Science.gov

Sample records for adjoining cultivated field

  1. The transformation of nitrogen in soil under Robinia Pseudacacia shelterbelt and in adjoining cultivated field

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Gaca, W.

    2009-04-01

    The shelterbelts perform more than twenty different functions favorable to the environment, human economy, health and culture. The most important for agricultural landscape is increase of water retention, purification of ground waters and prevent of pollution spread in the landscape, restriction of wind and water erosion effects, isolation of polluting elements in the landscape, preservation of biological diversity in agricultural areas and mitigation of effects of unfavorable climatic phenomena. Denitrification is defined as the reduction of nitrate or nitrite coupled to electron transport phosphorylation resulting in gaseous N either as molecular N2 or as an oxide of N. High content of moisture, low oxygen, neutral and basic pH favour the denitrification. Nitrate reductase is an important enzyme involved in the process of denitrification. The reduction of nitrate to nitrite is catalyzed by nitrate reductase. Nitrite reductase is catalyzed reduction nitrite to nitrous oxide. The conversion of N2O to N2 is catalyzed by nitrous oxide reductase. This process leads to the lost of nitrogen in soil mainly in the form of N2 and N2O. Nitrous oxide is a greenhouse gas which cause significant depletion of the Earth's stratospheric ozone layer. The investigations were carried out in Dezydery Chlapowski Agroecological Landscape Park in Turew (40 km South-West of Poznań, West Polish Lowland). Our investigations were focused on the soils under Robinia pseudacacia shelterbelt and in adjoining cultivated field. The afforestation was created 200 years ago and it is consist of mainly Robinia pseudacacia with admixture of Quercus petraea and Quercus robur. This shelterbelt and adjoining cultivated field are located on grey-brown podzolic soil. The aim of this study is to present information on the changes of nitrate reductase activity in soil with admixture urea (organic form of nitrogen) in two different concentrations 0,25% N and 0,5% N. Our results have shown that this process

  2. BARN IN SETTING FROM ADJOINING FIELD, LOOKING NORTHEAST. The photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BARN IN SETTING FROM ADJOINING FIELD, LOOKING NORTHEAST. The photograph was taken from the east side of the hedgerow along Fort Casey Road. Also shown are the mechanic’s shop, to the west of the barn; the tractor shed, directly south of the shop; and the monitor-roofed hay and lambing barn to the east. The Hugh Crockett house sat between the tractor shed and the hay and lambing barn. Only its chimney remains. - Boyer Farm, 711 South Fort Casey Road, Coupeville, Island County, WA

  3. Incremental Parsing with Adjoining Operation

    NASA Astrophysics Data System (ADS)

    Kato, Yoshihide; Matsubara, Shigeki

    This paper describes an incremental parser based on an adjoining operation. By using the operation, we can avoid the problem of infinite local ambiguity. This paper further proposes a restricted version of the adjoining operation, which preserves lexical dependencies of partial parse trees. Our experimental results showed that the restriction enhances the accuracy of the incremental parsing.

  4. Application of Virtual Manufacturing in Fields Cultivate Machines

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Li, Yan; Li, Zhou

    The paper introduces virtual manufacturing application in the Fields Cultivate Machines and mainly discusses the model-building of rotary-cultivate part, physical model and mathematical model included. With the model, the rotary knife is optimized, the force on the bend part is decreased, and therefore, the service life is prolonged. At the same time, with dynamic analysis software Adams, the moment curve of the rotary knife is simulated, which provides a basis for the improvement of stability and farther research in future.

  5. Seaweed cultivation: A new applied field for biotechnology

    NASA Astrophysics Data System (ADS)

    Fei, Xiu-Geng; Lu, Shan; Bao, Ying

    1998-03-01

    Seaweeds cultivation has resulted in great achievements, although it has a history of only a few decades. With higher productivity and resulting higher profit, it has become the leading marine exploitation industry with the brightest prospects. The relatively limited species introduced for commercial cultivation showed great biological diversity. Introduction of selected good strains for traditional cultivation and the transformation from cultivation of mixed strains to that of pure cell lines are two certain tendencies in the future. Pure line cultivation of seaweeds in a sort of advanced biotechnology. It provides new opportunities for not only the industry itself, but also the stable market of high quality natural marine products. More work should be done on principles and methods to obtain optimal results from the combination of pure line cultivation techniques with advanced biochemistry. The programmed batch production of fine chemicals such as polysaccharides and proteins will probably become the social demand.

  6. Yam (Dioscorea) husbandry: cultivating yams in the field or greenhouse.

    PubMed

    Mignouna, Hodeba D; Abang, Mathew M; Asiedu, Robert; Geeta, R

    2009-11-01

    This protocol describes how to cultivate yams (Dioscorea) in the field or greenhouse. It refers especially to the tropical food species but it will also work for temperate species. The tropical food species of Dioscorea grow in warm, sunny climates with temperatures between 25 degrees C and 30 degrees C. Short days of 10-11 h result in tuber formation, while days longer than 12 h favor vine growth. Yams require deep, loose, textured loamy soil that is rich in organic matter. They are best planted at the beginning of the rainy season. Mulch around the planted sets protects them from excessive heat and desiccation, especially in areas with hot temperatures and dry weather. It also adds organic matter to the soil, prevents soil erosion, preserves water in the soil, and increases microbial activity in the soil. Yams do not tolerate waterlogged conditions. It is important to stake the plants to allow full exposure of their leaves to light for photosynthetic activity and to reduce disease.

  7. Novel Field Data on Phytoextraction: Pre-Cultivation With Salix Reduces Cadmium in Wheat Grains.

    PubMed

    Greger, Maria; Landberg, Tommy

    2015-01-01

    Cadmium (Cd) is a health hazard, and up to 43% of human Cd intake comes from wheat products, since Cd accumulates in wheat grains. Salix spp. are high-accumulators of Cd and is suggested for Cd phytoextraction from agricultural soils. We demonstrate, in field, that Salix viminalis can remove Cd from agricultural soils and thereby reduce Cd accumulation in grains of wheat subsequently grown in a Salix-treated field. Four years of Salix cultivation reduce Cd concentration in the soil by up to 27% and in grains of the post-cultivated wheat by up to 33%. The higher the plant density of the Salix, the greater the Cd removal from the soil and the lower the Cd concentration in the grains of post-cultivated wheat, the Cd reduction remaining stable several years after Salix cultivation. The effect occurred in both sandy and clayey soil and in winter and spring bread wheat cultivars. Already one year of Salix cultivation significantly decrease Cd in post grown wheat grains. With this field experiment we have demonstrated that phytoextraction can reduce accumulation of a pollutant in post-cultivated wheat and that phytoextraction has no other observed effect on post-cultivated crops than reduced uptake of the removed pollutant.

  8. Bacterial Diversity and Community Structure in Korean Ginseng Field Soil Are Shifted by Cultivation Time

    PubMed Central

    Hoang, Van-An; Subramaniyam, Sathiyamoorthy; Kang, Jong-Pyo; Kang, Chang Ho; Yang, Deok-Chun

    2016-01-01

    Traditional molecular methods have been used to examine bacterial communities in ginseng-cultivated soil samples in a time-dependent manner. Despite these efforts, our understanding of the bacterial community is still inadequate. Therefore, in this study, a high-throughput sequencing approach was employed to investigate bacterial diversity in various ginseng field soil samples over cultivation times of 2, 4, and 6 years in the first and second rounds of cultivation. We used non-cultivated soil samples to perform a comparative study. Moreover, this study assessed changes in the bacterial community associated with soil depth and the health state of the ginseng. Bacterial richness decreased through years of cultivation. This study detected differences in relative abundance of bacterial populations between the first and second rounds of cultivation, years of cultivation, and health states of ginseng. These bacterial populations were mainly distributed in the classes Acidobacteria, Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Sphingobacteria. In addition, we found that pH, available phosphorus, and exchangeable Ca+ seemed to have high correlations with bacterial class in ginseng cultivated soil. PMID:27187071

  9. 1. EXTERIOR, SIDE OF PICKLE BARREL RESTAURANT AND ADJOINING STORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR, SIDE OF PICKLE BARREL RESTAURANT AND ADJOINING STORE - Silverton Historic District, East Thirteenth & Green Streets (Commercial Building), East Thirteenh & Green Streets, Silverton, San Juan County, CO

  10. Deciphering Community Structure of Methanotrophs Dwelling in Rice Rhizospheres of an Indian Rice Field Using Cultivation and Cultivation-Independent Approaches.

    PubMed

    Pandit, Pranitha S; Rahalkar, Monali C; Dhakephalkar, Prashant K; Ranade, Dilip R; Pore, Soham; Arora, Preeti; Kapse, Neelam

    2016-04-01

    Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India. We compared the cultured members with the uncultured community as revealed by three culture-independent methods. A novel type Ia methanotroph (Sn10-6), at the rank of a genus, and a putative novel species of a type II methanotroph (Sn-Cys) were cultivated from the terminal positive dilution (10(-6)). From lower dilution (10(-4)), a strain of Methylomonas spp. was cultivated. All the three culture-independent analyses, i.e., pmoA clone library, terminal restriction fragment length polymorphism (T-RFLP), and metagenomics approach, revealed the dominance of type I methanotrophs. Only metagenomic analysis showed significant presence of type II methanotrophs, albeit in lower proportion (37 %). All the three isolates showed relevance to the methanotrophic community as depicted by uncultured methods; however, the cultivated members might not be the most dominant ones. In conclusion, a combined cultivation and cultivation-independent strategy yielded us a broader picture of the methanotrophic community from rice rhizospheres of a flooded rice field in India.

  11. Ecological impacts of genetically modified crops: ten years of field research and commercial cultivation.

    PubMed

    Sanvido, Olivier; Romeis, Jörg; Bigler, Franz

    2007-01-01

    The worldwide commercial cultivation of genetically modified (GM) crops has raised concerns about potential adverse effects on the environment resulting from the use of these crops. Consequently, the risks of GM crops for the environment, and especially for biodiversity, have been extensively assessed before and during their commercial cultivation. Substantial scientific data on the environmental effects of the currently commercialized GM crops are available today. We have reviewed this scientific knowledge derived from the past 10 years of worldwide experimental field research and commercial cultivation. The review focuses on the currently commercially available GM crops that could be relevant for agriculture in Western and Central Europe (i.e., maize, oilseed rape, and soybean), and on the two main GM traits that are currently commercialized, herbicide tolerance (HT) and insect resistance (IR). The sources of information included peer-reviewed scientific journals, scientific books, reports from regions with extensive GM crop cultivation, as well as reports from international governmental organizations. The data available so far provide no scientific evidence that the cultivation of the presently commercialized GM crops has caused environmental harm. Nevertheless, a number of issues related to the interpretation of scientific data on effects of GM crops on the environment are debated controversially. The present review highlights these scientific debates and discusses the effects of GM crop cultivation on the environment considering the impacts caused by cultivation practices of modern agricultural systems.

  12. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches.

    PubMed

    Liu, Yongbo; Liu, Fang; Wang, Chao; Quan, Zhanjun; Li, Junsheng

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking.

  13. Cultivating Kuumba: Applying Art Based Strategies to Any Field

    ERIC Educational Resources Information Center

    Ellis, Auburn Elizabeth

    2015-01-01

    There are many contemporary issues to address in adult education. This paper explores art-based strategies and the utilization of creativity (Kuumba) to expand learning for global communities in any field of practice. Benefits of culturally grounded approaches to adult education are discussed. Images from ongoing field research can be viewed at…

  14. Growth characteristics of Cannabis sativa L. cultivated in a phytotron and in the field.

    PubMed

    Yoshimatsu, Kayo; Iida, Osamu; Kitazawa, Takashi; Sekine, Tsutomu; Kojoma, Mareshige; Makino, Yukiko; Kiuchi, Fumiyuki

    2004-01-01

    Growth characteristics of Cannabis saliva L. are indispensable factors to verify the statements by the criminals of illegal cannabis cultivation. To investigate growth characteristics of C. sativa, two varieties, cannabidiolic acid (CBDA)-rich (CBDA-type) which being cultivated for fiber production and delta9-tetrahydrocannabinolic acid (THCA)-rich (THCA-type) which is used for drug abuse, were cultivated from seeds under the same growth environment in a phytotron. THCA-type showed high germination rate (100%) whereas only 39% of the CBDA-type seeds germinated 6 days after sowing. Plant height, number of true leaves, number of nodes, number of axillary buds and flowering of these two varieties were periodically observed. THCA-type grew more rapidly (plant height: 125.8 cm for THCA-type, 84.7 cm for CBDA-type, 75 days after cultivation) demonstrating vigorous axillary bud formation and earlier male-flowering (63 days for THCA-type, 106 days for CBDA-type, after sowing). Propagation of THCA-type was tested using the axillary shoot cuttings of female plants either with or without the main stem. All the cuttings with the main stem rooted after 21 days and grew healthily in a phytotron. However, all the newly developed leaves were single instead of palmate. In the field, THCA-type male-flowered after 155 days of cultivation after sowing on March 31. The height of the field-cultivated plants reached 260.9 cm 163 days after sowing. Despite the great differences in final plant heights, the increases of plant height per day during the vegetative growth stage were similar in the field and in the phytotron. Thus estimating the starting time of illegal cannabis cultivation might be possible if the plant is in the vegetative growth stage.

  15. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process.

    PubMed

    Pinal, L; Cornejo, E; Arellano, M; Herrera, E; Nuñez, L; Arrizon, J; Gschaedler, A

    2009-05-01

    The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.

  16. Dust and Sand Forecasting in Iraq and Adjoining Countries

    DTIC Science & Technology

    1991-11-01

    8217’Illllllllt AD-A247 588 AWS/TN--91/001 DUST AND SAND FORECASTING IN IRAQ AND ADJOINING COUNTRIES by MSGT WALTER D. WILKERSON AFGWC/DOF NOVEMBER 1991...Sand Forecasting in Iraq and Adjoining Countries 6. Author: MSgt Walter D. Wilkerson, AFGWC/DOF 7. Performiig Organization Name and Address: Air...weather forecasting , discusses airborne dust and sand in Iraq, Kuwait, Syria, eastern Jordan, western Iran, and the northern Arabian Peninsula. Describes

  17. Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China

    USGS Publications Warehouse

    Wang, Guodong; Middleton, Beth; Jiang, Ming

    2013-01-01

    Sedge meadows can be difficult to restore from farmed fields if key structural dominants are missing from propagule banks. In hand-cultivated soybean fields in northeastern China, we asked if tussock-forming Carex and other wetland species were present as seed or asexual propagules. In the Sanjiang Plain, China, we compared the seed banks, vegetative propagules (below-ground) and standing vegetation of natural and restored sedge meadows, and hand-cultivated soybean fields in drained and flooded conditions. We found that important wetland species survived cultivation as seeds for some time (e.g. Calamogrostis angustifolia and Potamogeton crispus) and as field weeds (e.g. C. angustifolia and Phragmites australis). Key structural species were missing in these fields, for example, Carex meyeriana. We also observed that sedge meadows restored without planting or seeding lacked tussock-forming sedges. The structure of the seed bank was related to experimental water regime, and field environments of tussock height, thatch depth, and presence of burning as based on Nonmetric Multidimensional Scaling analysis. To re-establish the structure imposed by tussock sedges, specific technologies might be developed to encourage the development of tussocks in restored sedge meadows.

  18. Progress and prospects for field cultivation of Iridaea cordata and Gigartina exasperata

    SciTech Connect

    Mumford, T.F. Jr.; Waaland, J.R.

    1980-01-01

    Research on cultivation of two carrageenan producing seaweeds, Iridaea cordatas and Gigartina exasperata, has resulted in 60 net units, each 1.2 x 18 m outplanted in the inland marine waters of Washington State. This paper traces the progress from beginning field and laboratory studies that demonstrated the biological feasibility of growing these species on artificial substrates, to current commercial sized net modules. The results achieved with these species are compared with other experimental, pilot, and commercial-scale red algal cultivation efforts. Methods are given here for inoculating nets and outplanting them in small, intermediate and commercial-scale net modules which can be used to determine the feasibility of cultivating these or other species in various localities. A brief summary of supporting research which has been accomplished, which is in progress, and which needs to be done is also given. The outlook for expanded seaweed cultivation is promising and its potential great for providing new and expanded sources of chemicals, food, and biomass.

  19. The archaeobotany of Asian rice expansion and the development of wet-field cultivation

    NASA Astrophysics Data System (ADS)

    Fuller, D.

    2008-12-01

    Archaeobotanical evidence provides direct data on past human diet and agriculture, including a geographical and chronological framework for studying the expansion of rice agriculture. The growth of systematic archaeobotanical sampling in recent years has allowed for the past presence of rice to be seen in relation to cultivation of other crops and associated weeds. The weed flora provides a basis for inferring the nature of cultivation systems, whether rain-fed dry rice or wetland "paddy" rice, a key distinction for considerations of past methane production. Nevertheless, current data is very unevenly distributed. This poster will summarize available evidence for the origins and spread of rice in South Asia (India and Pakistan), and mainland and Island Southeast Asia deriving from an earlier Chinese domestication. Where possible, such as in India or China, the potential of the weed flora remains for distinguishing wetland rice crops will be summarized. In broad terms, although the origins of rice use and cultivation begins by or during the Middle Holocene (6000- 3000 BC), rice cultivation spread outside the regions of the wild progenitor after this time. Two phases of rice expansion can be distinguished. Phase 1, between 3000 and 1500 BC, introduced rice to Southeast Asia, probably under wetland cultivation, and the spread of dry rice over northern India and Pakistan. Phase 2, taking place between 1000 and 0 BC, sees the spread of rice throughout the Southern Indian Peninsula, with weed evidence suggesting irrigated wetland rice. Similarly, this period sees the spread of intensive paddy agriculture through Korea and Japan, but in Southeast Asia is probably related to a spread of rice in upland, dry field systems.

  20. Effects of Changing Cultivation System on Soil Carbon Dynamics in Cotton Field of Northwestern China

    NASA Astrophysics Data System (ADS)

    Li, Z.; Wang, X.; Tian, C.

    2010-12-01

    There has being a change in cotton cultivative practice in the northwestern China, i.e., from the traditional cultivation (TF) of no mulching with flood-irrigation to the modern cultivation (PM) of plastic film mulching with drip-irrigation. Little is known how this change affects soil carbon dynamics. This paper presents a field study that includes comparisons of soil organic carbon (SOC), soil CO2 concentration and soil surface CO2 efflux during cotton growing season. At the initial growing stage, SOC content was similar between TF and PM, showing a clear decreasing trend over depth (i.e., ~9 g/kg, ~7.5 g/kg and ~3 g/kg at 0-20 cm, 20-30 cm and 30-70 cm, respectively). After five months, SOC generally decreased at 0-20 cm but increased below 30 cm. Overal, SOC was higher in the surface soil in the PM than in the TF, particularly at 20-30 cm where SOC reached ~9 g/kg in the PM. In general, CO2 concentration in soil profile was higher in the PM (3107 - 9212 ppmv) than in the TF (1275 - 8994 ppmv). However, rate of CO2 efflux was lower in the PM than in the TF, primarily owing to plastic film covering. For the whole cotton growing season, accumulated rates of CO2 efflux were 300 g C m-2 and 394 g C m-2 in the PM and the TF, respectively. Fig. 1. Soil organic carbon (SOC) in (a) May (b) August and (c) October between plastic film mulching cultivation (PM) and traditional flooding cultivation (TF). Table 1. Soil surface CO2 efflux during different growing stages in different systems ADR: averaged daily rate during each stage; AE: accumulative efflux for each stage.

  1. [In vitro cultivation of fields isolates of Plasmodium falciparum in Mali].

    PubMed

    Djimde, A A; Kirkman, L; Kassambara, L; Diallo, M; Plowe, C V; Wellems, T E; Doumbo, O K

    2007-02-01

    Malaria immunology, molecular biology and pathogenicity studies often require the adaptation of Plasmodium falciparum field isolates to continuous in vitro cultivation. For this purpose we have established propagation protocols of asexual erythrocytic stages of P. falciparum samples from malaria patients or asymptomatic carriers in Mali. The parasites were grown in standard culture medium supplemented by human serum and in a culture medium without human serum but supplemented by AlbuMax 1. The candle jar environment and tissue culture flasks gassed with 5% CO2, 5% O2 and 90% N2 obtained from a portable gas mixer were used. Protocols for parasite cultivation in a resource-poor setting were developed. These protocols were successfully applied to fresh isolates in Mali as well as to blood samples frozen in liquid nitrogen and shipped to a laboratory in U.S.A.

  2. View to east of windows overlooking interior of adjoining loading ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to east of windows overlooking interior of adjoining loading dock section from mezzanine of American Railway Express Building. Windows have been boarded over on loading dock side - Southern Pacific Railroad Depot, Railroad Terminal Post Office & Express Building, Fifth & I Streets, Sacramento, Sacramento County, CA

  3. Plant Succession at the Edges of Two Abandoned Cultivated Fields on the Arid Lands Ecology Reserve

    SciTech Connect

    Simmons, Sally A.; Rickard, William H.

    2002-12-01

    How vegetation recovers from disturbances is an important question for land managers. We examined 500 m2 plots to determine the progress made by native herbaceous plant species in colonizing the edges of abandoned cultivated fields at different elevations and microclimates, but with similar soils in a big sagebrush/bluebunch wheatgrass steppe. Alien species, especially cheatgrass and cereal rye, were the major competitors to the natives. The native species with best potential for restoring steppe habitats were sulphur lupine, hawksbeard, bottlebrush squirreltail, needle-and-thread grass, Sandberg's bluegrass, and several lomatiums.

  4. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields.

    PubMed

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Xiong, Ruiheng; Hang, Yuhao

    2017-03-01

    Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH4) and nitrous oxide (N2O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH4 and N2O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH4 emissions and GWP per unit of grain yield (yield-scaled CH4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH4 emissions and GWP, leading to higher yield-scaled CH4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.

  5. Distribution and identification of proteolytic Bacillus spp. in paddy field soil under rice cultivation.

    PubMed

    Watanabe, K; Hayano, K

    1993-07-01

    Proteolytic bacteria in paddy field soils under rice cultivation were characterized and enumerated using azocoll agar plates. Bacillus spp. were the proteolytic bacteria that were most frequently present, comprising 59% of the isolates. They were always the numerically dominant proteolytic bacteria isolated from three kinds of fertilizer treatments (yearly application of rice-straw compost and chemical fertilizer, yearly application of chemical fertilizer, and no fertilizer application) and at three different stages of rice development (vegetative growth stage, maximal tillering stage, and harvest stage). Of the 411 proteolytic bacteria isolated, 124 isolates had stronger proteolytic activity than others on the basis of gelatin liquefaction tests and most of them were Bacillus spp. (100% in 1989 and 92.4% in 1991). Bacillus subtilis and Bacillus cereus were the main bacteria of this group and Bacillus mycoides, Bacillus licheniformis, and Bacillus megaterium were also present. We conclude that these Bacillus spp. are the primary source of soil protease in these paddy fields.

  6. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields.

    PubMed

    Kuroda, Yosuke; Kaga, Akito; Tomooka, Norihiko; Yano, Hiroshi; Takada, Yoshitake; Kato, Shin; Vaughan, Duncan

    2013-07-01

    The objective of this study was to identify quantitative trait loci (QTL) affecting fitness of hybrids between wild soybean (Glycine soja) and cultivated soybean (Glycine max). Seed dormancy and seed number, both of which are important for fitness, were evaluated by testing artificial hybrids of G. soja × G. max in a multiple-site field trial. Generally, the fitness of the F1 hybrids and hybrid derivatives from self-pollination was lower than that of G. soja due to loss of seed dormancy, whereas the fitness of hybrid derivatives with higher proportions of G. soja genetic background was comparable with that of G. soja. These differences were genetically dissected into QTL for each population. Three QTLs for seed dormancy and one QTL for total seed number were detected in the F2 progenies of two diverse cross combinations. At those four QTLs, the G. max alleles reduced seed number and severely reduced seed survival during the winter, suggesting that major genes acquired during soybean adaptation to cultivation have a selective disadvantage in natural habitats. In progenies with a higher proportion of G. soja genetic background, the genetic effects of the G. max alleles were not expressed as phenotypes because the G. soja alleles were dominant over the G. max alleles. Considering the highly inbreeding nature of these species, most hybrid derivatives would disappear quickly in early self-pollinating generations in natural habitats because of the low fitness of plants carrying G. max alleles.

  7. [Effects of labor-saving rice cultivation modes on the diversity of potential weed communities in paddy fields].

    PubMed

    Li, Shu-Shun; Qiang, Sheng; Jiao, Jun-Sen

    2009-10-01

    Aimed to understand the effects of various labor-saving rice cultivation modes on the diversity of potential weed communities in paddy fields, an investigation was made on the quantitative characteristics of the weed seed bank under dry direct seeding, water direct seeding, seedling throwing, mechanized-transplanting, wheat-rice interplanting, and conventional manual transplanting. Under dry direct seeding, the density of the weed seed bank was up to 228,416 seeds x m(-2), being significantly higher than that under the other five cultivation modes. Wheat-rice interplanting ranked the second place. The seed density of sedge weeds under dry direct seeding and that of broad leaf weeds under wheat-rice interplanting were significantly higher than the seed densities of various kinds of weeds under other cultivation modes. Conventional manual transplanting mode had the highest species richness, with Margalef index being 1.86. The diversity indices, including Shannon-Wiener index, Gini index, and Pielou evenness index under water direct seeding and wheat-rice interplanting were higher than those under other cultivation modes. Comparing with conventional manual transplanting mode, the other five cultivation modes had their own dominant species in the potential weed community, and thereby, different labor-saving rice cultivation modes should be applied by turns to control the potential weed community in paddy fields effectively and persistently.

  8. Transportability of confined field trial data from cultivation to import countries for environmental risk assessment of genetically modified crops.

    PubMed

    Nakai, Shuichi; Hoshikawa, Kana; Shimono, Ayako; Ohsawa, Ryo

    2015-12-01

    Requirement of in-country confined field trials for genetically modified (GM) crops prior to unrestricted release is well-established among countries with domestic regulations for the cultivation approval of GM crops. However, the requirement of in-country confined field trials is not common in countries where the scope of the application does not include cultivation. Nonetheless, Japan and China request in-country confined field trials for GM crops which are intended only for use as food, feed and processing. This paper considers the transportability of confined field trial data from cultivation countries (e.g. United States, Canada, and South American countries) to import countries like Japan for the environmental risk assessment of GM crops by reviewing: (1) the purpose of confined field trial assessment, (2) weediness potential, defined as "an ability to establish and persist in an unmanaged area that is frequently disturbed by human activity", of host crops, and (3) reliability of the confined field trial data obtained from cultivation countries. To review the reliability of the confined field data obtained in the US, this paper describes actual examples of three confined field trials of approved GM corn events conducted both in the US and Japan. Based on the above considerations, this paper concludes that confined field data of GM corn and cotton is transportable from cultivation countries to importing countries (e.g. from the US to Japan), regardless of the characteristics of the inserted gene(s). In addition, this paper advocates harmonization of protocols for confined field trials to facilitate more efficient data transportability across different geographies.

  9. Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater.

    PubMed

    Tu, Renjie; Jin, Wenbiao; Xi, Tingting; Yang, Qian; Han, Song-Fang; Abomohra, Abd El-Fatah

    2015-12-01

    Algal-bacterial symbiotic system, with biological synergism of physiological functions of both algae and bacteria, has been proposed for cultivation of microalgae in municipal wastewater for biomass production and wastewater treatment. The algal-bacterial symbiotic system can enhance dissolved oxygen production which enhances bacterial growth and catabolism of pollutants in wastewater. Therefore, the oxygen production efficiency of microalgae in algal-bacterial systems is considered as the key factor influencing the wastewater treatment efficiency. In the present study, we have proposed a novel approach which uses static magnetic field to enhance algal growth and oxygen production rate with low operational cost and non-toxic secondary pollution. The performance of oxygen production with the magnetic field was evaluated using Scenedesmus obliquus grown in municipal wastewater and was calculated based on the change in dissolved oxygen concentration. Results indicated that magnetic treatment stimulates both algal growth and oxygen production. Application of 1000 GS of magnetic field once at logarithmic growth phase for 0.5 h increased the chlorophyll-a content by 11.5% over the control after 6 days of growth. In addition, magnetization enhanced the oxygen production rate by 24.6% over the control. Results of the study confirmed that application of a proper magnetic field could reduce the energy consumption required for aeration during the degradation of organic matter in municipal wastewater in algal-bacterial symbiotic systems.

  10. Cultivating the field of psychology. Psychological journals at the turn of the century and beyond.

    PubMed

    Johnson, D F

    2000-10-01

    Prominent psychologists, including G. Stanley Hall, James Mark Baldwin, and James McKeen Cattell, cultivated the field of psychological publishing with privately owned and managed journals. Hall's journals, including the American Journal of Psychology and Pedagogical Seminary, reflected his view of psychology as the empirical study of human nature and his support for applied psychology. Baldwin and Cattell's periodicals, including Psychological Review and Psychological Monographs, reflected a narrower scientific and academic view of psychology. Baldwin and Cattell were more successful editors than Hall and strategically linked their journals to the American Psychological Association (APA). The Psychological Review journals were purchased by APA in 1925. The narrower vision represented in these journals may have contributed to applied psychologists' dissatisfaction with APA during the late 1920s and early 1930s.

  11. Chemical analysis and anti-inflammatory comparison of the cell culture of Glycyrrhiza with its field cultivated variety.

    PubMed

    Man, Shuli; Wang, Juan; Gao, Wenyuan; Guo, Songbo; Li, Yuanyuan; Zhang, Liming; Xiao, Peigen

    2013-01-15

    Suspended cells of Glycyrrhiza (CG) possessed a similar content of flavonoids and a lower content of triterpenes, when compared with its field cultivated equivalent (NG). Xylene-induced ear oedema and ovalbumin-induced mouse paw oedema were applied, to compare the effects of CG and NG on the acute inflammatory response. Extracts of the cell culture of Glycyrrhiza possessed a similar anti-inflammatory effect to those of NG, through the enhancement of the SOD activity of plasma and liver tissues. The use of a cell culture of liquorice instead of field cultivation would be potentially profitable.

  12. Dissipation and runoff transport of metazachlor herbicide in rapeseed cultivated and uncultivated plots in field conditions.

    PubMed

    Mantzos, Nikolaos; Hela, Dimitra; Karakitsou, Anastasia; Antonopoulou, Maria; Konstantinou, Ioannis

    2016-10-01

    The environmental fate of metazachlor herbicide was investigated under field conditions in rapeseed cultivated and uncultivated plots, over a period of 225 days. The cultivation was carried out in silty clay soil plots with two surface slopes, 1 and 5 %. The herbicide was detectable in soil up to 170 days after application (DAA), while the dissipation rate was best described by first-order kinetics and its half-life ranged between 10.92 and 12.68 days. The herbicide was detected in the soil layer of 10-20 cm from 5 to 48 DAA, and its vertical movement can be described by the continuous stirred tank reactor (CSTR) in series model. Relatively low amounts of metazachlor (less than 0.31 % of the initial applied active ingredient) were transferred by runoff water. More than 80 % of the total losses were transferred at the first runoff event (12 DAA), with herbicide concentrations in runoff water ranging between 70.14 and 79.67 μg L(-1). Minor amounts of the herbicide (less than 0.07 % of the initial applied active ingredient) were transferred by the sediment, with a maximum concentration of 0.57 μg g(-1) (12 DAA), in plots with 5 % inclination. Finally, in rapeseed plants, metazachlor was detected only in the first sampling (28 DAA) at concentrations slightly higher than the limit of quantification; when in seeds, no residues of the herbicide were detected.

  13. Effect of flaring of natural gas in oil fields of Assam on rice cultivation.

    PubMed

    Sharma, K K; Hazarika, S; Kalita, B; Sharma, B

    2011-07-01

    Assam (India) is endowed with natural resources like oil, coal and natural gas. The crude oil, one of the most precious natural resources, is found in the districts of upper Assam. During the process of extraction of crude oil, low-pressure natural gas is burnt in the air. Most of the oil wells in upper Assam are located near rice fields and therefore, rice crop grown near the oil wells is exposed to light uninterruptedly causing grain sterility resulting significant loss in grain yield. To identify promising varieties for these areas, we studied the effect of flare on rice varieties with different photoperiod sensitivity. The high light intensity and increased light hours were the factors responsible for substantial loss in grain yield near the flare resulting from delay in flower initiation, reduction of panicle length, having less number of grains per panicle and more grain sterility. To prevent significant loss in yield, photoperiod-sensitive traditional and improved rice varieties should not be grown up to the distance of 80 and 100 m, respectively from the boundary wall of the flare pit. Modern weakly-photoperiod sensitive varieties like Ranjti and Mahsuri can be grown 40 m away from the wall while modern photoperiod insensitive variety like Jaya, can be cultivated 20 m away from the wall without significant loss in yield.

  14. Assessment of Soil Losses from Rills and Interills of Cultivated Fields Using Field Methods in Gelda Watershed, Ethiopia.

    NASA Astrophysics Data System (ADS)

    Ayele, Belayneh

    2010-05-01

    Soil erosion is one of the greatest challenges for the agricultural economic sector in particular and the general economic development for a country like Ethiopia in general. Despite this challenge, there have been limited studies on the amount of soil eroded at watershed level even though soil erosion prediction for the whole country has been done based on data collected from few erosion study sites. This led to ineffective soil conservation planning and the land degradation problem is still a threat to the country economy. This calls for an estimation of erosion rate at watershed level with easily manageable, cost effective method that enables the local farmers to participate in data collection so that they have an understanding of the ongoing erosion. The objective of this research was to estimate the rill and interrill erosion rate in Gelda Watershed, South Gondar, Ethiopia using field method (volumetric measurement of rills and interills). The dominant soil types were nitisols and regosols. The findings indicate that soil loss due to rills and interills in the cultivated fields was 50.25 ton/ha/yr. The contribution of rills in the upslope, middle slope and down slope was 7%, 15% and 78%, respectively to the overall rill erosion. In general, the contribution of rills to the overall erosion rate was 54%. The rill density for the nitisols and regosols was 349 and 294 m/ha respectively indicating higher rate of erosion in the former soil type. Average area of actual damage due to rills in the watershed was 113 m2/ha. The most intense erosion rate was recorded in teff field with an erosion rate of 73 tons/ha/yr followed by millet 35 tons/ha/yr. Maize fields showed the least erosion rate of 31 tons/ha/yr. The most important factors contributing to erosion rate variation among crops were time of sowing, hoeing practice, crop morphology and deliberate compaction practice that was common on teff field. The contribution of agroforestry practices (woodlots, scattered

  15. The effect of cultivation on the size, shape, and persistence of disease patches in fields.

    PubMed

    Truscott, J E; Gilligan, C A

    2001-06-19

    Epidemics of soil-borne plant disease are characterized by patchiness because of restricted dispersal of inoculum. The density of inoculum within disease patches depends on a sequence comprising local amplification during the parasitic phase followed by dispersal of inoculum by cultivation during the intercrop period. The mechanisms that control size, shape, and persistence have received very little rigorous attention in epidemiological theory. Here we derive a model for dispersal of inoculum in soil by cultivation that takes account into the discrete stochastic nature of the system in time and space. Two parameters, probability of movement and mean dispersal distance, characterize lateral dispersal of inoculum by cultivation. The dispersal parameters are used in combination with the characteristic area and dimensions of host plants to identify criteria that control the shape and size of disease patches. We derive a critical value for the probability of movement for the formation of cross-shaped patches and show that this is independent of the amount of inoculum. We examine the interaction between local amplification of inoculum by parasitic activity and subsequent dilution by dispersal and identify criteria whereby asymptomatic patches may persist as inoculum falls below a threshold necessary for symptoms to appear in the subsequent crop. The model is motivated by the spread of rhizomania, an economically important soil-borne disease of sugar beet. However, the results have broad applicability to a very wide range of diseases that survive as discrete units of inoculum. The application of the model to patch dynamics of weed seeds and local introductions of genetically modified seeds is also discussed.

  16. Optimizing SFR transmutation performance through direct adjoining control theory

    NASA Astrophysics Data System (ADS)

    Davis, Jeffrey C.

    2007-12-01

    We have developed the CORTANA code to optimize the transmutation performance of sodium cooled fast reactors (SFRs). We obtain the necessary conditions for optimal fuel and burnable absorber loadings using Pontryagin's maximum principle with a direct adjoining approach to explicitly account for either a flat flux or a power peaking inequality constraint providing a set of coupled system, Euler-Lagrange (E-L), and optimality equations which are iteratively solved with the method of conjugate gradients until no further improvement in the objective function is achieved. To satisfy the inequality constraints throughout the operating cycle, we have implemented a backwards diffusion theory (BDT) to establish a relationship between fuel loading and the relative assembly power distribution during the cycle and systematically eliminate the constraint violations with each conjugate gradient iteration. The CORTANA SFR optimization code uses multi-group, three-dimensional neutron diffusion theory, with a microscopic depletion scheme. We solve the system equations in a quasi-static fashion forward in time from beginning-of-cycle (BOC) to end-of-cycle (EOC), while we solve the E-L equations backwards in time from EOC to BOC, reflecting the adjoint nature of the Lagrange multipliers. A two enrichment-zone SFR problem verifies our formulation, yielding a TRU enrichment distribution nearly identical to that of the reference SFR core in the Generation IV Roadmap. Using a full heavy metal recycling mode, we coupled our optimization methodology with the REBUS-3 equilibrium cycle methodology to optimize an SFR operating as a second tier transmuter. We model the system using a three-dimensional triangular-z finite differencing scheme with full core symmetry and a time-independent 33-group microscopic cross section library. Beginning from a uniform TRU distribution, our CORTANA improves the SFR performance by reducing the maximum relative assembly power from 1.7 to 1.25, minimizes

  17. Concentrations of Cu, growth, and chlorophyll content of field-cultivated wheat growing in naturally enriched Cu soil

    SciTech Connect

    Cook, C.M.; Vardaka, E.; Lanaras, T.

    1997-02-01

    The Serbo-Macedonian massif of northern Greece is notable for the occurrence of numerous small areas of sulphide mineralisation. Varying degrees of porphyry copper mineralisation, associated with post-Miocene volcanic rocks of rhyolitic composition, can be encountered in agricultural fields which are used mainly for wheat production. Although Cu is a trace element essential to plant nutrition, in excess, it is phytotoxic causing stunted growth, chlorosis and root malformation. Previous studies on wheat growing in these naturally enriched Cu soils have shown that plants have reduced growth, chlorosis and chloroplast ultrastructural changes and a reduced efficiency of the photochemistry of photosystem II (PSII). The objective of this study was to examine the relationship between the Cu concentration of the soil and the plant tissue Cu concentration, growth and chlorophyll content of field-cultivated wheat growing in soils with varying degrees of porphyry copper mineralisation. 15 refs., 2 figs., 1 tab.

  18. First results from Be-7 soil erosion tracer application on cultivated field plots in the Andalusian Marl landscape

    NASA Astrophysics Data System (ADS)

    Baumgart, Philipp

    2014-05-01

    Within the last 25 years the cosmogenic nuclide Beryllium-7 was successfully established as a suitable tracer element to detect fine scaled surface changes in a very precise way. Particularly soil erosion rates from single precipitation events were in the focus of different studies due to the short radioactive half-life of the Be-7 isotope. High sorption at topmost soil particles and immobility at given pH-values enable fine-scaled erosion modelling down to 2 mm increments. But coming up to the scale of reality, which loss of material (due to single precipitation events) can we expect in the interill sector on cultivated field plots? Further in such a highly sensitive landscape like the Andalusian Marl? First Be-7 results from two differently cultivated slope plots (1.000 m2 each) with different geological background were presented due to a single precipitation event in march 2013. Moreover, challenging limitations of the fine increment, site-dependent soil collection were discussed.

  19. Approaches of Rhodiola kirilowii and Rhodiola rosea field cultivation in Poland and their potential health benefits.

    PubMed

    Grech-Baran, Marta; Sykłowska-Baranek, Katarzyna; Pietrosiuk, Agnieszka

    2015-01-01

    Numerous researches have been carried out on plants of the Rhodiola species, especially Rhodiola kirilowii (Regel) Maxim. and Rhodiola rosea. Various compounds have been reported to be isolated from R. kirilowii and R. rosea, including cyanogenic glycosides, monoterpene alcohols and their glycosides, aryl glycosides, phenylethanoids, phenylpropanoids and their glycosides (salidroside and rosavins respectively), as well as flavonoids, flavonlignans, proanthocyanidins and gallic acid derivatives and the latter have free radical scavenging capacity. The benefits claimed for Rhodiola include adapogenic, neuroprotective, anti-depresive anti-tumour and cardioprotective activities. Currently, the adaptogenic activity of Rhodiola compounds are properties evaluated mainly in human clinical trials. The mechanism of the action of Rhodiola extracts include affecting the levels of cortisol and NO by interactions with glucocorticoid receptors directly or via the c-Jun N-terminal protein kinase (JNK) pathway. However, the natural populations of R. rosea in Poland are threatened; therefore, the cultivation of R. rosea and alternative species R. kirilowii might be a possible solution for producing these kinds of plants in Poland in sufficient quantities and quality for pharmaceutical purposes. Lack of proven interaction with other drugs and no confirmed adverse effects during clinical trials encourages further investigation. These herb preparations ought to be studied extensively to establish their position as potential drugs for a variety of diseases.

  20. Distribution of the Hoskinnini tongue of the Cutler formation in southwestern Utah and adjoining parts of Arizona and Colorado

    USGS Publications Warehouse

    Stewart, John H.; Mullens, T.E.; Williams, G.A.

    1954-01-01

    Recent field work indicates the Hoskinnini tongue of the Cutler formation is present in much of southeastern Utah and adjoining parts of Colorado. Previously the Hoskinnini had been recognized only in the Monument Valley region of southeastern Utah and northeastern Arizona. The Hoskinnini tongue is pale reddish brown and is composed mainly of silt and very fine-grained sand and minor quantities of fine, medium, and coarse sand grains. The Hoskinnini is indistinctly bedded in horizontal beds generally ranging from 1 to 2 feet thick, and individual beds are composed of indistinct discontinuous wavy laminae bounded by grayish-red clay or silt films. The Hoskinnini is generally 50 to 120 feet thick but ranges up to 126 feet thick' Pinchouts of the Hoskinnini on the west are abrupt, and the Hoskinnini near some of these pinchouts contains unusual features such as intraformational and chert pebble conglomerates, contorted stratification, and petroliferous material. The combination of coarse grains in the finer-grained matrix and discontinuous wavy laminae serve to differentiate the Hoskinnini tongue from the underlying and overlying formations' The distinctive combination of grain size and wavy laminae also assures correlation of the Hoskinnini with rocks not previously correlated with the Hoskinnini in southeastern Utah and adjoining parts of Colorado. Although the Hoskinnini tongue is cUJITently classified as a part of the Permian Cutler formation, stratigraphic relations show the Hoskinnini to be conttasted with typical Cutler rocks and to be closely related to the Lower and Middle (?) Triassic Moenkopi formation.

  1. Contamination of groundwater under cultivated fields in an arid environment, central Arava Valley, Israel

    USGS Publications Warehouse

    Oren, O.; Yechieli, Y.; Böhlke, J.K.; Dody, A.

    2004-01-01

    The purpose of this study is to obtain a better understanding of groundwater contamination processes in an arid environment (precipitation of 50 mm/year) due to cultivation. Additional aims were to study the fate of N, K, and other ions along the whole hydrological system including the soil and vadose zone, and to compare groundwater in its natural state with contaminated groundwater (through the drilling of several wells). A combination of physical, chemical, and isotopic analyses was used to describe the hydrogeological system and the recharge trends of water and salts to the aquifers. The results indicate that intensive irrigation and fertilization substantially affected the quantity and quality of groundwater recharge. Low irrigation efficiency of about 50% contributes approximately 3.5-4 millionm3/year to the hydrological system, which corresponds to 0.65 m per year of recharge in the irrigated area, by far the most significant recharge mechanism. Two main contamination processes were identified, both linked to human activity: (1) salinization due to circulation of dissolved salts in the irrigation water itself, mainly chloride, sulfate, sodium and calcium, and (2) direct input of nitrate and potassium mainly from fertilizers. The nitrate concentrations in a local shallow groundwater lens range between 100 and 300 mg/l and in the upper sub-aquifer are over 50 mg/l. A major source of nitrate is fertilizer N in the excess irrigation water. The isotopic compositions of ??15N- NO3 (range of 4.9-14.8???) imply also possible contributions from nearby sewage ponds and/or manure. Other evidence of contamination of the local groundwater lens includes high concentrations of K (20-120 mg/l) and total organic carbon (about 10 mg/l). ?? 2004 Elsevier B.V. All rights reserved.

  2. Selecting and applying cesium-137 conversion models to estimate soil erosion rates in cultivated fields.

    PubMed

    Li, Sheng; Lobb, David A; Tiessen, Kevin H D; McConkey, Brian G

    2010-01-01

    The fallout radionuclide cesium-137 ((137)Cs) has been successfully used in soil erosion studies worldwide. However, discrepancies often exist between the erosion rates estimated using various conversion models. As a result, there is often confusion in the use of the various models and in the interpretation of the data. Therefore, the objective of this study was to test the structural and parametrical uncertainties associated with four conversion models typically used in cultivated agricultural landscapes. For the structural uncertainties, the Soil Constituent Redistribution by Erosion Model (SCREM) was developed and used to simulate the redistribution of fallout (137)Cs due to tillage and water erosion along a simple two-dimensional (horizontal and vertical) transect. The SCREM-predicted (137)Cs inventories were then imported into the conversion models to estimate the erosion rates. The structural uncertainties of the conversion models were assessed based on the comparisons between the conversion-model-estimated erosion rates and the erosion rates determined or used in the SCREM. For the parametrical uncertainties, test runs were conducted by varying the values of the parameters used in the model, and the parametrical uncertainties were assessed based on the responsive changes of the estimated erosion rates. Our results suggest that: (i) the performance/accuracy of the conversion models was largely dependent on the relative contributions of water vs. tillage erosion; and (ii) the estimated erosion rates were highly sensitive to the input values of the reference (137)Cs level, particle size correction factors and tillage depth. Guidelines were proposed to aid researchers in selecting and applying the conversion models under various situations common to agricultural landscapes.

  3. Evaluation of the safety and efficacy of Glycyrrhiza uralensis root extracts produced using artificial hydroponic and artificial hydroponic-field hybrid cultivation systems.

    PubMed

    Akiyama, H; Nose, M; Ohtsuki, N; Hisaka, S; Takiguchi, H; Tada, A; Sugimoto, N; Fuchino, H; Inui, T; Kawano, N; Hayashi, S; Hishida, A; Kudo, T; Sugiyama, K; Abe, Y; Mutsuga, M; Kawahara, N; Yoshimatsu, K

    2017-01-01

    Glycyrrhiza uralensis roots used in this study were produced using novel cultivation systems, including artificial hydroponics and artificial hydroponic-field hybrid cultivation. The equivalency between G. uralensis root extracts produced by hydroponics and/or hybrid cultivation and a commercial Glycyrrhiza crude drug were evaluated for both safety and efficacy, and there were no significant differences in terms of mutagenicity on the Ames tests. The levels of cadmium and mercury in both hydroponic roots and crude drugs were less than the limit of quantitation. Arsenic levels were lower in all hydroponic roots than in the crude drug, whereas mean lead levels in the crude drug were not significantly different from those in the hydroponically cultivated G. uralensis roots. Both hydroponic and hybrid-cultivated root extracts showed antiallergic activities against contact hypersensitivity that were similar to those of the crude drug extracts. These study results suggest that hydroponic and hybrid-cultivated roots are equivalent in safety and efficacy to those of commercial crude drugs. Further studies are necessary before the roots are applicable as replacements for the currently available commercial crude drugs produced from wild plant resources.

  4. Experimental Study of Soil Organic Matter Loss From Cultivated Field Plots In The Venezuelan Andes.

    NASA Astrophysics Data System (ADS)

    Bellanger, B.; Huon, S.; Velasquez, F.; Vallès, V.; Girardin A, C.; Mariotti, A. B.

    The question of discriminating sources of organic matter in suspended particles of stream flows can be addressed by using total organic carbon (TOC) concentration and stable isotope (13C, 15N) measurements when constant fluxes of organic matter supply can be assumed. However, little is known on the dynamics of organic matter release during soil erosion and on the temporal stability of its isotopic signature. In this study, we have monitored soil organic carbon loss and water runoff using natural rainfall events on three experimental field plots with different vegetation cover (bare soil, maize and coffee fields), set up on natural slopes of a tropical mountainous watershed in NW Venezuela (09°13'32'' ­ 09°10'00''N, 70°13'49'' ­ 70°18'34''W). Runoff and soil loss are markedly superior for the bare field plot than for the coffee field plot: by a factor 15 ­ 36, respectively, for the five-month experiment, and by a factor 30 ­ 120, respectively, during a single rainfall event experiment. Since runoff and soil organic matter loss are closely linked during most of the flow (at the time scales of this study), TOC concentration in suspended matter is constant. Furthermore, stable isotope compositions reflect those of top-soil organic matter from which they originate.

  5. Calculating High Resolution CWSI Maps for Entire Growing Season of a Cultivated Barley Field with UAV-Collected Surface Temperatures.

    NASA Astrophysics Data System (ADS)

    Hoffmann, H.; Jensen, R.; Nieto Solana, H.; Friborg, T.; Thomsen, A.

    2015-12-01

    With agriculture as the largest consumer of freshwater and an overall increasing pressure on water resources, developing more efficient irrigation systems is important. Combining the crop water stress index (CWSI) with unmanned aerial vehicles (UAVs) enables detection of which specific areas within a cultivated field that requires irrigation to ensure healthy growing plants. In this study remotely sensed, high resolution surface temperatures are collected with a thermal camera onboard an UAV. Temperatures are used to calculate spatially distributed, high resolution CWSI maps over a barley field during growing seasons 2014 and 2015. In early stages of the barley growing season, surface temperatures are an ensemble of both soil and canopy temperatures. Canopy temperatures are extracted using leaf area index and the two source energy balance modelling scheme. This approach enables CWSI calculations for homogeneous and evenly distributed crops (such as barley) during early as well as late stages of a growing season. CWSI maps are calculated using both an empirical and an analytical approach and are compared and validated against modelled canopy conductance and transpiration rates.

  6. [Effect of controlled release fertilizer on nitrous oxide emission from paddy field under plastic film mulching cultivation].

    PubMed

    Zhang, Yi; Lü, Shi-Hua; Ma, Jing; Xu, Hua; Yuan, Jiang; Dong, Yu-Jiao

    2014-03-01

    A field experiment was conducted to assess the effect of controlled release fertilizer on N2O emission in paddy field under plastic film mulching cultivation (PM) with water-saving irrigation. Results showed that in the rice growing season, cumulative N2O emissions from the plots applied with urea (PM+U) and with controlled release fertilizer (PM+CRF) were (38.2 +/- 4.4) and (21.5 +/- 5.2) mg N x m(-2), respectively. The N2O emission factors were 0.25% and 0.14% in the treatments PM+U and PM+CRF, respectively. The controlled release fertilizer decreased the total N2O emission by 43.6% compared with urea, of which 49.6% was reduced before the drying period. It also reduced the peak of N2O emission by 52.6%. However, it did not affect soil microbial biomass N and soil NH(4+)-N content at any rice growing stage, and grain yield either. No significant correlation was observed between N2O flux and soil Eh or soil temperature at the depth of 5 cm.

  7. The status of transitions between cultivated fields and their boundaries: ecotones, ecoclines or edge effects?

    NASA Astrophysics Data System (ADS)

    Dutoit, Thierry; Buisson, Elise; Gerbaud, Eric; Roche, Philip; Tatoni, Thierry

    2007-03-01

    Since the beginning of the 20th century, the concepts of ecotones, ecoclines and edge effects have been discussed from a theoretical point of view. However, there have been very few experimental tests of these ideas, which are sometimes radically different. This study presents data from field experimental researches and determines the status of transitions between cereal fields and grazed grasslands. Five study sites were chosen in Southern France because they were included in agri-environmental schemes aimed at conserving arable weeds and dry grassland species. In total, 128 quadrats of 1 m 2 were sampled on replicated transects running through transition zones. There was no significant increase of species-richness but there were changes in the botanical composition from cereal fields to grassland. These experimental results confirmed the opinion of Van der Maarel, E. (1990. Ecotones and ecoclines are different. J. Veg. Sci. 1, 135-138) that an ecotone is poorer in species than the adjacent ecosystems, as only a few species can adapt to the typical environmental factors in this zone. The transition zones studied rather reflected an edge effect than a real ecotone following the definition of Odum, E.P. (1971. Fundamentals of Ecology, 3e éd. W.B. Saunders Company, Philadelphie). In our case, when the transition zone between the two adjacent ecosystems is managed as a "constraint ecotone" following Vanpeene-Bruhier's, S. (1998. Transformations des paysages et dynamique de la biodiversité végétale. Les écotones, un concept clé pour l'étude des végétations post-culturales. L'exemple de la commune d'Aussois (Savoie). Thèse de Doctorat de l'ENGREF; CEMAGREF de Grenoble) definition, sheep grazing allowed the weed flora to colonise grassland boundaries via the gaps created by livestock trampling. These results are then discussed for the biological conservation of threatened arable weeds in agricultural landscapes.

  8. AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP627) ADJOINING FUEL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP-627) ADJOINING FUEL PROCESSING BUILDING AND EXCAVATION FOR HOT PILOT PLANT TO RIGHT (CPP-640). INL PHOTO NUMBER NRTS-60-1221. J. Anderson, Photographer, 3/22/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  9. Adjoined Piecewise Linear Approximations (APLAs) for Equating: Accuracy Evaluations of a Postsmoothing Equating Method

    ERIC Educational Resources Information Center

    Moses, Tim

    2013-01-01

    The purpose of this study was to evaluate the use of adjoined and piecewise linear approximations (APLAs) of raw equipercentile equating functions as a postsmoothing equating method. APLAs are less familiar than other postsmoothing equating methods (i.e., cubic splines), but their use has been described in historical equating practices of…

  10. TESTING OF INDOOR RADON REDUCTION TECHNIQUES IN BASEMENT HOUSES HAVING ADJOINING WINGS

    EPA Science Inventory

    The report gives results of tests of indoor radon reduction techniques in 12 existing Maryland houses, with the objective of determining when basement houses with adjoining wings require active soil depressurization (ASD) treatment of both wings, and when treatment of the basemen...

  11. Two Recent Developments in Tree Adjoining Grammars: Semantics and Efficient Processing

    DTIC Science & Technology

    1990-01-01

    Two Recent Developments in Tree Adjoining Grammars: Semantics and Efficient Processing Yves Schabes Aravind K. Joshi Department of Computer and...interpretation or automatic translation of natural lan- guage. A variant of TAGs, called synchronous TAGs, has been developed (Shieber and Schabes ...lexicalized TAGs with adjunction and substitution ( Schabes , Abeill6 and Joshi [1988]). Other bases (as Multiple Component TAGs) are needed for more

  12. Uncertainties in the national inventory of methane emissions from rice cultivation: field measurements and modeling approaches

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Sun, Wenjuan; Li, Tingting

    2017-01-01

    Uncertainties in national inventories originate from a variety of sources, including methodological failures, errors, and insufficiency of supporting data. In this study, we analyzed these sources and their contribution to uncertainty in the national inventory of rice paddy methane emissions in China and compared the differences in the approaches used (e.g., direct measurements, simple regressions, and more complicated models). For the 495 field measurements we collected from the scientific literature, the area-weighted 95 % CI (confidence interval) ranged from 13.7 to 1115.4 kg CH4 ha-1, and the histogram distribution of the measurements agreed well with parameterized gamma distributions. For the models, we compared the performance of methods of different complexity (i.e., the CH4MOD model, representing a complicated method, and two less complex statistical regression models taken from literature) to evaluate the uncertainties associated with model performance as well as the quality and accessibility of the regional datasets. Comparisons revealed that the CH4MOD model may perform worse than the comparatively simple regression models when no sufficient input data for the model is available. As simulated by CH4MOD with data of irrigation, organic matter incorporation, and soil properties of rice paddies, the modeling methane fluxes varied from 17.2 to 708.3 kg CH4 ha-1, covering 63 % of the range of the field measurements. When applying the modeling approach to the 10 km × 10 km gridded dataset of the model input variables, the within-grid variations, made via the Monte Carlo method, were found to be 81.2-95.5 % of the grid means. Upscaling the grid estimates to the national inventory, the total methane emission from the rice paddies was 6.43 (3.79-9.77) Tg. The fallacy of CH4MOD contributed 56.6 % of the total uncertainty, with the remaining 43.4 % being attributed to errors and the scarcity of the spatial datasets of the model inputs. Our analysis reveals the

  13. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities.

    PubMed

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-30

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.

  14. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    PubMed Central

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents. PMID:28134269

  15. Conversion from long-term cultivated wheat field to Jerusalem artichoke plantation changed soil fungal communities

    NASA Astrophysics Data System (ADS)

    Zhou, Xingang; Zhang, Jianhui; Gao, Danmei; Gao, Huan; Guo, Meiyu; Li, Li; Zhao, Mengliang; Wu, Fengzhi

    2017-01-01

    Understanding soil microbial communities in agroecosystems has the potential to contribute to the improvement of agricultural productivity and sustainability. Effects of conversion from long-term wheat plantation to Jerusalem artichoke (JA) plantation on soil fungal communities were determined by amplicon sequencing of total fungal ITS regions. Quantitative PCR and PCR-denaturing gradient gel electrophoresis were also used to analyze total fungal and Trichoderma spp. ITS regions and Fusarium spp. Ef1α genes. Results showed that soil organic carbon was higher in the first cropping of JA and Olsen P was lower in the third cropping of JA. Plantation conversion changed soil total fungal and Fusarium but not Trichoderma spp. community structures and compositions. The third cropping of JA had the lowest total fungal community diversity and Fusarium spp. community abundance, but had the highest total fungal and Trichoderma spp. community abundances. The relative abundances of potential fungal pathogens of wheat were higher in the wheat field. Fungal taxa with plant growth promoting, plant pathogen or insect antagonistic potentials were enriched in the first and second cropping of JA. Overall, short-term conversion from wheat to JA plantation changed soil fungal communities, which is related to changes in soil organic carbon and Olsen P contents.

  16. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence

    PubMed Central

    Wu, Meng; Song, Mengya; Liu, Ming; Jiang, Chunyu; Li, Zhongpei

    2016-01-01

    In the background of rapid expansion of plastic greenhouse vegetable production in China, many environmental risks have emerged in recent years. In this study, the soils with a chronosequence in greenhouse vegetable fields were collected and the soil humic acids (HAs) and fluvic acids (FAs) were extracted and purified. The soil HAs and FAs were found to show inhibition activities against phytopathogenic fungi for the first time. Fourier transform infrared spectroscopy was performed to investigate the chemical structures of HAs and FAs. The variation of relative peak areas indicated the chemical structure of HAs become more complex and stable under continuous cultivation. The PCA analysis showed HAs and FAs could be distinctly separated from each other and cultivation years mainly determined the variation. Mantel test and RDA analysis indicated the active components (aliphatic peaks for HAs and COOH, OH peaks for FAs) had positive correlation with the inhibition rates of HAs and FAs against phytopathogenic fungi. According to our research, the active fungicidal components in soil HAs and FAs decreased along with the extension of cultivation years, which made the soil suffer more risk to phytopathogenic fugi. So we believe continuous cultivation too many years in PGVP systems is inadvisable. PMID:27597259

  17. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Song, Mengya; Liu, Ming; Jiang, Chunyu; Li, Zhongpei

    2016-09-01

    In the background of rapid expansion of plastic greenhouse vegetable production in China, many environmental risks have emerged in recent years. In this study, the soils with a chronosequence in greenhouse vegetable fields were collected and the soil humic acids (HAs) and fluvic acids (FAs) were extracted and purified. The soil HAs and FAs were found to show inhibition activities against phytopathogenic fungi for the first time. Fourier transform infrared spectroscopy was performed to investigate the chemical structures of HAs and FAs. The variation of relative peak areas indicated the chemical structure of HAs become more complex and stable under continuous cultivation. The PCA analysis showed HAs and FAs could be distinctly separated from each other and cultivation years mainly determined the variation. Mantel test and RDA analysis indicated the active components (aliphatic peaks for HAs and COOH, OH peaks for FAs) had positive correlation with the inhibition rates of HAs and FAs against phytopathogenic fungi. According to our research, the active fungicidal components in soil HAs and FAs decreased along with the extension of cultivation years, which made the soil suffer more risk to phytopathogenic fugi. So we believe continuous cultivation too many years in PGVP systems is inadvisable.

  18. Mapping of geomorphic processes on abandoned fields and cultivated land in small catchments in semi-arid Spain

    NASA Astrophysics Data System (ADS)

    Geißler, C.; Ries, J. B.; Marzolff, I.

    2009-04-01

    In semi-arid landscapes vegetation succession on abandoned agricultural land is a long lasting process due to the water deficit for the best time of the year. During this phase of succession, geomorphic processes like the formation and development of rills, gullies and other geomorphic processes lead to a more or less constant deterioration of the abandoned land. But also on currently cultivated land and under quasi-natural vegetation the processes of soil degradation by flowing water take place. Regarding small catchments like gully catchments, the topography and the land cover (abandoned land, cultivated land, quasi-natural vegetation) are highly important factors in gully formation and soil degradation. Another important point is the distribution of different land cover units and therefore the connectivity of the catchment as described by Bracken & Croke (2007). In this study, 11 catchments of single gullies have been mapped geomorphologically and compared to the rate of gully development derived from small-format aerial photography. It could be shown that there is a high variability of processes due to differences in topography and the way the land is or has been cultivated. On abandoned land, geomorphic processes are highly active and enhance or even predestinate the direction of headcut movement. Another result is that geomorphological mapping of these gully catchments revealed interactions and dependencies of linear erosion features like the connection to the main drainage line, e.g. the gully. In the larger of the observed catchments (>5 ha) it became clear that some catchments have morphological features that tend to enhance connectivity (long rills, shallow drainage lines) and some catchments have features which tend to restrict connectivity (terraces, dense vegetation). In "more connected" catchments the retreat rate of the headcut is generally higher. By the method of geomorphological mapping, valuable information about the soil degrading processes

  19. Molecular- and cultivation-based analyses of microbial communities in oil field water and in microcosms amended with nitrate to control H2S production.

    PubMed

    Kumaraswamy, Raji; Ebert, Sara; Gray, Murray R; Fedorak, Phillip M; Foght, Julia M

    2011-03-01

    Nitrate injection into oil fields is an alternative to biocide addition for controlling sulfide production ('souring') caused by sulfate-reducing bacteria (SRB). This study examined the suitability of several cultivation-dependent and cultivation-independent methods to assess potential microbial activities (sulfidogenesis and nitrate reduction) and the impact of nitrate amendment on oil field microbiota. Microcosms containing produced waters from two Western Canadian oil fields exhibited sulfidogenesis that was inhibited by nitrate amendment. Most probable number (MPN) and fluorescent in situ hybridization (FISH) analyses of uncultivated produced waters showed low cell numbers (≤10(3) MPN/ml) dominated by SRB (>95% relative abundance). MPN analysis also detected nitrate-reducing sulfide-oxidizing bacteria (NRSOB) and heterotrophic nitrate-reducing bacteria (HNRB) at numbers too low to be detected by FISH or denaturing gradient gel electrophoresis (DGGE). In microcosms containing produced water fortified with sulfate, near-stoichiometric concentrations of sulfide were produced. FISH analyses of the microcosms after 55 days of incubation revealed that Gammaproteobacteria increased from undetectable levels to 5-20% abundance, resulting in a decreased proportion of Deltaproteobacteria (50-60% abundance). DGGE analysis confirmed the presence of Delta- and Gammaproteobacteria and also detected Bacteroidetes. When sulfate-fortified produced waters were amended with nitrate, sulfidogenesis was inhibited and Deltaproteobacteria decreased to levels undetectable by FISH, with a concomitant increase in Gammaproteobacteria from below detection to 50-60% abundance. DGGE analysis of these microcosms yielded sequences of Gamma- and Epsilonproteobacteria related to presumptive HNRB and NRSOB (Halomonas, Marinobacterium, Marinobacter, Pseudomonas and Arcobacter), thus supporting chemical data indicating that nitrate-reducing bacteria out-compete SRB when nitrate is added.

  20. Five willow varieties cultivated across diverse field environments reveal stem density variation associated with high tension wood abundance

    PubMed Central

    Berthod, Nicolas; Brereton, Nicholas J. B.; Pitre, Frédéric E.; Labrecque, Michel

    2015-01-01

    Sustainable and inexpensive production of biomass is necessary to make biofuel production feasible, but represents a challenge. Five short rotation coppice willow cultivars, selected for high biomass yield, were cultivated on sites at four diverse regions of Quebec in contrasting environments. Wood composition and anatomical traits were characterized. Tree height and stem diameter were measured to evaluate growth performance of the cultivars according to the diverse pedoclimatic conditions. Each cultivar showed very specific responses to its environment. While no significant variation in lignin content was observed between sites, there was variation between cultivars. Surprisingly, the pattern of substantial genotype variability in stem density was maintained across all sites. However, wood anatomy did differ between sites in a cultivar (producing high and low density wood), suggesting a probable response to an abiotic stress. Furthermore, twice as many cellulose-rich G-fibers, comprising over 50% of secondary xylem, were also found in the high density wood, a finding with potential to bring higher value to the lignocellulosic bioethanol industry. PMID:26583024

  1. Five willow varieties cultivated across diverse field environments reveal stem density variation associated with high tension wood abundance.

    PubMed

    Berthod, Nicolas; Brereton, Nicholas J B; Pitre, Frédéric E; Labrecque, Michel

    2015-01-01

    Sustainable and inexpensive production of biomass is necessary to make biofuel production feasible, but represents a challenge. Five short rotation coppice willow cultivars, selected for high biomass yield, were cultivated on sites at four diverse regions of Quebec in contrasting environments. Wood composition and anatomical traits were characterized. Tree height and stem diameter were measured to evaluate growth performance of the cultivars according to the diverse pedoclimatic conditions. Each cultivar showed very specific responses to its environment. While no significant variation in lignin content was observed between sites, there was variation between cultivars. Surprisingly, the pattern of substantial genotype variability in stem density was maintained across all sites. However, wood anatomy did differ between sites in a cultivar (producing high and low density wood), suggesting a probable response to an abiotic stress. Furthermore, twice as many cellulose-rich G-fibers, comprising over 50% of secondary xylem, were also found in the high density wood, a finding with potential to bring higher value to the lignocellulosic bioethanol industry.

  2. Effects of N loading rate on CH4 and N2O emissions during cultivation and fallow periods from forage rice fields fertilized with liquid cattle waste.

    PubMed

    Riya, S; Zhou, S; Kobara, Y; Sagehashi, M; Terada, A; Hosomi, M

    2015-09-15

    The use of liquid cattle waste (LCW) as a fertilizer for forage rice is important for material recycling because it can promote biomass production, and reduce the use of chemical fertilizer. Meanwhile, increase in emission of greenhouse gases (GHGs), especially CH4 and N2O would be concerned. We conducted a field study to determine the optimum loading rate of LCW as N to promote forage rice growth with lower GHG emissions. The LCW was applied to forage rice fields, N100, N250, N500, and N750, at four different N loading rates of 107, 258, 522, and 786 kg N ha(-1), respectively, including 50 kg N ha(-1) of basal chemical fertilizer. The above-ground biomass yields increased 14.6-18.5 t ha(-1) with increases in N loading rates. During the cultivation period, both the CH4 and N2O fluxes increased with increases in LCW loading rates. In the treatments of N100, N250, N500, and N750, the cumulative CH4 emissions during the entire period, including cultivation and fallow period were 29.6, 18.1, 54.4, and 67.5 kg C ha(-1), respectively, whereas those of N2O were -0.15, -0.02, 1.49, and 5.82 kg N ha(-1), respectively. Considering the greenhouse gas emissions and above-ground biomass, the yield-scaled CO2-equivalents (CO2-eqs) were 66.3, 35.9, 161, and 272 kg CO2 t(-1) for N100, N250, N500, and N750, respectively. These results suggest that N250 is the most appropriate LCW loading rate for promoting forage rice production with lower GHG emissions.

  3. Greenhouse and field cultivations of antigen-expressing potatoes focusing on the variability in plant constituents and antigen expression.

    PubMed

    Mikschofsky, Heike; Heilmann, Elena; Schmidtke, Jörg; Schmidt, Kerstin; Meyer, Udo; Leinweber, Peter; Broer, Inge

    2011-05-01

    The production of plant-derived pharmaceuticals essentially requires stable concentrations of plant constituents, especially recombinant proteins; nonetheless, soil and seasonal variations might drastically interfere with this stability. In addition, variability might depend on the plant organ used for production. Therefore, we investigated the variability in plant constituents and antigen expression in potato plants under greenhouse and field growth conditions and in leaves compared to tubers. Using potatoes expressing VP60, the only structural capsid protein of the rabbit haemorrhagic disease virus (RHDV), CTB, the non-toxic B subunit (CTB) of the cholera toxin (CTA-CTB(5)) and the marker protein NPTII (neomycinphosphotransferase) as a model, we compare greenhouse and field production of potato-derived antigens. The influence of the production organ turned out to be transgene specific. In general, yield, plant quality and transgene expression levels in the field were higher than or similar to those observed in the greenhouse. The variation (CV) of major plant constituents and the amount of transgene-encoded protein was not influenced by the higher variation of soil properties observed in the field. Amazingly, for specific events, the variability in the model protein concentrations was often lower under field than under greenhouse conditions. The changes in gene expression under environmental stress conditions in the field observed in another event do not reduce the positive influence on variability since events like these should excluded from production. Hence, it can be concluded that for specific applications, field production of transgenic plants producing pharmaceuticals is superior to greenhouse production, even concerning the stability of transgene expression over different years. On the basis of our results, we expect equal or even higher expression levels with lower variability of recombinant pharmaceuticals in the field compared to greenhouse production

  4. Effects of manure and cultivation on carbon dioxide and nitrous oxide emissions from a corn field under Mediterranean conditions.

    PubMed

    Heller, Hadar; Bar-Tal, Asher; Tamir, Guy; Bloom, Paul; Venterea, Rodney T; Chen, Dong; Zhang, Yi; Clapp, C Edward; Fine, Pinchas

    2010-01-01

    The use of organic residues as soil additives is increasing, but, depending on their composition and application methods, these organic amendments can stimulate the emissions of CO(2) and N(2)O. The objective of this study was to quantify the effects of management practices in irrigated sweet corn (Zea mays L.) on CO(2) and N(2)O emissions and to relate emissions to environmental factors. In a 3-yr study, corn residues (CR) and pasteurized chicken manure (PCM) were used as soil amendments compared with no residue (NR) under three management practices: shallow tillage (ST) and no tillage (NT) under consecutive corn crops and ST without crop. Tillage significantly increased (P < 0.05) CO(2) and N(2)O fluxes in residue-amended plots and in NR plots. Carbon dioxide and N(2)O fluxes were correlated with soil NH(4) concentrations and with days since tillage and days since seeding. Fluxes of CO(2) were correlated with soil water content, whereas N(2)O fluxes had higher correlation with air temperature. Annual CO(2) emissions were higher with PCM than with CR and NR (9.7, 2.9, and 2.3 Mg C ha(-1), respectively). Fluxes of N(2)O were 34.4, 0.94, and 0.77 kg N ha(-1) yr(-1) with PCM, CR, and NR, respectively. Annual amounts of CO(2)-C and N(2)O-N emissions from the PCM treatments were 64 and 3% of the applied C and N, respectively. Regardless of cultivation practices, elevated N(2)O emissions were recorded in the PCM treatment. These emissions could negate some of the beneficial effects of PCM on soil properties.

  5. Predation of stink bugs (Hemiptera: Pentatomidae) by a complex of predators and adjoining soybean habitats in Georgia, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular gut-content analysis was used to examine predation on stink bugs (Hemiptera: Pentatomidae) by arthropod predators in habitats of soybean with and without buckwheat and adjoining cotton. Nezara viridula (L.), Euschistus servus (Say), Chinavia hilaris (Say), and Euschistus quadrator Rolston,...

  6. In vitro susceptibility of Plasmodium falciparum Welch field isolates to infusions prepared from Artemisia annua L. cultivated in the Brazilian Amazon.

    PubMed

    Silva, Luiz Francisco Rocha e; Magalhães, Pedro Melillo de; Costa, Mônica Regina Farias; Alecrim, Maria das Graças Costa; Chaves, Francisco Célio Maia; Hidalgo, Ari de Freitas; Pohlit, Adrian Martin; Vieira, Pedro Paulo Ribeiro

    2012-11-01

    Artemisinin is the active antimalarial compound obtained from the leaves of Artemisia annua L. Artemisinin, and its semi-synthetic derivatives, are the main drugs used to treat multi-drug-resistant Plasmodium falciparum (one of the human malaria parasite species). The in vitro susceptibility of P. falciparum K1 and 3d7 strains and field isolates from the state of Amazonas, Brazil, to A. annua infusions (5 g dry leaves in 1 L of boiling water) and the drug standards chloroquine, quinine and artemisinin were evaluated. The A. annua used was cultivated in three Amazon ecosystems (várzea, terra preta de índio and terra firme) and in the city of Paulínia, state of São Paulo, Brazil. Artemisinin levels in the A. annua leaves used were 0.90-1.13% (m/m). The concentration of artemisinin in the infusions was 40-46 mg/L. Field P. falciparum isolates were resistant to chloroquine and sensitive to quinine and artemisinin. The average 50% inhibition concentration values for A. annua infusions against field isolates were 0.11-0.14 μL/mL (these infusions exhibited artemisinin concentrations of 4.7-5.6 ng/mL) and were active in vitro against P. falciparum due to their artemisinin concentration. No synergistic effect was observed for artemisinin in the infusions.

  7. Effect of Miscanthus cultivation on metal fractionation and human bioaccessibility in metal-contaminated soils: comparison between greenhouse and field experiments.

    PubMed

    Pelfrêne, Aurélie; Kleckerová, Andrea; Pourrut, Bertrand; Nsanganwimana, Florien; Douay, Francis; Waterlot, Christophe

    2015-02-01

    The in situ stabilization of metals in soils using plants with great biomass value is a promising, cost-effective, and ecologically friendly alternative to manage metal-polluted sites. The goal of phytostabilization is to reduce the bioavailable concentrations of metals in polluted soil and thus reduce the risk to the environment and human health. In this context, this study aimed at evaluating Miscanthus × giganteus efficiency in phytostabilizing metals on three contaminated agricultural sites after short-term exposure under greenhouse conditions and after long-term exposure under field conditions. Particular attention was paid to the influence of Miscanthus cultivation on (i) Cd, Pb, and Zn fractionation using sequential extractions and (ii) metal bioaccessibility using an in vitro gastrointestinal digestion test. Data gave evidence of (i) different behaviors between the greenhouse and the field; (ii) metal redistribution in soils induced by Miscanthus culture, more specifically under field conditions; (iii) higher environmental availability for Cd than for Pb and Zn was found in both conditions; and (iv) overall, a higher bioaccessible fraction for Pb (about 80 %) and Cd (65-77 %) than for Zn (36-52 %) was recorded in the gastric phase, with a sharp decrease in the intestinal phase (18-35 % for Cd, 5-30 % for Pb, and 36-52 % for Zn). Compared to soils without culture, the results showed that phytostabilization using Miscanthus culture provided evidence for substantial effects on oral bioaccessibility of Cd, Pb, and Zn.

  8. Tectonic and depositional model of the Arabian and adjoining plates during the Silurian-Devonian

    SciTech Connect

    Husseini, M.I. )

    1991-01-01

    During the Late Ordovician and Early Silurian, the western part of the Arabian Peninsula was covered by polar glaciers that advanced from the south pole in African Gondwana. During this period, nondeposition, erosion, or marginal marine conditions prevailed in eastern and northern Arabia. When the glaciers melted in the Early Silurian, sea level rose sharply and the paleo-Tethys Ocean transgressed the Arabian and adjoining plates depositing a thick, organic-rich shale directly over the glaciogenic and periglacial rocks and related unconformities. The post-glacial sequence coarsens upward reflecting the passage of a coastline prograding northward from African and Arabian Gondwana to northern Arabia. A sea level drop in the Late Silurian placed the study area in a terrestrial environment; however, as sea level recovered in the Early Devonian, a carbonate sequence blanketed most of the area. The transgression, however, was interrupted by regional uplift and local orogenic movements in the Middle and Late Devonian. These movements constitute the onset of Hercynian tectonism, which resulted in erosion of the older sequences, depositional hiatuses, and regional facies changes.

  9. Ground water contamination in the area adjoining zinc smelter effluent stream.

    PubMed

    Garg, V K; Totawat, K L

    2004-01-01

    A preliminary survey of the area adjoining to zinc smelter effluent stream was undertaken to assess ground water contamination. Twenty-five ground water samples from the wells located in the study area were collected and grouped into nine groups based on their lateral and longitudinal position from the stream carrying the effluent discharged from zinc smelter, Debari- Udaipur. The study indicate that waters of wells situated in the vicinity of effluent stream (255m radius) were of medium salinity having higher levels of Ca and Mg and lower values of pH as compared to the waters of the reference wells situated far away from the effluent stream. The Fe, Zn, Cd, Cl, F and SO4 contents ofthe water from the wells located within 80m vicinity of the effluent stream were above the permissible limits for drinking purposes. Furthermore the Zn, Cl and SO4 levels in these waters were so high that they were even not suitable for irrigation, indicating a gradual encroachment of effluent into the native ground water.

  10. Tectonic and deposition model of late Precambrian-Cambrian Arabian and adjoining plates

    SciTech Connect

    Husseini, M.I. )

    1989-09-01

    During the late Precambrian, the terranes of the Arabian and adjoining plates were fused along the northeastern flank of the African plate in Gondwanaland. This phase, which ended approximately 640 to 620 Ma, was followed by continental failure (620 to 580 Ma) and intracontinental extension (600 to approximately 550 Ma). During the Infracambrian extensional phase, a triple junction may have evolved near the Sinai Peninsula and may have consisted of the (1) Jordan Valley and Dead Sea rift branch, (2) Sinai and North Egypt rift branch, and (3) the Najd wrench-rift branch. The Najd, Hawasina, and Zagros fault systems may have been transverse faults that accompanied rifting in the Arabian Gulf and Zagros Mountains, southern Oman, Pakistan, and Kerman in central Iran. While the area was extending and subsiding, the Tethys Ocean flooded the eastern side of the Arabian plate and Iran and deposited calcareous clastics, carbonates, and evaporites (including the Hormuz and Ara halites). This transgression extended into the western part of the Arabian plate via the Najd rift system. The termination of the extensional phase during the late Early Cambrian was accompanied by a major regression and terrestrial conditions on the Arabian Peninsula. However, by the Early Ordovician, as sea level peaked to a highstand, the Arabian plate was blanketed with marginal marine sediments. 11 figs., 2 tabs.

  11. Hydrochemical profile for assessing the groundwater quality of Sambhar lake city and its adjoining area.

    PubMed

    Joshi, Anita; Seth, Gita

    2011-03-01

    Quality assessment of water is essential to ensure sustainable safe use of it for drinking, agricultural, and industrial purposes. For the same purpose the study was conducted for the samples of water of Sambhar lake city and its adjoining areas. The standard methods of APHA were used to analysis 15 samples collected from hand pumps and tube wells of the specified area. The analytical results show higher concentration of total dissolved solids, electrical conductivity sodium, nitrate, sulfate, and fluoride, which indicate signs of deterioration but values of pH, calcium, magnesium, total hardness, and carbonate are within permissible limits as per WHO standards. From the Hill-piper trilinear diagram, it is observed that the majority of groundwater from sampling stations are sodium-potassium-chloride-sulfate type water. The values of sodium absorption ratio and electrical conductivity of the groundwater were plotted in the US salinity laboratory diagram for irrigation water. Only the one sample fall in C(3)S(1) quality with high salinity hazard and low sodium hazard. Other samples fall in high salinity hazard and high sodium hazard. Chemical analysis of groundwater shows that mean concentration of cation is in order sodium > magnesium > calcium > potassium while for the anion it is chloride > bicarbonate > nitrate > sulfate.

  12. Susceptibility to the Cry1F toxin of field populations of Sesamia nonagrioides (Lepidoptera: Noctuidae) in Mediterranean maize cultivation regions.

    PubMed

    Farinós, G P; De la Poza, M; Ortego, F; Castañera, P

    2012-02-01

    Maize hybrids expressing the Cry1F toxin provide efficient control of lepidopteran pests. The Mediterranean corn borer, Sesamia nonagrioides (Lefèvre), is one of the most damaging pests of maize in the Mediterranean basin. In this work we firstly determined the efficacy of maize hybrids expressing the Cry1F toxin (event TC1507) to control neonates of S. nonagrioides. Leaf tissue feeding bioassays revealed that TC1507 maize is highly effective against this pest, and the percentage mortality obtained was comparable to that obtained with a Cry1Ab-expressing maize hybrid (Compa CB, event 176), which is known to be highly efficacious against S. nonagrioides. Secondly, interpopulation variation in the susceptibility to the Cry1F insecticidal protein was established for nine field-collected populations of S. nonagrioides (three Spanish, two French, two Italian, one Greek, and one Turkish). Estimates of the susceptibility of larvae to the Cry1F toxin showed low variability in lethal concentrations and growth inhibition concentrations among field populations. Moreover, no significant differences were found when they were grouped by geographical areas [Western Mediterranean (Spain and France) versus Eastern Mediterranean (Italy, Greece and Turkey)] or by history of exposure to Bt plants (Spanish vs. other populations). Therefore, the minor differences found in field populations can be attributed to natural variation in sensitivity to Cry1F. The importance of establishing baselines of susceptibility for resistance detection is discussed. Future changes in susceptibility of S. nonagrioides populations to Cry1F could be documented based on this baseline data.

  13. The practice of recent radiative transfer Monte Carlo advances and its contribution to the field of microorganisms cultivation in photobioreactors

    NASA Astrophysics Data System (ADS)

    Dauchet, Jérémi; Blanco, Stéphane; Cornet, Jean-François; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard

    2013-10-01

    The present text illustrates the practice of integral formulation, zero-variance approaches and sensitivity evaluations in the field of radiative transfer Monte Carlo simulation, as well as the practical implementation of the corresponding algorithms, for such realistic systems as photobioreactors involving spectral integration, multiple scattering and complex geometries. We try to argue that even in such non-academic contexts, strong benefits can be expected from the effort of translating the considered Monte Carlo algorithm into a rigorously equivalent integral formulation. Modifying the initial algorithm to simultaneously compute sensitivities is then straightforward (except for domain deformation sensitivities) and the question of enhancing convergence is turned into that of modeling a set of well identified physical quantities.

  14. Field studies to determine mancozeb based spray programmes with minimal impact on predatory mites in European vine cultivation.

    PubMed

    Miles, M; Kemmitt, G

    2005-01-01

    Mancozeb is an ethylene bisdithiocarbamate (EBDC) fungicide with contact activity against a wide range of economically important fungal diseases. Its multi-site mode of action means that to date there have been no recorded incidences of resistance developing despite many years of use on high risk diseases. One such disease, Grape downy mildew (Plasmopara viticola) has developed resistance to a number of important oomycete specific fungicides following their introduction onto the market. The role of Mancozeb either as a mixing or alternation partner in helping to manage these resistance situations remains critically important. Historical use patterns for mancozeb in tree and vine crops involved many applications of product at high use rates. Although this gave excellent disease control, a negative impact on predatory mites has been reported by researchers. This has lead to the development of mancozeb spray programmes in vines and other crops with a much reduced impact on predatory mites. A range of field studies was conducted in France, Germany, Italy, Portugal and Spain where either 2 or 4 applications of mancozeb containing products were made per season at different spray timings. These trials covered the representative range of uses, agronomic practices, mite species and geographical locations in Europe. In this paper findings from ten field studies in five different vine growing regions in Europe indicated that two to four applications of mancozeb at 1.6 kg a.i./ha as part of a spray programme caused minimal impact on naturally occurring populations of predatory mites which in turn was compatible with Integrated Pest Management programmes and the conservation of predatory mites.

  15. Building a field- and model-based climatology of local water and energy cycles in the cultivated Sahel - annual budgets and seasonality

    NASA Astrophysics Data System (ADS)

    Velluet, C.; Demarty, J.; Cappelaere, B.; Braud, I.; Issoufou, H. B.-A.; Boulain, N.; Ramier, D.; Mainassara, I.; Charvet, G.; Boucher, M.; Chazarin, J.-P.; Oï, M.; Yahou, H.; Maidaji, B.; Arpin-Pont, F.; Benarrosh, N.; Mahamane, A.; Nazoumou, Y.; Favreau, G.; Seghieri, J.

    2014-05-01

    In the African Sahel, energy and water cycling at the land surface is pivotal for regional climate, water resources and land productivity, yet it is still extremely poorly documented. As a step towards a comprehensive climatological description of surface fluxes in this area, this study provides estimates of average annual budgets and seasonal cycles for two main land use types of the cultivated Sahelian belt, rainfed millet crop and fallow bush. These estimates build on the combination of a 7 year field dataset from two typical plots in southwestern Niger with detailed physically-based soil-plant-atmosphere modelling, yielding a continuous, comprehensive set of water and energy flux and storage variables over the 7 year period. In this study case in particular, blending field data with mechanistic modelling is considered as making best use of available data and knowledge for such purpose. It extends observations by reconstructing missing data and extrapolating to unobserved variables or periods. Furthermore, model constraining with observations compromises between extraction of observational information content and integration of process understanding, hence accounting for data imprecision and departure from physical laws. Climatological averages of all water and energy variables, with associated sampling uncertainty, are derived at annual to subseasonal scales from the 7 year series produced. Similarities and differences in the two ecosystems behaviors are highlighted. Mean annual evapotranspiration is found to represent ~82-85% of rainfall for both systems, but with different soil evaporation/plant transpiration partitioning and different seasonal distribution. The remainder consists entirely of runoff for the fallow, whereas drainage and runoff stand in a 40-60% proportion for the millet field. These results should provide a robust reference for the surface energy- and water-related studies needed in this region. The model developed in this context has the

  16. Tsunami Simulations for Regional Sources in the South China and Adjoining Seas

    NASA Astrophysics Data System (ADS)

    Okal, Emile A.; Synolakis, Costas E.; Kalligeris, Nikos

    2011-06-01

    We present 14 scenarios of potential tsunamis in the South China Sea and its adjoining basins, the Sulu and Sulawezi Seas. The sources consist of earthquake dislocations inspired by the the study of historical events, either recorded (since 1900) or described in historical documents going back to 1604. We consider worst-case scenarios, where the size of the earthquake is not limited by the largest known event, but merely by the dimension of the basin over which a coherent fault may propagate. While such scenarios are arguably improbable, they may not be impossible, and as such must be examined. For each scenario, we present a simulation of the tsunami's propagation in the marine basin, exclusive of its interaction with the coastline. Our results show that the South China, Sulu and Sulawezi Seas make up three largely independent basins where tsunamis generated in one basin do not leak into another. Similarly, the Sunda arc provides an efficient barrier to tsunamis originating in the Indian Ocean. Furthermore, the shallow continental shelves in the Java Sea, the Gulf of Thailand and the western part of the South China Sea significantly dampen the amplitude of the waves. The eastern shores of the Malay Peninsula are threatened only by the greatest—and most improbable—of our sources, a mega-earthquake rupturing all of the Luzon Trench. We also consider two models of underwater landslides (which can be triggered by smaller events, even in an intraplate setting). These sources, for which there is both historical and geological evidence, could pose a significant threat to all shorelines in the region, including the Malay Peninsula.

  17. Regional disconformities in Turonian and Coniacian (Upper Cretaceous) strata in Colorado, Wyoming, and adjoining states - Biochronological evidence

    USGS Publications Warehouse

    Merewether, E.A.; Cobban, W.A.; Obradovich, J.D.

    2007-01-01

    Siliciclastic and calcareous sedimentary rocks of early Late Cretaceous age in the Western Interior of the United States have been assigned to, in ascending order, the Graneros Shale, Greenhorn Formation, Carlile Shale, Niobrara Formation, and their lateral equivalents (including members of the Frontier Formation and overlying formations). This sequence of formations was deposited intermittently within and near an epicontinental seaway during the Cenomanian, Turonian, and Coniacian stages of the Cretaceous. It encloses three conspicuous and widespread disconformities that reflect regional marine regressions and transgressions as well as moderate tectonism. The disconformities and associated lacunae occupy three large areas within Wyoming, Colorado, and adjoining states. In parts of that region, as in northwestern Wyoming, a lacuna can represent more than one period of erosion and more than a single disconformity. Evidence for these disconformities was obtained from about 175 collections of molluscan fossils and from sedimentological studies of outcrops and borehole logs, supplemented by previously published data.

  18. Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats.

    PubMed

    Meyling, Nicolai V; Lübeck, Mette; Buckley, Ellen P; Eilenberg, Jørgen; Rehner, Stephen A

    2009-03-01

    Although intensively investigated for biological control of insect pests, little is known about the ecology of the fungal entomopathogenic genus Beauveria in natural or agricultural habitats. In this study, we used molecular phylogenetic and genotypic information to infer species diversity, reproductive potential and genetic structure of Beauveria occurring within a single arable field and bordering hedgerow in Denmark. Isolates were sampled from cultivated field and hedgerow soils, from insects harbouring latent fungal infections, and from the phylloplanes of three plant species common in the hedgerow flora. A nuclear phylogeny of this local Beauveria assemblage resolved seven phylogenetic species, including (i) five phylogenetic species within Beauveria bassiana sensu stricto; (ii) Clade C, a taxonomically uncharacterized species that is morphologically indistinguishable but phylogenetically distant from B. bassiana s.s.; and (iii) Beauveria brongniartii. All seven species were present throughout the hedgerow habitat, including as infections in insects. Significantly, only B. bassiana s.s. phylogenetic species Eu_1 was isolated from tilled soils. Mating type polymerase chain reaction assays demonstrated that all five B. bassiana s.s. phylogenetic species possess bipolar outcrossing mating systems. Of these, only the Eu_1 population contained two mating types; however, a 31:2 skew in MAT1:MAT2 mating types suggests a low frequency of sexual reproduction in this population. The four remaining B. bassiana s.s. phylogenetic species were fixed for single mating types and these populations are evidently clonal. Multilocus microsatellite genotyping revealed polymorphism in all five phylogenetic species of B. bassiana s.s.; however, all show evidence of clonal genetic structure.

  19. Rhizosphere effect on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in manure-amended soil during cabbage (Brassica oleracea) cultivation under tropical field conditions in Sub-Saharan Africa.

    PubMed

    Ongeng, Duncan; Muyanja, Charles; Ryckeboer, Jaak; Geeraerd, Annemie H; Springael, Dirk

    2011-09-15

    The effect of cabbage (Brassica oleracea) rhizosphere on survival of Escherichia coli O157:H7 and Salmonella Typhimurium in manure-amended soils under tropical field conditions was investigated in the Central Agro-Ecological Zone of Uganda. Three-week old cabbage seedlings were transplanted and cultivated for 120 days on manure-amended soil inoculated with 4 or 7 log CFU/g non-virulent E. coli O157:H7 and S. Typhimurium. Cabbage rhizosphere did not affect survival of the 4log CFU/g inocula in manure-amended soil and the two enteric bacteria were not detected on/in cabbage leaves at harvest. The 7 log CFU/g E. coli O157:H7 and S. Typhimurium survived in bulk soil for a maximum of 80 and 96 days, respectively, but the organisms remained culturable in cabbage rhizosphere up to the time of harvest. At 7 log CFU/g inoculum, E. coli O157:H7 and S. Typhimurium contamination on cabbage leaves occurred throughout the cultivation period. Leaf surface sterilisation with 1% AgNO(3) indicated that the organisms were present superficially and in protected locations on the leaves. These results demonstrate that under tropical field conditions, cabbage rhizosphere enhances the persistence of E. coli O157:H7 and S. Typhimurium in manure-amended soil at high inoculum density and is associated with long-term contamination of the leaves.

  20. Spirulina cultivation in China

    NASA Astrophysics Data System (ADS)

    Bo-Tang, Wu; Wen-Zhou, Xiang; Cheng-Kui, Zeng

    1998-03-01

    This paper reviews and discusses the development and many problems of Spirulina cultivation in China, points out the advantages and disadvantages of open photobioreactor system, and predicts that seawater Spirulina cultivation will be a new trend to be strengthened and emphasized due to its special physiological characteristics, easier management, lower fertilizer cost, and higher resistance to contaminants and rare pollution of chemicals.

  1. Do not judge a cell by its cover--diversity of CNS resident, adjoining and infiltrating myeloid cells in inflammation.

    PubMed

    Brendecke, Stefanie M; Prinz, Marco

    2015-11-01

    Specialized populations of tissue-resident myeloid cells inhabit every organ of the body. While many of these populations appear similar morphologically and phenotypically, they exhibit great functional diversity. The central nervous system (CNS), as an immune privileged organ, possesses a unique tissue-resident macrophage population, the microglia, as well as numerous myeloid cell subsets at its boarders and barriers in CNS-adjoining tissues, namely the meninges, the perivascular space, and the choroid plexus. Recent research has added much to our knowledge about microglia, whereas the populations of CNS-surrounding phagocytes are just starting to be appreciated. As guardians of CNS homeostasis, these myeloid cells perform immune surveillance and immune modulatory tasks in health and disease. As such, microglia and CNS-surrounding antigen-presenting cells have been shown to be crucially involved not only in the initiation and progression but also resolution of multiple sclerosis (MS). MS and its rodent model, experimental autoimmune encephalomyelitis, are autoimmune inflammatory demyelinating CNS pathologies. While some crucial aspects of the disease pathogenesis have been solved, much of the complex involvement and interplay of the innate immune compartment remains yet to be clarified. Here, we will discuss the current understanding of the scope of phenotypes and functions of myeloid cells involved in CNS neuroinflammation.

  2. Cultivation of parasites

    PubMed Central

    Ahmed, Nishat Hussain

    2014-01-01

    Parasite cultivation techniques constitute a substantial segment of present-day study of parasites, especially of protozoa. Success in establishing in vitro and in vivo culture of parasites not only allows their physiology, behavior and metabolism to be studied dynamically, but also allows the nature of the antigenic molecules in the excretory and secretory products to be vigorously pursued and analyzed. The complex life-cycles of various parasites having different stages and host species requirements, particularly in the case of parasitic helminths, often make parasite cultivation an uphill assignment. Culturing of parasites depends on the combined expertise of all types of microbiological cultures. Different parasites require different cultivation conditions such as nutrients, temperature and even incubation conditions. Cultivation is an important method for diagnosis of many clinically important parasites, for example, Entamoeba histolytica, Trichomonas vaginalis, Leishmania spp., Strongyloides stercoralis and free-living amoebae. Many commercial systems like InPouch TV for T. vaginalis, microaerophilous stationary phase culture for Babesia bovis and Harada-Mori culture technique for larval-stage nematodes have been developed for the rapid diagnosis of the parasitic infections. Cultivation also has immense utility in the production of vaccines, testing vaccine efficacy, and antigen - production for obtaining serological reagents, detection of drug-resistance, screening of potential therapeutic agents and conducting epidemiological studies. Though in vitro cultivation techniques are used more often compared with in vivo techniques, the in vivo techniques are sometimes used for diagnosing some parasitic infections such as trypanosomiasis and toxoplasmosis. Parasite cultivation continues to be a challenging diagnostic option. This review provides an overview of intricacies of parasitic culture and update on popular methods used for cultivating parasites. PMID

  3. Transfer and internalisation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in cabbage cultivated on contaminated manure-amended soil under tropical field conditions in Sub-Saharan Africa.

    PubMed

    Ongeng, D; Vasquez, G A; Muyanja, C; Ryckeboer, J; Geeraerd, A H; Springael, D

    2011-01-31

    Surface contamination and internalisation of Escherichia coli O157:H7 and Salmonella Typhimurium in cabbage leaf tissues at harvest (120 days post-transplantation) following amendment of contaminated bovine manure to soil at different times during crop cultivation were investigated under tropical field conditions in the Central Agro-Ecological Zone of Uganda. Fresh bovine manure inoculated with rifampicin-resistant derivatives of non-virulent strains of E. coli O157:H7 and S. Typhimurium was incorporated into the soil to achieve inoculum concentrations of 4 and 7 log CFU/g at the point of transplantation, 56 or 105 days post-transplantation of cabbage seedlings. Frequent sampling of the soil enabled the accurate identification of the survival kinetics in soil, which could be described by the Double Weibull model in all but one of the cases. The persistence of 4 log CFU/g E. coli O157:H7 and S. Typhimurium in the soil was limited, i.e. only inocula applied 105 days post-transplantation were still present at harvest. Moreover, no internalisation in cabbage leaf tissues was observed. In contrast, at the 7 log CFU/g inoculum level, E. coli O157:H7 and S. Typhimurium survived in the soil throughout the cultivation period. All plants (18/18) examined for leaf contamination were positive for E. coli O157:H7 at harvest irrespective of the time of manure application. A similar incidence of leaf contamination was found for S. Typhimurium. On the other hand, only plants (18/18) cultivated on soil amended with contaminated manure at the point of transplantation showed internalised E. coli O157:H7 and S. Typhimurium at harvest. These results demonstrate that under tropical field conditions, the risk of surface contamination and internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues at harvest depend on the inoculum concentration and the time of manure application. Moreover, the internalisation of E. coli O157:H7 and S. Typhimurium in cabbage leaf tissues

  4. Agronomic performance of five banana cultivars under protected cultivation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana has been grown both in open-field and protected cultivation in Turkey. So far protected cultivation is very popular due to the high yield and quality. The objective of the study was to evaluate agronomic performance of five new banana cultivars under plastic greenhouse. ‘MA 13’, ‘Williams’, ‘...

  5. Evolution of Cuphea PSR23 under cultivation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of experiments carried out under controlled environments and field conditions (2002-2008) evaluated populations of the potential oilseed crop PSR23, a selection from a cross between two wild Cuphea species (C. viscosissima and C. lanceolata) for indicators of evolution under cultivation and...

  6. Solar UVB response of bioactives in strawberry (Fragaria × ananassa Duch. L.): a comparison of protected and open-field cultivation.

    PubMed

    Josuttis, Melanie; Dietrich, Helmut; Treutter, Dieter; Will, Frank; Linnemannstöns, Ludger; Krüger, Erika

    2010-12-22

    Strawberries (Fragaria × ananassa Duch. cvs. Everest, Elsanta) were grown in a tunnel covered with two films, which were distinguished in their ultraviolet transparency, as well as under open-field conditions. One applied film was not transparent for UVB radiation, and the second film transmitted 70% of UVB radiation. During the present study, the nutritional value and quality parameters of the fruits were evaluated. Strawberries were UV-unresponsive in view of the content of ascorbic acid and sum parameters like total anthocyanins and antioxidant capacity measured with TEAC (trolox equivalent antioxidant capacity), ORAC (oxygen radical absorbance capacity) and total phenols. These parameters were mainly affected by sampling date and cultivar. However, HPLC analysis showed that individual phenolics were affected in the absence of UV radiation. The content of the anthocyanin cyanidin 3-glucoside and the flavonols quercetin 3-glucuronide and kaempferol 3-glucoside was decreased in the fruits grown under UV blocking film compared to open-field grown strawberries. By means of the UV transparent film the content of the mentioned flavonoids could be enhanced up to similar amounts like in open-field grown strawberries. All other phenolics were not consistently affected by UV radiation. This result was independent of cultivar.

  7. Physico-chemical characterization of total suspended particulate matter over two coastal stations of Antarctica and adjoining ocean

    NASA Astrophysics Data System (ADS)

    Ali, Kaushar; Trivedi, D. K.; Sahu, Saroj

    2015-12-01

    Physical and chemical characteristics of the total suspended particulate matter (TSPM) measured during 11 January-21 March, 2009 and 09 December 2009-09 January, 2010 over two stations of Antarctica (Larsemann Hills and Maitri) and adjoining ocean are investigated. It is found that the concentration of TSPM is low over all the observational locations. Day-to-day variation in the concentration of TSPM is mainly controlled by variation in the weather systems and associated meteorological parameters. Average concentration of TSPM over Larsemann Hills is 7.6 μg/m3 during Jan-Mar 2009 and 2.4 μg/m3 during Dec. 2009-Jan 2010. It is 9.0 μg/m3 over Maitri during Jan-Mar 2009. On excluding the TSPM data of the disturbed weather days during Jan-Mar 2009, the concentration of TSPM is found to be 4.2 μg/m3 over Larsemann Hills and 4.3 μg/m3 over Maitri. The TSPM at all the observational locations is acidic in nature with a maximum pH value of 5.56 at Larsemann Hills. The pH value of TSPM over Maitri is found to be 5.28. The acidic nature of TSPM indicates the absence of sufficient neutralizing alkaline minerals. Among the measured chemical anions Cl- dominates at all the locations except at Maitri where SO42- ion shows maximum concentration. The dominant cation is Na+ at all the observational stations. Sizeable fraction of SO42- is found at all the observational locations. Abundance of SO42- in the atmosphere of Antarctica and its surrounding region is mainly due to emission of dimethylsulfide (DMS) phytoplankton and its oxidation finally to SO42- particles by gas-to-particle conversion. The highest concentration of SO42- over Maitri is attributed to the contribution from anthropogenic activity at Maitri, in addition to the biogenic SO42- . NH4+ plays dominant role in neutralizing the acidic components of the aerosols.

  8. Results from two years of field studies to determine Mancozeb based spray programmes with minimal impact on predatory mites in European vine cultivation.

    PubMed

    Miles, M; Kemmitt, G; Valverde, P

    2006-01-01

    Mancozeb is a dithiocarbamate fungicide with contact activity against a wide range of economically important fungal diseases. Its multi-site mode of action means that to date there have been no recorded incidences of resistance developing despite many years of use on high risk diseases. One such disease, Grape downy mildew (Plasmopara viticola) has developed resistance to a wide range of important oomycete specific fungicides following their introduction onto the market. The role of Mancozeb either as a mixing or alternation partner in helping to manage these resistance situations remains critically important. Historical use patterns for mancozeb in tree and vine crops involved many applications of product at high use rates. Although this gave excellent disease control, a negative impact on predatory mites was often reported by researchers. This has lead to the development of mancozeb spray programmes in vines and other crops with a much reduced impact on predatory mites. A range of field studies was conducted over two years in France, Germany, Italy, Portugal and Spain where 2, 3 or 4 applications of mancozeb containing products were made per season at different spray timings. In this paper findings from field studies over two years in five different vine growing regions in Europe indicated that two to four applications of mancozeb at 1.6 kg a.i./ha as part of a spray programme caused minimal impact on naturally occurring populations of predatory mites which in turn was compatible with Integrated Pest Management programmes and the conservation of predatory mites.

  9. The Cultivated Classroom.

    ERIC Educational Resources Information Center

    Schilder, Rosalind

    1983-01-01

    Teachers who follow this monthly schedule for starting and cultivating plants in their classrooms can look forward to blooms and greenery throughout the year. Advice on choosing plants, making cuttings, forcing bulbs, rooting sweet potatoes and pineapples, and holding a Mother's Day plant sale is included. (PP)

  10. Cultivating Moral Resilience.

    PubMed

    Rushton, Cynda Hylton

    2017-02-01

    : Decades of research have documented the frequency, sources, and consequences of moral distress. However, few studies have focused on interventions designed to diminish its negative effects. The cultivation of moral resilience-the ability to respond positively to the distress and adversity caused by an ethically complex situation-is proposed as a method to transform moral distress.

  11. Cultivating Leaders from Within

    ERIC Educational Resources Information Center

    Burdette, Maggie; Schertzer, Kristen

    2005-01-01

    A major problem faced by school districts in the US is the paucity of applicants for the posts of school principals. A solution adopted by The Capistrano Unified School District (CUSD) in Orange County California was the cultivation of good leaders from within the district through the Teaching Assistant Principal (TAP) program.

  12. Modification of catalase and MAPK in Vicia faba cultivated in soil with high natural radioactivity and treated with a static magnetic field.

    PubMed

    Haghighat, Nazanin; Abdolmaleki, Parviz; Ghanati, Faezeh; Behmanesh, Mehrdad; Payez, Atefeh

    2014-03-01

    The effects of a static magnetic field (SMF) and high natural radioactivity (HR) on catalase and MAPK genes in Vicia faba were investigated. Soil samples with high natural radioactivity were collected from Ramsar in north Iran where the annual radiation absorbed dose from background radiation is higher than 20mSv/year. The specific activity of the radionuclides of (232)Th, (236)Ra, and (40)K was measured using gamma spectrometry. The seeds were planted either in the soil with high natural radioactivity or in the control soils and were then exposed to a SMF of 30mT for 8 days; 8h/day. Levels of expression of catalase and MAPK genes, catalase activity and H2O2 content were evaluated. The results demonstrated significant differences in the expression of catalase and MAPK genes in SMF- and HR-treated plants compared to the controls. An increase in catalase activity was accompanied by increased expression of its gene and accumulation of H2O2. Relative expression of the MAPK gene in treated plants, however, was lower than those of the controls. The results suggest that the response of V. faba plants to SMF and HR may be mediated by modification of catalase and MAPK.

  13. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils

    PubMed Central

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti, Marcos; Viana, Joao Herbert Moreira; Menezes, Cicero Bezerra; Silva, Lidianne Assis; Guimaraes, Claudia Teixeira; Coelho, Antonio Marcos; Kochian, Leon V.; van Eeuwijk, Fred A.; Magalhaes, Jurandir Vieira

    2015-01-01

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world’s arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL) mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha–1 grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha–1 independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries. PMID:26681519

  14. Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils.

    PubMed

    Carvalho, Geraldo; Schaffert, Robert Eugene; Malosetti, Marcos; Viana, Joao Herbert Moreira; Menezes, Cicero Bezerra; Silva, Lidianne Assis; Guimaraes, Claudia Teixeira; Coelho, Antonio Marcos; Kochian, Leon V; van Eeuwijk, Fred A; Magalhaes, Jurandir Vieira

    2015-12-17

    Aluminum (Al) toxicity damages plant roots and limits crop production on acid soils, which comprise up to 50% of the world's arable lands. A major Al tolerance locus on chromosome 3, AltSB, controls aluminum tolerance in sorghum [Sorghum bicolor (L.) Moench] via SbMATE, an Al-activated plasma membrane transporter that mediates Al exclusion from sensitive regions in the root apex. As is the case with other known Al tolerance genes, SbMATE was cloned based on studies conducted under controlled environmental conditions, in nutrient solution. Therefore, its impact on grain yield on acid soils remains undetermined. To determine the real world impact of SbMATE, multi-trait quantitative trait loci (QTL) mapping in hydroponics, and, in the field, revealed a large-effect QTL colocalized with the Al tolerance locus AltSB, where SbMATE lies, conferring a 0.6 ton ha(-1) grain yield increase on acid soils. A second QTL for Al tolerance in hydroponics, where the positive allele was also donated by the Al tolerant parent, SC283, was found on chromosome 9, indicating the presence of distinct Al tolerance genes in the sorghum genome, or genes acting in the SbMATE pathway leading to Al-activated citrate release. There was no yield penalty for AltSB, consistent with the highly localized Al regulated SbMATE expression in the root tip, and Al-dependent transport activity. A female effect of 0.5 ton ha(-1) independently demonstrated the effectiveness of AltSB in hybrids. Al tolerance conferred by AltSB is thus an indispensable asset for sorghum production and food security on acid soils, many of which are located in developing countries.

  15. Cultivation of Marine Sponges.

    PubMed

    Osinga; Tramper; Wijffels

    1999-11-01

    There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly influence culture success are evaluated. In situ sponge aquacultures, based on old methods for producing commercial bath sponges, are still the easiest and least expensive way to obtain sponge biomass in bulk. However, success of cultivation with this method strongly depends on the unpredictable and often suboptimal natural environment. Hence, a better-defined production system would be desirable. Some progress has been made with culturing sponges in semicontrolled systems, but these still use unfiltered natural seawater. Cultivation of sponges under completely controlled conditions has remained a problem. When designing an in vitro cultivation method, it is important to determine both qualitatively and quantitatively the nutritional demands of the species that is to be cultured. An adequate supply of food seems to be the key to successful sponge culture. Recently, some progress has been made with sponge cell cultures. The advantage of cell cultures is that they are completely controlled and can easily be manipulated for optimal production of the target metabolites. However, this technique is still in its infancy: a continuous cell line has yet to be established. Axenic cultures of sponge aggregates (primmorphs) may provide an alternative to cell culture. Some sponge metabolites are, in fact, produced by endosymbiotic bacteria or algae that live in the sponge tissue. Only a few of these endosymbionts have been cultivated so far. The biotechnology for the production of sponge metabolites needs further development. Research efforts should be continued to enable commercial exploitation of this valuable natural resource in the near future.

  16. Cultivating strategic thinking skills.

    PubMed

    Shirey, Maria R

    2012-06-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author presents an overview of strategic leadership and offers approaches for cultivating strategic thinking skills.

  17. ODPEVP: A program for computing eigenvalues and eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem

    NASA Astrophysics Data System (ADS)

    Chuluunbaatar, O.; Gusev, A. A.; Vinitsky, S. I.; Abrashkevich, A. G.

    2009-08-01

    A FORTRAN 77 program is presented for calculating with the given accuracy eigenvalues, eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm-Liouville problem with the parametric third type boundary conditions on the finite interval. The program calculates also potential matrix elements - integrals of the eigenfunctions multiplied by their first derivatives with respect to the parameter. Eigenvalues and matrix elements computed by the ODPEVP program can be used for solving the bound state and multi-channel scattering problems for a system of the coupled second-order ordinary differential equations with the help of the KANTBP programs [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649-675; O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky, A.G. Abrashkevich, Comput. Phys. Commun. 179 (2008) 685-693]. As a test desk, the program is applied to the calculation of the potential matrix elements for an integrable 2D-model of three identical particles on a line with pair zero-range potentials, a 3D-model of a hydrogen atom in a homogeneous magnetic field and a hydrogen atom on a three-dimensional sphere. Program summaryProgram title: ODPEVP Catalogue identifier: AEDV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3001 No. of bytes in distributed program, including test data, etc.: 24 195 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP RAM: depends on the number and order of finite

  18. Geo-spatial analysis of land-water resource degradation in two economically contrasting agricultural regions adjoining national capital territory (Delhi).

    PubMed

    Kaur, Ravinder; Minhas, P S; Jain, P C; Singh, P; Dubey, D S

    2009-07-01

    ), manganese (Mn: 0.80-1.55 ppm), nickel (Ni: 0.02-0.10 ppm) and lead (Pb: 0.40-0.83 ppm). Ground waters (42.5%) of Farukh Nagar irrigated with Najafgarh drain water and adjoining (industrialized) Gurgaon and Pataudi blocks were also salt affected and laden with undesirable Cr concentrations (>0.05 ppm). In fact, sub-surface drinking waters of some areas around battery and automobile manufacturing units in Gurgaon and Pataudi blocks were associated with exceptionally high (>0.1 ppm) Ni concentrations. In general, the ground waters of waterlogged or potentially waterlogged areas in the rural areas of Mewat were more contaminated than the ground waters in the rural areas of Gurgaon district with deeper (>5 m) water depths.Though Cr concentrations in the surface and sub-surface irrigation waters of both Gurgaon and Mewat districts were far above the maximum permissible limit of 1 ppm, their bio-available soil-Cr concentrations were well within permissible limit. Even bio-available Ni concentrations in agricultural lands of Gurgaon district associated with Ni contaminated sub-surface irrigations were well within desirable limit of 0.20 ppm. This was primarily attributed to the calcareous nature of the soils of the study area. About 35% of Gurgaon district and 59% of Mewat district irrigated with poor quality waters were salt-affected. These waterlogged/potentially waterlogged calcareous-salt affected soils of Mewat district were having acute zinc (Zn) deficiency (<0.6 ppm). Some areas with extremely high iron (Fe: 20-25 ppm) and Mn (10-25 ppm) concentrations were also noticed in the Gurgaon, Nuh and Punhana blocks. Generation of reduced conditions owing to paddy cultivation in areas with 3-3.5 m water depths appeared to be the main cause of such point contaminations. Extensive cadmium (Cd) contamination was also noticed in the waterlogged sodic agricultural lands of Nagina village in Mewat district associated with a large scale scrap automobile and battery business. The study

  19. Long term cultivation of larger benthic Foraminifera

    NASA Astrophysics Data System (ADS)

    Wöger, Julia; Eder, Wolfgang; Kinoshita, Shunichi; Antonino, Briguglio; Carles, Ferrandes-Cañadell; Hohenegger, Johann

    2015-04-01

    Benthic Foraminifera are used in a variety of applications employing numerous different methods, i.e. ecological monitoring, studying the effects of ocean acidification, reconstructing palaeo-bathymetry or investigating palaeo-salinity and palaeo-temperature to name only a few. To refine our understanding of ecological influences on larger benthic foraminiferal biology and to review inferences from field observations, culture experiments have become an indispensable tool. While culture experiments on smaller benthic foraminifera have become increasingly frequent in the past century, reports of the cultivation of symbiont bearing larger Foraminifera are rare. Generally, cultivation experiments can be divided into two groups: Culturing of populations and cultivation of single specimens allowing individual investigation. The latter differ form the former by several restrictions resulting from the need to limit individual motility without abridging microenvironmental conditions in the Foraminiferans artificial habitat, necessary to enable the individual to development as unfettered as possible. In this study we present first experiences and preliminary results of the long-term cultivation of larger benthic Foraminifera conducted at the 'Tropical Biosphere Research Station Sesoko Island, University of the Ryukyus', Japan, trying to reproduce natural conditions as closely as possible. Individuals of three species of larger benthic Foraminifera (Heterostegina depressa, Palaeonummulites venosus and Operculina complanata) have been cultured since April 2014. At the time of the general assembly the cultivation experiments will have been going on for more than one year, with the aim to investigate growth rates, longevities and reproduction strategies for comparison with results statistically inferred from application of the of the 'natural laboratory' method. The most important factor influencing foraminiferal health and development was found to be light intensity and light

  20. Nitrous oxide emissions from rapeseed cultivation in Germany

    NASA Astrophysics Data System (ADS)

    Fuß, Roland; Andres, Monique; Hegewald, Hannes; Kesenheimer, Katharina; Koebke, Sarah; Räbiger, Thomas; Suárez Quiñones, Teresa; Walter, Katja; Stichnothe, Heinz; Flessa, Heinz

    2016-04-01

    About 12 % of Germany's agricultural area is used for rapeseed cultivation and two third of the harvest is converted to biodiesel. Due to requirements of the EU Renewables Directive the greenhouse gas (GHG) balance of rapeseed cultivation must be reported and sustainability criteria and GHG savings compared to fossil fuel must be achieved and certified. Current certified methodology estimates N2O field emissions from rapeseed cultivation using the IPCC Tier 1 approach based on a global emission factor (N2O emission per unit nitrogen fertilizer input) of 1 %, which is not specific for the crop. We present results from three years of measurements (2013 - 2015) on five field trials in Germany, which combined with data from a meta-analysis suggest that GHG emission factors of German rapeseed cultivation are lower than thought previously. Furthermore, results suggest that substitution of mineral fertilizers with organic fertilizers is a valid mitigation option since it avoids GHG emissions during production of mineral fertilizers.

  1. In vitro cultivation of Treponema pallidum: a review

    PubMed Central

    Fitzgerald, Thomas

    1981-01-01

    In vitro cultivation of Treponema pallidum would facilitate many different aspects of syphilis research. This review summarizes developments in this field that have been published since 1975. Findings are discussed in terms of treponemes and the oxygen question, treponemal metabolism involving proteins, nucleic acids, and fatty acids, and treponemal interaction with tissue culture cells. Suggested future approaches and potential problem areas pertinent to successful cultivation are discussed. PMID:6172213

  2. Deforestation and cultivation mobilize mercury from topsoil.

    PubMed

    Gamby, Rebecca L; Hammerschmidt, Chad R; Costello, David M; Lamborg, Carl H; Runkle, James R

    2015-11-01

    Terrestrial biomass and soils are a primary global reservoir of mercury (Hg) derived from natural and anthropogenic sources; however, relatively little is known about the fate and stability of Hg in the surface soil reservoir and its susceptibility to change as a result of deforestation and cultivation. In southwest Ohio, we measured Hg concentrations in soils of deciduous old- and new-growth forests, as well as fallow grassland and agricultural soils that had once been forested to examine how, over decadal to century time scales, man-made deforestation and cultivation influence Hg mobility from temperate surface soils. Mercury concentrations in surficial soils were significantly greater in the old-growth than new-growth forest, and both forest soils had greater Hg concentrations than cultivated and fallow fields. Differences in Hg:lead ratios between old-growth forest and agricultural topsoils suggest that about half of the Hg lost from deforested and cultivated Ohio soils may have been volatilized and the other half eroded. The estimated mobilization potential of Hg as a result of deforestation was 4.1 mg m(-2), which was proportional to mobilization potentials measured at multiple locations in the Amazon relative to concentrations in forested surface soils. Based on this relationship and an estimate of the global average of Hg concentrations in forested soils, we approximate that about 550 M mol of Hg has been mobilized globally from soil as a result of deforestation during the past two centuries. This estimate is comparable to, if not greater than, the amount of anthropogenic Hg hypothesized by others to have been sequestered by the soil reservoir since Industrialization. Our results suggest that deforestation and soil cultivation are significant anthropogenic processes that exacerbate Hg mobilization from soil and its cycling in the environment.

  3. Survey and census of hoolock gibbon (Hoolock hoolock) in the Inner-Line Reserve Forest and the adjoining areas of Cachar district, Assam, India.

    PubMed

    Islam, Mofidul; Choudhury, Parthankar; Bhattacharjee, P C

    2013-01-01

    A detailed survey of Hoolock hoolock was carried out in the Inner-Line Reserve Forest and the adjoining areas of Cachar district of southern Assam, India, from July 2010 to December 2011. About 150 km2 of the area was covered. In direct sighting, groups and individuals were counted in 7 localities (39.7 km2). Only 3.96 km2 of the actual forest area were occupied by these gibbons. Nine family groups and a solitary subadult, 33 individuals in all, made up the total count. Of these, adult males and females comprised 54.5% of the population while the subadults, juveniles and infants comprised 27.3, 12.1 and 6.1%, respectively. Each family group's home range was 0.31-0.51 km2. Of the 7 localities, only 1 had more than 1 family group. Habitat destruction and diverse threats to the hoolock gibbon in this area are examined in this paper.

  4. How to cultivate Ectocarpus.

    PubMed

    Coelho, Susana M; Scornet, Delphine; Rousvoal, Sylvie; Peters, Nick T; Dartevelle, Laurence; Peters, Akira F; Cock, J Mark

    2012-02-01

    This article describes the standard procedure for growing Ectocarpus in the laboratory. The culture is started with partheno-sporophyte (or sporophyte) filaments because this is the stage that is usually maintained in strain collections. The standard medium is Provasoli-enriched natural seawater (PES), but Ectocarpus can also be grown in artificial seawater, which allows more precise control over the culture conditions. The algae can be cultivated either in plastic Petri dishes or in 10-L bottles with bubbling, if large amounts of biomass are required. Standard growth conditions are 13°C with a 12h/12h d/night cycle and 20 µmol photons m(-2) s(-1) irradiance using daylight-type fluorescent tubes. All manipulations of Ectocarpus cultures should be performed in a clean environment (if possible, under a laminar flow hood). Forceps should be dipped in ethanol and allowed to dry under the hood.

  5. Starting from grape cultivation.

    PubMed

    Yoshida, A

    1992-06-01

    Rapid population growth can only be stopped by lowering the fertility rate. The UNFPA recommends improving the employment opportunities for women as the single best way of achieving this reduction. An example of this phenomenon is the grape cultivation in the Nordeste (Northeastern) region of Brazil. This area is the poorest part of Brazil and has the highest proportion of indigent people. These people have been deforesting the Amazon in search of a better life. What they have done is sterilize the land and turned a tropical rain forest into a desert. In an effort to reverse this trend, grape cultivation has been introduced in an area called Petrolina. The area is very dry with less than 500 mm of precipitation annually. They do have access to a 5000 square kilometer artificial lake (the largest in the world) and the 3rd largest river in Brazil (the Sao Francisco). In an effort to avoid using agricultural medicines, the vines are fertilized with organic matter created on the farm and little or no pesticides are used since pests do not live in such an arid region. It has taken 20 years of trial and error, but the quality of the grapes is now very high and is competitive on the world market. Because of climate and location, harvesting is done year round which increases the productivity of the land. The farm managers have found that married women make the best workers and have the highest level of productivity. Age at 1st marriage averages 24-25, compared with 15-16 for unemployed women in the same area. The fertility rate averages 50% of that for unemployed women in the same area. Agricultural development offers the best opportunity for the women of developing countries. It can pay a high wage, reduce fertility, and replant desert areas.

  6. CULTIVATION OF LEPTOSPIRAE I.

    PubMed Central

    Stalheim, O. H. V.; Wilson, J. B.

    1964-01-01

    Stalheim, O. H. V. (University of Wisconsin, Madison), and J. B. Wilson. Cultivation of leptospirae. I. Nutrition of Leptospira canicola. J. Bacteriol. 88:48–54. 1964.—The nutrition of Leptospira canicola was investigated by use of synthetic media of suitable ionic strength. At an incubation temperature of 30 C, the minimal components were calcium, iron, magnesium, and ammonium ions, thiamine, and a fatty acid source; barium and strontium replaced calcium. Aspartic acid, glutamic acid, or methionine stimulated the rate and amount of growth; the best growth occurred in medium containing additional amino acids. Additions of cyanocobalamin or biotin permitted growth at 37 C. The stimulatory effects of added cyanocobalamin, biotin, pyridoxine, pantothenate, lipoic acid, or nicotinic acid were additive at 37 C, but not at 30 C. Fatty acids containing 14, 16, 17, or 18 carbon atoms supported growth; linoleic and linolenic acids were toxic. Glyceryl monooleate or trioleate, or Tween 40, 60, or 80 supported moderate to good growth; a mixture of monoolein and Tween 60, or Tweens 60 and 80 supported the best growth. Ten strains of L. canicola cultivated in a synthetic medium containing Tweens 60 and 80 attained cellular densities per ml of 107 to 4.0 × 107 organisms. L. canicola cells, resuspended in medium containing oleic-1-C14 acid, incorporated label primarily into cellular lipids; a lesser amount was located in the protein fraction, and only trace amounts were found in the nucleic acid fraction. The rate of incorporation was not affected by added sodium acetate. L. canicola was found to have fatty acid decarboxylase activity. PMID:14197904

  7. Possible magmatic underplating beneath the west coast of India and adjoining Dharwar craton: Imprint from Archean crustal evolution to breakup of India and Madagascar

    NASA Astrophysics Data System (ADS)

    Saikia, Utpal; Das, Ritima; Rai, S. S.

    2017-03-01

    The shear wave velocity of the crust along a ∼660 km profile from the west to the east coast of South India is mapped through the joint inversion of receiver functions and Rayleigh wave group velocity. The profile, consisting of 38 broadband seismic stations, covers the Archean Dharwar craton, Proterozoic Cuddapah basin, and rifted margin and escarpment. The Moho is mapped at a depth of ∼40 km beneath the mid-Archean Western Dharwar Craton (WDC), Cuddapah Basin (CB), and the west and east coasts formed through the rifting process. This is in contrast with a thin (∼35 km) crust beneath the late-Archean Eastern Dharwar Craton (EDC). Along the profile, the average thickness of the upper, middle and lower crust is ∼4 km, 12 ± 4 km and 24 ± 4 km respectively. Above the Moho, we observe a high-velocity layer (HVL, Vs > 4 km/s) of variable thickness increasing from 3 ± 1 km beneath the EDC to 11 ± 3 km beneath the WDC and the CB, and 18 ± 2 km beneath the west coast of India. The seismic wave velocity in this layer is greater than typical oceanic lower crust. We interpret the high-velocity layer as a signature of magmatic underplating due to past tectonic processes. Its significant thinning beneath the EDC may be attributed to crustal delamination or relamination at 2.5 Ga. These results demonstrate the dual signature of the Archean Dharwar crust. The change in the geochemical character of the crust possibly occurred at the end of Archean when Komatiite volcanism ceased. The unusually thick HVL beneath the west coast of India and the adjoining region may represent underplated material formed due to India-Madagascar rifting, which is supported by the presence of seaward dipping reflectors and a 85-90 Ma mafic dyke in the adjoining island.

  8. Hybrid origins of cultivated potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild and cultivated potatoes, Solanum section Petota, is taxonomically difficult, partly because of interspecific hybridization at both the diploid and polyploid levels. The taxonomy of cultivated potatoes is particularly controversial. With DNA sequence data of the GBSSI (waxy) gene we here infer r...

  9. Finding Order within the Chaos of Counternarcotics: A Universal Framework for the Reduction of Illicit Crop Cultivation

    DTIC Science & Technology

    2013-12-13

    Coca Cultivation in South America .................................................................37 Figure 2. Opium Poppy Cultivation in Thailand...40 Figure 3. Opium Cultivation in South East Asia...ground in the case of coca, or chop off the stalks and plow the field in the case of opium poppy. Stopping illicit crops from being planted is more

  10. Eigenmodes of coupled plasmons-excitons in a system of adjoining spherical metallic-J-aggregate nanoshells

    NASA Astrophysics Data System (ADS)

    Manassah, Jamal T.

    2013-08-01

    Using the spherical modes of the full-Maxwell equations, I compute the eigenfrequencies of the complex consisting of concentric passive inner core, a metallic nanoshell, molecular J-aggregate adsorped to the surface of the metal, immersed in a passive solution. The coupling of the plasmons of the metal to the excitons of the J-aggregate is incorporated in the formalism through the continuity conditions for the tangential components of the electric field and magnetic flux density at the materials interfaces. Comparison with results obtained using the electrostatic approximation shows deviations in both the values of the resonance frequencies and their decay-rates.

  11. Mapping a Landscape of Leadership: Cultivating Scholarly-Practical Inquiry

    ERIC Educational Resources Information Center

    Mullen, Carol A.

    2004-01-01

    Cultivating the "professional knowledge landscape" of schools (Clandinin & Connelly, 1995) from the perspective of insiders can enrich the leadership and curriculum fields. Toward this end, the author offers a map for becoming oriented to one teacher group's vision for improving school environments. During the summer of 2001, 33…

  12. Logistic analysis of algae cultivation.

    PubMed

    Slegers, P M; Leduc, S; Wijffels, R H; van Straten, G; van Boxtel, A J B

    2015-03-01

    Energy requirements for resource transport of algae cultivation are unknown. This work describes the quantitative analysis of energy requirements for water and CO2 transport. Algae cultivation models were combined with the quantitative logistic decision model 'BeWhere' for the regions Benelux (Northwest Europe), southern France and Sahara. For photobioreactors, the energy consumed for transport of water and CO2 turns out to be a small percentage of the energy contained in the algae biomass (0.1-3.6%). For raceway ponds the share for transport is higher (0.7-38.5%). The energy consumption for transport is the lowest in the Benelux due to good availability of both water and CO2. Analysing transport logistics is still important, despite the low energy consumption for transport. The results demonstrate that resource requirements, resource distribution and availability and transport networks have a profound effect on the location choices for algae cultivation.

  13. [Effects of stereoscopic cultivation on soil microorganism, enzyme activity and the agronomic characters of Panax notoginseng].

    PubMed

    Liao, Pei-ran; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Liu, Da-hui; Yang, Ye

    2015-08-01

    Compartments of soil microorganism and enzymes between stereoscopic cultivation (three storeys) and field cultivation (CK) of Panax notoginseng were carried out, and the effects on P. notoginseng agronomic characters were also studied. Results show that concentration of soil microorganism of stereoscopic cultivation was lower than field cultivation; the activity of soil urea enzyme, saccharase and neutral phosphatase increased from lower storey to upper storey; the activity of soil urea enzyme and saccharase of lower and upper storeys were significantly lower than CK; agronomic characters of stereoscopic cultivated P. notoginsengin were inferior to field cultivation, the middle storey with the best agronomic characters among the three storeys. The correlation analysis showed that fungi, actinomycetes and neutral phosphatase were significantly correlated with P. notoginseng agronomic characters; concentration of soil fungi and bacteria were significantly correlated with the soil relative water content; actinomycete and neutral phosphatase were significantly correlated with soil pH and relative water content, respectively; the activities of soil urea enzyme and saccharase were significantly correlated with the soil daily maximum temperature difference. Inconclusion, The current research shows that the imbalance of soil microorganism and the acutely changing of soil enzyme activity were the main reasons that caused the agronomic characters of stereoscopic cultivated P. notoginseng were worse than field cultivation. Thus improves the concentration of soil microorganism and enzyme activity near to field soil by improving the structure of stereoscopic cultivation is very important. And it was the direction which we are endeavoring that built better soil ecological environment for P. notoginseng of stereoscopic cultivation.

  14. Nootropic activity of extracts from wild and cultivated Alfredia cernua.

    PubMed

    Mustafin, R N; Shilova, I V; Suslov, N I; Kuvacheva, N V; Amelchenko, V P

    2011-01-01

    Antihypoxic and nootropic activities of extracts from aerial parts of wild and cultivated Alfredia cernua (L.) Cass. were studied on the models of pressure chamber hypoxia, open field test, and passive avoidance conditioning. The extracts of Alfredia cernua promoted retention of the orientation reflex and passive avoidance conditioned response and normalized orientation and exploratory activities disordered as a result of hypoxic injury. The efficiency of the extracts was superior to that of piracetam by the effect on retention of passive avoidance response throughout the greater part of the experiment. Nootropic activity of cultivated Alfredia cernua was not inferior to that of the wild plant.

  15. Source apportionment and spatial-temporal variations in the metal content of surface dust collected from an industrial area adjoining Delhi, India.

    PubMed

    Pathak, Aditya Kumar; Yadav, Sudesh; Kumar, Pawan; Kumar, Rakesh

    2013-01-15

    Surface dust collected during three different seasons from Faridabad industrial area adjoining Delhi is studied for different metals, their spatial and temporal variations, and sources. Al, Fe, Mn, Ti, Ca and Mg show limited variations and lower abundances compared to Upper Continental Crust (UCC); Fe shows enrichment and seasonal changes. Cd, V, Co, Ba, Ti, Ni, Cu, Cr and Zn show significant spatial and temporal variations, and enrichments compared to UCC indicate their anthropogenic sources. Seasonal variability could be due to: 1) different types of industries, 2) variations in the emissions, 3) very frequent shifting of small scale industry within the region, and 4) changes in the land use pattern. The sampling sites, according to the geo-accumulation index, are: 1) least polluted for Ca, Mg, Al and Ti except for Ti in winter, 2) least to moderately polluted for Ba, Co and V but season specific, and 3) moderately to extremely polluted for other metals. Average pollution load index of 2.67-2.87 indicates consistently high level of pollution at all sites in all sampling seasons. The sites located in the residential areas near small to medium scale unorganized industry are more polluted compared to sites near large industries suggesting that the small scale unorganized industries causes more pollution. Three dominant sources of metals were identified: 1) mixed industrial, 2) crustal, and 3) vehicular, oil and battery related burnings. The third component related to Ba, Pb, Cd, Zn and Cr, further splits into two components in the pre-monsoon and winter samples. Surface dust, enriched in metals, is likely to cause serious danger to public health. There is an urgent need to make a shift from unorganized to formally organized industry to reduce the metal pollution and protect human health and environment as a whole.

  16. The Dependency of Probabilistic Tsunami Hazard Assessment on Magnitude Limits of Seismic Sources in the South China Sea and Adjoining Basins

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Yuan, Ye; Xu, Zhiguo; Wang, Zongchen; Wang, Juncheng; Wang, Peitao; Gao, Yi; Hou, Jingming; Shan, Di

    2016-08-01

    The South China Sea (SCS) and its adjacent small basins including Sulu Sea and Celebes Sea are commonly identified as tsunami-prone region by its historical records on seismicity and tsunamis. However, quantification of tsunami hazard in the SCS region remained an intractable issue due to highly complex tectonic setting and multiple seismic sources within and surrounding this area. Probabilistic Tsunami Hazard Assessment (PTHA) is performed in the present study to evaluate tsunami hazard in the SCS region based on a brief review on seismological and tsunami records. 5 regional and local potential tsunami sources are tentatively identified, and earthquake catalogs are generated using Monte Carlo simulation following the Tapered Gutenberg-Richter relationship for each zone. Considering a lack of consensus on magnitude upper bound on each seismic source, as well as its critical role in PTHA, the major concern of the present study is to define the upper and lower limits of tsunami hazard in the SCS region comprehensively by adopting different corner magnitudes that could be derived by multiple principles and approaches, including TGR regression of historical catalog, fault-length scaling, tectonic and seismic moment balance, and repetition of historical largest event. The results show that tsunami hazard in the SCS and adjoining basins is subject to large variations when adopting different corner magnitudes, with the upper bounds 2-6 times of the lower. The probabilistic tsunami hazard maps for specified return periods reveal much higher threat from Cotabato Trench and Sulawesi Trench in the Celebes Sea, whereas tsunami hazard received by the coasts of the SCS and Sulu Sea is relatively moderate, yet non-negligible. By combining empirical method with numerical study of historical tsunami events, the present PTHA results are tentatively validated. The correspondence lends confidence to our study. Considering the proximity of major sources to population-laden cities

  17. Comparison of 19th century ship log wind data and adjoining land-based Royal Observatory data (1843 to 1855): Spot the difference?

    NASA Astrophysics Data System (ADS)

    Brown, Alexa; Lennard, Chris; Grab, Stefan

    2016-04-01

    Historical weather and climate data are essential for the establishment of long-term climate patterns and future projections. For South Africa, where there is a paucity of such long-term climate data, it undermines the ability to establish climate changes and variability over longer periods of the past few centuries. Consequently, analyses of climate change in the region have relied on relatively poor resolution proxy records. Yet, the recently discovered instrumental meteorological records of the Royal Astronomical Observatory in Cape Town provides South Africa's (and possibly the southern hemisphere's) longest continuous time series of daily recorded weather measurements, including temperature, rainfall, barometric pressure and wind (1835 to present). Wind specifically is a reliable indicator of dynamic atmospheric circulation and lends supporting data for understanding the Mediterranean climate of the region. This project has manually digitized, pre-processed and validated wind data from the earliest records by comparing these data with the only other known wind data for that time in the region - namely ship log data. Ship log data, recovered and digitized by the CLIWOC project, are used for statistical correlation (using wavelet query analysis) and trend analysis for the period 1843 to 1855. Both data sources indicate the same general wind climatological trends. The similarly decreasing trend in average wind velocity over the time period investigated, suggests that the data have been adequately captured and that ship log data are representative of adjoining land-based synoptic conditions. It is hoped that short term cyclic/extreme events can be extracted using a wavelet query analysis by correlating the data at various time steps. Differences in the timing of recordings and spatial scales between data sets present challenges for such a comparison. This work is part of a larger digitization project which is analysing Cape instrumental and documentary weather

  18. Interactive Cultural Cultivating in FLT

    ERIC Educational Resources Information Center

    Yang, Youwen

    2010-01-01

    Culture cultivating in foreign language teaching (FLT) is usually conducted through factual introductions in the form of articles, books, seminars, lectures or workshops. This approach regards L2 learners as passive receivers of cultural knowledge without their interaction involved. This paper aims at raising an interactive approach to develop L2…

  19. Integrating cultivation history into EBIPM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecologically based invasive plant management (EBIPM) is a systematic thinking and planning process to assist with applying the appropriate combination of tools and strategies to addrress the underlying cause of invasion rather than simply controlling invasive annual grass abundance. Cultivation his...

  20. Cultivate the Love of Reading.

    ERIC Educational Resources Information Center

    Andrews-Beck, Carolyn

    1997-01-01

    Suggests that the school year is like a growing season, but with planting in the fall and harvest in the spring. Discusses ways teachers can "prepare the soil" for cultivating students' love of reading. Presents a baker's dozen ideas to build the desire to read. (RS)

  1. Cultivation and uses of cucurbits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated cucurbits have spread through trade and exploration from their respective Old and New World centers of origin to the six arable continents and are important in local, regional and world trade. Cucumber (Cucumis sativus L.), melon (Cucumis melo L.), pumpkin, squash and gourd (Cucurbita spp...

  2. Cultivating Spontaneous Self-Discipline.

    ERIC Educational Resources Information Center

    O'Shaughnessy, Molly

    1998-01-01

    Draws on contemporary sources to provide strategies for cultivating self-discipline. Advocates self-healing for the adult to be free from destructive attitudes and personal history that can keep adults from being mindful of the child's needs, perspective, and potential. Concludes with ways to facilitate a truly Montessori approach to discipline.…

  3. Cultivating Audiences: Taming, Teaching, Transforming

    ERIC Educational Resources Information Center

    Nicolucci, Sandra

    2010-01-01

    Satisfying and successful school concerts require an active, empathic, and cooperative partnership between performers and audience members. As music educators work to prepare artful, dignified, and confident performers, "audiences" for these performers must be cultivated just as purposefully. Concertgoers can be motivated to consume school…

  4. [Construction effect of fertile cultivated layer in black soil].

    PubMed

    Han, Xiao-zeng; Zou, Wen-xiu; Wang, Feng-xian; Wang, Feng-ju

    2009-12-01

    The clayey farmland soil in black soil region of Northeast China, due to the existence of thicker plough pan created by unreasonable tillage, is a main limiting factor for local agricultural production. In this paper, a field experiment was conducted to study the construction effect of fertile cultivated layer on crop yield, soil physical properties, soil moisture content, and soil microbial number. After the construction of fertile cultivated layer, the soil had a thicker cultivated layer, and the crop yield was increased. Comparing with traditional tillage, applying straw and organic manure into 20-35 cm soil layer decreased soil bulk density by 9.88% and 6.20%, increased soil porosity by 9.58% and 6.02%, and enhanced soil saturated hydraulic conductivity by 167.99 and 73.78%, respectively, indicating that the construction of fertile cultivated layer could improve soil aeration and water permeability, and enhance the infiltration of rainfall. The soil moisture content and water use efficiency under the application of straw and organic manure into plough pan were higher than those under traditional tillage, and a positive correlation was observed between the moisture content in 0-35 cm soil layer and the emergence of maize seedlings. Due to the increased organic carbon source and aeration in the constructed fertile cultivated layer, soil microbial number was also increased.

  5. Assessment of heavy metals (Cd and Pb) and micronutrients (Cu, Mn, and Zn) of paddy (Oryza sativa L.) field surface soil and water in a predominantly paddy-cultivated area at Puducherry (Pondicherry, India), and effects of the agricultural runoff on the elemental concentrations of a receiving rivulet.

    PubMed

    Reddy, M Vikram; Satpathy, Deepmala; Dhiviya, K Shyamala

    2013-08-01

    The concentrations of toxic heavy metals-Cd and Pb and micronutrients-Cu, Mn, and Zn were assessed in the surface soil and water of three different stages of paddy (Oryza sativa L.) fields, the stage I-the first stage in the field soon after transplantation of the paddy seedlings, holding adequate amount of water on soil surface, stage II-the middle stage with paddy plants of stem of about 40 cm length, with sufficient amount of water on the soil surface, and stage III-the final stage with fully grown rice plants and very little amount of water in the field at Bahour, a predominantly paddy cultivating area in Puducherry located on the southeast Coast of India. Comparison of the heavy metal and micronutrient concentrations of the soil and water across the three stages of paddy field showed their concentrations were significantly higher in soil compared with that of water (p < 0.05) of the fields probably because of accumulation and adsorption in soil. The elemental concentrations in paddy soil as well as water was in the ranking order of Cd > Mn > Zn > Cu > Pb indicating concentration of Cd was maximum and Pb was minimum. The elemental concentrations in both soil and water across the three stages showed a ranking order of stage II > stage III > stage I. The runoff from the paddy fields has affected the elemental concentrations of the water and sediment of an adjacent receiving rivulet.

  6. Seaweed cultivation: Traditional way and its reformation

    NASA Astrophysics Data System (ADS)

    Fei, Xiu-Geng; Bao, Ying; Lu, Shan

    1999-09-01

    Seaweed cultivation or phycoculture has been developed rather fast in recent years. The total production of cultivated seaweed at present is about 6250×103 tons fresh weight. The total cultivation area is estimated as 200×103 hectare. The annual total value of cultivated seaweeds has been estimated to be more than 3 billion US dollars. Phycoculture provides many job opportunities for the coastal region people, has the potential to improve marine environments and thus even induce global change. All traditional cultivation methods and techniques are based on or start from the individual plant or the cultivated seaweed population. Modern biological science and biotechnology achievements have benefited agriculture a lot, but traditional seaweed cultivation has not changed much since its founding. This is because seaweed cultivation has been quite conservative for quite a long period and has accumulated many problems requiring solution. Four main problems might be the most universal ones holding back further development of the industry. New ways of seaweed cultivation must be developed, new techniques must be perfected, and new problems solved. This paper mainly discusses the main problems of traditional seaweed cultivation at present and its possible further development and reformation in the future.

  7. Seaweed cultivation for renewable resources

    SciTech Connect

    Bird, K.T.; Benson, P.H.

    1987-01-01

    In the 1970's and 80's, major research and development programs were launched to explore the possibility of using marine biomass as a source of energy. This volume, not only reviews the accomplishments of the aforementioned programs, but also describes how this research relates to seaweed cultivation for other products, such as food, feed, and high value chemicals. Topics covered include the features of marine biomass production, biotechnological manipulations of marine algae, and marine biomass conversion to energy, as well as economics. The chapters synthesize a large number of technical reports, journal articles, symposia and conference proceedings and technology transfer meetings.

  8. Environmental profile of paddy rice cultivation with different straw management.

    PubMed

    Fusi, Alessandra; Bacenetti, Jacopo; González-García, Sara; Vercesi, Annamaria; Bocchi, Stefano; Fiala, Marco

    2014-10-01

    Italy is the most important European country in terms of paddy rice production. North Italian districts such as Vercelli, Pavia, Novara, and Milano are known as some of the world's most advanced rice cultivation sites. In 2013 Italian rice cultivation represented about 50% of all European rice production by area, and paddy fields extended for over 216,000 ha. Cultivation of rice involves different agricultural activities which have environmental impacts mainly due to fossil fuels and agrochemical requirements as well as the methane emission associated with the fermentation of organic material in the flooded rice fields. In order to assess the environmental consequences of rice production in the District of Vercelli, the cultivation practices most frequently carried out were inventoried and evaluated. The general approach of this study was not only to gather the inventory data for rice production and quantify their environmental impacts, but also to identify the key environmental factors where special attention must be paid. Life Cycle Assessment methodology was applied in this study from a cradle-to-farm gate perspective. The environmental profile was analyzed in terms of seven different impact categories: climate change, ozone depletion, human toxicity, terrestrial acidification, freshwater eutrophication, marine eutrophication, and fossil depletion. Regarding straw management, two different scenarios (burial into the soil of the straw versus harvesting) were compared. The analysis showed that the environmental impact was mainly due to field emissions, the fuel consumption needed for the mechanization of field operations, and the drying of the paddy rice. The comparison between the two scenarios highlighted that the collection of the straw improves the environmental performance of rice production except that for freshwater eutrophication. To improve the environmental performance of rice production, solutions to save fossil fuel and reduce the emissions from

  9. Organizing to learn: recognizing and cultivating learning communities.

    PubMed

    Doty, Elizabeth A

    2002-09-01

    One of the most effective ways to learn is in a community of people with a shared purpose. Therefore, by recognizing and cultivating the learning communities that arise within most organizational structures, we are actually organizing ourselves to learn. Using stories to inspire the reader to reflect and apply these concepts, the author explores learning communities in a variety of fields, including examples that involve entire organizations, single workgroups, and those that cross organizational boundaries.

  10. Allelopathy as a potential strategy to improve microalgae cultivation.

    PubMed

    Bacellar Mendes, Leonardo Brantes; Vermelho, Alane Beatriz

    2013-10-21

    One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production.

  11. Allelopathy as a potential strategy to improve microalgae cultivation

    PubMed Central

    2013-01-01

    One of the main obstacles for continuous productivity in microalgae cultivation is the presence of biological contaminants capable of eliminating large numbers of cells in a matter of days or even hours. However, a number of strategies are being used to combat and prevent contamination in microalgae cultivation. These strategies include the use of extreme conditions in the culture media such as high salinity and high pH to create an unfavorable environment for the competitive organisms or predators of the microalgae. Numerous studies have explored the potential of naturally occurring bioactive secondary metabolites, which are natural products from plants and microorganisms, as a source of such compounds. Some of these compounds are herbicides, and marine and freshwater microalgae are a source of these compounds. Microalgae produce a remarkable diversity of biologically active metabolites. Results based on the allelopathic potential of algae have only been described for laboratory-scale production and not for algae cultivation on a pilot scale. The adoption of allelopathy on microalgal strains is an unexplored field and may be a novel solution to improve algae production. Here we present information showing the diversity of allelochemicals from microalgae and the use of an allelopathic approach to control microalgae cultivation on a pilot scale based on R&D activities being carried out in Brazil for biodiesel production. PMID:24499580

  12. Enhanced Cultivation Of Stimulated Murine B Cells

    NASA Technical Reports Server (NTRS)

    Sammons, David W.

    1994-01-01

    Method of in vitro cultivation of large numbers of stimulated murine B lymphocytes. Cells electrofused with other cells to produce hybridomas and monoclonal antibodies. Offers several advantages: polyclonally stimulated B-cell blasts cultivated for as long as 14 days, hybridomas created throughout culture period, yield of hybridomas increases during cultivation, and possible to expand polyclonally in vitro number of B cells specific for antigenic determinants first recognized in vivo.

  13. Hybrid origins of cultivated potatoes.

    PubMed

    Rodríguez, Flor; Ghislain, Marc; Clausen, Andrea M; Jansky, Shelley H; Spooner, David M

    2010-10-01

    Solanum section Petota is taxonomically difficult, partly because of interspecific hybridization at both the diploid and polyploid levels. The taxonomy of cultivated potatoes is particularly controversial. Using DNA sequence data of the waxy gene, we here infer relationships among the four species of cultivated potatoes accepted in the latest taxonomic treatment (S. ajanhuiri, S. curtilobum, S. juzepczukii and S. tuberosum, the latter divided into the Andigenum and Chilotanum Cultivar Groups). The data support prior ideas of hybrid origins of S. ajanhuiri from the S. tuberosum Andigenum Group (2x = S. stenotomum) × S. megistacrolobum; S. juzepczukii from the S. tuberosum Andigenum Group (2x = S. stenotomum) × S. acaule; and S. curtilobum from the S. tuberosum Andigenum Group (4x = S. tuberosum subsp. andigenum) × S. juzepczukii. For the tetraploid cultivar-groups of S. tuberosum, hybrid origins are suggested entirely within much more closely related species, except for two of three examined accessions of the S. tuberosum Chilotanum Group that appear to have hybridized with the wild species S. maglia. Hybrid origins of the crop/weed species S. sucrense are more difficult to support and S. vernei is not supported as a wild species progenitor of the S. tuberosum Andigenum Group.

  14. Parasitism of Lepidopterous Stem Borers in Cultivated and Natural Habitats

    PubMed Central

    Mailafiya, Duna Madu; Le Ru, Bruno Pierre; Kairu, Eunice Waitherero; Dupas, Stéphane; Calatayud, Paul-André

    2011-01-01

    Plant infestation, stem borer density, parasitism, and parasitoid abundance were assessed during two years in two host plants, Zea mays (L.) (Cyperales: Poaceae) and Sorghum bicolor (L.) (Cyperales: Poaceae), in cultivated habitats. The four major host plants (Cyperus spp., Panicum spp., Pennisetum spp., and Sorghum spp.) found in natural habitats were also assessed, and both the cultivated and natural habitat species occurred in four agroecological zones in Kenya. Across habitats, plant infestation (23.2%), stem borer density (2.2 per plant), and larval parasitism (15.0%) were highest in maize in cultivated habitats. Pupal parasitism was not higher than 4.7% in both habitats, and did not vary with locality during each season or with host plant between each season. Cotesia sesamiae (Cameron) and C. flavipes Cameron (Hymenoptera: Braconidae) were the key parasitoids in cultivated habitats (both species accounted for 76.4% of parasitized stem borers in cereal crops), but not in natural habitats (the two Cotesia species accounted for 14.5% of parasitized stem borers in wild host plants). No single parasitoid species exerted high parasitism rates on stem borer populations in wild host plants. Low stem borer densities across seasons in natural habitats indicate that cereal stem borer pests do not necessarily survive the non-cropping season feeding actively in wild host plants. Although natural habitats provided refuges for some parasitoid species, stem borer parasitism was generally low in wild host plants. Overall, because parasitoids contribute little in reducing cereal stem borer pest populations in cultivated habitats, there is need to further enhance their effectiveness in the field to regulate these pests. PMID:21526933

  15. Parasitism of lepidopterous stem borers in cultivated and natural habitats.

    PubMed

    Mailafiya, Duna Madu; Le Ru, Bruno Pierre; Kairu, Eunice Waitherero; Dupas, Stéphane; Calatayud, Paul-André

    2011-01-01

    Plant infestation, stem borer density, parasitism, and parasitoid abundance were assessed during two years in two host plants, Zea mays (L.) (Cyperales: Poaceae) and Sorghum bicolor (L.) (Cyperales: Poaceae), in cultivated habitats. The four major host plants (Cyperus spp., Panicum spp., Pennisetum spp., and Sorghum spp.) found in natural habitats were also assessed, and both the cultivated and natural habitat species occurred in four agroecological zones in Kenya. Across habitats, plant infestation (23.2%), stem borer density (2.2 per plant), and larval parasitism (15.0%) were highest in maize in cultivated habitats. Pupal parasitism was not higher than 4.7% in both habitats, and did not vary with locality during each season or with host plant between each season. Cotesia sesamiae (Cameron) and C. flavipes Cameron (Hymenoptera: Braconidae) were the key parasitoids in cultivated habitats (both species accounted for 76.4% of parasitized stem borers in cereal crops), but not in natural habitats (the two Cotesia species accounted for 14.5% of parasitized stem borers in wild host plants). No single parasitoid species exerted high parasitism rates on stem borer populations in wild host plants. Low stem borer densities across seasons in natural habitats indicate that cereal stem borer pests do not necessarily survive the non-cropping season feeding actively in wild host plants. Although natural habitats provided refuges for some parasitoid species, stem borer parasitism was generally low in wild host plants. Overall, because parasitoids contribute little in reducing cereal stem borer pest populations in cultivated habitats, there is need to further enhance their effectiveness in the field to regulate these pests.

  16. Cultivation of Cannabis sativa L. in northern Morocco.

    PubMed

    Stambouli, H; El Bouri, A; Bellimam, M A; Bouayoun, T; El Karni, N

    2005-01-01

    Field studies on cannabis cultivation have provided socio-economic data relating to, inter alia, production, yield and income. But only laboratory analyses of cannabis plants can provide information on their chemical composition and their levels of psychoactive constituents, thus enabling them to be classed as a drug type or a fibre type. The present study, which covers cannabis in its fresh, dried and powdered forms, drew on fresh samples, obtained on the day they were harvested or immediately after preparation; that was done in order to prevent any alteration in the A-9-tetrahydrocannabinol (THC) caused by the oxidation that takes place as the product ages. The purpose of this study is to determine the THC level in 245 specimens obtained from 30 cannabis plots in three provinces of northern Morocco: Al Hoceima and Chefchaouen, where cannabis cultivation has a long tradition, and Larache, where cannabis cultivation has started only recently. Qualitative analysis using high performance liquid chromatography with diode array detection revealed the presence of both the acid and the decarboxylated form of the main cannabinoids, cannabidiol, THC and cannabinol, and gas chromatography/mass spectrometry was used for the characterization of minor cannibinoids. Quantitative analysis using gas chromatography coupled with mass spectrometry made it possible to determine the average delta-9-THC content of cannabis in its fresh form (0.5 per cent), its dry form (2.21 per cent) and its powdered form (8.3 per cent). The results show that the traditional areas of cannabis cultivation--Al Hoceima and Chefchaouen--produce cannabis with a higher delta-9-THC content than the Larache region. In addition, the present study establishes that male plants, often considered deficient in delta-9-THC, contain levels of the same order as those recorded for female plants, both in the leaves and in the tops.

  17. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.

    PubMed

    Wang, Jinghan; Yang, Haizhen; Wang, Feng

    2014-04-01

    Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

  18. Energy Spread of Field Emission Electrons from Single Pentagons in Individual Multi-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Fujieda, Tadashi; Okai, Makoto; Tokumoto, Hiroshi

    2008-04-01

    We investigated the dependence of tip radius on the field emission energy spread of electrons emitted from clean single pentagons in individual multi-walled carbon nanotubes (MWNTs) in a wide range of total emission currents (10-2000 nA). We found that the full width at half maximum of the field emission energy distribution decreases in inverse proportion to the involution of the radius of curvature at a constant total emission current. This is because as the radius of curvature increases, the space between adjoining pentagons becomes wider, and therefore the stochastic Coulomb interactions between electrons emitted from adjoining pentagons become weaker. The full widths at half maximum of the field emission energy distributions of MWNTs with tip radii of 1.8-45.0 nm were 0.38-0.60 eV at a total emission current of 2000 nA.

  19. Geographic information system-based identification of suitable cultivation sites for wood-cultivated ginseng.

    PubMed

    Beon, Mu Sup; Park, Jun Ho; Kang, Hag Mo; Cho, Sung Jong; Kim, Hyun

    2013-10-01

    Wood-cultivated ginseng, including roots in its dried form, is produced in forest land without using artificial facilities such as light barriers. To identify suitable sites for the propagation of wood-cultivated ginseng, factor combination technique (FCT) and linear combination technique (LCT) were used with geographic information system and the results were superimposed onto an actual wood-cultivated ginseng plantation. The LCT more extensively searched for suitable sites of cultivation than that by the FCT; further, the LCT probed wide areas considering the predominance of precipitous mountains in Korea. In addition, the LCT showed the much higher degree of overlap with the actual cultivation sites; therefore, the LCT more comprehensively reflects the cultivator's intention for site selection. On the other hand, the inclusion of additional factors for the selection of suitable cultivation sites and experts' opinions may enhance the effectiveness and accuracy of the LCT for site application.

  20. Transferring Sclerotinia Resistance Genes from Wild Helianthus Species into Cultivated Sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eight Sclerotinia-resistant diploid accessions, one hexaploid, and five interspecific amphiploids have been successfully crossed with Sclerotinia-tolerant cultivated lines, backcrossed and selfed to produce progeny families for field evaluation. In 2009, replicated field screening of 163 and 316 pro...

  1. New host records for four species of tortricid moths (Lepidoptera: Tortricidae) on cultivated blueberries, Vaccinium corymbosum (Ericaceae), in Argentina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four species of tortricids were reared from cultivated blueberries, Vaccinium corymbosum L. (Ericaceae), from four field sites in the province of Buenos Aires, Argentina: Clarkeulia bourquini (Clarke, 1949), Clarkeulia deceptiva (Clarke, 1949), Argyrotaenia spheralopa (Meyrick, 1909), and Platynota ...

  2. Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites.

    PubMed

    Zhong, Jian-Jiang; Tang, Ya-Jie

    2004-01-01

    Mushrooms are abundant sources of a wide range of useful natural products. Nowadays, commercial mushroom products are from mushrooms collected from field cultivation, which is a time-consuming and labor-intensive process. Submerged cultivation of mushrooms has significant industrial potential, but its success on a commercial scale depends on cost compared with existing technology. Increasing product yields and development of novel production systems that address the problems associated with this new technology will certainly facilitate expansion. This article outlines the major valuable metabolites produced by mushroom cultivation and advances in submerged culture of mushrooms, taking Ganoderma lucidum, a popular folk and an oriental medicine used to treat many diseases, as a typical example. Our latest data on mushroom cultivation for efficient production of bioactive ganoderic acids and Ganoderma polysaccharides in bioreactors are presented.

  3. Alterations in the mitotic index of Allium cepa induced by infusions of Pluchea sagittalis submitted to three different cultivation systems.

    PubMed

    Rossato, Liana V; Tedesco, Solange B; Laughinghouse, Haywood D; Farias, Júlia G; Nicoloso, Fernando T

    2010-12-01

    We evaluated the antiproliferative effect of infusions from Pluchea sagittalis using the Allium cepa test. Infusions in three concentrations (2.5, 5, and 25 g dm-3) of leaves cultivated in three environments (in vitro, acclimatized growth chamber, and field) were used. Six onion bulbs were used for each of the eight treatments, and the mitotic index was obtained from 6000 cells per treatment. In conclusion, leaf infusions of P. sagittalis cultivated in the field have a high antiproliferative activity, as well as the cultivation system influences the antiproliferative potential.

  4. Potential and limitations of Burgundy truffle cultivation.

    PubMed

    Stobbe, Ulrich; Egli, Simon; Tegel, Willy; Peter, Martina; Sproll, Ludger; Büntgen, Ulf

    2013-06-01

    Burgundy truffles (Tuber aestivum syn. Tuber uncinatum) are the highly prized fruit bodies of subterranean fungi always occurring in ectomycorrhizal symbiosis with host plants. Successful cultivation can be achieved through artificial mycorrhization and outplanting of mostly oaks and hazel on suitable terrain. Here, we review ecological requirements, the influence of environmental factors, and the importance of molecular techniques for a successful cultivation of T. aestivum across Europe. The historical background and current knowledge of T. aestivum cultivation are discussed in light of its socioeconomic relevance.

  5. Stem cell cultivation in bioreactors.

    PubMed

    Rodrigues, Carlos A V; Fernandes, Tiago G; Diogo, Maria Margarida; da Silva, Cláudia Lobato; Cabral, Joaquim M S

    2011-01-01

    Cell-based therapies have generated great interest in the scientific and medical communities, and stem cells in particular are very appealing for regenerative medicine, drug screening and other biomedical applications. These unspecialized cells have unlimited self-renewal capacity and the remarkable ability to produce mature cells with specialized functions, such as blood cells, nerve cells or cardiac muscle. However, the actual number of cells that can be obtained from available donors is very low. One possible solution for the generation of relevant numbers of cells for several applications is to scale-up the culture of these cells in vitro. This review describes recent developments in the cultivation of stem cells in bioreactors, particularly considerations regarding critical culture parameters, possible bioreactor configurations, and integration of novel technologies in the bioprocess development stage. We expect that this review will provide updated and detailed information focusing on the systematic production of stem cell products in compliance with regulatory guidelines, while using robust and cost-effective approaches.

  6. Mammalian cell cultivation in space

    NASA Astrophysics Data System (ADS)

    Gmünder, Felix K.; Suter, Robert N.; Kiess, M.; Urfer, R.; Nordau, C.-G.; Cogoli, A.

    Equipment used in space for the cultivation of mammalian cells does not meet the usual standard of earth bound bioreactors. Thus, the development of a space worthy bioreactor is mandatory for two reasons: First, to investigate the effect on single cells of the space environment in general and microgravity conditions in particular, and second, to provide researchers on long term missions and the Space Station with cell material. However, expertise for this venture is not at hand. A small and simple device for animal cell culture experiments aboard Spacelab (Dynamic Cell Culture System; DCCS) was developed. It provides 2 cell culture chambers, one is operated as a batch system, the other one as a perfusion system. The cell chambers have a volume of 200 μl. Medium exchange is achieved with an automatic osmotic pump. The system is neither mechanically stirred nor equipped with sensors. Oxygen for cell growth is provided by a gas chamber that is adjacent to the cell chambers. The oxygen gradient produced by the growing cells serves to maintain the oxygen influx by diffusion. Hamster kidney cells growing on microcarriers were used to test the biological performance of the DCCS. On ground tests suggest that this system is feasible.

  7. Photoinduced isomerization of lycopene and application to tomato cultivation.

    PubMed

    Heymann, Thomas; Raeke, Julia; Glomb, Marcus A

    2013-11-20

    The present study aimed to investigate if growth conditions have an impact on the isomeric composition of lycopene in tomatoes. First a model system for photoinduced isomerization was established. Tomato extracts were irradiated with a halogen lamp, whose wavelength spectrum is close to the spectrum of daylight and thus mimics field-grown cultivation. Different optical filters were interposed between lamp and samples to simulate greenhouse conditions. 5-cis-Lycopene was formed preferentially while the concentration of 7-cis-lycopene decreased in field-grown model systems. The change of isomerization in greenhouse model systems led to a significantly different ratio. Consequently 5-cis- and 7-cis-lycopene were identified as potent markers for the differentiation of various lighting conditions during cultivation. This result was verified in biological samples. Authentic field-grown tomatoes (var. Lycopersicon esculentum Mill. var. commune L. H. Bailey "Harzfeuer") showed a significantly higher content of 5-cis-lycopene 5.90 ± 0.45% compared to tomatoes of the same variety grown under electric lighting 4.11 ± 0.10%. Additionally, the ratio of 7-cis-lycopene was significantly lower under field-grown conditions.

  8. Effect of rain-shelter cultivation of Vitis vinifera cv. Cabernet Gernischet on the phenolic profile of berry skins and the incidence of grape diseases.

    PubMed

    Meng, Jiang-Fei; Ning, Peng-Fei; Xu, Teng-Fei; Zhang, Zhen-Wen

    2012-12-27

    Rain-shelter cultivation is an effective cultural method to prevent rainfall damage during grape harvest and widely applied in the Chinese rainy regions. In this study we investigated the effect of rain-shelter cultivation on grape diseases and phenolic composition in the skins of Vitis vinifera cv. Cabernet Gernischet grape berries through the comparison with open-field cultivation at two vintages (2010 and 2011). The results showed that rain-shelter cultivation reduced the incidence of grape diseases significantly and delayed the maturation of Cabernet Gernischet fruits. With regards to most of the phenolic compounds identified in this study, their content in grape samples under rain-shelter cultivation was decreased compared to those under open-field cultivation. However, rain-shelter cultivation stimulated the accumulation of dihydroquercetin-3-O-rhamnoside in grape skins during grape maturation. These were related with micrometeorological alterations in vineyards by using plastic covering under rain-shelter cultivation. It suggests the rain-shelter cultivation makes possible the cultivation of "Cabernet Gernischet" grapes in an organic production system, for providing a decrease in the incidence of diseases and the dependence on chemical pesticides in the grape and wine industry.

  9. Cultivable bacteria isolated from apple trees cultivated under different crop systems: Diversity and antagonistic activity against Colletotrichum gloeosporioides

    PubMed Central

    dos Passos, João Frederico M.; da Costa, Pedro B.; Costa, Murilo D.; Zaffari, Gilmar R.; Nava, Gilberto; Boneti, José Itamar; de Oliveira, Andréia Mara R.; Passaglia, Luciane M.P.

    2014-01-01

    This study evaluated the diversity of cultivable plant growth-promoting (PGP) bacteria associated with apple trees cultivated under different crop management systems and their antagonistic ability against Colletotrichum gloeosporioides. Samples of roots and rhizospheric soil from apple trees cultivated in organic and conventional orchards in southern Brazil were collected, together with soil samples from an area never used for agriculture (native field). Bacteria were identified at the genus level by PCR-RFLP and partial sequencing of the 16S rRNA, and were evaluated for some PGP abilities. The most abundant bacterial genera identified were Enterobacter (27.7%), Pseudomonas (18.7%), Burkholderia (13.7%), and Rahnella (12.3%). Sixty-nine isolates presented some antagonist activity against C. gloeosporioides. In a greenhouse experiment, five days after exposure to C. gloeosporioides, an average of 30% of the leaf area of plants inoculated with isolate 89 (identified as Burkholderia sp.) were infected, whereas 60 to 73% of the leaf area of untreated plants was affected by fungal attack. Our results allowed us to infer how anthropogenic activity is affecting the bacterial communities in soil associated with apple tree crop systems, and to obtain an isolate that was able to delay the emergence of an important disease for this culture. PMID:25249780

  10. POTENTIAL OF GREENHOUSE GASES REDUCTION BY FUEL CROP CULTIVATION UTILIZING SEWAGE SLUDGE IN JAPAN

    NASA Astrophysics Data System (ADS)

    Honda, Ryo; Fukushi, Kensuke

    Potential of greenhouse gases (GHG) reduction was estimated and compared in six scenarios of fuel crop cultivation by utilizing sewage sludge in Japan. Bioethanol from corn and biodiesel fuel from soybean was selected as biofuel produced. When all the sludge discharged from sewage treatment plants in 18 major cities was utilized for soybean cultivation and subsequent biodiesel fuel production, produced biofuel corresponded to 4.0% of GHG emitted from sewage treatment in Japan. On the other hand, cultivation area for fuel crop cultivation was found to be the regulating factor. When fuel crop was cultivated only in abandoned agricultural fields, produced biofuel corresponded to 0.60% and 0.62%, respectively, in the case that corn and soybean was cultivated. Production of biodiesel fuel from soybean was estimated to have more net reduction potential than bioehanol production from corn when sludge production is limited, because required sewage sludge compost was 2.5-times larger in corn although reduction potential per crop area was 2-times larger in bioethanol production from corn.

  11. Simple rain-shelter cultivation prolongs accumulation period of anthocyanins in wine grape berries.

    PubMed

    Li, Xiao-Xi; He, Fei; Wang, Jun; Li, Zheng; Pan, Qiu-Hong

    2014-09-17

    Simple rain-shelter cultivation is normally applied during the grape growth season in continental monsoon climates aiming to reduce the occurrence of diseases caused by excessive rainfall. However, whether or not this cultivation practice affects the composition and concentration of phenolic compounds in wine grapes remains unclear. The objective of this study was to investigate the effect of rain-shelter cultivation on the accumulation of anthocyanins in wine grapes (Vitis vinifera L. Cabernet Sauvignon) grown in eastern China. The results showed that rain-shelter cultivation, compared with the open-field, extended the period of rapid accumulation of sugar, increased the soluble solid content in the grape berries, and delayed the senescence of the green leaves at harvest. The concentrations of most anthocyanins were significantly enhanced in the rain-shelter cultivated grapes, and their content increases were closely correlated with the accumulation of sugar. However, the compositions of anthocyanins in the berries were not altered. Correspondingly, the expressions of VvF3'H, VvF3'5'H, and VvUFGT were greatly up-regulated and this rising trend appeared to continue until berry maturation. These results suggested that rain-shelter cultivation might help to improve the quality of wine grape berries by prolonging the life of functional leaves and hence increasing the assimilation products.

  12. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    USGS Publications Warehouse

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer’s accuracy of 93% and a user’s accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  13. Hydroponic cultivation improves the nutritional quality of soybean and its products.

    PubMed

    Palermo, Mariantonella; Paradiso, Roberta; De Pascale, Stefania; Fogliano, Vincenzo

    2012-01-11

    Hydroponic cultivation allows the control of environmental conditions, saves irrigation water, increases productivity, and prevents plant infections. The use of this technique for large commodities such as soybean is not a relevant issue on fertile soils, but hydroponic soybean cultivation could provide proteins and oil in adverse environmental conditions. In this paper, the compositions of four cultivars of soybean seeds and their derivates, soy milk and okara, grown hydroponically were compared to that of the same cultivar obtained from soil cultivation in an open field. Besides proximal composition, the concentrations of phytic acid and isoflavones were monitored in the seeds, soy milk, and okara. Results demonstrated that, independent from the cultivar, hydroponic compared to soil cultivation promoted the accumulation of fats (from 17.37 to 21.94 g/100 g dry matter) and total dietary fiber (from 21.67 to 28.46 g/100 g dry matter) and reduced isoflavones concentration (from 17.04 to 7.66 mg/kg dry matter), whereas protein concentration was unaffected. The differences found in seed composition were confirmed in the respective okara products, but the effect of cultivation system was not significant looking at the soy milk composition. Data showed that hydroponic cultivation improved the nutritional quality of soybean seeds with regard to fats and dietary fiber. They also suggest that specific cultivars should be selected to obtain the desired nutritional features of the soybean raw material depending on its final destination.

  14. Total petroleum systems of the Paleozoic and Jurassic, Greater Ghawar Uplift and adjoining provinces of central Saudi Arabia and northern Arabian-Persian Gulf

    USGS Publications Warehouse

    Pollastro, Richard M.

    2003-01-01

    Oil of the Arabian Sub-Basin Tuwaiq/Hanifa-Arab TPS is sourced by organic-rich, marine carbonates of the Jurassic Tuwaiq Mountain and Hanifa Formations. These source rocks were deposited in two of three intraplatform basins during the Jurassic and, where thermally mature, have generated a superfamily of oils with distinctive geochemical characteristics. Oils were generated and expelled from these source rocks beginning in the Cretaceous at about 75 Ma. Hydrocarbon production is from 3 cyclic carbonate-rock reservoirs of the Arab Formation that are sealed by overlying anhydrite. Several giant and supergiant fields, including the world's largest oil field at Ghawar, Saudi Arabia, produce mostly from the Arab carbonate-rock reservoirs. Two assessment units are also recognized in the Arabian Sub-Basin Tuwaiq/Hanifa-Arab TPS that are similarly related to structural trap style and presence of underlying Infracambrian salt: (1) an onshore Horst-Block Anticlinal Oil AU, and (2) a mostly offshore Salt-Involved Structural Oil AU. The mean total volume of undiscovered resource for the Arabian Sub-Basin Tuwaiq/Hanifa-Arab TPS is estimated at about 49 billion barrels of oil equivalent (42 billion barrels of oil, 34 trillion feet of gas, and 1.4 billion barrels of natural gas liquids).

  15. Effect of trees on the reduction of nutrient concentrations in the soils of cultivated areas.

    PubMed

    Gikas, Georgios D; Tsihrintzis, Vassilios A; Sykas, Dimitrios

    2016-06-01

    The function of trees in reducing nutrient migration to groundwaters in cultivated areas, under Mediterranean climate conditions, is tested. Three cultivated fields were monitored for two cultivation periods. The common characteristic of the three fields was that on one side, they bordered with a poplar tree field. Four different crops were cultivated, and two cultivation periods were monitored. Based on the number of fields (i.e., three) and the cultivation periods (i.e., two), six different conditions (systems) were studied with four crops (i.e., sunflower, cotton, rapeseed, and corn). Soil samples were collected in all systems at the beginning, the middle, and the end of the cultivation period at various sampling sites (i.e., various distances from the tree row) and at various depths, and were analyzed in the laboratory for the determination of ΝΟ3-Ν and P-Olsen. In all systems, the greatest concentration of P-Olsen was measured in the surface layers (0-5, 10-15, and 30-35 cm) and was gradually decreased in the deeper layers (55-60 and 75-80 cm) indicating that P mobility is low. The ΝΟ3-Ν concentration in the deeper layers (55-60 and 75-80 cm) at all sampling sites was equal to or greater than that of the surface layers, indicating that ΝΟ3-Ν has high mobility in soils. At the sampling sites in the soil zone near the tree row, the ΝΟ3-Ν concentration in the deeper layers was lower than that of the surface, indicating that the tree root system takes up nutrients which otherwise would move toward the water table. There was also a reduction observed of the depth-averaged P-Olsen and ΝΟ3-Ν concentrations at the soil zone at a distance of 2.0-3.5 m from the tree row compared to locations more distant from the trees; this reduction ranged between 15 and 50 % and 36 and 54 %, respectively. The results indicate that planting of trees in cultivated fields can contribute to the reduction of nitrate pollution of groundwaters.

  16. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, Richard M.; Tuthill, Clinton D.; Watkins, Randall D.

    1991-01-01

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals.

  17. Method of bonding single crystal quartz by field-assisted bonding

    DOEpatents

    Curlee, R.M.; Tuthill, C.D.; Watkins, R.D.

    1991-04-23

    The method of producing a hermetic stable structural bond between quartz crystals includes providing first and second quartz crystals and depositing thin films of borosilicate glass and silicon on portions of the first and second crystals, respectively. The portions of the first and second crystals are then juxtaposed in a surface contact relationship and heated to a temperature for a period sufficient to cause the glass and silicon films to become electrically conductive. An electrical potential is then applied across the first and second crystals for creating an electrostatic field between the adjoining surfaces and causing the juxtaposed portions to be attracted into an intimate contact and form a bond for joining the adjoining surfaces of the crystals. 2 figures.

  18. Integrated pest management of the banded sunflower moth in cultivated sunflower in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banded sunflower moth, Cochylis hospes Walsingham (Lepidoptera: Tortricidae), is a key insect pest of cultivated sunflowers in North Dakota. We investigated pest management strategies to reduce feeding injury caused by the banded sunflower moth in commercial oilseed and confection sunflower fields l...

  19. Cultivation legacies in soils after rehabilitation seeding in the Great Basin, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of knowledge about impacts of historical cultivation on soils for restoration planning is limited even though these legacies can affect land productivity and future land uses for decades. Old fields are often actively transformed through restoration, afforestation or rehabilitation seed...

  20. An Occupation's Responsibility: The Role of Social Foundations in the Cultivation of Professionalism

    ERIC Educational Resources Information Center

    Gunzenhauser, Michael G.

    2013-01-01

    In this essay, the author argues that inquiry and engagement in the social foundations of education is fundamental to cultivating professionalism in education. As many commentators on the subject have noted, teaching does not meet many of the criteria of a profession derived from the sociological study of fields of work. As Joseph Newman observes,…

  1. Cultivating Creativity and Self-Reflective Thinking through Dialogic Teacher Education

    ERIC Educational Resources Information Center

    Kizel, Arie

    2012-01-01

    A new program of teacher training in a dialogical spirit in order to prepare them towards working in the field of philosophy with children combines cultivating creativity and self-reflective thinking had been operated as a part of cooperation between the academia and the education system in Israel. This article describes the program that is a part…

  2. Hydroponic cultivation of soybean for Bioregenerative Life Support Systems (BLSSs)

    NASA Astrophysics Data System (ADS)

    De Pascale, Stefania; De Micco, Veronica; Aronne, Giovanna; Paradiso, Roberta

    For long time our research group has been involved in experiments aiming to evaluate the possibility to cultivate plants in Space to regenerate resources and produce food. Apart from investigating the response of specific growth processes (at morpho-functional levels) to space factors (namely microgravity and ionising radiation), wide attention has been dedicated to agro-technologies applied to ecologically closed systems. Based on technical and human dietary requirements, soybean [Glycine max (L.) Merr.] is studied as one of the candidate species for hydroponic (soilless) cultivation in the research program MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). Soybean seeds show high nutritional value, due to the relevant content of protein, lipids, dietary fiber and biologically active substances such as isoflavones. They can produce fresh sprouts or be transformed in several edible products (soymilk and okara or soy pulp). Soybean is traditionally grown in open field where specific interactions with soil microrganisms occur. Most available information on plant growth, seed productivity and nutrient composition relate to cultivated varieties (cultivars) selected for soil cultivation. However, in a space outpost, plant cultivation would rely on soilless systems. Given that plant growth, seed yield and quality strictly depend on the environmental conditions, to make successful the cultivation of soybean in space, it was necessary to screen all agronomic information according to space constraints. Indeed, selected cultivars have to comply with the space growth environment while providing a suitable nutritional quality to fulfill the astronauts needs. We proposed an objective criterion for the preliminary theoretical selection of the most suitable cultivars for seed production, which were subsequently evaluated in bench tests in hydroponics. Several Space-oriented experiments were carried out in a closed growth chamber to

  3. How resilient are African woodlands to disturbance from shifting cultivation?

    PubMed

    McNicol, Iain M; Ryan, Casey M; Williams, Mathew

    2015-12-01

    Large parts of sub-Saharan Africa are experiencing rapid changes in land use and land cover, driven largely by the expansion of small-scale shifting cultivation. This practice creates complex mosaic landscapes with active agricultural fields and patches of mature woodland, interspersed with remnant patches in various stages of regrowth. Our objective here was to examine the rate and extent to which carbon stocks in trees and soils recover after cultivation, and detail how this disturbance and regrowth affect patterns in tree species composition and diversity over 40 years of succession in a miombo woodland landscape in southeast Tanzania. We sampled 67 areas, including plots previously cleared for cultivation, active fields, and mature woodlands for reference purposes. Sites were further stratified by soil texture to test for associated effects. Tree carbon stocks accumulated at an average rate of 0.83 ± 0.10 Mg C x ha(-1) x yr(-1), with soil texture having no clear impact on accumulation rates. Bulk soil carbon stocks on both soil types appeared unaffected by both the initial land clearance and the subsequent regrowth, which resulted in no significant changes over time. Tree species diversity in regrowing plots developed rapidly and within -10 years was equivalent to that of mature woodland. Many of the species found in mature woodlands reappeared relatively quickly after abandonment, although species composition is expected to take considerably longer to recover, with at least 60-80 years required for the compositional similarity between regrowing and mature woodlands to reach levels similar to that among nearby mature woodlands. Through impacts on β-diversity, disturbance was also found to increase the total number of tree species present in the landscape, with many of the recorded species only found in regrowing woodlands. Our results are of relevance to carbon sequestration projects by helping to inform the potential future carbon and biodiversity benefits

  4. Microgravity cultivation of cells and tissues

    NASA Technical Reports Server (NTRS)

    Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.

    1999-01-01

    In vitro studies of cells and tissues in microgravity, either simulated by cultivation conditions on earth or actual, during spaceflight, are expected to help identify mechanisms underlying gravity sensing and transduction in biological organisms. In this paper, we review rotating bioreactor studies of engineered skeletal and cardiovascular tissues carried out in unit gravity, a four month long cartilage tissue engineering study carried out aboard the Mir Space Station, and the ongoing laboratory development and testing of a system for cell and tissue cultivation aboard the International Space Station.

  5. Phytoextraction of weathered p,p'-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions.

    PubMed

    Wang, Xiaoping; White, Jason C; Gent, Martin P N; Iannucci-Berger, William; Eitzer, Brian D; Mattina, MaryJane Incorvia

    2004-01-01

    Previous studies have shown that zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under field conditions are good and poor accumulators, respectively, of persistent organic pollutants from soil. Here, each species was grown under three cultivation regimes: dense (five plants in 5 kg soil): nondense (one plant in 80 kg soil): and field conditions (two to three plants in approximately 789 kg soil). p,p'-DDE and inorganic element content in roots, stems, leaves, and fruit were determined. In addition. rhizosphere, near-root, and unvegetated soil fractions were analyzed for concentrations of 11 low-molecular-weight organic acids (LMWOA) and 14 water-extractable inorganic elements. Under field conditions, zucchini phytoextracted 1.3% of the weathered p,p'-DDE with 98% of the contaminant in the aerial tissues. Conversely, cucumber removed 0.09% of the p,p'-DDE under field conditions with 83% in the aerial tissues. Under dense cultivation, cucumber produced a fine and fibrous root system not observed in our previous experiments and phytoextracted 0.78% of the contaminant, whereas zucchini removed only 0.59% under similar conditions. However. cucumber roots translocated only 5.7% of the pollutant to the shoot system, while in zucchini 48% of the p,p'-DDE in the plant was present in the aerial tissue. For each species, the concentrations of LMWOA in soil increased with increasing impact by the root system both within a given cultivation regime (i.e., rhizosphere > near-root > unvegetated) and across cultivation regimes (i.e., dense > nondense > field conditions). Under dense cultivation, the rhizosphere concentrations of LMWOAs were significantly greater for cucumber than for zucchini; no species differences were evident in the other two cultivation regimes. To enable direct comparison across cultivation regimes, total in planta p,p'-DDE and inorganic elements were mass normalized or multiplied by the ratio of plant mass to soil mass. For cucumber, differences in

  6. Hydrogeologic information on the Glorieta Sandstone and the Ogallala Formation in the Oklahoma Panhandle and adjoining areas as related to underground waste disposal

    USGS Publications Warehouse

    Irwin, James Haskell; Morton, Robert B.

    1969-01-01

    The Oklahoma Panhandle and adjacent areas in Texas, Kansas, Colorado, and New Mexico have prospered because of the development of supplies of fresh water and of oil and gas. The Ogallala and, in places, Cretaceous rocks produce fresh water for irrigation, public supply, and domestic and stock use through approximately 9,000 irrigation and public supply wells and a large but undetermined number of other wells. Disposal of oil-field brine and other wastes into the Glorieta Sandstone is of concern to many local residents because of the possibility of pollution of the overlying fresh-water aquifers, particularly the Ogallala Formation. Permits for 147 disposal wells into the Glorieta have been issued in this area. This report summarizes the data on geology, hydrology, and water development currently available to the U.S. Geological Survey. Geologic information indicates that, in the report area, the Glorieta Sandstone lies at depths ranging from about 500 to 1,600 feet below the base of the Ogallala Fox, nation. The rocks between those two formations are of relatively impermeable types, but solution and removal of salt has resulted in collapse of the rocks in some places. Collapse and fracturing of the rocks could result in increased vertical permeability. This might result in movement of brine under hydrostatic head from the Glorieta Sandstone into overlying fresh-water aquifers, in places where an upward hydraulic gradient exists or is created by an increase in pressure within the Glorieta. Abandoned or inadequately sealed boreholes also are possible conduits for such fluids. The mixing of water in the fresh-water aquifers with brines injected into the Glorieta is not known to have occurred anywhere in the report area, but the information available is not adequate to show positively whether or not this may have occurred locally. Much additional information on the stratigraphy and hydrology--particularly, data on the potentiometric surface of water in the Glorieta

  7. Definition of Management Zones for Enhancing Cultivated Land Conservation Using Combined Spatial Data

    NASA Astrophysics Data System (ADS)

    Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi

    2013-10-01

    The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation

  8. Monitoring and Evaluation of Cultivated Land Irrigation Guarantee Capability with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, C., Sr.; Huang, J.; Li, L.; Wang, H.; Zhu, D.

    2015-12-01

    Abstract: Cultivated Land Quality Grade monitoring and evaluation is an important way to improve the land production capability and ensure the country food safety. Irrigation guarantee capability is one of important aspects in the cultivated land quality monitoring and evaluation. In the current cultivated land quality monitoring processing based on field survey, the irrigation rate need much human resources investment in long investigation process. This study choses Beijing-Tianjin-Hebei as study region, taking the 1 km × 1 km grid size of cultivated land unit with a winter wheat-summer maize double cropping system as study object. A new irrigation capacity evaluation index based on the ratio of the annual irrigation requirement retrieved from MODIS data and the actual quantity of irrigation was proposed. With the years of monitoring results the irrigation guarantee capability of study area was evaluated comprehensively. The change trend of the irrigation guarantee capability index (IGCI) with the agricultural drought disaster area in rural statistical yearbook of Beijing-Tianjin-Hebei area was generally consistent. The average of IGCI value, the probability of irrigation-guaranteed year and the weighted average which controlled by the irrigation demand index were used and compared in this paper. The experiment results indicate that the classification result from the present method was close to that from irrigation probability in the gradation on agriculture land quality in 2012, with overlap of 73% similar units. The method of monitoring and evaluation of cultivated land IGCI proposed in this paper has a potential in cultivated land quality level monitoring and evaluation in China. Key words: remote sensing, evapotranspiration, MODIS cultivated land quality, irrigation guarantee capability Authors: Chao Zhang, Jianxi Huang, Li Li, Hongshuo Wang, Dehai Zhu China Agricultural University zhangchaobj@gmail.com

  9. Definition of management zones for enhancing cultivated land conservation using combined spatial data.

    PubMed

    Li, Yan; Shi, Zhou; Wu, Hao-Xiang; Li, Feng; Li, Hong-Yi

    2013-10-01

    The loss of cultivated land has increasingly become an issue of regional and national concern in China. Definition of management zones is an important measure to protect limited cultivated land resource. In this study, combined spatial data were applied to define management zones in Fuyang city, China. The yield of cultivated land was first calculated and evaluated and the spatial distribution pattern mapped; the limiting factors affecting the yield were then explored; and their maps of the spatial variability were presented using geostatistics analysis. Data were jointly analyzed for management zone definition using a combination of principal component analysis with a fuzzy clustering method, two cluster validity functions were used to determine the optimal number of cluster. Finally one-way variance analysis was performed on 3,620 soil sampling points to assess how well the defined management zones reflected the soil properties and productivity level. It was shown that there existed great potential for increasing grain production, and the amount of cultivated land played a key role in maintaining security in grain production. Organic matter, total nitrogen, available phosphorus, elevation, thickness of the plow layer, and probability of irrigation guarantee were the main limiting factors affecting the yield. The optimal number of management zones was three, and there existed significantly statistical differences between the crop yield and field parameters in each defined management zone. Management zone I presented the highest potential crop yield, fertility level, and best agricultural production condition, whereas management zone III lowest. The study showed that the procedures used may be effective in automatically defining management zones; by the development of different management zones, different strategies of cultivated land management and practice in each zone could be determined, which is of great importance to enhance cultivated land conservation

  10. Definition and feasibility of isolation distances for transgenic maize cultivation.

    PubMed

    Sanvido, Olivier; Widmer, Franco; Winzeler, Michael; Streit, Bernhard; Szerencsits, Erich; Bigler, Franz

    2008-06-01

    A major concern related to the adoption of genetically modified (GM) crops in agricultural systems is the possibility of unwanted GM inputs into non-GM crop production systems. Given the increasing commercial cultivation of GM crops in the European Union (EU), there is an urgent need to define measures to prevent mixing of GM with non-GM products during crop production. Cross-fertilization is one of the various mechanisms that could lead to GM-inputs into non-GM crop systems. Isolation distances between GM and non-GM fields are widely accepted to be an effective measure to reduce these inputs. However, the question of adequate isolation distances between GM and non-GM maize is still subject of controversy both amongst scientists and regulators. As several European countries have proposed largely differing isolation distances for maize ranging from 25 to 800 m, there is a need for scientific criteria when using cross-fertilization data of maize to define isolation distances between GM and non-GM maize. We have reviewed existing cross-fertilization studies in maize, established relevant criteria for the evaluation of these studies and applied these criteria to define science-based isolation distances. To keep GM-inputs in the final product well below the 0.9% threshold defined by the EU, isolation distances of 20 m for silage and 50 m for grain maize, respectively, are proposed. An evaluation using statistical data on maize acreage and an aerial photographs assessment of a typical agricultural landscape by means of Geographic Information Systems (GIS) showed that spatial resources would allow applying the defined isolation distances for the cultivation of GM maize in the majority of the cases under actual Swiss agricultural conditions. The here developed approach, using defined criteria to consider the agricultural context of maize cultivation, may be of assistance for the analysis of cross-fertilization data in other countries.

  11. Tectonic controls on the hydrocarbon habitats of the Barito, Kutei, and Tarakan Basins, Eastern Kalimantan, Indonesia: major dissimilarities in adjoining basins

    NASA Astrophysics Data System (ADS)

    Satyana, Awang Harun; Nugroho, Djoko; Surantoko, Imanhardjo

    1999-04-01

    growth-faults, and may be the direct result of sedimentary loading by successive deltaic deposits. Older structures were formed in the onshore basin, characterized by the N-S trending folds resulting from the collision of the Central Range terranes to the west of the basin. Hydrocarbon accumulations in the three basins are strongly controlled by their tectonic styles. In the Barito Basin, all fields are located in west-verging faulted anticlines. The history of tectonic inversion and convergent uplift of the Meratus Mountains, isostatically, have caused the generation, migration, and trapping of hydrocarbons. In the Kutei Basin, the onshore Samarinda Anticlinorium and the offshore Mahakam Foldbelt are prolific petroleum provinces, within which most Indonesian giant fields are located. In the offshore, very gentle folds also play a role as hydrocarbon traps, in association with stratigraphic entrapment. These structures have recently become primary targets for exploratory drilling. In the Tarakan Basin, the prominent NW-SE anticlines, fragmented by NE-SW growth-faults, have proved to be petroleum traps. The main producing pools are located in the downthrown blocks of the faults. Diverse tectonic styles within the producing basins of Kalimantan compel separate exploration approaches to each basin. To discover new opportunities in exploration, it is important to understand the structural evolution of neighbouring basins.

  12. Aggregate stability in soils cultivated with eucalyptus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eucalyptus cultivation has increased in many Brazilian regions. In order to recommend good management practices, it is necessary to understand changes in soil properties where eucalyptus is planted. Aggregate stability analyses have proved to be a useful tool to measure soil effects caused by change...

  13. Cultivation Theory and Research: A Conceptual Critique.

    ERIC Educational Resources Information Center

    Potter, W. James

    1993-01-01

    Presents a critical analysis of how cultivation (long-term formation of perceptions and beliefs about the world as a result of exposure to media) has been conceptualized in theory and research. Analyses the construct of television exposure. Suggests revisions for conceptualizing the existing theory and extending it. (RS)

  14. Genetic variation in cultivated Rheum tanguticum populations

    PubMed Central

    Hu, Yanping; Xie, Xiaolong; Wang, Li; Zhang, Huaigang; Yang, Jian; Li, Yi

    2014-01-01

    To examine whether cultivation reduced genetic variation in the important Chinese medicinal plant Rheum tanguticum, the levels and distribution of genetic variation were investigated using ISSR markers. Fifty-eight R. tanguticum individuals from five cultivated populations were studied. Thirteen primers were used and a total of 320 DNA bands were scored. High levels of genetic diversity were detected in cultivated R. tanguticum (PPB = 82.19, H = 0.2498, HB = 0.3231, I = 0.3812) and could be explained by the outcrossing system, as well as long-lived and human-mediated seed exchanges. Analysis of molecular variance (AMOVA) showed that more genetic variation was found within populations (76.1%) than among them (23.9%). This was supported by the coefficient of gene differentiation (Gst = 0.2742) and Bayesian analysis (θB = 0.1963). The Mantel test revealed no significant correlation between genetic and geographic distances among populations (r = 0.1176, p = 0.3686). UPGMA showed that the five cultivated populations were separated into three clusters, which was in good accordance with the results provided by the Bayesian software STRUCTURE (K = 3). A short domestication history and no artificial selection may be an effective way of maintaining and conserving the gene pools of wild R. tanguticum. PMID:25249777

  15. Subsurface drip irrigation with micro-encapsulated trifluralin. Trifluralin residues in soils and cultivations.

    PubMed

    Spera, G; Rosati, S; Rossi, E; Scicchitano, S

    2006-01-01

    In full field and greenhouse agriculture, the subsurface water distribution with underground driplines--subsurface drip irrigation--is advantageous to obtain a better production and a simplification of cultivation practices. This technique can have a major applicative interest on condition that the roots' intrusion inside the driplines irrigators is eliminated or reduced. To reach this goal, a study has been made on vegetable greenhouse cultivations, and on subsurface drip irrigation with underground driplines protected against roots' intrusion with a product containing micro-encapsulated polyethylene Trifuralin (trifluralin). Underground pipes with driplines (without trifluralin) have constituted the confrontation thesis. The trifluralin residues have been determined through GC-ECD, according to different cultivation phases for two entire production cycles: with 30% of leaf covering, at the moment of flowering and maturation, during production and at the harvest ending, on soil, leaves and maturation, during the production and, at the harvest ending, on fruits.

  16. Ecological Risk Assessment of EDTA-Assisted Phytoremediation of Cd Under Different Cultivation Systems.

    PubMed

    Luo, Jie; Qi, Shihua; Gu, X W Sophie; Hou, Tao; Lin, Lihong

    2016-02-01

    A long-term field experiment was designed to assess remediation efficiency and ecological risk of phytoremediation of Cd under different cultivation systems with or without ethylene diamine tetraacetic acid (EDTA). EDTA can significantly improve the phytoremediation effectiveness of a historically polluted e-waste dismantling site through enhancing Cd uptake by plants in all cultivation systems along with higher ecological risks to different receptors especially in the presence of Cicer arietinum (chickpea). Moisture content at each layer of soil profile under Eucalyptus globules L. cultivated sites was consistently lower than under chickpea monoculture as a result of E. globules' high water use efficiency. Besides low soil moisture, E. globules can intercept more Cd-rich leachate than chickpea regardless of the presence of EDTA. E. globules could be used for Cd phytoremediation as they can take full advantage of EDTA and decrease ecological risk caused by the chelator.

  17. Methods for human embryonic stem cells derived cardiomyocytes cultivation, genetic manipulation, and transplantation.

    PubMed

    Arbel, Gil; Caspi, Oren; Huber, Irit; Gepstein, Amira; Weiler-Sagie, Michal; Gepstein, Lior

    2010-01-01

    A decade has passed since the initial derivation of human embryonic stem cells (hESC). The ensuing years have witnessed a significant progress in the development of methodologies allowing cell cultivation, differentiation, genetic manipulation, and in vivo transplantation. Specifically, the potential to derive human cardiomyocytes from the hESC lines, which can be used for several basic and applied cardiovascular research areas including in the emerging field of cardiac regenerative medicine, attracted significant attention from the scientific community. This resulted in the development of protocols for the cultivation of hESC and their successful differentiation toward the cardiomyocyte lineage fate. In this chapter, we will describe in detail methods related to the cultivation, genetic manipulation, selection, and in vivo transplantation of hESC-derived cardiomyocytes.

  18. Cultivation and quantitative proteomic analyses of acidophilic microbial communities

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Verberkmoes, Nathan C; Power, Mary E.; Samatova, Nagiza F; Carver, Rudolf L.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2010-01-01

    Acid mine drainage (AMD), an extreme environment characterized by low pH and high metal concentrations, can support dense acidophilic microbial biofilm communities that rely on chemoautotrophic production based on iron oxidation. Field determined production rates indicate that, despite the extreme conditions, these communities are sufficiently well adapted to their habitats to achieve primary production rates comparable to those of microbial communities occurring in some non-extreme environments. To enable laboratory studies of growth, production and ecology of AMD microbial communities, a culturing system was designed to reproduce natural biofilms, including organisms recalcitrant to cultivation. A comprehensive metabolic labeling-based quantitative proteomic analysis was used to verify that natural and laboratory communities were comparable at the functional level. Results confirmed that the composition and core metabolic activities of laboratory-grown communities were similar to a natural community, including the presence of active, low abundance bacteria and archaea that have not yet been isolated. However, laboratory growth rates were slow compared with natural communities, and this correlated with increased abundance of stress response proteins for the dominant bacteria in laboratory communities. Modification of cultivation conditions reduced the abundance of stress response proteins and increased laboratory community growth rates. The research presented here represents the first description of the application of a metabolic labeling-based quantitative proteomic analysis at the community level and resulted in a model microbial community system ideal for testing physiological and ecological hypotheses.

  19. Analyses on Regional Cultivated Land Changebased on Quantitative Method

    NASA Astrophysics Data System (ADS)

    Cao, Yingui; Yuan, Chun; Zhou, Wei; Wang, Jing

    Three Gorges Project is the great project in the world, which accelerates economic development in the reservoir area of Three Gorges Project. In the process of development in the reservoir area of Three Gorges Project, cultivated land has become the important resources, a lot of cultivated land has been occupied and become the constructing land. In the same time, a lot of cultivated land has been flooded because of the rising of the water level. This paper uses the cultivated land areas and social economic indicators of reservoir area of Three Gorges in 1990-2004, takes the statistic analyses and example research in order to analyze the process of cultivated land, get the driving forces of cultivated land change, find the new methods to stimulate and forecast the cultivated land areas in the future, and serve for the cultivated land protection and successive development in reservoir area of Three Gorges. The results indicate as follow, firstly, in the past 15 years, the cultivated land areas has decreased 200142 hm2, the decreasing quantity per year is 13343 hm2. The whole reservoir area is divided into three different areas, they are upper reaches area, belly area and lower reaches area. The trends of cultivated land change in different reservoir areas are similar to the whole reservoir area. Secondly, the curve of cultivated land areas and per capita GDP takes on the reverse U, and the steps between the change rate of cultivated land and the change rate of GDP are different in some years, which indicates that change of cultivated land and change of GDP are decoupling, besides that, change of cultivated land is connection with the development of urbanization and the policy of returning forestry greatly. Lastly, the precision of multi-regression is lower than the BP neural network in the stimulation of cultivated land, then takes use of the BP neural network to forecast the cultivated land areas in 2005, 2010 and 2015, and the forecasting results are reasonable.

  20. A new pathogenic Leptospira, not readily cultivated.

    PubMed

    ALEXANDER, A D; STOENNER, H G; WOOD, G E; BYRNE, R J

    1962-04-01

    Alexander, Aaron D. (Walter Reed Army Institute of Research, Washington, D.C.), Herbert G. Stoenner, Garnett E. Wood, and Robert J. Byrne. A new pathogenic Leptospira, not readily cultivated. J. Bacteriol. 83:754-760. 1962.-A pathogenic Leptospira was isolated from water of the Grand River, (S.D.) that differed significantly from other known leptospirae in that it could not be cultivated in conventional leptospiral media. Growth was promoted in Fletcher's medium modified to contain 20% rabbit serum. The isolate, after several serial passages, was lethal for hamsters. It could not be adapted to grow in the chick embryo. Guinea pigs and calves inoculated with the isolate developed febrile and antibody responses but showed no other overt signs of disease. The strain was identified on the basis of cross-agglutination and agglutinin-adsorption tests as a new subserotype of Leptospira naam and was therefore designated as L. naam, subserotype dakotii.

  1. Biodiversity, evolution and adaptation of cultivated crops.

    PubMed

    Vigouroux, Yves; Barnaud, Adeline; Scarcelli, Nora; Thuillet, Anne-Céline

    2011-05-01

    The human diet depends on very few crops. Current diversity in these crops is the result of a long interaction between farmers and cultivated plants, and their environment. Man largely shaped crop biodiversity from the domestication period 12,000 B.P. to the development of improved varieties during the last century. We illustrate this process through a detailed analysis of the domestication and early diffusion of maize. In smallholder agricultural systems, farmers still have a major impact on crop diversity today. We review several examples of the major impact of man on current diversity. Finally, biodiversity is considered to be an asset for adaptation to current environmental changes. We describe the evolution of pearl millet in West Africa, where average rainfall has decreased over the last forty years. Diversity in cultivated varieties has certainly helped this crop to adapt to climate variation.

  2. A NEW PATHOGENIC LEPTOSPIRA, NOT READILY CULTIVATED

    PubMed Central

    Alexander, Aaron D.; Stoenner, Herbert G.; Wood, Garnett E.; Byrne, Robert J.

    1962-01-01

    Alexander, Aaron D. (Walter Reed Army Institute of Research, Washington, D.C.), Herbert G. Stoenner, Garnett E. Wood, and Robert J. Byrne. A new pathogenic Leptospira, not readily cultivated. J. Bacteriol. 83:754–760. 1962.—A pathogenic Leptospira was isolated from water of the Grand River, (S.D.) that differed significantly from other known leptospirae in that it could not be cultivated in conventional leptospiral media. Growth was promoted in Fletcher's medium modified to contain 20% rabbit serum. The isolate, after several serial passages, was lethal for hamsters. It could not be adapted to grow in the chick embryo. Guinea pigs and calves inoculated with the isolate developed febrile and antibody responses but showed no other overt signs of disease. The strain was identified on the basis of cross-agglutination and agglutinin-adsorption tests as a new subserotype of Leptospira naam and was therefore designated as L. naam, subserotype dakotii. PMID:13860321

  3. Comparison of ectomycorrhizal communities in natural and cultivated Tuber melanosporum truffle grounds.

    PubMed

    Belfiori, Beatrice; Riccioni, Claudia; Tempesta, Sabrina; Pasqualetti, Marcella; Paolocci, Francesco; Rubini, Andrea

    2012-09-01

    Truffles are hypogeous ectomycorrhizal (EM) fungi belonging to the genus Tuber. Although outplanting of truffle-inoculated host plants has enabled the realization of productive orchards, truffle cultivation is not yet standardized. Therefore, monitoring the distribution of fungal species in different truffle fields may help us to elucidate the factors that shape microbial communities and influence the propagation and fruiting of Tuber spp. In this study, we compared the fungal biodiversity in cultivated and natural Tuber melanosporum truffle fields located in Central Italy. To this end, ectomycorrhizas (ECM) and soil samples were molecularly analyzed, and an inventory of the fungi associated with Quercus pubescens plants colonized by T. melanosporum, Tuber aestivum or Tuber brumale was compiled. T. melanosporum and T. aestivum were dominant on the cultivated plants, and the number of EM species was markedly lower in the cultivated sites than in the natural sites. However, in the same site, EM biodiversity was higher in T. brumale-colonized plants than in T. melanosporum-colonized plants. These results suggest that different Tuber spp. may have different competitive effects on the other mycobionts. Additionally, in keeping with our previous findings, we found that the number of T. melanosporum genotypes recovered from the soil samples was higher than that of the underlying ECM.

  4. Wheat cultivation: Identification and estimation of areas using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Mendonca, F. J.; Cottrell, D. A.; Tardin, A. T.; Lee, D. C. L.; Shimabukuro, Y. E.; Moreira, M. A.; Delimaefernandocelsosoaresmaia, A. M.

    1981-01-01

    The feasibility of using automatically processed multispectral data obtained from LANDSAT to identify wheat and estimate the areas planted with this grain was investigated. Three 20 km by 40 km segments in a wheat growing region of Rio Grande do Sul were aerially photographed using type 2443 Aerochrome film. Three maps corresponding to each segment were obtained from the analysis of the photographs which identified wheat, barley, fallow land, prepared soil, forests, and reforested land. Using basic information about the fields and maps made from the photographed areas, an automatic classification of wheat was made using MSS data from two different periods: July to September and July to October 1979. Results show that orbital data is not only useful in characterizing the growth of wheat, but also provides information of the intensity and extent of adverse climate which affects cultivation. The temporal and spatial characteristics of LANDSAR data are also demonstrated.

  5. PERSPECTIVE: Cultivating Strategic Foresight for Energy and Environmental Security

    SciTech Connect

    Bray, David A.; Costigan, Sean; Daum, Keith; Lavoix, Helene; Malone, Elizabeth L.; Pallaris, Chris

    2009-10-01

    Disastrous social, economic, and political instability can result from limited energy resources or deteriorating environmental conditions. Historically, understanding and preparing for potential turbulent events posed significant challenges for governments, due in part to complex connections and dependencies associated with multiple, inter-related issues. Moving forward, we propose world governments can better mitigate and even avert energy and environmental disasters by cultivating a shared, diverse community of physical and social scientists, engineers, security analysts, and other professionals from related fields to share concerns, discuss ideas, and coalesce key concepts from the vast amount of data available about energy and environmental issues. Bringing relevant parties from multiple disciplines into a dynamic, diverse, and more transparent forum will produce a greater range of discussion, deliberation, and feasible solutions to help address uncertain, global energy and environmental concerns of both the present-day and our future.

  6. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  7. NOTES ON THE CULTIVATION OF TREPONEMA PALLIDUM

    PubMed Central

    Zinsser, Hans; Hopkins, J. G.; Gilbert, Ruth

    1915-01-01

    We consider themost importantcontribution reported in this paper the fact that Treponema pallidum can be cultivated in fluid media, without the addition of agar, together with tissues sterilized by heat. This forms an excellent method of obtaining mass cultures for luetin preparation and immunological experimentation. We may add that while the tissue varieties employed have all stongly favored the growth of the treponemata, we have noticed especially active and motile cultures when lung and suprarenal tissues were employed. PMID:19867864

  8. Cultivation of Pleurotus ostreatus on weed plants.

    PubMed

    Das, Nirmalendu; Mukherjee, Mina

    2007-10-01

    Oyster mushroom, Pleurotus ostreatus (Jacq.:Fr.) Kumm. ITCC 3308 (collected from Indian Type Culture Collection, IARI, New Delhi, India, 110012) was grown on dry weed plants, Leonotis sp, Sida acuta, Parthenium argentatum, Ageratum conyzoides, Cassia sophera, Tephrosia purpurea and Lantana camara. Leonotis sp. was the best substrate in fruit body production of P. ostreatus when it was mixed with rice straw (1:1, wet wt/wet wt) for mushroom cultivation. The fruiting time for P. ostreatus was also less on Leonotis sp. than on any other weed substrates tested in the present investigation. T. purpurea was the least suited weed for oyster mushroom cultivation. The main problem of oyster mushroom cultivation on weed substrates was found to be low yield in the second flush that could be overcome by blending weed plants with rice straw. The protein contents of the fruit bodies obtained from Cassia sophera, Parthenium argentatum and Leonotis sp. were not only better than rice straw but also from the rice straw supplemented weeds.

  9. Runoff generation and flow paths on an inclined cultivated soil

    NASA Astrophysics Data System (ADS)

    Zumr, David; Strouhal, Luděk; Kavka, Petr

    2015-04-01

    The hydrology of cultivated catchments has its specific features due to the temporary variable topsoil properties and a sharp divide between topsoil and compacted subsoil. Under various conditions (actual topsoil physical properties, initial soil saturation, rainfall characteristics, surface roughness or vegetation stage) the prevailing runoff mechanisms may vary from surface runoff to subsurface runoff or deep percolation. To investigate the runoff generation and flow pathways and to quantify the runoff components on an inclined cultivated field under various rainfall and field conditions we conducted plot scale rainfall simulations. The experiments were done on the experimental plots Bykovice in Central Bohemia (Czech Republic), where the soil is classified as Cambisol with a clear divide between the topsoil and compacted subsoil at a depth of approximately 14 cm. We used a mobile rainfall simulator (designed at the CTU in Prague) equipped with four solenoid-controlled nozzles positioned 2.65 m above the soil. An inclined experimental plot (8 x 2 m, 9% slope) was successively exposed to uniform simulated rainfall with intensity ranging from 23 to 64 mm h-1 and duration ranging from 1 h to 2.5 h. These simulated rainfall parameters were selected to represent intensive rainfall events observed in the study locality, to generate surface runoff and to initiate soil erosion. The dynamics of surface and shallow subsurface runoff and the soil water regime at three soil depths were monitored. Various initial soil moisture conditions, and vegetation stages; from cultivated fallow to stubble, delimited the simulations. Variable proportions of both monitored runoff components were observed in relation to rainfall intensity and duration, ranging from zero surface runoff to a distinct dominance of surface runoff. Both components reacted very dynamically to the precipitation: shallow subsurface runoff was formed first under all tested conditions on the given soil profile. Even

  10. Human energy expenditure in lowland rice cultivation in Malaysia.

    PubMed

    Nawi, N M; Yahya, A; Chen, G; Bockari-Gevao, S M; Maraseni, T N

    2012-01-01

    A study was undertaken to evaluate the human energy consumption of various field operations involved in lowland rice cultivation in Malaysia. Based on recorded average heart rates, fertilizing was found to be the most strenuous operation, with an average heart rate of 138 beats min(-1). There were no significant differences in the average heart rates of the subjects among the individual tasks within the first plowing, second plowing, and harvesting operations, with the average heart rates for these three tasks being 116, 106, and 106 beats min(-1), respectively. The corresponding energy expenditures were 3.90, 3.43, and 3.35 kcal min(-1). Loading the seed into the blower tank and broadcasting the seed were the most critical tasks for the seed broadcasting operation, with average heart rates of 124 and 136 beats min(-1), respectively. The highest energy expenditure of 418.38 kcal ha(-1) was observed for seed broadcasting, and the lowest energy expenditure of 127.96 kcal ha(-1) was for second plowing. The total seasonal human energy expenditure for rice cultivation was estimated to be 5810.71 kcal ha(-1), 55.7% of which was spent on pesticide spraying. Although the sample size in this study was relatively small, the results indicated that human energy expenditure per unit area (kcal ha(-1)) was positively linked to the average heart rate of the subjects and negatively linked to the field capacity. Thus, mechanization of certain tasks could decrease worker physical effort and fatigue and increase production.

  11. Carbon monoxide fluxes from natural, managed, or cultivated savannah grasslands

    NASA Astrophysics Data System (ADS)

    Sanhueza, Eugenio; Donoso, Loreto; Scharffe, Dieter; Crutzen, Paul J.

    1994-08-01

    As part of a comprehensive study on tropical land use change and its effect on atmospheric trace gas fluxes, we report the CO fluxes recorded at a natural grassland site and the changes produced when this ecosystem was managed or cultivated. The field site is located in the central part of the savannah climatic region of Venezuela. Fluxes were measured in the dark using the enclosed chamber technique. CO was analyzed with a reduction-gas detector in combination with a molecular sieve 5A columm for CO separation. At all sites, CO fluxes exhibited a strong diurnal variation, with net emission during daytime and consumption or no fluxes during nightime. In unplowed soils no differences were observed between dry and rainy season. A large disparity was observed between unplowed and plowed grassland soils. Plowed soil shows a much smaller emission during daytime and a larger consumption at night. The 24-hour integrated fluxes indicate that the nonperturbed grassland switches from being a net source of CO (3.4×1010 molecules cm-2 s-1) to being a net sink (-1.6×1010 molecules cm-2s-1) after plowing. It is likely that burial of surface litter reduces the production of CO in the top soil and that the diffusion of CO to deeper layers (where CO is consumed by microbiological processes) is promoted in decompacted soils. As the rainy season progressed the plowed soil gradually compacted and CO fluxes changed back, and after 3 months the fluxes from plowed soils and the original unplowed soils were equal. Even though the various cultivated fields (corn, sorghum, and pasture) received differing inorganic fertilization treatments, no significant difference in the CO fluxes resulted. Measurements during the dry season suggest that "degrading dry (dead) vegetation" produces CO under dark conditions.

  12. Carbon monoxide fluxes from natural, managed, or cultivated savannah grasslands

    SciTech Connect

    Sanhueza, E.; Donoso, L.; Scharffe, D.; Crutzen, P.J.

    1994-08-20

    As part of a comprehensive study on tropical land use change and its effect on atmospheric trace gas fluxes, we report the CO fluxes recorded at a natural grassland site and the changes produced when this ecosystem was managed or cultivated. The field site is located in the central part of the savannah climatic region of Venezuela. Fluxes were measured in the dark using the enclosed chamber technique. CO was analyzed with a reduction-gas detector in combination with a molecular sieve 5A column for CO separation. At all sites, CO fluxes exhibited a strong diurnal variation, with net emission during daytime and consumption or no fluxes during nighttime. In unplowed soils no differences were observed between dry and rainy season. A large disparity was observed between unplowed and plowed grassland soils. Plowed soil shows a much smaller emission during daytime and a larger consumption at night. The 24-hour integrated fluxes indicate that the nonperturbed grassland switches from being a net source of CO (3.4 x 10{sup 10} molecules cm{sup {minus}2} s{sup {minus}1}) to being a net sink (-1.6 x 10{sup 10} molecules cm{sup {minus}2} s{sup {minus}1}) after plowing. It is likely that burial of surface litter reduces the production of CO in the top soil and that the diffusion of CO to deeper layers (where CO is consumed by microbiological processes) is promoted in decompacted soils. As the rainy season progressed the plowed soil gradually compacted and CO fluxes changed back, and after 3 months the fluxes from plowed soils and the original unplowed soils were equal. Even though the various cultivated fields (corn, sorghum, and pasture) received differing inorganic fertilization treatments, no significant difference in the CO fluxes resulted. Measurements during the dry season suggest that {open_quotes}degrading dry (dead) vegetation{close_quotes} produces CO under dark conditions. 14 refs., 5 figs., 3 tabs.

  13. Disfluencies, Language Comprehension, and Tree Adjoining Grammars

    ERIC Educational Resources Information Center

    Ferreira, Fernanda; Lau, Ellen F.; Bailey, Karl G. D.

    2004-01-01

    Disfluencies include editing terms such as "uh" and "um" as well as repeats and revisions. Little is known about how disfluencies are processed, and there has been next to no research focused on the way that disfluencies affect structure-building operations during comprehension. We review major findings from both computational linguistics and…

  14. Cultivation of rice for animal feed with circulated irrigation of treated municipal wastewater for enhanced nitrogen removal: comparison of cultivation systems feeding irrigation water upward and downward.

    PubMed

    Muramatsu, A; Ito, H; Sasaki, A; Kajihara, A; Watanabe, T

    2015-01-01

    To achieve enhanced nitrogen removal, we modified a cultivation system with circulated irrigation of treated municipal wastewater by using rice for animal feed instead of human consumption. The performance of this modified system was evaluated through a bench-scale experiment by comparing the direction of circulated irrigation (i.e. passing through paddy soil upward and downward). The modified system achieved more than three times higher nitrogen removal (3.2 g) than the system in which rice for human consumption was cultivated. The removal efficiency was higher than 99.5%, regardless of the direction of circulated irrigation. Nitrogen in the treated municipal wastewater was adsorbed by the rice plant in this cultivation system as effectively as chemical fertilizer used in normal paddy fields. Circulated irrigation increased the nitrogen released to the atmosphere, probably due to enhanced denitrification. Neither the circulation of irrigation water nor its direction affected the growth of the rice plant and the yield and quality of harvested rice. The yield of rice harvested in this system did not reach the target value in normal paddy fields. To increase this yield, a larger amount of treated wastewater should be applied to the system, considering the significant amount of nitrogen released to the atmosphere.

  15. Soil properties of cultivation sites for mountain-cultivated ginseng at local level

    PubMed Central

    Kim, Choonsig; Choo, Gap Chul; Cho, Hyun Seo; Lim, Jong Teak

    2014-01-01

    Background Identifying suitable site for growing mountain-cultivated ginseng is a concern for ginseng producers. This study was conducted to evaluate the soil properties of cultivation sites for mountain-cultivated ginseng in Hamyang-gun, which is one of the most well-known areas for mountain-cultivated ginseng in Korea. Methods The sampling plots from 30 sites were randomly selected on or near the center of the ginseng growing sites in July and August 2009. Soil samples for the soil properties analysis were collected from the top 20 cm at five randomly selected points. Results Mountain-cultivated ginseng was grown in soils that varied greatly in soil properties on coniferous, mixed, and deciduous broad-leaved stand sites of elevations between > 200 m and < 1,000 m. The soil bulk density was higher in Pinus densiflora than in Larix leptolepis stand sites and higher in the < 700-m sites than in > 700-m sites. Soil pH was unaffected by the type of stand sites (pH 4.35–4.55), whereas the high-elevation sites of > 700 m were strongly acidified, with pH 4.19. The organic carbon and total nitrogen content were lower in the P. densiflora stand sites than in the deciduous broad-leaved stand sites. Available phosphorus was low in all of the stand sites. The exchangeable cation was generally higher in the mixed and low-elevation sites than in the P. densiflora and high-elevation sites, respectively. Conclusion These results indicate that mountain-cultivated ginseng in Korea is able to grow in very acidic, nutrient-depleted forest soils. PMID:25535480

  16. Naturalization of plant populations: the role of cultivation and population size and density.

    PubMed

    Minton, Mark S; Mack, Richard N

    2010-10-01

    Field experimentation is required to assess the effects of environmental stochasticity on small immigrant plant populations-a widely understood but largely unexplored aspect of predicting any species' likelihood of naturalization and potential invasion. Cultivation can mitigate this stochasticity, although the outcome for a population under cultivation nevertheless varies enormously from extinction to persistence. Using factorial experiments, we investigated the effects of population size, density, and cultivation (irrigation) on the fate of founder populations for four alien species with different life history characteristics (Echinochloa frumentacea, Fagopyrum esculentum, Helianthus annuus, and Trifolium incarnatum) in eastern Washington, USA. The fate of founder populations was highly variable within and among the 3 years of experimentation and illustrates the often precarious environment encountered by plant immigrants. Larger founder populations produced more seeds (P < 0.001); the role of founder population size, however, differed among years. Irrigation resulted in higher percent survival (P < 0.001) and correspondingly larger net reproductive rate (R(0); P < 0.001). But the minimum level of irrigation for establishment, R(0) > 1, differed among years and species. Sowing density did not affect the likelihood of establishment for any species. Our results underscore the importance of environmental stochasticity in determining the fate of founder populations and the potential of cultivation and large population size in countering the long odds against naturalization. Any implementation of often proposed post-immigration field trials to assess the risk of an alien species becoming naturalized, a requisite step toward invasion, will need to assess different sizes of founder populations and the extent and character of cultivation (intentional or unintentional) that the immigrants might receive.

  17. Origin, dispersal, cultivation and variation of rice.

    PubMed

    Khush, G S

    1997-09-01

    There are two cultivated and twenty-one wild species of genus Oryza. O. sativa, the Asian cultivated rice is grown all over the world. The African cultivated rice, O. glaberrima is grown on a small scale in West Africa. The genus Oryza probably originated about 130 million years ago in Gondwanaland and different species got distributed into different continents with the breakup of Gondwanaland. The cultivated species originated from a common ancestor with AA genome. Perennial and annual ancestors of O. sativa are O. rufipogon and O. nivara and those of O. glaberrima are O. longistaminata, O. breviligulata and O. glaberrima probably domesticated in Niger river delta. Varieties of O. sativa are classified into six groups on the basis of genetic affinity. Widely known indica rices correspond to group I and japonicas to group VI. The so called javanica rices also belong to group VI and are designated as tropical japonicas in contrast to temperate japonicas grown in temperate climate. Indica and japonica rices had a polyphyletic origin. Indicas were probably domesticated in the foothills of Himalayas in Eastern India and japonicas somewhere in South China. The indica rices dispersed throughout the tropics and subtropics from India. The japonica rices moved northward from South China and became the temperate ecotype. They also moved southward to Southeast Asia and from there to West Africa and Brazil and became tropical ecotype. Rice is now grown between 55 degrees N and 36 degrees S latitudes. It is grown under diverse growing conditions such as irrigated, rainfed lowland, rainfed upland and floodprone ecosystems. Human selection and adaptation to diverse environments has resulted in numerous cultivars. It is estimated that about 120,000 varieties of rice exist in the world. After the establishment of International Rice Research Institute in 1960, rice varietal improvement was intensified and high yielding varieties were developed. These varieties are now planted to 70

  18. The influence of continuous rice cultivation and different waterlogging periods on the morphology, clay mineralogy, Eh, pH and K in paddy soils

    NASA Astrophysics Data System (ADS)

    Bahmaniar, M. A.

    2008-01-01

    The effect of different rice plantation periods on the properties of selected soils on an alluvial plain was studied. Soils were sampled in fields cultivated for 6, 16, 26, and over forty years. In each rice cultivated and nonrice cultivated field, three soil profiles and six nearby auger holes were studied. This study indicated that continuous rice cultivation changed the soil moisture regime from xeric to aquic, the soil color from brown to grayish, and the surface horizons from mollic to ochric epipedon. With increasing duration of cultivation, the abundance of redoximorphic features increased and the soil structure changed from granular or blocky to massive. Therefore, the soil order changed from Mollisols to Inceptisols. No illuviation and eluviation of clay minerals occurred as a consequence of the rice cultivation. X-ray diffraction analysis showed that the clay minerals in the nonrice cultivated field were illite, vermiculite, montmorillonite, kaolinite, and chlorite, and, in the rice field, they were illite, montmorillonite, kaolinite, and chlorite, respectively. However, with increasing the period of cultivation, the amount of illite and vermiculite decreased while the amount of montmorillonite increased. The pH values of the saturated soil surface during the middle stage of rice growth shifted toward neutrality. The Eh of the surface horizons of the paddy soils under the field conditions were +40, -12, -84, and -122 mV, respectively, while the Eh in the nonpaddy soils were close to +90 mV. The amounts of organic matter and available Fe, Mn, Zn, and Cu increased, while the available K decreased in the paddy soils.

  19. An experimental investigation of the multiphase flows in a photobioreactor for algae cultivation

    NASA Astrophysics Data System (ADS)

    Yang, Zifeng; Hu, Hui; Del Ninno, Matteo; Wen, Zhiyou

    2011-11-01

    Algal biomass is a promising feedstock for biofuels production, with photobioreactors being one of the major cultivation systems for algal cells. Light absorption, fluid dynamics, and algal metabolism are three key factors in determining the overall performance of a photobioreactor. The behavior of the multiphase flow (i.e., liquid phase - water, gas phase - CO2 and O2, and solid phase - algal cells) and turbulent mixing inside the reactor are the core connecting the three factors together. One of the major challenges in the optimal design of photobioreactors for algae cultivation is the lack of in-depth understanding of the characteristics of the multiphase flows and turbulent mixing. In this study, we present a comprehensive experimental study to investigate the effects of turbulent mixing in photobioreactors on the performance of a photobioreactor for algae cultivation. A high-resolution particle image velocity (PIV) system is used to achieve time-resolved, in-situ flow field measurements to quantify the turbulent mixing of the multiphase flows inside the bioreactor, while algal cultures are also grown in the same reactor with the same experimental settings. The mixing characteristics of the multiphase flow are correlated with the algal growth performance in the bioreactors to elucidate the underlying physics to explore/optimize design paradigms for the optimization of photobioreactor designs for algae cultivation.

  20. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, S. E.; Shurpali, N. J.; Peltola, O.; Mammarella, I.; Hyvönen, N.; Maljanen, M.; Räty, M.; Virkajärvi, P.; Martikainen, P. J.

    2015-10-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinaceae L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured during three years using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the studied period, cumulative NEE was -575 g C m-2. When compared to the published data for RCG on an organic soil, the cultivation of this crop on a mineral soil had higher capacity to take up CO2 from the atmosphere.

  1. Comparison between cultivated and total bacterial communities associated with Cucurbita pepo using cultivation-dependent techniques and 454 pyrosequencing.

    PubMed

    Eevers, N; Beckers, B; Op de Beeck, M; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    Endophytic bacteria often have beneficial effects on their host plants that can be exploited for bioremediation applications but, according to the literature, only 0.001-1% of all endophytic microbes should be cultivable. This study compared the cultivated endophytic communities of the roots and shoots of Cucurbita pepo with the total endophytic communities as determined by cultivation-dependent techniques and 454 pyrosequencing. The ten most abundant taxa of the total communities aligned well with the cultivated taxa; however, the abundance of these taxa in the two communities differed greatly. Enterobacter showed very low presence in the total communities, whereas they were dominantly present in the cultivated communities. Although Rhizobium dominated in total root and shoot communities, it was poorly cultivable and even then only in growth media containing plant extract. Since endophytes likely contribute to plant-growth promotion, cultivated bacterial strains were tested for their plant-growth promoting capabilities, and the results were correlated with their abundance in the total community. Bacillus and Pseudomonas showed promising results when considering cultivability, abundance in the total community and plant-growth promoting capability. This study demonstrated that, although a limited number of bacterial genera were cultivable, current cultivation-dependent techniques may be sufficient for further isolation and inoculation experiments that aim to improve phytoremediation efficiency.

  2. The influence of continuous rice cultivation and different waterlogging periods on morphology, clay mineralogy, Eh, pH and K in paddy soils.

    PubMed

    Bahmanyar, M A

    2007-09-01

    The effect of different rice cultivation periods on the properties of selected soils in alluvial plain were studied in Mazandaran province (north of Iran) in 2004. Soils were sampled form 0, 6, 16, 26 and over 40 years rice cultivation fields. In each treatment three soil profiles and six nearby auger holes were studied. The present study results indicated that continuous rice cultivation have changed soil moisture regime from xeric to aquic, soil color from brown to grayish, surface horizons from mollic to ochric epipedon and soil structure changed from granular or blocky to massive. Therefore, the soil order has changed from Mollisols to Inceptisols. No illuviation and eluviation of clay minerals occurred as a consequence of rice cultivation. X-ray diffraction analysis showed that clay minerals in non-rice cultivated field were illite, vermiculite, montmorillonite, kaolinite and chlorite, but in rice field were illite, montmorillonite, kaolinite and chlorite, respectively. In contrast of montmorillonite, the amount of illite and vermiculite have been decreased by increasing periods of rice cultivation. The pH values of the saturated soil surface in six weeks past plantation have shifted toward neutrality. While Eh value of non-paddy soils were about +90 mv, surface horizons of paddy soils at field conditions had Eh value about +40, -12, -84, -122 mv, respectively. The amounts of organic matter and available Fe, Mn, Zn and Cu were increased whereas available K was decreased in paddy soils.

  3. Functional state modelling approach validation for yeast and bacteria cultivations

    PubMed Central

    Roeva, Olympia; Pencheva, Tania

    2014-01-01

    In this paper, the functional state modelling approach is validated for modelling of the cultivation of two different microorganisms: yeast (Saccharomyces cerevisiae) and bacteria (Escherichia coli). Based on the available experimental data for these fed-batch cultivation processes, three different functional states are distinguished, namely primary product synthesis state, mixed oxidative state and secondary product synthesis state. Parameter identification procedures for different local models are performed using genetic algorithms. The simulation results show high degree of adequacy of the models describing these functional states for both S. cerevisiae and E. coli cultivations. Thus, the local models are validated for the cultivation of both microorganisms. This fact is a strong structure model verification of the functional state modelling theory not only for a set of yeast cultivations, but also for bacteria cultivation. As such, the obtained results demonstrate the efficiency and efficacy of the functional state modelling approach. PMID:26740778

  4. Functional state modelling approach validation for yeast and bacteria cultivations.

    PubMed

    Roeva, Olympia; Pencheva, Tania

    2014-09-03

    In this paper, the functional state modelling approach is validated for modelling of the cultivation of two different microorganisms: yeast (Saccharomyces cerevisiae) and bacteria (Escherichia coli). Based on the available experimental data for these fed-batch cultivation processes, three different functional states are distinguished, namely primary product synthesis state, mixed oxidative state and secondary product synthesis state. Parameter identification procedures for different local models are performed using genetic algorithms. The simulation results show high degree of adequacy of the models describing these functional states for both S. cerevisiae and E. coli cultivations. Thus, the local models are validated for the cultivation of both microorganisms. This fact is a strong structure model verification of the functional state modelling theory not only for a set of yeast cultivations, but also for bacteria cultivation. As such, the obtained results demonstrate the efficiency and efficacy of the functional state modelling approach.

  5. Detection of airborne microbes in a composting facility by cultivation based and cultivation-independent methods.

    PubMed

    Albrecht, Andreas; Witzenberger, Reinhard; Bernzen, Ulrike; Jäckel, Udo

    2007-01-01

    Standard methods for quantification of airborne bacteria are based on cultivation and counting of grown colonies. From complex natural environments it is known that only a small fraction of the total number of cells can be cultivated on routinely used agar-media. Direct microscopic cell counting after DNA-staining usually generates higher concentrations of one to two magnitudes. The objective of the presented study was to compare the concentrations of airborne bacteria sampled in a composting facility by using for any sample the cultivation on trytic soy agar (TSA)--agar, as well as direct counting after DAPI-staining. The concentrations after counting grown colonies were within a range of 10(5)-10(7) cfu m(-3). Concentrations of direct counted cells ranged between 10(6)-10(9) microbes m(-3). In these comparative measurements only 1.5-15.3% of the airborne bacterial cells enumerated by direct counting formed countable colonies after incubation on TSA-agar. Obviously, cultivation based methods underestimate the real amount of airborne microbes. In addition, from literature it is known that inactive or even dead cells can also have the potential to cause health effects. Consequently, a risk assessment based only on measuring colony forming units may, in some cases, not be sufficient.

  6. Progress in cultivation-independent phyllosphere microbiology

    PubMed Central

    Müller, Thomas; Ruppel, Silke

    2014-01-01

    Most microorganisms of the phyllosphere are nonculturable in commonly used media and culture conditions, as are those in other natural environments. This review queries the reasons for their ‘noncultivability’ and assesses developments in phyllospere microbiology that have been achieved cultivation independently over the last 4 years. Analyses of total microbial communities have revealed a comprehensive microbial diversity. 16S rRNA gene amplicon sequencing and metagenomic sequencing were applied to investigate plant species, location and season as variables affecting the composition of these communities. In continuation to culture-based enzymatic and metabolic studies with individual isolates, metaproteogenomic approaches reveal a great potential to study the physiology of microbial communities in situ. Culture-independent microbiological technologies as well advances in plant genetics and biochemistry provide methodological preconditions for exploring the interactions between plants and their microbiome in the phyllosphere. Improving and combining cultivation and culture-independent techniques can contribute to a better understanding of the phyllosphere ecology. This is essential, for example, to avoid human–pathogenic bacteria in plant food. PMID:24003903

  7. Production of deuterated switchgrass by hydroponic cultivation

    SciTech Connect

    Evans, Barbara R.; Bali, Garima; Foston, Marcus B.; Ragauskas, Arthur J.; O'Neill, Hugh Michael; Shah, Riddhi S.; McGaughey, Joseph; Reeves, David T.; Rempe, Caroline S.; Davison, Brian H.

    2015-04-21

    Deuterium enrichment of biological materials can potential enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controls grown with H2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50% D2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by 1H- and 2H-NMR. Lastly, this capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.

  8. Production of deuterated switchgrass by hydroponic cultivation

    DOE PAGES

    Evans, Barbara R.; Bali, Garima; Foston, Marcus B.; ...

    2015-04-21

    Deuterium enrichment of biological materials can potential enable expanded experimental use of small angle neutron scattering (SANS) to investigate molecular structural transitions of complex systems such as plant cell walls. Two key advances have been made that facilitate cultivation of switchgrass, an important forage and biofuel crop, for controlled isotopic enrichment: (1) perfusion system with individual chambers and (2) hydroponic growth from tiller cuttings. Plants were grown and maintained for several months with periodic harvest. Photosynthetic activity was monitored by measurement of CO2 in outflow from the growth chambers. Plant morphology and composition appeared normal compared to matched controls grownmore » with H2O. Using this improved method, gram quantities of switchgrass leaves and stems were produced by continuous hydroponic cultivation using growth medium consisting of basal mineral salts in 50% D2O. Deuterium incorporation was confirmed by detection of the O-D and C-D stretching peaks with FTIR and quantified by 1H- and 2H-NMR. Lastly, this capability to produce deuterated lignocellulosic biomass under controlled conditions will enhance investigation of cell wall structure and its deconstruction by neutron scattering and NMR techniques.« less

  9. Progress in cultivation-independent phyllosphere microbiology.

    PubMed

    Müller, Thomas; Ruppel, Silke

    2014-01-01

    Most microorganisms of the phyllosphere are nonculturable in commonly used media and culture conditions, as are those in other natural environments. This review queries the reasons for their 'noncultivability' and assesses developments in phyllospere microbiology that have been achieved cultivation independently over the last 4 years. Analyses of total microbial communities have revealed a comprehensive microbial diversity. 16S rRNA gene amplicon sequencing and metagenomic sequencing were applied to investigate plant species, location and season as variables affecting the composition of these communities. In continuation to culture-based enzymatic and metabolic studies with individual isolates, metaproteogenomic approaches reveal a great potential to study the physiology of microbial communities in situ. Culture-independent microbiological technologies as well advances in plant genetics and biochemistry provide methodological preconditions for exploring the interactions between plants and their microbiome in the phyllosphere. Improving and combining cultivation and culture-independent techniques can contribute to a better understanding of the phyllosphere ecology. This is essential, for example, to avoid human-pathogenic bacteria in plant food.

  10. Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea

    PubMed Central

    Miller, Allison; Schaal, Barbara

    2005-01-01

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG–trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG–trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea. PMID:16126899

  11. Domestication of a Mesoamerican cultivated fruit tree, Spondias purpurea.

    PubMed

    Miller, Allison; Schaal, Barbara

    2005-09-06

    Contemporary patterns of genetic variation in crops reflect historical processes associated with domestication, such as the geographic origin(s) of cultivated populations. Although significant progress has been made in identifying several global centers of domestication, few studies have addressed the issue of multiple origins of cultivated plant populations from different geographic regions within a domestication center. This study investigates the domestication history of jocote (Spondias purpurea), a Mesoamerican cultivated fruit tree. Sequences of the chloroplast spacer trnG-trnS were obtained for cultivated and wild S. purpurea trees, two sympatric taxa (Spondias mombin var. mombin and Spondias radlkoferi), and two outgroups (S. mombin var. globosa and Spondias testudinus). A phylogeographic approach was used and statistically significant associations of clades and geographical location were tested with a nested clade analysis. The sequences confirm that wild populations of S. purpurea are the likely progenitors of cultivated jocote trees. This study provides phylogeographic evidence of multiple domestications of this Mesoamerican cultivated fruit tree. Haplotypes detected in S. purpurea trees form two clusters, each of which includes alleles recovered in both cultivated and wild populations from distinct geographic regions. Cultivated S. purpurea populations have fewer unique trnG-trnS alleles than wild populations; however, five haplotypes were absent in the wild. The presence of unique alleles in cultivation may reflect contemporary extinction of the tropical dry forests of Mesoamerica. These data indicate that some agricultural habitats may be functioning as reservoirs of genetic variation in S. purpurea.

  12. Combinations of corn glutel meal, clove oil, and sweep cultivation are ineffective for weed control in organic peanut production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed control in organic peanut is difficult and lack of residual weed control complicates weed management efforts. Weed management systems using corn gluten meal in combination with clove oil and sweep cultivation were evaluated in a series of irrigated field trials. Corn gluten meal applied in a ...

  13. Genetic Factors for Enhancement of Nicotine Levels in Cultivated Tobacco

    PubMed Central

    Wang, Bingwu; Lewis, Ramsey S.; Shi, Junli; Song, Zhongbang; Gao, Yulong; Li, Wenzheng; Chen, Hongxia; Qu, Rongda

    2015-01-01

    Nicotine has practical applications relating to smoking cessation devices and alternative nicotine products. Genetic manipulation for increasing nicotine content in cultivated tobacco (Nicotiana tabacum L.) may be of value for industrial purposes, including the possibility of enhancing the efficiency of nicotine extraction. Biotechnological approaches have been evaluated in connection with this objective, but field-based results are few. Here, we report characterization of two genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs), NtMYC2a and NtMYC2b from tobacco. Overexpression of NtMYC2a increased leaf nicotine levels in T1 transgenic lines approximately 2.3-fold in greenhouse-grown plants of tobacco cultivar ‘NC 95′. Subsequent field testing of T2 and T3 generations of transgenic NtMYC2a overexpression lines showed nicotine concentrations were 76% and 58% higher than control lines, respectively. These results demonstrated that the increased nicotine trait was stably inherited to the T2 and T3 generations, indicating the important role that NtMYC2a plays in regulating nicotine accumulation in N. tabacum and the great potential of NtMYC2a overexpression in tobacco plants for industrial nicotine production. Collected data in this study also indicated a negative feedback inhibition of nicotine biosynthesis. Further enhancement of nicotine accumulation in tobacco leaf may require modification of the processes of nicotine transport and deposition. PMID:26626731

  14. Greenhouse cultivation mitigates metal-ingestion-associated health risks from vegetables in wastewater-irrigated agroecosystems.

    PubMed

    Cao, Chun; Chen, Xing-Peng; Ma, Zhen-Bang; Jia, Hui-Hui; Wang, Jun-Jian

    2016-08-01

    Wastewater irrigation can elevate metal concentrations in soils and crops and increase the metal-associated health risks via vegetable ingestion in arid and semiarid northwestern China. Here, we investigated the As, Cd, Cr, Cu, Ni, Pb, and Zn concentrations in four vegetable species from Dongdagou and Xidagou farmlands in Baiyin, Gansu, China. We evaluated the effects of irrigation type (Dongdagou: industrial wastewater; Xidagou: domestic wastewater) and cultivation mode (open field and greenhouse) on the vegetable metal concentration, metal partitioning, soil-to-plant bioconcentration factor (BCF), and the health risk index. All stream waters, soils, and vegetables were found most severely polluted by As and Cd, with higher severity in the industrial-wastewater-irrigated Dongdagou than the domestic-wastewater-irrigated Xidagou. All vegetables had higher or, at least, comparable metal mass allocated in the shoot than in the root. Greenhouse cultivation could reduce metal-ingestion-associated health risks from edible vegetable biomass by decreasing the soil to plant bioaccumulation (BCF) and the metal concentration. This effect was always significant for all vegetables within Xidagou, and for carrot within Dongdagou. This mitigation effect of greenhouse cultivation could be attributed to the metal sorption by a higher level of soil organic matter and faster growth rate over metal uptake rate in greenhouses compared to open fields. Such mitigation effect was, however, insignificant for leafy vegetables within Dongdagou, when much more severely polluted water for irrigation was applied in greenhouses compared to open fields within Dongdagou. The present study highlights greenhouse cultivation as a potential mitigating approach to providing less-polluted vegetables for residents in the severely polluted area in addition to the source pollution control.

  15. [Ecological environment of cultivated Astragali radix and market specification of prepared slices].

    PubMed

    Yu, Kunzi; Liu, Jing; Hong, Hao; Guo, Baolin; Cai, Shaoqing; Chen, Hubiao

    2010-05-01

    Astragali Radix is derived from roots of Astragalus membranaceus var. mongholicus and A. membranaceus. The exhaustion of wild Astragali Radix has made cultivated Astragali Radix possess the commercial market of Astragali Radix. So the ecological environment of cultivated Astragali Radix should be investigated through field survey. Through investigation, we found that A. membranaceus var. mongholicus are cultivated in Hengshan mountain of Shanxi province, Longnan of Gansu province, south of Inner Mongolia and Qinghai provinces. A. membranaceus var. mongholicus is almost planted on the plain, except in Shanxi province it grows on the sunny side of the mountain. What is more, soil type, elevation, annual temperature and annual rainfall of these locations are different. So the ecological environments of cultivated location of Astragali Radix are different from each other. A. membranaceus is wild in Heilongjiang and northeast of Inner Mongolia, but the resource is drying up. It is also planted in few places of the provinces of Shanxi, Shandong, Hebei, Gansu, but cultivated scope of A. membranaceus is smaller than A. membranaceus var. mongholicus.. So A. membranaceus var. mongholicus possesses large part of Astragali Radix market. In market, there exists no unified specification fro slices of Astragali Radix, and specification of prepared slices will influence the contents of chemical components. Through investigation, different kind of prepared slices can be collected and compared, this provides evidences for quality control of prepared slices. Through investigation, five different specifications of prepared slices were found in market. The distributions of some specification of prepared slices are specified, like transverseprepared slices prepared from A. membranaceus only found in Heilongjiang province. Transverse prepared slices possess half part of prepared slice market, and can be used to identify original plant of Astragali Radix. So transverse prepared slices

  16. Microalgae: cultivation techniques and wastewater phycoremediation.

    PubMed

    Pacheco, Marcondes M; Hoeltz, Michele; Moraes, Maria S A; Schneider, Rosana C S

    2015-01-01

    Generation of liquid and gaseous effluents is associated with almost all anthropogenic activities. The discharge of these effluents into the environment without treatment has reduced the availability and quality of natural resources, representing a serious threat to the balance of different ecosystems and human health. Universal access to water and global warming are topics of intense concern and are listed as priorities in the vast majority of global scientific, social and political guidelines. Conventional techniques to treat liquid and gaseous effluents pose economic and/or environmental limitations that prevent their use in certain applications. The technique of phycoremediation, which uses microalgae, macroalgae, and cyanobacteria for the removal or biotransformation of pollutants, is an emerging technology that has been highlighted due to its economic viability and environmental sustainability. This literature review discusses different techniques of microalgae cultivation and their use in the phycoremediation of contaminants in wastewater.

  17. A Space Flight Cultivation Protocol for Arabidopsis

    NASA Astrophysics Data System (ADS)

    Levine, H. G.

    2008-06-01

    A tube-based method is presented for the cultivation and manipulation of Arabidopsis thaliana during space flight experimentation. Seeds were germinated on rock-wool plugs and subsequently transferred into modified polypropylene conical tubes (cut to 5 cm lengths) at 7 days after planting. Each tube contained four side-situated slits through which capillary mat strips were woven. An additional capillary mat wick extended from below the tube up through the bottom to the mid-interior portion. The incorporation of Fibrous Ion Exchange Resin Substrate provided nutrients. The tubes were transferred to plant compartments containing a horticulture foam matrix that received water inputs. Vigorous seedling development through to seed production was achieved. Dispersed seeds frequently germinated on top of the foam substrate, yielding a 2nd generation of seedlings. The methods used herein could be applied to other plant species to be flown in space.

  18. High-power LEDs for plant cultivation

    NASA Astrophysics Data System (ADS)

    Tamulaitis, Gintautas; Duchovskis, Pavelas; Bliznikas, Zenius; Breive, Kestutis; Ulinskaite, Raimonda; Brazaityte, Ausra; Novickovas, Algirdas; Zukauskas, Arturas; Shur, Michael S.

    2004-10-01

    We report on high-power solid-state lighting facility for cultivation of greenhouse vegetables and on the results of the study of control of photosynthetic activity and growth morphology of radish and lettuce imposed by variation of the spectral composition of illumination. Experimental lighting modules (useful area of 0.22 m2) were designed based on 4 types of high-power light-emitting diodes (LEDs) with emission peaked in red at the wavelengths of 660 nm and 640 nm (predominantly absorbed by chlorophyll a and b for photosynthesis, respectively), in blue at 455 nm (phototropic function), and in far-red at 735 nm (important for photomorphology). Morphological characteristics, chlorophyll and phytohormone concentrations in radish and lettuce grown in phytotron chambers under lighting with different spectral composition of the LED-based illuminator and under illumination by high pressure sodium lamps with an equivalent photosynthetic photon flux density were compared. A well-balanced solid-state lighting was found to enhance production of green mass and to ensure healthy morphogenesis of plants compared to those grown using conventional lighting. We observed that the plant morphology and concentrations of morphologically active phytohormones is strongly affected by the spectral composition of light in the red region. Commercial application of the LED-based illumination for large-scale plant cultivation is discussed. This technology is favorable from the point of view of energy consumption, controllable growth, and food safety but is hindered by high cost of the LEDs. Large scale manufacturing of high-power red AlInGaP-based LEDs emitting at 650 nm and a further decrease of the photon price for the LEDs emitting in the vicinity of the absorption peak of chlorophylls have to be achieved to promote horticulture applications.

  19. Words as cultivators of others minds

    PubMed Central

    Schilhab, Theresa S. S.

    2015-01-01

    The embodied–grounded view of cognition and language holds that sensorimotor experiences in the form of ‘re-enactments’ or ‘simulations’ are significant to the individual’s development of concepts and competent language use. However, a typical objection to the explanatory force of this view is that, in everyday life, we engage in linguistic exchanges about much more than might be directly accessible to our senses. For instance, when knowledge-sharing occurs as part of deep conversations between a teacher and student, language is the salient tool by which to obtain understanding, through the unfolding of explanations. Here, the acquisition of knowledge is realized through language, and the constitution of knowledge seems entirely linguistic. In this paper, based on a review of selected studies within contemporary embodied cognitive science, I propose that such linguistic exchanges, though occurring independently of direct experience, are in fact disguised forms of embodied cognition, leading to the reconciliation of the opposing views. I suggest that, in conversation, interlocutors use Words as Cultivators (WAC) of other minds as a direct result of their embodied–grounded origin, rendering WAC a radical interpretation of the Words as social Tools (WAT) proposal. The WAC hypothesis endorses the view of language as dynamic, continuously integrating with, and negotiating, cognitive processes in the individual. One such dynamic feature results from the ‘linguification process’, a term by which I refer to the socially produced mapping of a word to its referent which, mediated by the interlocutor, turns words into cultivators of others minds. In support of the linguification process hypothesis and WAC, I review relevant embodied–grounded research, and selected studies of instructed fear conditioning and guided imagery. PMID:26594187

  20. Convergent Adaptations: Bitter Manioc Cultivation Systems in Fertile Anthropogenic Dark Earths and Floodplain Soils in Central Amazonia

    PubMed Central

    Fraser, James Angus; Alves-Pereira, Alessandro; Junqueira, André Braga; Peroni, Nivaldo; Clement, Charles Roland

    2012-01-01

    Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for

  1. Convergent adaptations: bitter manioc cultivation systems in fertile anthropogenic dark earths and floodplain soils in Central Amazonia.

    PubMed

    Fraser, James Angus; Alves-Pereira, Alessandro; Junqueira, André Braga; Peroni, Nivaldo; Clement, Charles Roland

    2012-01-01

    Shifting cultivation in the humid tropics is incredibly diverse, yet research tends to focus on one type: long-fallow shifting cultivation. While it is a typical adaptation to the highly-weathered nutrient-poor soils of the Amazonian terra firme, fertile environments in the region offer opportunities for agricultural intensification. We hypothesized that Amazonian people have developed divergent bitter manioc cultivation systems as adaptations to the properties of different soils. We compared bitter manioc cultivation in two nutrient-rich and two nutrient-poor soils, along the middle Madeira River in Central Amazonia. We interviewed 249 farmers in 6 localities, sampled their manioc fields, and carried out genetic analysis of bitter manioc landraces. While cultivation in the two richer soils at different localities was characterized by fast-maturing, low-starch manioc landraces, with shorter cropping periods and shorter fallows, the predominant manioc landraces in these soils were generally not genetically similar. Rather, predominant landraces in each of these two fertile soils have emerged from separate selective trajectories which produced landraces that converged for fast-maturing low-starch traits adapted to intensified swidden systems in fertile soils. This contrasts with the more extensive cultivation systems found in the two poorer soils at different localities, characterized by the prevalence of slow-maturing high-starch landraces, longer cropping periods and longer fallows, typical of previous studies. Farmers plant different assemblages of bitter manioc landraces in different soils and the most popular landraces were shown to exhibit significantly different yields when planted in different soils. Farmers have selected different sets of landraces with different perceived agronomic characteristics, along with different fallow lengths, as adaptations to the specific properties of each agroecological micro-environment. These findings open up new avenues for

  2. Taxonomy of Cultivated Potatoes (Solanum section Petota: Solanaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solanum tuberosum, the cultivated potato of world commerce, is a primary food crop worldwide. Wild and cultivated potatoes form the germplasm base for international breeding efforts to improve potato in the face of variety of disease, environmental, and agronomic constraints. A series of national an...

  3. Taxonomy of cultivated potatoes (solanum section petota: solanaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solanum tuberosum, the cultivated potato of world commerce, is a primary food crop worldwide. Wild and cultivated potatoes form the germplasm base for international breeding efforts to improve potato in the face of variety of disease, environmental, and agronomic constraints. A series of national an...

  4. On the Cultivation of Innovative Talents in Colleges and Universities

    ERIC Educational Resources Information Center

    Yu, Changli; Jia, Hongchun

    2009-01-01

    It is the sure pursuit for the Colleges and Universities to cultivate the innovative talents for the society. The cultivation of innovative talents in Colleges and Universities plays a crucial role not only in economic and social development, but also in schools' and personal development. The internal quality of innovative talents includes the…

  5. Outsiders on the Inside: Cultivating Productive Relationships with Vendors.

    ERIC Educational Resources Information Center

    Murphy, Sheila E.

    1989-01-01

    Discusses how administrators with responsibility for managing projects involving vendors outside the organization can cultivate a productive working relationship. Highlights include how to select and work with outside vendors; cultivating vendor skills; the role of the corporate client; the former employee as vendor; and a profile of a successful…

  6. 36 CFR 34.7 - Cultivation of controlled substances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Cultivation of controlled substances. 34.7 Section 34.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.7 Cultivation of controlled substances. In...

  7. 36 CFR 34.7 - Cultivation of controlled substances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Cultivation of controlled substances. 34.7 Section 34.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.7 Cultivation of controlled substances. In...

  8. 36 CFR 34.7 - Cultivation of controlled substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Cultivation of controlled substances. 34.7 Section 34.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.7 Cultivation of controlled substances. In...

  9. Ecogeography of ploidy variation in cultivated potato (Solanum sect. Petota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The taxonomy of cultivated potatoes has been highly controversial, with estimates of species numbers ranging from 3 to 17. Ploidy level has been one of the most important taxonomic characters to recognize cultivated potato species, containing diploid (2 n = 2 x = 24), triploid (2 n = 3 x = 36), tetr...

  10. Ecogeography of Ploidy Variation in Cultivated Potato (Solanum Sect. Petota)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The taxonomy of cultivated potatoes has been highly controversial, with estimates of species numbers ranging from 3-18. Ploidy level has been one of the most important taxonomic characters to recognize cultivated potato species, with diploid (2n = 2x = 24), triploid (2n = 3x = 36), tetraploid (2n = ...

  11. 36 CFR 34.7 - Cultivation of controlled substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Cultivation of controlled substances. 34.7 Section 34.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.7 Cultivation of controlled substances. In...

  12. Examining Cultivation from a Psychological Perspective: Component Subprocesses.

    ERIC Educational Resources Information Center

    Potter, W. James

    1991-01-01

    Attempts to elaborate the cultivation hypothesis by examining some proposed subprocesses, especially learning and construction with first- and second-order measures. Examines the relationship between first- and second-order measures. Argues that cultivation theory needs to be extended. (SR)

  13. 36 CFR 34.7 - Cultivation of controlled substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Cultivation of controlled substances. 34.7 Section 34.7 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR EL PORTAL ADMINISTRATIVE SITE REGULATIONS § 34.7 Cultivation of controlled substances. In...

  14. Becoming Accomplished: Concerted Cultivation among Privately Educated Young Women

    ERIC Educational Resources Information Center

    Maxwell, Claire; Aggleton, Peter

    2013-01-01

    This paper takes as its starting point the concept of concerted cultivation as coined by Annette Lareau. It examines whether a focus on concerted cultivation adequately captures the various practices observed in young women's experiences of being privately educated in four schools in one area of England. We suggest that a variety of practices of…

  15. Moral Self-Cultivation East and West: A Critique

    ERIC Educational Resources Information Center

    Slote, Michael

    2016-01-01

    Moral Self-Cultivation plays an important, even a central role, in the Confucian philosophical tradition, but philosophers in the West, most notably Aristotle and Kant, also hold that moral self-cultivation or self-shaping is possible and morally imperative. This paper argues that these traditions are psychologically unrealistic in what they say…

  16. THEORETICAL BASIS FOR THE PRINCIPLE OF SINGLE CELLED ALGAE CULTIVATION,

    DTIC Science & Technology

    The aim of this study is to provide the basis for a mathematical approach to the principle of cultivating chlorella , which will make possible a...biological and design. The mathe matical basis for the amount of chlorella biomass as a function of the duration of its cultivation is presented.

  17. Cultivating Discontinuity: Pentecostal Pedagogies of Yielding and Control

    ERIC Educational Resources Information Center

    Brahinsky, Josh

    2013-01-01

    Exploring missionary study at an Assemblies of God Bible college through ethnography and training manuals demonstrates systematic pedagogies that cultivate sensory capabilities encouraging yielding, opening to rupture, and constraint. Ritual theory and the Anthropology of Christianity shift analytic scales to include "cultivation," a…

  18. Transferring Sclerotinia Resistance Genes from Wild Helianthus into Cultivated Sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To enhance resistance to Sclerotinia head and stalk rot in cultivated sunflower, mining and introgression of Sclerotinia resistance genes from diverse wild Helianthus accessions into cultivated sunflower has been conducted using backcrossing method since 2004. During the last four years, numerous in...

  19. Systematics, diversity, genetics, and evolution of wild and cultivated potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated potato, Solanum tuberosum L., is the third most important food crop and is grown and consumed worldwide. Indigenous primitive cultivated (landrace) potatoes, and wild potatoes, all classified as Solanum section Petota, are widely used for potato improvement. Members of section Petota are ...

  20. Perpendicular cultivation for improved weed control in organic peanut production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive cultivation in organic peanut is partially effective, but in-row weed control remains problematic. In an attempt to improve in-row weed control, trials were conducted to determine the feasibility of early-season cultivation perpendicular to row direction using a tine weeder when integrate...

  1. Long-term in vitro cultivation of Borrelia miyamotoi.

    PubMed

    Margos, Gabriele; Stockmeier, Sylvia; Hizo-Teufel, Cecilia; Hepner, Sabrina; Fish, Durland; Dautel, Hans; Sing, Andreas; Dzaferovic, Eldina; Rieger, Melissa; Jungnick, Sabrina; Binder, Katrin; Straubinger, Reinhard K; Fingerle, Volker

    2015-03-01

    Borrelia are fastidious bacteria some of which are difficult to grow in vitro. Here, we report a method for successful continuous in vitro cultivation of the emerging pathogen Borrelia miyamotoi. The type and quantity of serum as well as the atmosphere were critical for successful in vitro cultivation. Optimal growth was achieved using 50% pooled human serum and an atmosphere of 6% CO2.

  2. Importance of the substrate nature to preserve microorganisms' cultivability in electrostatic air samplers

    NASA Astrophysics Data System (ADS)

    Roux, Jean-Maxime; Rongier, Anaëlle; Jary, Dorothée

    2015-10-01

    Recent research shows that electrostatic precipitation is a gentle method to collect airborne microorganisms and preserve their cultivability. However, the corona discharge used to charge the particles and the high electric field used to capture them are known to have a germicidal effect. The present paper investigates this paradoxical situation. Vegetative cells of E. coli and B. subtilis and spores of A. fumigatus and B. subtilis were deposited on different media and subjected to electrostatic fields of different strengths and polarities for controlled time periods. Vegetative cells are inactivated on cultivation agar plates, but remain cultivable when exposed on a stainless steel electrode and transferred afterwards onto agar plates. For the investigated conditions, spores were not affected by the corona discharge. Further experiments with a pH indicator show that chemical reactions occur when an aqueous media is exposed to the discharge. Some of these reactions are likely to create hydrogen peroxide which is known to kill a broad range of microorganisms. It is therefore highlighted that collecting electrodes in electrostatic air samplers should rather be dry conductive media.

  3. Annual nitric and nitrous oxide fluxes from Chinese subtropical plastic greenhouse and conventional vegetable cultivations.

    PubMed

    Yao, Zhisheng; Liu, Chunyan; Dong, Haibo; Wang, Rui; Zheng, Xunhua

    2015-01-01

    As intensive vegetable cultivation is rapidly expanding in China and elsewhere worldwide, its environmental consequences on nitrous oxide (N(2)O) and nitric oxide (NO) emissions deserve attention. We measured N(2)O and NO fluxes simultaneously for a full year from Chinese subtropical vegetable fields. Clearly, both N(2)O and NO emissions varied greatly in different vegetable crop seasons within a year, highlighting the importance of whole-year measurement for achieving temporally accurate annual direct emission factors. A revised "hole-in-the-pipe" model well described quantitative relationships between N(2)O plus NO fluxes and soil-specific conditions. Annual background N(2)O and NO emissions were 0.73-5.0 and 0.26-0.56 kg N ha(-1) yr(-1), respectively, for the vegetable cultivations. The farmers' fertilization practice increased N(2)O and NO emissions. Annual direct emission factors for greenhouse and conventional vegetable fields, respectively, were 1.1% and 1.9% for N(2)O, and 0.36% and 0.32% for NO, indicating there is a need to consider a differentiation of emission factors for managed vegetable cultivations.

  4. Cultivating healthy places and communities: evidenced-based nature contact recommendations.

    PubMed

    Largo-Wight, Erin

    2011-02-01

    Cultivating healthful places is an important public health focus. This paper presents evidence-based recommendations related to nature contact. A multidisciplinary review was conducted in several fields of study and findings were organized into public health recommendations: (1) cultivate grounds for viewing, (2) maintain healing gardens, (3) incorporate wooded parks and green space in communities, (4) advocate for preservation of pristine wilderness, (5) welcome animals indoors, (6) provide a plethora of indoor potted plants within view, (7) light rooms with bright natural light, (8) provide a clear view of nature outside, (9) allow outside air and sounds in, (10) display nature photography and realistic nature art, (11) watch nature on TV or videos, and (12) listen to recorded sounds of nature. The findings should inform public health promoters in the design of healthy places and communities. Future research needs are highlighted.

  5. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity

    PubMed Central

    Dheeba, B.; Sampathkumar, P.; Kannan, K.

    2015-01-01

    Zea mays (maize) and Vigna radiata (green gram) are found to be the chromium (Cr) tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and different fertilizer amendments and the yield of both plants were affected by Cr. We conclude that metal accumulation of seeds of green gram was higher than corn and the application of single fertilizer either farm yard manure (FYM) or nitrogen, phosphorous, and potassium (NPK) enhances the growth and yield of both the tolerant and sensitive plants in the mixed crop cultivations. PMID:25709647

  6. Cultivating the scientific research ability of undergraduate students in teaching of genetics.

    PubMed

    Wanjin, Xing; Morigen, Morigen

    2016-11-20

    The classroom is the main venue for undergraduate teaching. It is worth pondering how to cultivate undergraduate's research ability in classroom teaching. Here we introduce the practices and experiences in teaching reform in genetics for training the research quality of undergraduate students from six aspects: (1) constructing the framework for curriculum framework systematicaly, (2) using the teaching content to reflect research progress, (3) explaining knowledge points with research activities, (4) explaining the scientific principles and experiments with PPT animation, (5) improving English reading ability through bilingual teaching, and (6) testing students' analysing ability through examination. These reforms stimulate undergraduate students' enthusiasm for learning, cultivate their ability to find, analyze and solve scientific problems, and improve their English reading and literature reviewing capacity, which lay a foundation for them to enter the field of scientific research.

  7. Nitrous oxide emissions from wetland rice-duck cultivation systems in Southern China.

    PubMed

    Li, Chengfang; Cao, Cougui; Wang, Jingping; Zhan, Ming; Yuan, Weiling; Ahmad, Shahrear

    2009-01-01

    Nitrous oxide (N2O) emissions from a rice-duck cultivation system in the subtropical region of China and its regulating factors were investigated by using a static chambers technique during rice growth seasons in 2006 and 2007. The experimental field was equally divided into six plots for two different treatments: One was a conventional rice field (CK) and the other was a rice-duck ecosystem (RD). With the same amount of urea applied as basal fertilization, N2O emission fluxes from RD and CK followed a similar seasonal variation trend. During the flooding seasons, the N2O emission flux was not correlated with temperature, but it was significantly related to soil inorganic nitrogen (SIN) (p < 0.01) and soil pH (p < 0.01). After drainage, the N2O emission flux was not correlated with temperature, SIN, and soil pH. Our experimental data showed that peaks of N2O emission flux occurred both in 2 weeks after urea application and after drainage. Compared to CK, RD could significantly increase N2O emission. We evaluated the integrated global warming potentials (GWPs) of a rice-duck cultivation system based on methane (CH4) and N2O emission, which showed that RD could suppress the total amount of CH4 and N2O emissions from rice paddies. Moreover, because the decrease of CH4 emissions from RD compared to CK was far more than the increase of N2O emissions from RD compared to CK, RD greatly reduced integrated GWPs (CH4 + N2O) compared to CK. So, the rice-duck cultivation system is an effective strategy for reducing integrated GWPs of the rice-duck cultivation systems based on CH4 and N2O in southern China and will contribute to alleviating global warming.

  8. Effect of rice cultivation on malaria transmission in central Kenya.

    PubMed

    Muturi, Ephantus J; Muriu, Simon; Shililu, Josephat; Mwangangi, Joseph; Jacob, Benjamin G; Mbogo, Charles; Githure, John; Novak, Robert J

    2008-02-01

    A 12-month field study was conducted between April 2004 and March 2005 to determine the association between irrigated rice cultivation and malaria transmission in Mwea, Kenya. Adult mosquitoes were collected indoors twice per month in three villages representing non-irrigated, planned, and unplanned rice agro-ecosystems and screened for blood meal sources and Plasmodium falciparum circumsporozoite proteins. Anopheles arabiensis Patton and An. funestus Giles comprised 98.0% and 1.9%, respectively, of the 39,609 female anophelines collected. Other species including An. pharoensis Theobald, An. maculipalpis Giles, An. pretoriensis Theobald, An. coustani Laveran, and An. rufipes Gough comprised the remaining 0.1%. The density of An. arabiensis was highest in the planned rice village and lowest in the non-irrigated village and that of An. funestus was significantly higher in the non-irrigated village than in irrigated ones. The human blood index (HBI) for An. arabiensis was significantly higher in the non-irrigated village compared with irrigated villages. For An. funestus, the HBI for each village differed significantly from the others, being highest in the non-irrigated village and lowest in the planned rice village. The sporozoite rate and annual entomologic inoculation rate (EIR) for An. arabiensis was 1.1% and 3.0 infective bites per person, respectively with no significant difference among villages. Sporozoite positive An. funestus were detected only in planned rice and non-irrigated villages. Overall, 3.0% of An. funestus samples tested positive for Plasmodium falciparum sporozoites. The annual EIR of 2.21 for this species in the non-irrigated village was significantly higher than 0.08 for the planned rice village. We conclude that at least in Mwea Kenya, irrigated rice cultivation may reduce the risk of malaria transmission by An. funestus but has no effect on malaria transmission by An. arabiensis. The zoophilic tendency of malaria vectors in irrigated areas

  9. Heterotrophic cultivation of microalgae for production of biodiesel.

    PubMed

    Mohamed, Mohd Shamzi; Wei, Lai Zee; Ariff, Arbakariya B

    2011-08-01

    High cell density cultivation of microalgae via heterotrophic growth mechanism could effectively address the issues of low productivity and operational constraints presently affecting the solar driven biodiesel production. This paper reviews the progress made so far in the development of commercial-scale heterotrophic microalgae cultivation processes. The review also discusses on patentable concepts and innovations disclosed in the past four years with regards to new approaches to microalgal cultivation technique, improvisation on the process flow designs to economically produced biodiesel and genetic manipulation to confer desirable traits leading to much valued high lipid-bearing microalgae strains.

  10. [Theory and practice of bionic cultivation of traditional Chinese medicine].

    PubMed

    Liu, Dahui; Huang, Luqi; Guo, Lanping; Shao, Aijuan; Chen, Meilan

    2009-03-01

    The bionic cultivation of medicinal plant is an ecological cultivation pattern, which is adopting ecological engineering and modern agricultural techniques to simulate the natural ecosystem of wild medicinal plant community, and has been given greater attention on the agriculture of traditional Chinese medicine (TCM). It is also the cross subject that combines Chinese traditional medicine, agronomy, horticulture, ecology, agricultural engineering and management. Moreover, it has significant technology advantages of promoting the sustainable utilization of medicinal plant resources, improving the ecological environment and harmonizing man and nature. So it's important to develop the bionic cultivation of TCM.

  11. Withanolides from leaves of cultivated Acnistus arborescens.

    PubMed

    Batista, Pedro Henrique J; de Lima, Karísia Sousa B; Pinto, Francisco das Chagas L; Tavares, Juliane L; de A Uchoa, Daniel E; Costa-Lotufo, Letícia V; Rocha, Danilo D; Silveira, Edilberto R; Bezerra, Antonio Marcos E; Canuto, Kirley M; Pessoa, Otília Deusdenia L

    2016-10-01

    Seven withanolides, including four previously unknown, were isolated from the acetone and ethanol extracts of cultivated specimens of Acnistus arborescens. These four compounds were identified as rel-(18R,22R)-5β,6β:18β,20-diepoxy-3β,18α-dimethoxy-4β-hydroxy-1-oxowith-24-enolide, rel-(20R,22R)-5β,6β-epoxy-4β,16α,20-trihydroxy-1-oxowitha-2,24dienolide, rel-(20R,22R)-16α-acetoxy-6α-chloro-4β,5β,20-trihydroxy-1-oxowitha-2,24-dienolide and rel-(20R,22R)-16α-acetoxy-20-hydroxy-1-oxowitha-2,5,24-trienolide. Their structures were elucidated by interpretation of spectroscopic data (1D and 2D NMR), HRESIMS experiments and comparison with published data for similar compounds. Cytotoxicity of the isolated compounds was evaluated against a panel of four tumor cell lines (HL-60, HCT-116, SF-268 and PANC-1). Withanolide D was the most active, with an IC50 value in the range of 0.3-1.7 μM, rel-(18R,22R)-5β,6β:18β,20-diepoxy-3β,18α-dimethoxy-4β-hydroxy-1-oxowith-24-enolide and rel-(20R,22R)-5β,6β-epoxy-4β,16α,20-trihydroxy-1-oxowitha-2,24dienolide were moderately active, while all the others were non-cytotoxic.

  12. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  13. Cultivating gratitude and giving through experiential consumption.

    PubMed

    Walker, Jesse; Kumar, Amit; Gilovich, Thomas

    2016-12-01

    Gratitude promotes well-being and prompts prosocial behavior. Here, we examine a novel way to cultivate this beneficial emotion. We demonstrate that 2 different types of consumption-material consumption (buying for the sake of having) and experiential consumption (buying for the sake of doing)-differentially foster gratitude and giving. In 6 studies we show that reflecting on experiential purchases (e.g., travel, meals out, tickets to events) inspires more gratitude than reflecting on material purchases (e.g., clothing, jewelry, furniture), and that thinking about experiences leads to more subsequent altruistic behavior than thinking about possessions. In Studies 1-2b, we use within-subject and between-subjects designs to test our main hypothesis: that people are more grateful for what they've done than what they have. Study 3 finds evidence for this effect in the real-world setting of online customer reviews: Consumers are more likely to spontaneously mention feeling grateful for experiences they have bought than for material goods they have bought. In our final 2 studies, we show that experiential consumption also makes people more likely to be generous to others. Participants who contemplated a significant experiential purchase behaved more generously toward anonymous others in an economic game than those who contemplated a significant material purchase. It thus appears that shifting spending toward experiential consumption can improve people's everyday lives as well as the lives of those around them. (PsycINFO Database Record

  14. Microfluidic devices for cell cultivation and proliferation

    PubMed Central

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell culture in microperfusion systems to deliver continuous nutrient supplies for long term cell culture. It offers many opportunities to mimic the cell-cell and cell-extracellular matrix interactions of tissues by creating gradient concentrations of biochemical signals such as growth factors, chemokines, and hormones. Other applications of cell cultivation in microfluidic systems include high resolution cell patterning on a modified substrate with adhesive patterns and the reconstruction of complicated tissue architectures. In this review, recent advances in microfluidic platforms for cell culturing and proliferation, for both simple monolayer (2D) cell seeding processes and 3D configurations as accurate models of in vivo conditions, are examined. PMID:24273628

  15. Effects of storage and transport on the cultivability of mycobacteria

    PubMed Central

    Šula, Ladislav; Sundaresan, T. K.; Langerová, M.

    1960-01-01

    In the course of WHO/UNICEF-assisted tuberculosis surveys carried out in a number of African territories, sputa were microscopically examined for the presence of acid-fast bacilli. Since adequate facilities for performing cultures to confirm the diagnosis of tuberculosis and other mycobacterial infections were not available in these territories, it was necessary to despatch sputum specimens to certain European laboratories for culturing and typing of mycobacteria. However, it was noticed that the number of positive cultures from such sputa was very low, being limited largely to specimens in which acid-fast bacilli were easily demonstrable by microscopy. Specimens containing scanty acid-fast bacilli, or microscopically negative specimens, usually failed to exhibit growth on culture, contrary to the usual observations made with European sputum specimens cultured in European laboratories. As the sputa were mostly taken from new cases with lung pathology, previous treatment could not have been responsible for these poor culture results, and it was thought that the conditions in which the specimens were transported, and possibly also the chemical composition of the containers in which they were stored, might be the cause. In an experiment carried out by the WHO Tuberculosis Research Office, in collaboration with a WHO field team in Africa and the Tuberculosis Research Institute in Prague, pure cultures of the H37 Rv strain and sputa were sent from Prague to East Africa and book in conditions simulating those in which specimens collected by African field teams are routinely sent to European laboratories. The results show that the cultivability of tubercle bacilli is adversely affected by storage and transport. PMID:20604080

  16. Genetic consequences of pre-Columbian cultivation for Agave murpheyi and A. delamateri (Agavaceae).

    PubMed

    Parker, Kathleen C; Hamrick, J L; Hodgson, Wendy C; Trapnell, Dorset W; Parker, Albert J; Kuzoff, Robert K

    2007-09-01

    Pre-Columbian farmers cultivated several species of agave in central Arizona from ca. A.D. 600-1350. Because of the longevity and primarily asexual reproduction of these species, relict agave clones remain in the landscape and provide insights into pre-Columbian agricultural practices. We analyzed variation in allozyme allele frequencies to infer genetic effects of prehistoric cultivation on Agave murpheyi and A. delamateri, specifically to estimate genetic diversity and structure, to determine whether cultivated populations descended from a single clone, and to examine regional-scale genetic variation. Agave murpheyi maintained more genetic diversity at the species and population levels than A. delamateri, and A. murpheyi populations typically included more multilocus genotypes. Relict plants from prehistoric fields reflect a more complex history than descent from a single clone; A. murpheyi populations may have included more diversity initially because bulbils (produced routinely in A. murpheyi but not A. delamateri) and possibly seed would have facilitated transport of genetically diverse planting stock. Genetic variation in both cultigens was lower than in most contemporary commercial crops but similar to that observed in modern traditional agricultural systems.

  17. Mechanism and capacities of reducing ecological cost through rice–duck cultivation

    PubMed Central

    Long, Pan; Huang, Huang; Liao, Xiaolan; Fu, Zhiqiang; Zheng, Huabin; Chen, Aiwu; Chen, Can

    2013-01-01

    BACKGROUND: Rice–duck cultivation is the essence of Chinese traditional agriculture. A scientific assessment of the mechanism and its capacity is of theoretical significance and practical value in improving modern agricultural technology. RESULTS: The duck’s secretions, excreta and their treading, pecking and predation decrease the occurrence of plant diseases, pests and weeds, enrich species diversity and improve the field environment. The rice–duck intergrowth system effectively prevents rice planthoppers and rice leafhoppers. The control effects can be up to 98.47% and 100% respectively; it also has effects on the control of Chilo suppressalis, Tryporyza incertulas and the rice leafrollers. Notable control results are found on sheath blight, while the effects on other diseases are about 50%. Harm from weeds is placed under primary control; prevention of weeds is sequenced by broadleaf weeds > sedge weeds > Gramineae weeds. Contents of soil organic matter, N, P and K are improved by the system; nutrient utilization is accelerated, resulting in decreased fertilizer application. Greenhouse gas emissions are reduced by 1–2% and duck fodder is saved in this system. There is also an obvious economic benefit. CONCLUSION: Compared to conventional rice cultivation, rice–duck cultivation shows great benefits to ecologic cost and economic income. © 2013 The Authors. Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:23703299

  18. Process-product dynamics: the role of Otherness in cultural cultivation.

    PubMed

    Lyra, Maria C D P

    2014-06-01

    Carriere (2013) presents a stimulating perspective on the cultural phenomena aiming to recover the role of the external products of culture to imbalance the currently popular emphasis on subject's process of cultivation highlighted by semiotic developmental cultural psychology. The excessive focus on subject's internal processes dismissing a better consideration of products of culture and the compelling objective realities of other dimensions of culture are pointed out. By this way the author's proposes a better dialogue with others perspectives on (cross)cultural psychology. These arguments are analyzed through a closer consideration of I-Other perennial movement. A dialogical view of process-product dynamics is then proposed. The role of Otherness--the one that (partially)shares and the one as witness, approving or disapproving subject's products of cultivation--is discussed through the analysis of a concrete episode of the cultivation of the subject. It is concluded that a semiotic developmental cultural psychology and (cross) cultural psychology have different objects of knowledge comprising distinct interests and research fields.

  19. Greenhouse Gas Reductions From Rice Cultivation And The California Cap-and-Trade Market

    NASA Astrophysics Data System (ADS)

    Parkhurst, R.; Salas, W.; Nichols, L.

    2014-12-01

    The California Air Resources Board is developing a compliance offset protocol for rice cultivation practices. This protocol contains three different activities that growers can take to reduce the generation of methane associated with rice cultivation - dry seeding, early drainage, and alternate wetting and drying of fields. All of these practices have been developed using the latest science and have been shown to reduce methane generation without impacting yield. Methane is the second largest anthropogenic source of greenhouse gas (GHG) emissions, accounting for 9% of all U.S. GHG emissions from human activities. Methane is also important because it is more than 20 times more potent a GHG than carbon dioxide. The rice cultivation protocol is important because it will be the first crop-based protocol considered as a part of California's cap-and-trade program. This session will discuss the latest developments with the protocol from stakeholders involved in the creation of the protocol. We invite you to hear lessons learnt from this experience in order to apply similar approaches to other regions/countries and crops.

  20. Impact of Cultivation and Subsequent Burial on Cydia pomonella (Lepidoptera: Tortricidae) and Conotrachelus nenuphar (Coleoptera: Curculionidae)

    PubMed Central

    Baughman, William B.; Nelson, Peter N.; Grieshop, Matthew J.

    2015-01-01

    We assessed the efficacy of cultivation as a potential management strategy for codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae), and plum curculio, Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) in apple orchards. Cocooned codling moth pupae and thinning apples infested with plum curculio larvae were cultivated over in the field. Emergence, percent burial, damage to buried fruit, and depth of burial was recorded. In the laboratory, both insects were buried at variable depths in sand and potting soil and emergence was measured. A greater proportion of plum curculio larvae buried in infested fruit under laboratory conditions survived to adulthood compared with unburied infested fruit, down to 15 cm. No codling moth adults emerged from under 1 cm or more of sand. Buried codling moth larvae experienced drastically reduced survival to adulthood compared with unburied larvae. These results indicate that strip cultivation may negatively impact codling moth diapausing larvae and pupae on the ground, but not likely to negatively impact plum curculio in infested dropped apples. PMID:26470248

  1. Porcine EPCs downregulate stem cell markers and upregulate endothelial maturation markers during in vitro cultivation.

    PubMed

    Avci-Adali, Meltem; Nolte, Andrea; Simon, Perikles; Ziemer, Gerhard; Wendel, Hans P

    2009-10-01

    In recent years, interest in endothelial progenitor cells (EPCs) in the field of tissue engineering and regenerative medicine has increased tremendously. However, each clinical stem cell application requires prior validation through animal experiments. This study investigates the isolation and characterization of porcine EPCs from peripheral blood and the change of their cell surface marker expression during in vitro cultivation. RT-PCR demonstrated that the EPCs express stem cell markers CD34 and CD133, which decrease with in vitro cultivation time. Throughout the cultivation process EPCs did not express monocytic (CD14) or haematopoietic marker (CD45). Surprisingly, the CD31 and VE-cadherin expression in EPCs was significantly higher than in endothelial cells (ECs). In contrast, the VEGFR2 and E-selectin expression was significantly lower than in ECs, but increased during the expansion process. This study clarifies the characteristic properties of porcine EPCs during cell culture and may help to improve the impact of EPC-based therapies in porcine animal studies.

  2. Potential influence of sugarcane cultivation on estuarine water quality of Louisiana's gulf coast.

    PubMed

    Southwick, Lloyd M; Grigg, Brandon C; Kornecki, Ted S; Fouss, James L

    2002-07-17

    Sugarcane is cultivated on some 170000 ha of land in south central and southwestern Louisiana. This acreage drains into bayous and rivers that empty into Louisiana's coastal bays and estuaries. For a number of years the state's Department of Agriculture and Forestry and Department of Environmental Quality have collected water quality data from this sugarcane area. Study of these data shows that approximately one in five detections of atrazine is above the maximum contaminant level (MCL) for drinking water. Currently there is no U.S. atrazine standard for protection of aquatic life. February and October detections of this herbicide are probably due to sugarcane cultivation. Nitrate levels have remained below the MCL for drinking water, but nitrate and phosphorus concentrations may pose a potential for eutrophication problems. The contribution of sugarcane production to the nutrient status of Louisiana's coastal water bodies is difficult to assess because there are other sources of nutrients in the area and native soil phosphorus levels are high. Cultural practices such as subsurface drains, open drainage ditches, and postharvest residue management have potential through enhancement of soil infiltration for decreasing sugarcane's contribution to water quality problems in southern and coastal Louisiana. A new field project is being installed at the Louisiana State University Agricultural Experiment Station's Sugarcane Research Station at St. Gabriel to assess the water quality benefits of these practices with respect to sugarcane cultivation.

  3. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the

  4. Cultivation of Pleurotus ostreatus and other edible mushrooms.

    PubMed

    Sánchez, Carmen

    2010-02-01

    Pleurotus ostreatus is the second most cultivated edible mushroom worldwide after Agaricus bisporus. It has economic and ecological values and medicinal properties. Mushroom culture has moved toward diversification with the production of other mushrooms. Edible mushrooms are able to colonize and degrade a large variety of lignocellulosic substrates and other wastes which are produced primarily through the activities of the agricultural, forest, and food-processing industries. Particularly, P. ostreatus requires a shorter growth time in comparison to other edible mushrooms. The substrate used for their cultivation does not require sterilization, only pasteurization, which is less expensive. Growing oyster mushrooms convert a high percentage of the substrate to fruiting bodies, increasing profitability. P. ostreatus demands few environmental controls, and their fruiting bodies are not often attacked by diseases and pests, and they can be cultivated in a simple and cheap way. All this makes P. ostreatus cultivation an excellent alternative for production of mushrooms when compared to other mushrooms.

  5. The Edibility and Cultivation of the Oyster Mushroom.

    ERIC Educational Resources Information Center

    Brenneman, James; Guttman, Mark C.

    1994-01-01

    Describes an enjoyable and fascinating experience that involves the cultivation of oyster mushrooms. By allowing students to participate in this process, the students are able to better understand the biology and utility of fungi. (ZWH)

  6. Microalgal cultivation with biogas slurry for biofuel production.

    PubMed

    Zhu, Liandong; Yan, Cheng; Li, Zhaohua

    2016-11-01

    Microalgal growth requires a substantial amount of chemical fertilizers. An alternative to the utilization of fertilizer is to apply biogas slurry produced through anaerobic digestion to cultivate microalgae for the production of biofuels. Plenty of studies have suggested that anaerobic digestate containing high nutrient contents is a potentially feasible nutrient source to culture microalgae. However, current literature indicates a lack of review available regarding microalgal cultivation with biogas slurry for the production of biofuels. To help fill this gap, this review highlights the integration of digestate nutrient management with microalgal production. It first unveils the current status of microalgal production, providing basic background to the topic. Subsequently, microalgal cultivation technologies using biogas slurry are discussed in detail. A scale-up scheme for simultaneous biogas upgrade and digestate application through microalgal cultivation is then proposed. Afterwards, several uncertainties that might affect this practice are explored. Finally, concluding remarks are put forward.

  7. Attached cultivation of Haematococcus pluvialis for astaxanthin production.

    PubMed

    Zhang, Wenduo; Wang, Junfeng; Wang, Jialin; Liu, Tianzhong

    2014-04-01

    Haematococcus pluvialis, the best natural source for astaxanthin, was cultivated with an immobilized biofilm method, viz. "attached cultivation", which was high in photosynthetic efficiency. A practical operational protocol for this "attached cultivation" method was investigated by studying the effects of inoculum density, light intensity, nitrogen quantity as well as medium volume on growth and astaxanthin accumulation. Results indicated the optimized inoculum density and light intensity were 10 g m(-2) and 100 μmol m(-2)s(-1), respectively. The optimized nitrogen supply strategy was circulating ca. 30 L of BG-11 medium with initial sodium nitrate concentration of ca. 1.8mM for 1m(2) of cultivation surface. With this strategy, the maximum astaxanthin productivity reached ca. 160 mg m(-2)d(-1) which is much higher than many other indoor researches. Both of the red and green cells were found in the biofilm with red cells on the top.

  8. Continuous measurements of CO2 emission from cultivated peat soil - effect of tillage intensity

    NASA Astrophysics Data System (ADS)

    Berglund, Örjan; Berglund, Kerstin

    2014-05-01

    Peatlands process and transfer significant quantities of greenhouse gases (GHG) such as CO2, CH4 and N2O. Most natural water-saturated peatlands sequester large amounts of CO2 from the atmosphere and emit CH4. Drainage and cultivation of peat soils increase soil aeration and reverse the carbon flux into net CO2 emissions, while CH4 emissions decrease and cultivated peat soils may even act as sinks for CH4. Fertile peat soils are potential sources of N2O when drained. In this investigation we used automatic dark chambers (ADC BioScientific Ltd) to measure CO2 emissions from plots with different soil tillage intensities. The field trial is located on the island Gotland east of the Swedish main land (57.584825N 18.47691E) and the soil is a peat soil with high pH (7.5) and organic content of 46.4 % (loss on ignition). The set-up was 4 treatments repeated in 4 blocks. Each plot was 18 by 25 meters and the following treatments were tested: A. Ploughing every year B. Ploughing 1 out of 4 years C. Only stubble cultivation D. Permanent ley One chamber was put in each plot and connected to a master control unit to create a network with 16 chambers. Measurements were made every hour during most of 2012 (17/4- 6/11 with some gaps) and every second hour during 2013 (22/4-27/6). Higher emissions could be observed just after cultivation and that effect lasted for about one day. The average emission was highest from treatment D during 2012 (4.53 μmol m-2 s-1) and treatment C and D during 2013 (3.85 μmol m-2 s-1).

  9. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, Saara E.; Shurpali, Narasinha J.; Peltola, Olli; Mammarella, Ivan; Hyvönen, Niina; Maljanen, Marja; Räty, Mari; Virkajärvi, Perttu; Martikainen, Pertti J.

    2016-03-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinacea L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured from July 2009 until the end of 2011 using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the study period from July 2009 until the end of 2011, cumulative NEE was -575 g C m-2. Carbon balance and its regulatory factors were compared to the published results of a comparison site on drained organic soil cultivated with RCG in the same climate. On this mineral soil site, the RCG had higher capacity to take up CO2 from the atmosphere than on the comparison site.

  10. Glycoalkaloids of wild and cultivated Solanum: effects on specialist and generalist insect herbivores.

    PubMed

    Altesor, Paula; García, Álvaro; Font, Elizabeth; Rodríguez-Haralambides, Alejandra; Vilaró, Francisco; Oesterheld, Martín; Soler, Roxina; González, Andrés

    2014-06-01

    Plant domestication by selective breeding may reduce plant chemical defense in favor of growth. However, few studies have simultaneously studied the defensive chemistry of cultivated plants and their wild congeners in connection to herbivore susceptibility. We compared the constitutive glycoalkaloids (GAs) of cultivated potato, Solanum tuberosum, and a wild congener, S. commersonii, by liquid chromatography coupled to mass spectrometry. We also determined the major herbivores present on the two species in field plots, and tested their preference for the plants and their isolated GAs in two-choice bioassays. Solanum commersonii had a different GA profile and higher concentrations than S. tuberosum. In the field, S. tuberosum was mostly attacked by the generalist aphids Myzus persicae and Macrosiphum euphorbiae, and by the specialist flea beetle Epitrix argentinensis. In contrast, the most common herbivore on S. commersonii was the specialist sawfly Tequus sp. Defoliation levels were higher on the wild species, probably due to the chewing feeding behavior of Tequus sp. As seen in the field, M. persicae and E. argentinensis preferred leaf disks of the cultivated plant, while Tequus sp. preferred those of the wild one. Congruently, GAs from S. commersonii were avoided by M. persicae and preferred by Tequus sp. The potato aphid performed well on both species and was not deterred by S. commersonii GAs. These observations suggest that different GA profiles explain the feeding preferences of the different herbivores, and that domestication has altered the defensive capacity of S. tuberosum. However, the wild relative is still subject to severe defoliation by a specialist herbivore that may cue on the GAs.

  11. Nutrient Recovery of Starch Processing Waste to Cordyceps militaris: Solid State Cultivation and Submerged Liquid Cultivation.

    PubMed

    Lee, Joonyeob; Cho, Kyungjin; Shin, Seung Gu; Bae, Hyokwan; Koo, Taewoan; Han, Gyuseong; Hwang, Seokhwan

    2016-09-01

    This study demonstrated the potential for managing starch processing waste (SPW) by bioconversion to Cordyceps militaris mycelia using solid state cultivation (SSC) and submerged liquid cultivation (SLC). The growth characteristics of C. militaris mycelium were accessed and compared for SSC and SLC systems on SPW under various conditions of initial SPW concentration, pH, and operating temperature. To quantify the mycelial biomass in SLC, original primer sets targeting the 18S rRNA gene of C. militaris were developed. In SSC, a maximum mycelial growth rate (543.1 mm(2)/day) was predicted to occur at 25.6 g SPW/L, pH 5.5, and 23.8 °C. In SLC, a maximum mycelial growth rate (1918.6 mg/L/day) was predicted to occur at 35.5 g SPW/L, pH 5.5, and 22.0 °C. Temperature was suggested as the most significant factor in both systems. The higher optimum substrate concentration observed for SLC than for SSC was likely due to difference in mycelial morphology and mixing effect.

  12. Continuous cultivation of photosynthetic microorganisms: Approaches, applications and future trends.

    PubMed

    Fernandes, Bruno D; Mota, Andre; Teixeira, Jose A; Vicente, Antonio A

    2015-11-01

    The possibility of using photosynthetic microorganisms, such as cyanobacteria and microalgae, for converting light and carbon dioxide into valuable biochemical products has raised the need for new cost-efficient processes ensuring a constant product quality. Food, feed, biofuels, cosmetics and pharmaceutics are among the sectors that can profit from the application of photosynthetic microorganisms. Biomass growth in a photobioreactor is a complex process influenced by multiple parameters, such as photosynthetic light capture and attenuation, nutrient uptake, photobioreactor hydrodynamics and gas-liquid mass transfer. In order to optimize productivity while keeping a standard product quality, a permanent control of the main cultivation parameters is necessary, where the continuous cultivation has shown to be the best option. However it is of utmost importance to recognize the singularity of continuous cultivation of cyanobacteria and microalgae due to their dependence on light availability and intensity. In this sense, this review provides comprehensive information on recent breakthroughs and possible future trends regarding technological and process improvements in continuous cultivation systems of microalgae and cyanobacteria, that will directly affect cost-effectiveness and product quality standardization. An overview of the various applications, techniques and equipment (with special emphasis on photobioreactors) in continuous cultivation of microalgae and cyanobacteria are presented. Additionally, mathematical modeling, feasibility, economics as well as the applicability of continuous cultivation into large-scale operation, are discussed.

  13. Attached cultivation for improving the biomass productivity of Spirulina platensis.

    PubMed

    Zhang, Lanlan; Chen, Lin; Wang, Junfeng; Chen, Yu; Gao, Xin; Zhang, Zhaohui; Liu, Tianzhong

    2015-04-01

    To improve cultivation efficiency for microalgae Spirulina platensis is related to increase its potential use as food source and as an effective alternative for CO2 fixation. The present work attempted to establish a technique, namely attached cultivation, for S. platensis. Laboratory experiments were made firstly to investigate optimal conditions on attached cultivation. The optimal conditions were found: 25 g m(-2) for initial inoculum density using electrostatic flocking cloth as substrata, light intensity lower than 200 μmol m(-2) s(-1), CO2 enriched air flow (0.5%) at a superficial aeration rate of 0.0056 m s(-1) in a NaHCO3-free Zarrouk medium. An outdoor attached cultivation bench-scale bioreactor was built and a 10d culture of S. platensis was carried out with daily harvesting. A high footprint areal biomass productivity of 60 g m(-2) d(-1) was obtained. The nutrition of S. platensis with attached cultivation is identical to that with conventional liquid cultivation.

  14. Effect of rice cultivation on the prevalence and infection rates of Schistosoma intermediate host.

    PubMed

    el-Hawy, A M; Negm, I A; el-Alamy, M A; Agina, A A

    1993-12-01

    In this study, it was aimed to explore the effect of rice cultivation on the prevalence, density and infection rates on the snail intermediate hosts of human schistosomiasis. A village was chosen and examine for the main water canal supplying the rice field by making three successive scoops at 10.20, 30, 40 and 50 meters up stream the site of the pump supplying the rice field. The same was done in the large irrigation canal supplying 50 feddans of rice up to 100 meters (i.e. 10 sampling sites). Also the drains in between the rice fields were examined at 10 meters distance throughout the drain. The hunted snails were sorted, the Biomphalaria alexanderina and Bulinus truncatus were separated, their age was determined then crushed to look for immature stages under the microscope. Also the vegetations coming in the scoops were examined. The results showed that rice cultivation and irrigation is a suitable site for the prevalence and intensity of snails. Both species of snails were found in the main canal, irrigation canal and drains. All Bulinus truncatus snails were free from infections. The number of infected Biomphalaria alexanderina snails was significantly higher in the irrigation canal and drains than main canal which may be attributed to pollution of the drain water and irrigation canal by micturition and defecation or to the use of water in ablution.

  15. [Research on output and quality of Panax notoginseng and annual change characteristics of N, P and K nutrients of planting soil under stereo-cultivation].

    PubMed

    Huang, Chun-mei; Cui, Xiu-ming; Lan, Lei; Chen, Wei-dong; Wang, Cheng-xiao; Yang, Xiao-yan; Lu, Da-hui; Yang, Ye

    2015-08-01

    The output and agronomic characters of 3-year-old Panax notoginseng cultured under stereo structure (upper, middle and down layers) were investigated, and the annual change of N, P and K of its planting soil were also studied. Results showed that, compared with field cultured Panax notoginseng, growth vigour and output of stereo-cultivation were significantly lower. But the total production of the 3 layers was 1.6 times of field. The growth vigor and production of P. notoginseng was in the order of upper layer > middle layer > down layer. The content of ginsenoside in rhizome, root tuber and hair root of P. notoginseng was in the order of upper layer > field > middle layer > down layer. Organic matter content and pH of stereo-cultivation soil decreased with the prolonging of planting time, which with the same trend of yield. Organic matter content of stereo-cultivation soil was significantly higher than field, but the pH was significantly lower. Contents of total and available N, P and K in stereo-cultivation soil and field decreased with the prolonging of planting time. The content of N and P were in the order of upper layer > middle layer > yield > down layer, the content of K was in the order of upper layer > middle layer > down layer > yield. Compared with field, the proportion of N and P in the organ of underground (rhizome, root tuber and hair root) of upper layer were increased, while decreased in middle and down layers. Proportion of K in underground decreased significantly of the 3 layers. In conclusion, the agronomic characters and production of stereo-cultivation were significantly lower than that of yield. But the total production of the 3 layers were significantly higher than field of unit area. And the aim of improving land utilization efficiency was achieved. Nutritions in the soil of stereo-cultivation were enough to support the development of P. notoginseng, which was not the cause of weak growth and low production. The absorbing ability of P

  16. Self-assembly of condensates with advanced surface by means of the competing field selectivity and Gibbs-Thomson effect

    NASA Astrophysics Data System (ADS)

    Perekrestov, Vyacheslav; Kosminska, Yuliya; Mokrenko, Alexander; Davydenko, Taras

    2014-04-01

    Copper and silicon layers were deposited using the accumulative plasma-condensate system. Their surface was found to possess the complex developed morphology using SEM technique. Competing processes of the field selectivity and Gibbs-Thomson effect are considered to describe the formation of the surface. The mathematical model is created on the basis of these effects which describes self-assembly of the surface at the form of adjoining elements of an elliptic section. The comparative analyses of theoretical and experimental results are given.

  17. Cultivated and weedy rice interactions and the domestication process.

    PubMed

    Lawton-Rauh, Amy; Burgos, Nilda

    2010-08-01

    Examining the targets of selection in crop species and their wild and weedy relatives sheds light on the evolutionary processes underlying differentiation of cultivars from progenitor lineages. On one hand, human-mediated directional selection in crops favours traits associated with the streamlining of controllable and predictable monoculture practices alongside selection for desired trait values. On the other hand, natural selection in wild and especially weedy relatives presumably favours trait values that increase the probability of escaping eradication. Gene flow between crops and wild species may also counter human-mediated selection, promoting the evolution and persistence of weedy forms. In this issue, two studies from a group of collaborators examine diversity and divergence patterns of genes underlying two traits associated with red rice (Oryza sp.), the conspecific relative of cultivated rice (Oryza sativa) that is a non-native weed (see Fig. 1). In the first study by Gross et al. (2010), genetic variation in the major gene underlying the hallmark red pigmentation characterizing most weedy rice (Rc) is found to have a pattern consistent with non-reversion from U.S. cultivated rice (i.e. the cultivar did not 'go feral'). This suggests that U.S. weedy rice is not an escaped lineage derived from U.S. cultivated rice populations; weedy rice likely differentiated prior to the selective sweep occurred in this gene within cultivated rice populations. Using the major seed shattering locus sh4 gene and the neighbouring genomic region, Thurber et al. (2010) track the molecular evolutionary history of the high shattering phenotype, a trait contributing dramatically to the success of crop selection in cultivated rice as well as the persistence and expansion of weedy red rice. In this study, the shared fixation of a sh4 mutation in both cultivated rice and weedy rice indicates that weedy rice arose subsequent to the strong selective sweep leading to significant

  18. Fishful Thinking: Cultivating Gratitude in Youth

    ERIC Educational Resources Information Center

    Reivich, Karen

    2009-01-01

    The field of positive psychology has been interested in gratitude and documenting its benefits on well-being. Research has shown that people who experience gratitude have a variety of positive outcomes including more positive emotions such as joy, love, and happiness; fewer negative emotions such as bitterness, envy, and resentment; increased…

  19. Ghosts of Cultivation Past - Native American Dispersal Legacy Persists in Tree Distribution

    PubMed Central

    Warren, Robert J.

    2016-01-01

    A long-term assumption in ecology is that species distributions correspond with their niche requirements, but evidence that species can persist in unsuitable habitat for centuries undermines the link between species and habitat. Moreover, species may be more dependent on mutualist partners than specific habitats. Most evidence connecting indigenous cultures with plant dispersal is anecdotal, but historical records suggest that Native Americans transported and cultivated many species, including Gleditsia triacanthos ("Honey locust"). Gleditsia triacanthos was an important medicinal/culinary (e.g., sugar), cultural (e.g., game sticks) and spiritual tree for the Cherokee (southeastern U.S. Native Americans). This study tests the hypothesis that a Cherokee cultivation legacy drives current regional G. triacanthos distribution patterns. Gleditsia triacanthos occurs in rocky uplands and xeric fields, but inexplicably also occurs in mesic riverine corridors and floodplains where Cherokee once settled and farmed. I combined field experiments and surveys in the Southern Appalachian Mountain region (U.S.) to investigate G. triacanthos recruitment requirements and distribution patterns to determine whether there is a quantifiable G. triacanthos association with former Cherokee settlements. Moreover, I also investigated alternate dispersal mechanisms, such as stream transport and domestic cattle. The results indicate that a centuries-old legacy of Native American cultivation remains intact as G. triacanthos' current southern Appalachian distribution appears better explained Cherokee settlement patterns than habitat. The data indicate that the tree is severely dispersal limited in the region, only moving appreciable distances from former Cherokee settlements where cattle grazing is prevalent. Human land use legacy may play a long-term role in shaping species distributions, and pre-European settlement activity appears underrated as a factor influencing modern tree species

  20. Ghosts of Cultivation Past - Native American Dispersal Legacy Persists in Tree Distribution.

    PubMed

    Warren, Robert J

    2016-01-01

    A long-term assumption in ecology is that species distributions correspond with their niche requirements, but evidence that species can persist in unsuitable habitat for centuries undermines the link between species and habitat. Moreover, species may be more dependent on mutualist partners than specific habitats. Most evidence connecting indigenous cultures with plant dispersal is anecdotal, but historical records suggest that Native Americans transported and cultivated many species, including Gleditsia triacanthos ("Honey locust"). Gleditsia triacanthos was an important medicinal/culinary (e.g., sugar), cultural (e.g., game sticks) and spiritual tree for the Cherokee (southeastern U.S. Native Americans). This study tests the hypothesis that a Cherokee cultivation legacy drives current regional G. triacanthos distribution patterns. Gleditsia triacanthos occurs in rocky uplands and xeric fields, but inexplicably also occurs in mesic riverine corridors and floodplains where Cherokee once settled and farmed. I combined field experiments and surveys in the Southern Appalachian Mountain region (U.S.) to investigate G. triacanthos recruitment requirements and distribution patterns to determine whether there is a quantifiable G. triacanthos association with former Cherokee settlements. Moreover, I also investigated alternate dispersal mechanisms, such as stream transport and domestic cattle. The results indicate that a centuries-old legacy of Native American cultivation remains intact as G. triacanthos' current southern Appalachian distribution appears better explained Cherokee settlement patterns than habitat. The data indicate that the tree is severely dispersal limited in the region, only moving appreciable distances from former Cherokee settlements where cattle grazing is prevalent. Human land use legacy may play a long-term role in shaping species distributions, and pre-European settlement activity appears underrated as a factor influencing modern tree species

  1. Influence of age and composition of shelterbelts plants on enzyme activity and auxine - phytophormone IAA concentrations in soils

    NASA Astrophysics Data System (ADS)

    Wojciech Szajdak, Lech; Gaca, Wioletta; Meysner, Teresa; Styła, Katarzyna; Maryganova, Victoria

    2010-05-01

    The investigations were carried out in Dezydery Chlapowski Agroecological Landscape Park in Turew (40 km South-West of Poznań, West Polish Lowlands, 16° 45 E and 52° 01 N). The soil samples were taken from two shelterbelts differing the age and the composition of trees. First 200-years-old shelterbelt is consisting mainly by Robinia pseudacacia and small admixture of Quercus robur and Larix deciduas. It has 2 kilometers of length and 36 meters of width. The second one new shelterbelt (many species) was created in 1993 and consists of several species of plants such as: Quercus pertraea and Quercus robur, Larix decidua, Pinus silvestris, Sorbus aucuparia, Sorbus intermedia and Tilia cordata. Its length is 340 meters and its width is 17.5 meters. All shelterbelts and adjoining cultivated fields were introduced on Hapludalfs soils (according to FAO classification). In soil under two shelterbelts and adjoining cultivated fields the activity of the following enzymes nitrate reductase, urease, xanthine oxidase, phenol oxidase, peroxidase activity were measured. In addition, the concentrations of iron ions, indole-3-acetic acids, total organic carbon, dissolved organic carbon, total nitrogen, ammonium and nitrates were determined. In soils under shelterbelts compared to adjoining cultivated fields higher content of organic matter was observed, because the accumulation of soil organic matter under shelterbelts is suggested to be the main mechanism of long-term withdrawal of various chemical elements from cycling in the agroecosystems. However, many chemical, biochemical, physical and biological processes control conversions of organic compounds in soils and finally these processes depend on the organic matter content and particularly on humic substances. Due to a very good developed root system of trees in shelterbelts than cultivated plants, they transpire more than 34% water than cultivated fields and intensively take up nutrients and finally improve quality of ground

  2. PHYSIOLOGICAL STRAIN AMONG WOMEN POTATO CULTIVATORS IN WEST BENGAL, INDIA.

    PubMed

    Pal, Amitava; De, Sujaya; Sengupta, Piyali; Maity, Payel; Mahata, Hiranmoy; Shaikh, Saijuddin; Dhara, Prakash C

    2015-12-01

    The present study was aimed to evaluate physiological strain among women cultivators engaged in potato cultivation. The cross-sectional descriptive study was conducted on 150 women participants in different districts of West Bengal State, India. The physiological strain was evaluated by working heart rate, blood lactate and oxygen consumption. The average working heart rate was 109.97 ± 9.94 beats/min when all tasks were considered together. According to the working heart rate, oxygen consumption and energy cost, the potato cultivation job was categorized as a moderate work category. Whereas, according to cardiovascular stress index (CSI), all tasks of potato cultivation were categorized into a stressful category. The more experienced workers were more productive than their less experienced counterparts, and this increased productivity appeared to be a combination of greater efficiency and greater physical exertion. Stepwise multiple linear regression analyses revealed that work pace and work experience had significant association with all the indices of physiological strain. Work pace had strongest significant impact on these indices even after controlling the effect of age, work experience and efficiency. It was concluded that during performing potato cultivation tasks the workers had a great extent of physiological strain.

  3. Membrane technology in microalgae cultivation and harvesting: a review.

    PubMed

    Bilad, M R; Arafat, Hassan A; Vankelecom, Ivo F J

    2014-11-15

    Membrane processes have long been applied in different stages of microalgae cultivation and processing. These processes include microfiltration, ultrafiltration, dialysis, forward osmosis, membrane contactors and membrane spargers. They are implemented in many combinations, both as a standalone and as a coupled system (in membrane biomass retention photobioreactors (BR-MPBRs) or membrane carbonation photobioreactors (C-MPBRs). To provide sufficient background on these applications, an overview of membrane materials and membrane processes of interest in microalgae cultivation and processing is provided in this work first. Afterwards, discussion about specific aspects of membrane applications in microbial cultivation and harvesting is provided, including membrane fouling. Many of the membrane processes were shown to be promising options in microalgae cultivation. Yet, significant process optimizations are still required when they are applied to enable microalgae biomass bulk production to become competitive as a raw material for biofuel production. Recent developments of the coupled systems (BR-MPBR and C-MPBR) bring significant promises to improve the volumetric productivity of a cultivation system and the efficiency of inorganic carbon capture, respectively.

  4. Development and optimization of biofilm based algal cultivation

    NASA Astrophysics Data System (ADS)

    Gross, Martin Anthony

    This dissertation describes research done on biofilm based algal cultivation systems. The system that was developed in this work is the revolving algal biofilm cultivation system (RAB). A raceway-retrofit, and a trough-based pilot-scale RAB system were developed and investigated. Each of the systems significantly outperformed a control raceway pond in side-by-side tests. Furthermore the RAB system was found to require significantly less water than the raceway pond based cultivation system. Lastly a TEA/LCA analysis was conducted to evaluate the economic and life cycle of the RAB cultivation system in comparison to raceway pond. It was found that the RAB system was able to grow algae at a lower cost and was shown to be profitable at a smaller scale than the raceway pond style of algal cultivation. Additionally the RAB system was projected to have lower GHG emissions, and better energy and water use efficiencies in comparison to a raceway pond system. Furthermore, fundamental research was conducted to identify the optimal material for algae to attach on. A total of 28 materials with a smooth surface were tested for initial cell colonization and it was found that the tetradecane contact angle of the materials had a good correlation with cell attachment. The effects of surface texture were evaluated using mesh materials (nylon, polypropylene, high density polyethylene, polyester, aluminum, and stainless steel) with openings ranging from 0.05--6.40 mm. It was found that both surface texture and material composition influence algal attachment.

  5. Evaluation by environmental monitoring of pesticide absorption in farm workers of 18 Italian tomato cultivations.

    PubMed

    Basilicata, P; Simonelli, A; Silvestre, A; Lamberti, M; Pedata, P; Feola, D; Acampora, A; Pieri, M; Sannolo, N; Miraglia, N

    2013-01-01

    Tomato cultivation farms of Southern Italy were investigated in order to evaluate the general working conditions and the levels of exposure of farm workers to pesticides, during the mixing/loading and the application of pesticides on fields. Information on working modalities, personal protective equipment, etc. was collected using a questionnaire. Inhaling and cutaneous exposure levels were measured, and the estimated pesticide total absorbed dose was compared with Admissible Daily Intakes (ADIs). Field treatments were mainly carried out by using sprayers with open cab tractors, and, in 57.9 percent of cases, the pesticide mixture was manually prepared by mixing pesticides in a pail, often without using gloves (59.5 percent). The estimated pesticides absorbed doses varied in the range 0.56-2630.31 mg (mean value, 46.9 mg), and 20 percent of the measured absorbed doses exceeded ADIs. The findings obtained in the 18 examined farms show a worrying situation, suggesting the investigation of many more farms, so that a statistically significant picture of tomato cultivations in Southern Italy could be formed. Besides, the planning of training courses aimed to increase workers consciousness about health risks and how they can be prevented is advisable.

  6. Mapping cultivable land from satellite imagery with clustering algorithms

    NASA Astrophysics Data System (ADS)

    Arango, R. B.; Campos, A. M.; Combarro, E. F.; Canas, E. R.; Díaz, I.

    2016-07-01

    Open data satellite imagery provides valuable data for the planning and decision-making processes related with environmental domains. Specifically, agriculture uses remote sensing in a wide range of services, ranging from monitoring the health of the crops to forecasting the spread of crop diseases. In particular, this paper focuses on a methodology for the automatic delimitation of cultivable land by means of machine learning algorithms and satellite data. The method uses a partition clustering algorithm called Partitioning Around Medoids and considers the quality of the clusters obtained for each satellite band in order to evaluate which one better identifies cultivable land. The proposed method was tested with vineyards using as input the spectral and thermal bands of the Landsat 8 satellite. The experimental results show the great potential of this method for cultivable land monitoring from remote-sensed multispectral imagery.

  7. Allergenic Potential of Tomatoes Cultivated in Organic and Conventional Systems.

    PubMed

    Słowianek, Marta; Skorupa, Marta; Hallmann, Ewelina; Rembiałkowska, Ewa; Leszczyńska, Joanna

    2016-03-01

    Tomatoes (Lycopersicon esculentum Mill.) are a widely consumed vegetables and contain many health beneficial micronutrients. Unfortunately, they may also cause adverse allergic reactions in sensitized people. Many studies, conducted in recent years, indicate that organically produced vegetables have higher nutritional value, improved sensory quality and contain more health-enhancing bioactive compounds than vegetables grown under the conventional system. However, the relation between organic methods of cultivation and allergenic potential of tomatoes has received little scientific attention. This study analyzed samples of five tomato cultivars taken from organic and conventional systems over three consecutive years. The content of profilin, Bet v 1 and lipid transfer protein (LTP) analogues in tomato samples was determined using an indirect ELISA assay. Substantial quantities of these proteins were found in certain cultivars across all three years of cultivation. On the basis of these findings, organically grown tomatoes appear to offer little advantage over conventionally cultivated plants in terms of reduced allergenic potential.

  8. America's red gold: multiple lineages of cultivated cochineal in Mexico.

    PubMed

    Campana, Michael G; Robles García, Nelly M; Tuross, Noreen

    2015-02-01

    Cultivated cochineal (Dactylopius coccus) produces carminic acid, a valuable red dye used to color textiles, cosmetics, and food. Extant native D. coccus is largely restricted to two populations in the Mexican and the Andean highlands, although the insect's ultimate center of domestication remains unclear. Moreover, due to Mexican D. coccus cultivation's near demise during the 19th century, the genetic diversity of current cochineal stock is unknown. Through genomic sequencing, we identified two divergent D. coccus populations in highland Mexico: one unique to Mexico and another that was more closely related to extant Andean cochineal. Relic diversity is preserved in the crops of small-scale Mexican cochineal farmers. Conversely, larger-scale commercial producers are cultivating the Andean-like cochineal, which may reflect clandestine 20th century importation.

  9. A mini review: photobioreactors for large scale algal cultivation.

    PubMed

    Gupta, Prabuddha L; Lee, Seung-Mok; Choi, Hee-Jeong

    2015-09-01

    Microalgae cultivation has gained much interest in terms of the production of foods, biofuels, and bioactive compounds and offers a great potential option for cleaning the environment through CO2 sequestration and wastewater treatment. Although open pond cultivation is most affordable option, there tends to be insufficient control on growth conditions and the risk of contamination. In contrast, while providing minimal risk of contamination, closed photobioreactors offer better control on culture conditions, such as: CO2 supply, water supply, optimal temperatures, efficient exposure to light, culture density, pH levels, and mixing rates. For a large scale production of biomass, efficient photobioreactors are required. This review paper describes general design considerations pertaining to photobioreactor systems, in order to cultivate microalgae for biomass production. It also discusses the current challenges in designing of photobioreactors for the production of low-cost biomass.

  10. Yield of illicit indoor cannabis cultivation in the Netherlands.

    PubMed

    Toonen, Marcel; Ribot, Simon; Thissen, Jac

    2006-09-01

    To obtain a reliable estimation on the yield of illicit indoor cannabis cultivation in The Netherlands, cannabis plants confiscated by the police were used to determine the yield of dried female flower buds. The developmental stage of flower buds of the seized plants was described on a scale from 1 to 10 where the value of 10 indicates a fully developed flower bud ready for harvesting. Using eight additional characteristics describing the grow room and cultivation parameters, regression analysis with subset selection was carried out to develop two models for the yield of indoor cannabis cultivation. The median Dutch illicit grow room consists of 259 cannabis plants, has a plant density of 15 plants/m(2), and 510 W of growth lamps per m(2). For the median Dutch grow room, the predicted yield of female flower buds at the harvestable developmental stage (stage 10) was 33.7 g/plant or 505 g/m(2).

  11. America's red gold: multiple lineages of cultivated cochineal in Mexico

    PubMed Central

    Campana, Michael G; Robles García, Nelly M; Tuross, Noreen

    2015-01-01

    Cultivated cochineal (Dactylopius coccus) produces carminic acid, a valuable red dye used to color textiles, cosmetics, and food. Extant native D. coccus is largely restricted to two populations in the Mexican and the Andean highlands, although the insect's ultimate center of domestication remains unclear. Moreover, due to Mexican D. coccus cultivation's near demise during the 19th century, the genetic diversity of current cochineal stock is unknown. Through genomic sequencing, we identified two divergent D. coccus populations in highland Mexico: one unique to Mexico and another that was more closely related to extant Andean cochineal. Relic diversity is preserved in the crops of small-scale Mexican cochineal farmers. Conversely, larger-scale commercial producers are cultivating the Andean-like cochineal, which may reflect clandestine 20th century importation. PMID:25691985

  12. [Antioxidants content in selected conventionally and organically cultivated vegetables].

    PubMed

    Owsikowski, Maciej; Gronowska-Senger, Anna; Predka, Aneta

    2008-01-01

    The purpose of the study was to check the antioxidants content in usually consumed vegetables in Poland as well as the interrelationship between them and the way of cultivation. The contents of vitamin C in cabbage and potatoes, beta-carotene in carrot and phenolic compounds in onion were analysed. There were no statistically important differences in the content of analysed compounds between organically and conventionally cultivated vegetables. The only one was observed for vitamin C in conventional potatoes and for beta-carotene in cooked conventional carrot.

  13. Georgia Pecan Growers Association Field Day

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cultivation of pecan is challenged by many environmental factors that either stress trees or harm the crop. A field-day was held to facilitate the transfer of technology and information to regional pecan farmers. New information was provided in entomology, pathology, and horticultural aspect ...

  14. In Situ Cultivation Allows for Recovery of Bacterial Types Competitive in Their Natural Environment

    PubMed Central

    Jung, Dawoon; Aoi, Yoshiteru; Epstein, Slava S.

    2016-01-01

    Standard cultivation fails to grow most microorganisms, whereas in situ cultivation allows for the isolation of comparatively diverse and novel microorganisms. Information on similarities and differences in the physiological properties of isolates obtained from in situ cultivation and standard cultivation is limited. Therefore, we used the arctic sediment samples and compared two culture collections obtained using standard and novel cultivation techniques. Even though there was no temperature selection at the isolation step, isolates from each method showed different reactions to temperature. The results of the present study suggest that isolates from in situ cultivation are more competitive in their natural environment. PMID:27682804

  15. The Elaboration of Cultivating Learners' English Communicative Competence in China

    ERIC Educational Resources Information Center

    Zhang, Yuxiang; Wang, Jiling

    2012-01-01

    The communicative competence is the ultimate goal of the Communicative Language Teaching (CLT), which is thought to be the eclectic approach in the place of other approaches and methods and which begins to gain momentum in the recent years. Hence, the comprehensive understanding of the communicative competence is prerequisite to the cultivation of…

  16. Quantitative measurement of direct nitrous oxide emissions from microalgae cultivation.

    PubMed

    Fagerstone, Kelly D; Quinn, Jason C; Bradley, Thomas H; De Long, Susan K; Marchese, Anthony J

    2011-11-01

    Although numerous lifecycle assessments (LCA) of microalgae-based biofuels have suggested net reductions of greenhouse gas emissions, limited experimental data exist on direct emissions from microalgae cultivation systems. For example, nitrous oxide (N(2)O) is a potent greenhouse gas that has been detected from microalgae cultivation. However, little quantitative experimental data exist on direct N(2)O emissions from microalgae cultivation, which has inhibited LCA performed to date. In this study, microalgae species Nannochloropsis salina was cultivated with diurnal light-dark cycling using a nitrate nitrogen source. Gaseous N(2)O emissions were quantitatively measured using Fourier transform infrared spectrometry. Under a nitrogen headspace (photobioreactor simulation), the reactors exhibited elevated N(2)O emissions during dark periods, and reduced N(2)O emissions during light periods. Under air headspace conditions (open pond simulation), N(2)O emissions were negligible during both light and dark periods. Results show that N(2)O production was induced by anoxic conditions when nitrate was present, suggesting that N(2)O was produced by denitrifying bacteria within the culture. The presence of denitrifying bacteria was verified through PCR-based detection of norB genes and antibiotic treatments, the latter of which substantially reduced N(2)O emissions. Application of these results to LCA and strategies for growth management to reduce N(2)O emissions are discussed.

  17. The President's Role in Cultivating Positive Town-Gown Relations

    ERIC Educational Resources Information Center

    Weill, Lawrence V.

    2009-01-01

    This article examines the benefits and challenges a college president faces when attempting to cultivate relationships with the community in which the college resides. Throughout history, the relationships between institutions of higher education and the communities that house them have often been turbulent, but much good can be realized when true…

  18. Cultivated Lands of Kuban and Features of Their Development

    ERIC Educational Resources Information Center

    Belyuchenko, Ivan S.

    2016-01-01

    The basis of cultivated lands consists of the interacting populations of annual and perennial weeds and updated annually cultural annual plants, which have very limited data on the aboveground net production, and even less information about the yield of their underground organs. The aim of the research is scientific and theoretical development of…

  19. Teaching Design of Cultivating Nursing Students' Creative Thinking

    ERIC Educational Resources Information Center

    Xi-wen, Liu; Chun-ping, Ni; Rui, Yang; Xiu-chuan, Li; Cheng, Cheng

    2007-01-01

    Chinese nursing education levels have developed fast over the past few years. Many nursing educators are devoted to the research of nursing teaching. How to cultivate nursing students, creative thinking is one of the principle researches and has received increasing attention. In the course of nursing teaching, we renewed the teaching design based…

  20. Sharing and Cultivating Tacit Knowledge in an Online Learning Environment

    ERIC Educational Resources Information Center

    Tee, Meng Yew; Karney, Dennis

    2010-01-01

    Research on knowledge cultivation often focuses on explicit forms of knowledge. However, knowledge can also take a tacit form--a form that is often difficult or impossible to tease out, even when it is considered critical in an educational context. A review of the literature revealed that few studies have examined tacit knowledge issues in online…

  1. On Design Experiment Teaching in Engineering Quality Cultivation

    ERIC Educational Resources Information Center

    Chen, Xiao

    2008-01-01

    Design experiment refers to that designed and conducted by students independently and is surely an important method to cultivate students' comprehensive quality. According to the development and requirements of experimental teaching, this article carries out a study and analysis on the purpose, significance, denotation, connotation and…

  2. Kant and Rawls on the Cultivation of Virtue

    ERIC Educational Resources Information Center

    Brewer, Talbot

    2013-01-01

    In "Two Conceptions of Virtue," Thomas Hill reconstructs the conceptions of virtue, and of proper moral upbringing, found in Kant and Rawls. Here I offer some brief reflections on these conceptions of virtue and its cultivation. I argue that Kant's conception of virtue is grounded in a mistaken conception of desire, and that this…

  3. Cultivating Critical-Thinking Dispositions throughout the Business Curriculum

    ERIC Educational Resources Information Center

    Bloch, Janel; Spataro, Sandra E.

    2014-01-01

    Critical thinking is an essential component of managerial literacy, yet business school graduates struggle to apply critical-thinking skills at work to the level that employers desire. This article argues for a dispositional approach to teaching critical thinking, rooted in cultivating a critical-thinking culture. We suggest a two-pronged approach…

  4. Self-Cultivation: Culturally Sensitive Psychotherapies in Confucian Societies

    ERIC Educational Resources Information Center

    Hwang, Kwang-Kuo; Chang, Jeffrey

    2009-01-01

    This article describes self-cultivation practices originating from the cultural traditions of Confucianism, Taoism, and Buddhism. It delineates the therapeutic implications of the three states of self pursued by these three traditions: namely, the "relational self", the "authentic self", and the "nonself". Several…

  5. Mindful Learning in Geography: Cultivating Balanced Attitudes toward Regions

    ERIC Educational Resources Information Center

    Lee, Dong-min; Ryu, Jaemyong

    2015-01-01

    This study examines the potential of mindful learning in geography education. A hypothesis was developed to form the research topic, and three experiments were performed to analyze it. The experiments supported the hypothesis. In other words, mindful learning was found to be helpful for cultivating balanced attitudes toward regions. In conclusion,…

  6. The case for small-scale domestic cannabis cultivation.

    PubMed

    Decorte, Tom

    2010-07-01

    The shift to (inter)regional production, trade and domestic cultivation has become an irreversible international trend. Until now, the focus of most empirical work has been on large-scale, commercially oriented and professionally organized segments of the cannabis industry, often based on police data and on the perspective of law enforcement agencies. This paper offers a review of recent Dutch-language research that focuses on cannabis cultivation. Empirical studies were identified through literature searches using relevant search terms and Web of Science, Elin, Social Science Research Network and Elsevier ScienceDirect. The paper presents the main findings of Dutch and Belgian empirical work on the factors that stimulated the import substitution process on the cannabis market, aspects related to quality and potency issues, typologies of cannabis growers, and (unintended) effects of pursued policies. In the light of this (selective) review the author offers some commentary and analysis concerning the claims made by different stakeholders, and concludes with some reflections on future research and on policy implications. The author outlines the importance of small-scale, independent or ideologically oriented cannabis cultivation as an under-researched market segment. The author also makes a case for greater toleration of small-scale cannabis cultivation, to secure the least worst of cannabis markets.

  7. SNP Validation and Genetic Diversity in Cultivated Tomatoes and Grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated grapes and tomatoes have very different reproductive systems. While grapes are often outcrossed and grafted, tomatoes are generally selfed and propogated by seed. Large-scale public EST datasets were used in both crops to predict SNPs and PCR primers flanking these SNPs. Genomic DNA was a...

  8. Do Specialized MBA Programs Cultivate Alumni Relationships and Donations?

    ERIC Educational Resources Information Center

    Johnson, Jennifer Wiggins; Thomas, Veronica; Peck, Joann

    2010-01-01

    A recent trend among universities shifts from traditional MBA programs to specialized MBA offerings. Specialized programs are believed to cultivate stronger relationships with students, which lead to stronger alumni relationships and increased donations. This research tests this empirically by examining relationship perceptions and donation…

  9. Cultivating Flourishing Lives: A Robust Social Justice Vision of Education

    ERIC Educational Resources Information Center

    Grant, Carl A.

    2012-01-01

    Presented at AERA 2010 as the Social Justice Award Lecture, this article calls attention to the purposes of education in the 21st century and the need for a robust, social justice vision of education. Here, it is argued that education is about the cultivation of a flourishing life and not only the narrow preparation for employment. To realize…

  10. Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota).

    PubMed

    Huamán, Zósimo; Spooner, David M

    2002-06-01

    Cultivated potatoes have been classified as species under the International Code of Botanical Nomenclature (ICBN) and as cultivar-groups under the International Code of Nomenclature of Cultivated Plants (ICNCP); both classifications are still widely used. This study examines morphological support for the classification of landrace populations of cultivated potatoes, using representatives of all seven species and most subspecies as outlined in the latest taxonomic treatment. These taxa are S. ajanhuiri, S. chaucha, S. curtilobum, S. juzepczukii, S. phureja subsp. phureja, S. stenotomum subsp. stenotomum, S. stenotomum subsp. goniocalyx, S. tuberosum subsp. andigenum, and S. tuberosum subsp. tuberosum. The results show some phenetic support for S. ajanhuiri, S. chaucha, S. curtilobum, S. juzepczukii, and S. tuberosum subsp. tuberosum, but little support for the other taxa. Most morphological support is by using a suite of characters, all of which are shared with other taxa (polythetic support). These results, combined with their likely hybrid origins, multiple origins, evolutionary dynamics of continuing hybridization, and our classification philosophy, leads us to recognize all landrace populations of cultivated potatoes as a single species, S. tuberosum, with the eight cultivar-groups: Ajanhuiri Group, Andigenum Group, Chaucha Group, Chilotanum Group, Curtilobum Group, Juzepczukii Group, Phureja Group, and Stenotomum Group. We defer classification of modern cultivars, traditionally classified in Tuberosum Group, to a later study.

  11. Cultivating Empathy for the Mentally Ill Using Simulated Auditory Hallucinations

    ERIC Educational Resources Information Center

    Bunn, William; Terpstra, Jan

    2009-01-01

    Objective: The authors address the issue of cultivating medical students' empathy for the mentally ill by examining medical student empathy pre- and postsimulated auditory hallucination experience. Methods: At the University of Utah, 150 medical students participated in this study during their 6-week psychiatry rotation. The Jefferson Scale of…

  12. Poppy Cultivation in Afghanistan: A Global, Strategic Nemesis

    DTIC Science & Technology

    2007-11-02

    USAWC STRATEGY RESEARCH PROJECT Poppy Cultivation in Afghanistan: A Global, Strategic Nemesis by Colonel G. Joseph Millan United States Army...A Global, Strategic Nemesis FORMAT: Strategy Research Project DATE: 07 April 2003 PAGES: 23 CLASSIFICATION: Unclassified The United States has...states, Russia, Iran, Pakistan and China primarily because these countries are on the distribution routes for the European drug markets . This growing

  13. Cultivating the Possible: A Tribute to Harry Judge

    ERIC Educational Resources Information Center

    Bruner, Jerome

    2008-01-01

    When he arrived in Oxford in the early 1970s, Harry Judge and this author were already good friends. They had spent a lot of time talking about their respective concerns--the author on how "mind" should be conceived, and Judge on how and by whom "mind" should be cultivated in the educational process. The author believed then that schools should…

  14. Technologies of Self and the Cultivation of Virtues

    ERIC Educational Resources Information Center

    Hattam, Robert; Baker, Bernadette

    2015-01-01

    In this article we engage with and against Foucault's provocation to think about diagrams of subjectivation. With Foucault we take up his meditation on spirituality and propose a Buddhist alternative to Greco-Roman technologies of self. Against Foucault's notion of an "arts of existence" we suggest instead "cultivation of…

  15. Autonomous benthic algal cultivator under feedback control of ecosystem metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An autonomous and internally-controlled techno-ecological hybrid was developed that controls primary production of algae in a laboratory-scale cultivator. The technoecosystem is based on an algal turf scrubber (ATS) system that combines engineered feedback control programming with internal feedback...

  16. Parenting Priorities and Pressures: Furthering Understanding of "Concerted Cultivation"

    ERIC Educational Resources Information Center

    Vincent, Carol; Maxwell, Claire

    2016-01-01

    This paper re-examines the purposes of a planned and intentional parenting style--"concerted cultivation"--for different middle-class groups, highlighting that social class fraction, ethnicity, and also individual family disposition, guides understandings of the purposes of enrolling children in particular enrichment activities. We…

  17. Genetic structure and differentiation in cultivated grapes, Vitis vinifera, L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    222 cultivated (Vitis vinifera) and 22 wild (V. vinifera ssp. sylvestris) grape accessions were analysed for genetic diversity and differentiation at eight microsatellite loci. A total of 94 alleles were detected, with extensive polymorphism among the accessions. Multivariate relationships among acc...

  18. Cultivating Teachers' Morality and the Pedagogy of Emotional Rationality

    ERIC Educational Resources Information Center

    Kim, Minkang

    2013-01-01

    Teachers are expected to act ethically and provide moral role models in performing their duties, even though teacher education has often relegated the cultivation of teachers' ethical awareness and moral development to the margins. When it is addressed, the main theoretical assumptions have relied heavily on the cognitivist developmental theories…

  19. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review).

    PubMed

    Elisashvili, Vladimir

    2012-01-01

    Medicinal mushrooms belonging to higher Basidiomycetes are an immensely rich yet largely untapped resource of useful, easily accessible, natural compounds with various biological activities that may promote human well-being. The medicinal properties are found in various cellular components and secondary metabolites (polysaccharides, proteins and their complexes, phenolic compounds, polyketides, triterpenoids, steroids, alkaloids, nucleotides, etc.), which have been isolated and identified from the fruiting bodies, culture mycelium, and culture broth of mushrooms. Some of these compounds have cholesterol-lowering, anti-diabetic, antioxidant, antitumor, immunomodulating, antimicrobial, and antiviral activities ready for industrial trials and further commercialization, while others are in various stages of development. Recently, the submerged cultivation of medicinal mushrooms has received a great deal of attention as a promising and reproducible alternative for the efficient production of mushroom mycelium and metabolites. Submerged cultivation of mushrooms has significant industrial potential, but its success on a commercial scale depends on increasing product yields and development of novel production systems that address the problems associated with this technique of mushroom cultivation. In spite of many researchers' efforts for the production of bioactive metabolites by mushrooms, the physiological and engineering aspects of submerged cultures are still far from being thoroughly studied. The vast majority of studies have focused on polysaccharide and ganoderic acid production in submerged cultivation of medicinal mushrooms, and very little has been written so far on the antioxidant and hemagglutinating activity of submerged mushroom cultures. The purpose of this review is to provide an update of the present state of the art and future prospects of submerged cultivation of medicinal mushrooms to produce mycelium and bioactive metabolites, and to make a

  20. The influences of cultivation setting on inflorescence lipid distributions, concentrations, and carbon isotope ratios of Cannabis sp.

    PubMed

    Tipple, Brett J; Hambach, Bastian; Barnette, Janet E; Chesson, Lesley A; Ehleringer, James R

    2016-05-01

    While much is known about how the growth environment influences many aspects of floral morphology and physiology, little is known about how the growth setting influences floral lipid composition. We explored variations in paraffin wax composition in Cannabis sp., a cash crop grown both indoors and outdoors across the United States today. Given an increased focus on regulation of this crop, there are additional incentives to certify the setting of Cannabis cultivation. To understand the impacts of the growth environment, we studied distributions, concentrations, and carbon isotope ratios of n-alkanes isolated from Cannabis sp. inflorescences to assess if variations within these lipid parameters were related to known growth settings of specimens seized by federal agents. We found that Cannabis plants cultivated under open-field settings had increased inflorescence paraffin wax abundances and greater production of lower molecular weight n-alkanes relative to plants grown in enclosed environments. Further, the carbon isotope ratios of n-C29 from Cannabis plants grown in enclosed environments had relatively lower carbon isotope (δ(13)C) values compared to plants from open-field environments. While this set of observations on seized plant specimens cannot address the particular driver behind these observations, we posit that (a) variations in irradiance and/or photoperiod may influence the distribution and concentration of inflorescence lipids, and (b) the δ(13)C value of source CO2 and lipid concentration regulates the δ(13)C values of inflorescence n-C29 and bulk Cannabis plant materials. Nonetheless, by using a cultivation model based on δ(13)C values of n-C29, the model correctly identified the growth environment 90% of time. We suggest that these lipid markers may be used to trace cultivation methods of Cannabis sp. now and become a more powerful marker in the future, once the mechanism(s) behind these patterns is uncovered.

  1. Allele distributions at hybrid incompatibility loci facilitate the potential for gene flow between cultivated and weedy rice in the US.

    PubMed

    Craig, Stephanie M; Reagon, Michael; Resnick, Lauren E; Caicedo, Ana L

    2014-01-01

    The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL), have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds.

  2. The Species Identity of the Widely Cultivated Ganoderma, ‘G. lucidum’ (Ling-zhi), in China

    PubMed Central

    Wang, Xin-Cun; Xi, Rui-Jiao; Li, Yi; Wang, Dong-Mei; Yao, Yi-Jian

    2012-01-01

    Ling-zhi, a widely cultivated fungus in China, has a long history in traditional Chinese medicine. Although the name ‘Ganoderma lucidum’, a species originally described from England, has been applied to the fungus, their identities are not the same. This study aims to clarify the identity of this medicinally and economically important fungus. Specimens of Ling-zhi from China (field collections and cultivated basidiomata of the Chinese ‘G. lucidum’), G. lucidum from UK and other related Ganoderma species, were examined both morphologically and molecularly. High variability of basidioma morphology was found in the cultivated specimens of the Chinese ‘G. lucidum’, while some microscopic characters were more or less consistent, i.e. short clavate cutis elements, Bovista-type ligative hyphae and strongly echinulate basidiospores. These characters were also found in the holotype of G. sichuanense, a species originally described from Sichuan, China, and in recent collections made in the type locality of the species, which matched the diagnostic characters in the prologue. For comparison, specimens of closely related species, G. lucidum, G. multipileum, G. resinaceum, G. tropicum and G. weberianum, were also examined. DNA sequences were obtained from field collections, cultivated basidiomata and living strains of the Chinese ‘G. lucidum’, specimens from the type locality of G. sichuanense, and specimens of the closely related species studied. Three-gene combined analyses (ITS+IGS+rpb2) were performed and the results indicated that the Chinese ‘G. lucidum’ shared almost identical sequences with G. sichuanense. Based on both morphological and molecular data, the identity of the Chinese ‘G. lucidum’ (Ling-zhi) is considered conspecific with G. sichuanense. Detailed morphological descriptions and illustrations are provided in addition to discussion of nomenclature implications. PMID:22911713

  3. Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton domestication was achieved by converting perennial trees into annual crops. After ploidization, two allotetraploid species, Gossypium hirsutum and G. barbadense, were domesticated and are cultivated worldwide. However, the overall genetic diversity between and within the cultivated species is...

  4. An Online Process Model of Second-Order Cultivation Effects: How Television Cultivates Materialism and Its Consequences for Life Satisfaction

    ERIC Educational Resources Information Center

    Shrum, L. J.; Lee, Jaehoon; Burroughs, James E.; Rindfleisch, Aric

    2011-01-01

    Two studies investigated the interrelations among television viewing, materialism, and life satisfaction, and their underlying processes. Study 1 tested an online process model for television's cultivation of materialism by manipulating level of materialistic content. Viewing level influenced materialism, but only among participants who reported…

  5. Persistence of oxyfluorfen in soil, runoff water, sediment and plants of a sunflower cultivation.

    PubMed

    Mantzos, N; Karakitsou, A; Hela, D; Patakioutas, G; Leneti, E; Konstantinou, I

    2014-02-15

    A field dissipation and transport study of oxyfluorfen in a sunflower cultivation under Mediterranean conditions have been conducted in silty clay plots (cultivated and uncultivated) with two surface slopes (1% and 5%). The soil dissipation and transport of oxyfluorfen in runoff water and sediment, as well as the uptake by sunflower plants, were investigated over a period of 191 days. Among different kinetic models assayed, soil dissipation rate of oxyfluorfen was better described by first-order kinetics. The average half-life was 45 and 45.5 days in cultivated plots with soil slopes 5% and 1% respectively, and 50.9 and 52.9 days in uncultivated plots with soil slopes 5% and 1%. The herbicide was detected below the 10 cm soil layer 45 days after application (DAA). Limited amounts of oxyfluorfen were moved with runoff water and the cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.007% and 0.005% of the initial applied active ingredient, while for the plots with slope of 1%, the respective values were 0.002% and 0.001%. The maximum concentration of oxyfluorfen in sediment ranged from 1.46 μg g(-1) in cultivated plot with soil slope 1% to 2.33 μg g(-1) in uncultivated plot with soil slope 5%. The cumulative losses from tilled and untilled plots with slope 5% were estimated at 0.217% and 0.170% while for the plots with slope of 1%, the respective values were 0.055% and 0.025%. Oxyfluorfen was detected in sunflower plants until the day of harvest; maximum concentrations in stems and leaves (0.042 μg g(-1)) were observed 33 DAA and in roots (0.025 μg g(-1)) 36 DAA. In conclusion, oxyfluorfen hardly moves into silty clay soil and exhibited low run-off potential so it represents a low risk herbicide for the contamination of ground and adjacent water resources.

  6. Bioenergy Landscape Design to Minimize the Environmental Impacts of Feedstock Cultivation

    NASA Astrophysics Data System (ADS)

    Field, J.; Dinh, T.; Paustian, K.

    2012-12-01

    The United States has adopted aggressive mandates for the use of biofuels in an attempt to improve domestic energy security, reduce greenhouse gas (GHG) emissions in the transportation sector, and stimulate rural development. The Renewable Fuel Standard requires that the environmental impact of all conventional, advanced, and cellulosic biofuels be evaluated through standardized lifecycle assessment (LCA) techniques relative to a baseline of petroleum-derived gasoline and diesel fuels. A significant fraction of the energy use, GHG emissions, and water quality impact of the production of all types of biofuel occurs during the cultivation of feedstocks (either starch- or oil-based or lignocellulosic), which requires some combination of crop switching, land use change, or cultivation intensification. Furthermore, these impacts exhibit a high degree of spatial variability with local climate, soil type, land use history, and farm management practices. Here we present a spatially-explicit LCA methodology based on the DayCent soil biogeochemistry model capable of accurately evaluating cultivation impacts for a variety of biofuel feedstocks. This methodology considers soil GHG emissions and nitrate leaching as well as the embodied emissions of agricultural inputs and fuels used for field operations and biomass transport to a centralized collection point (biorefinery or transportation hub). Model results are incorporated into a biomass production cost analysis in order to identify the impact of different system designs on production cost. Finally, the resulting multi-criteria optimization problem is solved by monetizing all environmental externalities based on figures from the non-market valuation literature and using a heuristic optimization algorithm to identify optimal cultivation areas and collection point locations to minimize overall environmental impacts at lowest possible cost. Preliminary analysis results are presented for an illustrative case study of switchgrass

  7. Impact of 9 years of Bt-maize cultivation on the distribution of maize viruses.

    PubMed

    Achon, Maria Angeles; Alonso-Dueñas, Natalia

    2009-06-01

    This study assesses the effect of Bt-maize on the distribution of maize viruses. Random surveys were conducted in Spain between 2001 and 2006 to evaluate the occurrence of maize viruses in Bt-maize cultivation areas and in areas where this crop had not been introduced. Maize dwarf mosaic virus (MDMV) was the predominant virus in Bt-areas, and Maize rough dwarf virus (MRDV) was the most predominant one in non-Bt-areas, with MRDV an emergent virus in both types of areas. A decline in the occurrence of MDMV and an increase in that of Sugarcane mosaic virus was observed in Bt-areas. Additionally, data obtained over 6 years in experimental fields showed non-significant differences between the infection rates exhibited by two generations of Bt varieties and the non-transformed isogenics varieties for any of the viruses. Our data suggest that differences in virus distribution are linked to the genetic background of the maize varieties and the distribution of virus reservoirs rather than to Bt-maize cultivation.

  8. Characterization of functional trait diversity among Indian cultivated and weedy rice populations

    PubMed Central

    Rathore, M.; Singh, Raghwendra; Kumar, B.; Chauhan, B. S.

    2016-01-01

    Weedy rice, a menace in rice growing areas globally, is biosimilar having attributes similar to cultivated and wild rice, and therefore is difficult to manage. A study was initiated to characterize the functional traits of 76 weedy rice populations and commonly grown rice cultivars from different agro-climatic zones for nine morphological, five physiological, and three phenological parameters in a field experiment under an augmented block design. Comparison between weedy and cultivated rice revealed a difference in duration (days) from panicle emergence to heading as the most variable trait and awn length as the least variable one, as evidenced from their coefficients of variation. The results of principal component analysis revealed the first three principal components to represent 47.3% of the total variation, which indicates an important role of transpiration, conductance, leaf-air temperature difference, days to panicle emergence, days to heading, flag leaf length, SPAD (soil-plant analysis development), grain weight, plant height, and panicle length to the diversity in weedy rice populations. The variations existing in weedy rice population are a major reason for its wider adaptability to varied environmental conditions and also a problem while trying to manage it. PMID:27072282

  9. Online optimal experimental re-design in robotic parallel fed-batch cultivation facilities.

    PubMed

    Cruz Bournazou, M N; Barz, T; Nickel, D B; Lopez Cárdenas, D C; Glauche, F; Knepper, A; Neubauer, P

    2017-03-01

    We present an integrated framework for the online optimal experimental re-design applied to parallel nonlinear dynamic processes that aims to precisely estimate the parameter set of macro kinetic growth models with minimal experimental effort. This provides a systematic solution for rapid validation of a specific model to new strains, mutants, or products. In biosciences, this is especially important as model identification is a long and laborious process which is continuing to limit the use of mathematical modeling in this field. The strength of this approach is demonstrated by fitting a macro-kinetic differential equation model for Escherichia coli fed-batch processes after 6 h of cultivation. The system includes two fully-automated liquid handling robots; one containing eight mini-bioreactors and another used for automated at-line analyses, which allows for the immediate use of the available data in the modeling environment. As a result, the experiment can be continually re-designed while the cultivations are running using the information generated by periodical parameter estimations. The advantages of an online re-computation of the optimal experiment are proven by a 50-fold lower average coefficient of variation on the parameter estimates compared to the sequential method (4.83% instead of 235.86%). The success obtained in such a complex system is a further step towards a more efficient computer aided bioprocess development. Biotechnol. Bioeng. 2017;114: 610-619. © 2016 Wiley Periodicals, Inc.

  10. Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils.

    PubMed

    Li, Baozhen; Ge, Tida; Xiao, Heai; Zhu, Zhenke; Li, Yong; Shibistova, Olga; Liu, Shoulong; Wu, Jinshui; Inubushi, Kazuyuki; Guggenberger, Georg

    2016-04-01

    Red soils are the major land resource in subtropical and tropical areas and are characterized by low phosphorus (P) availability. To assess the availability of P for plants and the potential stability of P in soil, two pairs of subtropical red soil samples from a paddy field and an adjacent uncultivated upland were collected from Hunan Province, China. Analysis of total P and Olsen P and sequential extraction was used to determine the inorganic and organic P fractions in different aggregate size classes. Our results showed that the soil under paddy cultivation had lower proportions of small aggregates and higher proportions of large aggregates than those from the uncultivated upland soil. The portion of >2-mm-sized aggregates increased by 31 and 20 % at Taoyuan and Guiyang, respectively. The total P and Olsen P contents were 50-150 and 50-300 % higher, respectively, in the paddy soil than those in the upland soil. Higher inorganic and organic P fractions tended to be enriched in both the smallest and largest aggregate size classes compared to the middle size class (0.02-0.2 mm). Furthermore, the proportion of P fractions was higher in smaller aggregate sizes (<2 mm) than in the higher aggregate sizes (>2 mm). In conclusion, soils under paddy cultivation displayed improved soil aggregate structure, altered distribution patterns of P fractions in different aggregate size classes, and to some extent had enhanced labile P pools.

  11. From computers to cultivation: reconceptualizing evolutionary psychology

    PubMed Central

    Barrett, Louise; Pollet, Thomas V.; Stulp, Gert

    2014-01-01

    Does evolutionary theorizing have a role in psychology? This is a more contentious issue than one might imagine, given that, as evolved creatures, the answer must surely be yes. The contested nature of evolutionary psychology lies not in our status as evolved beings, but in the extent to which evolutionary ideas add value to studies of human behavior, and the rigor with which these ideas are tested. This, in turn, is linked to the framework in which particular evolutionary ideas are situated. While the framing of the current research topic places the brain-as-computer metaphor in opposition to evolutionary psychology, the most prominent school of thought in this field (born out of cognitive psychology, and often known as the Santa Barbara school) is entirely wedded to the computational theory of mind as an explanatory framework. Its unique aspect is to argue that the mind consists of a large number of functionally specialized (i.e., domain-specific) computational mechanisms, or modules (the massive modularity hypothesis). Far from offering an alternative to, or an improvement on, the current perspective, we argue that evolutionary psychology is a mainstream computational theory, and that its arguments for domain-specificity often rest on shaky premises. We then go on to suggest that the various forms of e-cognition (i.e., embodied, embedded, enactive) represent a true alternative to standard computational approaches, with an emphasis on “cognitive integration” or the “extended mind hypothesis” in particular. We feel this offers the most promise for human psychology because it incorporates the social and historical processes that are crucial to human “mind-making” within an evolutionarily informed framework. In addition to linking to other research areas in psychology, this approach is more likely to form productive links to other disciplines within the social sciences, not least by encouraging a healthy pluralism in approach. PMID:25161633

  12. Field conditions at the Maricopa Agricultural Center, Maricopa County, Arizona, June 13, 1988

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1988-01-01

    Field conditions were documented during the Landsat satellite overpass of the Maricopa Agricultural Center, Maricopa County, Arizona, on June 13, 1988. Crop types were mapped and photographed for each demonstration farm field. Field conditions described include irrigation, cultivation, and orientation of rows. Field and photographic descriptions are presented in tabular form. (USGS)

  13. Microsatellite variability among wild and cultivated hops (Humulus lupulus L.).

    PubMed

    Jakse, Jernej; Satovic, Zlatko; Javornik, Branka

    2004-10-01

    Hop (Humulus lupulus L.) is a dioecious perennial plant native to the northern hemisphere cultivated for its use in the brewing industry. To investigate the genetic diversity present in wild hop accessions in comparison with cultivated hops, microsatellite marker variation was assessed at four loci in 124 accessions of wild (from Europe, Asia and from North America) and cultivated (varieties and breeding lines) hops. A total of 63 alleles were identified, with an average of 15.7 alleles per locus and an average PIC of 0.64 over four loci. The average number of alleles per locus in groups of accessions ranged from 5.75 to 8.30, with the highest number detected in groups of wild hops either of European (EU) or North American (NA) origin. Accessions from NA revealed the highest number of unique alleles indicating the high diversity present in this gene pool. Cluster analysis based on the D(D) or D(sw) distance matrix divided accessions into 10 different clusters, which reflect the relationship among geographically diverse wild accessions and hop cultivars. The highest genetic differences were found between NA wild accessions, forming one distant cluster, and all the other accessions. The differentiation between European wild and cultivated accessions was revealed by PCoA based on the D(D) distance matrix and by AMOVA results. Cultivated hops differ significantly from wild ones, although most of the variability was found within groups. The molecular variances within groups of cultivated and wild hops were homogeneous, suggesting that a similar level of molecular variability is found in both groups of accessions. The analysis of allele polymorphism and of allele sequences showed that hop germplasm can be differentiated to NA and EU geographic types according to the differences of allele sizes at three loci or by the specific microsatellite repeat type at one locus. The analysis also indicates the different evolutionary dynamics and complex mutations of microsatellite

  14. [A crisis of ginseng capital and the countermeasures of the ginseng-cultivating people during Daehan empire].

    PubMed

    Yang, Jeong Pil

    2009-12-01

    This thesis examines a crisis of ginseng capital and the source of crisis during Daehan empire. After the China-Japan war of 1894, the Japanese merchants actively engaged in taking over the ginseng fields, so that ginseng-cultivating Koreans suffered substantial economic losses. After the Russo-Japanese war, the Japanese imperialists undertook the 'Currency Arranging Business'(CAB) in order to set a cornerstone for their invasion of Korea. The CAB eventually provoked a wide depression which in turn produced massive number of Korean merchants going bankrupt. The Kaesong merchants were no exception, since CAB stroke a severe blow on the ginseng industry, which relied heavily on the commercial capitals of the Kaesong merchants. Moreover, the Japanese imperialists broke the previous promise and bought ginseng at a dirt-cheap price, which put ginseng-cultivating Koreans in serious trouble. In order to combat such crisis, ginseng field-owners protested against such injustice by petitioning or stirring up Kaesong popular riot in vain, and consequently the number of ginseng field-owners decreased sharply. A few of the ginseng field-owners survived, and managed to maintain and even flourish more than before. These successful owners were characterized with their strong link with the official circle, utilizing their influence in ginseng industry. Their original background was not identical as some came from the influential families of Kaesong area for generations, while others made their own fortunes and continue to prosper through the difficult times of the late of the Daehan empire period.

  15. Online automatic tuning and control for fed-batch cultivation

    PubMed Central

    van Straten, Gerrit; van der Pol, Leo A.; van Boxtel, Anton J. B.

    2007-01-01

    Performance of controllers applied in biotechnological production is often below expectation. Online automatic tuning has the capability to improve control performance by adjusting control parameters. This work presents automatic tuning approaches for model reference specific growth rate control during fed-batch cultivation. The approaches are direct methods that use the error between observed specific growth rate and its set point; systematic perturbations of the cultivation are not necessary. Two automatic tuning methods proved to be efficient, in which the adaptation rate is based on a combination of the error, squared error and integral error. These methods are relatively simple and robust against disturbances, parameter uncertainties, and initialization errors. Application of the specific growth rate controller yields a stable system. The controller and automatic tuning methods are qualified by simulations and laboratory experiments with Bordetella pertussis. PMID:18157554

  16. Bioreactor cultivation of anatomically shaped human bone grafts.

    PubMed

    Temple, Joshua P; Yeager, Keith; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana; Grayson, Warren L

    2014-01-01

    In this chapter, we describe a method for engineering bone grafts in vitro with the specific geometry of the temporomandibular joint (TMJ) condyle. The anatomical geometry of the bone grafts was segmented from computed tomography (CT) scans, converted to G-code, and used to machine decellularized trabecular bone scaffolds into the identical shape of the condyle. These scaffolds were seeded with human bone marrow-derived mesenchymal stem cells (MSCs) using spinner flasks and cultivated for up to 5 weeks in vitro using a custom-designed perfusion bioreactor system. The flow patterns through the complex geometry were modeled using the FloWorks module of SolidWorks to optimize bioreactor design. The perfused scaffolds exhibited significantly higher cellular content, better matrix production, and increased bone mineral deposition relative to non-perfused (static) controls after 5 weeks of in vitro cultivation. This technology is broadly applicable for creating patient-specific bone grafts of varying shapes and sizes.

  17. Optical sorting and cultivation of denitrifying anaerobic methane oxidation archaea

    PubMed Central

    Qi, Xiaoqiong; Carberry, David M.; Cai, Chen; Hu, Shihu; Yuan, Zhiguo; Dunlop, Halin Rubinsztein; Guo, Jianhua

    2017-01-01

    Denitrifying anaerobic methane oxidizing (DAMO) microorganisms play an important role in the global carbon and nitrogen cycles as they are able to mediate methane oxidation using nitrite/nitrate under anoxic conditions. However, the physiological properties of DAMO microorganisms remain poorly understood, partially since the organisms are difficult to isolate or cultivate in pure culture and partially because of their long cultivation time. In this study, DAMO cell sorting has been conducted by integrating optical tweezers within enclosed microfluidic chips. This integrated cell sorting method has high purity, low infection rates, and causes no discernable harm to cell viability. The purity of the sorted cells was controlled by the microfluidic chip structure design and operation, while the cell viability was verified by imaging the cultured DAMO archaea after 420 days. PMID:28270994

  18. Isolation and cultivation of stem cells from adult mouse testes.

    PubMed

    Guan, Kaomei; Wolf, Frieder; Becker, Alexander; Engel, Wolfgang; Nayernia, Karim; Hasenfuss, Gerd

    2009-01-01

    The successful isolation and cultivation of spermatogonial stem cells (SSCs) as well as induction of SSCs into pluripotent stem cells will allow us to study their biological characteristics and their applications in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the isolation of testicular cells from adolescent mice by a modified enzymatic procedure; the enrichment of undifferentiated spermatogonia by laminin selection or genetic selection using Stra8-EGFP (enhanced green fluorescent protein) transgenic mice; the cultivation and conversion of undifferentiated spermatogonia into embryonic stem-like cells, so-called multipotent adult germline stem cells (maGSCs); and characterization of these cells. Normally, it will take about 16 weeks to obtain stable maGSC lines starting from the isolation of testicular cells.

  19. Isolation, cultivation, and characterization of adult murine prostate stem cells

    PubMed Central

    Lukacs, Rita U.; Goldstein, Andrew S.; Lawson, Devon A.; Cheng, Donghui; Witte, Owen N.

    2010-01-01

    ABSTRACT/SUMMARY The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we provide step-by-step procedures on the basis of previous work in our laboratory for: the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; the cultivation of prostate stem cells in vitro; and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally it will take approximately 8 hours to harvest prostate cells, isolate the stem cell enriched population, and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo. PMID:20360765

  20. Isolation, cultivation and characterization of adult murine prostate stem cells.

    PubMed

    Lukacs, Rita U; Goldstein, Andrew S; Lawson, Devon A; Cheng, Donghui; Witte, Owen N

    2010-04-01

    The successful isolation and cultivation of prostate stem cells will allow us to study their unique biological properties and their application in therapeutic approaches. Here we describe step-by-step procedures on the basis of previous work in our laboratory for the harvesting of primary prostate cells from adolescent male mice by a modified enzymatic procedure; the isolation of an enriched population of prostate stem cells through cell sorting; and the cultivation of prostate stem cells in vitro and characterization of these cells and their stem-like activity, including in vivo tubule regeneration. Normally, it will take approximately 8 h to harvest prostate cells, isolate the stem cell-enriched population and set up the in vitro sphere assay. It will take up to 8 weeks to analyze the unique properties of the stem cells, including their regenerative capacity in vivo.

  1. Cultivation Of Microalgae (Chlorella vulgaris) For Biodiesel Production

    NASA Astrophysics Data System (ADS)

    Blinová, Lenka; Bartošová, Alica; Gerulová, Kristína

    2015-06-01

    Production of biofuel from renewable sources is considered to be one of the most sustainable alternatives to petroleum sourced fuels. Biofuels are also viable means of environmental and economic sustainability. Biofuels are divided into four generations, depending on the type of biomass used for biofuels production. At present, microalgae are presented as an ideal third generation biofuel feedstock because of their rapid growth rate. They also do not compete with food or feed crops, and can be produced on non-arable land. Cultivation conditions (temperature, pH, light, nutrient quantity and quality, salinity, aerating) are the major factors that influence photosynthesis activity and behaviour of the microalgae growth rate. In this paper, we present an overview about the effect of cultivation conditions on microalgae growth.

  2. Analysis of long-term degradation behaviour of polyethylene mulching films with pro-oxidants under real cultivation and soil burial conditions.

    PubMed

    Briassoulis, Demetres; Babou, Epifaneia; Hiskakis, Miltiadis; Kyrikou, Ioanna

    2015-02-01

    Apart from the conventional polyethylene and the bio-based or mainly bio-based biodegradable in soil mulching films, polyethylene mulching films of controlled degradation in soil are already used in agriculture. The use of special pro-oxidants as additives is expected to accelerate the abiotic oxidation and the subsequent chain scission of the polymer under specific UV radiation or thermal degradation conditions, according to the literature. The role of pro-oxidants in the possible biodegradation of polyethylene has been theoretically supported through the use of controlled laboratory conditions. However, results obtained in real soil conditions, but also several laboratory test results, are not supporting these claims and the issue remains disputed. Mulching films made of linear low-density polyethylene (LLDPE) with pro-oxidants, after being used for one cultivation period in an experimental field with watermelon cultivation, were buried in the soil under real field conditions. This work presents the analysis of the degradation of the mulching films during the cultivation period as compared to the corresponding changes after a long soil burial period of 8.5 years. The combined effects of critical factors on the photochemical degradation of the degradable mulching LLDPE films with pro-oxidants under the cultivation conditions and their subsequent further degradation behaviour in the soil are analysed by testing their mechanical properties and through spectroscopic and thermal analysis.

  3. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  4. Effects of maize cultivation on nitrogen and phosphorus loadings to drainage channels in Central Chile.

    PubMed

    Corradini, Fabio; Nájera, Francisco; Casanova, Manuel; Tapia, Yasna; Singh, Ranvir; do Salazar, Osval

    2015-11-01

    There are concerns about the impact of maize cultivation with high applications of nitrogen (N) and phosphorus (P) on water quality in surface waters in Mediterranean Central Chile. This study estimated the contribution of N and P from maize fields to nearby drainage channels and evaluated the effects in water quality. An N and P budget was drawn up for three fields managed with a maize-fallow system, El Maitén (20.7 ha), El Naranjal (14.9 ha) and El Caleuche (4.2 ha), and water quality variables (pH, EC, dissolved oxygen, total solids, turbidity, NO3-N, NH4-N, PO4(3-), COD, total N, total P and sulphate) were monitored in nearby drainage channels. The N and P balances for the three fields indicated a high risk of N and P non-point source pollution, with fertiliser management, soil texture and climate factors determining the temporal variations in water quality parameters. Elevated levels of NH4-N and PO4(3-) in the drainage channels were usually observed during the winter period, while NO3- concentrations did not show a clear tendency. The results suggest that excessive slurry application during winter represents a very high risk of N and P runoff to drainage channels. Overall, great emphasis must be placed on good agronomic management of fields neighbouring drainage channels, including accurately calculating N and P fertiliser rates and establishing mitigation measures.

  5. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems

    NASA Astrophysics Data System (ADS)

    Fagúndez, Jaime; Olea, Pedro P.; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  6. [Population development characteristics of rice crop cultivated on aerobic soil with mulching].

    PubMed

    Sheng, Haijun; Shen, Qirong; Feng, Ke

    2004-01-01

    Field experiments were carried out to study the population development characteristics of rice crop cultivated both on aerobic and waterlogged soil conditions. The results showed that the whole growth duration of rice growing on aerobic soil was one week longer than that on waterlogged soil. Shorter and narrower leaves and smaller LAI of rice population were found on aerobic soil than on waterlogged soil, which resulted in a decreased photosynthesis, smaller amount and lighter weight of rice grains on aerobic soil, compared with those on waterlogged soil. Among the aerobic treatments, more tillers, lower percentage of filled grains and shorter duration of grain forming were found on soils covered with plastic film than on soils covered with semi-decomposed straw or without mulching. The rice grain yield was decreased in the order of waterlogged soil > aerobic soil covered with plastic film > aerobic soil covered with semi-decomposed straw > aerobic soil without mulching.

  7. ESA Experiments with the European Modular Cultivation System (EMCS)

    NASA Astrophysics Data System (ADS)

    Brillouet, Claude; Briganti, Luca; Schwarzwalder, Achim

    2008-06-01

    The European Modular Cultivation System (EMCS) is an ESA developed facility dedicated to gravitational biology and especially to plant research. However, experiments using small animals, like insects and small invertebrates are also possible. EMCS is onboard the International Space Station (ISS) since July 2006 and four experiments, including two from ESA, have been already performed. Several others are in their final development phase and shall be flown within the next following years.

  8. Cultivation of Human Oral Mucosal Explants on Contact Lenses.

    PubMed

    Zsebik, Barbara; Ujlaky-Nagy, László; Losonczy, Gergely; Vereb, György; Takács, Lili

    2017-03-24

    Purpose/Aim: Autologous cultivated oral mucosal (OM) epithelial transplantation has been successfully used as corneal epithelial replacement in bilateral limbal stem cell deficiency. Recently, lotrafilcon A contact lens (CL) surface was described as a suitable carrier for cultured stem cells in corneal epithelial transplantation. Our aim was to establish explant cultures from human OM on CL carriers that are free of animal-derived materials and feeder cells.

  9. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants

    PubMed Central

    Vialatte, Aude; Dedryver, Charles-Antoine; Simon, Jean-Christophe; Galman, Marina; Plantegenest, Manuel

    2005-01-01

    Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed. PMID:16024367

  10. Measurement of Electrical Conductivity into Tomato Cultivation Beds using Small Insertion Type Electrical Conductivity Sensor Designed for Agriculture

    NASA Astrophysics Data System (ADS)

    Kawashima, Kazuko; Futagawa, Masato; Ban, Yoshihiro; Asano, Yoshiyuki; Sawada, Kazuaki

    Our group has studied on-site monitoring sensor for agricultural field. An electrical conductivity (EC) sensor had been fabricated using Si integrated circuit technology. EC information of solutions shows ion concentrations dissolving in water, and can be used as the index of nutrient concentration for plants. So, it is important to measure EC in real time and on site. Because our EC sensor (5mm×5mm in size) is smaller than other commercial ones (several centimeters), it is easy to insert and achieve measurement in rock wool. In this study, our sensor measured long term EC values in tomato cultivation soil and rock wool medium. At first, we calibrated a relationship between output voltages and EC values on the sensor. The sensor was confirmed about enough EC measurement range from 8 to 969mS/m. In long period measurement, the sensor was confirmed about continuous operation for over five months, and intermittent measurement for over a year. In measurement in the cultivation soil, the sensor indicated that water was kept and diffused in the soil. In contrast, it was found that water diffused without keeping in it in rock wool medium. We confirmed our small EC sensor is useful for on-site monitoring and analysis of solution concentration distribution in several kinds of cultivation bed in real time.

  11. Daily dynamics of the number and activity of nitrogen-fixing bacteria in fallow and intensely cultivated soils

    NASA Astrophysics Data System (ADS)

    Emer, N. R.; Semenov, A. M.; Zelenev, V. V.; Zinyakova, N. B.; Kostina, N. V.; Golichenkov, M. V.

    2014-08-01

    The daily dynamics (during 33 days) of the number (colony-forming units (CFU)) of nitrogen-fixing bacteria and of the nitrogen-fixing activity (the acetylene method) were determined in a gray forest soil under a fallow land and under an intensely cultivated field. The daily dynamics of the CFUs determined on the nitrogen-free medium in the samples from both plots had wavelike patterns. The daily values of the actual and potential activities of nitrogen fixation in the samples from the fallow land plot and of the actual activity of nitrogen fixation in the samples from the intensely cultivated soil were low and close to the detection limit. The potential activity of nitrogen fixation in the intensely cultivated soil was significant and also had a wavelike pattern. The harmonic analysis of the daily dynamics of the CFUs and nitrogen fixation showed the statistically significant harmonics of these biological characteristics pointing to the objective and regular character of the wavelike dynamics. The revealed dynamics of the biological characteristics of the soils and the methods of their analysis are important in terms of the comparative study of the biological properties of different soils.

  12. Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants.

    PubMed

    Vialatte, Aude; Dedryver, Charles-Antoine; Simon, Jean-Christophe; Galman, Marina; Plantegenest, Manuel

    2005-05-22

    Habitats in agroecosystems are ephemeral, and are characterized by frequent disturbances forcing pest species to successively colonize various hosts belonging either to the cultivated or to the uncultivated part of the agricultural landscape. The role of wild habitats as reservoirs or refuges for the aphid Sitobion avenae that colonize cultivated fields was assessed by investigating the genetic structure of populations collected on both cereal crops (wheat, barley and oat) and uncultivated hosts (Yorkshire fog, cocksfoot, bulbous oatgrass and tall oatgrass) in western France. Classical genetic analyses and Bayesian clustering algorithms indicate that genetic differentiation is high between populations collected on uncultivated hosts and on crops, revealing a relatively limited gene flow between the uncultivated margins and the cultivated part of the agroecosystem. A closer genetic relatedness was observed between populations living on plants belonging to the same tribe (Triticeae, Poeae and Aveneae tribes) where aphid genotypes appeared not to be specialized on a single host, but rather using a group of related plant species. Causes of this ecological differentiation and its implications for integrated pest management of S. avenae as cereals pest are discussed.

  13. Light scattering application for bacterial cell monitoring during cultivation process

    NASA Astrophysics Data System (ADS)

    Kotsyumbas, Igor Ya.; Kushnir, Igor M.; Bilyy, Rostyslav O.; Yarynovska, Ivanna H.; Getman, Vasyl'B.; Bilyi, Alexander I.

    2007-07-01

    Monitoring of bacterial cell numbers is of great importance not only in microbiological industry but also for control of liquids contamination in the food and pharmaceutical industries. Here we describe a novel low-cost and highly efficient technology for bacterial cell monitoring during cultivation process. The technology incorporates previously developed monitoring device and algorithm of its action. The devise analyses light scattered by suspended bacterial cells. Current stage utilizes monochromatic coherent light and detects amplitudes and durations of scattered light impulses, it does not require any labeling of bacterial cell. The system is calibrated using highly purificated bacteria-free water as standard. Liquid medial are diluted and analyzed by the proposed technology to determine presence of bacteria. Detection is done for a range of particle size from 0.1 to 10 μm, and thus particles size distribution is determined. We analyzed a set of different bacterial suspensions and also their changes in quantity and size distribution during cultivation. Based on the obtained results we conclude that proposed technology can be very effective for bacteria monitoring during cultivation process, providing benefits of low simplicity and low cost of analysis with simultaneous high detection precision.

  14. Algae biomass cultivation in nitrogen rich biogas digestate.

    PubMed

    Krustok, I; Diaz, J G; Odlare, M; Nehrenheim, E

    2015-01-01

    Because microalgae are known for quick biomass growth and nutrient uptake, there has been much interest in their use in research on wastewater treatment methods. While many studies have concentrated on the algal treatment of wastewaters with low to medium ammonium concentrations, there are several liquid waste streams with high ammonium concentrations that microalgae could potentially treat. The aim of this paper was to test ammonium tolerance of the indigenous algae community of Lake Mälaren and to use this mixed consortia of algae to remove nutrients from biogas digestate. Algae from Lake Mälaren were cultivated in Jaworski's Medium containing a range of ammonium concentrations and the resulting algal growth was determined. The algae were able to grow at NH4-N concentrations of up to 200 mg L(-1) after which there was significant inhibition. To test the effectiveness of the lake water algae on the treatment of biogas digestate, different pre-cultivation set-ups and biogas digestate concentrations were tested. It was determined that mixing pre-cultivated suspension algae with 25% of biogas digestate by volume, resulting in an ammonium concentration of around 300 mg L(-1), produced the highest algal growth. The algae were effective in removing 72.8±2.2% of NH4-N and 41.4±41.4% of PO4-P.

  15. A trap for in situ cultivation of filamentous actinobacteria

    PubMed Central

    Gavrish, Ekaterina; Bollmann, Annette; Epstein, Slava; Lewis, Kim

    2008-01-01

    The approach of growing microorganisms in situ, or in a simulated natural environment is appealing, and different versions of it have been described by several groups. The major difficulties with these approaches are that they are not selective for actinomycetes – a group of gram-positive bacteria well known as a rich source of antibiotics. In order to efficiently access actinomycetes, a trap for specifically capturing and cultivating these microorganisms in situ has been developed, based on the ability of these bacteria to form hyphae and penetrate solid environments. The trap is formed by two semi-permeable membranes (0.2 – 0.6 μm pore-size bottom membrane and 0.03 μm pore-size top membrane) glued to a plastic washer with sterile agar or gellan gum inside. The trap is placed on top of soil, and filamentous microorganisms selectively penetrate into the device and form colonies. Decreasing the size of the pores of the lower membrane to 0.2 μm restricted penetration of fungi. The trap produced more filamentous actinobacteria, and a higher variety of them, as compared to a conventional Petri dish cultivation from the same soil sample. Importantly, the trap cultivation resulted in the isolation of unusual and rare actinomycetes. PMID:18255181

  16. Efficient cultivation conditions for human limbal epithelial cells.

    PubMed

    Kim, Mee Kum; Lee, Jae Lim; Oh, Joo Youn; Shin, Mi Sun; Shin, Kyeong Seon; Wee, Won Ryang; Lee, Jin Hak; Park, Ki Sook; Son, Young Sook

    2008-10-01

    To compare the stem niche in different culture conditions of limbal epithelial cells, the suspended human limbal epithelial cells (HLECs) were seeded on the 3T3-pretreated plates and the other suspended cells were plated on amniotic membranes (AMs) which were either cryo-preserved or freeze-dried. All were cultured for 10 to 12 days. Reverse transcription-polymerase chain reaction (RT-PCR) for ATP-binding cassette, subfamily G, member 2 (ABCG2), p63, cytokeratin 12, and connexin 43 were performed in cultivated HLECs and their expression levels were compared. The mRNA expression of all markers examined showed no statistically significant differences between the cells on cryo-preserved and on freeze-dried AM. The expression of p63 and cytokeratin 12 in cultivated cells on AMs were significantly lower than those in 3T3-cocultured cells on RT-PCR and immunofluorescent staining. Cultivated HLECs on AMs showed reduced proliferation and differentiation while maintaining stem-property regardless of the preservative method of AM.

  17. 3D Cultivation Techniques for Primary Human Hepatocytes

    PubMed Central

    Bachmann, Anastasia; Moll, Matthias; Gottwald, Eric; Nies, Cordula; Zantl, Roman; Wagner, Helga; Burkhardt, Britta; Sánchez, Juan J. Martínez; Ladurner, Ruth; Thasler, Wolfgang; Damm, Georg; Nussler, Andreas K.

    2015-01-01

    One of the main challenges in drug development is the prediction of in vivo toxicity based on in vitro data. The standard cultivation system for primary human hepatocytes is based on monolayer cultures, even if it is known that these conditions result in a loss of hepatocyte morphology and of liver-specific functions, such as drug-metabolizing enzymes and transporters. As it has been demonstrated that hepatocytes embedded between two sheets of collagen maintain their function, various hydrogels and scaffolds for the 3D cultivation of hepatocytes have been developed. To further improve or maintain hepatic functions, 3D cultivation has been combined with perfusion. In this manuscript, we discuss the benefits and drawbacks of different 3D microfluidic devices. For most systems that are currently available, the main issues are the requirement of large cell numbers, the low throughput, and expensive equipment, which render these devices unattractive for research and the drug-developing industry. A higher acceptance of these devices could be achieved by their simplification and their compatibility with high-throughput, as both aspects are of major importance for a user-friendly device. PMID:27600213

  18. Formation and cultivation of medaka primordial germ cells.

    PubMed

    Li, Zhendong; Li, Mingyou; Hong, Ni; Yi, Meisheng; Hong, Yunhan

    2014-07-01

    Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.

  19. Energy-water nexus for mass cultivation of algae.

    PubMed

    Murphy, Cynthia Folsom; Allen, David T

    2011-07-01

    Microalgae are currently considered a potential feedstock for the production of biofuels. This work addresses the energy needed to manage the water used in the mass cultivation of saline, eukaryotic algae grown in open pond systems. Estimates of both direct and upstream energy requirements for obtaining, containing, and circulating water within algae cultivation systems are developed. Potential productivities are calculated for each of the 48 states within the continental U.S. based on theoretical photosynthetic efficiencies, growing season, and total available land area. Energy output in the form of algal biodiesel and the total energy content of algal biomass are compared to energy inputs required for water management. The analysis indicates that, for current technologies, energy required for water management alone is approximately seven times greater than energy output in the form of biodiesel and more than double that contained within the entire algal biomass. While this analysis addresses only currently identified species grown in an open-pond system, the water management requirements of any algae system will be substantial; therefore, it is critical that an energy assessment of water management requirements be performed for any cultivation technology and algal type in order to fully understand the energy balance of algae-derived biofuels.

  20. Agricultural intensification and changes in cultivated areas, 1970–2005

    PubMed Central

    Rudel, Thomas K.; Schneider, Laura; Uriarte, Maria; Turner, B. L.; DeFries, Ruth; Lawrence, Deborah; Geoghegan, Jacqueline; Hecht, Susanna; Ickowitz, Amy; Lambin, Eric F.; Birkenholtz, Trevor; Baptista, Sandra; Grau, Ricardo

    2009-01-01

    Does the intensification of agriculture reduce cultivated areas and, in so doing, spare some lands by concentrating production on other lands? Such sparing is important for many reasons, among them the enhanced abilities of released lands to sequester carbon and provide other environmental services. Difficulties measuring the extent of spared land make it impossible to investigate fully the hypothesized causal chain from agricultural intensification to declines in cultivated areas and then to increases in spared land. We analyze the historical circumstances in which rising yields have been accompanied by declines in cultivated areas, thereby leading to land-sparing. We use national-level United Nations Food and Agricultural Organization data on trends in cropland from 1970–2005, with particular emphasis on the 1990–2005 period, for 10 major crop types. Cropland has increased more slowly than population during this period, but paired increases in yields and declines in cropland occurred infrequently, both globally and nationally. Agricultural intensification was not generally accompanied by decline or stasis in cropland area at a national scale during this time period, except in countries with grain imports and conservation set-aside programs. Future projections of cropland abandonment and ensuing environmental services cannot be assumed without explicit policy intervention. PMID:19955435

  1. Use of diluted urine for cultivation of Chlorella vulgaris.

    PubMed

    Jaatinen, Sanna; Lakaniemi, Aino-Maija; Rintala, Jukka

    2016-01-01

    Our aim was to study the biomass growth of microalga Chlorella vulgaris using diluted human urine as a sole nutrient source. Batch cultivations (21 days) were conducted in five different urine dilutions (1:25-1:300), in 1:100-diluted urine as such and with added trace elements, and as a reference, in artificial growth medium. The highest biomass density was obtained in 1:100-diluted urine with and without additional trace elements (0.73 and 0.60 g L(-1), respectively). Similar biomass growth trends and densities were obtained with 1:25- and 1:300-diluted urine (0.52 vs. 0.48 gVSS L(-1)) indicating that urine at dilution 1:25 can be used to cultivate microalgal based biomass. Interestingly, even 1:300-diluted urine contained sufficiently nutrients and trace elements to support biomass growth. Biomass production was similar despite pH-variation from < 5 to 9 in different incubations indicating robustness of the biomass growth. Ammonium formation did not inhibit overall biomass growth. At the beginning of cultivation, the majority of the biomass consisted of living algal cells, while towards the end, their share decreased and the estimated share of bacteria and cell debris increased.

  2. Recycling produced water for algal cultivation for biofuels

    SciTech Connect

    Neal, Justin N.; Sullivan, Enid J.; Dean, Cynthia A.; Steichen, Seth A.

    2012-08-09

    Algal growth demands a continuous source of water of appropriate salinity and nutritional content. Fresh water sources are scarce in the deserts of the Southwestern United States, hence, salt water algae species are being investigated as a renewable biofuel source. The use of produced water from oil wells (PW) could offset the demand for fresh water in cultivation. Produced water can contain various concentrations of dissolved solids, metals and organic contaminants and often requires treatment beyond oil/water separation to make it suitable for algae cultivation. The produced water used in this study was taken from an oil well in Jal, New Mexico. An F/2-Si (minus silica) growth media commonly used to cultivate Nannochloropsis salina 1776 (NS 1776) was prepared using the produced water (F/2-Si PW) taking into account the metals and salts already present in the water. NS 1776 was seeded into a bioreactor containing 5L of the (F/2-Si PW) media. After eleven days the optical density at 750 nm (an indicator of algal growth) increased from 0 to 2.52. These results indicate algae are able to grow, though inhibited when compared with non-PW media, in the complex chemical conditions found in produced water. Savings from using nutrients present in the PW, such as P, K, and HCO{sub 3}{sup -}, results in a 44.38% cost savings over fresh water to mix the F/2-Si media.

  3. Ocular surface reconstruction by cultivated epithelial sheet transplantation.

    PubMed

    Satake, Yoshiyuki; Yamaguchi, Takefumi; Hirayama, Masatoshi; Higa, Kazunari; Shimazaki-Den, Seika; Dogru, Murat; Kawakita, Tetsuya; Kawashima, Motoko; Shimmura, Shigeto; Tsubota, Kazuo; Shimazaki, Jun

    2014-11-01

    Recent advances in ocular surface reconstruction for patients with severe ocular surface diseases have significantly improved the prognosis of patients with vision-impairing corneal abnormalities. The history of cultivated epithelial sheet transplantation is short, and debate on the current approaches for these procedures is continuing. Limbal stem cell transplantation, including conjunctivolimbal autograft and keratolimbal allograft, has brought opportunities for vision improvement. In addition, the use of cultivated limbal epithelial transplantation from both allogeneic and autologous sources has provided further options for immediate postoperative epithelialization of the corneal surface. Finally, cultivated oral mucosal epithelial transplantation, which allows autologous transplantation for patients with bilateral limbal stem cell deficiency, has provided the best overall midterm and long-term results. Its biggest advantages are the absence of rejection reactions and the reduction of postoperative complications associated with steroid therapy. However, a solitary surgical approach is not sufficient for obtaining a good clinical outcome. To maximize the possibility of success using these procedures, it is important to preoperatively enhance aggressive treatment of the ocular surface, especially with factors that facilitate moisture retention. In this review article, we also discuss our clinical experience in relation to these surgical procedures.

  4. Miniaturized Cultivation of Microbiota for Antimalarial Drug Discovery.

    PubMed

    Waterman, Carrie; Calcul, Laurent; Beau, Jeremy; Ma, Wai Sheung; Lebar, Matthew D; von Salm, Jacqueline L; Harter, Charles; Mutka, Tina; Morton, Lindsay C; Maignan, Patrick; Barisic, Betty; van Olphen, Alberto; Kyle, Dennis E; Vrijmoed, Lilian; Pang, Ka-Lai; Pearce, Cedric J; Baker, Bill J

    2016-01-01

    The ongoing search for effective antiplasmodial agents remains essential in the fight against malaria worldwide. Emerging parasitic drug resistance places an urgent need to explore chemotherapies with novel structures and mechanisms of action. Natural products have historically provided effective antimalarial drug scaffolds. In an effort to search nature's chemical potential for antiplasmodial agents, unconventionally sourced organisms coupled with innovative cultivation techniques were utilized. Approximately 60,000 niche microbes from various habitats (slow-growing terrestrial fungi, Antarctic microbes, and mangrove endophytes) were cultivated on a small-scale, extracted, and used in high-throughput screening to determine antimalarial activity. About 1% of crude extracts were considered active and 6% partially active (≥ 67% inhibition at 5 and 50 μg/mL, respectively). Active extracts (685) were cultivated on a large-scale, fractionated, and screened for both antimalarial activity and cytotoxicity. High interest fractions (397) with an IC50 < 1.11 μg/mL were identified and subjected to chromatographic separation for compound characterization and dereplication. Identifying active compounds with nanomolar antimalarial activity coupled with a selectivity index tenfold higher was accomplished with two of the 52 compounds isolated. This microscale, high-throughput screening project for antiplasmodial agents is discussed in the context of current natural product drug discovery efforts.

  5. [Comprehensive evaluation of improving effects of different organic wastes on a newly reclaimed cultivated land].

    PubMed

    Xu, Qiu-tong; Kong, Zhang-liang; Zhang, Ming-kui

    2016-02-01

    There are many problems such as low soil organic matter, available nutrients and microbial activity, compaction, and poor tillage properties for a newly reclaimed cultivated land, and the establishment of a fast, effective measure for improving soil fertility quality is of importance to enhance the quality and production performance of the newly cultivated land. A field experiment was carried out to observe the effect of organic wastes on soil fertility of a newly reclaimed cultivated land, and compared the differences of different types of urban organic wastes. The field experiment included nine treatments, i.e., pig manure, chicken manure, rice straw, vegetable harvest residue, urban sludge, biogas residue, manure+rice straw compost, garbage compost and control without organic fertilizer at annual application rate of 30 t . hm-2, and ran for three consecutive years. The results showed that the application of each type of the eight organic wastes had obvious effects on improving soil fertility. Among them, pig manure, chicken manure, pig manure+rice straw compost, rice straw and biogas residue were the most effective to enhance the carbon pool management index of soil. The addition of pig manure+rice straw compost and biogas residue had the best effect on increasing the soil water stable aggregates and decreasing soil bulk density. Sewage sludge, pig manure+rice straw compost and garbage compost could enhance soil water holding capacity. Pig manure, chicken manure and pig manure+rice straw compost had most obvious effect on increasing soil available nutrients. All kinds of organic wastes increased the number of soil microorganisms and the activity of enzymes. There were some risk of soil heavy metals pollution.for the long-term application of sludge, garbage compost and manure. However, the impact of short-term application of the wastes on soil environmental quality was not obvious. Overall, effects of organic wastes on soil fertility decreased in the order of pig

  6. Rain-Shelter Cultivation Modifies Carbon Allocation in the Polyphenolic and Volatile Metabolism of Vitis vinifera L. Chardonnay Grapes

    PubMed Central

    Han, Mei-Mei; Yang, Xiao-Fan; Li, Zheng; Wang, Jun; Pan, Qiu-Hong

    2016-01-01

    This study investigated the effect of rain-shelter cultivation on the biosynthesis of flavonoids and volatiles in grapes, with an aim of determining whether rain-shelter application could help to improve the sensory attributes and quality of grapes. Vitis vinifera L. Chardonnay grapes, grown in the Huaizhuo basin region of northern China, were selected within two consecutive years. A rain-shelter roof was constructed using a colorless polyethylene (PE) film with a light transmittance of 80%. Results showed that rain-shelter treatment did not affect the accumulation of soluble solids during grape maturation. However, the allocation of assimilated carbon in phenolic and volatile biosynthetic pathways varied significantly, leading to alterations in polyphenolic and volatile profiles. The rain-shelter cultivation enhanced the concentration of flavan-3-ols via the flavonoid-3’5’-hydroxylase (F3’5’H) pathway, but reduced the level of flavonols and flavan-3-ols via the flavonoid-3’-hydroxylase (F3’H) pathway. In addition, the rain-shelter cultivation significantly enhanced the synthesis of fatty acid-derived volatiles, isoprene-derived terpenoids and amino acid-derived branched-chain aliphatics, but led to a decrease in the accumulation of isoprene-derived norisoprenoids and amino acid-derived benzenoids. Principal component analysis revealed some key compounds that differentiated the grapes cultivated under open-field and rain-shelter conditions. Moreover, the effect of the rain-shelter application on the accumulation of these compounds appeared to be vintage dependent. The alteration of their profiles caused by the rain-shelter treatment was significant in the vintage that received higher rainfall, which usually took place in the first rapid growth and veraison phases. PMID:27218245

  7. Rain-Shelter Cultivation Modifies Carbon Allocation in the Polyphenolic and Volatile Metabolism of Vitis vinifera L. Chardonnay Grapes.

    PubMed

    Gao, Yuan; Li, Xiao-Xi; Han, Mei-Mei; Yang, Xiao-Fan; Li, Zheng; Wang, Jun; Pan, Qiu-Hong

    2016-01-01

    This study investigated the effect of rain-shelter cultivation on the biosynthesis of flavonoids and volatiles in grapes, with an aim of determining whether rain-shelter application could help to improve the sensory attributes and quality of grapes. Vitis vinifera L. Chardonnay grapes, grown in the Huaizhuo basin region of northern China, were selected within two consecutive years. A rain-shelter roof was constructed using a colorless polyethylene (PE) film with a light transmittance of 80%. Results showed that rain-shelter treatment did not affect the accumulation of soluble solids during grape maturation. However, the allocation of assimilated carbon in phenolic and volatile biosynthetic pathways varied significantly, leading to alterations in polyphenolic and volatile profiles. The rain-shelter cultivation enhanced the concentration of flavan-3-ols via the flavonoid-3'5'-hydroxylase (F3'5'H) pathway, but reduced the level of flavonols and flavan-3-ols via the flavonoid-3'-hydroxylase (F3'H) pathway. In addition, the rain-shelter cultivation significantly enhanced the synthesis of fatty acid-derived volatiles, isoprene-derived terpenoids and amino acid-derived branched-chain aliphatics, but led to a decrease in the accumulation of isoprene-derived norisoprenoids and amino acid-derived benzenoids. Principal component analysis revealed some key compounds that differentiated the grapes cultivated under open-field and rain-shelter conditions. Moreover, the effect of the rain-shelter application on the accumulation of these compounds appeared to be vintage dependent. The alteration of their profiles caused by the rain-shelter treatment was significant in the vintage that received higher rainfall, which usually took place in the first rapid growth and veraison phases.

  8. Slash and Burn Agriculture: A Dynamic Spatio-temporal Model of Shifting Cultivation Locations and Areas

    NASA Astrophysics Data System (ADS)

    Plagge, C. E.; Frolking, S.; Chini, L. P.; Hurtt, G.

    2008-12-01

    Shifting cultivation is a form of agriculture, also known as slash-and-burn or swidden agriculture, in which a plot of forest is cleared and then cultivated continuously for several years, after which it is abandoned to revert to natural vegetation, and then is subsequently re-cleared after a longer fallow period. Shifting cultivation is an important form of agriculture because it affects soil erosion rates, canopy cover in tropical forests, nutrient deficiency in soils, and also has an impact on the global carbon cycle. Because it is generally outside of the larger economy, shifting cultivation is not well-represented in large-scale earth system analyses. We investigated a new way to model shifting cultivation which will be included in a global land-use transitions model to better quantify this type of land use, both historically and into the future. Ultimately this study will improve simulations of changes in the Earth system and will aid in the study of the carbon cycle and thus climate change. Our model calculates the area of shifting cultivation in square kilometers per half-degree grid cell, using gridded population data, the fraction of that population that is rural, the fraction of global population that practices shifting cultivation, the crop area needed per person, and the length of cultivation plus the fallow. Locations of shifting cultivation were further constrained by variables such as potential vegetation biomass density, population density, fraction of land already in use, GDP per capita, and average winter temperatures. With this model, we generated global estimates for total cultivated area, total population involved in shifting cultivation, and total shifting cultivation area including fallow lands. From this model it was estimated that the total global area of shifting cultivation in 2000 was approximately 1.5 million km2 with 90,000 km2 of that actually in cultivation by 190 million people.

  9. The Population Genetics of Cultivation: Domestication of a Traditional Chinese Medicine, Scrophularia ningpoensis Hemsl. (Scrophulariaceae)

    PubMed Central

    Chen, Chuan; Li, Pan; Wang, Rui-Hong; Schaal, Barbara A.; Fu, Cheng-Xin

    2014-01-01

    Background Domestic cultivation of medicinal plants is an important strategy for protecting these species from over harvesting. Some species of medicinal plants have been brought into cultivation for more than hundreds years. Concerns about severe loss of genetic diversity and sustainable cultivation can potentially limit future use of these valuable plants. Genetic studies with comprehensive sampling of multiple medicinal species by molecular markers will allow for assessment and management of these species. Here we examine the population genetic consequences of cultivation and domestication in Scrophularia ningpoensis Hemsl. We used chloroplast DNA and genomic AFLP markers to clarify not only the effects of domestication on genetic diversity, but also determine the geographic origins of cultivars and their genetic divergence from native populations. These results will allow both better management of cultivated populations, but also provide insights for crop improvement. Results Twenty-one cpDNA haplotypes of S. ningpoensis were identified. Wild populations contain all haplotypes, whereas only three haplotypes were found in cultivated populations with wild populations having twice the haplotype diversity of cultivated populations. Genetic differentiation between cultivated populations and wild populations was significant. Genomic AFLP markers revealed similar genetic diversity patterns. Furthermore, Structure analysis grouped all wild populations into two gene pools; two of which shared the same gene pool with cultivated S. ningpoensis. The result of Neighbor-Joining analysis was consistent with the structure analysis. In principal coordinate analysis, three cultivated populations from Zhejiang Province grouped together and were separated from other cultivated populations. Conclusions These results suggest that cultivated S. ningpoensis has experienced dramatic loss of genetic diversity under anthropogenic influence. We postulate that strong artificial selection

  10. Diffusion and accumulation in cultivated vegetable plants of di-(2-ethylhexyl) phthalate (DEHP) from a plastic production factory.

    PubMed

    Du, Q Z; Wang, J W; Fu, X W; Xia, H L

    2010-08-01

    Di-(2-ethylhexyl) phthalate (DEHP) concentrations in the atmosphere and in four vegetable crops including Brassica chinensis L. (bok choy), Brassica campestris L. (field mustard), Vigna unguiculata Walp. (cowpea), and Solanum melongena L. (eggplant) cultivated on land surrounding a plastic production factory were determined. The air DEHP concentrations (means) at the sites 0.2, 0.4, 0.8, and 1.6 km away from the plastic production building were about 9.4-12.8, 5.8-9.6, 1.6-5.0, and 0.04-0.27 microg m(-3) dry weight (DW), respectively. Wind direction is a key factor influencing the measurable DEHP concentration of the air, which was highest in the downwind direction and lowest in the upwind direction, and thus the vegetables accumulated the highest DEHP contents in the downwind direction and the lowest quantities in the upwind direction. The highest DEHP accumulations content of bok choy, field mustard, eggplant, and cowpea were 52.0 +/- 3.1, 43.1 +/- 2.2, 36.2 +/- 2.8, and 19.4 +/- 0.47 mg kg(-1) DW, respectively. Safety estimation on the basis of the daily intake limit referenced by the US Environmental Protection Agency (USEPA) led to the conclusion that eating vegetables cultivated 0.2 km away from the plastic production building is not a food safety problem under normal conditions. A strong positive linear correlation between atmospheric DEHP concentration and DEHP content of the vegetable crops was found. The limits for air DEHP concentration for safe vegetable cultivation are 24.0, 34.8, 40.8, and 82.8 microg m(-3) for bok choy, field mustard, cowpea, and eggplant, respectively, by calculating from the equation of linear regression between air DEHP concentration and vegetable DEHP content.

  11. Exposure of Cucurbita pepo to DDE-contamination alters the endophytic community: A cultivation dependent vs a cultivation independent approach.

    PubMed

    Eevers, N; Hawthorne, J R; White, J C; Vangronsveld, J; Weyens, N

    2016-02-01

    2,2-bis(p-chlorophenyl)-1,1-dichloro-ethylene (DDE) is the most abundant and persistent degradation product of the pesticide 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT) and is encountered in contaminated soils worldwide. Both DDE and DDT are classified as Persistent Organic Pollutants (POPs) due to their high hydrophobicity and potential for bioaccumulation and biomagnification in the food chain. Zucchini (Cucurbita pepo ssp. pepo) has been shown to accumulate high concentrations of DDE and other POPs and has been proposed as a phytoremediation tool for contaminated soils. The endophytic bacteria associated with this plant may play an important role in the remedial process. Therefore, this research focuses on changes in endophytic bacterial communities caused by the exposure of C. pepo to DDE. The total bacterial community was investigated using cultivation-independent 454 pyrosequencing, while the cultivable community was identified using cultivation-dependent isolation procedures. For both procedures, increasing numbers of endophytic bacteria, as well as higher diversities of genera were observed when plants were exposed to DDE. Several bacterial genera such as Stenotrophomonas sp. and Sphingomonas sp. showed higher abundance when DDE was present, while, for example Pseudomonas sp. showed a significantly lower abundance in the presence of DDE. These findings suggest tolerance of different bacterial strains to DDE, which might be incorporated in further investigations to optimize phytoremediation with the possible use of DDE-degrading endophytes.

  12. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil”...

  13. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil”...

  14. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil”...

  15. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil”...

  16. 29 CFR 780.110 - Operations included in “cultivation and tillage of the soil.”

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Operations included in âcultivation and tillage of the soil... FAIR LABOR STANDARDS ACT General Scope of Agriculture Cultivation and Tillage of the Soil § 780.110 Operations included in “cultivation and tillage of the soil.” “Cultivation and tillage of the soil”...

  17. Visual field

    MedlinePlus

    Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam : This is a quick and basic check of the visual field. The health care provider ...

  18. Composition of endophytic fungal community associated with leaves of maize cultivated in south Brazilian field.

    PubMed

    Szilagyi-Zecchin, Vivian J; Adamoski, Douglas; Gomes, Renata Rodrigues; Hungria, Mariangela; Ikeda, Angela C; Kava-Cordeiro, Vanessa; Glienke, Chirlei; Galli-Terasawa, Lygia V

    2016-12-01

    The objective of this study was to conduct a survey about fungi associated with leaves from two different maize plant lineages and to analyze their microbiota diversity. Isolated fungi were identified by morphological analysis and molecular taxonomy was performed using ITS1-5.8S-ITS2 rDNA. About 27 fungi morphotypes were obtained, 15 of them were from the first maize lineage. About 86.7% of the individuals belonged to the Dothideomycetes class (Phoma sorghina, Epicocum nigrum, Cladosporium sp., Bipolaris zeicola, and Alternaria alternata complex) and 13.3% to the Sordariomycetes class (Diaporthe/Phomopsis sp. and Nigrospora sp.). This ratio was opposite in the other maize lineage with 25.0% of Dothideomycetes (E. nigrum and Pleosporales) and 75.0% of Sordariomycetes (Gibberella fujikuroi complex, Fusarium graminearum complex, Diaporthe/Phomopsis sp., and Nigrospora sp.). By concerning the analyses of morphological characteristics and molecular phylogeny, this study intended to identify the groups of saprophytic, phytopathogenic, and mycotoxin fungi, which differently co-inhabit leaf tissue of maize plants in both tested lineages.

  19. Field conditions at the Maricopa Agricultural Center, Pinal County, Arizona, June 16, 1989

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1989-01-01

    Field conditions were documented during the SPOT satellite overpass of the Maricopa Agricultural Center, Pinal County, Arizona, on June 16, 1989. Crop types were mapped and photographed for each demonstration farm field, and irrigation, cultivation, and orientation of rows are described. Field and photographic descriptions are presented in tabular and graphic form. (USGS)

  20. Field conditions at the Maricopa Agricultural Center, Pinal County, Arizona, September 28, 1989

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1989-01-01

    Field conditions were documented during the Landsat and SPOT satellite overpasses of the Maricopa Agricultural Center, Pinal County, Arizona, on September 28, 1989. Crop types were mapped and photographed for each demonstration farm field, and irrigation, cultivation, and orientation of rows are described. Field and photographic descriptions are presented in tabular and graphic form. (USGS)

  1. Field conditions at the Maricopa Agricultural Center, Pinal County, Arizona, April 9, 1989

    USGS Publications Warehouse

    Owen-Joyce, Sandra J.

    1989-01-01

    Field conditions were documented during the SPOT satellite overpass of the Maricopa Agricultural Center, Pinal County, Arizona, on April 9, 1989. Crop types were mapped and photographed for each demonstration farm field, and irrigation, cultivation, and orientation of rows are described. Field and photographic descriptions are presented in tabular and graphic form. (USGS)

  2. Surface modification of closed plastic bags for adherent cell cultivation

    NASA Astrophysics Data System (ADS)

    Lachmann, K.; Dohse, A.; Thomas, M.; Pohl, S.; Meyring, W.; Dittmar, K. E. J.; Lindenmeier, W.; Klages, C.-P.

    2011-07-01

    In modern medicine human mesenchymal stem cells are becoming increasingly important. However, a successful cultivation of this type of cells is only possible under very specific conditions. Of great importance, for instance, are the absence of contaminants such as foreign microbiological organisms, i.e., sterility, and the chemical functionalization of the ground on which the cells are grown. As cultivation of these cells makes high demands, a new procedure for cell cultivation has been developed in which closed plastic bags are used. For adherent cell growth chemical functional groups have to be introduced on the inner surface of the plastic bag. This can be achieved by a new, atmospheric-pressure plasma-based method presented in this paper. The method which was developed jointly by the Fraunhofer IST and the Helmholtz HZI can be implemented in automated equipment as is also shown in this contribution. Plasma process gases used include helium or helium-based gas mixtures (He + N2 + H2) and vapors of suitable film-forming agents or precursors such as APTMS, DACH, and TMOS in helium. The effect of plasma treatment is investigated by FTIR-ATR spectroscopy as well as surface tension determination based on contact angle measurements and XPS. Plasma treatment in nominally pure helium increases the surface tension of the polymer foil due to the presence of oxygen traces in the gas and oxygen diffusing through the gas-permeable foil, respectively, reacting with surface radical centers formed during contact with the discharge. Primary amino groups are obtained on the inner surface by treatment in mixtures with nitrogen and hydrogen albeit their amount is comparably small due to diffusion of oxygen through the gas-permeable bag, interfering with the plasma-amination process. Surface modifications introducing amino groups on the inner surface turned out to be most efficient in the promotion of cell growth.

  3. Optimizing cultivation of agricultural products using socio-economic and environmental scenarios.

    PubMed

    RaheliNamin, Behnaz; Mortazavi, Samar; Salmanmahiny, Abdolrassoul

    2016-11-01

    The combination of degrading natural conditions and resources, climate change, growing population, urban development, and competition in a global market complicate optimization of land for agricultural products. The use of pesticides and fertilizers for crop production in the agricultural fields has become excessive in the recent years and Golestan Province of Iran is no exception in this regard. For this, effective management with an efficient and cost-effective practice should be undertaken, maintaining public service at a high level and preserving the environment. Improving the production efficiency of agriculture, efficient use of water resources, decreasing the use of pesticides and fertilizers, improving farmer revenue, and conservation of natural resources are the main objectives of the allocation, ranking, and optimization of agricultural products. The goal of this paper is to use an optimization procedure to lower the negative effects of agriculture while maintaining a high production rate, which is currently a gap in the study area. We collected information about fertilizer and pesticide consumption and other data in croplands of eastern Golestan Province through face-to-face interviews with farmers to optimize cultivation of the agricultural products. The toxicity of pesticides according to LD50 was also included in the optimization model. A decision-support software system called multiple criteria analysis tool was used to simultaneously minimize consumption of water, chemical fertilizers, and pesticides and maximize socio-economic returns. Three scenarios for optimization of agricultural products were generated that alternatively emphasized on environmental and socio-economic goals. Comparing socio-economic and environmental performance of the optimized agricultural products under the three scenarios illustrated the conflict between social, economic, and environmental objectives. Of the six crops studied (wheat, barley, rice, soybeans, oilseed rape

  4. Studies on damage of D. suzukii on grapes cultivated in Apulia Region

    NASA Astrophysics Data System (ADS)

    Broutou, Oussama; Baser, Nuray; Porcelli, Francesco; Verrastro, Vincenzo; Lamaj, Flutura

    2014-05-01

    each sample and put in contact with adults of D. suzukii (5 males and 5 females) for 24 hours. Infestation percentages were expressed by numbers of eggs and infected berries per sample As a preliminary results, we found a relevant infestation on the varieties "Italia" (75%) and "Scarlotta" (60%); coming form organic agriculture fields. The number of eggs collected from each berry ranged from 1 to 5. Twelve samples on a total of 19 came from conventional agriculture, five samples on a total of 23 came from organic agriculture, were found without damages. "Victoria" variety, came form a organic field located at IAMB was seen more resistant to D. suzukii than the varieties "Italia" and "Scarlotta" As a conclusion, there is the evidence that D. suzukii can become a big problem for grape cultivation in Puglia region, jeopardizing a very economically important sector of the regional agriculture Therefore, it is necessary a further investigation to understand the population dynamic and behaviour of this species as well as the possible control strategies for a control in organic agriculture. Key words: Drosophila suzukii, Vitis vinifera, Puglia, infestation, damages, organic agriculture, conventional agriculture

  5. Environmental life cycle assessment of Ethiopian rose cultivation.

    PubMed

    Sahle, Abiy; Potting, José

    2013-01-15

    A life cycle assessment (LCA) was conducted for Ethiopian rose cultivation. The LCA covered the cradle-to-gate production of all inputs to Ethiopian rose cultivation up to, and including transport to the Ethiopian airport. Primary data were collected about materials and resources used as inputs to, and about the product outputs from 21 farms in 4 geographical regions (i.e. Holleta, Sebeta, Debre Ziet, and Ziway). The primary data were imported in, and analyzed with the SimaPro7.3 software. Data for the production of used inputs were taken from the EcoInvent®2.0 database. Emissions from input use on the farms were quantified based on estimates and emission factors from various studies and guidelines. The resulting life cycle inventory (LCI) table was next evaluated with the CML 2 baseline 2000 V2/world, 1990/characterization method to quantify the contribution of the rose cultivation chain to 10 environmental impact categories. The set of collected primary data was comprehensive and of high quality. The data point to an intensive use of fertilizers, pesticides, and greenhouse plastic. Production and use of these inputs also represent the major contributors in all environmental impact categories. The largest contribution comes from the production of the used fertilizers, specifically nitrogen-based fertilizers. The use of calcium nitrate dominates Abiotic Depletion (AD), Global Warming (GW), Human Toxicity (HT) and Marine Aquatic Ecotoxicity (MAET). It also makes a large contribution to Ozone Depletion (OD), Acidification (AD) and Fresh water Aquatic Ecotoxicity (FAET). Acidification (AC) and Eutrophication (EU) are dominated by the emission of fertilizers. The emissions from the use of pesticides, especially insecticides dominate Terrestrial Ecotoxicity (TE) and make a considerable contribution to Freshwater Aquatic Ecotoxicity (FAET) and Photochemical Oxidation (PhO). There is no visible contribution from the use of pesticides to the other toxicity categories

  6. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems.

    PubMed

    Xia, Ao; Murphy, Jerry D

    2016-04-01

    Biogas production via anaerobic digestion (AD) has rapidly developed in recent years. In addition to biogas, digestate is an important byproduct. Liquid digestate is the major fraction of digestate and may contain high levels of ammonia nitrogen. Traditional processing technologies (such as land application) require significant energy inputs and raise environmental risks (such as eutrophication). Alternatively, microalgae can efficiently remove the nutrients from digestate while producing high-value biomass that can be used for the production of biochemicals and biofuels. Both inorganic and organic carbon sources derived from biogas production can significantly improve microalgal production. Land requirement for microalgal cultivation is estimated as 3% of traditional direct land application of digestate.

  7. In vitro cultivation of Schistosoma japonicum-parasites and cells.

    PubMed

    Ye, Qing; Dong, Hui-Fen; Grevelding, Christoph G; Hu, Min

    2013-12-01

    Schistosomiasis is a serious parasitic zoonosis caused by blood-dwelling flukes of the genus Schistosoma. Understanding functions of genes and proteins of this parasite is important for uncovering this pathogen's complex biology, which will provide valuable information to design new strategies for schistosomiasis control. Effective applications of molecular tools reported to investigate schistosome gene function, such as inhibitor studies and transgenesis, rely on the developments of in vitro cultivation system of this parasite and cells. Besides the in vitro culture studies dealing with Schistosoma mansoni, there are also numerous excellent studies about the in vitro cultivation of Schistosoma japonicum, which were performed by Chinese researchers and published in Chinese journals. Nearly every stage of the life-cycle of S. japonicum, including miracidia, mother sporocysts, cercariae, schistosomula, and egg-laying adult worms, was employed for developing in vitro cultivation methods, being accompanied by the introduction of several media and supplements that helped to improve culture conditions. It was not only possible to generate mother sporocysts from miracidia in vitro, but also to obtain adult worms from cercariae through in vitro cultivation. The main obstacles to complete the life cycle of S. japonicum in the lab are the transition from mother sporocysts to cercariae, and the production of fertilized and completely developed eggs by adult worms generated in vitro. With regard to cells from S. japonicum, besides established isolation protocols and morphological observations, media optimizations were conducted by using different chemical reagents, biological supplements and physical treatment. Among these, mutagens like N-methyl-N-nitro-N-nitrosoguanidine and the addition of extracellular matrix were found to be able to induce mitogenic activities. Although enzyme activities or the level of silver-stained nucleolar region associated protein in cultured cells

  8. Candidate OP Phyla: Importance, Ecology and Cultivation Prospects.

    PubMed

    Rohini Kumar, M; Saravanan, V S

    2010-10-01

    OP phyla were created in the domain bacteria, based on the group of 16S rRNA gene sequences recovered from the Obsidian Pool. However, due to the lack of cultured representative it is referred to as candidate phyla. Wider ecological occurrence was predicted for the OP phyla, especially OP3, OP10 and OP11. Recently, members of phylum OP5 and OP10 were cultured, providing clues to their cultivation prospects. At last the bioprospecting potentials of the OP members are discussed herein.

  9. Differentiation-Promoting Medium Additives for Hepatocyte Cultivation and Cryopreservation.

    PubMed

    Gouliarmou, Varvara; Pelkonen, Olavi; Coecke, Sandra

    2015-01-01

    Isolated primary hepatocytes are considered as the reference system for in vitro hepatic methods. Following the isolation of primary hepatocytes from liver tissue, an unfavorable process named dedifferentiation is initiated leading to the attenuation of the hepatocellular phenotype both at the morphological and functional level. Freshly isolated hepatocytes can be used immediately or can be cryopreserved for future purposes. Currently, a number of antidedifferentiation strategies exist to extend the life span of isolated hepatocytes. The addition of differentiation-promoting compounds to the hepatocyte culture medium is the oldest and simplest antidedifferentiation approach applied. In the present chapter, the most commonly used medium additives for cultivation and cryopreservation of primary hepatocytes are reviewed.

  10. [Optimization of shelterbelt distribution for the gully erosion control of cultivated slope land in rolling hill black soil region of Northeast China].

    PubMed

    Su, Zi-Long; Cui, Ming; Fan, Hao-Ming

    2012-04-01

    Shelterbelt system is one of the main components of cultivated slope land in rolling hill black soil region of Northeast China, which plays an important role in the control of gully erosion. Based on the Quickbird high-resolution remote sensing image and the digital elevation model (DEM), and combining with field survey data, this paper analyzed the effects of shelterbelt system in a small watershed of rolling hill black soil region in Heshan Farm of Heilongjiang Province on the control of gully erosion in the cultivated slope land, and put forward an optimized scheme for gully erosion control based on the features of gully erosion in the cultivated slope land and their relations with the distribution of the shelterbelt system. In the study area, the current distribution of the shelterbelt system promoted the occurrence and development of shallow gully and gully directly and indirectly. The proposed scheme for optimizing the distribution of the present shelterbelts included the adjustment of the direction of the shelterbelt perpendicular to the aspect of slope, the enhancement of the maintenance and regeneration of the shelterbelts to reduce the gaps of the shelterbelts, the increase of the shelterbelt number, and the decrease of the distances between shelterbelts. A method for calculating the shelterbelt number and the distances between the shelterbelts was also given. This study could provide scientific basis for the gully erosion control and the shelterbelts programming in the cultivated slope land of rolling hill black soil region.

  11. Cropping history trumps fallow duration in long-term soil and vegetation dynamics of shifting cultivation systems.

    PubMed

    Wood, Sylvia L R; Rhemtulla, Jeanine M; Coomes, Oliver T

    2017-03-01

    In the study of shifting cultivation systems, fallow duration is seen as the key determinant of vegetation and soil dynamics: long fallows renew soil fertility, biomass, and biodiversity. However, long fallow systems are increasingly replaced around the world with short-medium fallow systems, and awareness is growing of the need to look across multiple (not just single) crop-fallow cycles to accurately understand observed soil and vegetation patterns. In a study from Peru that builds on 50+ years of field-level land-use histories, we found that, over multiple crop-fallow cycles, farmers' cropping practices mattered more than fallow duration for biodiversity and soil fertility. After initial clearing of primary forest, a precipitous decline occurred in tree species richness of fallows (>50%) with gradual but continued loss thereafter (~0.5 species/yr), which resulted in shifts in species composition over time. For soils, the decline in fertility was more gradual with each additional cycle of cropping resulting in lowered soil organic matter, available phosphorus, and exchangeable sodium levels, even in fields with long fallow durations. In the most intensively used sites, soils experienced a 16% decline of soil organic matter over 4+ cycles. In contrast to previous studies, biomass accumulation and carbon stocks were not related to cropping history or to the number and duration of cycles observed. This suggests that biodiversity-soils-biomass dynamics may not necessarily "move together" in these systems. These results point to the importance of the number of crop-fallow cycles over fallow duration in driving soil fertility and vegetation dynamics under shifting cultivation in the Peruvian Amazon. Overtime shifting cultivation may erode soil fertility and biodiversity levels even if long fallows persist. As the decline in soils appears slow, it may be possible to address this effect with the use of amendments, however biodiversity declines and species compositional

  12. Effects of Interannual Climate Variability in Secondary Forests and Crops Under Traditional and Alternative Shifting Cultivation

    NASA Astrophysics Data System (ADS)

    Sa, T. D.; Guild, L. S.; Carvalho, C. J.; Potter, C. S.; Wickel, A. J.; Brienza, S.; Kato, M. A.; Kato, O.

    2002-12-01

    Regenerating forests play an important role in long-term carbon sequestration and sustainable landuse as they act as potentially important carbon and nutrient sinks during the shifting agriculture fallow period. The long-term functioning of secondary forests (capoeira) is increasingly threatened by a shortening fallow period during shifting cultivation due to demographic pressures and associated increased vulnerability to severe climatic events. Declining productivity and functioning of fallow forests of shifting cultivation combined with progressive loss of nutrients by successive burning and cropping activities has resulted in declining agricultural productivity. In addition to the effects of intense land use practices, droughts associated with El Ni¤o events are becoming more frequent and severe in moist tropical forests and negative effects on capoeira productivity could be considerable. In Igarape-Acu (near Belem, Para), we hypothesize that experimental alternative landuse/clearing practices (mulching and fallow vegetation improvement by planting with fast-growing leguminous tree species) may make capoeira and crops more resilient to the effects of agricultural pressures and drought through 1) increased biomass, soil organic matter and associated increase in soil water storage, and nutrient retention and 2) greater rooting depth of trees planted for fallow improvement. This experimental practice (mechanized chop-and-mulch with fallow improvement) has resulted in increased soil moisture during the cropping phase, reduced loss of nutrients and organic matter, and higher rates of secondary-forest biomass accumulation. We present preliminary data on water relations during the dry season of 2001 in capoeira and crops for both traditional slash-and-burn and alternative chop-and-mulch practices. These data will be used to test IKONOS data for the detection of moisture status differences. The principal goal of the research is to determine the extent to which capoeira

  13. A major QTL introgressed from wild Lycopersicon hirsutum confers chilling tolerance to cultivated tomato (Lycopersicon esculentum).

    PubMed

    John Goodstal, F; Kohler, Glenn R; Randall, Leslie B; Bloom, Arnold J; St Clair, Dina A

    2005-09-01

    Many plants of tropical or subtropical origin, such as tomato, suffer damage under chilling temperatures (under 10 degrees C but above 0 degrees C). An earlier study identified several quantitative trait loci (QTLs) for shoot turgor maintenance (stm) under root chilling in an interspecific backcross population derived from crossing chilling-susceptible cultivated tomato (Lycopersicon esculentum) and chilling-tolerant wild L. hirsutum. The QTL with the greatest phenotypic effect on stm was located in a 28 cM region on chromosome 9 (designated stm 9), and enhanced chilling-tolerance was conferred by the presence of the Lycopersicon hirsutum allele at this QTL. Here, near-isogenic lines (NILs) were used to verify the effect of stm 9, and recombinant sub-NILs were used to fine map its position. Replicated experiments were performed with NILs and sub-NILs in a refrigerated hydroponic tank in the greenhouse. Sub-NIL data was analyzed using least square means separations, marker-genotype mean t-tests, and composite interval mapping. A dominant QTL controlling shoot turgor maintenance under root chilling was confirmed on chromosome 9 using both NILs and sub-NILs. Furthermore, sub-NILs permitted localization of stm 9 to a 2.7 cM interval within the original 28 cM QTL region. If the presence of the L. hirsutum allele at stm 9 also confers chilling-tolerance in L. esculentum plants grown under field conditions, it has the potential to expand the geographic areas in which cultivated tomato can be grown for commercial production.

  14. Fungus cultivation by ambrosia beetles: behavior and laboratory breeding success in three xyleborine species.

    PubMed

    Biedermann, Peter H W; Klepzig, Kier D; Taborsky, Michael

    2009-08-01

    Fungus cultivation by ambrosia beetles is one of the four independently evolved cases of agriculture known in animals. Such cultivation is most advanced in the highly social subtribe Xyleborina (Scolytinae), which is characterized by haplodiploidy and extreme levels of inbreeding. Despite their ubiquity in forests worldwide, the behavior of these beetles remains poorly understood. This may be in part because of their cryptic life habits within the wood of trees. Here we present data obtained by varying a laboratory breeding technique based on artificial medium inside glass tubes, which enables behavioral observations. We studied species of the three most widespread genera of Xyleborina in the temperate zone: Xyleborus, Xyleborinus, and Xylosandrus. We raised several generations of each species with good breeding success in two types of media. The proportion of females of Xyleborinus saxesenii Ratzeburg producing offspring within 40 d depended significantly on founder female origin, which shows a transgenerational effect. Labor-intensive microbial sterilization techniques did not increase females' breeding success relative to a group of females shortly treated with ethanol. Gallery productivity measured as the mean number of mature offspring produced after 40 d varied between species and was weakly affected by the type of medium used and foundress origin (field or laboratory) in X. saxesenii, whereas different preparation and sterilization techniques of the beetles had no effect. Behavioral observations showed the time course of different reproductive stages and enabled to obtain detailed behavioral information in all species studied. We propose that the laboratory techniques we describe here are suited for extensive studies of sociality and modes of agriculture in the xyleborine ambrosia beetles, which may yield important insights into the evolution of fungal agriculture and advanced social organization.

  15. Community and cultivation analysis of arsenite oxidizing biofilms at Hot Creek.

    PubMed

    Salmassi, Tina M; Walker, Jeffrey J; Newman, Dianne K; Leadbetter, Jared R; Pace, Norman R; Hering, Janet G

    2006-01-01

    At Hot Creek in California, geothermally derived arsenite is rapidly oxidized to arsenate. This process is mediated by microorganisms colonizing the surfaces of submerged aquatic macrophytes in the creek. Here we describe a multifaceted approach to characterizing this biofilm community and its activity. Molecular techniques were used to describe the community as a function of 16S-rRNA gene diversity. Cultivation-based strategies were used to enumerate and isolate three novel arsenite oxidizers, strains YED1-18, YED6-4 and YED6-21. All three strains are beta-Proteobacteria, of the genus Hydrogenophaga. Because these strains were isolated from the highest (i.e. million-fold) dilutions of disrupted biofilm suspensions, they represent the most numerically significant arsenite oxidizers recovered from this community. One clone (Hot Creek Clone 44) obtained from an inventory of the 16S rDNA sequence diversity present in the biofilm was found to be 99.6% identical to the 16S rDNA sequence of the isolate YED6-21. On the basis of most probable number (MPN) analyses, arsenite-oxidizing bacteria were found to account for 6-56% of the cultivated members of the community. Using MPN values, we could estimate an upper bound on the value of V(max) for the community of 1 x 10(-9)micromole arsenite min(-1) cell(-1). This estimate represents the first normalization of arsenite oxidation rates to MPN cell densities for a microbial community in a field incubation experiment.

  16. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.

    PubMed

    Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko

    2015-01-01

    The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.

  17. Robo-Lector – a novel platform for automated high-throughput cultivations in microtiter plates with high information content

    PubMed Central

    Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen

    2009-01-01

    subsequently similar growth kinetics could be obtained. Conclusion The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization. PMID:19646274

  18. Climate change and the origin and development of rice cultivation in the Yangtze River basin, China.

    PubMed

    Yasuda, Yoshinori

    2008-11-01

    The forest hunter-gatherers of the middle Yangtze River basin, who were the first to invent pottery and led a sedentary lifestyle, may have begun to cultivate rice during the Bølling-Allerød interstadial global warming period. The earliest rice cultivation may have dated back to 14,000 calibrated (cal.) years before present (YBP). The global warming at 9000 cal. YBP in the early Holocene brought the development of the rice cultivation to the middle Yangtze River basin. On the other hand, ancient rice-cultivating and piscatorial society met a crisis at 4200-4000 cal. YBP that was characterized by a significant cooling of the climate. This climate deterioration led the northern wheat/barley-cultivating pastoral people to migrate to the south and invade, ultimately bringing about the collapse of the rice-cultivating and piscatorial society in the Yangtze River basin.

  19. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut.

    PubMed

    Bertioli, David John; Cannon, Steven B; Froenicke, Lutz; Huang, Guodong; Farmer, Andrew D; Cannon, Ethalinda K S; Liu, Xin; Gao, Dongying; Clevenger, Josh; Dash, Sudhansu; Ren, Longhui; Moretzsohn, Márcio C; Shirasawa, Kenta; Huang, Wei; Vidigal, Bruna; Abernathy, Brian; Chu, Ye; Niederhuth, Chad E; Umale, Pooja; Araújo, Ana Cláudia G; Kozik, Alexander; Kim, Kyung Do; Burow, Mark D; Varshney, Rajeev K; Wang, Xingjun; Zhang, Xinyou; Barkley, Noelle; Guimarães, Patrícia M; Isobe, Sachiko; Guo, Baozhu; Liao, Boshou; Stalker, H Thomas; Schmitz, Robert J; Scheffler, Brian E; Leal-Bertioli, Soraya C M; Xun, Xu; Jackson, Scott A; Michelmore, Richard; Ozias-Akins, Peggy

    2016-04-01

    Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.

  20. Gel microbead cultivation with a subenrichment procedure can yield better bacterial cultivability from a seawater sample than standard plating method

    NASA Astrophysics Data System (ADS)

    Ji, Shiqi; Zhao, Rui; Yin, Qi; Zhao, Yuan; Liu, Chenguang; Xiao, Tian; Zhang, Xiaohua

    2012-03-01

    A gel microbead (GMD) cultivation method was employed to cultivate microorganisms from an amphioxus breeding zone in Qingdao, P. R. China. The culture results were compared with those by standard plating method. In the GMD-based method, the microcolony-forming GMDs were sorted by fluorescence-activated cell sorting (FACS). To further get pure cultures, a subsequent enrichment culture and a streaking purification procedure were conducted on marine R2A medium. Eighty bacterial strains isolated by the GMD-based method were randomly selected for sequencing. These isolates belonged to Alphaproteobacteria (33%), Gammaproteobacteria (44%), Bacteroidetes (11%), Actinobacteria (5%), Firmicutes (5%), Epsilonproteobacteria (1%), and Verrucomicrobia (1%), the last two groups being usually difficult to culture. The 16S rRNA gene sequences revealed a diverse community with 91.1%-100% of the bacterial rRNAs similarities. Thirteen strains were sharing 16S rRNA gene sequence which was less than 97% similar to any other rRNA genes currently deposited in TYP16S database. Seventy isolates derived from the standard plating method fell into 4 different taxonomic groups: Alphaproteobacteria (9%), Gammaproteobacteria (81%), Bacteroidetes (7%) and Firmicutes (3%) with a 16S rRNA gene sequence similarities between 95.8%-100%, in which only 3 strains were sharing 16S rRNA gene sequence of less than 97%. The results indicated that the GMD-based method with subenrichment culture yielded more taxonomic groups and more novel microbial strains, including members of previously rarely cultured groups, when compared with the standard plating method, and that this method markedly improved the bacterial cultivability.

  1. [Brief history of recent hemp cultivation in Switzerland and subsequent medico-legal problems resulting from hemp cultivation].

    PubMed

    Giroud, C; Broillet, A; Augsburger, M; Bernhard, W; Rivier, L; Mangin, P

    1999-01-21

    In March 1995, a decision about cultivation of cannabis was issued by the Swiss Federal Offices of Public Health, Police and Agriculture in order to satisfy the growing interest of farmers and other people in hemp farming. It pointed out that 1)... each hemp plant contains THC and must be therefore considered a drug, 2)... no permission is required for those who grow hemp without the intention to produce drugs ... meaning that the choice of the plant variety was not restricted to those which are characterized by a low THC concentration and grown in a few countries belonging to the European Union. Claiming that natural hemp must contain significant amounts of THC and thanks to the Swiss legislation, areas dedicated to hemp cultivation develop considerably. Most hemp plants which are submitted to our laboratories by the police for THC quantification belong to the drug-type. Nowadays, a great deal of goods (food and beverages, cosmetics, drugs) made of hemp are marketed in Switzerland. Strong suspicions exist however that several of these products could be used as a screen for the illegal market of cannabis. For instance, despite financial support from the state, fiber hemp cultivation remains unsuccessful. No advantage with regard to seed productivity, edible seed and essential oils qualities and yields have been found for drug hemp over fiber hemp by agricultural research stations up to now. Several clues about the possible illicit use of hemp goods rich in THC, especially hemp tea made of flower tops and "therapeutic" pillows filled with cannabis exist. Recently, two Federal edits were issued in order to restrict the selling of hemp seedlings and of hemp foods and beverages to those containing only low amounts of THC. However, the marketing of hemp plants used for decorating remains free partly explaining the recent success of these "beautiful" plants. Broadly speaking, the Swiss and European legislations about hemp have approached mutually during the last years.

  2. Geological history of the west Libyan offshore and adjoining regions

    SciTech Connect

    Benniran, M.M.; Taleb, T.M.; McCrossan, R.G.

    1988-08-01

    The continental margin of the African plate north of Libya is separated from the Saharan platform to the south by a major Variscan fault system running along the coastline. The structural evolution of three sedimentary basins within the margin is discussed. The Jeffara basin, onshore western Libya-southern Tunisia, formed as a right-lateral pull-part late in the Variscan event. When the strike-slip motion ceased in the Late Permian, the basin continued to subside thermally. The Sabratah (Tripolitanian) basin, offshore western Libya-southern Tunisia, and the Benghazi basin in the Sirte rise were both formed as left-lateral pull-aparts in the Late Triassic-Early Jurassic. From the Middle Jurassic to the present they have subsided thermally. Onshore the lower Mesozoic is characterized by continental and nearshore clastics, separated by an evaporite sequence of Late Triassic-Early Jurassic age. Offshore this sequence is thought to grade northward into open marine carbonates. Uplift along the edge of the Saharan platform during the Early Cretaceous sourced coarse clastics, which grade northward into a thick sequence of shallow-water carbonates. Throughout the Late Cretaceous and early Tertiary, high-energy carbonates were deposited around the flanks of the Sabratah basin, grading into deeper-water, fine-grained clastics and carbonates toward the center of the basin. The late Tertiary succession is dominated by clastics derived from the growing Tellian Atlas to the northwest. During the Mesozoic and Tertiary a thick sequence of carbonates was deposited on the Pelagian platform to the north of the Sabratah basin. Periodically the platform was exposed subaerially.

  3. Comparison of groundwater colloids in adjoining soils of Florida flatwoods

    SciTech Connect

    Tan, Z.X.; Harris, W.G.; Ma, L.Q.

    2000-02-01

    Colloids in soil water are a constituent of natural geochemical fluxes and have the potential to facilitate contaminant transport, but few data are available on their composition and concentration. This study addresses how the composition and concentration of groundwater solids relate to hydrological and soil morphological variables of the Florida flatwoods landscape. Groundwater from saturated soil horizons was sampled biweekly for 1 year along an Aquod/Udult boundary using piezometers designed specifically to minimize disturbance and to permit the valid assessment of suspended solids. Readily dispersible clay from core samples of soil horizons was collected and quantified. Groundwater and soil colloids were analyzed physically, chemically, and mineralogically. Aquod groundwater had consistently lower pH, higher electrical conductivity, and more total solids (TS) and organic carbon (OC) than did Udult groundwater. Significant decreases in both TS and OC concentrations in groundwater occurred with depth for both soils. In contrast, the mineralogy of groundwater colloids was insensitive to soil and horizon differences. Quartz dominated inorganic colloid fractions in groundwater samples from all horizons, even in argillic horizons where clay fractions contained little or no quartz. No statistical correlations were found between masses of groundwater colloids and soil water-dispersible clay. However, the proportion of organic carbon was higher in groundwater than in soil matrices. Results are consistent with carbon and colloidal quartz movement in shallow groundwater of the soil studied and document that natural colloid and solute fluxes can be highly soil specific.

  4. Floods of December 1961 in Mississippi and adjoining states

    USGS Publications Warehouse

    Shell, James D.

    1962-01-01

    Widespread floods occurred over parts of Mississippi, Louisiana, and Alabama after heavy rains during December 18, 1961. A series of low-pressure systems produced as much as 19 inches of rainfall in some areas. Heavy rainfall, 7 to 11 inches, on December 10 resulted in outstanding floods on small streams in southern Mississippi and southwestern Alabama. Subsequent rains produced multiple floods on small streams and outstanding floods of prolonged duration along the Big Black, upper Pearl, and lower Tombigbee Rivers in Mississippi. At Jackson, Miss., the Pearl River reached the highest stage known. Along the east bank, flood waters topped or breached some of the levee system protecting the Flowood industrial area, but other parts were saved by extensive reinforcement and by emergency operation of the partially completed dam 10 miles upstream. Additional heavy damage to commercial and industrial property was prevented as a result of these measures. Elsewhere, damage was restricted primarily to secondary highways and bridges. Two lives were lost.

  5. Productivity of wet soils: Biomass of cultivated and natural vegetation

    SciTech Connect

    Johnston, C.A.

    1988-12-01

    Wet soils, soils which have agronomic limitations because of excess water, comprise 105 million acres of non-federal land in the conterminous United States. Wet soils which support hydrophytic plants are ''wetlands'', and are some of the most productive natural ecosystems in the world. When both above- and belowground productivity are considered, cattail (Typha latifolia) is the most productive temperate wetland species (26.4 Mg/ha/year). Both cattail and reed (Phragmites australis) have aboveground productivities of about 13 Mg/ha/year. Although average aboveground yields of reed canarygrass (Phalaris arundinacea) are lower (9.5 Mg/ha/year), techniques for its establishment and cultivation are well-developed. Other herbaceous wetland species which show promise as biomass crops include sedge (Carex spp.), river bulrush (Scirpus fluviatilis) and prairie cordgrass (Spartina pectinata). About 40% of wet soils in the conterminous US are currently cultivated, and they produce one-quarter of the major US crops. Most of this land is artificially drained for crops such as corn, soybeans, and vegetables. US wetlands are drained for agriculture at the rate of 223,000 ha/yr. Paddies flooded with water are used to grow rice, cranberries, and wild rice. Forage and live sphagnum moss are products of undrained wetlands. A number of federal and state regulations apply to the draining or irrigation of wetlands, but most do not seriously restrict their use for agriculture. 320 refs., 36 tabs.

  6. THE CULTIVATION AND BIOLOGICAL CHARACTERISTICS OF SPIROCHAETA OBERMEIERI (RECURRENTIS).

    PubMed

    Kligler, I J; Robertson, O H

    1922-02-28

    A study of the growth requirements of Spirochoeta obermeieri resulted in the perfection of a method which enabled us (1) to cultivate the organisms consistently from the blood of infected mice and rats, (2) to maintain the viability of cultures for periods of at least 3 to 7 weeks, and (3) to carry them on in successive subcultures by transplanting at intervals of 2 to 4 weeks. This method is essentially the same as the Noguchi technique for the cultivation of the Leptospira group, but emphasizes control of the physicochemical factors that act to limit and prevent growth and prescribes the conditions necessary to counteract the injurious influences. The main facts may be briefly summarized as follows: (a) Ascitic fluid, horse or rabbit serum may be used as culture fluids. (b) These fluids become progressively more alkaline on exposure to air. (c) Uniformly successful results depend chiefly on the proper adjustment and stabilization of the reaction. (d) A balanced reaction can be secured by adding 1.0 per cent peptone broth or egg albumin as buffer, and covering the culture with a layer of oil. (e) The reaction limits for growth and survival are between pH 6.8 and 8.2, with the optimum at pH 7.2 to 7.4. (f) Spirochoeta obermeieri is a strict aerobe, consequently in order to permit adequate aeration, the oil layer should not exceed 1.5 cm. in height.

  7. Bacterial community analysis of Tatsoi cultivated by hydroponics.

    PubMed

    Koo, Ok K; Kim, Hun; Kim, Hyun J; Baker, Christopher A; Ricke, Steven C

    2016-07-02

    Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system.

  8. Biochar from commercially cultivated seaweed for soil amelioration.

    PubMed

    Roberts, David A; Paul, Nicholas A; Dworjanyn, Symon A; Bird, Michael I; de Nys, Rocky

    2015-04-09

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum--brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma--red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity.

  9. Biochar from commercially cultivated seaweed for soil amelioration

    NASA Astrophysics Data System (ADS)

    Roberts, David A.; Paul, Nicholas A.; Dworjanyn, Symon A.; Bird, Michael I.; de Nys, Rocky

    2015-04-01

    Seaweed cultivation is a high growth industry that is primarily targeted at human food and hydrocolloid markets. However, seaweed biomass also offers a feedstock for the production of nutrient-rich biochar for soil amelioration. We provide the first data of biochar yield and characteristics from intensively cultivated seaweeds (Saccharina, Undaria and Sargassum - brown seaweeds, and Gracilaria, Kappaphycus and Eucheuma - red seaweeds). While there is some variability in biochar properties as a function of the origin of seaweed, there are several defining and consistent characteristics of seaweed biochar, in particular a relatively low C content and surface area but high yield, essential trace elements (N, P and K) and exchangeable cations (particularly K). The pH of seaweed biochar ranges from neutral (7) to alkaline (11), allowing for broad-spectrum applications in diverse soil types. We find that seaweed biochar is a unique material for soil amelioration that is consistently different to biochar derived from ligno-cellulosic feedstock. Blending of seaweed and ligno-cellulosic biochar could provide a soil ameliorant that combines a high fixed C content with a mineral-rich substrate to enhance crop productivity.

  10. Cancer risk and residential proximity to cranberry cultivation in Massachusetts.

    PubMed Central

    Aschengrau, A; Ozonoff, D; Coogan, P; Vezina, R; Heeren, T; Zhang, Y

    1996-01-01

    OBJECTIVES: This study evaluated the relationship between cancer risk and residential proximity to cranberry cultivation. METHODS: A population-based case-control study was conducted. Cases, diagnosed during 1983 through 1986 among residents of the Upper Cape Cod area of Massachusetts, involved incident cancers of the lung (n = 252), breast (n = 265), colon-rectum (n = 326), bladder (n = 63), kidney (n = 35), pancreas (n = 37), and brain (n = 37), along with leukemia (n = 35). Control subjects were randomly selected from among telephone subscribers (n = 184), Medicare beneficiaries (n = 464), and deceased individuals (n = 723). RESULTS: No meaningful increases in risk were seen for any of the cancer sites except for the brain. When latency was considered, subjects who had ever lived within 2600 ft (780 m) of a cranberry bog had a twofold increased risk of brain cancer overall (95% confidence interval [CI] = 0.8, 4.9) and a 6.7-fold increased risk of astrocytoma (95% CI = 1.6, 27.8). CONCLUSIONS: Residential proximity to cranberry bog cultivation was not associated with seven of the eight cancers investigated; however, an association was observed with brain cancer, particularly astrocytoma. Larger, more detailed studies are necessary to elucidate this relationship. PMID:8806382

  11. Multilayered heparin hydrogel microwells for cultivation of primary hepatocytes.

    PubMed

    You, Jungmok; Shin, Dong-Sik; Patel, Dipali; Gao, Yandong; Revzin, Alexander

    2014-01-01

    The biomaterial scaffolds for regenerative medicine need to be rationally designed to achieve the desired cell fate and function. This paper describes the development of hydrogel microstructures for cultivation of primary hepatocytes. Four different micropatterned surfaces are tested: 1) poly(ethyelene glycol) (PEG) microwells patterned on glass, 2) heparin hydrogel microwells patterned on glass, 3) PEG microwells patterned on heparin hydrogel-coated substrates, and 4) heparin hydrogel microwells patterned on heparin hydrogel-coated substrates. The latter surfaces are constructed by a combination of micromolding and microcontact printing techniques to create microwells with both walls and floor composed of heparin hydrogel. Individual microwell dimensions are 200 μm diameter and 20 μm in height. In all cases, the floor of the microwells is modified with collagen I to promote cell adhesion. Cultivation of hepatocytes followed by analysis of hepatic markers (urea production, albumin synthesis, and E-cadherin expression) reveals that the all-heparin gel microwells are most conducive to hepatic phenotype maintenance. For example, ELISA analysis shows 2.3 to 13.1 times higher levels of albumin production in all-heparin gel wells compared with other micropatterned surfaces. Importantly, hepatic phenotype expression can be further enhanced by culturing fibroblasts on the heparin gel walls of the microwells. In the future, multicomponent all-heparin gel microstructures may be employed in designing hepatic niche for liver-specific differentiation of stem cells.

  12. Cell engineering and cultivation of chinese hamster ovary (CHO) cells.

    PubMed

    Omasa, Takeshi; Onitsuka, Masayoshi; Kim, Wook-Dong

    2010-04-01

    Mammalian cell lines are important host cells for the industrial production of pharmaceutical proteins owing to their capacity for correct folding, assembly and post-translational modification. In particular, Chinese hamster ovary (CHO) cells are the most dependable host cells for the industrial production of therapeutic proteins. Growing demand for therapeutic proteins promotes the development of technologies for high quality and productivity in CHO expression systems. The following are fundamentally important for effective production. 1) Construction of cultivation process. The CHO-based cultivation process is well established and is a general platform of therapeutic antibody production. The cost of therapeutic protein production using CHO cells is equivalent to that using microbial culture. 2) Cell line development. Recent developments in omics technologies have been essential for the development of rational methods of constructing a cell line. 3) Cell engineering for post-translational steps. Improvement of secretion, folding and glycosylaiton is an important key issue for mammalian cell production systems. This review provides an overview of the industrial production of therapeutic proteins using a CHO cell expression system.

  13. [In vitro organotypic cultivation of adult newt and rat retinas].

    PubMed

    Novikova, Iu P; Aleĭnikova, K S; Krasnov, M S; Poplinskaia, V A; Grigorian, E N

    2010-01-01

    Adult rat and newt retinas were studied during long organotypic 3D cultivation. A high proliferation level was discovered in the region of growth by applying DNA synthesis markers and in vitro mitosis registration in newt retina. Aggregates were formed in the retina spheroid cavity because dedifferentiated cells migrated into this region. Small cell populations in nuclear layers also had dividing and migration capacity. Rosette formation has been shown in newt retina. It is a characteristic of fetal retinal development under pathological conditions. The antiG FAP antibody dye demonstrated an increase in the parent M@uller cell population and generation of a small cell pool with short GFAP-extensions de novo. Recoverin expression studies detected its translocation from photoreceptor extensions to the cell bodies. Moreover, protein was presented in some cells inside the spheroid. It has been shown for the first time that cell proliferation occurred in the developing adult rat retinal spheroid in vitro; BrdU-positive cells and multiple mitoses were revealed in this zone. However, the source of proliferation was not in the peripheral retina, and stable macrophages and glial cells located among neurons of the inner nuclear layer had the ability to divide. The antiGFAP antibody showed an increase in GFAP fibers in the rat retina as well as in the newt retina. Recoverin translocated into photoreceptor perikaryons and the outer plexiform layer in cultivated rat retina. Interestingly, some cells with probably de novo expression of recoverin were discovered in rat and newt retinas.

  14. In vitro cultivation and cryopreservation of duck embryonic hepatocytes.

    PubMed

    Schacke, M; Glück, B; Wutzler, P; Sauerbrei, A

    2009-04-01

    Hepatitis B-virucidal testing of biocides in quantitative suspension tests using duck hepatitis B virus (DHBV) requires primary duck embryonic hepatocytes for viral propagation. To improve the test system and availability of these cells, commercial culture plates with different growth surfaces were tested for cell cultivation and different approaches for cryopreservation of hepatocyte suspension were examined. After 12 days of culture, the largest amounts of hepatocytes were grown in CellBIND and TTP plates and CellBIND surface showed the lowest tendency of monolayer detachment nearly comparable with collagen 1-coated CELLCOAT plates. For cryopreservation of hepatocyte suspension, the use of growth medium supplemented with fetal calf serum (FCS) and dimethyl sulfoxide (ME(2)SO), FCS supplemented with ME(2)SO or cryosafe-1 as cryoprotective agents provided the highest rates of surviving cells after thawing. The freezing-thawing process did not significantly reduce the susceptibility of hepatocytes to infection with DHBV. In conclusion, plates without collagen 1 such as CellBIND are recommended for cultivation of primary duck embryonic hepatocytes in infectivity experiments of DHBV for virucidal testing of biocides. The use of cryopreserved hepatocytes is possible when freshly isolated cells from the liver of duck embryos are not available.

  15. Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains

    PubMed Central

    Gtari, Maher; Ghodhbane-Gtari, Faten; Nouioui, Imen; Ktari, Amir; Hezbri, Karima; Mimouni, Wajdi; Sbissi, Imed; Ayari, Amani; Yamanaka, Takashi; Normand, Philippe; Tisa, Louis S; Boudabous, Abdellatif

    2015-01-01

    The repeated failures reported in cultivating some microbial lineages are a major challenge in microbial ecology and probably linked, in the case of Frankia microsymbionts to atypical patterns of auxotrophy. Comparative genomics of the so far uncultured cluster-2 Candidatus Frankia datiscae Dg1, with cultivated Frankiae has revealed genome reduction, but no obvious physiological impairments. A direct physiological assay on nodule tissues from Coriaria myrtifolia infected with a closely-related strain permitted the identification of a requirement for alkaline conditions. A high pH growth medium permitted the recovery of a slow-growing actinobacterium. The strain obtained, called BMG5.1, has short hyphae, produced diazovesicles in nitrogen-free media, and fulfilled Koch’s postulates by inducing effective nodules on axenically grown Coriaria spp. and Datisca glomerata. Analysis of the draft genome confirmed its close proximity to the Candidatus Frankia datiscae Dg1 genome with the absence of 38 genes (trehalose synthase, fumarylacetoacetase, etc) in BMG5.1 and the presence of 77 other genes (CRISPR, lanthionine synthase, glutathione synthetase, catalase, Na+/H+ antiporter, etc) not found in Dg1. A multi-gene phylogeny placed the two cluster-2 strains together at the root of the Frankia radiation. PMID:26287281

  16. Practical and affordable ways to cultivate leadership in your organization.

    PubMed

    Gaufin, Joyce R; Kennedy, Kathy I; Struthers, Ellen D

    2010-01-01

    Leadership can be cultivated through the intentional actions of managers and others in public health organizations. This article provides a rationale for taking innovative and proactive steps to build leadership, discusses four general strategies for doing so, and presents seven practical, creative, and affordable actions that can have a positive influence on efforts to cultivate leadership qualities in the public health workforce. Each action is illustrated with an actual contemporary example from a local public health agency. The actions include providing formal or informal coaching/mentoring opportunities; assigning staff to lead new projects or collaborations, projects outside their disciplines, projects that cause growth in their information technology capacity, or orphan or struggling projects; facilitating a book club; and institutionalizing reflection. The best way to ensure that effective leadership is available when the organization needs it is to intentionally develop it through an ongoing process. Leadership growth can be supported during the ordinary course of business in a public health organization through thoughtful challenges, sharing ideas and experiences, and especially through the example set by managers and those in positions of authority.

  17. Cultivation of Spirulina maxima in medium supplemented with sugarcane vinasse.

    PubMed

    dos Santos, Raquel Rezende; Araújo, Ofélia de Queiroz Fernandes; de Medeiros, José Luiz; Chaloub, Ricardo Moreira

    2016-03-01

    The feasibility of sugarcane vinasse as supplement in growth medium of Spirulina maxima was investigated. The cell was cultivated under autotrophic (no vinasse, 70 μmol photons m(-2) s(-1)), heterotrophic (no light, culture medium supplemented with vinasse at 0.1% v/v and 1.0% v/v) and mixotrophic conditions (70 μmol photons m(-2) s(-1), vinasse at 0.1% v/v and 1.0% v/v). These preliminary results suggested a cyclic two-stage cultivation - CTSC, with autotrophic condition during light phase of the photoperiod (12 h, 70-200 μmol photons m(-2) s(-1)) and heterotrophic condition during dark phase (12h, 3.0% v/v vinasse). The adopted CTSC strategy consisted in three cycles with 75% withdrawal of suspension and reposition of medium containing 3.0% v/v vinasse, separated by autotrophic rest periods of few days between cycles. Results show an increase of biomass concentration between 0.495 g L(-1) and 0.609 g L(-1) at the 7th day of each cycle and high protein content (between 74.3% and 77.3% w/w).

  18. Impacts of biofuel cultivation on mortality and crop yields

    NASA Astrophysics Data System (ADS)

    Ashworth, K.; Wild, O.; Hewitt, C. N.

    2013-05-01

    Ground-level ozone is a priority air pollutant, causing ~ 22,000 excess deaths per year in Europe, significant reductions in crop yields and loss of biodiversity. It is produced in the troposphere through photochemical reactions involving oxides of nitrogen (NOx) and volatile organic compounds (VOCs). The biosphere is the main source of VOCs, with an estimated 1,150TgCyr-1 (~ 90% of total VOC emissions) released from vegetation globally. Isoprene (2-methyl-1,3-butadiene) is the most significant biogenic VOC in terms of mass (around 500TgCyr-1) and chemical reactivity and plays an important role in the mediation of ground-level ozone concentrations. Concerns about climate change and energy security are driving an aggressive expansion of bioenergy crop production and many of these plant species emit more isoprene than the traditional crops they are replacing. Here we quantify the increases in isoprene emission rates caused by cultivation of 72Mha of biofuel crops in Europe. We then estimate the resultant changes in ground-level ozone concentrations and the impacts on human mortality and crop yields that these could cause. Our study highlights the need to consider more than simple carbon budgets when considering the cultivation of biofuel feedstock crops for greenhouse-gas mitigation.

  19. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work

    PubMed Central

    Lv, Junping; Feng, Jia; Liu, Qi; Xie, Shulian

    2017-01-01

    Eutrophication of water catchments and the greenhouse effect are major challenges in developing the global economy in the near future. Secondary effluents, containing high amounts of nitrogen and phosphorus, need further treatment before being discharged into receiving water bodies. At the same time, new environmentally friendly energy sources need to be developed. Integrating microalgal cultivation for the production of biodiesel feedstock with the treatment of secondary effluent is one way of addressing both issues. This article provides a comprehensive review of the latest progress in microalgal cultivation in secondary effluent to remove pollutants and accumulate lipids. Researchers have discovered that microalgae remove nitrogen and phosphorus effectively from secondary effluent, accumulating biomass and lipids in the process. Immobilization of appropriate microalgae, and establishing a consortium of microalgae and/or bacteria, were both found to be feasible ways to enhance pollutant removal and lipid production. Demonstrations of pilot-scale microalgal cultures in secondary effluent have also taken place. However there is still much work to be done in improving pollutants removal, biomass production, and lipid accumulation in secondary effluent. This includes screening microalgae, constructing the consortium, making use of flue gas and nitrogen, developing technologies related to microalgal harvesting, and using lipid-extracted algal residues (LEA). PMID:28045437

  20. [Numerical taxonomy of agronomic trait in cultivated Lonicera japonica].

    PubMed

    Zhang, Shan-Shan; Huang, Lu-Qi; Yuan, Yuan; Chen, Ping

    2014-04-01

    Sixty-three morphological traits from 743 specimens of the 41 taxa within the cultivated Lonicera japonica were observed and measured, such as the height of plants, the length of leaf, the width of leaf, the length of anther, the alabastrum's number of one branch, the color of alabastrum and so on. A numerical taxonomy is presented by using the cluster analysis, principal components analysis (PCA) and factor analysis. Sixteen of 63 characters were screened by means of PCA and used for cluster analysis of 41 taxa with the method of Ward linkage and average euclidean distance. The cluster analysis showed that the 41 taxa could be divided into 5 groups when the Euclidean distance coefficient was 11.84. The factor analysis indicated that the shape of leaf, color of alabastrum, the pilosity and color of twiggery were of significance for the cultivated L. japonica classification. The results of this study will be a base for the core collection and breeding of L. japonica.

  1. Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts

    DOE PAGES

    Lammers, Peter J.; Huesemann, Michael; Boeing, Wiebke; ...

    2016-12-12

    The cultivation efforts within the National Alliance for Advanced Biofuels and Bioproducts (NAABB) were developed to provide four major goals for the consortium, which included biomass production for downstream experimentation, development of new assessment tools for cultivation, development of new cultivation reactor technologies, and development of methods for robust cultivation. The NAABB consortium testbeds produced over 1500 kg of biomass for downstream processing. The biomass production included a number of model production strains, but also took into production some of the more promising strains found through the prospecting efforts of the consortium. Cultivation efforts at large scale are intensive andmore » costly, therefore the consortium developed tools and models to assess the productivity of strains under various environmental conditions, at lab scale, and validated these against scaled outdoor production systems. Two new pond-based bioreactor designs were tested for their ability to minimize energy consumption while maintaining, and even exceeding, the productivity of algae cultivation compared to traditional systems. Also, molecular markers were developed for quality control and to facilitate detection of bacterial communities associated with cultivated algal species, including the Chlorella spp. pathogen, Vampirovibrio chlorellavorus, which was identified in at least two test site locations in Arizona and New Mexico. Finally, the consortium worked on understanding methods to utilize compromised municipal wastewater streams for cultivation. In conclusion, this review provides an overview of the cultivation methods and tools developed by the NAABB consortium to produce algae biomass, in robust low energy systems, for biofuel production.« less

  2. Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts

    SciTech Connect

    Lammers, Peter J.; Huesemann, Michael; Boeing, Wiebke; Anderson, Daniel B.; Arnold, Robert G.; Bai, Xuemei; Bhole, Manish; Brhanavan, Yalini; Brown, Louis; Brown, Jola; Brown, Judith K.; Chisholm, Stephen; Meghan Downes, C.; Fulbright, Scott; Ge, Yufeng; Holladay, Jonathan E.; Ketheesan, Balachandran; Khopkar, Avinash; Koushik, Ambica; Laur, Paul; Marrone, Babetta L.; Mott, John B.; Nirmalakhandan, Nagamany; Ogden, Kimberly L.; Parsons, Ronald L.; Polle, Juergen; Ryan, Randy D.; Samocha, Tzachi; Sayre, Richard T.; Seger, Mark; Selvaratnam, Thinesh; Sui, Ruixiu; Thomasson, Alex; Unc, Adrian; Van Voorhies, Wayne; Waller, Peter; Yao, Yao; Olivares, José A.

    2016-12-12

    The cultivation efforts within the National Alliance for Advanced Biofuels and Bioproducts (NAABB) were developed to provide four major goals for the consortium, which included biomass production for downstream experimentation, development of new assessment tools for cultivation, development of new cultivation reactor technologies, and development of methods for robust cultivation. The NAABB consortium testbeds produced over 1500 kg of biomass for downstream processing. The biomass production included a number of model production strains, but also took into production some of the more promising strains found through the prospecting efforts of the consortium. Cultivation efforts at large scale are intensive and costly, therefore the consortium developed tools and models to assess the productivity of strains under various environmental conditions, at lab scale, and validated these against scaled outdoor production systems. Two new pond-based bioreactor designs were tested for their ability to minimize energy consumption while maintaining, and even exceeding, the productivity of algae cultivation compared to traditional systems. Also, molecular markers were developed for quality control and to facilitate detection of bacterial communities associated with cultivated algal species, including the Chlorella spp. pathogen, Vampirovibrio chlorellavorus, which was identified in at least two test site locations in Arizona and New Mexico. Finally, the consortium worked on understanding methods to utilize compromised municipal wastewater streams for cultivation. In conclusion, this review provides an overview of the cultivation methods and tools developed by the NAABB consortium to produce algae biomass, in robust low energy systems, for biofuel production.

  3. Water Use in Wetland Kalo Cultivation in Hawai`i

    USGS Publications Warehouse

    Gingerich, Stephen B.; Yeung, Chiu W.; Ibarra, Tracy-Joy N.; Engott, John A.

    2007-01-01

    Ten cultivation areas (8 windward, 2 leeward) were selected for a kalo water-use study, primarily on the basis of the diversity of environmental and agricultural conditions under which wetland kalo is grown and landowner permission and availability. Flow and water-temperature data were collected at the lo`i complex level and at the individual lo`i level. To ensure that flow and temperature data collected at different lo`i reflect similar irrigation conditions (continuous flooding of the mature crop), only lo`i with crops near the harvesting stage were selected for water-temperature data collection. The water need for kalo cultivation varies depending on the crop stage. In this study, data were collected during the dry season (June-October), when water requirements for cooling kalo approach upper limits. Flow measurements generally were made during the warmest part of the day, and temperature measurements were made every 15 minutes at each site for about a two-month period. Flow and temperature data were collected from kalo cultivation areas on four islands - Kaua`i, O`ahu, Maui, and Hawai`i. The average inflow value for the 19 lo`i complexes measured in this study is 260,000 gallons per acre per day, and the median inflow value is 150,000 gallons per acre per day. The average inflow value for the 17 windward sites is 270,000 gallons per acre per day, and the median inflow value is 150,000 gallons per acre per day. The average inflow value for the two leeward sites is 150,000 gallons per acre per day. The average inflow value measured for six individual lo`i is 350,000 gallons per acre per day, and the median inflow value is 270,000 gallons per acre per day. The average inflow value for the five windward lo`i is 370,000 gallons per acre per day, and the median inflow value is 320,000 gallons per acre per day. The inflow value for the one leeward lo`i is 210,000 gallons per acre per day. These inflow values are consistent with previously reported values for inflow

  4. Cultivated walnut trees showed earlier but not final advantage over its wild relatives in competing for seed dispersers.

    PubMed

    Zhang, Hongmao; Chu, Wei; Zhang, Zhibin

    2017-01-01

    Little is known about seeding regeneration of cultivated trees compared to wild relatives in areas where seed dispersers are shared. Here, we investigated the differences in seed fates of cultivated walnut (Juglans regia) and wild Manchurian walnut (Juglans mandshurica) trees under rodent predation and dispersal. J. regia seeds have higher nutritional value (large size, mass and kernel mass) and lower mechanical defensiveness (thin endocarp) than J. mandshurica seeds. We tracked seeds of J. regia and J. mandshurica under both enclosure and field conditions to assess differences in competing for seed dispersers of the two co-occurring tree species of the same genus. We found that rodents preferred to harvest, eat and scatter-hoard seeds of J. regia as compared to those of J. mandshurica. Seeds of J. regia were removed and scatter-hoarded faster than those of J. mandshurica. Caches of J. regia were more likely to be rediscovered by rodents than those of J. mandshurica. These results suggest that J. regia showed earlier dispersal fitness but not the ultimate dispersal fitness over J. mandshurica in seeding regeneration under rodent mediation, implying that J. regia has little effect on seeding regeneration of J. mandshurica in the field. The effects of seed traits on seed dispersal fitness may vary at different dispersal stages under animal mediation.

  5. Evaluation of hydrocarbon plants suitable for cultivation in Florida. [Euphorbia tirucalli, E. lathyris, and Asclepias curassavica

    SciTech Connect

    Dehgan, B.; Wang, S.C.

    1983-01-01

    Most of the hydrocarbon plants reported in the literature are not suitable for cultivation under Florida conditions. Preliminary results of field and greenhouse trials have indicated two species; Euphorbia tirucalli, which is suitable only for south Florida and Asclepias curassavica which has shown promise for the entire state. The hydrocarbon content of E. tirucalli increases with age of the plants (8.19-11.90%), whereas, that of A. curassavica is influenced positively by fertilization (3.62%) and negatively by supplemental irrigation (2.75%). A comparison between the results of field trials with A. curassavica in Florida and E. lathyris in California shows similar biomass yields under unirrigated conditions, despite 3.6 to 7.8 times greater nitrogen application for E. lathyris. Because of environmental conditions in Florida, E. lathyris is not capable of good growth. It is suggested that future research on hydrocarbon plants should concentrate on selection of individuals or species with vigorous, upright growth habits, low fertilizer-irrigation requirements and high hydrocarbon contents. 18 references.

  6. Spread of herbicide-resistant weedy rice (red rice, Oryza sativa L.) after 5 years of Clearfield rice cultivation in Italy.

    PubMed

    Busconi, M; Rossi, D; Lorenzoni, C; Baldi, G; Fogher, C

    2012-09-01

    The weedy relative of cultivated rice, red rice, can invade and severely infest rice fields, as reported by rice farmers throughout the world. Because of its close genetic relationship to commercial rice, red rice has proven difficult to control. Clearfield (Cl) varieties, which are resistant to the inhibiting herbicides in the chemical group AHAS (acetohydroxyacid synthase), provide a highly efficient opportunity to control red rice infestations. In order to reduce the risk of herbicide resistance spreading from cultivated rice to red rice, stewardship guidelines are regularly released. In Italy, the cultivation of Cl cultivars started in 2006. In 2010, surveillance of the possible escape of herbicide resistance was carried out; 168 red rice plants were sampled in 16 fields from six locations containing Cl and traditional cultivars. A first subsample of 119 plants was analysed after herbicide treatment and the resistance was found in 62 plants. Of these 119 plants, 78 plants were randomly selected and analysed at the level of the AHAS gene to search for the Cl mutation determining the resistant genotype: the Cl mutation was present in all the resistant plants. Nuclear and chloroplast microsatellite markers revealed a high correlation between genetic similarity and herbicide resistance. The results clearly show that Cl herbicide-resistant red rice plants are present in the field, having genetic relationships with the Cl variety. Finding plants homozygous for the mutation suggests that the crossing event occurred relatively recently and that these plants are in the F2 or later generations. These observations raise the possibility that Cl red rice is already within the cultivated rice seed supply.

  7. Type 'A' and 'B' recovery revisited: the role of field-edge habitats for Collembola and macroarthropod community recovery after insecticide treatment.

    PubMed

    Frampton, Geoff K; Gould, Philip J L; van den Brink, Paul J; Hendy, Eleanor

    2007-02-01

    Previous work has identified two patterns of arthropod recovery after insecticide applications to arable crops: dispersal-mediated recolonisation from untreated areas (Type A) and recolonisation within treated areas assisted by reduced predation (Type B). In this study, connectivity between field-edge habitats was manipulated using barriers to investigate whether a crop edge and adjacent hedgerow influence recolonisation of an insecticide-treated crop by surface-active Collembola and other arthropods. Collembola recovery patterns differed among closely-related taxa. Epigeic collembolan and macroarthropod communities were more diverse and abundant, and rates of artificial prey predation were higher, in sprayed crop areas connected to both hedgerow and unsprayed crop edge than in sprayed areas connected to the unsprayed edge alone. These findings indicate that effectiveness of unsprayed crop edges as sources of field recolonisation may depend on adjoining field margin habitats. An assumption in risk assessment that unsprayed crop edges assist population recovery within treated areas is not supported.

  8. Influence of genotype, cultivation system and irrigation regime on antioxidant capacity and selected phenolics of blueberries (Vaccinium corymbosum L.).

    PubMed

    Cardeñosa, Vanessa; Girones-Vilaplana, Amadeo; Muriel, José Luis; Moreno, Diego A; Moreno-Rojas, José M

    2016-07-01

    Demand for and availability of blueberries has increased substantially over recent years, driven in part by their health-promoting properties. Three blueberry varieties ('Rocío', V2, and V3) were grown under two cultivation systems (open-field and plastic tunnels) and subjected to two irrigations regimes (100% and 80% of crop evapotranspiration) in two consecutive years (2011-2012). They were evaluated for their phytochemical composition and antioxidant capacity. Genotype influenced the antioxidant capacity and the content of the three groups of phenolics in the blueberries. The antioxidant activity and total flavonols content increased when the blueberries were grown under open-field conditions. Deficit irrigation conditions led to additional positive effects on their phenolics (delphinidn-3-acetilhexoside content was increased under plastic tunnel with deficit irrigation). In conclusion, the amount of phenolic compounds and the antioxidant capacity of blueberries were not negatively affected by water restriction; Moreover, several changes were recorded due to growing system and genotype.

  9. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity

  10. ON THE RELATION BETWEEN THE KINDS OF WINTER CROPS AND THE OCCURRENCE OF THE BACTERIAL LEAF BLIGHT OF RICE PLANT

    DTIC Science & Technology

    The present report, as a part of the research on the ecology of rice leaf blight , is the result of an investigation to determine whether there was a...difference in the occurrence of rice leaf blight on the post-winter crop-fields according to the variety of winter crops. In order to make comparisons...outbreak of rice leaf blight , cultivation procedures, flooding, wind and drainage systems, the winter crops were different from each other, two adjoining

  11. Improving the growth of Rubrivivax gelatinosus cultivated in sewage environment.

    PubMed

    Wu, Pan; Li, Jian-zheng; Wang, Yan-ling; Tong, Qing-yue; Liu, Xian-shu; Du, Cong; Li, Ning

    2015-01-01

    Rubrivivax gelatinosus cultivated in wastewater environment can combine the biomass resource recycling for generating chemicals with sewage purification. However, low biomass accumulation restricts the exertion of this advantage. Thus, this paper investigated Fe(3+) advancement for biomass production in starch wastewater under light-anaerobic condition. Results showed that addition of Fe(3+) was successful in enhancing biomass production, which certainly improved the feasibility of biomass recycling in R. gelatinosus starch wastewater treatment. With optimal Fe(3+) dosage (20 mg/L), biomass production reached 4,060 mg/L, which was 1.63 times that of control group. Amylase activity was improved by 48 %. Both COD removal and starch removal reached 90 %. Hydraulic retention time was shortened by 25 %. Proper Fe(3+) dosage enhanced biomass production, but excess Fe(3+) was harmful for biomass accumulation.

  12. A tangible programming tool for children to cultivate computational thinking.

    PubMed

    Wang, Danli; Wang, Tingting; Liu, Zhen

    2014-01-01

    Game and creation are activities which have good potential for computational thinking skills. In this paper we present T-Maze, an economical tangible programming tool for children aged 5-9 to build computer programs in maze games by placing wooden blocks. Through the use of computer vision technology, T-Maze provides a live programming interface with real-time graphical and voice feedback. We conducted a user study with 7 children using T-Maze to play two levels of maze-escape games and create their own mazes. The results show that T-Maze is not only easy to use, but also has the potential to help children cultivate computational thinking like abstraction, problem decomposition, and creativity.

  13. Cultivating Lifelong Learning Skills During Graduate Medical Training.

    PubMed

    Mahajan, Rajiv; Badyal, Dinesh Kumar; Gupta, Piyush; Singh, Tejinder

    2016-09-08

    Lifelong learning is referred to as learning practiced by the individual for the whole life, is flexible, and is accessible at all times. Medical Council of India has included lifelong learning as a competency in its new regulations for graduate medical training. Acquisition of metacognitive skills, self-directed learning, self-monitoring, and reflective attitude are the main attributes of lifelong learning; and all of these can be inculcated in the students by using appropriate instructional methodologies. It is time to deliberate upon the instructional designs to foster the lifelong learning skills and behaviors in medical graduates. In this communication, we aim to debrief the concept of lifelong learning, particularly in context with medical training and detailing the process that can be explicitly used to cultivate the attitude of lifelong learning in medical graduates.

  14. Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization.

    PubMed

    Santana, Hugo; Cereijo, Carolina R; Teles, Valérya C; Nascimento, Rodrigo C; Fernandes, Maiara S; Brunale, Patrícia; Campanha, Raquel C; Soares, Itânia P; Silva, Flávia C P; Sabaini, Priscila S; Siqueira, Félix G; Brasil, Bruno S A F

    2017-03-01

    Sugarcane ethanol is produced at large scale generating wastes that could be used for microalgae biomass production in a biorefinery strategy. In this study, forty microalgae strains were screened for growth in sugarcane vinasse at different concentrations. Two microalgae strains, Micractinium sp. Embrapa|LBA32 and C. biconvexa Embrapa|LBA40, presented vigorous growth in a light-dependent manner even in undiluted vinasse under non-axenic conditions. Microalgae strains presented higher biomass productivity in vinasse-based media compared to standard Bold's Basal Medium in cultures performed using 15L airlift flat plate photobioreactors. Chemical composition analyses showed that proteins and carbohydrates comprise the major fractions of algal biomass. Glucose was the main monosaccharide detected, ranging from 46% to 76% of the total carbohydrates content according to the strain and culture media used. This research highlights the potential of using residues derived from ethanol plants to cultivate microalgae for the production of energy and bioproducts.

  15. A simple procedure for preparing substrate for Pleurotus ostreatus cultivation.

    PubMed

    Hernández, Daniel; Sánchez, José E; Yamasaki, Keiko

    2003-11-01

    The use of wooden crates for composting a mixture of 70% grass, (Digitaria decumbens), and 30% coffee pulp, combined with 2% Ca(OH)(2), was studied as a method for preparing substrate for the cultivation of Pleurotus ostreatus. Crate composting considerably modified the temperature pattern of the substrate in process, as compared to pile composting, where lower temperatures and less homogeneous distributions were observed. Biological efficiencies varied between 59.79% and 93% in the two harvests. Based on statistical analysis significant differences were observed between the treatments, composting times and in the interactions between these two factors. We concluded that it is possible to produce P. ostreatus on a lignocellulosic, non-composted, non-pasteurized substrate with an initial pH of 8.7, and that composting for two to three days improves the biological efficiency.

  16. Long-term cultivation of the flagellate Euglena gracilis.

    PubMed

    Porst, M; Lebert, M; Hader, D P

    1997-01-01

    Euglena gracilis, a unicellular photosynthetic flagellate, serves as a model system in signal transduction research. To further study its complex gravitaxis, experiments under microgravity are desirable. In preparation for long-term experiments on a space station, an autonomous cultivation unit has been developed and the culture conditions and surveillance methods have been established. The running time of more than 600 d under closed conditions with light as the only source of energy confirmed the stability of the Euglena population and gave new insights into its behavior. Physicochemical parameters such as oxygen concentration, temperature and pH as well as physiological parameters including cell density, motility, gravitactic orientation and pigmentation were recorded on a frequent basis. The suitability of the botanical bioreaction to serve as an oxygen supplier for animals in a closed system was demonstrated.

  17. Cultivating Healthy Growth and Nutrition through the Gut Microbiota

    PubMed Central

    Subramanian, Sathish; Blanton, Laura; Frese, Steven A.; Charbonneau, Mark; Mills, David A.; Gordon, Jeffrey I.

    2015-01-01

    Microbiota assembly is perturbed in children with undernutrition, resulting in persistent microbiota immaturity that is not rescued by current nutritional interventions. Evidence is accumulating that this immaturity is causally related to the pathogenesis of undernutrition and its lingering sequelae. Preclinical models in which human gut communities are replicated in gnotobiotic mice have provided an opportunity to identify and predict the effects of different dietary ingredients on microbiota structure, expressed functions, and host biology. This capacity sets the stage for proof-of-concept tests designed to deliberately shape the developmental trajectory and configurations of microbiota in children representing different geographies, cultural traditions, and states of health. Developing these capabilities for microbial stewardship is timely given the global health burden of childhood undernutrition, the effects of changing eating practices brought about by globalization, and the realization that affordable nutritious foods need to be developed to enhance our capacity to cultivate healthier microbiota in populations at risk for poor nutrition. PMID:25815983

  18. Cultivating healthy growth and nutrition through the gut microbiota.

    PubMed

    Subramanian, Sathish; Blanton, Laura V; Frese, Steven A; Charbonneau, Mark; Mills, David A; Gordon, Jeffrey I

    2015-03-26

    Microbiota assembly is perturbed in children with undernutrition, resulting in persistent microbiota immaturity that is not rescued by current nutritional interventions. Evidence is accumulating that this immaturity is causally related to the pathogenesis of undernutrition and its lingering sequelae. Preclinical models in which human gut communities are replicated in gnotobiotic mice have provided an opportunity to identify and predict the effects of different dietary ingredients on microbiota structure, expressed functions, and host biology. This capacity sets the stage for proof-of-concept tests designed to deliberately shape the developmental trajectory and configurations of microbiota in children representing different geographies, cultural traditions, and states of health. Developing these capabilities for microbial stewardship is timely given the global health burden of childhood undernutrition, the effects of changing eating practices brought about by globalization, and the realization that affordable nutritious foods need to be developed to enhance our capacity to cultivate healthier microbiota in populations at risk for poor nutrition.

  19. Recycling of food waste as nutrients in Chlorella vulgaris cultivation.

    PubMed

    Lau, Kin Yan; Pleissner, Daniel; Lin, Carol Sze Ki

    2014-10-01

    Heterotrophic cultivation of Chlorella vulgaris was investigated in food waste hydrolysate. The highest exponential growth rate in terms of biomass of 0.8day(-1) was obtained in a hydrolysate consisting of 17.9gL(-1) glucose, 0.1gL(-1) free amino nitrogen, 0.3gL(-1) phosphate and 4.8mgL(-1) nitrate, while the growth rate was reduced in higher concentrated hydrolysates. C. vulgaris utilized the nutrients recovered from food waste for the formation of biomass and 0.9g biomass was produced per gram glucose consumed. The microalgal biomass produced in nutrient sufficient batch cultures consisted of around 400mgg(-1) carbohydrates, 200mgg(-1) proteins and 200mgg(-1) lipids. The conversion of nutrients derived from food waste and the balanced biomass composition make C. vulgaris a promising strain for the recycling of food waste in food, feed and fuel productions.

  20. [DNA quantification in nuclei of cultivated mushroom with DAPI staining].

    PubMed

    Pancheva, E V; Volkova, V N; Kamzolkina, O V

    2004-01-01

    Agaricus bisporus (Lange) Imbach is actively cultivated amphithallic basidiomycete, in which various strains are primary homothallic, heterothallic or secondary homothallic. Countings of relative nuclear DNA content by means of DAPI stain and its comparison in different strains can help to understand the mushroom's life cycle features. The authors for the first time observed change of nuclear phases in basidia of A. bisporus strains with different types of life cycle and revealed that DNA content in diploid nuclei is about 1.3 times higher than in haploid ones. The method is highly sensitive and can be used for quantitative measurings of nuclear DNA even in objects with nuclei of about 1 mkm in diameter.

  1. Neural networks and the experience and cultivation of mind.

    PubMed

    Werbos, Paul J

    2012-08-01

    Hard core neural network research includes development of mathematical models of cognitive prediction and optimization aimed at dual use, both as models of what we see in brain circuits and behavior, and as useful general-purpose engineering technology. The pathway and principles now exist to let us someday replicate learning abilities as elevated as what we see in the brain of the mouse-but how can this help us today in understanding and maximizing the much greater potential of the human mind, as addressed by many schools of thought all over the world for centuries? This paper discusses how we might use what we have learned at a lower level to better illuminate key phenomena in first person and clinical human experience such as Freud's "psychic energy", the role of traumatic experience, the interpretation of dreams, creativity, the cultivation of sanity and sensitivity, and the biological foundations of language.

  2. Effects of ephemeral gully erosion on soil degradation in a cultivated area in Sicily

    NASA Astrophysics Data System (ADS)

    La Spada, Carmelo; Capra, Antonina; Gelsomino, Antonio; Ollobarren del Barrio, Paul

    2015-04-01

    Water erosion is the main cause of soil degradation on cultivated lands under Mediterranean climate. In this conditions, gully erosion is a major contributor to loss of soil productivity due to the big amounts of soil removed from the most productive top-layer. However, only few studies on the effects of gully erosion and artificial controlling measures on soil degradation are available. The study analyzes the effects of the ephemeral gully erosion and infilling by tillage operations on several physical-chemical soil properties influencing the soil productivity. The study area is located in the center of Sicily, in an agricultural context characterized by ephemeral gully erosion. Five fields with different crops and soil characteristics affected by this type of erosion were selected. Currently, local farmers adopt the artificial measure to gully filling activities to control gully erosion and continue the same agricultural management practice. Therefore, the studied ephemeral gullies show a cyclic behavior. They appear during the rainy season, are erased from July to October by soil infill from areas adjacent to the channel using ordinary tillage equipment, and, in most years, they reappear in the same position during the following rainy season. For each situation, 20 samples were taken, located on 5 transects in the direction perpendicular to the ephemeral gully, in specific positions: 2 outside the erosive channel (one in the valley-deposit area and one upstream of the basin in the undisturbed area), and 3 along the same. For each transect, the samples were collected in 4 different positions: one inside the ephemeral gully, the other 3 in external points spaced to represent the areas affected by the annual process of erosion and infilling of the gully. For each sample, a set of the main chemical and physical soil characteristics which influence the soil fertility were determined: particle size, pH, electrical conductivity, total content of carbonates, nitrates

  3. Microalgal and cyanobacterial cultivation: the supply of nutrients.

    PubMed

    Markou, Giorgos; Vandamme, Dries; Muylaert, Koenraad

    2014-11-15

    Microalgae and cyanobacteria are a promising new source of biomass that may complement agricultural crops to meet the increasing global demand for food, feed, biofuels and chemical production. Microalgae and cyanobacteria cultivation does not interfere directly with food production, but care should be taken to avoid indirect competition for nutrient (fertilizer) supply. Microalgae and cyanobacteria production requires high concentrations of essential nutrients (C,N,P,S,K,Fe, etc.). In the present paper the application of nutrients and their uptake by microalgae and cyanobacteria is reviewed. The main focus is on the three most significant nutrients, i.e. carbon, nitrogen and phosphorus; however other nutrients are also reviewed. Nutrients are generally taken up in the inorganic form, but several organic forms of them are also assimilable. Some nutrients do not display any inhibition effect on microalgal or cyanobacterial growth, while others, such as NO2 or NH3 have detrimental effects when present in high concentrations. Nutrients in the gaseous form, such as CO2 and NO face a major limitation which is related mainly to their mass transfer from the gaseous to the liquid state. Since the cultivation of microalgae and cyanobacteria consumes considerable quantities of nutrients, strategies to improve the nutrient application efficiency are needed. Additionally, a promising strategy to improve microalgal and cyanobacterial production sustainability is the utilization of waste streams by recycling of waste nutrients. However, major constraints of using waste streams are the reduction of the range of the biomass applications due to production of contaminated biomass and the possible low bio-availability of some nutrients.

  4. Circulating tumor cells in pancreatic cancer patients: Enrichment and cultivation

    PubMed Central

    Bobek, Vladimir; Gurlich, Robert; Eliasova, Petra; Kolostova, Katarina

    2014-01-01

    AIM: To investigate the feasibility of separation and cultivation of circulating tumor cells (CTCs) in pancreatic cancer (PaC) using a filtration device. METHODS: In total, 24 PaC patients who were candidates for surgical treatment were enrolled into the study. Peripheral blood samples were collected before an indicated surgery. For each patient, approximately 8 mL of venous blood was drawn from the antecubital veins. A new size-based separation MetaCell® technology was used for enrichment and cultivation of CTCs in vitro. (Separated CTCs were cultured on a membrane in FBS enriched RPMI media and observed by inverted microscope. The cultured cells were analyzed by means of histochemistry and immunohistochemistry using the specific antibodies to identify the cell origin. RESULTS: CTCs were detected in 16 patients (66.7%) of the 24 evaluable patients. The CTC positivity did not reflect the disease stage, tumor size, or lymph node involvement. The same percentage of CTC positivity was observed in the metastatic and non-metastatic patients (66.7% vs 66.7%). We report a successful isolation of CTCs in PaC patients capturing proliferating cells. The cells were captured by a capillary action driven size-based filtration approach that enabled cells cultures from the viable CTCs to be unaffected by any antibodies or lysing solutions. The captured cancer cells displayed plasticity which enabled some cells to invade the separating membrane. Further, the cancer cells in the “bottom fraction”, may represent a more invasive CTC-fraction. The CTCs were cultured in vitro for further downstream applications. CONCLUSION: The presented size-based filtration method enables culture of CTCs in vitro for possible downstream applications. PMID:25493031

  5. Simulating the hydrologic response of a semiarid watershed to switchgrass cultivation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conversion of land for biofuel cultivation is expected to increase given concerns about the sustainability of current fossil-fuel supplies. Nonetheless, research into the environmental impacts of biofuel crops, primarily the hydrological impacts of their cultivation, is in its infancy. To inve...

  6. A Behavioral Change Perspective of Maroon Soil Fertility Management in Traditional Shifting Cultivation in Suriname.

    PubMed

    Fleskens, Luuk; Jorritsma, Fedde

    2010-04-01

    In Suriname, the Maroons have practiced shifting cultivation for generations, but now the increasing influence of modern society is causing a trend of decreasing fallow periods with potentially adverse effects for the vulnerable tropical soils. Adoption of appropriate soil fertility management (SFM) practices is currently slow. Combining methods from cultural ecology and environmental psychology, this study identifies two groups with divergent behavioral intentions which we term semi-permanent cultivators and shifting cultivators. Semi-permanent cultivators intend to practice more permanent agriculture and experiment individually with plot-level SFM. Shifting cultivators rely on traditional knowledge that is not adequate for their reduced fallow periods, but perceive constraints that prevent them practicing more permanent agriculture. Semi-permanent cultivators act as a strong reference group setting a subjective norm, yet feel no need to exchange knowledge with shifting cultivators who are in danger of feeling marginalized. Drawing on a political ecology perspective, we conclude that cultural ecological knowledge declined due to negative perceptions of external actors setting a strong subjective norm. Semi-permanent cultivators who wish to enter the market economy are most likely to adopt SFM. We conclude that any future SFM intervention must be based on an in-depth understanding of each group's behavior, in order to avoid exacerbating processes of marginalization.

  7. Cultivating Demand for the Arts: Arts Learning, Arts Engagement, and State Arts Policy. Summary

    ERIC Educational Resources Information Center

    Zakaras, Laura; Lowell, Julia F.

    2008-01-01

    The findings summarized in this report are intended to shed light on what it means to cultivate demand for the arts, why it is necessary and important to cultivate this demand, and what state arts agencies (SAAs) and other arts and education policymakers can do to help. The research considered only the benchmark arts central to public policy:…

  8. [Change in the sensitivity to methotrexate of neoplastic cells cultivated in the presence of folic acid].

    PubMed

    Leĭpunskaia, I L; Svet-Moldavskiĭ, G I

    1976-01-01

    Cultivation of tumour L-cells in the presence of increasing folic acid concentrations led to the rise in the resistance of these cells population to metotrexate. With the subsequent cultivation, when the folic acid concentration was not increased the population of such cells became more sensitive to metotrexate even in comparison with the initial L-cells.

  9. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of total size ~2.7 Gb. This makes assembly of chromosomal pseudomolecules very challenging. Here we report genome sequences of cultivated peanut’s diploid ancestors (A. duranensis and A. ipaënsis). We show they...

  10. A Noble Quest: Cultivating Christian Spirituality in Catholic Adolescents and the Usefulness of 12 Pastoral Practices

    ERIC Educational Resources Information Center

    Canales, Arthur David

    2009-01-01

    The essay considers the process of cultivating Christian spirituality in Catholic adolescents. It will integrate and document official Catholic Church teachings on the subject and also unofficial scholarly reflections. The expose briefly defines adolescent spirituality and situates the process of cultivating adolescent spirituality in Catholic…

  11. Transferring sclerotinia resistance genes from wild perennial Helianthus species into cultivated sunflower

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the lack of highly tolerant cultivated sunflower germplasm, new sources of Sclerotinia resistance from wild Helianthus species need to be identified and incorporated into a cultivated background. Wild perennial Helianthus species are highly resistant to Sclerotinia and have provided good sou...

  12. Cultivating Students' Critical Thinking Ability through Simplified Modal United Nations Conference

    ERIC Educational Resources Information Center

    Gao, Cun

    2016-01-01

    Cultivating EFL learners' critical thinking ability is an urgent task for English teachers. To integrate the training of language skills and cultivation of critical thinking ability into one language course, the author designed an activity called simplified Modal United Nations conference, which is based on the revised Bloom's Taxonomy that…

  13. Developing Virtue and Rehabilitating Vice: Worries about Self-Cultivation and Self-Reform

    ERIC Educational Resources Information Center

    Battaly, Heather

    2016-01-01

    Aristotelian virtue theorists have emphasized the role of the self in developing virtue and in rehabilitating vice. But this article argues that, as Aristotelians, we have placed too much emphasis on self-cultivation and self-reform. Self-cultivation is not required for developing virtue or vice. Nor will "sophia"-inspired self-reform…

  14. On Cultivation of Characteristic Talents in Law in Institutes of Technology

    ERIC Educational Resources Information Center

    Li, Hong

    2011-01-01

    For the time being, professional education of law offered by institutes of technology has become an important component of cultivation of professional talents in law in China. Only if institutes of technology face up with their disadvantages, make full use of their resource advantages and cultivate characteristic talents in law, are they able to…

  15. Cultivating Self-Awareness in Counselors-in-Training through Group Supervision

    ERIC Educational Resources Information Center

    Del Moro, Ronald R.

    2012-01-01

    This study investigated processes, strategies, and frameworks that took place during group supervision classes, which best cultivate the self-awareness of Mental Health and Marriage and Family Counselors-in-Training (CITs). It was designed to explore factors across multiple theoretical models, which contributed to the cultivation of self-awareness…

  16. Combining functional weed ecology and crop stable isotope ratios to identify cultivation intensity: a comparison of cereal production regimes in Haute Provence, France and Asturias, Spain.

    PubMed

    Bogaard, Amy; Hodgson, John; Nitsch, Erika; Jones, Glynis; Styring, Amy; Diffey, Charlotte; Pouncett, John; Herbig, Christoph; Charles, Michael; Ertuğ, Füsun; Tugay, Osman; Filipovic, Dragana; Fraser, Rebecca

    This investigation combines two independent methods of identifying crop growing conditions and husbandry practices-functional weed ecology and crop stable carbon and nitrogen isotope analysis-in order to assess their potential for inferring the intensity of past cereal production systems using archaeobotanical assemblages. Present-day organic cereal farming in Haute Provence, France features crop varieties adapted to low-nutrient soils managed through crop rotation, with little to no manuring. Weed quadrat survey of 60 crop field transects in this region revealed that floristic variation primarily reflects geographical differences. Functional ecological weed data clearly distinguish the Provence fields from those surveyed in a previous study of intensively managed spelt wheat in Asturias, north-western Spain: as expected, weed ecological data reflect higher soil fertility and disturbance in Asturias. Similarly, crop stable nitrogen isotope values distinguish between intensive manuring in Asturias and long-term cultivation with minimal manuring in Haute Provence. The new model of cereal cultivation intensity based on weed ecology and crop isotope values in Haute Provence and Asturias was tested through application to two other present-day regimes, successfully identifying a high-intensity regime in the Sighisoara region, Romania, and low-intensity production in Kastamonu, Turkey. Application of this new model to Neolithic archaeobotanical assemblages in central Europe suggests that early farming tended to be intensive, and likely incorporated manuring, but also exhibited considerable variation, providing a finer grained understanding of cultivation intensity than previously available.

  17. [Changing characteristics of organic matter and pH of cultivated soils in Zhejiang province over the last 50 years].

    PubMed

    Zhang, Ming-Kui; Chang, Yue-Chang

    2013-11-01

    By comparing the current quality investigation data of cultivated soils in Zhejiang province with the past data, changing characteristics of organic matter and pH value of the soils in this province over last 50 years were analyzed. The results showed that content of organic matter and pH value of the cultivated soils changed greatly during past 50 years, and the changes varied with historical periods and soil types. From 1958 to 1980s, accumulation of soil organic matter was obvious, soil organic matter increased averagely by 40.34%, and the mean pH increased slightly by 0.05 of pH unit. From 1980s to 2008, the mean content of organic matter in paddy soils decreased by 5.58%. The changes of soil organic matter varied with distribution zones of the paddy soils. The mean content of organic matter of paddy soils in valley plain increased with time, and those in plain with water network, hilly area and coastal plain decreased with time. The mean contents of organic matter in fluvio-aquic soil and coastal saline soil in the year 2008 were 29.48% and 14.60% respectively higher than those in 1980s. As compared with those obtained at 1980s, the cultivated soil in this province have been significantly acidified in the past thirty years, the mean pH value declined by 0.25 of pH unit, and the decline of pH value of paddy soils was greater than those of fluvio-aquic soil and saline soil. Changes in fertilization structure and conversion of paddy fields to upland were thought as main causes of the changes in both soil organic matter and pH value.

  18. Oil and gas produced water as a growth medium for microalgae cultivation: A review and feasibility analysis

    DOE PAGES

    Sullivan Graham, Enid Joan; Dean, Cynthia Ann; Yoshida, Thomas M.; ...

    2017-02-16

    Scale-up of microalgal biotechnology to provide large quantities of biofuel, lipids, and coproducts is not fully developed because of the large needs for nutrients, water, land, solar insolation, and CO2/carbon supplies. Wastewaters, including oil and gas produced water (PW), may supply a portion of these needs in regions with insufficient fresh water resources. PW is a challenging water resource for this use because of variable salinity, geochemical complexity, and the presence of biologically toxic components. In this paper we review PW volumes, quality, and use in media for microalgae production in the southwestern US, Australia, and Oman. We also includemore » data from the southwestern US, referencing previously unpublished results from the National Alliance for Biofuels and Bioproducts (NAABB) consortium research project. We include a Supplementary Information section that explores cultivation of multiple microalgae species in PW and examines the carbon utilization process, all work performed in support of the NAABB field program. Strains of algae tested in the reviewed papers include Nannochloropsis, Dunalliella, Scenedesmus, and several mixed or unknown cultures. We conclude that the use of PW in algae cultivation is feasible, if the additional complexity of the water resource is accounted for in developing media formulations and in understanding metals uptake by the algae. We recommend additional work to standardize growth testing in PW, better and more thorough chemical analysis, and geochemical modeling of the PW used in media. As a result, expanded strain testing in PW media will identify improved strains tolerant of PW in algae cultivation.« less

  19. Effect of cultivation practices on the β-glucan content of Agaricus subrufescens basidiocarps.

    PubMed

    Zied, Diego Cunha; Pardo Giménez, Arturo; Pardo González, Jose Emilio; Dias, Eustáquio Souza; Carvalho, Maiara Andrade; Minhoni, Marli Teixeira de Almeida

    2014-01-08

    The present work aimed to assess the effect of the following treatments on the medicinal potential (β-glucan content) and agronomical performance (yield) of Agaricus subrufescens: five different fungal strains, three cultivation substrates (compost), four casing layers, and four cultivation environments. Two experiments were performed, and the results indicate that the greatest contribution to the variation in β-glucan content was the strain (35.8%), followed by the casing layer (34.5%), the cultivation environment (15.7%), and the type of compost (9.9%). On the other hand the variation in yield was affected most by the cultivation environment (82.1%), followed by the strain (81.3%), casing layer (49.1%), and compost type (15.2%). These findings underscore the importance of developing a production protocol that employs specific cultivation practices for improving mushroom yield as well as β-glucan content.

  20. Karyological features of wild and cultivated forms of myrtle (Myrtus communis, Myrtaceae).

    PubMed

    Serçe, S; Ekbiç, E; Suda, J; Gündüz, K; Kiyga, Y

    2010-03-09

    Myrtle is an evergreen shrub or small tree widespread throughout the Mediterranean region. In Turkey, both cultivated and wild forms, differing in plant and fruit size and fruit composition, can be found. These differences may have resulted from the domestication of the cultivated form over a long period of time. We investigated whether wild and cultivated forms of myrtle differ in karyological features (i.e., number of somatic chromosomes and relative genome size). We sampled two wild forms and six cultivated types of myrtle. All the samples had the same chromosome number (2n = 2x = 22). The results were confirmed by 4',6-diamidino-2-phenylindole (DAPI) flow cytometry. Only negligible variation (approximately 3%) in relative fluorescence intensity was observed among the different myrtle accessions, with wild genotypes having the smallest values. We concluded that despite considerable morphological differentiation, cultivated and wild myrtle genotypes in Turkey have similar karyological features.

  1. Aerated swine lagoon wastewater: a promising alternative medium for Botryococcus braunii cultivation in open system.

    PubMed

    Liu, Junzhi; Ge, Yaming; Cheng, Haixiang; Wu, Lianghuan; Tian, Guangming

    2013-07-01

    To understand the potential of using swine lagoon wastewater to cultivate Botryococcus braunii for biofuel production, growth characteristics of B. braunii 765 cultivated in aerated swine lagoon wastewater (ASLW) without sterilization and pH adjustment were investigated. The results showed that the alga strain could maintain competitive advantage over the 26-day cultivation. The highest dry biomass of alga grown in ASLW was 0.94 mg L(-1) at day 24, which was 1.73 times that grown in BG11 medium, an artificial medium normally used for B. braunii cultivation. And the algal hydrocarbon content was 23.8%, being more than twice that in BG11 medium. Additionally, after the 26-day cultivation, about 40.8% of TN and 93.3% of TP in ASLW were removed, indicating also good environmental benefits of algal bioremediation.

  2. Quantitative Evaluation of Surface Color of Tomato Fruits Cultivated in Remote Farm Using Digital Camera Images

    NASA Astrophysics Data System (ADS)

    Hashimoto, Atsushi; Suehara, Ken-Ichiro; Kameoka, Takaharu

    To measure the quantitative surface color information of agricultural products with the ambient information during cultivation, a color calibration method for digital camera images and a remote monitoring system of color imaging using the Web were developed. Single-lens reflex and web digital cameras were used for the image acquisitions. The tomato images through the post-ripening process were taken by the digital camera in both the standard image acquisition system and in the field conditions from the morning to evening. Several kinds of images were acquired with the standard RGB color chart set up just behind the tomato fruit on a black matte, and a color calibration was carried out. The influence of the sunlight could be experimentally eliminated, and the calibrated color information consistently agreed with the standard ones acquired in the system through the post-ripening process. Furthermore, the surface color change of the tomato on the tree in a greenhouse was remotely monitored during maturation using the digital cameras equipped with the Field Server. The acquired digital color images were sent from the Farm Station to the BIFE Laboratory of Mie University via VPN. The time behavior of the tomato surface color change during the maturing process could be measured using the color parameter calculated based on the obtained and calibrated color images along with the ambient atmospheric record. This study is a very important step in developing the surface color analysis for both the simple and rapid evaluation of the crop vigor in the field and to construct an ambient and networked remote monitoring system for food security, precision agriculture, and agricultural research.

  3. Physiomics Array: A Platform for Genome Research and Cultivation of Difficult-to-Cultivate Microorganisms Final Technical Report

    SciTech Connect

    Jay D. Keasling

    2006-07-10

    A scalable array technology for parametric control of high-throughput cell cultivations is demonstrated. The technology makes use of commercial printed circuit board (PCB) technology, integrated circuit sensors, and an electrochemical gas generation system. We present results for an array of eight 250 μl microbioreactors. Each bioreactor contains an independently addressable suite that provides closed-loop temperature control, generates feed gas electrochemically, and continuously monitors optical density. The PCB technology allows for the assembly of additional off-the-shelf components into the microbioreactor array; we demonstrate the use of a commercial ISFET chip to continuously monitor culture pH. The electrochemical dosing system provides a powerful paradigm for reproducible gas delivery to high-density arrays of microreactors. We have scaled the technology to a standard 96-well format and have constructed a system that could be easily assembled.

  4. Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium.

    PubMed

    Racharaks, Ratanachat; Ge, Xumeng; Li, Yebo

    2015-09-01

    The potential of shale gas flowback water and anaerobic digestion (AD) effluent to reduce the water and nutrient requirements for marine microalgae cultivation was evaluated with the following strains: Nannochloropsis salina, Dunaliella tertiolecta, and Dunaliella salina. N. salina and D. tertiolecta achieved the highest biomass productivity in the medium composed of flowback water and AD effluent (6% v/v). Growth in the above unsterilized medium was found to be comparable to that in sterilized commercial media with similar initial inorganic nitrogen concentrations, salinity, and pH levels. Specific growth rates of 0.293 and 0.349 day(-1) and average biomass productivities of 225 and 275 mg L(-1)day(-1) were obtained for N. salina and D. tertiolecta, respectively. The lipid content and fatty acid profile of both strains in the medium were also comparable to those obtained with commercial nutrients and salts.

  5. Abundances of a bean bug and its natural enemy in seminatural and cultivated habitats in agricultural landscapes.

    PubMed

    Tabuchi, Ken; Taki, Hisatomo; Iwai, Hideki; Mizutani, Nobuo; Nagasaka, Koukichi; Moriya, Seiichi; Sasaki, Rikiya

    2014-04-01

    To determine differences in distribution patterns between the soybean pest Riptortus pedestris F. (Hemiptera: Alydidae) and its egg parasitoid Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae) in source and cultivated habitats, we compared their abundances in soybean fields and forest edges, which were assumed to be the overwintering sites of R. pedestris. We set synthetic attractant-baited traps for both species over 2 yr in mid-August, just before R. pedestris normally colonizes soybeans. During one of the 2 yr, we also examined the rate of parasitism using an egg trap. The numbers of both R. pedestris and O. nezarae trapped at forest edges were higher than the numbers caught in soybean fields, suggesting that forest edges are important source habitats. Compared with R. pedestris, the abundance of O. nezarae in soybean fields was considerably lower than in forest edges, presumably because of differences in their dispersal abilities and their responses to landscape structure and resource distribution. Better pest control service by O. nezarae was provided at forest edges than in soybean fields. Therefore, when using pest control by O. nezarae in soybean fields, spatial arrangement and distance from the forest edge should be considered.

  6. Coir geotextile for slope stabilization and cultivation - A case study in a highland region of Kerala, South India

    NASA Astrophysics Data System (ADS)

    Vishnudas, Subha; Savenije, Hubert H. G.; Van der Zaag, Pieter; Anil, K. R.

    A sloping field is not only vulnerable to soil erosion it may also suffer from soil moisture deficiency. Farmers that cultivate on slopes everywhere face similar problems. Conservation technologies may reduce soil and nutrient losses, and thus enhance water holding capacity and soil fertility. But although these technologies promote sustainable crop production on steep slopes, the construction of physical structure such as bench terraces are often labour intensive and expensive to the farmers, since construction and maintenance require high investments. Here we studied the efficiency of coir geotextile with and without crop cultivation in reducing soil moisture deficiency on marginal slopes in Kerala, India. From the results it is evident that the slopes treated with geotextile and crops have the highest moisture retention capacity followed by geotextiles alone, and that the control plot has the lowest moisture retention capacity. As the poor and marginal farmers occupy the highland region, this method provides an economically viable option for income generation and food security along with slope stabilization.

  7. Microbial activity promoted with organic carbon accumulation in macroaggregates of paddy soils under long-term rice cultivation

    NASA Astrophysics Data System (ADS)

    Liu, Yalong; Wang, Ping; Ding, Yuanjun; Lu, Haifei; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Filley, Timothy; Zhang, Xuhui; Zheng, Jinwei; Pan, Genxing

    2016-12-01

    sharply but the diversity gently, with decreasing size of the aggregate fractions. The soil respiration quotient (ratio of respired CO2-C to SOC) was the highest in the silt fraction, followed by the fine-sand fraction, but the lowest in coarse-sand and clay fractions in the rice soils cultivated over 100 years, whereas the microbial metabolic quotient was lower in coarse-sand-sized fractions than in other fractions. Soil respiration was higher in the silt fraction than in other fractions for the rice soils. For the size fractions other than the clay fraction, enzyme activity was increased with prolonged rice cultivation, whereas soil respiration appeared to have a decreasing trend. Only in the coarse-sand fraction was both microbial gene abundance and enzyme activity well correlated to SOC and LOC content, although the chemical stability and respiratory of SOC were similar between coarse-sand and clay fractions. Thus, biological activity was generally promoted with LOC accumulation in the coarse-sand-sized macroaggregates of the rice soils, positively responding to prolonged rice cultivation management. The finding here provides a mechanistic understanding of soil organic carbon turnover and microbial community succession at fine scale of soil aggregates that have evolved along with anthropogenic activity of rice cultivation in the field.

  8. Feasibility and Treatment of Oil and Gas Produced Water as a Medium for Nannochloropsis Salina cultivation

    SciTech Connect

    Sullivan, Enid J.; Dean, Cynthia A.; Yoshida, Thomas M.; Steichen, Seth A.; Laur, Paul A.; Visolay, Alfonz

    2012-06-06

    Some conclusions of this paper are: (1) How much PW is available - (a) Lots, but probably not enough to support the largest estimates of algae production needed, (b) Diluent water is likely needed to support cultivation in some cases, (c) An assessment of how much PW is really available for use is needed; (2) Where is it available - (a) In many places near other resources (land, CO{sub 2}, sunlight, nutrients) and infrastructure (pipelines, refineries, disposal operations/wells); (3) Is the water chemistry acceptable for use - (a) Yes, in many cases with minimal treatment, (b) Additional constituents of value exist in PW for media; (4) Does it need treatment prior to use - (a) Yes, it may often need treatment for organics, some metals, and biological contaminants, (b) Source control and monitoring can reduce need for treatment; (5) How much does it cost to treat it - (a) If desalination is not needed, from <$0.01-$0.60 per m3 is a starting estimate; and (6) Can you grow algae in it - (a) Yes, but we need more experimentation to optimize field conditions, media mixing, and algae types.

  9. Can the co-cultivation of rice and fish help sustain rice production?

    NASA Astrophysics Data System (ADS)

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-06-01

    Because rice feeds half of the world’s population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one “rice-fish system” (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers’ net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability.

  10. We-ness and the Cultivation of Wisdom in Couple Therapy.

    PubMed

    Skerrett, Karen

    2016-03-01

    Wisdom has played a key role in the attempt to understand the positive nature of human behavior since the time of Aristotle. In the past decade, psychology and related fields have experienced an expanding interest in the empirical and theoretical pursuit of wisdom. The relational dimension of wisdom has received less attention, although it may be viewed as embedded in the practice of all couple therapists. This article integrates previous work on resilience and positive functioning in committed partnerships and proposes relational wisdom to be a master virtue of relationship development, one that can be cultivated across the lifespan of the partnership. The aspects of relational wisdom such as self-reflection, attunement to self and other, balancing conflicting partner aims, the interpretation of rules and principles in light of the uniqueness of each situation and the capacity to learn from experience point to couples therapy as an ideal context for such skill building. Wisdom is built through dialog and the resulting individual and couple stories can serve as touchstones to what is most precious and vital in the relationship as well as guides for action through challenges and conflict. A clinical case is described to illustrate selected aspects of relational wisdom and implications for therapeutic practice.

  11. Standardization of Experimental Design for Crop Cultivation in Life Support Systems for Space Exploration

    NASA Astrophysics Data System (ADS)

    Wolff, Silje Aase; Coelho, Liz Helena; Karoliussen, Irene; Kittang Jost, Ann-Iren

    Due to logistical challenges, long-term human space exploration missions require a life support system capable of regenerating all the essentials for survival. Higher plants can be utilized to provide a continuous supply of fresh food, fresh air, and clean water for humans. The extensive work performed have shown that higher plants are able to adapt to space conditions in low Earth orbit, at least from one generation from seed to seed. Since the hardware has turned out to be of great importance for the results in microgravity research, full environmental monitoring and control must be the standard for future experiments. Selecting a few model plants, including crop plants for life support, would further increase the comparability between studies. The European Space Agency (ESA) has developed the Micro-Ecological Life Support System Alternative (MELiSSA) program to develop a closed regenerative life support system, based on micro-organisms and higher plants, with continuous recycling of resources. In the present study, recommended standardization of the experimental design for future scientific work assessing the effects of graded gravity on plant metabolism will be presented. This includes the environmental conditions required for cultivation of the selected MEliSSA species (wheat, bread wheat, soybean and potato), as well as guidelines for sowing, plant handling and analysis. Keywords: microgravity; magnetic field; radiation; MELiSSA; Moon; Mars.

  12. Enhancement of Lipid Production of Chlorella Pyrenoidosa Cultivated in Municipal Wastewater by Magnetic Treatment.

    PubMed

    Han, Songfang; Jin, Wenbiao; Chen, Yangguang; Tu, Renjie; Abomohra, Abd El-Fatah

    2016-11-01

    Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the feasibility of using magnetic treatment for enhancement of algal lipid production and wastewater treatment in outdoor-cultivated Chlorella pyrenoidosa. Results confirmed that magnetic treatment significantly enhances biomass and lipid productivity of C. pyrenoidosa by 12 and 10 %, respectively. Application of magnetic field in a semi-continuous culture resulted in highly treated wastewater with total nitrogen maintained under 15 mg L(-1), ammonia nitrogen below 5 mg L(-1), total phosphorus less than 0.5 mg L(-1), and CODCr less than 50 mg L(-1). In addition, magnetic treatment resulted in a decrease of wastewater turbidity, an increase of bacterial numbers, and an increase of active oxygen in wastewater which might be attributed to the enhancement of growth and lipid production of C. pyrenoidosa.

  13. Cultivation of mesophilic soil crenarchaeotes in enrichment cultures from plant roots.

    PubMed

    Simon, Holly M; Jahn, Courtney E; Bergerud, Luke T; Sliwinski, Marek K; Weimer, Paul J; Willis, David K; Goodman, Robert M

    2005-08-01

    Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture.

  14. Can the co-cultivation of rice and fish help sustain rice production?

    PubMed Central

    Hu, Liangliang; Zhang, Jian; Ren, Weizheng; Guo, Liang; Cheng, Yongxu; Li, Jiayao; Li, Kexin; Zhu, Zewen; Zhang, Jiaen; Luo, Shiming; Cheng, Lei; Tang, Jianjun; Chen, Xin

    2016-01-01

    Because rice feeds half of the world’s population, a secure global food supply depends on sustainable rice production. Here we test whether the co-cultivation of rice and fish into one “rice-fish system” (RFS; fish refers to aquatic animals in this article) could help sustain rice production. We examined intensive and traditional RFSs that have been widely practiced in China. We found that rice yields did not decrease when fish yield was below a threshold value in each intensive RFS. Below the thresholds, moreover, fish yields in intensive RFSs can be substantially higher than those in traditional RFS without reducing rice yield. Relative to rice monoculture, the use of fertilizer-nitrogen and pesticides decreased, and the farmers’ net income increased in RFSs. The results suggest that RFSs can help sustain rice production, and suggest that development of co-culture technologies (i.e. proper field configuration for fish and rice) is necessary to achieve the sustainability. PMID:27349875

  15. Cultivation of Mesophilic Soil Crenarchaeotes in Enrichment Cultures from Plant Roots

    PubMed Central

    Simon, Holly M.; Jahn, Courtney E.; Bergerud, Luke T.; Sliwinski, Marek K.; Weimer, Paul J.; Willis, David K.; Goodman, Robert M.

    2005-01-01

    Because archaea are generally associated with extreme environments, detection of nonthermophilic members belonging to the archaeal division Crenarchaeota over the last decade was unexpected; they are surprisingly ubiquitous and abundant in nonextreme marine and terrestrial habitats. Metabolic characterization of these nonthermophilic crenarchaeotes has been impeded by their intractability toward isolation and growth in culture. From studies employing a combination of cultivation and molecular phylogenetic techniques (PCR-single-strand conformation polymorphism, sequence analysis of 16S rRNA genes, fluorescence in situ hybridization, and real-time PCR), we present evidence here that one of the two dominant phylotypes of Crenarchaeota that colonizes the roots of tomato plants grown in soil from a Wisconsin field is selectively enriched in mixed cultures amended with root extract. Clones recovered from enrichment cultures were found to group phylogenetically with sequences from clade C1b.A1. This work corroborates and extends our recent findings, indicating that the diversity of the crenarchaeal soil assemblage is influenced by the rhizosphere and that mesophilic soil crenarchaeotes are found associated with plant roots, and provides the first evidence for growth of nonthermophilic crenarchaeotes in culture. PMID:16085872

  16. Developmental and Environmental Effects on Sesquiterpene Lactones in Cultivated Arnica montana L.

    PubMed

    Todorova, Milka; Trendafilova, Antoaneta; Vitkova, Antonina; Petrova, Maria; Zayova, Ely; Antonova, Daniela

    2016-08-01

    The amount of sesquiterpene lactones and the lactone profile of Arnica montana L. in flowering and seed formation stages in vitro and in vivo propagated from seeds of German, Ukrainian, and Austrian origin and grown in two experimental fields were studied. It was found that in vitro propagated 2-year plants in full flowering stage accumulated higher amount of lactones in comparison to in vivo propagated 3-year plants and to the seed formation stage, respectively. Helenalins predominated in in vivo propagated 2-year or in vitro propagated 3-year plants. 2-Methylbutyrate (2MeBu) was the principal ester in the samples with prevalence of helenalins, while isobutyrate (iBu) was the major one in the samples with predominance of 11,13-dihydrohelenalins. The results revealed that the environmental conditions on Vitosha Mt. are more suitable for cultivation of A. montana giving higher content of lactones.

  17. Norwegian deep-water coral reefs: cultivation and molecular analysis of planktonic microbial communities.

    PubMed

    Jensen, Sigmund; Lynch, Michael D J; Ray, Jessica L; Neufeld, Josh D; Hovland, Martin

    2015-10-01

    Deep-sea coral reefs do not receive sunlight and depend on plankton. Little is known about the plankton composition at such reefs, even though they constitute habitats for many invertebrates and fish. We investigated plankton communities from three reefs at 260-350 m depth at hydrocarbon fields off the mid-Norwegian coast using a combination of cultivation and small subunit (SSU) rRNA gene and transcript sequencing. Eight months incubations of a reef water sample with minimal medium, supplemented with carbon dioxide and gaseous alkanes at in situ-like conditions, enabled isolation of mostly Alphaproteobacteria (Sulfitobacter, Loktanella), Gammaproteobacteria (Colwellia) and Flavobacteria (Polaribacter). The relative abundance of isolates in the original sample ranged from ∼ 0.01% to 0.80%. Comparisons of bacterial SSU sequences from filtered plankton of reef and non-reef control samples indicated high abundance and metabolic activity of primarily Alphaproteobacteria (SAR11 Ia), Gammaproteobacteria (ARCTIC96BD-19), but also of Deltaproteobacteria (Nitrospina, SAR324). Eukaryote SSU sequences indicated metabolically active microalgae and animals, including codfish, at the reef sites. The plankton community composition varied between reefs and differed between DNA and RNA assessments. Over 5000 operational taxonomic units were detected, some indicators of reef sites (e.g. Flavobacteria, Cercozoa, Demospongiae) and some more active at reef sites (e.g. Gammaproteobacteria, Ciliophora, Copepoda).

  18. To cultivate a new model: where de Soysa and Gleditsch fall short.

    PubMed

    Gaulin, T

    2000-01-01

    In the field of environmental security literature, there is a tendency to criticize the work of Thomas Homer-Dixon. Yet, research efforts that seek to improve upon Homer-Dixon's work have not produced models with more explanatory power or new insights. This paper reviews the article by Indra de Soysa and Nils Petter Gleditsch entitled "To Cultivate Peace: Agriculture in a World of Conflict" and examines its feasibility and similarity with the work of Homer-Dixon. In the article by de Soysa and Gleditsch, they argue that a lack of physical, human, and social capital (poverty) reduces agricultural production, which often leads to violent conflict. Their theory is interesting; however, a careful analysis of the basic causal process reveals that it covers the same territory previously covered by Homer-Dixon. Overall, it is noted that de Soysa and Gleditsch's article has not been a very productive approach to improving the understanding of the complex interaction between environmental scarcities and social systems.

  19. Genetic structure and differentiation in cultivated fig (Ficus carica L.)

    PubMed Central

    Stover, Ed; Velasco, Dianne; Koehmstedt, Anne

    2010-01-01

    One hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus. Seven of the 15 loci included in the genetic structure analyses exhibited significant deviation from panmixia, of which two showed excess and five showed deficiency of heterozygote. The cluster analysis (CA) revealed ten groups with 32 instances of synonymy among cultivars and groups differed significantly for frequency and composition of alleles for different loci. The principal components analysis (PCA) confirmed the results of CA with some groups more differentiated than the others. Further, the model based Bayesian approach clustering suggested a subtle population structure with mixed ancestry for most figs. The gene diversity analysis indicated that much of the total variation is found within groups (HG/HT = 0.853; 85.3%) and the among groups within total component (GGT = 0.147) accounted for the remaining 14.7%, of which ~64% accounted for among groups within clusters (GGC = 0.094) and ~36% among clusters (GCT = 0.053). The analysis of molecular variance (AMOVA) showed approximately similar results with nearly 87% of variation within groups and ~10% among groups within clusters, and ~3% among clusters. Overall, the gene pool of cultivated fig analyzed possesses substantial genetic polymorphism but exhibits narrow differentiation. It is evident that fig accessions from Turkmenistan are somewhat genetically different from the rest of the Mediterranean and the Caucasus figs. The long history of domestication and cultivation with widespread dispersal of cultivars with many synonyms

  20. Genetic structure and differentiation in cultivated fig (Ficus carica L.).

    PubMed

    Aradhya, Mallikarjuna K; Stover, Ed; Velasco, Dianne; Koehmstedt, Anne

    2010-06-01

    One hundred ninety-four germplasm accessions of fig representing the four fig types, Common, Smyrna, San Pedro, and Caprifig were analyzed for genetic diversity, structure, and differentiation using genetic polymorphism at 15 microsatellite loci. The collection showed considerable polymorphism with observed number of alleles per locus ranging from four for five different loci, MFC4, LMFC14, LMFC22, LMFC31 and LMFC35 to nine for LMFC30 with an average of 4.9 alleles per locus. Seven of the 15 loci included in the genetic structure analyses exhibited significant deviation from panmixia, of which two showed excess and five showed deficiency of heterozygote. The cluster analysis (CA) revealed ten groups with 32 instances of synonymy among cultivars and groups differed significantly for frequency and composition of alleles for different loci. The principal components analysis (PCA) confirmed the results of CA with some groups more differentiated than the others. Further, the model based Bayesian approach clustering suggested a subtle population structure with mixed ancestry for most figs. The gene diversity analysis indicated that much of the total variation is found within groups (H (G) /H (T) = 0.853; 85.3%) and the among groups within total component (G (GT) = 0.147) accounted for the remaining 14.7%, of which approximately 64% accounted for among groups within clusters (G (GC) = 0.094) and approximately 36% among clusters (G (CT) = 0.053). The analysis of molecular variance (AMOVA) showed approximately similar results with nearly 87% of variation within groups and approximately 10% among groups within clusters, and approximately 3% among clusters. Overall, the gene pool of cultivated fig analyzed possesses substantial genetic polymorphism but exhibits narrow differentiation. It is evident that fig accessions from Turkmenistan are somewhat genetically different from the rest of the Mediterranean and the Caucasus figs. The long history of domestication and cultivation

  1. Predominant Runoff Components During Heavy Rainfall Events on Cultivated Catchment

    NASA Astrophysics Data System (ADS)

    Jeřábek, J.; Zumr, D.; Strouhal, L.

    2015-12-01

    The fact that flash floods initiated in arable catchments are often accompanied by massive sediment and nutrient loads often leads to the assumption that surface runoff is the principle pathway by which runoff reaches watercourses. But the hydrology of cultivated catchments has its specific features due to the temporary variable topsoil properties and a sharp divide between topsoil and compacted subsoil. Under various conditions the prevailing runoff mechanisms may vary from surface runoff to subsurface runoff or deep percolation. On the basis of an evaluation of several rainfall-runoff events in a representative agricultural catchment (Nucice, Czech Republic), we show that runoff from cultivated land may be generated in a way similar to that seen on forested slopes, where shallow subsurface runoff is the predominant pathway. To identify the predominant runoff pathway, we employed a combination of turbidity measurements and stream discharge data. Although we observed temporal variability of topsoil properties attributable to seasonal weather changes and agricultural activities, e.g. bulk density and porosity, runoff generation was mainly driven by precipitation characteristics and the initial catchment saturation. The concept of the runoff formation was also observed during plot scale experiments with rainfall simulator. Various initial soil moisture conditions, and vegetation stages delimited the simulations. Variable proportions of both monitored runoff components were observed in relation to rainfall intensity and duration, ranging from zero surface runoff to a distinct dominance of surface runoff. Even with the highest tested precipitation intensities, surface runoff always formed due to saturation excess of the topsoil, irrespective of the topsoil properties and crops. The experiments were numerically modelled and analysed to understand the effect of temporal variability in the macropores and intra-aggregate voids ratio within the topsoil. We used a

  2. Evaluation of core cultivation practices to reduce ecological risk of pesticides in runoff from Agrostis palustris.

    PubMed

    Rice, Pamela J; Horgan, Brian P; Rittenhouse, Jennifer L

    2010-06-01

    Pesticides associated with the turfgrass industry have been detected in storm runoff and surface waters of urban watersheds, invoking concern of their potential environmental effects and a desire to reduce their transport to nontarget locations. Quantities of chlorpyrifos, dicamba, dimethylamine salt of 2,4-dichlorophenoxyacetic acid (2,4-D), flutolanil, and mecoprop-p (MCPP) transported in runoff from bentgrass (Agrostis palustris) fairway turf managed with solid tine (ST) or hollow tine (HT) core cultivation were compared to determine which cultivation practice is more efficient at mitigating environmental risk. Plots receiving HT core cultivation showed a 10 and 55% reduction in runoff volume and a 15 to 57% reduction in pesticide transport with runoff at 63 d and 2 d following core cultivation. Estimated environmental concentrations of the pesticides in a surface water receiving runoff from turf managed with ST core cultivation exceeded the median lethal concentration (LC50) or median effective concentration (EC50) of nine aquatic organisms evaluated. Replacing ST core cultivation with HT core cultivation reduced surface water concentrations of the pesticides to levels below the LC50 and EC50 for most these aquatic organisms, lessening risk associated with pesticides in runoff from the fairway turf. Results of the present research provide quantitative information that will allow for informed decisions on cultural practices that can maximize pesticide retention at the site of application, improving pest control in turf while minimizing environmental contamination and adverse effects associated with the off-site transport of pesticides.

  3. Impacts of surface water diversions for marijuana cultivation on aquatic habitat in four northwestern California watersheds.

    PubMed

    Bauer, Scott; Olson, Jennifer; Cockrill, Adam; van Hattem, Michael; Miller, Linda; Tauzer, Margaret; Leppig, Gordon

    2015-01-01

    Marijuana (Cannabis sativa L.) cultivation has proliferated in northwestern California since at least the mid-1990s. The environmental impacts associated with marijuana cultivation appear substantial, yet have been difficult to quantify, in part because cultivation is clandestine and often occurs on private property. To evaluate the impacts of water diversions at a watershed scale, we interpreted high-resolution aerial imagery to estimate the number of marijuana plants being cultivated in four watersheds in northwestern California, USA. Low-altitude aircraft flights and search warrants executed with law enforcement at cultivation sites in the region helped to validate assumptions used in aerial imagery interpretation. We estimated the water demand of marijuana irrigation and the potential effects water diversions could have on stream flow in the study watersheds. Our results indicate that water demand for marijuana cultivation has the potential to divert substantial portions of streamflow in the study watersheds, with an estimated flow reduction of up to 23% of the annual seven-day low flow in the least impacted of the study watersheds. Estimates from the other study watersheds indicate that water demand for marijuana cultivation exceeds streamflow during the low-flow period. In the most impacted study watersheds, diminished streamflow is likely to have lethal or sub-lethal effects on state- and federally-listed salmon and steelhead trout and to cause further decline of sensitive amphibian species.

  4. Controlled pilot development unit-scale fed-batch cultivation of yeast on spruce hydrolysates.

    PubMed

    Rudolf, Andreas; Lequeux, Gaspard; Lidén, Gunnar

    2007-01-01

    Yeast production on hydrolysate is a likely process solution in large-scale ethanol production from lignocellulose. The hydrolysate will be available on site, and the yeast has furthermore been shown to acquire an increased inhibitor tolerance when cultivated on hydrolysate. However, due to over-flow metabolism and inhibition, efficient yeast production on hydrolysate can only be achieved by well-controlled substrate addition. In the present work, a method was developed for controlled addition of hydrolysate to PDU (process development unit)-scale aerobic fed-batch cultivations of Saccharomyces cerevisiae TMB 3000. A feed rate control strategy, which maintains the ethanol concentration at a low constant level, was adapted to process-like conditions. The ethanol concentration was obtained from on-line measurements of the ethanol mole fraction in the exhaust gas. A computer model of the system was developed to optimize control performance. Productivities, biomass yields, and byproduct formation were evaluated. The feed rate control worked satisfactorily and maintained the ethanol concentration close to the setpoint during the cultivations. Biomass yields of 0.45 g/g were obtained on added hexoses during cultivation on hydrolysate and of 0.49 g/g during cultivation on a synthetic medium with glucose as the carbon source. Exponential growth was achieved with a specific growth rate of 0.18 h-1 during cultivation on hydrolysate and 0.22 h-1 during cultivation on glucose.

  5. Impacts of Surface Water Diversions for Marijuana Cultivation on Aquatic Habitat in Four Northwestern California Watersheds

    PubMed Central

    Cockrill, Adam; van Hattem, Michael; Miller, Linda; Tauzer, Margaret; Leppig, Gordon

    2015-01-01

    Marijuana (Cannabis sativa L.) cultivation has proliferated in northwestern California since at least the mid-1990s. The environmental impacts associated with marijuana cultivation appear substantial, yet have been difficult to quantify, in part because cultivation is clandestine and often occurs on private property. To evaluate the impacts of water diversions at a watershed scale, we interpreted high-resolution aerial imagery to estimate the number of marijuana plants being cultivated in four watersheds in northwestern California, USA. Low-altitude aircraft flights and search warrants executed with law enforcement at cultivation sites in the region helped to validate assumptions used in aerial imagery interpretation. We estimated the water demand of marijuana irrigation and the potential effects water diversions could have on stream flow in the study watersheds. Our results indicate that water demand for marijuana cultivation has the potential to divert substantial portions of streamflow in the study watersheds, with an estimated flow reduction of up to 23% of the annual seven-day low flow in the least impacted of the study watersheds. Estimates from the other study watersheds indicate that water demand for marijuana cultivation exceeds streamflow during the low-flow period. In the most impacted study watersheds, diminished streamflow is likely to have lethal or sub-lethal effects on state-and federally-listed salmon and steelhead trout and to cause further decline of sensitive amphibian species. PMID:25785849

  6. Ion exchange substrates for plant cultivation in extraterrestrial stations and space crafts

    NASA Astrophysics Data System (ADS)

    Soldatov, Vladimir

    2012-07-01

    Ion exchange substrates Biona were specially designed at the Belarus Academy of Sciences for plants cultivation in spacecrafts and extraterrestrial stations. The first versions of such substrates have been successfully used in several space experiments and in a long-term experiment in which three soviet test-spacemen spent a full year in hermetic cabin imitating a lunar station cabin (1067-1968). In this experiment the life support system included a section with about one ton of the ion exchange substrate, which was used to grow ten vegetations of different green cultures used in the food of the test persons. Due to failure of a number of Soviet space experiments, decay of the Soviet Union and the following economic crisis the research in this field carried out in Belarus were re-directed to the needs of usual agriculture, such as adaptation of cell cultures, growing seedlings, rootage of cuttings etc. At present ion exchange substrate Biona are produced in limited amounts at the experimental production plant of the Institute of Physical Organic Chemistry and used in a number of agricultural enterprises. New advanced substrates and technologies for their production have been developed during that time. In the presentation scientific principles of preparation and functioning of ion exchange substrates as well as results of their application for cultivation different plants are described. The ion exchange substrate is a mixture of cation and anion exchangers saturated in a certain proportions with all ions of macro and micro elements. These chemically bound ions are not released to water and become available for plants in exchange to their root metabolites. The substrates contain about 5% mass of nutrient elements far exceeding any other nutrient media for plants. They allow generating 3-5 kg of green biomass per kilogram of substrate without adding any fertilizers; they are sterile by the way of production and can be sterilized by usual methods; allow regeneration

  7. Transfer of hexazinone and glyphosate through undisturbed soil columns in soils under Christmas tree cultivation.

    PubMed

    Dousset, S; Chauvin, C; Durlet, P; Thévenot, M

    2004-10-01

    Field studies monitoring pesticide pollution in the Morvan region (France) have revealed surface water contamination by some herbicides. The purpose of this study was to investigate in greater detail the transport of two herbicides, used in Christmas tree production in the Morvan, under controlled laboratory conditions. Thus, the leaching of hexazinone (3-cyclohexyl-6-dimethyl-amino-1-methyl-1,3,5-triazine-2,4 (1H,3H) dione) and glyphosate (N-(phosphono-methyl-glycine)) through structured soil columns was studied using one loamy sand and two sandy loams from sites currently under Christmas tree cultivation in the Morvan. The three soils were cultivated sandy brunisol [Sound reference base for soils, D. Baize, M.C. Girard (Coord.), INRA, Versailles, 1998, 322 p] or, according to the FAO [FAO, World reference base for soil resources, ISSS-ISRIC-FAO, FAO, Rome, Italy, 1998], the La Garenne was an arenosol and the two other soils were cambisols. The clay contents of the soils ranged from 86 to 156 g kg(-1) and the organic carbon ranged from 98 to 347 g kg(-1). After 160 mm of simulated rainfall applied over 12 days, 2-11% of the applied hexazinone was recovered in the leachate. The recovery was much higher than that of glyphosate, which was less than 0.01%. The greater mobility of hexazinone might be related to its much lower adsorption coefficient, K(oc), 19-300 l kg(-1), compared with 8.5-10231 l kg(-1) for glyphosate (literature values). Another factor that may explain the higher amounts of hexazinone recovered in the leachates of the three soil columns is its greater persistence (19.7-91 days) relative to that of glyphosate (7.9-14.4 days). The mobility of both herbicides was greater in the soils with higher gravel contents, coarser textures, and lower organic carbon contents. Moreover, glyphosate migration seems negatively correlated not only to soil organic carbon, but also to aluminium and iron contents of soils. This soil column study suggests that at the

  8. Rainfall Threshold For Ephemeral Gully Erosion In Foothill Cultivated Lands (Wiśnicz Foothills, Poland)

    NASA Astrophysics Data System (ADS)

    Święchowicz, Jolanta

    2016-04-01

    The paper presents the results of ephemeral gullies studies carried out in hydrological years 1998-2009 on the Jagiellonian University's farm, which is located in the village of Łazy (Southern Poland). The farm covers an area of 103 ha. The dominant relief type is low hills. Soil erosion hardly ever occurs on the whole area of slopes in the catchment, and transport of eroded material is irregular and not simultaneous. The formation of ephemeral gullies happens once a year or once in a few years. The events are occasional and happen locally. Ephemeral gullies most frequently form and develop on cultivated slopes in natural drainage lines or they are associated with man-made agricultural activities like field borders, furrows, tractor traces and cart roads. The research carried out in Wiśnicz Foothills shows that the development of ephemeral gullies was limited both by extrinsic (erosivity of rain) and intrinsic thresholds (the length of slope, the presence (or lack of) Bt horizon, soil moisture, type and calendar of crops and farming activities). Ephemeral gullies usually form and develop during single rain or several subsequent rains of high erosivity (of several hundred MJmmha-1h-1) on long cultivated slopes, particularly at the beginning of vegetation period, when most slopes are devoid of vegetation cover or plants are in the initial stage of growth. The process of enlarging and deepening of ephemeral gullies slows down when the incision of a gully reaches Bt horizon. Then the effectiveness of even high erosivity rainfall is much smaller. Similarly, very high erosivity of rainfall in the middle of the vegetation season is not able to cause such serious effect and the intensity of deepening of ephemeral gullies is much smaller. The process of intensified linear water erosion is more significant on commercial farms with a large acreage of crops. As a result all the mapped erosion forms were disposed of by farmers (e.g. by ploughing or filling up). If these forms

  9. Training Programmes Can Change Behaviour and Encourage the Cultivation of Over-Harvested Plant Species

    PubMed Central

    Williams, Sophie J.; Jones, Julia P. G.; Clubbe, Colin; Gibbons, James M.

    2012-01-01

    Cultivation of wild-harvested plant species has been proposed as a way of reducing over-exploitation of wild populations but lack of technical knowledge is thought to be a barrier preventing people from cultivating a new species. Training programmes are therefore used to increase technical knowledge to encourage people to adopt cultivation. We assessed the impact of a training programme aiming to encourage cultivation of xaté (Chamaedorea ernesti-augusti), an over-harvested palm from Central America. Five years after the training programme ended, we surveyed untrained and trained individuals focusing on four potential predictors of behaviour: technical knowledge, attitudes (what individuals think about a behaviour), subjective norms (what individuals perceive others to think of a behaviour) and perceived behavioural control (self assessment of whether individuals can enact the behaviour successfully). Whilst accounting for socioeconomic variables, we investigate the influence of training upon these behavioural predictors and examine the factors that determine whether people adopt cultivation of a novel species. Those who had been trained had higher levels of technical knowledge about xaté cultivation and higher belief in their ability to cultivate it while training was not associated with differences in attitudes or subjective norms. Technical knowledge and perceived behavioural control (along with socio-economic variables such as forest ownership and age) were predictors of whether individuals cultivate xaté. We suggest that training programmes can have a long lasting effect on individuals and can change behaviour. However, in many situations other barriers to cultivation, such as access to seeds or appropriate markets, will need to be addressed. PMID:22431993

  10. Sample Processing Impacts the Viability and Cultivability of the Sponge Microbiome

    PubMed Central

    Esteves, Ana I. S.; Amer, Nimra; Nguyen, Mary; Thomas, Torsten

    2016-01-01

    Sponges host complex microbial communities of recognized ecological and biotechnological importance. Extensive cultivation efforts have been made to isolate sponge bacteria, but most still elude cultivation. To identify the bottlenecks of sponge bacterial cultivation, we combined high-throughput 16S rRNA gene sequencing with a variety of cultivation media and incubation conditions. We aimed to determine the extent to which sample processing and cultivation conditions can impact bacterial viability and recovery in culture. We isolated 325 sponge bacteria from six specimens of Cymbastela concentrica and three specimens of Scopalina sp. These isolates were distributed over 37 different genera and 47 operational taxonomic units (defined at 97% 16S rRNA gene sequence identity). The cultivable bacterial community was highly specific to its sponge host and different media compositions yielded distinct microbial isolates. Around 97% of the isolates could be detected in the original sponge and represented a large but highly variable proportion (0.5–92% total abundance, depending on sponge species) of viable bacteria obtained after sample processing, as determined by propidium monoazide selective DNA modification of compromised cells. Our results show that the most abundant viable bacteria are also the most predominant groups found in cultivation, reflecting, to some extent, the relative abundances of the viable bacterial community, rather than the overall community estimated by direct molecular approaches. Cultivation is therefore shaped not only by the growth conditions provided, but also by the different cell viabilities of the bacteria that constitute the cultivation inoculum. These observations highlight the need to perform experiments to assess each method of sample processing for its accurate representation of the actual in situ bacterial community and its yield of viable cells. PMID:27242673

  11. [The Theory and Practice of Health Cultivation Qigong Exercise in Traditional Chinese Medicine].

    PubMed

    Chang, Mei-Ying

    2015-12-01

    The health cultivation qigong exercise in traditional Chinese medicine refers to a traditional, integrated method of illness prevention and body strengthening, which promotes the functions of qi and the blood, smooths the meridians (energy channels), and balances the viscera and bowels through the regulation of the mind, the breathing, and the body. The concept of using qi to cultivate human life is part of the health cultivation practices of ancient Chinese codes and of Chinese medicine. This concept includes the principles, methods, essences, and clinical applications of the practice. In addition, traditional health cultivation references the concepts of yinyang, viscera and bowels, qi and blood, meridians, and essential energy spirit theory in order to explain the human biological phenomena, the theoretical and practical perspectives of qigong, and the basis of the treatment principle. The health cultivation qigong exercise of Chinese medicine utilizes the concept of the "unity of nature and human beings" in traditional Chinese thinking in its practice, which emphasizes the conformity to nature and seasons. In order to fully leverage the benefits from the purpose of health cultivation in qigong practice, the priority is to understand the health cultivation mechanism, the essentials/matters, and the precautions of qigong practices. Recently, the evidence regarding both the biological and the psychological benefits of qigong practices have been demonstrated in numbers of research articles. In particular, qigong is currently considered to be one of the best mild exercises that is suited to all age groups. Professional nurses are suggested to include the health cultivation qigong exercise as part of activities that target health improvement and illness prevention. Due to the diversity in qigong as practiced by different health cultivation qigong exercise sects, it is essential to accumulate more clinical evidence by conducting greater numbers of rigorous studies

  12. The cultivation of the mushroom Agaricus bisporus (Champignon) and some environmental and health aspects.

    PubMed

    Zicari, Giuseppe; Rivetti, Daniela; Soardo, Vincenzo; Cerrato, Elena

    2012-01-01

    The cultivation of the mushroom Agaricus bisporus, also known as button mushroom, requires the use of substrates for its cultivation, such as chicken and/or horse manure and the application of manufacturing steps, such as storage and composting that produce odours. The odours may cause disturbance to people living near the plant and may be a problem for workers. This article examines some measures that can be taken to reduce the odorous emissions during the production of Agaricus bisporus. The possibility of recovery of some organic matter left from the cultivation is examined. Finally, some occupational hazards for workers are highlighted.

  13. [Review on application of plant growth retardants in medicinal plants cultivation].

    PubMed

    Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming

    2013-09-01

    Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.

  14. Treatment of anaerobic digestion effluent of sewage sludge using soilless cultivation

    NASA Astrophysics Data System (ADS)

    Uchimura, Koki; Sago, Yuki; Kamahara, Hirotsugu; Atsuta, Yoichi; Daimon, Hiroyuki

    2014-02-01

    Soilless cultivation was carried out using anaerobic digestion effluent of sewage sludge as liquid fertilizer, with a preparation which cultures microorganisms in nutrient solution. As a result, ammonium ions contained in the effluent were nitrified into nitrate ions by the microorganisms. And then, Japanese mustard spinach (Brassica rapa var. perviridis) was cultivated by soilless cultivation system. The plants were grown well using microbial nutrient solution, which similar to the plants using conventional inorganic nutrient solution. In contrast, the plants were grown poorly using the effluent as liquid fertilizer without microorganisms.

  15. Current progress and challenges in ocular surface reconstruction using cultivated epithelial sheet transplantation.

    PubMed

    Inatomi, T; Nakamura, T; Koizumi, N; Sotozono, C; Kinoshita, S

    2008-07-01

    The cultivated epithelial transplantation is a new surgical modality for treating a variety of severe ocular surface disorders. This type of tissue-engineered epithelial sheet provides a rapid epithelial coverage on the corneal surface that reduces inflammation and postoperative complications. Although cultivated corneal epithelial transplantation is an effective surgical strategy, autologous transplantation is limited to unilateral cases. Autologous cultivated oral mucosal epithelial transplantation (COMET) enables surgeons to reconstruct the ocular surface using autologous, non-ocular surface cells, and has opened a new pathway for treating severe, bilateral ocular surface disorders.

  16. Cassava genome from a wild ancestor to cultivated varieties.

    PubMed

    Wang, Wenquan; Feng, Binxiao; Xiao, Jingfa; Xia, Zhiqiang; Zhou, Xincheng; Li, Pinghua; Zhang, Weixiong; Wang, Ying; Møller, Birger Lindberg; Zhang, Peng; Luo, Ming-Cheng; Xiao, Gong; Liu, Jingxing; Yang, Jun; Chen, Songbi; Rabinowicz, Pablo D; Chen, Xin; Zhang, Hong-Bin; Ceballos, Henan; Lou, Qunfeng; Zou, Meiling; Carvalho, Luiz J C B; Zeng, Changying; Xia, Jing; Sun, Shixiang; Fu, Yuhua; Wang, Haiyan; Lu, Cheng; Ruan, Mengbin; Zhou, Shuigeng; Wu, Zhicheng; Liu, Hui; Kannangara, Rubini Maya; Jørgensen, Kirsten; Neale, Rebecca Louise; Bonde, Maya; Heinz, Nanna; Zhu, Wenli; Wang, Shujuan; Zhang, Yang; Pan, Kun; Wen, Mingfu; Ma, Ping-An; Li, Zhengxu; Hu, Meizhen; Liao, Wenbin; Hu, Wenbin; Zhang, Shengkui; Pei, Jinli; Guo, Anping; Guo, Jianchun; Zhang, Jiaming; Zhang, Zhengwen; Ye, Jianqiu; Ou, Wenjun; Ma, Yaqin; Liu, Xinyue; Tallon, Luke J; Galens, Kevin; Ott, Sandra; Huang, Jie; Xue, Jingjing; An, Feifei; Yao, Qingqun; Lu, Xiaojing; Fregene, Martin; López-Lavalle, L Augusto Becerra; Wu, Jiajie; You, Frank M; Chen, Meili; Hu, Songnian; Wu, Guojiang; Zhong, Silin; Ling, Peng; Chen, Yeyuan; Wang, Qinghuang; Liu, Guodao; Liu, Bin; Li, Kaimian; Peng, Ming

    2014-10-10

    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology.

  17. Cassava genome from a wild ancestor to cultivated varieties

    PubMed Central

    Wang, Wenquan; Feng, Binxiao; Xiao, Jingfa; Xia, Zhiqiang; Zhou, Xincheng; Li, Pinghua; Zhang, Weixiong; Wang, Ying; Møller, Birger Lindberg; Zhang, Peng; Luo, Ming-Cheng; Xiao, Gong; Liu, Jingxing; Yang, Jun; Chen, Songbi; Rabinowicz, Pablo D.; Chen, Xin; Zhang, Hong-Bin; Ceballos, Henan; Lou, Qunfeng; Zou, Meiling; Carvalho, Luiz J.C.B.; Zeng, Changying; Xia, Jing; Sun, Shixiang; Fu, Yuhua; Wang, Haiyan; Lu, Cheng; Ruan, Mengbin; Zhou, Shuigeng; Wu, Zhicheng; Liu, Hui; Kannangara, Rubini Maya; Jørgensen, Kirsten; Neale, Rebecca Louise; Bonde, Maya; Heinz, Nanna; Zhu, Wenli; Wang, Shujuan; Zhang, Yang; Pan, Kun; Wen, Mingfu; Ma, Ping-An; Li, Zhengxu; Hu, Meizhen; Liao, Wenbin; Hu, Wenbin; Zhang, Shengkui; Pei, Jinli; Guo, Anping; Guo, Jianchun; Zhang, Jiaming; Zhang, Zhengwen; Ye, Jianqiu; Ou, Wenjun; Ma, Yaqin; Liu, Xinyue; Tallon, Luke J.; Galens, Kevin; Ott, Sandra; Huang, Jie; Xue, Jingjing; An, Feifei; Yao, Qingqun; Lu, Xiaojing; Fregene, Martin; López-Lavalle, L. Augusto Becerra; Wu, Jiajie; You, Frank M.; Chen, Meili; Hu, Songnian; Wu, Guojiang; Zhong, Silin; Ling, Peng; Chen, Yeyuan; Wang, Qinghuang; Liu, Guodao; Liu, Bin; Li, Kaimian; Peng, Ming

    2014-01-01

    Cassava is a major tropical food crop in the Euphorbiaceae family that has high carbohydrate production potential and adaptability to diverse environments. Here we present the draft genome sequences of a wild ancestor and a domesticated variety of cassava and comparative analyses with a partial inbred line. We identify 1,584 and 1,678 gene models specific to the wild and domesticated varieties, respectively, and discover high heterozygosity and millions of single-nucleotide variations. Our analyses reveal that genes involved in photosynthesis, starch accumulation and abiotic stresses have been positively selected, whereas those involved in cell wall biosynthesis and secondary metabolism, including cyanogenic glucoside formation, have been negatively selected in the cultivated varieties, reflecting the result of natural selection and domestication. Differences in microRNA genes and retrotransposon regulation could partly explain an increased carbon flux towards starch accumulation and reduced cyanogenic glucoside accumulation in domesticated cassava. These results may contribute to genetic improvement of cassava through better understanding of its biology. PMID:25300236

  18. A Brazilian social bee must cultivate fungus to survive.

    PubMed

    Menezes, Cristiano; Vollet-Neto, Ayrton; Marsaioli, Anita Jocelyne; Zampieri, Davila; Fontoura, Isabela Cardoso; Luchessi, Augusto Ducati; Imperatriz-Fonseca, Vera Lucia

    2015-11-02

    The nests of social insects provide suitable microenvironments for many microorganisms as they offer stable environmental conditions and a rich source of food [1-4]. Microorganisms in turn may provide several benefits to their hosts, such as nutrients and protection against pathogens [1, 4-6]. Several examples of symbiosis between social insects and microorganisms have been found in ants and termites. These symbioses have driven the evolution of complex behaviors and nest structures associated with the culturing of the symbiotic microorganisms [5, 7, 8]. However, while much is known about these relationships in many species of ants and termites, symbiotic relationships between microorganisms and social bees have been poorly explored [3, 4, 9, 10]. Here, we report the first case of an obligatory relationship between the Brazilian stingless bee Scaptotrigona depilis and a fungus of the genus Monascus (Ascomycotina). Fungal mycelia growing on the provisioned food inside the brood cell are eaten by the larva. Larvae reared in vitro on sterilized larval food supplemented with fungal mycelia had a much higher survival rate (76%) compared to larvae reared under identical conditions but without fungal mycelia (8% survival). The fungus was found to originate from the material from which the brood cells are made. Since the bees recycle and transport this material between nests, fungus would be transferred to newly built cells and also to newly founded nests. This is the first report of a fungus cultivation mutualism in a social bee.

  19. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea.

    PubMed

    Papp, Benedek; Török, Tibor; Sándor, Erzsébet; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 10(12)/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date.

  20. Studies on the in vitro cultivation of coccidia

    SciTech Connect

    Schmatz, D.M.

    1985-01-01

    New approaches to the in vitro cultivation of coccidian parasites are described here, specifically for avian coccidia of the genus Eimeria. Firstly, an improved method of purifying the infectious stage of these parasites, known as sporozoites, over a DEAE-52 cellulose anion exchange column to eliminate toxic debris generated during excystation is described. The cultured cells used to support the intracellular development of these parasites, Madin-Darby Bovine Kidney Cells (MDBK), were cloned and it was demonstrated that some clones were more susceptible than others to infection with sporozoites. The use of sub-lethal doses of gamma radiation to pre-treat host cell monolayers prior to infecting has been found to prevent host cell overgrowth and subsequent peeling of the monolayers while not interfering with parasite development. Utilizing in vitro culture techniques developed here in conjunction with radiolabeling studies, an assay has been development using the parasite-specific incorporation of /sup 3/H-uracil to assess the intracellular development of E. tenella and E. acervulina in vitro. As shown by both scintillation counts and autoradiography, /sup 3/H-uracil was incorporated specifically into the intracellular parasites from the onset of infection and continued throughout the development of the first generation schizonts. Based on these findings, a semi-automated microscale incorporation assay was developed to determine parasite viability. The assay system is used in this study to investigate the effects of known anticoccidials, sporozoite antiserum, and varying the composition of the cell culture medium on parasite development.