicing the old behavior. Spinal reflex conditioning protocols might complement other neurorehabilitation methods and enhance recovery. PMID:24371288

  15. The dura causes spinal cord compression after spinal cord injury.

    PubMed

    Saadoun, Samira; Werndle, Melissa C; Lopez de Heredia, Luis; Papadopoulos, Marios C

    2016-10-01

    MR scans from 65 patients with traumatic spinal cord injury were analysed; on admission 95% had evidence of cord compression - in 26% due to the dura, and in the remaining 74% due to extradural factors. Compression due to dural factors resolved with a half-life of 5.5 days. These findings suggest that bony decompression alone may not relieve spinal cord compression in the quarter of patients in whom dural factors are significant.

  16. Epidural Cystic Spinal Meningioma

    PubMed Central

    Zhang, Ji; Chen, Zheng-he; Wang, Zi-feng; Sun, Peng; Jin, Jie-tian; Zhang, Xiang-heng; Zhao, Yi-ying; Wang, Jian; Mou, Yong-gao; Chen, Zhong-ping

    2016-01-01

    Abstract Cystic spinal meningioma (CSM) is an uncommon meningioma variant. Extradural CSMs are particularly rare and difficult to distinguish from other intraaxial tumors. This study presents a case of a 36-year-old woman with intraspinal extradual CSM at the thoracolumbar spine. She experienced persistent weakness, progressive numbness, and sensory disturbance in the right lower limb. Magnetic resonance imaging (MRI) of the patient revealed an irregular cystic mass at the thoracic 11 to lumbar 3 levels dorsally. This case was misdiagnosed as other neoplasms prior to surgery because of the atypical radiographic features and location of the tumor. Extradural CSMs should be considered in the differential diagnosis of intraspinal extradural cystic neoplasms. Complete removal of cystic wall provides an optimal outcome, rendering the lesion curable. PMID:26986119

  17. Simulation in spinal diseases.

    PubMed

    Aso Escario, José; Martínez Quiñones, José Vicente; Aso Vizán, Alberto; Arregui Calvo, Ricardo; Bernal Lafuente, Marta; Alcázar Crevillén, Andrés

    2014-01-01

    Simulation is frequent in spinal disease, resulting in problems for specialists like Orthopedic Surgeons, Neurosurgeons, Reumathologists, etc. Simulation requires demonstration of the intentional production of false or exaggerated symptoms following an external incentive. The clinician has difficulties in demonstrating these criteria, resulting in misdiagnosis of simulation or misinterpretation of the normal patient as a simulator, with the possibility of iatrogenic distress and litigation. We review simulation-related problems in spine, proposing a terminological, as well as a diagnostic strategy including clinical and complementary diagnosis, as a way to avoid misinterpretation and minimize the iatrogenic distress and liability Based on the clinical-Forensic author's expertise, the literature is analyzed and the terminology readdressed to develop new terms (inconsistences, incongruences, discrepancies and contradictions). Clinical semiology and complementary test are adapted to the new scenario. Diagnostic strategy relies on anamnesis, clinical and complementary tests, adapting them to a uniform terminology with clear meaning of signs and symptoms.

  18. Trigemino-cervical-spinal reflexes after traumatic spinal cord injury.

    PubMed

    Nardone, Raffaele; Höller, Yvonne; Orioli, Andrea; Brigo, Francesco; Christova, Monica; Tezzon, Frediano; Golaszewski, Stefan; Trinka, Eugen

    2015-05-01

    After spinal cord injury (SCI) reorganization of spinal cord circuits occur both above and below the spinal lesion. These functional changes can be determined by assessing electrophysiological recording. We aimed at investigating the trigemino-cervical reflex (TCR) and trigemino-spinal reflex (TSR) responses after traumatic SCI. TCR and TSR were registered after stimulation of the infraorbital nerve from the sternocleidomastoid, splenius, deltoid, biceps and first dorsal interosseous muscles in 10 healthy subjects and 10 subjects with incomplete cervical SCI. In the control subjects reflex responses were registered from the sternocleidomastoid, and splenium muscles, while no responses were obtained from upper limb muscles. In contrast, smaller but clear short latency EMG potentials were recorded from deltoid and biceps muscles in about half of the SCI patients. Moreover, the amplitudes of the EMG responses in the neck muscles were significantly higher in patients than in control subjects. The reflex responses are likely to propagate up the brainstem and down the spinal cord along the reticulospinal tracts and the propriospinal system. Despite the loss of corticospinal axons, synaptic plasticity in pre-existing pathways and/or formation of new circuits through sprouting processes above the injury site may contribute to the findings of this preliminary study and may be involved in the functional recovery. Trigemino-cervical-spinal reflexes can be used to demonstrate and quantify plastic changes at brainstem and cervical level following SCI. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Camera-Only Kinematics for Small Lunar Rovers

    NASA Astrophysics Data System (ADS)

    Fang, E.; Suresh, S.; Whittaker, W.

    2016-11-01

    Knowledge of the kinematic state of rovers is critical. Existing methods add sensors and wiring to moving parts, which can fail and adds mass and volume. This research presents a method to optically determine kinematic state using a single camera.

  20. Detailed stellar and gaseous kinematics of M31

    NASA Astrophysics Data System (ADS)

    Opitsch, Michael; Fabricius, Maximilian; Saglia, Roberto; Bender, Ralf; Williams, Michael

    2015-02-01

    We have collected optical integral field spectroscopic data for M31 with the spectrograph VIRUS-W that result in kinematic maps of unprecedented detail. These reveal the presence of two kinematically distinct gas components.

  1. Hindlimb Stretching Alters Locomotor Function Post-Spinal Cord Injury in the Adult Rat

    PubMed Central

    Caudle, Krista L.; Atkinson, Darryn A.; Brown, Edward H.; Donaldson, Katie; Seibt, Erik; Chea, Tim; Smith, Erin; Chung, Karianne; Shum-Siu, Alice; Cron, Courtney C.; Magnuson, David S. K.

    2014-01-01

    Background Stretching is a widely accepted standard-of-care therapy following spinal cord injury that has not been systematically studied in animal models. Objective To investigate the influence of a daily stretch-based physical therapy program on locomotor recovery in adult rats with moderate T9 contusive SCI. Methods A randomized treatment and control study of stretching in an animal model of acute spinal cord injury (SCI). Moderate spinal cord injuries were delivered with the NYU Impactor. Daily stretching (30 min./day, 5 days/wk for 8 wks) was provided by a team of animal handlers. Hindlimb function was assessed using the BBB Open Field Locomotor Scale and kinematically. Passive range-of-motion for each joint was determined weekly using a goniometer. Results Declines in hindlimb function during overground stepping were observed for the first 4 weeks. BBB scores improved weeks 5–10 but remained below the control group. Stretched animals had significant deficits in knee passive ROM starting at week 4 and for the duration of the study. Kinematic assessment showed decreased joint excursion during stepping that partially recovered beginning at week 5. Conclusion Stretch-based therapy significantly impaired functional recovery in adult rats with a moderate contusive SCI at T10. The negative impact on function was greatest acutely, but persisted even after the stretching ceased at 8 weeks post-injury. PMID:25106555

  2. Spinal, pelvic, and hip movement asymmetries in people with lower-limb amputation: Systematic review.

    PubMed

    Devan, Hemakumar; Carman, Allan; Hendrick, Paul; Hale, Leigh; Ribeiro, Daniel Cury

    2015-01-01

    Following amputation, people with transfemoral amputation (TFA) and transtibial amputation (TTA) adapt with asymmetrical movements in the spinal and lower-limb joints. The aim of this review is to describe the trunk, lumbopelvic, and hip joint movement asymmetries of the amputated limb of people with TFA and TTA during functional tasks as compared with the intact leg and/or referent leg of nondisabled controls. Electronic databases were searched from inception to February 2014. Studies with kinematic data comparing (1) amputated and intact leg and (2) amputated and referent leg of nondisabled controls were included (26 articles). Considerable heterogeneity in the studies precluded data pooling. During stance phase of walking in participants with TFA, there is moderate evidence for increased trunk lateral flexion toward the amputated limb as compared with the intact leg and increased anterior pelvic tilt as compared with nondisabled controls. None of the studies investigated spinal kinematics during other functional tasks such as running, ramp walking, stair climbing, or obstacle crossing in participants with TFA or TTA. Overall, persons with TFA adapt with trunk and pelvic movement asymmetries at the amputated limb to facilitate weight transfer during walking. Among participants with TTA, there is limited evidence of spinal and pelvic asymmetries during walking.

  3. KINEMATIC DISTANCE ASSIGNMENTS WITH H I ABSORPTION

    SciTech Connect

    Jones, Courtney; Dickey, John M.

    2012-07-01

    Using H I absorption spectra from the International Galactic Plane Survey, a new method is implemented to resolve the kinematic distance ambiguity for 75 H II regions with known systemic velocities from radio recombination lines. A further 40 kinematic distance determinations are made for H II region candidates without known systemic velocities through an investigation of the presence of H I absorption around the terminal velocity. New kinematic distance determinations can be used to further constrain spiral arm parameters and the location and extent of other structures in the Milky Way disk. H I absorption toward continuum sources beyond the solar circle is also investigated. Follow-up studies of H I at higher resolution than the 1' to 2' of existing Galactic Plane Surveys will provide kinematic distances to many more H II regions on the far side of the Galactic center. On the basis of the velocity channel summation technique developed in this paper, a much larger sample of H II regions will be analyzed in a future paper to remove the near-far distance ambiguity.

  4. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  5. Expertise and attunement to kinematic constraints.

    PubMed

    Abernethy, Bruce; Zawi, Khairi; Jackson, Robin C

    2008-01-01

    Three experiments were undertaken to ascertain the extent to which expertise in natural anticipatory tasks is characterised by superior attunement to the biomechanical (kinematic) constraints of the movement pattern being observed. Twelve world-class and twelve non-expert badminton players were required to predict the depth of an opponent's stroke from either video displays or point-light displays of the opposing player's hitting action. The information available within the displays was manipulated through temporal and/or spatial occlusion. Consistent with predictions that can be derived from the constraint-attunement hypothesis (Vicente and Wang, 1998 Psychological Review 105 33-57), experts showed: (i) an unchanged pattern of information pick-up when the display was reduced from video to point-light and only kinematic information was available; (ii) superior information pick-up from kinematic features that non-experts could use; and (iii) attunement to early kinematic information from the lower body to which non-experts were not sensitive. Consistent with predictions that can be derived from a common-coding perspective (Prinz, 1997 European Journal of Cognitive Psychology 9 129-154), the anticipation of stroke depth was facilitated more for experts than non-experts when the perceptual display provided linked segment information reminiscent of the cross-segmental torque transfers that occur during expert movement production.

  6. Constrained tri-sphere kinematic positioning system

    DOEpatents

    Viola, Robert J

    2010-12-14

    A scalable and adaptable, six-degree-of-freedom, kinematic positioning system is described. The system can position objects supported on top of, or suspended from, jacks comprising constrained joints. The system is compatible with extreme low temperature or high vacuum environments. When constant adjustment is not required a removable motor unit is available.

  7. Stellar Archeology : Chemical Compositions and Kinematics

    NASA Astrophysics Data System (ADS)

    Stringer, Bayard; Carney, Bruce

    2011-10-01

    The λ-CDM model of cosmology predicts a hierarchical formation mechanism of galaxies, with smaller units accreting to construct larger ones. The detection of merger events in external galaxies is well known, and the detection and analysis of merger remnants in the Milky Way is a key component in piecing together the history of our home galaxy. Statistical analyses of stellar kinematics in the solar neighborhood reveal much kinematic structure in the Galactic disk, but it is not readily apparent whether this structure is extragalactic or dynamical in origin. The most prominent structures are quickly identified as well known moving groups of stars such as the Hercules, Sirius, and Hyades stellar streams. Additionally, a subset of kinematically selected stars observed at McDonald Observatory are members of a stellar stream putatively identified by Amina Helmi as part of a merger remnant. A semi-automated, high resolution spectral analysis is applied to 504 F and G dwarf stars, and the results are amenable to Kolmogorov-Smirnov membership hypothesis testing. In all four cases, the kinematic streams have chemistries roughly consistent with the Galactic disk trends, although the statistical analyses suggest some subtle differences.

  8. Kinematics of foldable discrete space cranes

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.

    1985-01-01

    Exact kinematic description of a NASA proposed prototype foldable-deployable discrete space crane are presented. A computer program is developed which maps the geometry of the crane once controlling parameters are specified. The program uses a building block type approach in which it calculates the local coordinates of each repeating cell and then combines them with respect to a global coordinates system.

  9. Kinematic Measurements from YouTube Videos

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2009-01-01

    Video analysis of motion has been in use now for some time. However, some teachers may not have video equipment or may be looking for innovative ways to engage students with interesting applications at no cost. The recent advent of YouTube offers opportunities for students to measure kinematic properties of real-life events using their computers.…

  10. Kinematic Measurements from YouTube Videos

    ERIC Educational Resources Information Center

    Ruiz, Michael J.

    2009-01-01

    Video analysis of motion has been in use now for some time. However, some teachers may not have video equipment or may be looking for innovative ways to engage students with interesting applications at no cost. The recent advent of YouTube offers opportunities for students to measure kinematic properties of real-life events using their computers.…

  11. Compton Effect with Non-Relativistic Kinematics

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    In deducing the change of wavelength of x-rays scattered by atomic electrons, one normally makes use of relativistic kinematics for electrons. However, recoiling energies of the electrons are of the order of a few keV which is less than 0.2% of their rest energies. Hence the authors may ask whether relativistic formulae are really necessary. In…

  12. Kinematics and Dynamics of Young Stellar Groups

    NASA Astrophysics Data System (ADS)

    Ortega, V. G.; Jilinski, E. G.; de la Reza, R.

    2017-07-01

    We describe briefly the application of a dynamical method, based on six-dimensional kinematics of the stars to find the birthplaces and the ages of groups of young stars. We refer also to other possible problems in which the method can find application.

  13. Computer Software & Programing Utilization in Kinematics.

    ERIC Educational Resources Information Center

    Zahraee, Mohammad A.; And Others

    This paper discusses two software packages used in kinematics courses at Purdue University, Calumet (Indiana) and some algorithms written by students for cam design. The first software package, 4BAR, requires the user to define the particular four bar linkage in terms of lengths of the individual links and the angle and distance to the coupler…

  14. Kinematics of Einstein-Cartan universes

    NASA Astrophysics Data System (ADS)

    Pasmatsiou, Klaountia; Tsagas, Christos G.; Barrow, John D.

    2017-05-01

    We analyze the kinematics of cosmological spacetimes with nonzero torsion, in the framework of the classical Einstein-Cartan gravity. After a brief introduction to the basic features of spaces with nonvanishing torsion, we consider a family of observers moving along timelike worldlines and focus on their kinematic behavior. In so doing, we isolate the irreducible variables monitoring the observers' motion and derive their evolution formulas and associated constraint equations. Our aim is to identify the effects of spacetime torsion, and the changes they introduce into the kinematics of the standard, torsion-free, cosmological models. We employ a fully geometrical approach, imposing no restrictions on the material content, or any a priori couplings between torsion and spin. Also, we do not apply the familiar splitting of the equations, into a purely Riemannian component plus a torsion/spin part, at the start of our study, but only introduce it at the very end. With the general formulas at hand, we use the Einstein-Cartan field equations to incorporate explicitly the spin of the matter. The resulting formulas fully describe the kinematics of dynamical spacetimes within the framework of the Einstein-Cartan gravity, while in the special case of the so-called Weyssenhoff fluid, they recover results previously reported in the literature.

  15. KINEMATICS OF STELLAR POPULATIONS IN POSTSTARBURST GALAXIES

    SciTech Connect

    Hiner, Kyle D.; Canalizo, Gabriela E-mail: khiner@astro-udec.cl

    2015-01-20

    Poststarburst galaxies host a population of early-type stars (A or F) but simultaneously lack indicators of ongoing star formation such as [O II] emission. Two distinct stellar populations have been identified in these systems: a young poststarburst population superimposed on an older host population. We present a study of nine poststarburst galaxies with the following objectives: (1) to investigate whether and how kinematical differences between the young and old populations of stars can be measured, and (2) to gain insight into the formation mechanism of the young population in these systems. We fit high signal-to-noise spectra with two independent populations in distinct spectral regions: the Balmer region, the Mg IB region, and the Ca triplet when available. We show that the kinematics of the two populations largely track one another if measured in the Balmer region with high signal-to-noise data. Results from examining the Faber-Jackson relation and the fundamental plane indicate that these objects are not kinematically disturbed relative to more evolved spheroids. A case study of the internal kinematics of one object in our sample shows it to be pressure supported and not rotationally dominated. Overall our results are consistent with merger-induced starburst scenarios where the young population is observed during the later stages of the merger.

  16. Color-kinematics duality for QCD amplitudes

    NASA Astrophysics Data System (ADS)

    Johansson, Henrik; Ochirov, Alexander

    2016-01-01

    We show that color-kinematics duality is present in tree-level amplitudes of quantum chromodynamics with massive flavored quarks. Starting with the color structure of QCD, we work out a new color decomposition for n-point tree amplitudes in a reduced basis of primitive amplitudes. These primitives, with k quark-antiquark pairs and ( n - 2 k) gluons, are taken in the ( n - 2)! /k! Melia basis, and are independent under the color-algebra Kleiss-Kuijf relations. This generalizes the color decomposition of Del Duca, Dixon, and Maltoni to an arbitrary number of quarks. The color coefficients in the new decomposition are given by compact expressions valid for arbitrary gauge group and representation. Considering the kinematic structure, we show through explicit calculations that color-kinematics duality holds for amplitudes with general configurations of gluons and massive quarks. The new (massive) amplitude relations that follow from the duality can be mapped to a well-defined subset of the familiar BCJ relations for gluons. They restrict the amplitude basis further down to ( n - 3)!(2 k - 2) /k! primitives, for two or more quark lines. We give a decomposition of the full amplitude in that basis. The presented results provide strong evidence that QCD obeys the color-kinematics duality, at least at tree level. The results are also applicable to supersymmetric and D-dimensional extensions of QCD.

  17. ANALYTIC MODELING OF THE MORETON WAVE KINEMATICS

    SciTech Connect

    Temmer, M.; Veronig, A. M.

    2009-09-10

    The issue whether Moreton waves are flare-ignited or coronal mass ejection (CME)-driven, or a combination of both, is still a matter of debate. We develop an analytical model describing the evolution of a large-amplitude coronal wave emitted by the expansion of a circular source surface in order to mimic the evolution of a Moreton wave. The model results are confronted with observations of a strong Moreton wave observed in association with the X3.8/3B flare/CME event from 2005 January 17. Using different input parameters for the expansion of the source region, either derived from the real CME observations (assuming that the upward moving CME drives the wave), or synthetically generated scenarios (expanding flare region, lateral expansion of the CME flanks), we calculate the kinematics of the associated Moreton wave signature. Those model input parameters are determined which fit the observed Moreton wave kinematics best. Using the measured kinematics of the upward moving CME as the model input, we are not able to reproduce the observed Moreton wave kinematics. The observations of the Moreton wave can be reproduced only by applying a strong and impulsive acceleration for the source region expansion acting in a piston mechanism scenario. Based on these results we propose that the expansion of the flaring region or the lateral expansion of the CME flanks is more likely the driver of the Moreton wave than the upward moving CME front.

  18. Relationship between Spinal Cord Volume and Spinal Cord Injury due to Spinal Shortening

    PubMed Central

    Qiu, Feng; Yang, Jin-Cheng; Ma, Xiang-Yang; Xu, Jun-Jie; Yang, Qing-Lei; Zhou, Xin; Xiao, Yao-Sheng; Hu, Hai-Sheng; Xia, Li-Hui

    2015-01-01

    Vertebral column resection is associated with a risk of spinal cord injury. In the present study, using a goat model, we aimed to investigate the relationship between changes in spinal cord volume and spinal cord injury due to spinal shortening, and to quantify the spinal cord volume per 1-mm height in order to clarify a safe limit for shortening. Vertebral column resection was performed at T10 in 10 goats. The spinal cord was shortened until the somatosensory-evoked potential was decreased by 50% from the baseline amplitude or delayed by 10% relative to the baseline peak latency. A wake-up test was performed, and the goats were observed for two days postoperatively. Magnetic resonance imaging was used to measure the spinal cord volume, T10 height, disc height, osteotomy segment height, and spinal segment height pre- and postoperatively. Two of the 10 goats were excluded, and hence, only data from eight goats were analyzed. The somatosensory-evoked potential of these eight goats demonstrated meaningful changes. With regard to neurologic function, five and three goats were classified as Tarlov grades 5 and 4 at two days postoperatively. The mean shortening distance was 23.6 ± 1.51 mm, which correlated with the d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment (r = 0.95, p < 0.001) and with the height of the T10 body (r = 0.79, p = 0.02). The mean d-value (post-pre) of the spinal cord volume per 1-mm height of the osteotomy segment was 142.87 ± 0.59 mm3 (range, 142.19–143.67 mm3). The limit for shortening was approximately 106% of the vertebral height. The mean volumes of the osteotomy and spinal segments did not significantly change after surgery (t = 0.310, p = 0.765 and t = 1.241, p = 0.255, respectively). Thus, our results indicate that the safe limit for shortening can be calculated using the change in spinal cord volume per 1-mm height. PMID:26001196

  19. Overview of Spinal Cord Disorders

    MedlinePlus

    ... information from a specific dermatome is carried by sensory nerve fibers to the spinal nerve root of a specific ... the back of the thigh, is carried by sensory nerve fibers to the 2nd sacral vertebra (S2) nerve root. ...

  20. Currarino syndrome and spinal dysraphism.

    PubMed

    Kole, Matthew J; Fridley, Jared S; Jea, Andrew; Bollo, Robert J

    2014-06-01

    Currarino syndrome is a rare constellation of congenital anomalies characterized by the triad of sacral dysgenesis, presacral mass, and anorectal malformation. It is frequently associated with other congenital anomalies, often including occult spinal dysraphism. Mutations in the MNX1 gene are identified in the majority of cases. The authors report a rare case of Currarino syndrome in an infant with tethered cord syndrome and a dorsal lipomyelomeningocele continuous with a presacral intradural spinal lipoma, in addition to an imperforate anus and a scimitar sacrum. They review the literature to highlight patterns of occult spinal dysraphism in patients with Currarino syndrome and their relationship to tethered cord syndrome. Approximately 60% of the patients with Currarino syndrome reported in the literature have an occult spinal dysraphism. Published studies suggest that the risk of tethered cord syndrome may be higher among patients with a lipoma and lower among those with a teratoma or anterior meningocele.

  1. Intramedullary Cervical Spinal Cord Abscess.

    PubMed

    Bakhsheshian, Joshua; Kim, Paul E; Attenello, Frank J

    2017-10-01

    Intramedullary spinal cord abscesses are rarely encountered in modern neurosurgical practice. Select patients are at high risk for developing an intramedullary spinal cord abscess, which can result in acute neurologic deficits. Patients with failed conservative management may benefit from early surgical intervention; however, the evidence is limited by level 3 studies. In this case presentation, the patient failed conservative management for a cervical intramedullary spinal cord abscess and developed acute neurologic deficits. The decision was made to perform an urgent cervical laminectomy and drainage to avoid any further decline that may have occurred with continued conservative management. Increased awareness of intramedullary spinal cord abscess is warranted for its clinical suspicion and emergent treatment in select circumstances. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Spinal stenosis with meralgia paraesthetica.

    PubMed

    Jiang, G X; Xu, W D; Wang, A H

    1988-03-01

    Of 232 patients with evidence of lumbar spinal stenosis, 13 had symptoms of meralgia paraesthetica. Myelography demonstrated that in all but one of these 13 cases the L3-4 level was involved by stenosis; in 12 matched control patients with spinal stenosis, none had involvement at this level. We found that both the ligamentum flavum and the laminae at L3-4 level were thicker than in a control group. Decompressive laminectomy at the L3-4 level significantly reduced the area of hypo-aesthesia in the thigh, effecting complete cure in seven of the 11 cases. Meralgia paraesthetica is not uncommon in patients with spinal stenosis and is referable to changes at the L3-4 level. It seems that many cases of meralgia may have a spinal origin.

  3. Advanced control schemes and kinematic analysis for a kinematically redundant 7 DOF manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1990-01-01

    The kinematic analysis and control of a kinematically redundant manipulator is addressed. The manipulator is the slave arm of a telerobot system recently built at Goddard Space Flight Center (GSFC) to serve as a testbed for investigating research issues in telerobotics. A forward kinematic transformation is developed in its most simplified form, suitable for real-time control applications, and the manipulator Jacobian is derived using the vector cross product method. Using the developed forward kinematic transformation and quaternion representation of orientation matrices, we perform computer simulation to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of Jacobian pseudo-inverse for various sampling times. The equivalence between Cartesian velocities and quaternion is also verified using computer simulation. Three control schemes are proposed and discussed for controlling the motion of the slave arm end-effector.

  4. Spinal anomalies in Pfeiffer syndrome.

    PubMed

    Moore, M H; Lodge, M L; Clark, B E

    1995-05-01

    Review of the spinal radiographs of a consecutive series of 11 patients with Pfeiffer syndrome presenting to the Australian Craniofacial Unit was performed. The prevalence of cervical spine fusions was high, and the pattern of fusion complex. Isolated anomalies were evident at lower levels, including two cases of sacrococcygeal eversion. Spinal anomalies occur more frequently in the more severely involved cases of Pfeiffer syndrome emphasizing the generalized dysostotic nature of this condition.

  5. The Maiden Voyage of a Kinematics Robot

    NASA Astrophysics Data System (ADS)

    Greenwolfe, Matthew L.

    2015-04-01

    In a Montessori preschool classroom, students work independently on tasks that absorb their attention in part because the apparatus are carefully designed to make mistakes directly observable and limit exploration to one aspect or dimension. Control of error inheres in the apparatus itself, so that teacher intervention can be minimal.1 Inspired by this example, I created a robotic kinematics apparatus that also shapes the inquiry experience. Students program the robot by drawing kinematic graphs on a computer and then observe its motion. Exploration is at once limited to constant velocity and constant acceleration motion, yet open to complex multi-segment examples difficult to achieve in the lab in other ways. The robot precisely and reliably produces the motion described by the students' graphs, so that the apparatus itself provides immediate visual feedback about whether their understanding is correct as they are free to explore within the hard-coded limits. In particular, the kinematic robot enables hands-on study of multi-segment constant velocity situations, which lays a far stronger foundation for the study of accelerated motion. When correction is anonymous—just between one group of lab partners and their robot—students using the kinematic robot tend to flow right back to work because they view the correction as an integral part of the inquiry learning process. By contrast, when correction occurs by the teacher and/or in public (e.g., returning a graded assignment or pointing out student misconceptions during class), students all too often treat the event as the endpoint to inquiry. Furthermore, quantitative evidence shows a large gain from pre-test to post-test scores using the Test of Understanding Graphs in Kinematics (TUG-K).

  6. Kinematic Downsizing at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Simons, Raymond C.; Kassin, Susan A.; Trump, Jonathan R.; Weiner, Benjamin J.; Heckman, Timothy M.; Barro, Guillermo; Koo, David C.; Guo, Yicheng; Pacifici, Camilla; Koekemoer, Anton; Stephens, Andrew W.

    2016-10-01

    We present results from a survey of the internal kinematics of 49 star-forming galaxies at z˜ 2 in the CANDELS fields with the Keck/MOSFIRE spectrograph, Survey in the near-Infrared of Galaxies with Multiple position Angles (SIGMA). Kinematics (rotation velocity V rot and gas velocity dispersion {σ }g) are measured from nebular emission lines which trace the hot ionized gas surrounding star-forming regions. We find that by z˜ 2, massive star-forming galaxies ({log} {M}* /{M}⊙ ≳ 10.2) have assembled primitive disks: their kinematics are dominated by rotation, they are consistent with a marginally stable disk model, and they form a Tully-Fisher relation. These massive galaxies have values of {V}{rot}/{σ }g that are factors of 2-5 lower than local well-ordered galaxies at similar masses. Such results are consistent with findings by other studies. We find that low-mass galaxies ({log} {M}* /{M}⊙ ≲ 10.2) at this epoch are still in the early stages of disk assembly: their kinematics are often dominated by gas velocity dispersion and they fall from the Tully-Fisher relation to significantly low values of V rot. This “kinematic downsizing” implies that the process(es) responsible for disrupting disks at z˜ 2 have a stronger effect and/or are more active in low-mass systems. In conclusion, we find that the period of rapid stellar mass growth at z˜ 2 is coincident with the nascent assembly of low-mass disks and the assembly and settling of high-mass disks.

  7. Kinematic Optimization in Birds, Bats and Ornithopters

    NASA Astrophysics Data System (ADS)

    Reichert, Todd

    Birds and bats employ a variety of advanced wing motions in the efficient production of thrust. The purpose of this thesis is to quantify the benefit of these advanced wing motions, determine the optimal theoretical wing kinematics for a given flight condition, and to develop a methodology for applying the results in the optimal design of flapping-wing aircraft (ornithopters). To this end, a medium-fidelity, combined aero-structural model has been developed that is capable of simulating the advanced kinematics seen in bird flight, as well as the highly non-linear structural deformations typical of high-aspect ratio wings. Five unique methods of thrust production observed in natural species have been isolated, quantified and thoroughly investigated for their dependence on Reynolds number, airfoil selection, frequency, amplitude and relative phasing. A gradient-based optimization algorithm has been employed to determined the wing kinematics that result in the minimum required power for a generalized aircraft or species in any given flight condition. In addition to the theoretical work, with the help of an extended team, the methodology was applied to the design and construction of the world's first successful human-powered ornithopter. The Snowbird Human-Powered Ornithopter, is used as an example aircraft to show how additional design constraints can pose limits on the optimal kinematics. The results show significant trends that give insight into the kinematic operation of natural species. The general result is that additional complexity, whether it be larger twisting deformations or advanced wing-folding mechanisms, allows for the possibility of more efficient flight. At its theoretical optimum, the efficiency of flapping-wings exceeds that of current rotors and propellers, although these efficiencies are quite difficult to achieve in practice.

  8. Kinematic and Spatial Substructure in NGC 2264

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Hartmann, Lee; Fűrész, Gabor; Hsu, Wen-Hsin; Mateo, Mario

    2015-04-01

    We present an expanded kinematic study of the young cluster NGC 2264 based upon optical radial velocities measured using multi-fiber echelle spectroscopy at the 6.5 m MMT and Magellan telescopes. We report radial velocities for 695 stars, of which approximately 407 stars are confirmed or very likely members. Our results more than double the number of members with radial velocities from Fűrész et al., resulting in a much better defined kinematic relationship between the stellar population and the associated molecular gas. In particular, we find that there is a significant subset of stars that are systematically blueshifted with respect to the molecular (13CO) gas. The detection of Lithium absorption and/or infrared excesses in this blueshifted population suggests that at least some of these stars are cluster members; we suggest some speculative scenarios to explain their kinematics. Our results also more clearly define the redshifted population of stars in the northern end of the cluster; we suggest that the stellar and gas kinematics of this region are the result of a bubble driven by the wind from O7 star S Mon. Our results emphasize the complexity of the spatial and kinematic structure of NGC 2264, important for eventually building up a comprehensive picture of cluster formation. Observations reported here were obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations

    ERIC Educational Resources Information Center

    Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto

    2011-01-01

    The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…

  10. Validation and Structural Analysis of the Kinematics Concept Test

    ERIC Educational Resources Information Center

    Lichtenberger, A.; Wagner, C.; Hofer, S. I.; Stem, E.; Vaterlaus, A.

    2017-01-01

    The kinematics concept test (KCT) is a multiple-choice test designed to evaluate students' conceptual understanding of kinematics at the high school level. The test comprises 49 multiple-choice items about velocity and acceleration, which are based on seven kinematic concepts and which make use of three different representations. In the first part…

  11. Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations

    ERIC Educational Resources Information Center

    Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto

    2011-01-01

    The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…

  12. Kinematics of cervical segments C5/C6 in axial rotation before and after total disc arthroplasty.

    PubMed

    Wachowski, Martin Michael; Weiland, Jan; Wagner, Markus; Gezzi, Riccardo; Kubein-Meesenburg, Dietmar; Nägerl, Hans

    2017-04-04

    The kinematical properties of C5/C6 segments in axial rotation are evaluated before and after total disc arthroplasty (TDA) with PRESTIGE(®)-and BRYAN(®) Cervical Disc (Medtronic) under flexion/extension as parameters and compared with those of C3/C4. Eight human segments were stimulated by triangularly varying, axially directed torque (T z(t)) under compressing static axial preloads. Using a 6D-measuring device with high resolution, the response of segmental motion was characterized by the instantaneous helical axis (IHA). The position, direction, and migration path length of the IHA were measured before and after TDA (parameter: position of the axially directed preload). The periodic torque T z(t) generated IHA migrations whereupon the IHA direction was constantly rotated to the dorsal by ≈15.5°. After TDA, the IHA0 (neutral positions) were significantly shifted to the dorsal (PRESTIGE(®): 4.3 mm, BRYAN(®): 7.0 mm) just as the points of balance of the entire IHA migration paths. Due to the configuration of the vertebral joints and their interaction with the intervertebral disc, the IHA migrates during the axial rotation within a distinct domain of each C5/C6-segment. Implantation of the PRESTIGE(®) and BRYAN(®) prostheses significantly alters these kinematical properties by dorsal displacements of the domains. Statistically TDA of C3/C4 and of C5/C6 are not correlated. Under axial rotation of the cervical spine, additional lateral and/or ventral/dorsal displacements are produced by TDA. Consequently, adjacent level disease (ALD) may be mechanically stimulated.

  13. Hypothermia for spinal cord injury.

    PubMed

    Kwon, Brian K; Mann, Cody; Sohn, Hong Moon; Hilibrand, Alan S; Phillips, Frank M; Wang, Jeffrey C; Fehlings, Michael G

    2008-01-01

    Interest in systemic and local hypothermia extends back over many decades, and both have been investigated as potential neuroprotective interventions in a number of clinical settings, including traumatic brain injury, stroke, cardiac arrest, and both intracranial and thoracoabdominal aortic aneurysm surgery. The recent use of systemic hypothermia in an injured National Football League football player has focused a great deal of attention on the potential use of hypothermia in acute spinal cord injury. To provide spinal clinicians with an overview of the biological rationale for using hypothermia, the past studies and current clinical applications of hypothermia, and the basic science studies and clinical reports of the use of hypothermia in acute traumatic spinal cord injury. A review of the English literature on hypothermia was performed, starting with the original clinical description of the use of systemic hypothermia in 1940. Pertinent basic science and clinical articles were identified using PubMed and the bibliographies of the articles. Each article was reviewed to provide a concise description of hypothermia's biological rationale, current clinical applications, complications, and experience as a neuroprotective intervention in spinal cord injury. Hypothermia has a multitude of physiologic effects. From a neuroprotective standpoint, hypothermia slows basic enzymatic activity, reduces the cell's energy requirements, and thus maintains Adenosine Triphosphate (ATP) concentrations. As such, systemic hypothermia has been shown to be neuroprotective in patients after cardiac arrest, although its benefit in other clinical settings such as traumatic brain injury, stroke, and intracranial aneurysm surgery has not been demonstrated. Animal studies of local and systemic hypothermia in traumatic spinal cord injury models have produced mixed results. Local hypothermia was actively studied in the 1970s in human acute traumatic spinal cord injury, but no case series of

  14. [Enlargement in managment of lumbar spinal stenosis].

    PubMed

    Steib, J P; Averous, C; Brinckert, D; Lang, G

    1996-05-01

    flexion, obesity or quite simply overuse, involve an increase in the lumbar lordosis. The posterior articulations are worn out and the disc gets damaged by shear forces. The disc space becomes shorter with a bulging disc, and the inferior articular process of the superior vertebra goes down. This is responsible of a loss of lordosis. For restoring the sagittal balance the patient needs more extension of the spine. Above and below the considered level the degenerative disease carries on extending to the whole spine. At the level considered, because of local extension, the inferior facet moves forward, the disc bulges, the ligamentum flavum is shortened and the stenosis is increased. This situation is improved by local kyphosis: the inferior facet moves backward, the disc and the ligamentum flavum are stretched with a quite normal posterior disc height and most often there is no more stenosis. Myelograms show this very well with a quite normal appearance lying, clear compression standing, worse in extension and improved, indeed disappeared in flexion. CT scan and MRI don't show that because they are done lying. The expression of the clinical situation is the same, mute lying and maximum standing with restriction of walking. For us lumbar stenosis is operated with lumbar reconstruction without opening the canal. The patient is in moderate kyphosis on the operating table. Pedicle screws rotated to match a bent rod allow reduction of the spine. The posterior disc height is respected and not distracted, and the anterior part of the disc is stretched in lordosis. The inferior facet is cut for the arthrodesis and no longer compresses the dura. The canal is well enlarged and the lumbar segment in lordosis is the best protection of the adjacent levels at follow-up. This behaviour responds to the same analysis as the ≪recalibrage≫ (enlargement). The mobile segment is damaged by the degenerative disease, the stenosis is a consequence of this damage. It's logical to treat the

  15. Spinal muscular atrophy

    PubMed Central

    2011-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. Estimated incidence is 1 in 6,000 to 1 in 10,000 live births and carrier frequency of 1/40-1/60. This disease is characterized by generalized muscle weakness and atrophy predominating in proximal limb muscles, and phenotype is classified into four grades of severity (SMA I, SMAII, SMAIII, SMA IV) based on age of onset and motor function achieved. This disease is caused by homozygous mutations of the survival motor neuron 1 (SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene, generally showing the absence of SMN1 exon 7. The test achieves up to 95% sensitivity and nearly 100% specificity. Differential diagnosis should be considered with other neuromuscular disorders which are not associated with increased CK manifesting as infantile hypotonia or as limb girdle weakness starting later in life. Considering the high carrier frequency, carrier testing is requested by siblings of patients or of parents of SMA children and are aimed at gaining information that may help with reproductive planning. Individuals at risk should be tested first and, in case of testing positive, the partner should be then analyzed. It is recommended that in case of a request on carrier testing on siblings of an affected SMA infant, a detailed neurological examination should be done and consideration given doing the direct test to exclude SMA. Prenatal diagnosis should be offered to couples who have previously had a child affected with SMA (recurrence risk 25%). The role of follow-up coordination has to be managed by an expert in neuromuscular disorders and in SMA who is able to plan a multidisciplinary intervention that includes pulmonary, gastroenterology/nutrition, and orthopedic care. Prognosis depends on the phenotypic

  16. Spinal muscular atrophy.

    PubMed

    D'Amico, Adele; Mercuri, Eugenio; Tiziano, Francesco D; Bertini, Enrico

    2011-11-02

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis. Estimated incidence is 1 in 6,000 to 1 in 10,000 live births and carrier frequency of 1/40-1/60. This disease is characterized by generalized muscle weakness and atrophy predominating in proximal limb muscles, and phenotype is classified into four grades of severity (SMA I, SMAII, SMAIII, SMA IV) based on age of onset and motor function achieved. This disease is caused by homozygous mutations of the survival motor neuron 1 (SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene, generally showing the absence of SMN1 exon 7. The test achieves up to 95% sensitivity and nearly 100% specificity. Differential diagnosis should be considered with other neuromuscular disorders which are not associated with increased CK manifesting as infantile hypotonia or as limb girdle weakness starting later in life. Considering the high carrier frequency, carrier testing is requested by siblings of patients or of parents of SMA children and are aimed at gaining information that may help with reproductive planning. Individuals at risk should be tested first and, in case of testing positive, the partner should be then analyzed. It is recommended that in case of a request on carrier testing on siblings of an affected SMA infant, a detailed neurological examination should be done and consideration given doing the direct test to exclude SMA. Prenatal diagnosis should be offered to couples who have previously had a child affected with SMA (recurrence risk 25%). The role of follow-up coordination has to be managed by an expert in neuromuscular disorders and in SMA who is able to plan a multidisciplinary intervention that includes pulmonary, gastroenterology/nutrition, and orthopedic care. Prognosis depends on the phenotypic

  17. Spinal trauma. Pathophysiology and management of traumatic spinal injuries.

    PubMed

    Shores, A

    1992-07-01

    Spinal trauma can originate from internal or external sources. Injuries to the spinal cord can be classified as either concussive or compressive and concussive. The pathophysiologic events surrounding spinal cord injury include the primary injury (compression, concussion) and numerous secondary injury mechanisms (vascular, biochemical, electrolyte), which are mediated by excessive oxygen free radicles, neurotransmitter and electrolyte alterations in cell membrane permeability, excitotoxic amino acids, and various other biochemical factors that collectively result in reduced SCBF, ischemia, and eventual necrosis of the gray and white matter. Management of acute spinal cord injuries includes the use of a high-dose corticosteroid regimen within the initial 8 hours after trauma. Sodium prednisolone and methylprednisolone, at recommended doses, act as oxygen radical scavengers and are anti-inflammatory. Additional considerations are the stability of the vertebral column, other conditions associated with trauma (i.e., pneumothorax), and the presence or absence of spinal cord compression, which may warrant surgical therapy. Vertebral fractures or luxations can occur in any area of the spine but most commonly occur at the junction of mobile and immobile segments. Dorsal and dorsolateral surgical approaches are applicable to the lumbosacral and thoracolumbar spine and dorsal and ventral approaches to the cervical spine. Indications for surgical intervention include spinal cord compression and vertebral instability. Instability can be determined from the type of fracture, how many of the three compartments of the vertebrae are disrupted, and on occasion, by carefully positioned stress studies of fluoroscopy. Decompression (dorsal laminectomy, hemilaminectomy, or ventral cervical slot) is employed when compression of the spinal cord exists. The hemilaminectomy (unilateral or bilateral) causes less instability than dorsal laminectomy and therefore should be used when practical

  18. [Acute spinal subdural hematoma after attempted spinal anesthesia].

    PubMed

    Likar, R; Mathiaschitz, K; Spendel, M; Krumpholz, R; Martin, E

    1996-01-01

    This is a report of a case of a subdural haematoma with resulting paraplegia after attempted spinal anaesthesia. Epidural and subdural haematomas are rare complications after central neural blockade. The complication described here was the result of an unsuccessful attempt to puncture the spinal channel. The patient was a 72-year-old woman with a fracture of the left femoral neck, which it was intended to stabilize operatively. Findings that made lumbar spinal puncture difficult were severe overweight, and lordosis and scoliosis of the lumbar spine resulting from degenerative changes. Spinal anaesthesia was suggested because the patient had eaten shortly before and because she suffered from asthma. From the aspect of haemostasis no contraindications were present, and the anaesthesist was experienced in spinal anaesthesia even under difficult anatomical conditions. Several unsuccessful attempts were made to puncture the lumbar spinal channel while the patient was lying on her right side. It was also impossible to reach the spinal channel from a median or left paramedian approach. We used atraumatic pencil-point needles (Sprotte gauge 24, 90 mm). No blood was aspirated during any of the attempts. The surgical intervention was finally performed under a general anaesthetic in view of the urgency. No significant complications occurred during the operation, and no neurological abnormalities were observed immediately after or in the next 8 h after the operation. At 12 h after the operation a paraparesis was found caudal to L3. After this had been verified by radiological and neurological tests, neurosurgical decompression was carried out as quickly as possible. During the operation a distinct subdural haematoma without any detectable source of bleeding was discovered. Even after surgical revision and evacuation of the remaining haematoma it was not possible to reverse the paraplegia, in spite of rehabilitation measures. Despite a certain fragility of the vessel and

  19. Symmetry for Flavor-Kinematics Duality from an Action

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Shen, Chia-Hsien

    2017-03-01

    We propose a new representation of the nonlinear sigma model that exhibits a manifest duality between flavor and kinematics. The fields couple exclusively through cubic Feynman vertices which define the structure constants of an underlying kinematic algebra. The action is invariant under a combination of internal and spacetime symmetries whose conservation equations imply flavor-kinematics duality, ensuring that all Feynman diagrams satisfy kinematic Jacobi identities. Substituting flavor for kinematics, we derive a new cubic action for the special Galileon theory. In this picture, the vanishing soft behavior of amplitudes is a by-product of the Weinberg soft theorem.

  20. Characteristics of thoracic and lumbar movements during gait in lumbar spinal stenosis patients before and after decompression surgery.

    PubMed

    Kuwahara, Wataru; Deie, Masataka; Fujita, Naoto; Tanaka, Nobuhiro; Nakanishi, Kazuyoshi; Sunagawa, Toru; Asaeda, Makoto; Nakamura, Haruka; Kono, Yoshifumi; Ochi, Mitsuo

    2016-12-01

    Although gait analysis has been previously conducted for lumbar spinal stenosis patients, the vertebral segmental movements, such as of the thoracic and lumbar regions, and whether the spinal movement during gait changes after decompression surgery remain unclear. Ten patients with lumbar spinal stenosis and 10 healthy controls participated. Clinical outcomes were assessed using the Japanese Orthopaedic Association Back Pain Evaluation Questionnaire and Visual Analogue Scale. Spinal kinematic data of the participants during gait were acquired using a three-dimensional motion analysis system. The trunk (whole spine), thoracic, and lumbar flexion and pelvic tilting values were calculated. Spinal kinematic data and clinical outcomes were collected preoperatively and 1month postoperatively for the patients. Compared to that observed preoperatively, the clinical outcomes significantly improved at 1month postoperatively. In the standing position, the preoperative lumbar extension of the patients was significantly smaller than that of the controls. Moreover, during gait, the lumbar flexion relative to the standing position of the patients was smaller than that of the controls preoperatively, and increased at 1month postoperatively. The sum of the thoracic and lumbar flexion values during gait negatively correlated with the score for leg pain. The epidural pressure of lumbar spinal stenosis patients is known to be higher than that of normal subjects during gait, and to decrease during walking with lumbar flexion. Preoperatively, smaller thoracic and lumbar flexion movements during gait relative to the standing position cannot decrease epidural pressure; as a result, severe leg pain might be induced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Solitary spinal dural syphilis granuloma mimicking a spinal meningioma.

    PubMed

    Zhou, Heng-Jun; Zhan, Ren-Ya; Chen, Man-Tao; Cao, Fei; Zheng, Xiu-Jue

    2014-01-01

    Dural granuloma is extremely rare. To our knowledge, there has no case reported solitary spinal dural syphilis granuloma worldwide so far. Here we report our findings in a 49-year-old woman, who presented with 10-year progressive left lower-limb numbness and two weeks of right lower-limb numbness. Magnetic resonance imaging (MRI) suggested a homogeneous enhanced spindle-shaped lesion, 2.9 × 1.5 cm in size, occupying the spinal intradural extramedullary space, at the level of Thoracic (T)-2/3, which mimicked the appearance of spinal meningioma. The Treponema pallidum particle agglutination (TPPA) test titer of 1:8, and the venereal diseases research laboratory of cerebral spinal fluid (VDRL-CSF) was reactive, so confirmed neurosyphilis was considered. After formal anti-syphilis treatment, posterior laminectomy surgery was performed, and the lesion was completely separated and extirpated. Final histopathologic diagnosis of the lesion was confirmed as chronic granulomatous inflammation, combined with the neurosyphilis history, spinal dural syphilis granuloma was finally diagnosed. Postoperatively, the patient recovered without any further treatment.

  2. Spinal fixation. Part 3. Complications of spinal instrumentation.

    PubMed

    Slone, R M; MacMillan, M; Montgomery, W J

    1993-07-01

    Spinal fixation devices can be used to form a rigid construct with the spine to replace bone, restore alignment, maintain position, and prevent motion in the treatment of fractures, degenerative disease, neoplasm, and congenital deformities. Because most spinal constructs will eventually fail if bone fusion does not occur, bone graft material is often used along with the implant to promote fusion. Conventional radiographs, obtained in two projections, remain the mainstay of implant evaluation, demonstrating the position of the spinal elements, hardware, graft material, and evidence of complication. Possible complications connected with use of fixation devices include intraoperative soft-tissue injuries, postoperative hematomas, and infection. The components (through incorrect use, malpositioning at surgery, and later dislodgment or fracture) may also contribute to complications such as instability; failure of fusion; or pain, with possible resultant neurologic damage. Bone graft material can migrate or hypertrophy, resulting in impingement on the spinal canal or neural foramen. Radiologists should be familiar with the various spinal fixation devices and techniques to better identify evolving complications.

  3. Vascular Defects and Spinal Cord Hypoxia in Spinal Muscular Atrophy.

    PubMed

    Somers, Eilidh; Lees, Robert D; Hoban, Katie; Sleigh, James N; Zhou, Haiyan; Muntoni, Francesco; Talbot, Kevin; Gillingwater, Thomas H; Parson, Simon H

    2016-02-01

    Spinal muscular atrophy (SMA) is a major inherited cause of infant death worldwide. It results from mutations in a single, ubiquitously expressed gene (SMN1), with loss of lower motor neurons being the primary pathological signature. Systemic defects have also been reported in SMA patients and animal models. We investigated whether defects associated with the vasculature contribute to motor neuron pathology in SMA. Development and integrity of the capillary bed was examined in skeletal muscle and spinal cord of SMA mice, and muscle biopsies from SMA patients and controls, using quantitative morphometric approaches on immunohistochemically labeled tissue. Pimonidazole hydrochloride-based assays were used to identify functional hypoxia. The capillary bed in muscle and spinal cord was normal in presymptomatic SMA mice (postnatal day 1), but failed to match subsequent postnatal development in control littermates. At mid- and late-symptomatic time points, the extent of the vascular architecture observed in two distinct mouse models of SMA was ∼50% of that observed in control animals. Skeletal muscle biopsies from human patients confirmed the presence of developmentally similar, significant vascular depletion in severe SMA. Hypovascularity in SMA mouse spinal cord was accompanied by significant functional hypoxia and defects in the blood-spinal cord barrier. Our results indicate that vascular defects are a major feature of severe forms of SMA, present in both mouse models and patients, resulting in functional hypoxia of motor neurons. Thus, abnormal vascular development and resulting hypoxia may contribute to the pathogenesis of SMA. © 2016 American Neurological Association.

  4. Lumbar spinal loads and muscle activity during a golf swing.

    PubMed

    Lim, Young-Tae; Chow, John W; Chae, Woen-Sik

    2012-06-01

    This study estimated the lumbar spinal loads at the L4-L5 level and evaluated electromyographic (EMG) activity of right and left rectus abdominis, external and internal obliques, erector spinae, and latissimus dorsi muscles during a golf swing. Four super VHS camcorders and two force plates were used to obtain three-dimensional (3D) kinematics and kinetics of golf swings performed by five male collegiate golfers. Average EMG levels for different phases of golf swing were determined. An EMG-assisted optimization model was applied to compute the contact forces acting on the L4-L5. The results revealed a mean peak compressive load of over six times the body weight (BW) during the downswing and mean peak anterior and medial shear loads approaching 1.6 and 0.6 BW during the follow-through phases. The peak compressive load estimated in this study was high, but less than the corresponding value (over 8 BW) reported by a previous study. Average EMG levels of different muscles were the highest in the acceleration and follow-through phases, suggesting a likely link between co-contractions of paraspinal muscles and lumbar spinal loads.

  5. Dorsal spinal venous occlusion in the rat.

    PubMed

    Martinez-Arizala, A; Mora, R J; Madsen, P W; Green, B A; Hayashi, N

    1995-04-01

    Occlusion of the major components of the spinal venous system is usually associated with spinal arteriovenous malformations or systemic thrombophlebitis. Although spinal venous system dysfunction has been implicated in compressive cord syndromes, myelopathies from decompression sickness, and spinal cord trauma, its pathophysiology remains unclear. To characterize disorders associated with spinal venous occlusion, we developed a model in the rat produced by focally coagulating the dorsal spinal vein transdurally at the T7 and T10 vertebral levels. Following such occlusion, venous stasis, sludging and perivascular hemorrhages in the small venous branches were observed. By 1 week postocclusion, animals developed hindlimb paralysis from which they partially recovered over time. Histologic examination in the acute phase disclosed tissue necrosis, edema, and hemorrhages predominantly in the dorsal aspect of the spinal cord. This was gradually replaced by an intense macrophagic infiltration and the partial formation of a cystic cavity by 1 month. These findings indicate that dorsal spinal vein occlusion in the rat causes significant neurologic and pathologic alterations. We conclude that this procedure produces a relevant animal model for the study of the pathophysiology of spinal venous occlusion, and it allows the characterization of its effects on spinal cord blood flow, the blood-spinal cord barrier, and the development of edema independent of cord compression. Our findings in this model provide an insight into one of the mechanisms of injury extension in spinal cord trauma and other disorders associated with spinal venous dysfunction.

  6. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation

    PubMed Central

    2012-01-01

    Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small

  7. Shoulder Pain and Cycle to Cycle Kinematic Spatial Variability during Recovery Phase in Manual Wheelchair Users: A Pilot Investigation

    PubMed Central

    Jayaraman, Chandrasekaran; Moon, Yaejin; Rice, Ian M.; Hsiao Wecksler, Elizabeth T.; Beck, Carolyn L.; Sosnoff, Jacob J.

    2014-01-01

    Wheelchair propulsion plays a significant role in the development of shoulder pain in manual wheelchair users (MWU). However wheelchair propulsion metrics related to shoulder pain are not clearly understood. This investigation examined intra-individual kinematic spatial variability during semi-circular wheelchair propulsion as a function of shoulder pain in MWU. Data from 10 experienced adult MWU with spinal cord injury (5 with shoulder pain; 5 without shoulder pain) were analyzed in this study. Participants propelled their own wheelchairs on a dynamometer at 3 distinct speeds (self-selected, 0.7 m/s, 1.1 m/s) for 3 minutes at each speed. Motion capture data of the upper limbs were recorded. Intra-individual kinematic spatial variability of the steady state wrist motion during the recovery phase was determined using principal component analysis (PCA). The kinematic spatial variability was calculated at every 10% intervals (i.e at 11 interval points, from 0% to 100%) along the wrist recovery path. Results Overall, spatial variability was found to be highest at the start and end of the recovery phase and lowest during the middle of the recovery path. Individuals with shoulder pain displayed significantly higher kinematic spatial variability than individuals without shoulder pain at the start (at 10% interval) of the recovery phase (p<.004). Conclusions Analysis of intra-individual kinematic spatial variability during the recovery phase of manual wheelchair propulsion distinguished between those with and without shoulder pain. Variability analysis of wheelchair propulsion may offer a new approach to monitor the development and rehabilitation of shoulder pain. PMID:24614232

  8. Comparing joint kinematics and center of mass acceleration as feedback for control of standing balance by functional neuromuscular stimulation.

    PubMed

    Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J

    2012-05-06

    The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.

  9. Spinal Extradural Arachnoid Cyst

    PubMed Central

    Choi, Seung Won; Seong, Han Yu

    2013-01-01

    Spinal extradural arachnoid cyst (SEAC) is a rare disease and uncommon cause of compressive myelopathy. The etiology remains still unclear. We experienced 2 cases of SEACs and reviewed the cases and previous literatures. A 59-year-old man complained of both leg radiating pain and paresthesia for 4 years. His MRI showed an extradural cyst from T12 to L3 and we performed cyst fenestration and repaired the dural defect with tailored laminectomy. Another 51-year-old female patient visited our clinical with left buttock pain and paresthesia for 3 years. A large extradural cyst was found at T1-L2 level on MRI and a communication between the cyst and subarachnoid space was illustrated by CT-myelography. We performed cyst fenestration with primary repair of dural defect. Both patients' symptoms gradually subsided and follow up images taken 1-2 months postoperatively showed nearly disappeared cysts. There has been no documented recurrence in these two cases so far. Tailored laminotomy with cyst fenestration can be a safe and effective alternative choice in treating SEACs compared to traditional complete resection of cyst wall with multi-level laminectomy. PMID:24294463

  10. Lumbar Spinal Stenosis

    PubMed Central

    Genevay, Stephane

    2009-01-01

    Lumbar spinal stenosis (LSS) is most commonly due to degenerative changes in older individuals. LSS is being more commonly diagnosed and may relate to better access to advanced imaging and to an aging population. This review focuses on radicular symptoms related to degenerative central and lateral stenosis and updates knowledge of LSS pathophysiology, diagnosis and management. Since patients with anatomic LSS can range from asymptomatic to severely disabled, the clinical diagnosis focuses on symptoms and examination findings associated with LSS. Imaging findings are helpful for patients with persistent, bothersome symptoms in whom invasive treatments are being considered. There is limited information from high quality studies about the relative benefits and harms of commonly used treatments. Interpreting and comparing results of available research is limited by a lack of consensus about the definition of LSS. Nevertheless, evidence supports decompressive laminectomy for patients with persistent and bothersome symptoms. Recommendations favor a shared decision making approach due to important trade-offs between alternative therapies and differences among patients in their preferences and values. PMID:20227646

  11. Spinal Extradural Arachnoid Cyst

    PubMed Central

    Woo, Joon Bum; Kang, Kyung Taek; Lee, Jun Seok; Song, Geun Seong; Sung, Soon Ki; Lee, Sang Weon

    2016-01-01

    A spinal extradural arachnoid cyst (SEAC) results from a rare small defect of the dura matter that leads to cerebrospinal fluid accumulation and communication defects between the cyst and the subarachnoid space. There is consensus for the treatment of the dural defect, but not for the treatment of the cyst. Some advocate a total resection of the cysts and repair of the communication site to prevent the recurrence of a SEAC, while others recommended more conservative therapy. Here we report the outcomes of selective laminectomy and closure of the dural defect for a 72-year-old and a 33-year-old woman. Magnetic resonance imaging of these patients showed an extradural cyst from T12 to L4 and an arachnoid cyst at the posterior epidural space of T12 to L2. For both patients, we surgically fenestrated the cyst and repaired the dural defect using a partial hemi-laminectomy. The patient’s symptoms dramatically subsided, and follow-up radiological images show a complete disappearance of the cyst in both patients. Our results suggest that fenestration of the cyst can be a safe and effective approach in treating SEACs compared to a classical complete resection of the cyst wall with multilevel laminectomy. PMID:27857934

  12. Spinal muscular atrophies.

    PubMed

    Viollet, Louis; Melki, Judith

    2013-01-01

    Spinal muscular atrophies (SMA) are genetic disorders characterized by degeneration of lower motor neurons. The most frequent form is caused by mutations of the survival motor neuron 1 gene (SMN1). The identification of this gene greatly improved diagnostic testing and family-planning options of SMA families. SMN plays a key role in metabolism of RNA. However, the link between RNA metabolism and motor neuron degeneration remains unknown. A defect in mRNA processing likely generates either a loss of function of some critical RNA or abnormal transcripts with toxic property for motor neurons. Mutations of SMN in various organisms highlighted an essential role of SMN in motor axon and neuromuscular junction development or maintenance. The quality of life of patients has greatly improved over recent decades through the improvement of care and management of patients. In addition, major advances in translational research have been made in the field of SMA. Various therapeutic strategies have been successfully developed aiming at acting on SMN2, a partially functional copy of the SMN1 gene which remains present in patients. Drugs have been identified and some are already at preclinical stages. Identifying molecules involved in the SMA degenerative process should represent additional attractive targets for therapeutics in SMA. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Kinematics of YSO Molecular Hydrogen Outflows

    NASA Astrophysics Data System (ADS)

    Salas, L.; Cruz-González, I.

    2002-06-01

    As part of an on-going kinematical survey of molecular outflows, we describe observations of the 2.12 mu m line of H[2] for objects such as OMC-1, HH 211, HH 212, DR 21, Ceph A and S187-IR . The observations were made with the CAMILA IR-camera and an imaging Fabry-Pérot etalon at the 2.12 m telescope of the Observatorio Astronómico Nacional in San Pedro Mártir. A 22 km s-1 (FWHM) resolution allows us to determine the global kinematics of these sources. We show that many of them are consistent with theoretical models such as the jet driven molecular outflow paradigm. A flux versus velocity relation, similar to the one observed for CO outflows, is revealed by H[2] velocity structure.

  14. On kinematic design of serial link manipulators

    SciTech Connect

    Paredis, C.J.J.; Khosla, P.K.

    1991-01-01

    The Reconfigurable Modular Manipulator System (RMMS) consists of modular links and joints which can be assembled into many manipulator configurations. This capability allows the RMMS to be rapidly reconfigured in order to custom tailor it to specific tasks. A important issue, related to the RMMS, is the determination of the optimal manipulator configuration for a specific task. In this paper, we address the problem of mapping kinematic task specifications into a kinematic manipulator configuration. For the design of 2 degrees-of-freedom planar manipulators, an analytical solution is derived. Since, for problems with more than 2 design parameters, analytical solutions become impractical, we have also developed a numerical approach for the design of 6 degrees-of-freedom manipulators. 29 refs., 7 figs.

  15. Kinematics of the symbiotic system R Aqr

    NASA Astrophysics Data System (ADS)

    Navarro, S.; Corral, L. J.; Steffen, W.

    2014-04-01

    We present the results of the kinematical analysis of the symbiotic system R Aqr. We obtained high dispersion spectra with the MES spectrograph at the 2.1 m telescope of San Pedro Mártir (MEZCAL). The used filter were Ha + [NII], (λc = 6575Å, Δλ = 90Å). We analyse the [NII] λλ6583 line. When the observations are compared with previous ones by Solf (1992) we detected an important change in the projected velocities of the observed knots, supporting the idea of a precessing jet. We are working also in a 3-D kinematic model for the object using the measured velocities and the state of the model is presented.

  16. Kinematics of horizontal and vertical caterpillar crawling.

    PubMed

    van Griethuijsen, Linnea I; Trimmer, Barry A

    2009-05-01

    Unlike horizontal crawling, vertical crawling involves two counteracting forces: torque rotating the body around its center of mass and gravity resisting forward movement. The influence of these forces on kinematics has been examined in the soft-bodied larval stage of Manduca sexta. We found that crawling and climbing are accomplished using the same movements, with both segment timing and proleg lift indistinguishable in horizontal and vertical locomotion. Minor differences were detected in stride length and in the delay between crawls, which led to a lower crawling speed in the vertical orientation. Although these differences were statistically significant, they were much smaller than the variation in kinematic parameters between animals. The ability of Manduca to crawl and climb using the same movements is best explained by Manduca's relatively small size, slow speed and strong, controlled, passive grip made possible by its proleg/crochets.

  17. Kinematical uniqueness of homogeneous isotropic LQC

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan; Hanusch, Maximilian

    2017-01-01

    In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space {{{R}}\\text{Bohr}} , as well as for the Fleischhack one {R}\\sqcup {{{R}}\\text{Bohr}} . We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on {{{R}}\\text{Bohr}} is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on {R} in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.

  18. Philippine fault: A key for Philippine kinematics

    NASA Astrophysics Data System (ADS)

    Barrier, E.; Huchon, P.; Aurelio, M.

    1991-01-01

    On the basis of new geologic data and a kinematic analysis, we establish a simple kinematic model in which the motion between the Philippine Sea plate and Eurasia is distributed on two boundaries: the Philippine Trench and the Philippine fault. This model predicts a velocity of 2 to 2.5 cm/yr along the fault. Geologic data from the Visayas provide an age of 2 to 4 Ma for the fault, an age in good agreement with the date of the beginning of subduction in the Philippine Trench. The origin of the Philippine fault would thus be the flip of subduction from west to east after the locking of convergence to the west by the collision of the Philippine mobile belt with the Eurasian margin.

  19. Kinematics of swimming garter snakes (Thamnophis sirtalis).

    PubMed

    Munk, Yonatan

    2008-06-01

    We investigate the kinematics of swimming garter snakes (Thamnophis sirtalis) using a novel nonlinear regression-based digitization method to establish quantitative statistical support for non-constant wavelengths in the undulatory pattern exhibited by swimming snakes. We find that in swimming snakes, the growth of the amplitude of the propulsive wave head-to-tail is strongly correlated (p < 0.005) with the head-to-tail growth in the wavelength. We investigate correlations between kinematic parameters and steady swimming speed, and find a very strong positive correlation between swimming speed and undulation frequency. We furthermore find a statistically well-supported positive correlation between swimming speed and both the initial amplitude of the propulsive wave at the head and the degree of amplitude growth from head to tail.

  20. Surface growth kinematics via local curve evolution.

    PubMed

    Moulton, Derek E; Goriely, Alain

    2014-01-01

    A mathematical framework is developed to model the kinematics of surface growth for objects that can be generated by evolving a curve in space, such as seashells and horns. Growth is dictated by a growth velocity vector field defined at every point on a generating curve. A local orthonormal basis is attached to each point of the generating curve and the velocity field is given in terms of the local coordinate directions, leading to a fully local and elegant mathematical structure. Several examples of increasing complexity are provided, and we demonstrate how biologically relevant structures such as logarithmic shells and horns emerge as analytical solutions of the kinematics equations with a small number of parameters that can be linked to the underlying growth process. Direct access to cell tracks and local orientation enables for connections to be made to the underlying growth process.

  1. Plasma electron hole kinematics. I. Momentum conservation

    SciTech Connect

    Hutchinson, I. H.; Zhou, C.

    2016-08-15

    We analyse the kinematic properties of a plasma electron hole: a non-linear self-sustained localized positive electric potential perturbation, trapping electrons, which behaves as a coherent entity. When a hole accelerates or grows in depth, ion and electron plasma momentum is changed both within the hole and outside, by an energization process we call jetting. We present a comprehensive analytic calculation of the momentum changes of an isolated general one-dimensional hole. The conservation of the total momentum gives the hole's kinematics, determining its velocity evolution. Our results explain many features of the behavior of hole speed observed in numerical simulations, including self-acceleration at formation, and hole pushing and trapping by ion streams.

  2. Galactic warp kinematics: model vs. observations

    NASA Astrophysics Data System (ADS)

    Abedi, H.; Figueras, F.; Aguilar, L.; Mateu, C.; Romero-Gómez, M.; López-Corredoira, M.; Garzón, F.

    2015-05-01

    We test the capability of several methods to identify and characterise the warping of the stellar disc of our Galaxy in the Gaia era. We have developed a first kinematic model for the galactic warp and derived the analytical expressions for the force field of a warped Miyamoto- Nagai potential. We have generated realistic mock catalogues of OB, A and red clump stars within the warped galactic disc, where a very complete model of Gaia observables and their expected errors are included. We use the family of Great Circle Cell Counts (GC3) methods and LonKin methods for detecting and characterising the galactic warp. As a complementary work, we look into one of the existing proper motion catalogue namely the UCAC4, and look for the kinematic signature of the warp. We demonstrate the necessity of correcting for a possible residual rotation of the Hipparcos celestial reference frame with respect to the extra galactic inertial one.

  3. SKIRT: Stellar Kinematics Including Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Dejonghe, Herwig; Davies, Jonathan

    2011-09-01

    SKIRT is a radiative transfer code based on the Monte Carlo technique. The name SKIRT, acronym for Stellar Kinematics Including Radiative Transfer, reflects the original motivation for its creation: it has been developed to study the effects of dust absorption and scattering on the observed kinematics of dusty galaxies. In a second stage, the SKIRT code was extended with a module to self-consistently calculate the dust emission spectrum under the assumption of local thermal equilibrium. This LTE version of SKIRT has been used to model the dust extinction and emission of various types of galaxies, as well as circumstellar discs and clumpy tori around active galactic nuclei. A new, extended version of SKIRT code can perform efficient 3D radiative transfer calculations including a self-consistent calculation of the dust temperature distribution and the associated FIR/submm emission with a full incorporation of the emission of transiently heated grains and PAH molecules.

  4. The kinematic advantage of electric cars

    NASA Astrophysics Data System (ADS)

    Meyn, Jan-Peter

    2015-11-01

    Acceleration of a common car with with a turbocharged diesel engine is compared to the same type with an electric motor in terms of kinematics. Starting from a state of rest, the electric car reaches a distant spot earlier than the diesel car, even though the latter has a better specification for engine power and average acceleration from 0 to 100 km h-1. A three phase model of acceleration as a function of time fits the data of the electric car accurately. The first phase is a quadratic growth of acceleration in time. It is shown that the tenfold higher coefficient for the first phase accounts for most of the kinematic advantage of the electric car.

  5. Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury

    DTIC Science & Technology

    2014-10-01

    AWARD NUMBER: W81XWH-12-1-0587 TITLE: Directing Spinal Cord Plasticity: The Impact of Stretch ...Directing Spinal Cord Plasticity: The Impact of Stretch Therapy on Functional Recovery after Spinal Cord Injury. 5b. GRANT NUMBER W81XWH-12-1...ABSTRACT Essentially all spinal cord injured patients receive stretching therapies beginning within the first few weeks post-injury. Despite

  6. Immature Spinal Locomotor Output in Children with Cerebral Palsy

    PubMed Central

    Cappellini, Germana; Ivanenko, Yury P.; Martino, Giovanni; MacLellan, Michael J.; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco

    2016-01-01

    Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2–12 years) and 33 typically developing (TD) children (1–12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior. PMID:27826251

  7. Kinematics and dynamics of the Uranian rings

    NASA Technical Reports Server (NTRS)

    French, Richard G.

    1987-01-01

    The self-gravity model of apse alignment was tested by comparing its predictions about structure within the epsilon ring with an extensive set of observed occultation profiles covering a wide range of ring longitudes. The self-gravity model as presently constructed is inconsistent with the observations. The Lindblad resonance survey and Shepherd satellite ring perturbation are discussed. The kinematic model of the Uranian ring orbit was enhanced to accommodate Voyager observations as well as ground-based occultation observations.

  8. Efficient Kinematic Computations For 7-DOF Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Long, Mark K.; Kreutz-Delgado, Kenneth

    1994-01-01

    Efficient algorithms for forward kinematic mappings of seven-degree-of-freedom (7-DOF) robotic manipulator having revolute joints developed on basis of representation of redundant DOF in terms of parameter called "arm angle." Continuing effort to exploit redundancy in manipulator according to concept of basic and additional tasks. Concept also discussed in "Configuration-Control Scheme Copes With Singularities" (NPO-18556) and "Increasing the Dexterity of Redundant Robots" (NPO-17801).

  9. Kinematics of Hooke universal joint robot wrists

    NASA Technical Reports Server (NTRS)

    Mckinney, William S., Jr.

    1988-01-01

    The singularity problem associated with wrist mechanisms commonly found on industrial manipulators can be alleviated by redesigning the wrist so that it functions as a three-axis gimbal system. This paper discussess the kinematics of gimbal robot wrists made of one and two Hooke universal joints. Derivations of the resolved rate motion control equations for the single and double Hooke universal joint wrists are presented using the three-axis gimbal system as a theoretical wrist model.

  10. Kinematics and dynamics of sphenisciform wings

    NASA Astrophysics Data System (ADS)

    Noca, Flavio; Crisinel, Fabien; Munier, Pierre

    2011-11-01

    Three-dimensional scans of three different species of taxidermied penguins (Aptenodytes patagonicus, Pygoscelis papua, and Spheniscus magellanicus) have been performed. A three-dimensional reproduction of an African penguin (Sphenicus demersus) wing was manufactured and tested in a hydrodynamic channel. A six-degree-of-freedom robot was programmed to perform the three dimensional kinematics, obtained from actual footage. A six-component force balance was used to retrieve the dynamics of the wing motion. Results will be presented and discussed.

  11. The Galactic kinematics of cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Ak, T.; Bilir, S.; Özdönmez, A.; Soydugan, F.; Soydugan, E.; Püsküllü, Ç.; Ak, S.; Eker, Z.

    2015-05-01

    Kinematical properties of CVs were investigated according to population types and orbital periods, using the space velocities computed from recently updated systemic velocities, proper motions and parallaxes. Reliability of collected space velocity data was refined by removing 34 systems with largest space velocity errors. The 216 CVs in the refined sample were shown to have a dispersion of 53.70±7.41 km s-1 corresponding to a mean kinematical age of 5.29±1.35 Gyr. Population types of CVs were identified using their Galactic orbital parameters. According to the population analysis, seven old thin disc, nine thick disc and one halo CV were found in the sample, indicating that 94 % of CVs in the Solar Neighbourhood belong to the thin-disc component of the Galaxy. Mean kinematical ages 3.40±1.03 and 3.90±1.28 Gyr are for the non-magnetic thin-disc CVs below and above the period gap, respectively. There is not a meaningful difference between the velocity dispersions below and above the gap. Velocity dispersions of the non-magnetic thin-disc systems below and above the gap are 24.95±3.46 and 26.60±4.18 km s-1, respectively. This result is not in agreement with the standard formation and evolution theory of CVs. The mean kinematical ages of the CV groups in various orbital period intervals increase towards shorter orbital periods. This is in agreement with the standard theory for the evolution of CVs. Rate of orbital period change was found to be dP/ dt=-1.62(±0.15)×10-5 sec yr-1.

  12. Kinematics in irregular galaxies: NGC 4449.

    NASA Astrophysics Data System (ADS)

    Valdez, M.; Rosado, M.

    1998-11-01

    A kinematical analysis of the irregular galaxy NGC 4449 is presented based on the Fabry-Perot interferometer PUMA observations. In NGC 4449 we analyse its global velocity field, HII regions population as well as the SNR population identified on radioastronomy studies. Our first results for NGC 4449 show that the optical velocity field, presents a decreasing gradient in velocity along the optical bar and an anticorrelation with respect to the velocity field of the HI halo.

  13. The kinematic component of the cosmological redshift

    NASA Astrophysics Data System (ADS)

    Chodorowski, Michał J.

    2011-05-01

    It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to solve this problem properly, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant cosmic time. We find that the resulting relation between the transported velocity and the redshift of arriving photons is not given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well-known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational one. We perform such a decomposition for arbitrary large redshifts and derive a formula for the kinematic component of the cosmological redshift, valid for any Friedman-Lemaître-Robertson-Walker (FLRW) cosmology. In particular, in a universe with Ωm= 0.24 and ΩΛ= 0.76, a quasar at a redshift 6, at the time of emission of photons reaching us today had the recession velocity v= 0.997c. This can be contrasted with v= 0.96c, had the redshift been entirely kinematic. Thus, for recession velocities of such high-redshift sources, the effect of deceleration of the early Universe clearly prevails over the effect of its relatively recent acceleration. Last but not the least, we show that the so-called proper recession velocities of galaxies, commonly used in cosmology, are in fact radial components of the galaxies' four-velocity vectors. As such, they can indeed attain superluminal values, but should not be regarded as real velocities.

  14. Efficient Kinematic Computations For 7-DOF Manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, Homayoun; Long, Mark K.; Kreutz-Delgado, Kenneth

    1994-01-01

    Efficient algorithms for forward kinematic mappings of seven-degree-of-freedom (7-DOF) robotic manipulator having revolute joints developed on basis of representation of redundant DOF in terms of parameter called "arm angle." Continuing effort to exploit redundancy in manipulator according to concept of basic and additional tasks. Concept also discussed in "Configuration-Control Scheme Copes With Singularities" (NPO-18556) and "Increasing the Dexterity of Redundant Robots" (NPO-17801).

  15. Analyzing Robotic Kinematics Via Computed Simulations

    NASA Technical Reports Server (NTRS)

    Carnahan, Timothy M.

    1992-01-01

    Computing system assists in evaluation of kinematics of conceptual robot. Displays positions and motions of robotic manipulator within work cell. Also displays interactions between robotic manipulator and other objects. Results of simulation displayed on graphical computer workstation. System includes both off-the-shelf software originally developed for automotive industry and specially developed software. Simulation system also used to design human-equivalent hand, to model optical train in infrared system, and to develop graphical interface for teleoperator simulation system.

  16. Kinematic Diversity in Rorqual Whale Feeding Mechanisms.

    PubMed

    Cade, David E; Friedlaender, Ari S; Calambokidis, John; Goldbogen, Jeremy A

    2016-10-10

    Rorqual whales exhibit an extreme lunge filter-feeding strategy characterized by acceleration to high speed and engulfment of a large volume of prey-laden water [1-4]. Although tagging studies have quantified the kinematics of lunge feeding, the timing of engulfment relative to body acceleration has been modeled conflictingly because it could never be directly measured [5-7]. The temporal coordination of these processes has a major impact on the hydrodynamics and energetics of this high-cost feeding strategy [5-9]. If engulfment and body acceleration are temporally distinct, the overall cost of this dynamic feeding event would be minimized. However, greater temporal overlap of these two phases would theoretically result in higher drag and greater energetic costs. To address this discrepancy, we used animal-borne synchronized video and 3D movement sensors to quantify the kinematics of both the skull and body during feeding events. Krill-feeding blue and humpback whales exhibited temporally distinct acceleration and engulfment phases, with humpback whales reaching maximum gape earlier than blue whales. In these whales, engulfment coincided largely with body deceleration; however, humpback whales pursuing more agile fish demonstrated highly variable coordination of skull and body kinematics in the context of complex prey-herding techniques. These data suggest that rorquals modulate the coordination of acceleration and engulfment to optimize foraging efficiency by minimizing locomotor costs and maximizing prey capture. Moreover, this newfound kinematic diversity observed among rorquals indicates that the energetic efficiency of foraging is driven both by the whale's engulfment capacity and the comparative locomotor capabilities of predator and prey. VIDEO ABSTRACT.

  17. Stellar Kinematics from Hipparcos Proper Motions

    DTIC Science & Technology

    2000-03-01

    stars, classical Cepheids , and the late-type K-M giants. Comparing the derived results, the kinematical discrepancies between each subset of stars...observational techniques, many important results for Galactic astronomy have been achieved in recent years. The present work will concentrate on investigating...Hence, the sample of O-B5 stars to be analyzed is 1,523 in total. The Hipparcos Catalogue provides observations of 223 classical Cepheids . Based on the

  18. Fracture Control for NIRSpec Kinematic Mounts

    NASA Astrophysics Data System (ADS)

    Vorel, M.; Novo, F.; Jollet, D.; Sinnema, G.; Jentsch, M.

    2014-06-01

    An ESA contribution to the JWST is the Near Infra-Red Spectrograph (NIRSpec) capable of high-resolution spectroscopy. The development of the NIRSpec was commissioned to Astrium. This contribution deals with the fracture control for the optical bench kinematic (OBK) mounts which are critical structural elements of the NIRSpec platform. A summary of the main activities is given as well as difficulties encountered throughout the process and solutions adopted.

  19. Lower extremity kinematics of athletics curve sprinting.

    PubMed

    Alt, Tobias; Heinrich, Kai; Funken, Johannes; Potthast, Wolfgang

    2015-01-01

    Curve running requires the generation of centripetal force altering the movement pattern in comparison to the straight path run. The question arises which kinematic modulations emerge while bend sprinting at high velocities. It has been suggested that during curve sprints the legs fulfil different functions. A three-dimensional motion analysis (16 high-speed cameras) was conducted to compare the segmental kinematics of the lower extremity during the stance phases of linear and curve sprints (radius: 36.5 m) of six sprinters of national competitive level. Peak joint angles substantially differed in the frontal and transversal plane whereas sagittal plane kinematics remained unchanged. During the prolonged left stance phase (left: 107.5 ms, right: 95.7 ms, straight: 104.4 ms) the maximum values of ankle eversion (left: 12.7°, right: 2.6°, straight: 6.6°), hip adduction (left: 13.8°, right: 5.5°, straight: 8.8°) and hip external rotation (left: 21.6°, right: 12.9°, straight: 16.7°) were significantly higher. The inside leg seemed to stabilise the movement in the frontal plane (eversion-adduction strategy) whereas the outside leg provided and controlled the motion in the horizontal plane (rotation strategy). These results extend the principal understanding of the effects of curve sprinting on lower extremity kinematics. This helps to increase the understanding of nonlinear human bipedal locomotion, which in turn might lead to improvements in athletic performance and injury prevention.

  20. Subdural Thoracolumbar Spine Hematoma after Spinal Anesthesia: A Rare Occurrence and Literature Review of Spinal Hematomas after Spinal Anesthesia.

    PubMed

    Maddali, Prasanthi; Walker, Blake; Fisahn, Christian; Page, Jeni; Diaz, Vicki; Zwillman, Michael E; Oskouian, Rod J; Tubbs, R Shane; Moisi, Marc

    2017-02-16

    Spinal hematomas are a rare but serious complication of spinal epidural anesthesia and are typically seen in the epidural space; however, they have been documented in the subdural space. Spinal subdural hematomas likely exist within a traumatically induced space within the dural border cell layer, rather than an anatomical subdural space. Spinal subdural hematomas present a dangerous clinical situation as they have the potential to cause significant compression of neural elements and can be easily mistaken for spinal epidural hematomas. Ultrasound can be an effective modality to diagnose subdural hematoma when no epidural blood is visualized. We have reviewed the literature and present a full literature review and a case presentation of an 82-year-old male who developed a thoracolumbar spinal subdural hematoma after spinal epidural anesthesia. Anticoagulant therapy is an important predisposing risk factor for spinal epidural hematomas and likely also predispose to spinal subdural hematomas. It is important to consider spinal subdural hematomas in addition to spinal epidural hematomas in patients who develop weakness after spinal epidural anesthesia, especially in patients who have received anticoagulation.

  1. Subdural Thoracolumbar Spine Hematoma after Spinal Anesthesia: A Rare Occurrence and Literature Review of Spinal Hematomas after Spinal Anesthesia

    PubMed Central

    Maddali, Prasanthi; Walker, Blake; Fisahn, Christian; Page, Jeni; Diaz, Vicki; Zwillman, Michael E; Oskouian, Rod J; Tubbs, R. Shane

    2017-01-01

    Spinal hematomas are a rare but serious complication of spinal epidural anesthesia and are typically seen in the epidural space; however, they have been documented in the subdural space. Spinal subdural hematomas likely exist within a traumatically induced space within the dural border cell layer, rather than an anatomical subdural space. Spinal subdural hematomas present a dangerous clinical situation as they have the potential to cause significant compression of neural elements and can be easily mistaken for spinal epidural hematomas. Ultrasound can be an effective modality to diagnose subdural hematoma when no epidural blood is visualized. We have reviewed the literature and present a full literature review and a case presentation of an 82-year-old male who developed a thoracolumbar spinal subdural hematoma after spinal epidural anesthesia. Anticoagulant therapy is an important predisposing risk factor for spinal epidural hematomas and likely also predispose to spinal subdural hematomas. It is important to consider spinal subdural hematomas in addition to spinal epidural hematomas in patients who develop weakness after spinal epidural anesthesia, especially in patients who have received anticoagulation. PMID:28357164

  2. Spine Kinematics During Prone Extension in People With and Without Low Back Pain and Among Classification-Specific Low Back Pain Subgroups.

    PubMed

    Mazzone, Brittney; Wood, Ron; Gombatto, Sara

    2016-07-01

    Study Design Cross-sectional observational design. Background Spine extension is used in physical therapy during examination and treatment for low back pain (LBP). However, kinematics during prone extension have not been examined using 3-D motion capture. Objectives The primary purpose was to determine differences in spine kinematics during prone extension between subjects with and without LBP. An exploratory analysis was conducted to examine kinematic differences among LBP subgroups. Methods Kinematics of the thoracic and lumbar spine were examined during prone extension, using optical motion capture, in 18 subjects with LBP and 17 subjects without LBP (control group). Excursion of each spinal region was calculated for the entire movement and during 25% increments of extension movement duration. Subjects with LBP were examined and assigned to subgroups using 3 different classification systems for LBP. Repeated-measures analysis-of-variance tests were used to examine effects of group (LBP, control), spine region, and increment of movement duration, and to explore effects of LBP subgroup. Results For spine kinematics, there was a significant group-by-region interaction effect (P<.05). Subjects with LBP displayed less lower lumbar extension (13.3° ± 4.9°) than control subjects (21.4° ± 9.2°). The majority of lower lumbar extension occurred during the first 50% of the motion for subjects with LBP. Subgroup-by-region interaction effects were significant for 2 of 3 LBP classification systems (P<.05). Conclusion Subjects with LBP displayed less lower lumbar extension than control subjects during prone extension. These differences should be considered when evaluating and prescribing prone extension. The interpretation of subgroup differences with prone extension kinematics is limited in the current study by the small sample size, but may need to be considered in future studies of spine kinematics. Level of Evidence Diagnosis, level 4. J Orthop Sports Phys Ther 2016

  3. Spinal cord compression in pseudohypoparathyroidism.

    PubMed

    Roberts, Timothy T; Khasnavis, Siddharth; Papaliodis, Dean N; Citone, Isabella; Carl, Allen L

    2013-12-01

    Spinal cord compression associated with pseudohypoparathyroidism (PHP) is an increasingly reported sequelae of the underlying metabolic syndrome. The association of neurologic dysfunction with PHP is not well appreciated. We believe this to be secondary to a combination of underlying congenital stenosis, manifest by short pedicles secondary to premature physeal closure, and hypertrophic ossification of the vertebral bony and ligamentous complexes. The purpose of this case report is to review the case of spinal stenosis in a child with PHP Type Ia. We are aware of only eight published reports of patients with PHP Type Ia and spinal stenosis-there are only two previously known cases of pediatric spinal stenosis secondary to PHP. This is a case report detailing the symptoms, diagnosis, interventions, complications, and ultimate outcomes of a pediatric patient undergoing spinal decompression and fusion for symptomatic stenosis secondary to PHP Type Ia. Literature search was reviewed regarding the reports of spinal stenosis and PHP, and the results are culminated and discussed. We report on a 14-year-old obese male with PHP and progressive lower extremity weakness secondary to congenital spinal stenosis. Examination revealed functional upper extremities with spastic paraplegia of bilateral lower extremities. The patient's neurologic function was cautiously monitored, but he deteriorated to a bed-bound state, preoperatively. The patient's chart was reviewed, summarized, and presented. Literature was searched using cross-reference of PHP and the terms "spinal stenosis," "myelopathy", "myelopathic," and "spinal cord compression." All relevant case reports were reviewed, and the results are discussed herein. The patient underwent decompression and instrumented fusion of T2-T11. He improved significantly with regard to lower extremity function, achieving unassisted ambulation function after extensive rehabilitation. Results from surgical decompression in previously reported

  4. Genetics Home Reference: spinal muscular atrophy

    MedlinePlus

    ... by a loss of specialized nerve cells, called motor neurons , in the spinal cord and the part ... the spinal cord ( the brainstem ). The loss of motor neurons leads to weakness and wasting ( atrophy ) of ...

  5. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome.

    PubMed

    Filli, Linard; Zörner, Björn; Weinmann, Oliver; Schwab, Martin E

    2011-08-01

    Cervical incomplete spinal cord injuries often lead to severe and persistent impairments of sensorimotor functions and are clinically the most frequent type of spinal cord injury. Understanding the motor impairments and the possible functional recovery of upper and lower extremities is of great importance. Animal models investigating motor dysfunction following cervical spinal cord injury are rare. We analysed the differential spontaneous recovery of fore- and hindlimb locomotion by detailed kinematic analysis in adult rats with unilateral C4/C5 hemisection, a lesion that leads to the Brown-Séquard syndrome in humans. The results showed disproportionately better performance of hindlimb compared with forelimb locomotion; hindlimb locomotion showed substantial recovery, whereas the ipsilesional forelimb remained in a very poor functional state. Such a differential motor recovery pattern is also known to occur in monkeys and in humans after similar spinal cord lesions. On the lesioned side, cortico-, rubro-, vestibulo- and reticulospinal tracts and the important modulatory serotonergic, dopaminergic and noradrenergic fibre systems were interrupted by the lesion. In an attempt to facilitate locomotion, different monoaminergic agonists were injected intrathecally. Injections of specific serotonergic and noradrenergic agonists in the chronic phase after the spinal cord lesion revealed remarkable, although mostly functionally negative, modulations of particular parameters of hindlimb locomotion. In contrast, forelimb locomotion was mostly unresponsive to these agonists. These results, therefore, show fundamental differences between fore- and hindlimb spinal motor circuitries and their functional dependence on remaining descending inputs and exogenous spinal excitation. Understanding these differences may help to develop future therapeutic strategies to improve upper and lower limb function in patients with incomplete cervical spinal cord injuries.

  6. Assessment of stability during gait in patients with spinal deformity-A preliminary analysis using the dynamic stability margin.

    PubMed

    Simon, Anne-Laure; Lugade, Vipul; Bernhardt, Kathie; Larson, A Noelle; Kaufman, Kenton

    2017-06-01

    Daily living activities are dynamic, requiring spinal motion through space. Current assessment of spinal deformities is based on static measurements from full-spine standing radiographs. Tools to assess dynamic stability during gait might be useful to enhance the standard evaluation. The aim of this study was to evaluate gait dynamic imbalance in patients with spinal deformity using the dynamic stability margin (DSM). Twelve normal subjects and 17 patients with spinal deformity were prospectively recruited. A kinematic 3D gait analysis was performed for the control group (CG) and the spinal deformity group (SDG). The DSM (distance between the extrapolated center of mass and the base of support) and time-distance parameters were calculated for the right and left side during gait. The relationship between DSM and step length was assessed using three variables: gait stability, symmetry, and consistency. Variables' accuracy was validated by a discriminant analysis. Patients with spinal deformity exhibited gait instability according to the DSM (0.25m versus 0.31m) with decreased velocity (1.1ms(-1) versus 1.3ms(-1)) and decreased step length (0.32m versus 0.38m). According to the discriminant analysis, gait stability was the more accurate variable (area under the curve AUC=0.98) followed by gait symmetry and consistency. However, gait consistency showed 100% of specificity, sensitivity, and accuracy of precision. The DSM showed that patients with spinal malalignment exhibit decreased gait stability, symmetry, and consistency besides gait time-distance parameter changes. Additional work is required to determine how to apply the DSM for preoperative and postoperative spinal deformity management. Copyright © 2017. Published by Elsevier B.V.

  7. New Kinematical Constraints on Cosmic Acceleration

    SciTech Connect

    Rapetti, David; Allen, Steve W.; Amin, Mustafa A.; Blandford, Roger; /-KIPAC, Menlo Park

    2007-05-25

    We present and employ a new kinematical approach to ''dark energy'' studies. We construct models in terms of the dimensionless second and third derivatives of the scale factor a(t) with respect to cosmic time t, namely the present-day value of the deceleration parameter q{sub 0} and the cosmic jerk parameter, j(t). An elegant feature of this parameterization is that all {Lambda}CDM models have j(t)=1 (constant), which facilitates simple tests for departures from the {Lambda}CDM paradigm. Applying our model to redshift-independent distance measurements, from type Ia supernovae and X-ray cluster gas mass fraction measurements, we obtain clear statistical evidence for a late time transition from a decelerating to an accelerating phase. For a flat model with constant jerk, j(t)=j, we measure q{sub 0}=-0.81 {+-} 0.14 and j=2.16 +0.81 -0.75, results that are consistent with {Lambda}CDM at about the 1{sigma} confidence level. In comparison to dynamical analyses, the kinematical approach uses a different model set and employs a minimum of prior information, being independent of any particular gravity theory. The results obtained with this new approach therefore provide important additional information and we argue that both kinematical and dynamical techniques should be employed in future dark energy studies, where possible.

  8. Morphologic and kinematic characteristics of elite sprinters.

    PubMed

    Coh, M; Milanović, D; Kampmiller, T

    2001-12-01

    The purpose of the study was to ascertain the basic morphologic and kinematic characteristics of elite sprinters. The sample included 24 sprinters, with times over a 100 m distance between 10.21 s and 11.19 s. Morphologic characteristics of the sprinters were measured with a test battery of 17 measures, obtained according to the methodology prescribed by the International Biologic Programme (IBP). The kinematic variables were obtained from a flying start 20 m run and a 20 m run with a low start, with the technology of a contact carpet (ERGO TESTER-Bosco). Stride frequency and length, duration of contact and flight phases were registered. Time parameters were measured with a system of infrared photocells (BROWER Timing System). T-test showed that elite sprinters do not differ significantly in morphologic characteristics (p > 0.05) from the 100 m results point of view. However, statistically significant differences were obtained in starting acceleration and maximal velocity. The most important kinematic parameters for generating differences between the elite sprinters are contact time and stride frequency.

  9. Milky Way Kinematics from RAVE Data

    NASA Astrophysics Data System (ADS)

    Pasetto, S.; Grebel, E. K.; RAVE Co.

    2012-08-01

    We present a method to derive kinematic parameters for the Galactic thick and thin disks of the Milky Way (MW) based on the Radial Velocity Experiment (RAVE Steinmetz et al. 2006). We introduce selection criteria in order to clean the observed radial velocities from the Galactic large scale effects and to take into account the partial sky coverage of RAVE. The data are disentangled from a mixture of thin and thick disk stars as explained in a forthcoming paper (Pasetto et al. 2012) on the basis of pure kinematics arguments and supplied with photometric distances and proper motions. We deduce the components of the Solar motion relative to the Local Standard of Rest (LSR) in the radial and vertical directions as well as the components of the velocity dispersion tensors for the two MW component on the basis of pure kinematics arguments. The selected sample is a limited subsample from the RAVE catalogue roughly extending 500 pc above and below the Galactic plane. This sample tracks the velocity dispersion trend in radial direction to 1 kpc within and 500pc outside the Solar radius in the Galactic reference system.

  10. Dynamic control of kinematically redundant manipulators

    NASA Astrophysics Data System (ADS)

    Lin, Zhengcheng

    1993-03-01

    A robot manipulator is said to be kinematically redundant when it has more degrees of freedom than are necessary to accomplish a particular task. Useful control strategies are designed for kinematically redundant manipulators in order to enhance their performance. Following the impedance control approach, the problem of minimizing redundant manipulator collision impacts is addressed. The configuration control approach is used to reduce impulsive forces, while a simplified impedance control scheme is formulated to minimize rebound effects. A new Cartesian control strategy for redundant flexible-joint manipulators is proposed. The main idea in this hybrid scheme is to control not only the manipulator's end-effector but also its links, so as to achieve specified positions and velocities for the end-effector and the links. Finally, a new application of kinematically redundant manipulators is proposed: using redundancy resolution to compensate for joint flexibility. This redundancy resolution scheme is incorporated in a control strategy for redundant flexible-joint manipulators. The problem of possible algorithmic singularities is considered, and a scheme is suggested which makes the controller robust with respect to such singularities.

  11. Kinematic fundamentals of a biomechatronic laparoscopy system.

    PubMed

    Ortiz Simón, J L; Minor Martínez, A; Ordorica Flores, R; Limón Aguilar, J L; Suaste, E

    2011-09-01

    Optical assistance in laparoscopic surgery is essential for an optimal procedure. Unlike conventional surgery, it requires new systems to reduce spatial location time, navigation and cleanliness without compromising surgical quality. This article shows the kinematic analysis of a new bio-mechatronic design to assist laparoscopic visual perspective in real time, either during training or in surgery. The bio-mechatronic system is analyzed in order to get the kinematic model of the system. The set of kinematic equations for the bio-mechatronic system are presented here. The system has been tested functionally in several surgical procedures successfully. The analysis shows the workspace under postural conditions of navigation in real time, where it is possible to get visually self assistance during training or specific surgeries. The new bio-mechatronic system has been tested in training with inanimate and biological models, in veterinary surgery and pediatrics, with the appropriate consent and respecting the Treaty of Helsinki. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Scapula Kinematics of Youth Baseball Players.

    PubMed

    Oliver, Gretchen; Weimar, Wendi

    2015-12-22

    Literature has revealed the importance of quantifying resting scapular posture in overhead athletes as well as quantifying scapular kinematics during dynamic movement. Prior to this project much of the attention in throwing research had been focused on the position of the humerus without description of the positioning of the scapula. Therefore, it was the purpose of this study to present scapular kinematics during pitching in youth baseball players. Twenty-five youth baseball players (age 11.3 + 1.0 years; body height 152.4 + 9.0 cm; body mass 47.5 + 11.3 kg), with no history of injury, participated in the study. Scapular kinematics at the events of maximum humeral external rotation (MER) and maximum humeral internal rotation (MIR) during the pitching motion were assessed three-dimensionally while pitching fastballs for strikes. Results revealed that at the event of MER, the scapula was in a position of retraction, upward rotation and a posterior tilt. While at the event of MIR, the scapula was protracted, upward rotated and tilted anteriorly.

  13. Scapula Kinematics of Youth Baseball Players

    PubMed Central

    Oliver, Gretchen; Weimar, Wendi

    2015-01-01

    Literature has revealed the importance of quantifying resting scapular posture in overhead athletes as well as quantifying scapular kinematics during dynamic movement. Prior to this project much of the attention in throwing research had been focused on the position of the humerus without description of the positioning of the scapula. Therefore, it was the purpose of this study to present scapular kinematics during pitching in youth baseball players. Twenty-five youth baseball players (age 11.3 + 1.0 years; body height 152.4 + 9.0 cm; body mass 47.5 + 11.3 kg), with no history of injury, participated in the study. Scapular kinematics at the events of maximum humeral external rotation (MER) and maximum humeral internal rotation (MIR) during the pitching motion were assessed three-dimensionally while pitching fastballs for strikes. Results revealed that at the event of MER, the scapula was in a position of retraction, upward rotation and a posterior tilt. While at the event of MIR, the scapula was protracted, upward rotated and tilted anteriorly. PMID:26839605

  14. Rehabilitation in spinal infection diseases

    PubMed Central

    Nas, Kemal; Karakoç, Mehmet; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-01

    Spinal cord infections were the diseases defined by Hypocrite yet the absence of modern medicine and there was not a real protocol in rehabilitation although there were many aspects in surgical treatment options. The patients whether surgically or conservatively treated had a lot of neurological, motor, and sensory disturbances. Our clinic has quite experience from our previous researchs. Unfortunately, serious spinal cord infections are still present in our region. In these patients the basic rehabilitation approaches during early, pre-operation, post-operation period and in the home environment will provide significant contributions to improve the patients’ sensory and motor skills, develop the balance and proriocaption, increase the independence of patients in daily living activities and minimize the assistance of other people. There is limited information in the literature related with the nature of the rehabilitation programmes to be applied for patients with spinal infections. The aim of this review is to share our clinic experience and summarise the publications about spinal infection rehabilitation. There are very few studies about the rehabilitation of spinal infections. There are still not enough studies about planning and performing rehabilitation programs in these patients. Therefore, a comprehensive rehabilitation programme during the hospitalisation and home periods is emphasised in order to provide optimal management and prevent further disability. PMID:25621205

  15. [Hydromyelia associated with spinal lipoma].

    PubMed

    Wada, K; Morimoto, K; Takemoto, O

    1998-11-01

    We studied morphological changes of hydromyelia complicated with spinal lipoma of infants who were untethered. Since the MRI was introduced, early detection of spinal lipoma with lumbosacral skin abnormalities has become possible. We have experienced 44 surgical cases of spinal lipoma. Out of 36 such cases, 25 (69.4%) had hydromyelia, and hydromyelia of 9 patients was found to be of the terminal ventricle type. As many as 36% of spinal lipoma patients with hydromyelia concurrently had terminal-type hydromyelia, which was considered to fall under a specific category of congenital hydromyelia. At the stage of embryogenesis of the spinal cord, the caudal cell mass undergoes vacuolization, canalization and retrogressive differentiation, and during this process, the terminal ventricle with ependymallined cells becomes morbid. Though the morphological changes of hydromyelia after surgery as untethering were varied, hydromyelia of 9 patients became smaller after untethering, and hydromyelia of 8 expanded but attenuated afterwards, totaling 17 (68.0%). However, 5 had an expanding tendency and 3 did not show any morphological changes during the follow-up period (20.6-26.9 months) by MRI.

  16. Rehabilitation in spinal infection diseases.

    PubMed

    Nas, Kemal; Karakoç, Mehmet; Aydın, Abdulkadir; Öneş, Kadriye

    2015-01-18

    Spinal cord infections were the diseases defined by Hypocrite yet the absence of modern medicine and there was not a real protocol in rehabilitation although there were many aspects in surgical treatment options. The patients whether surgically or conservatively treated had a lot of neurological, motor, and sensory disturbances. Our clinic has quite experience from our previous researchs. Unfortunately, serious spinal cord infections are still present in our region. In these patients the basic rehabilitation approaches during early, pre-operation, post-operation period and in the home environment will provide significant contributions to improve the patients' sensory and motor skills, develop the balance and proriocaption, increase the independence of patients in daily living activities and minimize the assistance of other people. There is limited information in the literature related with the nature of the rehabilitation programmes to be applied for patients with spinal infections. The aim of this review is to share our clinic experience and summarise the publications about spinal infection rehabilitation. There are very few studies about the rehabilitation of spinal infections. There are still not enough studies about planning and performing rehabilitation programs in these patients. Therefore, a comprehensive rehabilitation programme during the hospitalisation and home periods is emphasised in order to provide optimal management and prevent further disability.

  17. Corrective responses to loss of ground support during walking. II. Comparison of intact and chronic spinal cats.

    PubMed

    Hiebert, G W; Gorassini, M A; Jiang, W; Prochazka, A; Pearson, K G

    1994-02-01

    1. The preceding study described a corrective response in cats when one hind leg steps into a hole. In this investigation we examine the extent to which this behavior is organized at the spinal level by comparing the responses elicited in intact and chronic spinal cats. 2. Adult cats were trained to step bipedally with their hind legs on a treadmill. After training, the responses to stepping into a hole cut in the treadmill belt were monitored with a video recorder and by recording electromyograms from muscles in both hind legs. The responses to stepping into the hole were also recorded in chronic spinal cats that had recovered the ability to step with their hind legs a few weeks after spinalization. 3. The behavioral responses in the two groups of animals differed in two respects. First, the latency of the onset of the flexion movement to remove the foot from the hole was shorter in intact animals (70-150 ms in intact vs. 130-350 ms in spinal animals). Second, the flexion movement in the intact animals was stronger. The exaggerated flexion movement in intact animals lifted the paw well clear of the hole and allowed support to be regained on the treadmill belt. The weaker flexion movement in spinal animals was usually insufficient to lift the paw completely from the hole. 4. Differences in the motor patterns recorded from flexor muscles during the corrective response in intact and spinal animals correspond with the differences in the kinematics. First, the onset of flexor activity after the foot entered the hole was delayed by approximately 100 ms in spinal animals relative to intact animals. Second, in intact animals the magnitudes of flexor bursts were increased relative to the flexor bursts associated with the swing phase during stepping, whereas in spinal animals flexor bursts during the corrective response resembled those occurring during swing. 5. Similarities in the duration and the timing of bursts in different flexor muscles in intact and spinal animals

  18. Improved motor performance in chronic spinal cord injury following upper-limb robotic training

    PubMed Central

    Cortes, Mar; Elder, Jessica; Rykman, Avrielle; Murray, Lynda; Avedissian, Manuel; Stampas, Argyrios; Thickbroom, Gary W.; Pascual-Leone, Alvaro; Krebs, Hermano Igo; Valls-Sole, Josep; Edwards, Dylan J.

    2015-01-01

    BACKGROUND Recovering upper-limb motor function has important implications for improving independence of patients with tetraplegia after traumatic spinal cord injury (SCI). OBJECTIVE To evaluate the feasibility, safety and effectiveness of robotic-assisted training of upper limb in a chronic SCI population. METHODS A total of 10 chronic tetraplegic SCI patients (C4 to C6 level of injury, American Spinal Injury Association Impairment Scale, A to D) participated in a 6-week wrist-robot training protocol (1 hour/day 3 times/week). The following outcome measures were recorded at baseline and after the robotic training: a) motor performance, assessed by robot-measured kinematics, b) corticospinal excitability measured by transcranial magnetic stimulation (TMS), and c) changes in clinical scales: motor strength (Upper extremity motor score), pain level (Visual Analog Scale) and spasticity (Modified Ashworth scale). RESULTS No adverse effects were observed during or after the robotic training. Statistically significant improvements were found in motor performance kinematics: aim (pre 1.17 ± 0.11 radians, post 1.03 ± 0.08 radians, p = 0.03) and smoothness of movement (pre 0.26 ± 0.03, post 0.31 ± 0.02, p = 0.03). These changes were not accompanied by changes in upper-extremity muscle strength or corticospinal excitability. No changes in pain or spasticity were found. CONCLUSIONS Robotic-assisted training of the upper limb over six weeks is a feasible and safe intervention that can enhance movement kinematics without negatively affecting pain or spasticity in chronic SCI. In addition, robot-assisted devices are an excellent tool to quantify motor performance (kinematics) and can be used to sensitively measure changes after a given rehabilitative intervention. PMID:23949034

  19. Improved motor performance in chronic spinal cord injury following upper-limb robotic training.

    PubMed

    Cortes, Mar; Elder, Jessica; Rykman, Avrielle; Murray, Lynda; Avedissian, Manuel; Stampas, Argyrios; Thickbroom, Gary W; Pascual-Leone, Alvaro; Krebs, Hermano Igo; Valls-Sole, Josep; Edwards, Dylan J

    2013-01-01

    Recovering upper-limb motor function has important implications for improving independence of patients with tetraplegia after traumatic spinal cord injury (SCI). To evaluate the feasibility, safety and effectiveness of robotic-assisted training of upper limb in a chronic SCI population. A total of 10 chronic tetraplegic SCI patients (C4 to C6 level of injury, American Spinal Injury Association Impairment Scale, A to D) participated in a 6-week wrist-robot training protocol (1 hour/day 3 times/week). The following outcome measures were recorded at baseline and after the robotic training: a) motor performance, assessed by robot-measured kinematics, b) corticospinal excitability measured by transcranial magnetic stimulation (TMS), and c) changes in clinical scales: motor strength (Upper extremity motor score), pain level (Visual Analog Scale) and spasticity (Modified Ashworth scale). No adverse effects were observed during or after the robotic training. Statistically significant improvements were found in motor performance kinematics: aim (pre 1.17 ± 0.11 raduans, post 1.03 ± 0.08 raduans, p = 0.03) and smoothness of movement (pre 0.26 ± 0.03, post 0.31 ± 0.02, p = 0.03). These changes were not accompanied by changes in upper-extremity muscle strength or corticospinal excitability. No changes in pain or spasticity were found. Robotic-assisted training of the upper limb over six weeks is a feasible and safe intervention that can enhance movement kinematics without negatively affecting pain or spasticity in chronic SCI. In addition, robot-assisted devices are an excellent tool to quantify motor performance (kinematics) and can be used to sensitively measure changes after a given rehabilitative intervention.

  20. Computational tool for comparison of kinematic mechanisms and commonly used kinematic models

    SciTech Connect

    Hollerbach, K.; Hollister, A.M.; Van Vorhis, R.L.

    1997-03-01

    Accurate, reliable, and reproducible methods to measure the movements of human joints have been elusive. Currently, three-dimensional recording methods are used to track the motion of one segment relative to another as the joint moves. Six parameters describe the moving segment`s location and orientation relative to the reference segment: three translations (x, y, and z) and three rotations (yaw, pitch and roll) in the reference frame. The raw data can be difficult to interpret. For this reason, several methods have been developed to measure the motion of human joints and to describe the resulting data. For example, instant helical axes or screw deviation axes (Kinzell et al., 1972), the Joint Coordinate System of Grood and Suntay (1983), and the Euler angle method have been used to describe the movements of bones relative to each other. None of these methods takes into account the physical kinematic mechanism producing the joint motion. More recently, Lupichuk (1995) has developed an algorithm to find, for an arbitrary revolute, the axis` position and orientation in three- dimensional space. Each of these methods has advantages and disadvantages in analyzing joint kinematics. The authors have developed software to provide a means of comparing these methods for arbitrary, single degree of freedom, kinematic mechanisms. Our objective is to demonstrate the software and to show how it can be used to compare the results from the different kinematic models as they are applied to specific kinematic mechanisms.

  1. Pelvis and torso kinematics and their relationship to shoulder kinematics in high-school baseball pitchers.

    PubMed

    Oliver, Gretchen D; Keeley, David W

    2010-12-01

    It was the purpose of our study to examine the kinematics of the pelvis and torso and determine their relationship to the kinematics of the shoulder in high-school baseball pitchers. A single group, repeated-measures design was used to collect pelvis, torso, and shoulder kinematics throughout the pitching motion. Subjects threw a series of maximal effort fastballs to a catcher located the regulation distance (18.44m) from the pitching mound, and those data from the fastest pitch passing through the strike zone were analyzed. After test trials, kinematic data were analyzed using a series of descriptive statistics to identify outliers and determine the nature of the distribution before testing for the presence of relationships between the various parameters. Results indicated that for several parameters, the actions at and about the shoulder are strongly related to the actions of the pelvis and torso throughout the pitching motion. However, although pelvis and torso kinematics throughout the pitching motion were inversely related to both shoulder elevation and the plane of shoulder elevation, only the rate of axial torso rotation was significantly related to these shoulder parameters. More importantly, the rate of axial torso rotation is significantly related to these shoulder parameters in a way that may help explain the high rate of shoulder injury in high-school pitchers. Therefore, strength training should focus on developing a strong stable core including the gluteal musculature in an attempt to control the rate of torso rotation during the pitch.

  2. Developmental changes in head movement kinematics during swimming in Xenopus laevis tadpoles.

    PubMed

    Hänzi, Sara; Straka, Hans

    2017-01-15

    During the post-embryonic developmental growth of animals, a number of physiological parameters such as locomotor performance, dynamics and behavioural repertoire are adjusted to match the requirements determined by changes in body size, proportions and shape. Moreover, changes in movement parameters also cause changes in the dynamics of self-generated sensory stimuli, to which motion-detecting sensory systems have to adapt. Here, we examined head movements and swimming kinematics of Xenopus laevis tadpoles with a body length of 10-45 mm (developmental stage 46-54) and compared these parameters with fictive swimming, recorded as ventral root activity in semi-intact in vitro preparations. Head movement kinematics was extracted from high-speed video recordings of freely swimming tadpoles. Analysis of these locomotor episodes indicated that the swimming frequency decreased with development, along with the angular velocity and acceleration of the head, which represent self-generated vestibular stimuli. In contrast, neither head oscillation amplitude nor forward velocity changed with development despite the ∼3-fold increase in body size. The comparison between free and fictive locomotor dynamics revealed very similar swimming frequencies for similarly sized animals, including a comparable developmental decrease of the swimming frequency. Body morphology and the motor output rhythm of the spinal central pattern generator therefore develop concurrently. This study thus describes development-specific naturalistic head motion profiles, which form the basis for more natural stimuli in future studies probing the vestibular system. © 2017. Published by The Company of Biologists Ltd.

  3. Acute effects of Dry Immersion on kinematic characteristics of postural corrective responses

    NASA Astrophysics Data System (ADS)

    Sayenko, D. G.; Miller, T. F.; Melnik, K. A.; Netreba, A. I.; Khusnutdinova, D. R.; Kitov, V. V.; Tomilovskaya, E. S.; Reschke, M. F.; Gerasimenko, Y. P.; Kozlovskaya, I. B.

    2016-04-01

    Impairments in balance control are inevitable following exposure to microgravity. However, the role of particular sensory system in postural disorders at different stages of the exposure to microgravity still remains unknown. We used a method called Dry Immersion (DI), as a ground-based model of microgravity, to elucidate the effects of 6-h of load-related afferent inputs on kinematic characteristics of postural corrective responses evoked by pushes to the chest of different intensities during upright standing. The structure of postural corrective responses was altered following exposure to DI, which was manifested by: (1) an increase of the ankle and knee flexion during perturbations of medium intensity, (2) the lack of the compensatory hip extension, as well as diminished knee and ankle flexion with a further increase of the perturbation intensity to submaximal level. We suggest that the lack of weight-bearing increases the reactivity of the balance control system, whereas the ability to scale the responses proportionally to the perturbation intensity decreases. Disrupted neuromuscular coordination of postural corrective responses following DI can be attributed to adaptive neural modifications on the spinal and cortical levels. The present study provides evidence that even a short-term lack of load-related afferent inputs alters kinematic patterns of postural corrective responses, and can result in decreased balance control. Because vestibular input is not primarily affected during the DI exposure, our results indicate that activity and the state of the load-related afferents play critical roles in balance control following real or simulated microgravity.

  4. Recurrence of spinal schwannoma: Is it preventable?

    PubMed Central

    Senapati, Satya B.; Mishra, Sudhansu S.; Dhir, Manmath K.; Patnaik, Ashis; Panigrahi, Souvagya

    2016-01-01

    Spinal schwannomas account for about 25% of primary intradural spinal cord tumors in adult. The prognosis for spinal schwannomas is excellent in most cases. Complete resection is curative. However following subtotal removal, recurrence develops after several years. We describe a case of recurrent spinal schwannoma who had been operated twice before for same disease. The possible cause of recurrence and difficulties in reoperation are discussed. PMID:27695564

  5. Gait recovery following spinal cord injury in mice: Limited effect of treadmill training

    PubMed Central

    Rank, Michelle M.; Flynn, Jamie R.; Morgan, David L.; Callister, Robin; Callister, Robert J.; Galea, Mary P.

    2016-01-01

    Background Several studies in rodents with complete spinal cord transections have demonstrated that treadmill training improves stepping movements. However, results from studies in incomplete spinal cord injured animals have been conflicting and questions regarding the training dosage after injury remain unresolved. Objectives To assess the effects of treadmill-training regimen (20 minutes daily, 5 days a week) for 3, 6 or 9 weeks on the recovery of locomotion in hemisected SCI mice. Methods A randomized and blinded controlled experimental trial used a mouse model of incomplete spinal cord injury (SCI). After a left hemisection at T10, adult male mice were randomized to trained or untrained groups. The trained group commenced treadmill training one week after surgery and continued for 3, 6 or 9 weeks. Quantitative kinematic gait analysis was used to assess the spatiotemporal characteristics of the left hindlimb prior to injury and at 1, 4, 7 and 10 weeks post-injury. Results One week after injury there was no movement of the left hindlimb and some animals dragged their foot. Treadmill training led to significant improvements in step duration, but had limited effect on the hindlimb movement pattern. Locomotor improvements in trained animals were most evident at the hip and knee joints whereas recovery of ankle movement was limited, even after 9 weeks of treadmill training. Conclusion These results demonstrate that treadmill training may lead to only modest improvement in recovery of hindlimb movement after incomplete spinal cord injury in mice. PMID:26781526

  6. Gait recovery following spinal cord injury in mice: Limited effect of treadmill training.

    PubMed

    Battistuzzo, Camila R; Rank, Michelle M; Flynn, Jamie R; Morgan, David L; Callister, Robin; Callister, Robert J; Galea, Mary P

    2016-05-01

    Several studies in rodents with complete spinal cord transections have demonstrated that treadmill training improves stepping movements. However, results from studies in incomplete spinal cord injured animals have been conflicting and questions regarding the training dosage after injury remain unresolved. To assess the effects of treadmill-training regimen (20 minutes daily, 5 days a week) for 3, 6 or 9 weeks on the recovery of locomotion in hemisected SCI mice. A randomized and blinded controlled experimental trial used a mouse model of incomplete spinal cord injury (SCI). After a left hemisection at T10, adult male mice were randomized to trained or untrained groups. The trained group commenced treadmill training one week after surgery and continued for 3, 6 or 9 weeks. Quantitative kinematic gait analysis was used to assess the spatiotemporal characteristics of the left hindlimb prior to injury and at 1, 4, 7 and 10 weeks post-injury. One week after injury there was no movement of the left hindlimb and some animals dragged their foot. Treadmill training led to significant improvements in step duration, but had limited effect on the hindlimb movement pattern. Locomotor improvements in trained animals were most evident at the hip and knee joints whereas recovery of ankle movement was limited, even after 9 weeks of treadmill training. These results demonstrate that treadmill training may lead to only modest improvement in recovery of hindlimb movement after incomplete spinal cord injury in mice.

  7. Adaptive muscle plasticity of a remaining agonist following denervation of its close synergists in a model of complete spinal cord injury.

    PubMed

    Dambreville, Charline; Charest, Jérémie; Thibaudier, Yann; Hurteau, Marie-France; Kuczynski, Victoria; Grenier, Guillaume; Frigon, Alain

    2016-09-01

    Complete spinal cord injury (SCI) alters the contractile properties of skeletal muscle, and although exercise can induce positive changes, it is unclear whether the remaining motor system can produce adaptive muscle plasticity in response to a subsequent peripheral nerve injury. To address this, the nerve supplying the lateral gastrocnemius (LG) and soleus muscles was sectioned unilaterally in four cats that had recovered hindlimb locomotion after spinal transection. In these spinal cats, kinematics and electromyography (EMG) were collected before and for 8 wk after denervation. Muscle histology was performed on LG and medial gastrocnemius (MG) bilaterally in four spinal and four intact cats. In spinal cats, cycle duration for the hindlimb ipsilateral or contralateral to the denervation could be significantly increased or decreased compared with predenervation values. Stance duration was generally increased and decreased for the contralateral and ipsilateral hindlimbs, respectively. The EMG amplitude of MG was significantly increased bilaterally after denervation and remained elevated 8 wk after denervation. In spinal cats the ipsilateral LG was significantly smaller than the contralateral LG, whereas the ipsilateral MG weighed significantly more than the contralateral MG. Histological characterizations revealed significantly larger fiber areas for type IIa fibers of the ipsilateral MG in three of four spinal cats. Microvascular density in the ipsilateral MG was significantly higher than in the contralateral MG. In intact cats, no differences were found for muscle weight, fiber area, or microvascular density between homologous muscles. Therefore, the remaining motor system after complete SCI retains the ability to produce adaptive muscle plasticity.

  8. Kinematics of Haro 11: The miniature Antennae

    NASA Astrophysics Data System (ADS)

    Östlin, G.; Marquart, T.; Cumming, R. J.; Fathi, K.; Bergvall, N.; Adamo, A.; Amram, P.; Hayes, M.

    2015-11-01

    Luminous blue compact galaxies are among the most active galaxies in the local Universe in terms of their star formation rate per unit mass. They are rare at the current cosmic epoch, but were more abundant in the past and may be seen as the local analogues of higher red shift Lyman break galaxies. Studies of their kinematics is key to understanding what triggers their unusually active star formation. In this work, we investigate the kinematics of stars and ionised gas in Haro 11, one of the most luminous blue compact galaxies in the local Universe. Previous works have indicated that many of these galaxies may be triggered by galaxy mergers. We have employed Fabry-Perot interferometry, long-slit spectroscopy, and integral field unit (IFU) spectroscopy to explore the kinematics of Haro 11. We target the near-infrared calcium triplet, and use cross-correlation and penalised pixel fitting techniques to derive the stellar velocity field and velocity dispersion. We analyse ionised gas through emission lines from hydrogen, [O iii], and [S iii]. When spectral resolution and signal to noise allows, we investigate the line profile in detail and identify multiple velocity components when present. The spectra reveal a complex velocity field whose components, both stellar and gaseous, we attempt to disentangle. We find that to first order, the velocity field and velocity dispersions derived from stars and ionised gas agree. Hence the complexities reveal real dynamical disturbances providing further evidence for a merger in Haro 11. Through decomposition of emission lines, we find evidence for kinematically distinct components, for instance, a tidal arm. The ionised gas velocity field can be traced to large galactocentric radii, and shows significant velocity dispersion even far out in the halo. If interpreted as virial motions, this indicates that Haro 11 may have a mass of ~1011 M⊙. Haro 11 shows many resemblances with the famous Antennae galaxies both morphologically and

  9. Cervical epidural hematoma after chiropractic spinal manipulation.

    PubMed

    Heiner, Jason D

    2009-10-01

    Spinal epidural hematoma is a rare but potentially devastating complication of spinal manipulation therapy. This is a case report of a healthy pregnant female who presented to the emergency department with a cervical epidural hematoma resulting from chiropractic spinal manipulation therapy that responded to conservative treatment rather than the more common route of surgical management.

  10. Evaluation of spinal cord injury animal models

    PubMed Central

    Zhang, Ning; Fang, Marong; Chen, Haohao; Gou, Fangming; Ding, Mingxing

    2014-01-01

    Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies. PMID:25598784

  11. Brain and Spinal Cord Tumors in Adults

    MedlinePlus

    ... Search Search En Español Category Cancer A-Z Brain and Spinal Cord Tumors in Adults If you have a brain or spinal cord tumor or are close to ... cope. Here you can find out all about brain and spinal cord tumors in adults, including risk ...

  12. Motorcycle-related spinal injury: crash characteristics.

    PubMed

    Zulkipli, Zarir Hafiz; Abdul Rahmat, Abdul Manap; Mohd Faudzi, Siti Atiqah; Paiman, Noor Faradila; Wong, Shaw Voon; Hassan, Ahamedali

    2012-11-01

    This study presents an analysis of crash characteristics of motorcyclists who sustained spinal injuries in motorcycle crashes. The aim of the study is to identify the salient crash characteristics that would help explain spinal injury risks for motorcyclists. Data were retrospectively collected from police case reports that were archived at MIROS from year 2005 to 2007. The data were categorized into two subcategories; the first group was motorcycle crashes with spinal injury (case) and the second group was motorcycle crashes without spinal injury (control). A total of 363 motorcyclists with spinal injury and 873 motorcyclists without spinal injury were identified and analyzed. Descriptive analysis and multivariate analysis were performed in order to determine the odds of each characteristic in contributing to spinal injury. Single vehicle crash, collision with fixed objects and crash configuration were found to have significant influence on motorcyclists in sustaining spinal injury (p<0.05). Although relatively few than other impact configurations, the rear-end impacted motorcyclist shows the highest risk of spinal injury. Helmets have helped to reduce head injury but they did not seem to offer corresponding protection for the spine in the study. With a growing number of young motorcyclists, further efforts are needed to find effective measures to help reduce the crash incidents and severity of spinal injury. In sum, the study provides some insights on some vital crash characteristics associated with spinal injury that can be further investigated to determine the appropriate counter-measures and prevention strategies to reduce spinal injury.

  13. Intramedullary spinal metastasis of a carcinoid tumor.

    PubMed

    Kumar, Jay I; Yanamadala, Vijay; Shin, John H

    2015-12-01

    We report an intramedullary spinal cord metastasis from a bronchial carcinoid, and discuss its mechanisms and management. Intramedullary spinal cord metastases from any cancer are rare, and bronchial carcinoids account for only a small fraction of lung cancers. To our knowledge, an intramedullary spinal cord metastasis from a bronchial carcinoid has been described only once previously.

  14. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2-C3.

    PubMed

    Mustafy, Tanvir; El-Rich, Marwan; Mesfar, Wissal; Moglo, Kodjo

    2014-09-22

    The cervical spine functions as a complex mechanism that responds to sudden loading in a unique manner, due to intricate structural features and kinematics. The spinal load-sharing under pure compression and sagittal flexion/extension at two different impact rates were compared using a bio-fidelic finite element (FE) model of the ligamentous cervical functional spinal unit (FSU) C2-C3. This model was developed using a comprehensive and realistic geometry of spinal components and material laws that include strain rate dependency, bone fracture, and ligament failure. The range of motion, contact pressure in facet joints, failure forces in ligaments were compared to experimental findings. The model demonstrated that resistance of spinal components to impact load is dependent on loading rate and direction. For the loads applied, stress increased with loading rate in all spinal components, and was concentrated in the outer intervertebral disc (IVD), regions of ligaments to bone attachment, and in the cancellous bone of the facet joints. The highest stress in ligaments was found in capsular ligament (CL) in all cases. Intradiscal pressure (IDP) in the nucleus was affected by loading rate change. It increased under compression/flexion but decreased under extension. Contact pressure in the facet joints showed less variation under compression, but increased significantly under flexion/extension particularly under extension. Cancellous bone of the facet joints region was the only component fractured and fracture occurred under extension at both rates. The cervical ligaments were the primary load-bearing component followed by the IVD, endplates and cancellous bone; however, the latter was the most vulnerable to extension as it fractured at low energy impact.

  15. Spinal reflexes in brain death.

    PubMed

    Beckmann, Yesim; Çiftçi, Yeliz; Incesu, Tülay Kurt; Seçil, Yaprak; Akhan, Galip

    2014-12-01

    Spontaneous and reflex movements have been described in brain death and these unusual movements might cause uncertainties in diagnosis. In this study we evaluated the presence of spinal reflexes in patients who fulfilled the criteria for brain death. Thirty-two (22 %) of 144 patients presented unexpected motor movements spontaneously or during examinations. These patients exhibited the following signs: undulating toe, increased deep tendon reflexes, plantar responses, Lazarus sign, flexion-withdrawal reflex, facial myokymia, neck-arm flexion, finger jerks and fasciculations. In comparison, there were no significant differences in age, sex, etiology of brain death and hemodynamic laboratory findings in patients with and without reflex motor movement. Spinal reflexes should be well recognized by physicians and it should be born in mind that brain death can be determined in the presence of spinal reflexes.

  16. Aquaporins in the Spinal Cord

    PubMed Central

    Oklinski, Michal K.; Skowronski, Mariusz T.; Skowronska, Agnieszka; Rützler, Michael; Nørgaard, Kirsten; Nieland, John D.; Kwon, Tae-Hwan; Nielsen, Søren

    2016-01-01

    Aquaporins (AQPs) are water channel proteins robustly expressed in the central nervous system (CNS). A number of previous studies described the cellular expression sites and investigated their major roles and function in the brain and spinal cord. Among thirteen different mammalian AQPs, AQP1 and AQP4 have been mainly studied in the CNS and evidence has been presented that they play important roles in the pathogenesis of CNS injury, edema and multiple diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, amyotrophic lateral sclerosis, glioblastoma multiforme, Alzheimer’s disease and Parkinson’s disease. The objective of this review is to highlight the current knowledge about AQPs in the spinal cord and their proposed roles in pathophysiology and pathogenesis related to spinal cord lesions and injury. PMID:27941618

  17. MRI of spinal epidural lymphoma.

    PubMed

    Mascalchi, M; Torselli, P; Falaschi, F; Dal Pozzo, G

    1995-05-01

    We reviewed the MRI features in eight patients with spinal epidural lymphoma (clinically primary in 4 patients); one patient had multiple lesions. The cervical spine was involved in one patient, the thoracolumbar spine in 5 and the sacrum in two. Mean longitudinal extension of the epidural lesion was 2.6 vertebral segments. The tumours were homogeneously isointense with the spinal cord on T1-weighted images and isointense or hyperintense on proton-density and T2-weighted images. The spinal cord was compressed in four patients but showed signal changes in only one. In five patients the lesions communicated through the intervertebral foramina with paravertebral soft tissue masses. In all but one of the patients diffuse signal changes in the vertebral body marrow consistent with osteolytic or osteoblastic changes were identified adjacent to or at distance from the epidural lesion. Vertebral collapse was observed in two patients.

  18. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints.

    PubMed

    He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank

    2016-04-01

    When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component.

  19. GNSS Precise Kinematic Positioning for Multiple Kinematic Stations Based on A Priori Distance Constraints

    PubMed Central

    He, Kaifei; Xu, Tianhe; Förste, Christoph; Petrovic, Svetozar; Barthelmes, Franz; Jiang, Nan; Flechtner, Frank

    2016-01-01

    When applying the Global Navigation Satellite System (GNSS) for precise kinematic positioning in airborne and shipborne gravimetry, multiple GNSS receiving equipment is often fixed mounted on the kinematic platform carrying the gravimetry instrumentation. Thus, the distances among these GNSS antennas are known and invariant. This information can be used to improve the accuracy and reliability of the state estimates. For this purpose, the known distances between the antennas are applied as a priori constraints within the state parameters adjustment. These constraints are introduced in such a way that their accuracy is taken into account. To test this approach, GNSS data of a Baltic Sea shipborne gravimetric campaign have been used. The results of our study show that an application of distance constraints improves the accuracy of the GNSS kinematic positioning, for example, by about 4 mm for the radial component. PMID:27043580

  20. Multibody kinematics optimization with marker projection improves the accuracy of the humerus rotational kinematics.

    PubMed

    Begon, Mickaël; Bélaise, Colombe; Naaim, Alexandre; Lundberg, Arne; Chèze, Laurence

    2016-10-20

    Markers put on the arm undergo large soft tissue artefact (STA). Using markers on the forearm, multibody kinematics optimization (MKO) helps improve the accuracy of the arm kinematics especially its longitudinal rotation. However deleterious effect of STA may persist and affect other segment estimate. The objective was to present an innovative multibody kinematics optimization algorithm with projection of markers onto a requested axis of the local system of coordinates, to cancel their deleterious effect on this degree-of-freedom. Four subjects equipped with markers put on intracortical pins inserted into the humerus, on skin (scapula, arm and forearm) and subsequently on rigid cuffs (arm and forearm) performed analytic, daily-living, sports and range-of-motion tasks. Scapulohumeral kinematics was estimated using 1) pin markers (reference), 2) single-body optimization, 3) MKO, 4) MKO with projection of all arm markers and 5) MKO with projection of a selection of arm markers. Approaches 2-4 were applied to markers put on the skin and the cuff. The main findings were that multibody kinematics optimization improved the accuracy of 40-50% and the projection algorithm added an extra 20% when applied to cuff markers or a selection of skin markers (all but the medial epicondyle). Therefore, the projection algorithm performed better than multibody and single-body optimizations, especially when using markers put on a cuff. Error of humerus orientation was reduced by half to finally be less than 5°. To conclude, this innovative algorithm is a promising approach for estimating accurate upper-limb kinematics.

  1. Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury.

    PubMed

    Chang, Young-Hui; Auyang, Arick G; Scholz, John P; Nichols, T Richard

    2009-11-01

    Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function.

  2. Metastasis to a spinal meningioma.

    PubMed

    Bansil, Rohit; Walia, Bipin S; Khan, Zahid; Abrari, Andleeb

    2017-01-01

    Metastasis of one cancer to another is rare. Here, we report a spinal meningioma that was infiltrated by metastatic deposits from another cancer. A 62-year-old male presented with a progressive spastic paraparesis. Magnetic resonance (MR) imaging of the spine suggested a well-defined intradural extramedullary (IDEM) T8 mass in the dorsal spinal canal. When excised, it proved histologically to be a meningothelial meningioma infiltrated by metastatic deposits from an adenocarcinoma. Tumor to tumor metastasis rarely occurs, and meningioma, owing to its biological character and increased vascularity, is one of the most common recipients of a metastases from other lesions.

  3. [Spinal column: implants and revisions].

    PubMed

    Krieg, S M; Meyer, H S; Meyer, B

    2016-03-01

    Non-fusion spinal implants are designed to reduce the commonly occurring risks and complications of spinal fusion surgery, e.g. long duration of surgery, high blood loss, screw loosening and adjacent segment disease, by dynamic or movement preserving approaches. This principle could be shown for interspinous spacers, cervical and lumbar total disc replacement and dynamic stabilization; however, due to the continuing high rate of revision surgery, the indications for surgery require as much attention and evidence as comparative data on the surgical technique itself.

  4. The effect of lateral eccentricity on failure loads, kinematics, and canal occlusions of the cervical spine in axial loading.

    PubMed

    Van Toen, C; Melnyk, A D; Street, J; Oxland, T R; Cripton, P A

    2014-03-21

    Current neck injury criteria do not include limits for lateral bending combined with axial compression and this has been observed as a clinically relevant mechanism, particularly for rollover motor vehicle crashes. The primary objectives of this study were to evaluate the effects of lateral eccentricity (the perpendicular distance from the axial force to the centre of the spine) on peak loads, kinematics, and spinal canal occlusions of subaxial cervical spine specimens tested in dynamic axial compression (0.5 m/s). Twelve 3-vertebra human cadaver cervical spine specimens were tested in two groups: low and high eccentricity with initial eccentricities of 1 and 150% of the lateral diameter of the vertebral body. Six-axis loads inferior to the specimen, kinematics of the superior-most vertebra, and spinal canal occlusions were measured. High speed video was collected and acoustic emission (AE) sensors were used to define the time of injury. The effects of eccentricity on peak loads, kinematics, and canal occlusions were evaluated using unpaired Student t-tests. The high eccentricity group had lower peak axial forces (1544 ± 629 vs. 4296 ± 1693 N), inferior displacements (0.2 ± 1.0 vs. 6.6 ± 2.0 mm), and canal occlusions (27 ± 5 vs. 53 ± 15%) and higher peak ipsilateral bending moments (53 ± 17 vs. 3 ± 18 Nm), ipsilateral bending rotations (22 ± 3 vs. 1 ± 2°), and ipsilateral displacements (4.5 ± 1.4 vs. -1.0 ± 1.3 mm, p<0.05 for all comparisons). These results provide new insights to develop prevention, recognition, and treatment strategies for compressive cervical spine injuries with lateral eccentricities. © 2013 Published by Elsevier Ltd.

  5. Management of Chronic Spinal Cord Dysfunction

    PubMed Central

    Abrams, Gary M.; Ganguly, Karunesh

    2015-01-01

    Purpose of Review: Both acute and chronic spinal cord disorders present multisystem management problems to the clinician. This article highlights key issues associated with chronic spinal cord dysfunction. Recent Findings: Advances in symptomatic management for chronic spinal cord dysfunction include use of botulinum toxin to manage detrusor hyperreflexia, pregabalin for management of neuropathic pain, and intensive locomotor training for improved walking ability in incomplete spinal cord injuries. Summary: The care of spinal cord dysfunction has advanced significantly over the past 2 decades. Management and treatment of neurologic and non-neurologic complications of chronic myelopathies ensure that each patient will be able to maximize their functional independence and quality of life. PMID:25651225

  6. Pediatric Spinal Ultrasound: Neonatal and Intraoperative Applications.

    PubMed

    Alvarado, Enrique; Leach, James; Caré, Marguerite; Mangano, Francesco; O Hara, Sara

    2017-04-01

    The purpose of this article is to review the use of ultrasound as a screening tool for spinal diseases in neonates and infants and its intraoperative value in selected pediatric neurosurgical disorders. A review of spinal embryology followed by a description of common spinal diseases in neonates assessed with ultrasound is presented. Indications for spinal ultrasound in neonates, commonly identified conditions, and the importance of magnetic resonance imaging in selected cases are emphasized. Additionally, the use of ultrasound in selected neurosurgical spinal diseases in pediatric patients is presented with magnetic resonance imaging and intraoperative correlation. Technique, limitations, and pitfalls are discussed.

  7. Kinematic Structures Description of Bionic Hand Based on VF Set

    NASA Astrophysics Data System (ADS)

    Liu, Xiancan; Bai, Pengying; Luo, Min; Gao, Meng; Zhan, Qiang

    2017-03-01

    This paper presents a method for describing kinematic structure of bionic hand based on VF (virtual finger) set. At first, a 20 DOFs (degrees of freedom) human hand kinematic model is built, which is expressed by five fingers’ kinematic chains consisting of kinematic pairs and symbols that represent geometric relationships of kinematic pairs’ axes. Based on the concept of VF, the hand fingers are divided into two types: VFAA having adduction/abduction motion and VFFE having flexion/extension motion. The concept of VF set comprising VFAAs and VFFEs is defined, human hand and six basic grasp postures are described by VF set. Then, the structures corresponding VFAA and VFFE are given according to active and passive forms of finger joints, and VFFE Structure-Base comprising 20 conventional structures is built. Based on VF set and the structures of VFAA and VFFE, VF sets and kinematic structures of several classic bionic hands are given.

  8. A Novel Algorithm for the Generation of Distinct Kinematic Chain

    NASA Astrophysics Data System (ADS)

    Medapati, Sreenivasa Reddy; Kuchibhotla, Mallikarjuna Rao; Annambhotla, Balaji Srinivasa Rao

    2016-07-01

    Generation of distinct kinematic chains is an important topic in the design of mechanisms for various industrial applications i.e., robotic manipulator, tractor, crane etc. Many researchers have intently focused on this area and explained various processes of generating distinct kinematic chains which are laborious and complex. It is desirable to enumerate the kinematic chains systematically to know the inherent characteristics of a chain related to its structure so that all the distinct chains can be analyzed in depth, prior to the selection of a chain for a purpose. This paper proposes a novel and simple method with set of rules defined to eliminate isomorphic kinematic chains generating distinct kinematic chains. Also, this method simplifies the process of generating distinct kinematic chains even at higher levels i.e., 10-link, 11-link with single and multiple degree of freedom.

  9. Purely extradural spinal nerve root hemangioblastomas

    PubMed Central

    Aytar, Murat Hamit; Yener, Ulaş; Ekşi, Murat Şakir; Kaya, Behram; Özgen, Serdar; Sav, Aydin; Alanay, Ahmet

    2016-01-01

    Spinal nerve root hemangioblastomas present mostly as intradural-extradurally. Purely extradural spinal nerve root hemangioblastoma is a very rare entity. In this study, we aimed to analyze epidemiological perspectives of purely extradural spinal nerve root hemangioblastomas presented in English medical literature in addition to our own exemplary case. PubMed/MEDLINE was searched using the terms “hemangioblastoma,” “extradural,” “spinal,” and “nerve root.” Demographical variables of age, gender, concomitant presence of von Hippel–Lindau (VHL) disease; spinal imaging and/or intraoperative findings for tumor location were surveyed from retrieved articles. There are 38 patients with purely extradural spinal nerve root hemangioblastoma. The median age is 45 years (range = 24–72 years). Female:male ratio is 0.6. Spinal levels for purely extradural spinal nerve root hemangioblastomas, in order of decreasing frequency, are thoracic (48.6%), cervical (13.5%), lumbar (13.5%), lumbosacral (10.8%), sacral (8.1%), and thoracolumbar (5.4%). Concomitant presence of VHL disease is 45%. Purely extradural spinal nerve root hemangioblastomas are very rare and can be confused with other more common extradural spinal cord tumors. Concomitant presence of VHL disease is observed in less than half of the patients with purely extradural spinal nerve root hemangioblastomas. Surgery is the first-line treatment in these tumors. PMID:27891027

  10. Kinematics of transition during human accelerated sprinting

    PubMed Central

    Nagahara, Ryu; Matsubayashi, Takeo; Matsuo, Akifumi; Zushi, Koji

    2014-01-01

    ABSTRACT This study investigated kinematics of human accelerated sprinting through 50 m and examined whether there is transition and changes in acceleration strategies during the entire acceleration phase. Twelve male sprinters performed a 60-m sprint, during which step-to-step kinematics were captured using 60 infrared cameras. To detect the transition during the acceleration phase, the mean height of the whole-body centre of gravity (CG) during the support phase was adopted as a measure. Detection methods found two transitions during the entire acceleration phase of maximal sprinting, and the acceleration phase could thus be divided into initial, middle, and final sections. Discriminable kinematic changes were found when the sprinters crossed the detected first transition—the foot contacting the ground in front of the CG, the knee-joint starting to flex during the support phase, terminating an increase in step frequency—and second transition—the termination of changes in body postures and the start of a slight decrease in the intensity of hip-joint movements, thus validating the employed methods. In each acceleration section, different contributions of lower-extremity segments to increase in the CG forward velocity—thigh and shank for the initial section, thigh, shank, and foot for the middle section, shank and foot for the final section—were verified, establishing different acceleration strategies during the entire acceleration phase. In conclusion, there are presumably two transitions during human maximal accelerated sprinting that divide the entire acceleration phase into three sections, and different acceleration strategies represented by the contributions of the segments for running speed are employed. PMID:24996923

  11. Spinal Schwannoma with Intradural Intramedullary Hemorrhage

    PubMed Central

    Nadeem, Muhammad; Mansoor, Salman; Assad, Salman; Qavi, Ahmed H; Saadat, Shoab

    2017-01-01

    Patients with spinal abnormalities infrequently present with intradural intramedullary bleeding. The more common causes include spinal trauma, arteriovenous malformations and saccular aneurysms of spinal arteries. On occasion, spinal cord tumors either primary or metastatic may cause intramedullary bleed with ependymoma of the conus medullaris. Spinal nerve sheath tumors such as schwannomas only rarely cause intradural intramedullary bleed, especially in the absence of spinal cord or nerve root symptoms. We report a case of spinal intradural schwannoma presenting with acute onset of quadriparesis. Cerebral angiography studies were negative but magnetic resonance imaging (MRI) of the spine revealed a large hemorrhagic tumor in the thoracolumbar junction. However, we suggest that the patients with intradural intramedullary bleed should be evaluated for underlying spine disease. PMID:28405532

  12. Changes in knee kinematics following total knee arthroplasty.

    PubMed

    Akbari Shandiz, Mohsen; Boulos, Paul; Saevarsson, Stefan Karl; Yoo, Sam; Miller, Stephen; Anglin, Carolyn

    2016-04-01

    Total knee arthroplasty (TKA) changes the knee joint in both intentional and unintentional, known and unknown, ways. Patellofemoral and tibiofemoral kinematics play an important role in postoperative pain, function, satisfaction and revision, yet are largely unknown. Preoperative kinematics, postoperative kinematics or changes in kinematics may help identify causes of poor clinical outcome. Patellofemoral kinematics are challenging to record since the patella is obscured by the metal femoral component in X-ray and moves under the skin. The purpose of this study was to determine the kinematic degrees of freedom having significant changes and to evaluate the variability in individual changes to allow future study of patients with poor clinical outcomes. We prospectively studied the 6 degrees of freedom patellofemoral and tibiofemoral weightbearing kinematics, tibiofemoral contact points and helical axes of rotation of nine subjects before and at least 1 year after total knee arthroplasty using clinically available computed tomography and radiographic imaging systems. Normal kinematics for healthy individuals were identified from the literature. Significant differences existed between pre-TKA and post-TKA kinematics, with the post-TKA kinematics being closer to normal. While on average the pre-total knee arthroplasty knees in this group displayed no pivoting (only translation), individually only five knees displayed this behaviour (of these, two showed lateral pivoting, one showed medial pivoting and one showed central pivoting). There was considerable variability postoperatively as well (five central, two lateral and two medial pivoting). Both preop and postop, flexion behaviour was more hinge-like medially and more rolling laterally. Helical axes were more consistent postop for this group. An inclusive understanding of the pre-TKA and post-TKA kinematics and changes in kinematics due to total knee arthroplasty could improve implant design, patient diagnosis and

  13. Vestibulo-spinal reflex mechanisms

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.

    1981-01-01

    The specific objectives of experiments designed to investigate postural reflex behavior during sustained weightlessness are discussed. The first is to investigate, during prolonged weightlessness with Hoffmann response (H-reflex) measurement procedures, vestibulo-spinal reflexes associated with vestibular (otolith) responses evoked during an applied linear acceleration. This objective includes not only an evaluation of otolith-induced changes in a major postural muscle but also an investigation with this technique of the adaptive process of the vestibular system and spinal reflex mechanisms to this unique environment. The second objective is to relate space motion sickness to the results of this investigation. Finally, a return to the vestibulo-spinal and postural reflexes to normal values following the flight will be examined. The flight experiment involves activation of nerve tissue (tibial N) with electrical shock and the recording of resulting muscle activity (soleus) with surface electrodes. Soleus/spinal H-reflex testing procedures will be used in conjuction with linear acceleration through the subject's X-axis.

  14. Pain following spinal cord injury.

    PubMed

    Ullrich, Philip M

    2007-05-01

    Pain is one of the most common, severe, and treatment-resistant complications that follows SCI. Recent years have seen a surge of research on methods for assessing and treating spinal cord injury pain. In this article, pain after SCI is reviewed in terms of nature, scope, assessment techniques, and treatment strategies.

  15. Elbow Position Affects Distal Radioulnar Joint Kinematics

    PubMed Central

    Fu, Eric; Li, Guoan; Souer, Sebastiaan; Lozano-Calderon, Santiago; Herndon, James H.; Jupiter, Jesse B.; Chen, Neal C.

    2009-01-01

    Previous in vivo and in vitro studies of forearm supination/pronation suggest that distal radioulnar joint kinematics may be affected by elbow flexion. The primary hypotheses tested by this study were that in vivo: 1) ulnar variance changes with elbow flexion and forearm rotation and 2) the arc of forearm rotation changes in relationship to elbow flexion. Materials and Methods Changes in radioulnar kinematics during forearm supination/pronation and elbow flexion (0–90°) were studied in five uninjured subjects using computed tomography, dual-orthogonal fluoroscopy, and three-dimensional modeling. Analysis of variance and post-hoc testing was performed. Results Proximal translation of the radius was greatest with the elbow flexed to 90° with the arm in mid-pronation. With the arm in mid-pronation, the translation of the radius was significantly greater at 0° versus 45° of elbow flexion (0.82 ± 0.59 mm v. 0.65 ± 0.80 mm, F: 4.49, Post Hoc: 0.055; p = 0.05), and significantly smaller at 45° versus 90° of elbow flexion (0.65 ± 0.80 mm v. 0.97 ± 0.35 mm, F: 4.49, Post Hoc: 0.048; p = 0.05). Proximal translation of the radius in mid-pronation was significantly greater than when the forearm was in a supinated position when the elbow was at 0° or 90° flexion (F: 14.90, post-hoc: < 0.01; p < 0.01, F: 19.11, post-hoc: < 0.01, p < 0.01). The arc of forearm rotation was significantly decreased at 0° compared to 90° of elbow flexion (129.3 ± 22.2° v 152.8 ± 14.4°, F: 3.29, post-hoc: 0.79; p = 0.09). The center of rotation shifted volarly and ulnarly with increasing elbow extension. Discussion Elbow position affects the kinematics of the distal radioulnar joint. The kinematics of the distal radioulnar joint are primarily affected by forearm rotation and secondarily affected by elbow flexion. These findings have clinical relevance to our understanding of ulnar impaction, and how elbow position affects the proximal-distal translation of the radius. These

  16. Mapping Dark Matter Halos with Stellar Kinematics

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy; Gebhardt, K.; Greene, J. E.; Graves, G.

    2013-07-01

    Galaxies of all sizes form and evolve in the centers of dark matter halos. As these halos constitute the large majority of the total mass of a galaxy, dark matter certainly plays a central role in the galaxy's formation and evolution. Yet despite our understanding of the importance of dark matter, observations of the extent and shape of dark matter halos have been slow in coming. The paucity of data is particularly acute in elliptical galaxies. Happily, concerted effort over the past several years by a number of groups has been shedding light on the dark matter halos around galaxies over a wide range in mass. The development of new instrumentation and large surveys, coupled with the tantalizing evidence for a direct detection of dark matter from the AMS experiment, has brought on a golden age in the study of galactic scale dark matter halos. I report on results using extended stellar kinematics from integrated light to dynamically model massive elliptical galaxies in the local universe. I use the integral field power of the Mitchell Spectrograph to explore the kinematics of stars to large radii (R > 2.5 r_e). Once the line-of-sight stellar kinematics are measured, I employ orbit-based, axisymmetric dynamical modeling to explore a range of dark matter halo parameterizations. Globular cluster kinematics at even larger radii are used to further constrain the dynamical models. The dynamical models also return information on the anisotropy of the stars which help to further illuminate the primary formation mechanisms of the galaxy. Specifically, I will show dynamical modeling results for the first and second rank galaxies in the Virgo Cluster, M49 and M87. Although similar in total luminosity and ellipticity, these two galaxies show evidence for different dark matter halo shapes, baryon to dark matter fractions, and stellar anisotropy profiles. Moreover, the stellar velocity dispersion at large radii in M87 is significantly higher than the globular clusters at the same

  17. Kinematics and Fluid Dynamics of Jellyfish Maneuvering

    NASA Astrophysics Data System (ADS)

    Miller, Laura; Hoover, Alex

    2014-11-01

    Jellyfish propel themselves through the water through periodic contractions of their elastic bells. Some jellyfish, such as the moon jellyfish Aurelia aurita and the upside down jellyfish Cassiopea xamachana, can perform turns via asymmetric contractions of the bell. The fluid dynamics of jellyfish forward propulsion and turning is explored here by analyzing the contraction kinematics of several species and using flow visualization to quantify the resulting flow fields. The asymmetric contraction and structure of the jellyfish generates asymmetries in the starting and stopping vortices. This creates a diagonal jet and a net torque acting on the jellyfish. Results are compared to immersed boundary simulations

  18. Stellar population and kinematics of NGC 404

    NASA Astrophysics Data System (ADS)

    Bouchard, A.; Prugniel, P.; Koleva, M.; Sharina, M.

    2010-04-01

    Context. NGC 404 is a nearly face-on, nearby low-luminosity lenticular galaxy. Probing its characteristics provides a wealth of information on the details of the possible evolution processes of dS0 galaxies, which may not be possible in other, more distant objects. Aims: We study the internal kinematics and the spatial distribution of the star formation history in NGC 404. Methods: We obtained long-slit spectroscopy at the OHP 1m93 telescope along the major and minor axes of NGC 404. The spectra had a resolution R = 3600 covering a wavelength range from 4600 to 5500 Å. The data were fitted against the Pegase. HR stellar population models to derive the internal stellar kinematics, ages, and metallicities simultaneously. All this was done while taking any instrumental contamination to the line-of-sight velocity distribution into account. First, the global properties of the galaxy were analysed by fitting a single model to the data and looking at the kinematic variations and SSP equivalent age and metallicities as a function of radius. Afterwards, the stellar populations were decomposed into 4 individually analysed components. Results: NGC 404 clearly shows two radial velocity inversions along its major axis. The kinematically decoupled core rotates in the same direction as the neutral hydrogen shell that surrounds the galaxy. We resolved the star formation history in the core of the galaxy into 4 events: a very young (< 150 Myr, and [Fe/H] = 0.4) component with constant ongoing star formation, a second young (430 Myr) component with [Fe/H] = 0.1, an intermediate population (1.7 Gyr) that has [Fe/H] = -0.05, and finally an old (12 Gyr) component with [Fe/H] = -1.26. The two young components fade very quickly with radius, leaving only the intermediate and old population at a radius of 25´´ (370 pc) from the centre. Conclusions: We conclude that NGC 404 had a spiral morphology about 1 Gyr ago and that one or many merger events has triggered a morphological transition

  19. Kinematic Dynamo In Turbulent Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    Stepinski, T.

    1993-01-01

    Many circumstellar disks associated with objects ranging from protoplanetary nebulae, to accretion disks around compact stars allow for the generation of magnetic fields by an (alpha)omega dynamo. We have applied kinematic dynamo formalism to geometrically thin accretion disks. We calculate, in the framework of an adiabatic approximation, the normal mode solutions for dynamos operating in disks around compact stars. We then describe the criteria for a viable dynamo in protoplanetary nebulae, and discuss the particular features that make accretion disk dynamos different from planetary, stellar, and galactic dynamos.

  20. Failure tolerant operation of kinematically redundant manipulators

    NASA Technical Reports Server (NTRS)

    Lewis, Christopher L.; Maciejewski, Anthony A.

    1994-01-01

    Redundant manipulators may compensate for failed joints with their additional degrees of freedom. In this paper such a manipulator is considered fault tolerant if it can guarantee completion of a task after any one of its joints has failed. This fault tolerance of kinematically redundant manipulators is insured here. Methods to analyze the manipulator's work space find regions inherently suitable for critical tasks because of their high level of failure tolerance. Constraints are then placed on the manipulator's range of motion to guarantee completion of a task.

  1. Automobile Collisions, Kinematics and Related Injury Patterns

    PubMed Central

    Siegel, A. W.

    1972-01-01

    It has been determined clinically that fatalities and injury severity resulting from automobile collisions have decreased during the last five years for low impact speeds. This reduction is a direct result of the application of biomechanics and occupant kinematics, as well as changes in automobile design. The paper defines terminology used in the field of mechanics and develops examples and illustrations of the physical concepts of acceleration, force strength, magnitude duration, rate of onset and others, as they apply to collision phenomena and injury. The mechanism of injury pattern reduction through the use of restraint systems is illustrated. PMID:5059661

  2. JFKengine: A Jacobian and Forward Kinematics Generator

    SciTech Connect

    Fischer, K.N.

    2003-02-13

    During robot path planning and control the equations that describe the robot motions are determined and solved. Historically these expressions were derived analytically off-line. For robots that must adapt to their environment or perform a wide range of tasks, a way is needed to rapidly re-derive these expressions to take into account the robot kinematic changes, such as when a tool is added to the end-effector. The JFKengine software was developed to automatically produce the expressions representing the manipulator arm motion, including the manipulator arm Jacobian and the forward kinematic expressions. Its programming interface can be used in conjunction with robot simulation software or with robot control software. Thus, it helps to automate the process of configuration changes for serial robot manipulators. If the manipulator undergoes a geometric change, such as tool acquisition, then JFKengine can be invoked again from the control or simulation software, passing it parameters for the new arm configuration. This report describes the automated processes that are implemented by JFKengine to derive the kinematic equations and the programming interface by which it is invoked. Then it discusses the tree data structure that was chosen to store the expressions, followed by several examples of portions of expressions as represented in the tree. The C++ classes and their methods that implement the expression differentiation and evaluation operations are described. The algorithms used to construct the Jacobian and forward kinematic equations using these basic building blocks are then illustrated. The activity described in this report is part of a larger project entitled ''Multi-Optimization Criteria-Based Robot Behavioral Adaptability and Motion Planning'' that focuses on the development of a methodology for the generalized resolution of robot motion equations with time-varying configurations, constraints, and task objective criteria. A specific goal of this project is

  3. Cosmological Applications of the Gaussian Kinematic Formula

    NASA Astrophysics Data System (ADS)

    Fantaye, Yabebal T.; Marinucci, Domenico

    2014-05-01

    The Gaussian Kinematic Formula (GKF, see Adler and Taylor (2007,2011)) is an extremely powerful tool allowing for explicit analytic predictions of expected values of Minkowski functionals under realistic experimental conditions for cosmological data collections. In this paper, we implement Minkowski functionals on multipoles and needlet components of CMB fields, thus allowing a better control of cosmic variance and extraction of information on both harmonic and real domains; we then exploit the GKF to provide their expected values on spherical maps, in the presence of arbitrary sky masks, and under nonGaussian circumstances.

  4. Kinematic control of robot with degenerate wrist

    NASA Technical Reports Server (NTRS)

    Barker, L. K.; Moore, M. C.

    1984-01-01

    Kinematic resolved rate equations allow an operator with visual feedback to dynamically control a robot hand. When the robot wrist is degenerate, the computed joint angle rates exceed operational limits, and unwanted hand movements can result. The generalized matrix inverse solution can also produce unwanted responses. A method is introduced to control the robot hand in the region of the degenerate robot wrist. The method uses a coordinated movement of the first and third joints of the robot wrist to locate the second wrist joint axis for movement of the robot hand in the commanded direction. The method does not entail infinite joint angle rates.

  5. Quantum simulation of noncausal kinematic transformations.

    PubMed

    Alvarez-Rodriguez, U; Casanova, J; Lamata, L; Solano, E

    2013-08-30

    We propose the implementation of Galileo group symmetry operations or, in general, linear coordinate transformations in a quantum simulator. With an appropriate encoding, unitary gates applied to our quantum system give rise to Galilean boosts or spatial and time parity operations in the simulated dynamics. This framework provides us with a flexible toolbox that enhances the versatility of quantum simulation theory, allowing the direct access to dynamical quantities that would otherwise require full tomography. Furthermore, this method enables the study of noncausal kinematics and phenomena beyond special relativity in a quantum controllable system.

  6. Optimal kinematics and morphologies for spermatozoa.

    PubMed

    Tam, Daniel; Hosoi, A E

    2011-04-01

    We investigate the role of hydrodynamics in the evolution of the morphology and the selection of kinematics in simple uniflagellated microorganisms. We find that the most efficient swimming strategies are characterized by symmetrical, nonsinusoidal bending waves propagating from the base of the head to the tip of the tail. In addition, we show that the ideal tail-to-head length ratio for such a swimmer is ≈12 and that this predicted ratio is consistent with data collected from over 400 species of mammalian sperm.

  7. Confined kinematics of suspended rigid fibres

    NASA Astrophysics Data System (ADS)

    Scheuer, A.; Perez, M.; Abisset-Chavanne, E.; Chinesta, F.; Keunings, R.

    2016-10-01

    We address the extension of Jeffery's model, governing the orientation of rods immersed in a Newtonian fluid, to confined regimes occurring when the thickness of the flow domain is narrower than the rod length. The main modelling ingredients concern: (i) the consideration of the rod interactions with one or both gap walls and their effects on the rod orientation kinematics; (ii) the consideration of non-uniform strain rates at the scale of the rod, requiring higher-order descriptions. Such scenarios are very close to those encountered in real composites forming processes and have never been appropriately addressed from a microstructural point of view.

  8. Kinematic Measurements from YouTube Videos

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.

    2009-04-01

    Video analysis of motion has been in use now for some time.1-3 However, some teachers may not have video equipment or may be looking for innovative ways to engage students with interesting applications at no cost. The recent advent of YouTube offers opportunities for students to measure kinematic properties of real-life events using their computers. This paper provides examples such as measuring the average speed of a winning horse at the Kentucky Derby, plotting speed versus time from watching the speedometer of a high-performance bike, and determining acceleration for circular motion of amusement park rides.

  9. Kinematics of Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Cardullo, A.; Pizzella, A.; Corsini, E. M.; Bertola, F.

    2008-10-01

    We analyzed the kinematic of 12 low surface-brightness (LSB) galaxies to study the correlation between the disk circular velocity V_{c} and the central velocity dispersion of the spheroidal component σ_{0}. This relation has been claimed to be either the same power-law relation tep{buy} or a different linear one tep{piz} with respect to high surface-brightness (HSB) galaxies. We confirm here that LSB and HSB galaxies follow two different linear V_{c}-σ_{0} relations.

  10. Kinematic viscosity and density of engine oils

    SciTech Connect

    Porai-Koshits, A.B.; Penkina, N.V.; Ovchinnikova, R.A.; Ashkinazi, L.A.

    1987-08-10

    In order to determine the loss of engine power due to internal friction and to estimate the performance of engine oil it is necessary to know its kinematic viscosity and density in a wide temperature range. The authors studied experimentally these physicochemical properties of a number of engine oils at temperatures from 18 to 90/sup 0/ with the aid of VPZh-2 capillary viscosimeters and single-neck pycnometers; the average errors of the measurements were about 1.5% in the case of viscosity and below 0.5% in the case of density.

  11. Geometric deviation modeling by kinematic matrix based on Lagrangian coordinate

    NASA Astrophysics Data System (ADS)

    Liu, Weidong; Hu, Yueming; Liu, Yu; Dai, Wanyi

    2015-09-01

    Typical representation of dimension and geometric accuracy is limited to the self-representation of dimension and geometric deviation based on geometry variation thinking, yet the interactivity affection of geometric variation and gesture variation of multi-rigid body is not included. In this paper, a kinematic matrix model based on Lagrangian coordinate is introduced, with the purpose of unified model for geometric variation and gesture variation and their interactive and integrated analysis. Kinematic model with joint, local base and movable base is built. The ideal feature of functional geometry is treated as the base body; the fitting feature of functional geometry is treated as the adjacent movable body; the local base of the kinematic model is fixed onto the ideal geometry, and the movable base of the kinematic model is fixed onto the fitting geometry. Furthermore, the geometric deviation is treated as relative location or rotation variation between the movable base and the local base, and it's expressed by the Lagrangian coordinate. Moreover, kinematic matrix based on Lagrangian coordinate for different types of geometry tolerance zones is constructed, and total freedom for each kinematic model is discussed. Finally, the Lagrangian coordinate library, kinematic matrix library for geometric deviation modeling is illustrated, and an example of block and piston fits is introduced. Dimension and geometric tolerances of the shaft and hole fitting feature are constructed by kinematic matrix and Lagrangian coordinate, and the results indicate that the proposed kinematic matrix is capable and robust in dimension and geometric tolerances modeling.

  12. Kinematics Analysis of an Aided Robot for Needle Insertion

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Gao, Dedong; Wang, Shan; Bai, Huiquan; Zheng, Haojun

    The kinematic relationship between the needle base and the robot's joints is analyzed. The analysis process is based on the aided needle-insertion robot built by our group. The thinking of needle-inserting procedure is confirming the needle base's posture before the needle inserted into tissue. The method of Denavit-Hartenberg (D-H) parameters is used to establish a link robot body-frames with the structural characteristics of the robot. After analysing kinematics, the kinematics equation is presented. The kinematics inverse solutions are obtained with the analytical method and geometry analysis method.

  13. Biomechanics of Degenerative Spinal Disorders

    PubMed Central

    Iorio, Justin A.; Jakoi, Andre M.

    2016-01-01

    The spine has several important functions including load transmission, permission of limited motion, and protection of the spinal cord. The vertebrae form functional spinal units, which represent the smallest segment that has characteristics of the entire spinal column. Discs and paired facet joints within each functional unit form a three-joint complex between which loads are transmitted. Surrounding the spinal motion segment are ligaments, composed of elastin and collagen, and joint capsules which restrict motion to within normal limits. Ligaments have variable strengths and act via different lever arm lengths to contribute to spinal stability. As a consequence of the longer moment arm from the spinous process to the instantaneous axis of rotation, inherently weaker ligaments (interspinous and supraspinous) are able to provide resistance to excessive flexion. Degenerative processes of the spine are a normal result of aging and occur on a spectrum. During the second decade of life, the intervertebral disc demonstrates histologic evidence of nucleus pulposus degradation caused by reduced end plate blood supply. As disc height decreases, the functional unit is capable of an increased range of axial rotation which subjects the posterior facet capsules to greater mechanical loads. A concurrent change in load transmission across the end plates and translation of the instantaneous axis of rotation further increase the degenerative processes at adjacent structures. The behavior of the functional unit is impacted by these processes and is reflected by changes in the stress-strain relationship. Back pain and other clinical symptoms may occur as a result of the biomechanical alterations of degeneration. PMID:27114783

  14. Management of lumbar spinal stenosis.

    PubMed

    Lurie, Jon; Tomkins-Lane, Christy

    2016-01-04

    Lumbar spinal stenosis (LSS) affects more than 200,000 adults in the United States, resulting in substantial pain and disability. It is the most common reason for spinal surgery in patients over 65 years. Lumbar spinal stenosis is a clinical syndrome of pain in the buttocks or lower extremities, with or without back pain. It is associated with reduced space available for the neural and vascular elements of the lumbar spine. The condition is often exacerbated by standing, walking, or lumbar extension and relieved by forward flexion, sitting, or recumbency. Clinical care and research into lumbar spinal stenosis is complicated by the heterogeneity of the condition, the lack of standard criteria for diagnosis and inclusion in studies, and high rates of anatomic stenosis on imaging studies in older people who are completely asymptomatic. The options for non-surgical management include drugs, physiotherapy, spinal injections, lifestyle modification, and multidisciplinary rehabilitation. However, few high quality randomized trials have looked at conservative management. A systematic review concluded that there is insufficient evidence to recommend any specific type of non-surgical treatment. Several different surgical procedures are used to treat patients who do not improve with non-operative therapies. Given that rapid deterioration is rare and that symptoms often wax and wane or gradually improve, surgery is almost always elective and considered only if sufficiently bothersome symptoms persist despite trials of less invasive interventions. Outcomes (leg pain and disability) seem to be better for surgery than for non-operative treatment, but the evidence is heterogeneous and often of limited quality. © BMJ Publishing Group Ltd 2015.

  15. Spinal Anaesthesia and Perioperative Anxiety

    PubMed Central

    Mıngır, Tarkan; Ervatan, Zekeriya; Turgut, Namigar

    2014-01-01

    Objective Anxiety is a pathological condition with a feeling of fear accompanied by somatic symptoms due to hyperactivity of the autonomic nervous system. In this study, we aimed to compare perioperative anxiety status and the effects of age, gender, educational status, and The American Society of Anesthesiologists physical status classification (ASA) score on perioperative anxiety in patients undergoing elective surgery under spinal anaesthesia. Methods After IRB approval and signed informed consent, 100 healthy patients undergoing elective surgery under spinal anaesthesia were enrolled. The demographic data of patients and ASA scores were recorded. After spinal anaesthesia, State Trait Anxiety Inventory (STAI) and anxiety levels were measured. Results The mean anxiety score in patients undergoing surgery under spinal anaesthesia indicate the presence of an intermediate level of anxiety (44.58±19.06). A statistically significant positive correlation was found between anxiety scores and age of patients with increased age (p<0.01). Statistically significant differences were found between anxiety scores of patients according to gender, and women’s anxiety scores were found to be significantly higher than in men (p<0.05). Anxiety scores did not differ significantly between education levels. A statistically significant difference was found between anxiety scores regarding ASA scores (p<0.05). Evaluation of patients revealed that the anxiety score of patients with ASA score 1 was significantly higher than the anxiety score of patients with ASA score 2. There was no significant difference between anxiety score of patients with ASA scores 2 and 3. Conclusion There is a mid-level anxiety, associated more with advanced age, female gender, and low ASA score, in patients undergoing elective surgery under spinal anaesthesia. PMID:27366419

  16. APOGEE Kinematics. I. Overview of the Kinematics of the Galactic Bulge as Mapped By APOGEE

    NASA Astrophysics Data System (ADS)

    Ness, M.; Zasowski, G.; Johnson, J. A.; Athanassoula, E.; Majewski, S. R.; García Pérez, A. E.; Bird, J.; Nidever, D.; Schneider, Donald P.; Sobeck, J.; Frinchaboy, P.; Pan, Kaike; Bizyaev, Dmitry; Oravetz, Daniel; Simmons, Audrey

    2016-03-01

    We present the stellar kinematics across the Galactic bulge and into the disk at positive longitudes from the SDSS-III APOGEE spectroscopic survey of the Milky Way. APOGEE includes extensive coverage of the stellar populations of the bulge along the midplane and near-plane regions. From these data, we have produced kinematic maps of 10,000 stars across longitudes of 0° < l < 65°, and primarily across latitudes of | b| < 5° in the bulge region. The APOGEE data reveal that the bulge is cylindrically rotating across all latitudes and is kinematically hottest at the very center of the bulge, with the smallest gradients in both kinematic and chemical space inside the innermost region (| l,b| ) < (5°, 5°). The results from APOGEE show good agreement with data from other surveys at higher latitudes and a remarkable similarity to the rotation and dispersion maps of barred galaxies viewed edge-on. The thin bar that is reported to be present in the inner disk within a narrow latitude range of | b| < 2° appears to have a corresponding signature in [{Fe}/{{H}}] and [α /{Fe}]. Stars with [{Fe}/{{H}}] > -0.5 have dispersion and rotation profiles that are similar to that of N-body models of boxy/peanut bulges. There is a smooth kinematic transition from the thin bar and boxy bulge (l,| b| ) < (15°, 12°) out to the disk for stars with [{Fe}/{{H}}] > -1.0, and the chemodynamics across (l, b) suggests that the stars in the inner Galaxy with [{Fe}/{{H}}] > -1.0 originate in the disk.

  17. Initiation and modulation of locomotor circuitry output with multisite transcutaneous electrical stimulation of the spinal cord in noninjured humans.

    PubMed

    Gerasimenko, Yury; Gorodnichev, Ruslan; Puhov, Aleksandr; Moshonkina, Tatiana; Savochin, Aleksandr; Selionov, Victor; Roy, Roland R; Lu, Daniel C; Edgerton, V Reggie

    2015-02-01

    The mammalian lumbar spinal cord has the capability to generate locomotor activity in the absence of input from the brain. Previously, we reported that transcutaneous electrical stimulation of the spinal cord at vertebral level T11 can activate the locomotor circuitry in noninjured subjects when their legs are placed in a gravity-neutral position (Gorodnichev RM, Pivovarova EA, Pukhov A, Moiseev SA, Savokhin AA, Moshonkina TR, Shcherbakova NA, Kilimnik VA, Selionov VA, Kozlovskaia IB, Edgerton VR, Gerasimenko IU. Fiziol Cheloveka 38: 46-56, 2012). In the present study we hypothesized that stimulating multiple spinal sites and therefore unique combinations of networks converging on postural and locomotor lumbosacral networks would be more effective in inducing more robust locomotor behavior and more selective control than stimulation of more restricted networks. We demonstrate that simultaneous stimulation at the cervical, thoracic, and lumbar levels induced coordinated stepping movements with a greater range of motion at multiple joints in five of six noninjured subjects. We show that the addition of stimulation at L1 and/or at C5 to stimulation at T11 immediately resulted in enhancing the kinematics and interlimb coordination as well as the EMG patterns in proximal and distal leg muscles. Sequential cessation of stimulation at C5 and then at L1 resulted in a progressive degradation of the stepping pattern. The synergistic and interactive effects of transcutaneous stimulation suggest a multisegmental convergence of descending and ascending, and most likely propriospinal, influences on the spinal neuronal circuitries associated with locomotor activity. The potential impact of using multisite spinal cord stimulation as a strategy to neuromodulate the spinal circuitry has significant implications in furthering our understanding of the mechanisms controlling posture and locomotion and for regaining significant sensorimotor function even after a severe spinal cord

  18. Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury.

    PubMed

    Slotkin, Jonathan R; Pritchard, Christopher D; Luque, Brian; Ye, Janice; Layer, Richard T; Lawrence, Mathew S; O'Shea, Timothy M; Roy, Roland R; Zhong, Hui; Vollenweider, Isabel; Edgerton, V Reggie; Courtine, Grégoire; Woodard, Eric J; Langer, Robert

    2017-04-01

    Tissue loss significantly reduces the potential for functional recovery after spinal cord injury. We previously showed that implantation of porous scaffolds composed of a biodegradable and biocompatible block copolymer of Poly-lactic-co-glycolic acid and Poly-l-lysine improves functional recovery and reduces spinal cord tissue injury after spinal cord hemisection injury in rats. Here, we evaluated the safety and efficacy of porous scaffolds in non-human Old-World primates (Chlorocebus sabaeus) after a partial and complete lateral hemisection of the thoracic spinal cord. Detailed analyses of kinematics and muscle activity revealed that by twelve weeks after injury fully hemisected monkeys implanted with scaffolds exhibited significantly improved recovery of locomotion compared to non-implanted control animals. Twelve weeks after injury, histological analysis demonstrated that the spinal cords of monkeys with a hemisection injury implanted with scaffolds underwent appositional healing characterized by a significant increase in remodeled tissue in the region of the hemisection compared to non-implanted controls. The number of glial fibrillary acidic protein immunopositive astrocytes was diminished within the inner regions of the remodeled tissue layer in treated animals. Activated macrophage and microglia were present diffusely throughout the remodeled tissue and concentrated at the interface between the preserved spinal cord tissue and the remodeled tissue layer. Numerous unphosphorylated neurofilament H and neuronal growth associated protein positive fibers and myelin basic protein positive cells may indicate neural sprouting inside the remodeled tissue layer of treated monkeys. These results support the safety and efficacy of polymer scaffolds in a primate model of acute spinal cord injury. A device substantially similar to the device described here is the subject of an ongoing human clinical trial.

  19. Gait kinematic analysis evaluates hindlimb revascularization.

    PubMed

    Ríos, Amelia; Delgado, Alexandra; Escalante, Bruno; Santana, Jesús

    2011-01-01

    Peripheral arterial occlusive disease is described as vascular disorders associated with ischemia and may be the result of an obstructive vascular process or a lost revascularization response. We have shown that gait locomotion analysis by video filming represents an integrative model for the evaluation of mechanisms involved in the process of ischemia-induced revascularization. However, analysis by this method can be subjective and perception errors may be occurring. We present the optimization of a quantifiable, noninvasive, reproducible method that analyzes ankle kinematics in rats using a two-dimensional digital video system. Gait dynamics were filmed in hindlimb ischemic rats with a high speed digital video camera. Images were collected and analyzed at 125 frames per second. An algorithm using interactive data language (IDL) was devised to assess different parameters. In ischemic rats, stride time and knee joint angle remained altered 10 days post-surgery compared with sham animals. Gait kinematics were outlined in a highly reliable way by this computational analysis and corroborated the notion of hindlimb movement recovery associated with the revascularization process.

  20. Kinematic determination of Electron-Hole velocities

    NASA Astrophysics Data System (ADS)

    Hutchinson, Ian H.; Zhou, C.

    2016-10-01

    Coherent self-sustaining BGK potential structures, like the electron holes that often form during nonlinear electrostatic instabilities and are frequently observed in space plasmas, have ``kinematic'' momentum conservation properties that determine their velocity. The electron and ion momentum, both internal and external to the hole, must be included. Momentum changes arise from hole acceleration and from hole depth growth, by energization processes we call jetting; and these must balance any additional external forces on the particles. Comprehensive analytic expressions for the contributions have been calculated for holes of arbitrary localized potential form. Using these, we can deduce velocity changes in various interesting situations such as the self-acceleration of electron holes during formation, the circumstances under which holes accelerate at the rate of the electrons in a background electric field, the influence of the ion stream pushing and pulling holes to higher or lower speeds, and the trapping of hole velocity between the velocity of two ion streams. The predictions are in excellent quantitative agreement with targeted PIC simulations. The kinematic theory thus explains why isolated holes behave the way they do. Partially supported by NSF/DOE Basic Plasma Grant DE-SC0010491.

  1. Multiplanar breast kinematics during different exercise modalities.

    PubMed

    Risius, Deborah; Milligan, Alexandra; Mills, Chris; Scurr, Joanna

    2015-01-01

    Multiplanar breast movement reduction is crucial to increasing physical activity participation amongst women. To date, research has focused on breast movement during running, but until breast movement is understood during different exercise modalities, the breast support requirements for specific activities are unknown. To understand breast support requirements during different exercise modalities, this study aimed to determine multiplanar breast kinematics during running, jumping and agility tasks. Sixteen 32D participants had markers attached to their right nipple and torso. Relative multiplanar breast displacement was calculated during bare-breasted treadmill running (10 kph), maximum countermovement jumping and an agility t-test. Exercise modality influenced the magnitude and direction of breast displacement, velocity and acceleration (p < .05). Jumping produced greater vertical breast displacement (.09 m) but less mediolateral breast displacement (.05 m) than running or the agility task, but agility tasks produced the highest multiplanar breast velocities and acceleration. Breast movement during jumping was predominantly in the vertical direction, whereas the agility task produced a greater percentage of mediolateral breast acceleration than running or jumping. Exercise modality impacted upon the magnitude and distribution of bare-breasted multiplanar breast kinematics in this homogenous 32D cohort. Therefore, to reduce breast movement in women of a 32D bra size, manufacturers may wish to design sport-specific products, with greater vertical support for exercise modalities incorporating jumping and greater mediolateral support for agility tasks.

  2. Dissecting new physics models through kinematic edges

    NASA Astrophysics Data System (ADS)

    Iyer, Abhishek M.; Maitra, Ushoshi

    2017-02-01

    Kinematic edges in the invariant mass distributions of different final state particles are typically a signal of new physics. In this work we propose a scenario wherein these edges could be utilized in discriminating between different classes of models. To this effect, we consider the resonant production of a heavy Higgs like resonance (H1) as a case study. Such states are a characteristic feature of many new physics scenarios beyond the standard model (SM). In the event of a discovery, it is essential to identify the true nature of the underlying theory. In this work we propose a channel, H1→t2t , where t2 is a vectorlike gauge singlet top-partner that decays into W b , Z t , h t . Invariant mass distributions constructed out of these final states are characterized by the presence of kinematic edges, which are unique to the topology under consideration. Further, since all the final state particles are SM states, the position in the edges of these invariant mass distributions can be used to exclusively determine the masses of the resonances. Observation of these features are meant to serve as a trigger, thereby mandating a more detailed analysis in a particular direction of parameter space. The absence of these edge like features, in the specific invariant mass distributions considered here, in minimal versions of supersymmetric models (MSSM) also serves as a harbinger of such non-MSSM-like scenarios.

  3. Against relative timing invariance in movement kinematics.

    PubMed

    Burgess-Limerick, R; Neal, R J; Abernethy, B

    1992-05-01

    The kinematics of stair climbing were examined to test the assertion that relative timing is an invariant feature of human gait. Six male and four female subjects were video-recorded (at 60 Hz) while they climbed a flight of stairs 10 times at each of three speeds. Each gait cycle was divided into three segments by the maximum and minimum angular displacement of the left knee and left foot contact. Gentner's (1987) analysis methods were applied to the individual subject data to determine whether the duration of the segments remained a fixed proportion of gait cycle duration across changes in stair-climbing speed. A similar analysis was performed using knee velocity maxima to partition the gait cycle. Regardless of how the gait cycle was divided, relative timing was not found to remain strictly invariant across changes in speed. This conclusion is contrary to previous studies of relative timing that involved less conservative analysis but is consistent with the wider gait literature. Strict invariant relative timing may not be a fundamental feature of movement kinematics.

  4. Friction Stir Welding at MSFC: Kinematics

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2001-01-01

    In 1991 The Welding Institute of the United Kingdom patented the Friction Stir Welding (FSW) process. In FSW a rotating pin-tool is inserted into a weld seam and literally stirs the faying surfaces together as it moves up the seam. By April 2000 the American Welding Society International Welding and Fabricating Exposition featured several exhibits of commercial FSW processes and the 81st Annual Convention devoted a technical session to the process. The FSW process is of interest to Marshall Space Flight Center (MSFC) as a means of avoiding hot-cracking problems presented by the 2195 aluminum-lithium alloy, which is the primary constituent of the Lightweight Space Shuttle External Tank. The process has been under development at MSFC for External Tank applications since the early 1990's. Early development of the FSW process proceeded by cut-and-try empirical methods. A substantial and complex body of data resulted. A theoretical model was wanted to deal with the complexity and reduce the data to concepts serviceable for process diagnostics, optimization, parameter selection, etc. A first step in understanding the FSW process is to determine the kinematics, i.e., the flow field in the metal in the vicinity of the pin-tool. Given the kinematics, the dynamics, i.e., the forces, can be targeted. Given a completed model of the FSW process, attempts at rational design of tools and selection of process parameters can be made.

  5. Stairclimbing kinematics on stairs of differing dimensions.

    PubMed

    Livingston, L A; Stevenson, J M; Olney, S J

    1991-05-01

    The purpose of this study was to provide a kinematic description of the task of stair ascent and descent. Fifteen women were divided into short, medium, and tall subject groups. Three testing staircases of different riser and tread dimensions were used. Temporal and cinematographic data were collected simultaneously via switchmats and a high-speed camera, respectively. Measures of stairclimbing gait cycle duration, swing and stance phase durations, cadence, and velocity appeared to be systematically related to subject height. Stance (19% to 64%) and swing (36% to 81%) phase durations varied considerably depending on stair dimensions during stair descent. Less variation was observed in stance (50% to 60%) and swing (40% to 50%) values during tasks of stair ascent. Individuals appeared to adjust to stair dimensions by varying the flexion/extension patterns of the knee rather than those of the ankle or hip. Depending on the staircase climbed, knee flexion angles ranging from 83 degrees to 105 degrees were required. Stair dimensions, therefore, appeared to influence the temporal and angular kinematics of the lower limb during stairclimbing.

  6. A Simplified Scheme for Kinematic Source Inversion

    NASA Astrophysics Data System (ADS)

    Iglesias, A.; Castro-Artola, O.; Singh, S.; Hjorleifsdottir, V.; Legrand, D.

    2013-05-01

    It is well known that different kinematic source inversion schemes lead to non-unique solutions. For this reason, a simplified scheme, which yields the main characteristics of the rupture process, rather than the details, may be desirable. In this work we propose a modification of the frequency-domain inversion scheme of Cotton & Campillo (1995) to extract kinematic parameters using simplified geometries (ellipses). The forward problem is re-parameterized by including one or two ellipses in which the displacement is smoothly distributed. For the ellipses we invert for the position of the centers within the fault plane, the major and minor semi-axes, the maximum displacements, the angles of rotation and a parameter that controls the distribution of slip. A simulated annealing scheme is used to invert near-source displacements. We first test the method on synthetic displacement records corresponding to the Guerrero-Oaxaca earthquake (20/03/2012, Mw=7.5) by comparing the results obtained from the modified technique with the original method. In the next step, we use displacements obtained by double numerical integration of recorded accelerograms. We find that, in spite of the simple geometry, the modified method leads to a good fit between observed and synthetic displacements and recovers the main rupture characteristics.

  7. Nuclear Rings in Galaxies - A Kinematic Perspective

    NASA Technical Reports Server (NTRS)

    Mazzuca, Lisa M.; Swaters, Robert A.; Knapen, Johan H.; Veilleux, Sylvain

    2011-01-01

    We combine DensePak integral field unit and TAURUS Fabry-Perot observations of 13 nuclear rings to show an interconnection between the kinematic properties of the rings and their resonant origin. The nuclear rings have regular and symmetric kinematics, and lack strong non-circular motions. This symmetry, coupled with a direct relationship between the position angles and ellipticities of the rings and those of their host galaxies, indicate the rings are in the same plane as the disc and are circular. From the rotation curves derived, we have estimated the compactness (v(sup 2)/r) up to the turnover radius, which is where the nuclear rings reside. We find that there is evidence of a correlation between compactness and ring width and size. Radially wide rings are less compact, and thus have lower mass concentration. The compactness increases as the ring width decreases. We also find that the nuclear ring size is dependent on the bar strength, with weaker bars allowing rings of any size to form.

  8. Relative kinematic orbit determination for Swarm satellites

    NASA Astrophysics Data System (ADS)

    Ren, Le; Schön, Steffen

    2017-04-01

    The Swarm mission launched on November 22, 2013 is ESA's first constellation of satellites to study the dynamics of the Earth's magnetic field and its interaction with the Earth system. This mission consists of three identical satellites in near-polar orbits, Swarm A and C flying almost side-by-side at an initial altitude of 460 km, Swarm B flying in a higher orbit of about 530 km. Each satellite is equipped with a high precision 8-channels dual-frequency GPS receiver for precise orbit determination. The three satellites formation opens up new opportunities to analyze the relative positioning. In this contribution, we will determine the relative kinematic orbits using the GPS double-difference method and compare the orbits with the absolute kinematic orbits. First results show that although the noise in the relative orbits are enlarged, the typical systematic oscillations in the absolute orbits can be removed. Our investigations revealed that carrier phase observations from the Swarm satellites can contain half cycle ambiguities; we propose solution for this complicated ambiguity resolution.

  9. The SPM Kinematic Catalogue of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    López, J. A.; Richer, M.; Riesgo, H.; Steffen, W.; Meaburn, J.; García-Segura, G.; Escalante, K.

    2006-06-01

    We present a progress report on the San Pedro Mártir Kinematic Catalogue of Planetary Nebulae. Both, galactic PNe from the disk, bulge and halo populations, and PNe from galaxies in the local group from a diverse range of metallicities have been observed. Most of the observations have been made with the 2.1-m SPM telescope and the Manchester Echelle Spectrometer (Meaburn et al. 2003, RevMexAA, 39, 185). The data consists of spatially resoved long slit spectra at resolutions of ˜ 10 km s^{-1}. For most galactic targets more than one slit positions has been observed. The interpretation of the 3D structures and outflows derived from the kinematic data is being performed with the aid of SHAPE (see the contributions by Steffen, López, & Escalante, Steffen & López in this symposium). This unique database of high dispersion spectra will allow a firm characterisation of nebular shell properties in relation to progenitors from diverse stellar populations.

  10. Kinematic analysis of a Duchenne smile.

    PubMed

    Jaffer, H; Ichesco, E; Gerstner, G E

    2016-04-01

    Facial expressions are communicative motor outputs, whose kinematics likely are due to musculoskeletal anatomy, neuromotor activity and the well-being and internal states of the individual. However, little has been published on the kinematics of facial expression. This study quantified lip, eye and cheek movements during the production of a Duchenne smile involving movement of lips and tissues surrounding the eyes. The three-dimensional positions of 20 markers placed around the eyes, cheeks, lips and chins of 24 young adult female subjects were digitized while they performed smiles after practicing to feedback from an investigator trained in the facial action coding system (FACS). Displacement, velocity and acceleration variables were extracted and analyzed from the markers. Results demonstrated several consistencies across subjects including: (1) relatively high peak velocities, accelerations and displacements for lip and cheek markers in the vertical and anteroposterior dimensions, (2) relatively large movements of the lower lateral eye region compared with other eye regions. The results indicate that there is significant movement in the anteroposterior dimension that is not observable in frontal views of the face alone. Copyright © 2015. Published by Elsevier Ltd.

  11. The Kinematics of Turbulent Boundary Layer Structure

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen Kern

    1991-01-01

    The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.

  12. Kinematics and Aerodynamics of Backward Flying Dragonflies

    NASA Astrophysics Data System (ADS)

    Bode-Oke, Ayodeji; Zeyghami, Samane; Dong, Haibo

    2015-11-01

    Highly maneuverable insects such as dragonflies have a wide range of flight capabilities; precise hovering, fast body reorientations, sideways flight and backward takeoff are only a few to mention. In this research, we closely examined the kinematics as well as aerodynamics of backward takeoff in dragonflies and compared them to those of forward takeoff. High speed videography and accurate 3D surface reconstruction techniques were employed to extract details of the wing and body motions as well as deformations during both flight modes. While the velocities of both forward and backward flights were similar, the body orientation as well as the wing kinematics showed large differences. Our results indicate that by tilting the stroke plane angle of the wings as well as changing the orientation of the body relative to the flight path, dragonflies control the direction of the flight like a helicopter. In addition, our detailed analysis of the flow in these flights shows important differences in the wake capture phenomena among these flight modes. This work is supported by NSF CBET-1313217.

  13. Heliostat kinematic system calibration using uncalibrated cameras

    NASA Astrophysics Data System (ADS)

    Burisch, Michael; Gomez, Luis; Olasolo, David; Villasante, Cristobal

    2017-06-01

    The efficiency of the solar field greatly depends on the ability of the heliostats to precisely reflect solar radiation onto a central receiver. To control the heliostats with such a precision accurate knowledge of the motion of each of them modeled as a kinematic system is required. Determining the parameters of this system for each heliostat by a calibration system is crucial for the efficient operation of the solar field. For small sized heliostats being able to make such a calibration in a fast and automatic manner is imperative as the solar field potentially contain tens or even hundreds of thousands of them. A calibration system which can rapidly recalibrate a whole solar field would also allow reducing costs. Heliostats are generally designed to provide stability over a large period of time. Being able to relax this requirement and compensate any occurring error by adapting parameters in a model, the costs of the heliostat can be reduced. The presented method describes such an automatic calibration system using uncalibrated cameras rigidly attached to each heliostat. The cameras are used to observe targets spread out through the solar field; based on this the kinematic system of the heliostat can be estimated with high precision. A comparison of this approach to similar solutions shows the viability of the proposed solution.

  14. Kinematics of Signature Writing in Healthy Aging*

    PubMed Central

    Caligiuri, Michael P.; Kim, Chi; Landy, Kelly M.

    2014-01-01

    Forensic document examiners (FDE) called upon to distinguish a genuine from a forged signature of an elderly person are often required to consider the question of age-related deterioration and whether the available exemplars reliably capture the natural effects of aging of the original writer. An understanding of the statistical relationship between advanced age and handwriting movements can reduce the uncertainty that may exist in an examiner’s approach to questioned signatures formed by elderly writers. The primary purpose of this study was to systematically examine age-related changes in signature kinematics in healthy writers. Forty-two healthy subjects between the ages of 60–91 years participated in this study. Signatures were recorded using a digitizing tablet and commercial software was used to examine the temporal and spatial stroke kinematics and pen pressure. Results indicated that vertical stroke duration and dysfluency increased with age, whereas vertical stroke amplitude and velocity decreased with age. Pen pressure decreased with age. We found that a linear model characterized the best-fit relationship between advanced age and handwriting movement parameters for signature formation. Male writers exhibited stronger age effects than female writers, especially for pen pressure and stroke dysfluency. The present study contributes to an understanding of how advanced age alters signature formation in otherwise healthy adults. PMID:24673648

  15. Kinematically consistent models of viscoelastic stress evolution

    NASA Astrophysics Data System (ADS)

    DeVries, Phoebe M. R.; Meade, Brendan J.

    2016-05-01

    Following large earthquakes, coseismic stresses at the base of the seismogenic zone may induce rapid viscoelastic deformation in the lower crust and upper mantle. As stresses diffuse away from the primary slip surface in these lower layers, the magnitudes of stress at distant locations (>1 fault length away) may slowly increase. This stress relaxation process has been used to explain delayed earthquake triggering sequences like the 1992 Mw = 7.3 Landers and 1999 Mw = 7.1 Hector Mine earthquakes in California. However, a conceptual difficulty associated with these models is that the magnitudes of stresses asymptote to constant values over long time scales. This effect introduces persistent perturbations to the total stress field over many earthquake cycles. Here we present a kinematically consistent viscoelastic stress transfer model where the total perturbation to the stress field at the end of the earthquake cycle is zero everywhere. With kinematically consistent models, hypotheses about the potential likelihood of viscoelastically triggered earthquakes may be based on the timing of stress maxima, rather than on any arbitrary or empirically constrained stress thresholds. Based on these models, we infer that earthquakes triggered by viscoelastic earthquake cycle effects may be most likely to occur during the first 50% of the earthquake cycle regardless of the assumed long-term and transient viscosities.

  16. THE KINEMATICS OF PRIMATE MIDFOOT FLEXIBILITY

    PubMed Central

    Greiner, Thomas M.; Ball, Kevin A.

    2015-01-01

    This study describes a unique assessment of primate intrinsic foot joint kinematics based upon bone pin rigid cluster tracking. It challenges the assumption that human evolution resulted in a reduction of midfoot flexibility, which has been identified in other primates as the “midtarsal break.” Rigid cluster pins were inserted into the foot bones of human, chimpanzee, baboon and macaque cadavers. The positions of these bone pins were monitored during a plantarflexion-dorsiflexion movement cycle. Analysis resolved flexion-extension movement patterns and the associated orientation of rotational axes for the talonavicular, calcaneocuboid and lateral cubometatarsal joints. Results show that midfoot flexibility occurs primarily at the talonavicular and cubometatarsal joints. The rotational magnitudes are roughly similar between humans and chimps. There is also a similarity among evaluated primates in the observed rotations of the lateral cubometatarsal joint, but there was much greater rotation observed for the talonavicular joint, which may serve to differentiate monkeys from the hominines. It appears that the capability for a midtarsal break is present within the human foot. A consideration of the joint axes shows that the medial and lateral joints have opposing orientations, which has been associated with a rigid locking mechanism in the human foot. However, the potential for this same mechanism also appears in the chimpanzee foot. These findings demonstrate a functional similarity within the midfoot of the hominines. Therefore, the kinematic capabilities and restrictions for the skeletal linkages of the human foot may not be as unique as has been previously suggested. PMID:25234343

  17. Kinematic criterion for breaking of shoaling waves

    NASA Astrophysics Data System (ADS)

    Liberzon, Dan; Itay, Uri

    2016-11-01

    Validity of a kinematic criterion for breaking of shoaling waves was examined experimentally. Results obtained by simultaneous measurements of water surface velocity by PTV and of the propagation velocity of a steep crest up to the point of breaking inception during shoaling will be reported. The experiments performed in a large wave tank examining breaking behavior of gentle spillers during shoaling on three different slopes suggest a validity of the recently proposed kinematic criterion. The breaking inception was found to occur when the horizontal velocity of the water surface on the steep (local steepness of 0.41-0.6) crest reaches a threshold value of 0.85-0.95 of that of the crest propagation. The exact moment and position of breaking inception detected using a Phase Time Method (PTM), characterizing a unique shape of the local frequency fluctuations at the inception. Future implementation of the PTM method for detection of breaking events in irregular wave fields will be discussed. Supported by German-Israeli Foundation for Scientific Research and Development (GIF) Grant #2019392.

  18. Are there a guidelines for implantable spinal cord stimulator therapy in patients using chronic anticoagulation therapy? - A review of decision-making in the high-risk patient

    PubMed Central

    Ghaly, Ramsis F.; Lissounov, Alexei; Candido, Kenneth D.; Knezevic, Nebojsa Nick

    2016-01-01

    Background: Spinal cord stimulators (SCSs) are gaining increasing indications and utility in an expanding variety of clinical conditions. Complications and initial expenses have historically prevented the early use of SCS therapy despite ongoing efforts to educate and promote its utilization. At present, there exists no literature evidence of SCS implantation in a chronically anticoagulated patient, and neuromodulation manufacturers are conspicuously silent in providing warnings or recommendations in the face of anticoagulant use chronically. It would appear as through these issues demand scrutiny and industry as well as neuromodulation society advocacy and support in terms of the provision of coherent guidelines on how to proceed. Case Description: A 79-year-old male returned to the neurosurgical clinic with persistent low back pain and leg heaviness due to adjacent level degenerative spondylosis and severe thoracic spinal stenosis. The patient had a notable history of multiple comorbidities along with atrial fibrillation requiring chronic anticoagulation. On initial presentation, he was educated with three choice of conservative medical therapy, intrathecal drug delivery system implantation, or additional lumbar decompression laminectomy with instrumented fusion of T10-L3 and a palliative surgical lead SCS implantation. Description: A 79-year-old male returned to the neurosurgical clinic with persistent low back pain and leg heaviness due to adjacent level degenerative spondylosis and severe thoracic spinal stenosis. The patient had a notable history of multiple comorbidities along with atrial fibrillation requiring chronic anticoagulation. On initial presentation, he was educated with three choice of conservative medical therapy, intrathecal drug delivery system implantation, or additional lumbar decompression laminectomy with instrumented fusion of T10-L3 and a palliative surgical lead SCS implantation. Conclusion: Our literature search did not reveal any

  19. Lumbar spinal loading during bowling in cricket: a kinetic analysis using a musculoskeletal modelling approach.

    PubMed

    Zhang, Yanxin; Ma, Ye; Liu, Guangyu

    2016-01-01

    The objective of the study was to evaluate two types of cricket bowling techniques by comparing the lumbar spinal loading using a musculoskeletal modelling approach. Three-dimensional kinematic data were recorded by a Vicon motion capture system under two cricket bowling conditions: (1) participants bowled at their absolute maximal speeds (max condition), and (2) participants bowled at their absolute maximal speeds while simultaneously forcing their navel down towards their thighs starting just prior to ball release (max-trunk condition). A three-dimensional musculoskeletal model comprised of the pelvis, sacrum, lumbar vertebrae and torso segments, which enabled the motion of the individual lumbar vertebrae in the sagittal, frontal and coronal planes to be actuated by 210 muscle-tendon units, was used to simulate spinal loading based on the recorded kinematic data. The maximal lumbar spine compressive force is 4.89 ± 0.88BW for the max condition and 4.58 ± 0.54BW for the max-trunk condition. Results showed that there was no significant difference between the two techniques in trunk moments and lumbar spine forces. This indicates that the max-trunk technique may not increase lower back injury risks. The method proposed in this study could be served as a tool to evaluate lower back injury risks for cricket bowling as well as other throwing activities.

  20. Spinal motion and intradiscal pressure measurements before and after lumbar spine instrumentation with titanium or PEEK rods.

    PubMed

    Abode-Iyamah, Kingsley; Kim, Sam Byeong; Grosland, Nicole; Kumar, Rajinder; Belirgen, Muhittin; Lim, Tae Hong; Torner, James; Hitchon, Patrick W

    2014-04-01

    Spinal instrumentation and fusion have been incriminated as contributing to adjacent segment degeneration (ASD). It has been suggested that ASD results from increased range of motion and intradiscal pressure (IDP) adjacent to instrumentation. Posterior dynamic stabilization with polyetheretherketone (PEEK) rods has been proposed as potentially advantageous compared to rigid instrumentation with titanium (Ti) rods in reducing the incidence of ASD. We evaluated segmental motions in the cadaveric spine instrumented with PEEK or Ti rods from L3 to S1, as well as the adjacent segment motions and IDP at L1-2 and L2-3. Human cadaveric spines were potted at T12-L1 and S1-2. Spinal instrumentation from L3-S1 was accomplished using pedicle screws with either PEEK or Ti rods. Specimens were subjected to displacement controlled testing: 15° flexion, 15° extension, 10° lateral bending, and 5° right axial rotation using the MTS machine (MTS, Minneapolis, MN, USA). Intradiscal pressure was measured by placing pressure transducers into the intervertebral disc at L1-2 and L2-3. Spinal motion of L2 relative to L3, and L3 relative to S1 was tracked using a three dimensional motion analysis system. Instrumentation with PEEK and Ti rods was associated with a decrease in L3-S1 motion compared to the intact state that was significant in flexion (p=0.002), and extension (p=0.0075). Instrumentation with PEEK and Ti rods was associated with an increase in IDP at L1-2 that was significant in flexion (p=0.0028). Instrumentation with either PEEK or Ti rods resulted in decreased motion at the instrumented levels while increasing IDP at the adjacent level. Published by Elsevier Ltd.

  1. Therapeutic approaches for spinal cord injury

    PubMed Central

    Cristante, Alexandre Fogaça; de Barros Filho, Tarcísio Eloy Pessoa; Marcon, Raphael Martus; Letaif, Olavo Biraghi; da Rocha, Ivan Dias

    2012-01-01

    This study reviews the literature concerning possible therapeutic approaches for spinal cord injury. Spinal cord injury is a disabling and irreversible condition that has high economic and social costs. There are both primary and secondary mechanisms of damage to the spinal cord. The primary lesion is the mechanical injury itself. The secondary lesion results from one or more biochemical and cellular processes that are triggered by the primary lesion. The frustration of health professionals in treating a severe spinal cord injury was described in 1700 BC in an Egyptian surgical papyrus that was translated by Edwin Smith; the papyrus reported spinal fractures as a “disease that should not be treated.” Over the last two decades, several studies have been performed to obtain more effective treatments for spinal cord injury. Most of these studies approach a patient with acute spinal cord injury in one of four manners: corrective surgery or a physical, biological or pharmacological treatment method. Science is unraveling the mechanisms of cell protection and neuroregeneration, but clinically, we only provide supportive care for patients with spinal cord injuries. By combining these treatments, researchers attempt to enhance the functional recovery of patients with spinal cord injuries. Advances in the last decade have allowed us to encourage the development of experimental studies in the field of spinal cord regeneration. The combination of several therapeutic strategies should, at minimum, allow for partial functional recoveries for these patients, which could improve their quality of life. PMID:23070351

  2. Regeneration of descending projections to the spinal motor neurons after spinal hemisection in the goldfish.

    PubMed

    Takeda, Akihito; Goris, Richard C; Funakoshi, Kengo

    2007-06-25

    Following spinal transection, descending spinal projections from goldfish brainstem neurons spontaneously regenerate beyond the lesion site. The nucleus of the medial longitudinal fasciculus (nFLM), which has a critical role in swimming, also sends regenerated axons over a long distance to the ipsilateral spinal cord. To examine whether regenerated axons re-innervate the appropriate targets, we injected rhodamine dextran amine (RDA) into the nFLM of spinally transected goldfish and examined anterogradely labeled axons in the spinal cord. In intact controls, there were many RDA-labeled boutons or varicosities in the spinal cord in close apposition to both neurons positive for calcitonin gene-related peptide (CGRP), and those negative for CGRP. This suggests that the nFLM neurons project axons directly to the motoneurons and interneurons in the spinal cord. Four days after hemisection 1 mm caudal to the rostral end of the spinal cord, the number of RDA-labeled boutons in close apposition to the spinal neurons was significantly decreased on the side ipsilateral to the injection. Six to twelve weeks after spinal hemisection, regenerated axons ran through the repaired lesion site, and the number of RDA-labeled boutons or varicosities in close apposition to the ipsilateral spinal neurons had returned to the control level. These findings suggest that the midbrain-spinal pathway, critical for locomotion in fish, spontaneously regenerates beyond the lesion site to re-innervate the appropriately innervated targets after spinal lesion.

  3. Tandem Spinal Stenosis: A Systematic Review.

    PubMed

    Overley, Samuel C; Kim, Jun S; Gogel, Brooke A; Merrill, Robert K; Hecht, Andrew C

    2017-09-05

    Tandem spinal stenosis refers to spinal canal diameter narrowing in at least 2 distinct regions of the spine, most commonly the lumbar and cervical regions. This entity can be an asymptomatic radiographic finding, or it can present with severe myelopathy and lower-extremity symptoms. Tandem spinal stenosis may impact surgeon decision-making when planning either cervical or lumbar spine surgery, and there is currently no consensus in the literature regarding the treatment algorithm for operative intervention. A MEDLINE literature search was performed using PubMed, the Cochrane Database of Systematic Reviews, and Embase from January 1980 to February 2015 using Medical Subject Heading queries for the terms "tandem spinal stenosis," "cervical stenosis AND lumbar stenosis," and "concomitant spinal stenosis." We included studies involving adult patients, tandem spinal stenosis of the cervical and lumbar regions, and a minimum of 5 patients. Articles that did not discuss spinal disorders or only explored disorders at a single spinal region were excluded. The initial database review resulted in 234 articles. After abstracts were reviewed, only 17 articles that met inclusion criteria were identified: 2 cadaveric studies, 5 clinical studies of patients with radiographic tandem spinal stenosis, and 10 clinical studies of patients with symptomatic tandem spinal stenosis. Tandem spinal stenosis is a common condition present in up to 60% of patients with spinal stenosis. This disorder, however, is often overlooked, which can lead to serious complications. Identification of tandem spinal stenosis is paramount as a first step in management and, although there is still no preferred intervention, both staged and simultaneous procedures have been shown to be effective. Surgeons may utilize a single, staged, or combined approach to decompression, always addressing cervical myelopathy as a priority.

  4. Spontaneous Spinal Epidural Hematoma on the Ventral Portion of Whole Spinal Canal: A Case Report

    PubMed Central

    Lee, Hyun-Ho; Kim, Young; Ha, Young-Soo

    2015-01-01

    Spontaneous spinal epidural hematoma is an uncommon but disabling disease. This paper reports a case of spontaneous spinal epidural hematoma and treatment by surgical management. A 32-year-old male presented with a 30-minute history of sudden headache, back pain, chest pain, and progressive quadriplegia. Whole-spinal sagittal magnetic resonance imaging (MRI) revealed spinal epidural hematoma on the ventral portion of the spinal canal. Total laminectomy from T5 to T7 was performed, and hematoma located at the ventral portion of the spinal cord was evacuated. Epidural drainages were inserted in the upper and lower epidural spaces. The patient improved sufficiently to ambulate, and paresthesia was fully recovered. Spontaneous spinal epidural hematoma should be considered when patients present symptoms of spinal cord compression after sudden back pain or chest pain. To prevent permanent neurologic deficits, early and correct diagnosis with timely surgical management is necessary. PMID:26512277

  5. Zero-Inertial Recession for a Kinematic Wave Model

    USDA-ARS?s Scientific Manuscript database

    Kinematic-wave models of surface irrigation assume a fixed relationship between depth and discharge (typically, normal depth). When surface irrigation inflow is cut off, the calculated upstream flow depth goes to zero, since the discharge is zero. For short time steps, use of the Kinematic Wave mode...

  6. Kinematics Card Sort Activity: Insight into Students' Thinking

    ERIC Educational Resources Information Center

    Berryhill, Erin; Herrington, Deborah; Oliver, Keith

    2016-01-01

    Kinematics is a topic students are unknowingly aware of well before entering the physics classroom. Students observe motion on a daily basis. They are constantly interpreting and making sense of their observations, unintentionally building their own understanding of kinematics before receiving any formal instruction. Unfortunately, when students…

  7. A School Experiment in Kinematics: Shooting from a Ballistic Cart

    ERIC Educational Resources Information Center

    Kranjc, T.; Razpet, N.

    2011-01-01

    Many physics textbooks start with kinematics. In the lab, students observe the motions, describe and make predictions, and get acquainted with basic kinematics quantities and their meaning. Then they can perform calculations and compare the results with experimental findings. In this paper we describe an experiment that is not often done, but is…

  8. Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease

    ERIC Educational Resources Information Center

    Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai

    2012-01-01

    Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…

  9. Lingual Kinematics during Rapid Syllable Repetition in Parkinson's Disease

    ERIC Educational Resources Information Center

    Wong, Min Ney; Murdoch, Bruce E.; Whelan, Brooke-Mai

    2012-01-01

    Background: Rapid syllable repetition tasks are commonly used in the assessment of motor speech disorders. However, little is known about the articulatory kinematics during rapid syllable repetition in individuals with Parkinson's disease (PD). Aims: To investigate and compare lingual kinematics during rapid syllable repetition in dysarthric…

  10. Kinematics Card Sort Activity: Insight into Students' Thinking

    ERIC Educational Resources Information Center

    Berryhill, Erin; Herrington, Deborah; Oliver, Keith

    2016-01-01

    Kinematics is a topic students are unknowingly aware of well before entering the physics classroom. Students observe motion on a daily basis. They are constantly interpreting and making sense of their observations, unintentionally building their own understanding of kinematics before receiving any formal instruction. Unfortunately, when students…

  11. Kinematic Signatures of Telic and Atelic Events in ASL Predicates

    ERIC Educational Resources Information Center

    Malaia, Evie; Wilbur, Ronnie B.

    2012-01-01

    This article presents an experimental investigation of kinematics of verb sign production in American Sign Language (ASL) using motion capture data. The results confirm that event structure differences in the meaning of the verbs are reflected in the kinematic formation: for example, in the telic verbs (throw, hit), the end-point of the event is…

  12. A School Experiment in Kinematics: Shooting from a Ballistic Cart

    ERIC Educational Resources Information Center

    Kranjc, T.; Razpet, N.

    2011-01-01

    Many physics textbooks start with kinematics. In the lab, students observe the motions, describe and make predictions, and get acquainted with basic kinematics quantities and their meaning. Then they can perform calculations and compare the results with experimental findings. In this paper we describe an experiment that is not often done, but is…

  13. Kinematic Signatures of Telic and Atelic Events in ASL Predicates

    ERIC Educational Resources Information Center

    Malaia, Evie; Wilbur, Ronnie B.

    2012-01-01

    This article presents an experimental investigation of kinematics of verb sign production in American Sign Language (ASL) using motion capture data. The results confirm that event structure differences in the meaning of the verbs are reflected in the kinematic formation: for example, in the telic verbs (throw, hit), the end-point of the event is…

  14. Deployable antenna kinematics using tensegrity structure design

    NASA Astrophysics Data System (ADS)

    Knight, Byron Franklin

    With vast changes in spacecraft development over the last decade, a new, cheaper approach was needed for deployable kinematic systems such as parabolic antenna reflectors. Historically, these mesh-surface reflectors have resembled folded umbrellas, with incremental redesigns utilized to save packaging size. These systems are typically over-constrained designs, the assumption being that high reliability necessary for space operations requires this level of conservatism. But with the rapid commercialization of space, smaller launch platforms and satellite buses have demanded much higher efficiency from all space equipment than can be achieved through this incremental approach. This work applies an approach called tensegrity to deployable antenna development. Kenneth Snelson, a student of R. Buckminster Fuller, invented Tensegrity structures in 1948. Such structures use a minimum number of compression members (struts); stability is maintain using tension members (ties). The novelty introduced in this work is that the ties are elastic, allowing the struts to extend or contract, and in this way changing the surface of the antenna. Previously, the University of Florida developed an approach to quantify the stability and motion of parallel manipulators. This approach was applied to deployable, tensegrity, antenna structures. Based on the kinematic analyses for the 3-3 (octahedron) and 4-4 (square anti-prism) structures, the 6-6 (hexagonal anti-prism) analysis was completed which establishes usable structural parameters. The primary objective for this work was to prove the stability of this class of deployable structures, and their potential application to space structures. The secondary objective is to define special motions for tensegrity antennas, to meet the subsystem design requirements, such as addressing multiple antenna-feed locations. This work combines the historical experiences of the artist (Snelson), the mathematician (Ball), and the space systems engineer

  15. Monitoring diver kinematics with dielectric elastomer sensors

    NASA Astrophysics Data System (ADS)

    Walker, Christopher R.; Anderson, Iain A.

    2017-04-01

    Diving, initially motivated for food purposes, is crucial to the oil and gas industry, search and rescue, and is even done recreationally by millions of people. There is a growing need however, to monitor the health and activity of divers. The Divers Alert Network has reported on average 90 fatalities per year since 1980. Furthermore an estimated 1000 divers require recompression treatment for dive-related injuries every year. One means of monitoring diver activity is to integrate strain sensors into a wetsuit. This would provide kinematic information on the diver potentially improving buoyancy control assessment, providing a platform for gesture communication, detecting panic attacks and monitoring diver fatigue. To explore diver kinematic monitoring we have coupled dielectric elastomer sensors to a wetsuit worn by the pilot of a human-powered wet submarine. This provided a unique platform to test the performance and accuracy of dielectric elastomer strain sensors in an underwater application. The aim of this study was to assess the ability of strain sensors to monitor the kinematics of a diver. This study was in collaboration with the University of Auckland's human-powered submarine team, Team Taniwha. The pilot, completely encapsulated in a hull, pedals to propel the submarine forward. Therefore this study focused on leg motion as that is the primary motion of the submarine pilot. Four carbon-filled silicone dielectric elastomer sensors were fabricated and coupled to the pilot's wetsuit. The first two sensors were attached over the knee joints, with the remaining two attached between the pelvis and thigh. The goal was to accurately measure leg joint angles thereby determining the position of each leg relative to the hip. A floating data acquisition unit monitored the sensors and transmitted data packets to a nearby computer for real-time processing. A GoPro Hero 4 silver edition was used to capture the experiments and provide a means of post-validation. The

  16. Kinematics of the chest cage and spine during breathing in healthy individuals and in patients with adolescent idiopathic scoliosis.

    PubMed

    Leong, J C; Lu, W W; Luk, K D; Karlberg, E M

    1999-07-01

    The lung function test by a Plethysmograph enabled calculations to be made of the total lung capacity and vital capacity. A Motion Analysis System (Elite, BTS Inc., Milano, Italy) was used to observe and record chest cage and spinal movements and as to correlate lung function with the chest cage and spine kinematics. To determine the three-dimensional kinematics and the shape and size changes of the chest cage and thoracic spine motion during deep breathing in healthy and scoliotic individuals. Lateral flexion plus rotation of the involved vertebrae around a vertical axis causing a decrease in lung function is the main disfigurement of scoliosis. Reports show that even after spinal fusion, reduced vital capacity associated with an increased residual volume are detected. Factors such as angle of scoliosis, length of the spinal column involved, and duration of the deformity influence pulmonary function but do not significantly affect its reduction. Mechanical inefficiency during breathing has not been studied. Three-dimensional kinematics of the chest cage and spine during breathing were studied in 41 scoliotic patients and in 20 healthy individuals. Three-dimensional chest cage motions relative to the spine and thoracic spine motions relative to T12 were calculated. To examine stiffness of the spine, lateral bending angles were calculated. The lung function test, which including spirometry and lung subdivision, also was performed for the scoliotic patients. Significant differences (P < 0.05) were found in the movements of the upper level of the chest cage in anteroposterior and vertical directions, ranging from 16.7 to 28.6 mm in healthy individuals and from 12.1 to 24.2 mm in scoliotic patients. The thoracic spine displayed two-dimensional movements posteriorly and vertically during breathing, whereas less movement was seen in scoliotic patients. In addition, overall the scoliotic spine showed signs of stiffness in lateral bending. The range of movement of the

  17. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation

    PubMed Central

    Yue, James J.; Garcia, Rolando; Basson, Janet; Schwiesau, Jens; Fritz, Bernhard; Blömer, Wilhelm

    2008-01-01

    Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ® L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISOinitial = 2.7 ± 0.3 mg/million cycles. During the ASTM test period (10–15 million cycles) a gravimetric wear rate of 0.14 ± 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar

  18. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation.

    PubMed

    Grupp, Thomas M; Yue, James J; Garcia, Rolando; Basson, Janet; Schwiesau, Jens; Fritz, Bernhard; Blömer, Wilhelm

    2009-01-01

    Wear simulation is an essential pre-clinical method to predict the mid- and long-term clinical wear behavior of newly introduced devices for total disc arthroplasty. The main requirement of a suitable method for spinal wear simulation has to be the ability to distinguish between design concepts and allow for a direct comparison of predicate devices. The objective of our study was to investigate the influence of loading and kinematic patterns based on two different protocols for spinal wear simulation (ISO/FDIS 18192-1 (2006) and ASTM F2423-05). In vitro wear simulation was performed with six activ L lumbar artificial disc devices (Aesculap Tuttlingen, Germany). The applied kinematic pattern of movement was multidirectional for ISO (elliptic track) and unidirectional with a curvilinear shape for ASTM. Testing was done for 10 million cycles in the ISO loading mode and afterwards with the same specimens for 5 million cycles according to the ASTM protocol with a customized six-station servohydraulic spinal wear simulator (EndoLab Thansau, Germany). Gravimetrical and geometrical wear assessment, a slide track analysis correlated to an optical surface characterization, and an estimation of particle size and morphology were performed. The gravimetric wear rate for the first 10 million cycles was ISO(initial) = 2.7 +/- 0.3 mg/million cycles. During the ASTM test period (10-15 million cycles) a gravimetric wear rate of 0.14 +/- 0.06 mg/million cycles was estimated. The wear rates between the ISO and ASTM driven simulations differ substantially (approximately 20-fold) and statistical analysis demonstrates a significant difference (p < 0.001) between the test groups. The main explanation of divergency between ISO and ASTM driven wear simulations is the multidirectional pattern of movement described in the ISO document resulting in a cross-shear stress on the polyethylene material. Due to previous retrieval observations, it seems to be very unlikely that a lumbar artificial

  19. Part 1: recognizing neonatal spinal cord injury.

    PubMed

    Brand, M Colleen

    2006-02-01

    Neonatal spinal cord injury can occur in utero, as well as after either a difficult delivery or a nontraumatic delivery. Spinal cord injury can also be related to invasive nursery procedures or underlying neonatal pathology. Early clinical signs of spinal cord injury that has occurred in utero or at delivery includes severe respiratory compromise and profound hypotonia. Knowledge of risk factors and awareness of symptoms is required for early recognition and appropriate treatment. This article reviews the embryological development of the spinal column highlighting mechanisms of injury and identifying underlying factors that increase the risk of spinal cord injury in newborns. Signs and symptoms of injury, cervical spine immobilization, and the differential diagnosis are discussed. Nursing implications, general prognosis, and research in spinal cord injury are provided.

  20. Recurrent spinal meningioma: a case report.

    PubMed

    Choi, Hoi Jung; Paeng, Sung Hwa; Kim, Sung Tae; Jung, Yong Tae

    2012-09-01

    Meningiomas are the second most common intradural spinal tumors accounting for 25% of all spinal tumors. Being a slow growing and invariably benign tumor, it responds favorably to surgical excision. In addition, spinal meningioma has low recurrence rates. However, we experienced a case of intradural extramedullary spinal meningioma which recurred 16 years after the initial surgery on a 64-year-old woman. She presented with progressive neurological symptoms and had a surgical history of removal of thoracic spinal meningioma 16 years ago due to bilateral low leg weakness. She underwent a second operation at the same site and a pale yellowish tumor was excised, which was histopathologically confirmed as meningothelial meningioma, compared with previously transitional type. she showed neurological recovery after the operation. We, therefore, report the good results of this recurrent intradural spinal meningioma case developed after 16 years with literature review.