The adjoint-state method for the downward continuation of the geomagnetic field
NASA Astrophysics Data System (ADS)
Hagedoorn, J. M.; Martinec, Z.
2015-05-01
The downward continuation of the observed geomagnetic field from the Earth's surface to the core-mantle boundary (CMB) is complicated due to induction and diffusion processes in the electrically conducting Earth mantle, which modify the amplitudes and morphology of the geomagnetic field. Various methods have been developed to solve this problem, for example, the perturbation approach by Benton & Whaler, or the non-harmonic downward continuation by Ballani et al. In this paper, we present a new approach for determining the geomagnetic field at the CMB by reformulating the ill-posed, one-sided boundary-value problem with time-variable boundary-value function on the Earth's surface into an optimization problem for the boundary condition at the CMB. The reformulated well-posed problem is solved by a conjugate gradient technique using the adjoint gradient of a misfit. For this purpose, we formulate the geomagnetic adjoint-state equations for efficient computations of the misfit gradient. Beside the theoretical description of the new adjoint-state method (ASM), the first applications to a global geomagnetic field model are presented. The comparison with other methods demonstrates the capability of the new method to determine the geomagnetic field at the CMB and allows us to investigate the variability of the determined field with respect to the applied methods. This shows that it is necessary to apply the ASM when investigating the effect of the Earth's mantle conductivity because the difference between the results of approximate methods (harmonic downward continuation, perturbation approach) and the rigorous ASM are of the same order as the difference between the results of the ASM applied for different mantle conductivities.
Slope tomography based on eikonal solvers and the adjoint-state method
NASA Astrophysics Data System (ADS)
Tavakoli, B.; Operto, S.; Ribodetti, A.; Virieux, J.
2017-03-01
Velocity macro-model building is a crucial step in the seismic imaging workflow as it provides the necessary background model for migration or full waveform inversion. In this study, we present a new formulation of stereotomography that can handle more efficiently long-offset acquisition, complex geological structures and large-scale datasets. Stereotomography is a slope tomographic method based upon a semi-automatic picking of local coherent events. Each local coherent event, characterised by its two-way traveltime and two slopes in common-shot and common-receiver gathers, is tied to a scatterer or a reflector segment in the subsurface. Ray tracing provides a natural forward engine to compute traveltime and slopes but can suffer from non-uniform ray sampling in presence of complex media and long-offset acquisitions. Moreover, most implementations of stereotomography explicitly build a sensitivity matrix, leading to the resolution of large systems of linear equations, which can be cumbersome when large-scale datasets are considered. Overcoming these issues comes with a new matrix-free formulation of stereotomography: a factored eikonal solver based on the fast sweeping method to compute first-arrival traveltimes and an adjoint-state formulation to compute the gradient of the misfit function. By solving eikonal equation from sources and receivers, we make the computational cost proportional to the number of sources and receivers while it is independent of picked events density in each shot and receiver gather. The model space involves the subsurface velocities and the scatterer coordinates, while the dip of the reflector segments are implicitly represented by the spatial support of the adjoint sources and are updated through the joint localization of nearby scatterers. We present an application on the complex Marmousi model for a towed-streamer acquisition and a realistic distribution of local events. We show that the estimated model, built without any prior
Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods
NASA Astrophysics Data System (ADS)
Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco
2015-04-01
The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface
The forward sensitivity and adjoint-state methods of glacial isostatic adjustment
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Sasgen, Ingo; Velímský, Jakub
2015-01-01
In this study, a new method for computing the sensitivity of the glacial isostatic adjustment (GIA) forward solution with respect to the Earth's mantle viscosity, the so-called the forward sensitivity method (FSM), and a method for computing the gradient of data misfit with respect to viscosity parameters, the so-called adjoint-state method (ASM), are presented. These advanced formal methods complement each other in the inverse modelling of GIA-related observations. When solving this inverse problem, the first step is to calculate the forward sensitivities by the FSM and use them to fix the model parameters that do not affect the forward model solution, as well as identifying and removing redundant parts of the inferred viscosity structure. Once the viscosity model is optimized in view of the forward sensitivities, the minimization of the data misfit with respect to the viscosity parameters can be carried out by a gradient technique which makes use of the ASM. The aim is this paper is to derive the FSM and ASM in the forms that are closely associated with the forward solver of GIA developed by Martinec. Since this method is based on a continuous form of the forward model equations, which are then discretized by spectral and finite elements, we first derive the continuous forms of the FSM and ASM and then discretize them by the spectral and finite elements used in the discretization of the forward model equations. The advantage of this approach is that all three methods (forward, FSM and ASM) have the same matrix of equations and use the same methodology for the implementation of the time evolution of stresses. The only difference between the forward method and the FSM and ASM is that the different numerical differencing schemes for the time evolution of the Maxwell and generalized Maxwell viscous stresses are applied in the respective methods. However, it requires only a little extra computational time for carrying out the FSM and ASM numerically. An
Adjoint method and runaway electron avalanche
NASA Astrophysics Data System (ADS)
Liu, Chang; Brennan, Dylan P.; Boozer, Allen H.; Bhattacharjee, Amitava
2017-02-01
The adjoint method for the study of runaway electron dynamics in momentum space Liu et al (2016 Phys. Plasmas 23 010702) is rederived using the Green’s function method, for both the runaway probability function (RPF) and the expected loss time (ELT). The RPF and ELT obtained using the adjoint method are presented, both with and without the synchrotron radiation reaction force. The adjoint method is then applied to study the runaway electron avalanche. Both the critical electric field and the growth rate for the avalanche are calculated using this fast and novel approach.
Tsunami waveform inversion by adjoint methods
NASA Astrophysics Data System (ADS)
Pires, Carlos; Miranda, Pedro M. A.
2001-09-01
An adjoint method for tsunami waveform inversion is proposed, as an alternative to the technique based on Green's functions of the linear long wave model. The method has the advantage of being able to use the nonlinear shallow water equations, or other appropriate equation sets, and to optimize an initial state given as a linear or nonlinear function of any set of free parameters. This last facility is used to perform explicit optimization of the focal fault parameters, characterizing the initial sea surface displacement of tsunamigenic earthquakes. The proposed methodology is validated with experiments using synthetic data, showing the possibility of recovering all relevant details of a tsunami source from tide gauge observations, providing that the adjoint method is constrained in an appropriate manner. It is found, as in other methods, that the inversion skill of tsunami sources increases with the azimuthal and temporal coverage of assimilated tide gauge stations; furthermore, it is shown that the eigenvalue analysis of the Hessian matrix of the cost function provides a consistent and useful methodology to choose the subset of independent parameters that can be inverted with a given dataset of observations and to evaluate the error of the inversion process. The method is also applied to real tide gauge series, from the tsunami of the February 28, 1969, Gorringe Bank earthquake, suggesting some reasonable changes to the assumed focal parameters of that event. It is suggested that the method proposed may be able to deal with transient tsunami sources such as those generated by submarine landslides.
Gradient-based optimum aerodynamic design using adjoint methods
NASA Astrophysics Data System (ADS)
Xie, Lei
2002-09-01
Continuous adjoint methods and optimal control theory are applied to a pressure-matching inverse design problem of quasi 1-D nozzle flows. Pontryagin's Minimum Principle is used to derive the adjoint system and the reduced gradient of the cost functional. The properties of adjoint variables at the sonic throat and the shock location are studied, revealing a log-arithmic singularity at the sonic throat and continuity at the shock location. A numerical method, based on the Steger-Warming flux-vector-splitting scheme, is proposed to solve the adjoint equations. This scheme can finely resolve the singularity at the sonic throat. A non-uniform grid, with points clustered near the throat region, can resolve it even better. The analytical solutions to the adjoint equations are also constructed via Green's function approach for the purpose of comparing the numerical results. The pressure-matching inverse design is then conducted for a nozzle parameterized by a single geometric parameter. In the second part, the adjoint methods are applied to the problem of minimizing drag coefficient, at fixed lift coefficient, for 2-D transonic airfoil flows. Reduced gradients of several functionals are derived through application of a Lagrange Multiplier Theorem. The adjoint system is carefully studied including the adjoint characteristic boundary conditions at the far-field boundary. A super-reduced design formulation is also explored by treating the angle of attack as an additional state; super-reduced gradients can be constructed either by solving adjoint equations with non-local boundary conditions or by a direct Lagrange multiplier method. In this way, the constrained optimization reduces to an unconstrained design problem. Numerical methods based on Jameson's finite volume scheme are employed to solve the adjoint equations. The same grid system generated from an efficient hyperbolic grid generator are adopted in both the Euler flow solver and the adjoint solver. Several
Adjoint variational methods in nonconservative stability problems.
NASA Technical Reports Server (NTRS)
Prasad, S. N.; Herrmann, G.
1972-01-01
A general nonself-adjoint eigenvalue problem is examined and it is shown that the commonly employed approximate methods, such as the Galerkin procedure, the method of weighted residuals and the least square technique lack variational descriptions. When used in their previously known forms they do not yield stationary eigenvalues and eigenfunctions. With the help of an adjoint system, however, several analogous variational descriptions may be developed and it is shown in the present study that by properly restating the method of least squares, stationary eigenvalues may be obtained. Several properties of the adjoint eigenvalue problem, known only for a restricted group, are shown to exist for the more general class selected for study.
Mesh-free adjoint methods for nonlinear filters
NASA Astrophysics Data System (ADS)
Daum, Fred
2005-09-01
We apply a new industrial strength numerical approximation, called the "mesh-free adjoint method", to solve the nonlinear filtering problem. This algorithm exploits the smoothness of the problem, unlike particle filters, and hence we expect that mesh-free adjoints are superior to particle filters for many practical applications. The nonlinear filter problem is equivalent to solving the Fokker-Planck equation in real time. The key idea is to use a good adaptive non-uniform quantization of state space to approximate the solution of the Fokker-Planck equation. In particular, the adjoint method computes the location of the nodes in state space to minimize errors in the final answer. This use of an adjoint is analogous to optimal control algorithms, but it is more interesting. The adjoint method is also analogous to importance sampling in particle filters, but it is better for four reasons: (1) it exploits the smoothness of the problem; (2) it explicitly minimizes the errors in the relevant functional; (3) it explicitly models the dynamics in state space; and (4) it can be used to compute a corrected value for the desired functional using the residuals. We will attempt to make this paper accessible to normal engineers who do not have PDEs for breakfast.
NASA Astrophysics Data System (ADS)
Virieux, J.; Bretaudeau, F.; Metivier, L.; Brossier, R.
2013-12-01
Simultaneous inversion of seismic velocities and source parameters have been a long standing challenge in seismology since the first attempts to mitigate trade-off between very different parameters influencing travel-times (Spencer and Gubbins 1980, Pavlis and Booker 1980) since the early development in the 1970s (Aki et al 1976, Aki and Lee 1976, Crosson 1976). There is a strong trade-off between earthquake source positions, initial times and velocities during the tomographic inversion: mitigating these trade-offs is usually carried empirically (Lemeur et al 1997). This procedure is not optimal and may lead to errors in the velocity reconstruction as well as in the source localization. For a better simultaneous estimation of such multi-parametric reconstruction problem, one may take benefit of improved local optimization such as full Newton method where the Hessian influence helps balancing between different physical parameter quantities and improving the coverage at the point of reconstruction. Unfortunately, the computation of the full Hessian operator is not easily computed in large models and with large datasets. Truncated Newton (TCN) is an alternative optimization approach (Métivier et al. 2012) that allows resolution of the normal equation H Δm = - g using a matrix-free conjugate gradient algorithm. It only requires to be able to compute the gradient of the misfit function and Hessian-vector products. Traveltime maps can be computed in the whole domain by numerical modeling (Vidale 1998, Zhao 2004). The gradient and the Hessian-vector products for velocities can be computed without ray-tracing using 1st and 2nd order adjoint-state methods for the cost of 1 and 2 additional modeling step (Plessix 2006, Métivier et al. 2012). Reciprocity allows to compute accurately the gradient and the full Hessian for each coordinates of the sources and for their initial times. Then the resolution of the problem is done through two nested loops. The model update Δm is
NASA Astrophysics Data System (ADS)
Bretaudeau, F.; Metivier, L.; Brossier, R.; Virieux, J.
2013-12-01
Traveltime tomography algorithms generally use ray tracing. The use of rays in tomography may not be suitable for handling very large datasets and perform tomography in very complex media. Traveltime maps can be computed through finite-difference approach (FD) and avoid complex ray-tracing algorithm for the forward modeling (Vidale 1998, Zhao 2004). However, rays back-traced from receiver to source following the gradient of traveltime are still used to compute the Fréchet derivatives. As a consequence, the sensitivity information computed using back-traced rays is not numerically consistent with the FD modeling used (the derivatives are only a rough approximation of the true derivatives of the forward modeling). Leung & Quian (2006) proposed a new approach that avoid ray tracing where the gradient of the misfit function is computed using the adjoint-state method. An adjoint-state variable is thus computed simultaneously for all receivers using a numerical method consistent with the forward modeling, and for the computational cost of one forward modeling. However, in their formulation, the receivers have to be located at the boundary of the investigated model, and the optimization approach is limited to simple gradient-based method (i.e. steepest descent, conjugate gradient) as only the gradient is computed. However, the Hessian operator has an important role in gradient-based reconstruction methods, providing the necessary information to rescale the gradient, correct for illumination deficit and remove artifacts. Leung & Quian (2006) uses LBFGS, a quasi-Newton method that provides an improved estimation of the influence of the inverse Hessian. Lelievre et al. (2011) also proposed a tomography approach in which the Fréchet derivatives are computed directly during the forward modeling using explicit symbolic differentiation of the modeling equations, resulting in a consistent Gauss-Newton inversion. We are interested here in the use of a new optimization approach
NASA Astrophysics Data System (ADS)
Büskens, Christof; Maurer, Helmut
2000-08-01
Parametric nonlinear optimal control problems subject to control and state constraints are studied. Two discretization methods are discussed that transcribe optimal control problems into nonlinear programming problems for which SQP-methods provide efficient solution methods. It is shown that SQP-methods can be used also for a check of second-order sufficient conditions and for a postoptimal calculation of adjoint variables. In addition, SQP-methods lead to a robust computation of sensitivity differentials of optimal solutions with respect to perturbation parameters. Numerical sensitivity analysis is the basis for real-time control approximations of perturbed solutions which are obtained by evaluating a first-order Taylor expansion with respect to the parameter. The proposed numerical methods are illustrated by the optimal control of a low-thrust satellite transfer to geosynchronous orbit and a complex control problem from aquanautics. The examples illustrate the robustness, accuracy and efficiency of the proposed numerical algorithms.
Imaging Earth's Interior Based Upon Adjoint Methods
NASA Astrophysics Data System (ADS)
Tromp, J.; Komatitsch, D.; Liu, Q.; Tape, C.; Maggi, A.
2008-12-01
Modern numerical methods in combination with rapid advances in parallel computing have enabled the simulation of seismic wave propagation in 3D Earth models at unpredcented resolution and accuracy. On a modest PC cluster one can now simulate global seismic wave propagation at periods of 20~s longer accounting for heterogeneity in the crust and mantle, topography, anisotropy, attenuation, fluid-solid interactions, self-gravitation, rotation, and the oceans. On the 'Ranger' system at the Texas Advanced Computing Center one can break the 2~s barrier. By drawing connections between seismic tomography, adjoint methods popular in climate and ocean dynamics, time-reversal imaging, and finite-frequency 'banana-doughnut' kernels, it has been demonstrated that Fréchet derivatives for tomographic and (finite) source inversions in complex 3D Earth models may be obtained based upon just two numerical simulations for each earthquake: one calculation for the current model and a second, 'adjoint', calculation that uses time-reversed signals at the receivers as simultaneous, fictitious sources. The adjoint wavefield is calculated while the regular wavefield is reconstructed on the fly by propagating the last frame of the wavefield saved by a previous forward simulation backward in time. This aproach has been used to calculate sensitivity kernels in regional and global Earth models for various body- and surface-wave arrivals. These kernels illustrate the sensitivity of the observations to the structural parameters and form the basis of 'adjoint tomography'. We use a non-linear conjugate gradient method in combination with a source subspace projection preconditioning technique to iterative minimize the misfit function. Using an automated time window selection algorithm, our emphasis is on matching targeted, frequency-dependent body-wave traveltimes and surface-wave phase anomalies, rather than entire waveforms. To avoid reaching a local minimum in the optimization procedure, we
Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.
1994-06-01
NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation.
Adjoint methods for aerodynamic wing design
NASA Technical Reports Server (NTRS)
Grossman, Bernard
1993-01-01
A model inverse design problem is used to investigate the effect of flow discontinuities on the optimization process. The optimization involves finding the cross-sectional area distribution of a duct that produces velocities that closely match a targeted velocity distribution. Quasi-one-dimensional flow theory is used, and the target is chosen to have a shock wave in its distribution. The objective function which quantifies the difference between the targeted and calculated velocity distributions may become non-smooth due to the interaction between the shock and the discretization of the flowfield. This paper offers two techniques to resolve the resulting problems for the optimization algorithms. The first, shock-fitting, involves careful integration of the objective function through the shock wave. The second, coordinate straining with shock penalty, uses a coordinate transformation to align the calculated shock with the target and then adds a penalty proportional to the square of the distance between the shocks. The techniques are tested using several popular sensitivity and optimization methods, including finite-differences, and direct and adjoint discrete sensitivity methods. Two optimization strategies, Gauss-Newton and sequential quadratic programming (SQP), are used to drive the objective function to a minimum.
Adjoint sensitivity analysis of plasmonic structures using the FDTD method.
Zhang, Yu; Ahmed, Osman S; Bakr, Mohamed H
2014-05-15
We present an adjoint variable method for estimating the sensitivities of arbitrary responses with respect to the parameters of dispersive discontinuities in nanoplasmonic devices. Our theory is formulated in terms of the electric field components at the vicinity of perturbed discontinuities. The adjoint sensitivities are computed using at most one extra finite-difference time-domain (FDTD) simulation regardless of the number of parameters. Our approach is illustrated through the sensitivity analysis of an add-drop coupler consisting of a square ring resonator between two parallel waveguides. The computed adjoint sensitivities of the scattering parameters are compared with those obtained using the accurate but computationally expensive central finite difference approach.
Sensitivity of Lumped Constraints Using the Adjoint Method
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.; Wu, K. Chauncey; Walsh, Joanne L.
1999-01-01
Adjoint sensitivity calculation of stress, buckling and displacement constraints may be much less expensive than direct sensitivity calculation when the number of load cases is large. Adjoint stress and displacement sensitivities are available in the literature. Expressions for local buckling sensitivity of isotropic plate elements are derived in this study. Computational efficiency of the adjoint method is sensitive to the number of constraints and, therefore, the method benefits from constraint lumping. A continuum version of the Kreisselmeier-Steinhauser (KS) function is chosen to lump constraints. The adjoint and direct methods are compared for three examples: a truss structure, a simple HSCT wing model, and a large HSCT model. These sensitivity derivatives are then used in optimization.
Inversion of tsunami sources by the adjoint method in the presence of observational and model errors
NASA Astrophysics Data System (ADS)
Pires, C.; Miranda, P. M. A.
2003-04-01
The adjoint method is applied to the inversion of tsumani sources from tide-gauge observations in both idealized and realistic setups, with emphasis on the effects of observational, bathymetric and other model errors in the quality of the inversion. The method is developed in a way that allows for the direct optimization of seismic focal parameters, in the case of seismic tsunamis, through a 4-step inversion procedure that can be fully automated, consisting in (i) source area delimitation, by adjoint backward ray-tracing, (ii) adjoint optimization of the initial sea state, from a vanishing first-guess, (iii) non-linear adjustment of the fault model and (iv) final adjoint optimization in the fault parameter space. The methodology is systematically tested with synthetic data, showing its flexibility and robustness in the presence of significant amounts of error.
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-03-15
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that
A practical discrete-adjoint method for high-fidelity compressible turbulence simulations
NASA Astrophysics Data System (ADS)
Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.
2015-03-01
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space-time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge-Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that its
Adjoint Methods for Guiding Adaptive Mesh Refinement in Tsunami Modeling
NASA Astrophysics Data System (ADS)
Davis, B. N.; LeVeque, R. J.
2016-12-01
One difficulty in developing numerical methods for tsunami modeling is the fact that solutions contain time-varying regions where much higher resolution is required than elsewhere in the domain, particularly when tracking a tsunami propagating across the ocean. The open source GeoClaw software deals with this issue by using block-structured adaptive mesh refinement to selectively refine around propagating waves. For problems where only a target area of the total solution is of interest (e.g., one coastal community), a method that allows identifying and refining the grid only in regions that influence this target area would significantly reduce the computational cost of finding a solution. In this work, we show that solving the time-dependent adjoint equation and using a suitable inner product with the forward solution allows more precise refinement of the relevant waves. We present the adjoint methodology first in one space dimension for illustration and in a broad context since it could also be used in other adaptive software, and potentially for other tsunami applications beyond adaptive refinement. We then show how this adjoint method has been integrated into the adaptive mesh refinement strategy of the open source GeoClaw software and present tsunami modeling results showing that the accuracy of the solution is maintained and the computational time required is significantly reduced through the integration of the adjoint method into adaptive mesh refinement.
Reconstruction of Mantle Convection in the Geological Past Using the Adjoint Method
NASA Astrophysics Data System (ADS)
Liu, L.; Gurnis, M.
2006-12-01
In mantle convection, earlier work has demonstrated the effectiveness of the adjoint method, widely applied in models of atmospheric circulation. With CitComS.py, the spherical finite element model of mantle convection, and the Pyre framework, we developed an adjoint of the energy equation which, together with the forward modeling, solves for temperature conditions in the past. Our model is applied to several problems, including plume heads impacting and eroding the lithosphere. The assumed true initial condition is a hot spherical blob in the lower mantle, and the final state of the forward model qualitatively shows little information on initial conditions. The adjoint method allows us to retrieve this unknown initial condition iteratively with a first guess. We tested different kinds of first guess initials, and found that a better knowledge of the true initial leads to a better converged solution, both in the sense of mismatch pattern and its RMS norm. Since we have limited knowledge of past mantle structures, earlier adjoint models in mantle convection used arbitrary first guesses which caused large errors in the retrieved initial condition. Our experiments show that a simple backward integration of the energy equation while neglecting thermal diffusion can be used as a first guess and leads to a smaller error. This is potentially important because the overall effectiveness of the adjoint methods is almost doubled using this optimal first guess. We are now experimenting with partial data assimilation with dynamic topography and plate kinematics in conjunction with seismic tomography models.
Supersonic biplane design via adjoint method
NASA Astrophysics Data System (ADS)
Hu, Rui
In developing the next generation supersonic transport airplane, two major challenges must be resolved. The fuel efficiency must be significantly improved, and the sonic boom propagating to the ground must be dramatically reduced. Both of these objectives can be achieved by reducing the shockwaves formed in supersonic flight. The Busemann biplane is famous for using favorable shockwave interaction to achieve nearly shock-free supersonic flight at its design Mach number. Its performance at off-design Mach numbers, however, can be very poor. This dissertation studies the performance of supersonic biplane airfoils at design and off-design conditions. The choked flow and flow-hysteresis phenomena of these biplanes are studied. These effects are due to finite thickness of the airfoils and non-uniqueness of the solution to the Euler equations, creating over an order of magnitude more wave drag than that predicted by supersonic thin airfoil theory. As a result, the off-design performance is the major barrier to the practical use of supersonic biplanes. The main contribution of this work is to drastically improve the off-design performance of supersonic biplanes by using an adjoint based aerodynamic optimization technique. The Busemann biplane is used as the baseline design, and its shape is altered to achieve optimal wave drags in series of Mach numbers ranging from 1.1 to 1.7, during both acceleration and deceleration conditions. The optimized biplane airfoils dramatically reduces the effects of the choked flow and flow-hysteresis phenomena, while maintaining a certain degree of favorable shockwave interaction effects at the design Mach number. Compared to a diamond shaped single airfoil of the same total thickness, the wave drag of our optimized biplane is lower at almost all Mach numbers, and is significantly lower at the design Mach number. In addition, by performing a Navier-Stokes solution for the optimized airfoil, it is verified that the optimized biplane improves
Adjoint Formulation for an Embedded-Boundary Cartesian Method
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.; Murman, Scott M.; Pulliam, Thomas H.
2004-01-01
Many problems in aerodynamic design can be characterized by smooth and convex objective functions. This motivates the use of gradient-based algorithms, particularly for problems with a large number of design variables, to efficiently determine optimal shapes and configurations that maximize aerodynamic performance. Accurate and efficient computation of the gradient, however, remains a challenging task. In optimization problems where the number of design variables dominates the number of objectives and flow- dependent constraints, the cost of gradient computations can be significantly reduced by the use of the adjoint method. The problem of aerodynamic optimization using the adjoint method has been analyzed and validated for both structured and unstructured grids. The method has been applied to design problems governed by the potential, Euler, and Navier-Stokes equations and can be subdivided into the continuous and discrete formulations. Giles and Pierce provide a detailed review of both approaches. Most implementations rely on grid-perturbation or mapping procedures during the gradient computation that explicitly couple changes in the surface shape to the volume grid. The solution of the adjoint equation is usually accomplished using the same scheme that solves the governing flow equations. Examples of such code reuse include multistage Runge-Kutta schemes coupled with multigrid, approximate-factorization, line-implicit Gauss-Seidel, and also preconditioned GMRES. The development of the adjoint method for aerodynamic optimization problems on Cartesian grids has been limited. In contrast to implementations on structured and unstructured grids, Cartesian grid methods decouple the surface discretization from the volume grid. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin e t al. developed an adjoint formulation for the TRANAIR code
NASA Astrophysics Data System (ADS)
Subramanian, Ramanathan Vishnampet Ganapathi
Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvement. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs. Such methods have enabled sensitivity analysis and active control of turbulence at engineering flow conditions by providing gradient information at computational cost comparable to that of simulating the flow. They accelerate convergence of numerical design optimization algorithms, though this is predicated on the availability of an accurate gradient of the discretized flow equations. This is challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. We analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space--time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge--Kutta-like scheme
NASA Astrophysics Data System (ADS)
Kraft, S.; Puel, G.; Aubry, D.; Funfschilling, C.
2016-12-01
For the calibration of multi-body models of railway vehicles, the identification of the model parameters from on-track measurement is required. This involves the solution of an inverse problem by minimising the misfit function which describes the distance between model and measurement using optimisation methods. The application of gradient-based optimisation methods is advantageous but necessitates an efficient approach for the computation of the gradients considering the large number of model parameters and the costly evaluation of the forward model. This work shows that the application of the adjoint state approach to the nonlinear vehicle-track multi-body system is suitable, reducing on the one hand the computational cost and increasing on the other hand the precision of the gradients. Gradients from the adjoint state method are computed for vehicle models and validated taking into account measurement noise.
Study on adjoint-based optimization method for multi-stage turbomachinery
NASA Astrophysics Data System (ADS)
Li, Weiwei; Tian, Yong; Yi, Weilin; Ji, Lucheng; Shao, Weiwei; Xiao, Yunhan
2011-10-01
Adjoint-based optimization method is a hotspot in turbomachinery. First, this paper presents principles of adjoint method from Lagrange multiplier viewpoint. Second, combining a continuous route with thin layer RANS equations, we formulate adjoint equations and anti-physical boundary conditions. Due to the multi-stage environment in turbomachinery, an adjoint interrow mixing method is introduced. Numerical techniques of solving flow equations and adjoint equations are almost the same, and once they are converged respectively, the gradients of an objective function to design variables can be calculated using complex method efficiently. Third, integrating a shape perturbation parameterization and a simple steepest descent method, a frame of adjoint-based aerodynamic shape optimization for multi-stage turbomachinery is constructed. At last, an inverse design of an annular cascade is employed to validate the above approach, and adjoint field of an Aachen 1.5 stage turbine demonstrates the conservation and areflexia of the adjoint interrow mixing method. Then a direct redesign of a 1+1 counter-rotating turbine aiming to increase efficiency and apply constraints to mass flow rate and pressure ratio is taken.
Sensitivity kernels for viscoelastic loading based on adjoint methods
NASA Astrophysics Data System (ADS)
Al-Attar, David; Tromp, Jeroen
2014-01-01
Observations of glacial isostatic adjustment (GIA) allow for inferences to be made about mantle viscosity, ice sheet history and other related parameters. Typically, this inverse problem can be formulated as minimizing the misfit between the given observations and a corresponding set of synthetic data. When the number of parameters is large, solution of such optimization problems can be computationally challenging. A practical, albeit non-ideal, solution is to use gradient-based optimization. Although the gradient of the misfit required in such methods could be calculated approximately using finite differences, the necessary computation time grows linearly with the number of model parameters, and so this is often infeasible. A far better approach is to apply the `adjoint method', which allows the exact gradient to be calculated from a single solution of the forward problem, along with one solution of the associated adjoint problem. As a first step towards applying the adjoint method to the GIA inverse problem, we consider its application to a simpler viscoelastic loading problem in which gravitationally self-consistent ocean loading is neglected. The earth model considered is non-rotating, self-gravitating, compressible, hydrostatically pre-stressed, laterally heterogeneous and possesses a Maxwell solid rheology. We determine adjoint equations and Fréchet kernels for this problem based on a Lagrange multiplier method. Given an objective functional J defined in terms of the surface deformation fields, we show that its first-order perturbation can be written δ J = int _{MS}K_{η }δ ln η dV +int _{t0}^{t1}int _{partial M}K_{dot{σ }} δ dot{σ } dS dt, where δ ln η = δη/η denotes relative viscosity variations in solid regions MS, dV is the volume element, δ dot{σ } is the perturbation to the time derivative of the surface load which is defined on the earth model's surface ∂M and for times [t0, t1] and dS is the surface element on ∂M. The `viscosity
Solving Large-Scale Inverse Magnetostatic Problems using the Adjoint Method
NASA Astrophysics Data System (ADS)
Bruckner, Florian; Abert, Claas; Wautischer, Gregor; Huber, Christian; Vogler, Christoph; Hinze, Michael; Suess, Dieter
2017-01-01
An efficient algorithm for the reconstruction of the magnetization state within magnetic components is presented. The occurring inverse magnetostatic problem is solved by means of an adjoint approach, based on the Fredkin-Koehler method for the solution of the forward problem. Due to the use of hybrid FEM-BEM coupling combined with matrix compression techniques the resulting algorithm is well suited for large-scale problems. Furthermore the reconstruction of the magnetization state within a permanent magnet as well as an optimal design application are demonstrated.
Solving Large-Scale Inverse Magnetostatic Problems using the Adjoint Method
Bruckner, Florian; Abert, Claas; Wautischer, Gregor; Huber, Christian; Vogler, Christoph; Hinze, Michael; Suess, Dieter
2017-01-01
An efficient algorithm for the reconstruction of the magnetization state within magnetic components is presented. The occurring inverse magnetostatic problem is solved by means of an adjoint approach, based on the Fredkin-Koehler method for the solution of the forward problem. Due to the use of hybrid FEM-BEM coupling combined with matrix compression techniques the resulting algorithm is well suited for large-scale problems. Furthermore the reconstruction of the magnetization state within a permanent magnet as well as an optimal design application are demonstrated. PMID:28098851
NASA Technical Reports Server (NTRS)
Diosady, Laslo; Murman, Scott; Blonigan, Patrick; Garai, Anirban
2017-01-01
Presented space-time adjoint solver for turbulent compressible flows. Confirmed failure of traditional sensitivity methods for chaotic flows. Assessed rate of exponential growth of adjoint for practical 3D turbulent simulation. Demonstrated failure of short-window sensitivity approximations.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan T.; Hornby, Gregory; Ishihara, Abe
2013-01-01
This paper describes two methods of trajectory optimization to obtain an optimal trajectory of minimum-fuel- to-climb for an aircraft. The first method is based on the adjoint method, and the second method is based on a direct trajectory optimization method using a Chebyshev polynomial approximation and cubic spine approximation. The approximate optimal trajectory will be compared with the adjoint-based optimal trajectory which is considered as the true optimal solution of the trajectory optimization problem. The adjoint-based optimization problem leads to a singular optimal control solution which results in a bang-singular-bang optimal control.
Multigrid methods for bifurcation problems: The self adjoint case
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1987-01-01
This paper deals with multigrid methods for computational problems that arise in the theory of bifurcation and is restricted to the self adjoint case. The basic problem is to solve for arcs of solutions, a task that is done successfully with an arc length continuation method. Other important issues are, for example, detecting and locating singular points as part of the continuation process, switching branches at bifurcation points, etc. Multigrid methods have been applied to continuation problems. These methods work well at regular points and at limit points, while they may encounter difficulties in the vicinity of bifurcation points. A new continuation method that is very efficient also near bifurcation points is presented here. The other issues mentioned above are also treated very efficiently with appropriate multigrid algorithms. For example, it is shown that limit points and bifurcation points can be solved for directly by a multigrid algorithm. Moreover, the algorithms presented here solve the corresponding problems in just a few work units (about 10 or less), where a work unit is the work involved in one local relaxation on the finest grid.
Introduction to Adjoint Models
NASA Technical Reports Server (NTRS)
Errico, Ronald M.
2015-01-01
In this lecture, some fundamentals of adjoint models will be described. This includes a basic derivation of tangent linear and corresponding adjoint models from a parent nonlinear model, the interpretation of adjoint-derived sensitivity fields, a description of methods of automatic differentiation, and the use of adjoint models to solve various optimization problems, including singular vectors. Concluding remarks will attempt to correct common misconceptions about adjoint models and their utilization.
Adjoint-Based Methods for Estimating CO2 Sources and Sinks from Atmospheric Concentration Data
NASA Technical Reports Server (NTRS)
Andrews, Arlyn E.
2003-01-01
Work to develop adjoint-based methods for estimating CO2 sources and sinks from atmospheric concentration data was initiated in preparation for last year's summer institute on Carbon Data Assimilation (CDAS) at the National Center for Atmospheric Research in Boulder, CO. The workshop exercises used the GSFC Parameterized Chemistry and Transport Model and its adjoint. Since the workshop, a number of simulations have been run to evaluate the performance of the model adjoint. Results from these simulations will be presented, along with an outline of challenges associated with incorporating a variety of disparate data sources, from sparse, but highly precise, surface in situ observations to less accurate, global future satellite observations.
Adjoint Algorithm for CAD-Based Shape Optimization Using a Cartesian Method
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2004-01-01
Adjoint solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape optimization. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (geometric parameters that control the shape). More recently, emerging adjoint applications focus on the analysis problem, where the adjoint solution is used to drive mesh adaptation, as well as to provide estimates of functional error bounds and corrections. The attractive feature of this approach is that the mesh-adaptation procedure targets a specific functional, thereby localizing the mesh refinement and reducing computational cost. Our focus is on the development of adjoint-based optimization techniques for a Cartesian method with embedded boundaries.12 In contrast t o implementations on structured and unstructured grids, Cartesian methods decouple the surface discretization from the volume mesh. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin et developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the Euler equations. In both approaches, a boundary condition is introduced to approximate the effects of the evolving surface shape that results in accurate gradient computation. Central to automated shape optimization algorithms is the issue of geometry modeling and control. The need to optimize complex, "real-life" geometry provides a strong incentive for the use of parametric-CAD systems within the optimization procedure. In previous work, we presented
Sensitivity analysis of numerically-simulated convective storms using direct and adjoint methods
Park, S.K.; Droegemeier, K.K.; Bischof, C.; Knauff, T.
1994-06-01
The goal of this project is to evaluate the sensitivity of numerically modeled convective storms to control parameters such as the initial conditions, boundary conditions, environment, and various physical and computational parameters. In other words, the authors seek the gradient of the solution vector with respect to specified parameters. One can use two approaches to accomplish this task. In the first or so-called brute force method, one uses a fully nonlinear model to generate a control forecast starting from a specified initial state. Then, a number of other forecasts are made in which chosen parameters (e.g., initial conditions) are systematically varied. The obvious drawback is that a large number of full model predictions are needed to examine the effects of only a single parameter. The authors describe herein an alternative, essentially automated method (ADIFOR, or Automatic DIfferentiation of FORtran) for obtaining the solution gradient that bypasses the adjoint altogether yet provides even more information about the gradient. (ADIFOR, like the adjoint technique, is constrained by the linearity assumption.) Applied to a 1-D moist cloud model, the authors assess the utility of ADIFOR relative to the brute force approach and evaluate the validity of the tangent linear approximation in the context of deep convection.
Important literature on the use of adjoint, variational methods and the Kalman filter in meteorology
NASA Astrophysics Data System (ADS)
Courtier, Philippe; Derber, John; Errico, Ron; Louis, Jean-Francois; Vukićević, Tomislava
1993-10-01
The use of adjoint equations is proving to be invaluable in many areas of meteorological research. Unlike a forecast model which describes the evolution of meteorological fields forward in time, the adjoint equations describe the evolution of sensitivity (to initial, boundary and parametric conditions) backward in time. Essentially, by utilizing this sensitivity information, many types of problems can be solved more efficiently than in the past, including variational data assimilation, parameter fitting, optimal instability and sensitivity analysis in general. For this reason, the adjoints of various models and their applications have been appearing more and more frequently in meteorological research. This paper is a bibliography in chronological order of published works in meteorology dealing with adjoints which have appeared prior to this issue of Tellus. Also included are meteorological works regarding variational methods (even without adjoints) and Kalman filtering in data assimilation, plus some references outside meteorology. These additional works are included here because the main thrust for adjoint application within meteorology is currently concentrated in the development of next-generation data assimilation systems.
NASA Astrophysics Data System (ADS)
Clemo, T. M.; Ramarao, B.; Kelly, V. A.; Lavenue, M.
2011-12-01
Capture is a measure of the impact of groundwater pumping upon groundwater and surface water systems. The computation of capture through analytical or numerical methods has been the subject of articles in the literature for several decades (Bredehoeft et al., 1982). Most recently Leake et al. (2010) described a systematic way to produce capture maps in three-dimensional systems using a numerical perturbation approach in which capture from streams was computed using unit rate pumping at many locations within a MODFLOW model. The Leake et al. (2010) method advances the current state of computing capture. A limitation stems from the computational demand required by the perturbation approach wherein days or weeks of computational time might be required to obtain a robust measure of capture. In this paper, we present an efficient method to compute capture in three-dimensional systems based upon adjoint states. The efficiency of the adjoint method will enable uncertainty analysis to be conducted on capture calculations. The USGS and INTERA have collaborated to extend the MODFLOW Adjoint code (Clemo, 2007) to include stream-aquifer interaction and have applied it to one of the examples used in Leake et al. (2010), the San Pedro Basin MODFLOW model. With five layers and 140,800 grid blocks per layer, the San Pedro Basin model, provided an ideal example data set to compare the capture computed from the perturbation and the adjoint methods. The capture fraction map produced from the perturbation method for the San Pedro Basin model required significant computational time to compute and therefore the locations for the pumping wells were limited to 1530 locations in layer 4. The 1530 direct simulations of capture require approximately 76 CPU hours. Had capture been simulated in each grid block in each layer, as is done in the adjoint method, the CPU time would have been on the order of 4 years. The MODFLOW-Adjoint produced the capture fraction map of the San Pedro Basin model
Adaptive mesh refinement and adjoint methods in geophysics simulations
NASA Astrophysics Data System (ADS)
Burstedde, Carsten
2013-04-01
required by human intervention and analysis. Specifying an objective functional that quantifies the misfit between the simulation outcome and known constraints and then minimizing it through numerical optimization can serve as an automated technique for parameter identification. As suggested by the similarity in formulation, the numerical algorithm is closely related to the one used for goal-oriented error estimation. One common point is that the so-called adjoint equation needs to be solved numerically. We will outline the derivation and implementation of these methods and discuss some of their pros and cons, supported by numerical results.
Aerodynamic Optimization Design of Multi-stage Turbine Using the Continuous Adjoint Method
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Jiang
2015-05-01
This paper develops a continuous adjoint formulation for the aerodynamic shape design of a turbine in a multi-stage environment based on S2 surface governed by the Euler equations with source terms. First, given the general expression of the objective function, the adjoint equations and their boundary conditions are derived by introducing the adjoint variable vectors. Then, the final expression of the objective function gradient only includes the terms pertinent to the physical shape variations. The adjoint system is solved numerically by a finite-difference method with the Jameson spatial scheme employing first and third order dissipative flux and the time-marching is conducted by Runge-Kutta time method. Integrating the blade stagger angles, stacking lines and passage perturbation parameterization with the Quasi-Newton method of BFGS, a gradient-based aerodynamic optimization design system is constructed. Finally, the application of the adjoint method is validated through the blade and passage optimization of a 2-stage turbine with an objective function of entropy generation. The efficiency increased by 0.37% with the deviations of the mass flow rate and the pressure ratio within 1% via the optimization, which demonstrates the capability of the gradient-based system for turbine aerodynamic design.
NASA Technical Reports Server (NTRS)
Pulliam, T. H.; Nemec, M.; Holst, T.; Zingg, D. W.; Kwak, Dochan (Technical Monitor)
2002-01-01
A comparison between an Evolutionary Algorithm (EA) and an Adjoint-Gradient (AG) Method applied to a two-dimensional Navier-Stokes code for airfoil design is presented. Both approaches use a common function evaluation code, the steady-state explicit part of the code,ARC2D. The parameterization of the design space is a common B-spline approach for an airfoil surface, which together with a common griding approach, restricts the AG and EA to the same design space. Results are presented for a class of viscous transonic airfoils in which the optimization tradeoff between drag minimization as one objective and lift maximization as another, produces the multi-objective design space. Comparisons are made for efficiency, accuracy and design consistency.
Data assimilation for massive autonomous systems based on a second-order adjoint method
NASA Astrophysics Data System (ADS)
Ito, Shin-ichi; Nagao, Hiromichi; Yamanaka, Akinori; Tsukada, Yuhki; Koyama, Toshiyuki; Kano, Masayuki; Inoue, Junya
2016-10-01
Data assimilation (DA) is a fundamental computational technique that integrates numerical simulation models and observation data on the basis of Bayesian statistics. Originally developed for meteorology, especially weather forecasting, DA is now an accepted technique in various scientific fields. One key issue that remains controversial is the implementation of DA in massive simulation models under the constraints of limited computation time and resources. In this paper, we propose an adjoint-based DA method for massive autonomous models that produces optimum estimates and their uncertainties within reasonable computation time and resource constraints. The uncertainties are given as several diagonal elements of an inverse Hessian matrix, which is the covariance matrix of a normal distribution that approximates the target posterior probability density function in the neighborhood of the optimum. Conventional algorithms for deriving the inverse Hessian matrix require O (C N2+N3) computations and O (N2) memory, where N is the number of degrees of freedom of a given autonomous system and C is the number of computations needed to simulate time series of suitable length. The proposed method using a second-order adjoint method allows us to directly evaluate the diagonal elements of the inverse Hessian matrix without computing all of its elements. This drastically reduces the number of computations to O (C ) and the amount of memory to O (N ) for each diagonal element. The proposed method is validated through numerical tests using a massive two-dimensional Kobayashi phase-field model. We confirm that the proposed method correctly reproduces the parameter and initial state assumed in advance, and successfully evaluates the uncertainty of the parameter. Such information regarding uncertainty is valuable, as it can be used to optimize the design of experiments.
Assessing the Impact of Observations on Numerical Weather Forecasts Using the Adjoint Method
NASA Technical Reports Server (NTRS)
Gelaro, Ronald
2012-01-01
The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. This talk provides a general overview of the adjoint method, including the theoretical basis and practical implementation of the technique. Results are presented from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. When performed in conjunction with standard observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies may be important for optimizing the use of the current observational network and defining requirements for future observing systems
Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods
NASA Astrophysics Data System (ADS)
Liu, Qinya; Tromp, Jeroen
2008-07-01
We determine adjoint equations and Fréchet kernels for global seismic wave propagation based upon a Lagrange multiplier method. We start from the equations of motion for a rotating, self-gravitating earth model initially in hydrostatic equilibrium, and derive the corresponding adjoint equations that involve motions on an earth model that rotates in the opposite direction. Variations in the misfit function χ then may be expressed as , where δlnm = δm/m denotes relative model perturbations in the volume V, δlnd denotes relative topographic variations on solid-solid or fluid-solid boundaries Σ, and ∇Σδlnd denotes surface gradients in relative topographic variations on fluid-solid boundaries ΣFS. The 3-D Fréchet kernel Km determines the sensitivity to model perturbations δlnm, and the 2-D kernels Kd and Kd determine the sensitivity to topographic variations δlnd. We demonstrate also how anelasticity may be incorporated within the framework of adjoint methods. Finite-frequency sensitivity kernels are calculated by simultaneously computing the adjoint wavefield forward in time and reconstructing the regular wavefield backward in time. Both the forward and adjoint simulations are based upon a spectral-element method. We apply the adjoint technique to generate finite-frequency traveltime kernels for global seismic phases (P, Pdiff, PKP, S, SKS, depth phases, surface-reflected phases, surface waves, etc.) in both 1-D and 3-D earth models. For 1-D models these adjoint-generated kernels generally agree well with results obtained from ray-based methods. However, adjoint methods do not have the same theoretical limitations as ray-based methods, and can produce sensitivity kernels for any given phase in any 3-D earth model. The Fréchet kernels presented in this paper illustrate the sensitivity of seismic observations to structural parameters and topography on internal discontinuities. These kernels form the basis of future 3-D tomographic inversions.
Two-Point Boundary Value Problems and the Method of Adjoints.
ERIC Educational Resources Information Center
Fay, Temple H.; Miller, H. Vincent
1990-01-01
Discusses a numerical technique called the method of adjoints, turning a linear two-point boundary value problem into an initial value problem. Described are steps for using the method in linear or nonlinear systems. Applies the technique to solve a simple pendulum problem. Lists 15 references. (YP)
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2009-01-01
.We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.
A coupled-adjoint method for high-fidelity aero-structural optimization
NASA Astrophysics Data System (ADS)
Martins, Joaquim Rafael Rost A.
A new integrated aero-structural design method for aerospace vehicles is presented. The approach combines an aero-structural analysis solver, a coupled aero-structural adjoint solver, a geometry engine, and an efficient gradient-based optimization algorithm. The aero-structural solver ensures accurate solutions by using high-fidelity models for the aerodynamics, structures, and coupling procedure. The coupled aero-structural adjoint solver is used to calculate the sensitivities of aerodynamic and structural cost functions with respect to both aerodynamic shape and structural variables. The aero-structural adjoint sensitivities are compared with those given by the complex-step derivative approximation and finite differences. The proposed method is shown to be both accurate and efficient, exhibiting a significant cost advantage when the gradient of a small number of functions with respect to a large number of design variables is needed. The optimization of a supersonic business jet configuration demonstrates the usefulness and importance of computing aero-structural sensitivities using the coupled-adjoint method.
NASA Astrophysics Data System (ADS)
Sikarwar, Nidhi
multiple experiments or numerical simulations. Alternatively an inverse design method can be used. An adjoint optimization method can be used to achieve the optimum blowing rate. It is shown that the method works for both geometry optimization and active control of the flow in order to deflect the flow in desirable ways. An adjoint optimization method is described. It is used to determine the blowing distribution in the diverging section of a convergent-divergent nozzle that gives a desired pressure distribution in the nozzle. Both the direct and adjoint problems and their associated boundary conditions are developed. The adjoint method is used to determine the blowing distribution required to minimize the shock strength in the nozzle to achieve a known target pressure and to achieve close to an ideally expanded flow pressure. A multi-block structured solver is developed to calculate the flow solution and associated adjoint variables. Two and three-dimensional calculations are performed for internal and external of the nozzle domains. A two step MacCormack scheme based on predictor- corrector technique is was used for some calculations. The four and five stage Runge-Kutta schemes are also used to artificially march in time. A modified Runge-Kutta scheme is used to accelerate the convergence to a steady state. Second order artificial dissipation has been added to stabilize the calculations. The steepest decent method has been used for the optimization of the blowing velocity after the gradients of the cost function with respect to the blowing velocity are calculated using adjoint method. Several examples are given of the optimization of blowing using the adjoint method.
Full Waveform Inversion Using the Adjoint Method for Earthquake Kinematics Inversion
NASA Astrophysics Data System (ADS)
Tago Pacheco, J.; Metivier, L.; Brossier, R.; Virieux, J.
2014-12-01
Extracting the information contained in seismograms for better description of the Earth structure and evolution is often based on only selected attributes of these signals. Exploiting the entire seismogram, Full Wave Inversion based on an adjoint estimation of the gradient and Hessian operators, has been recognized as a high-resolution imaging technique. Most of earthquake kinematics inversion are still based on the estimation of the Frechet derivatives for the gradient operator computation in linearized optimization. One may wonder the benefit of the adjoint formulation which avoids the estimation of these derivatives for the gradient estimation. Recently, Somala et al. (submitted) have detailed the adjoint method for earthquake kinematics inversion starting from the second-order wave equation in 3D media. They have used a conjugate gradient method for the optimization procedure. We explore a similar adjoint formulation based on the first-order wave equations while using different optimization schemes. Indeed, for earthquake kinematics inversion, the model space is the slip-rate spatio-temporal history over the fault. Seismograms obtained from a dislocation rupture simulation are linearly linked to this slip-rate distribution. Therefore, we introduce a simple systematic procedure based on Lagrangian formulation of the adjoint method in the linear problem of earthquake kinematics. We have developed both the gradient estimation using the adjoint formulation and the Hessian influence using the second-order adjoint formulation (Metivier et al, 2013, 2014). Since the earthquake kinematics is a linear problem, the minimization problem is quadratic, henceforth, only one solution of the Newton equations is needed with the Hessian impact. Moreover, the formal uncertainty estimation over slip-rate distribution could be deduced from this Hessian analysis. On simple synthetic examples for antiplane kinematic rupture configuration in 2D medium, we illustrate the properties of
Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method
Waelbroek, C.; Louis, J.F. |
1995-02-01
A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO2 flux to perturbation in initial conditions, climatic inputs, and model`s main parameters describing current seasonal CO2 exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO2 flux is most sensitive to parameters characterizing litter chemical composition and more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO2 exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO2-induced warming is a significant increase in CO2 emission, creating a positive feedback to atmosphreic CO2 accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO2, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO2 flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results.
Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method
NASA Technical Reports Server (NTRS)
Waelbroek, C.; Louis, J.-F.
1995-01-01
A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO2 flux to perturbation in initial conditions, climatic inputs, and model's main parameters describing current seasonal CO2 exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO2 flux is most sensitive to parameters characterizing litter chemical composition and more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO2 exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO2-induced warming is a significant increase in CO2 emission, creating a positive feedback to atmosphreic CO2 accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO2, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO2 flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results.
NASA Astrophysics Data System (ADS)
Tape, Carl; Liu, Qinya; Tromp, Jeroen
2007-03-01
We employ adjoint methods in a series of synthetic seismic tomography experiments to recover surface wave phase-speed models of southern California. Our approach involves computing the Fréchet derivative for tomographic inversions via the interaction between a forward wavefield, propagating from the source to the receivers, and an `adjoint' wavefield, propagating from the receivers back to the source. The forward wavefield is computed using a 2-D spectral-element method (SEM) and a phase-speed model for southern California. A `target' phase-speed model is used to generate the `data' at the receivers. We specify an objective or misfit function that defines a measure of misfit between data and synthetics. For a given receiver, the remaining differences between data and synthetics are time-reversed and used as the source of the adjoint wavefield. For each earthquake, the interaction between the regular and adjoint wavefields is used to construct finite-frequency sensitivity kernels, which we call event kernels. An event kernel may be thought of as a weighted sum of phase-specific (e.g. P) banana-doughnut kernels, with weights determined by the measurements. The overall sensitivity is simply the sum of event kernels, which defines the misfit kernel. The misfit kernel is multiplied by convenient orthonormal basis functions that are embedded in the SEM code, resulting in the gradient of the misfit function, that is, the Fréchet derivative. A non-linear conjugate gradient algorithm is used to iteratively improve the model while reducing the misfit function. We illustrate the construction of the gradient and the minimization algorithm, and consider various tomographic experiments, including source inversions, structural inversions and joint source-structure inversions. Finally, we draw connections between classical Hessian-based tomography and gradient-based adjoint tomography.
NASA Astrophysics Data System (ADS)
Fernández-López, Sheila; Carrera, Jesús; Ledo, Juanjo; Queralt, Pilar; Luquot, Linda; Martínez, Laura; Bellmunt, Fabián
2016-04-01
Seawater intrusion in aquifers is a complex phenomenon that can be characterized with the help of electric resistivity tomography (ERT) because of the low resistivity of seawater, which underlies the freshwater floating on top. The problem is complex because of the need for joint inversion of electrical and hydraulic (density dependent flow) data. Here we present an adjoint-state algorithm to treat electrical data. This method is a common technique to obtain derivatives of an objective function, depending on potentials with respect to model parameters. The main advantages of it are its simplicity in stationary problems and the reduction of computational cost respect others methodologies. The relationship between the concentration of chlorides and the resistivity values of the field is well known. Also, these resistivities are related to the values of potentials measured using ERT. Taking this into account, it will be possible to define the different resistivities zones from the field data of potential distribution using the basis of inverse problem. In this case, the studied zone is situated in Argentona (Baix Maresme, Catalonia), where the values of chlorides obtained in some wells of the zone are too high. The adjoint-state method will be used to invert the measured data using a new finite element code in C ++ language developed in an open-source framework called Kratos. Finally, the information obtained numerically with our code will be checked with the information obtained with other codes.
An Exact Dual Adjoint Solution Method for Turbulent Flows on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Lu, James; Park, Michael A.; Darmofal, David L.
2003-01-01
An algorithm for solving the discrete adjoint system based on an unstructured-grid discretization of the Navier-Stokes equations is presented. The method is constructed such that an adjoint solution exactly dual to a direct differentiation approach is recovered at each time step, yielding a convergence rate which is asymptotically equivalent to that of the primal system. The new approach is implemented within a three-dimensional unstructured-grid framework and results are presented for inviscid, laminar, and turbulent flows. Improvements to the baseline solution algorithm, such as line-implicit relaxation and a tight coupling of the turbulence model, are also presented. By storing nearest-neighbor terms in the residual computation, the dual scheme is computationally efficient, while requiring twice the memory of the flow solution. The scheme is expected to have a broad impact on computational problems related to design optimization as well as error estimation and grid adaptation efforts.
Reentry-Vehicle Shape Optimization Using a Cartesian Adjoint Method and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2006-01-01
A DJOINT solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (e.g., geometric parameters that control the shape). Classic aerodynamic applications of gradient-based optimization include the design of cruise configurations for transonic and supersonic flow, as well as the design of high-lift systems. are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric computer-aided design (CAD). In previous work on Cartesian adjoint solvers, Melvin et al. developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the two-dimensional Euler equations using a ghost-cell method to enforce the wall boundary conditions. In Refs. 18 and 19, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm were the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The accuracy of the gradient computation was verified using several three-dimensional test cases, which included design
Adjustment of Tsunami Source Parameters By Adjoint Methods
NASA Astrophysics Data System (ADS)
Pires, C.; Miranda, P.
Tsunami waveforms recorded at tide gauges can be used to adjust tsunami source pa- rameters and, indirectly, seismic focal parameters. Simple inversion methods, based on ray-tracing techniques, only used a small fraction of available information. More elab- orate techniques, based on the Green's functions methods, also have some limitations in their scope. A new methodology, using a variational approach, allows for a much more general inversion, which can directly optimize focal parameters of tsunamigenic earthquakes. Idealized synthetic data and an application to the 1969 Gorringe Earth- quake are used to validate the methodology.
Imaging the slab beneath central Chile using the Spectral Elements Method and adjoint techniques
NASA Astrophysics Data System (ADS)
Mercerat, E. D.; Nolet, G.; Marot, M.; Deshayes, P.; Monfret, T.
2010-12-01
This work focuses on imaging the subducting slab beneath Central Chile using novel inversion techniques based on the adjoint method and accurate wave propagation simulations using the Spectral Elements Method. The study area comprises the flat slab portion of the Nazca plate between 29 S and 34 S subducting beneath South America. We will use a database of regional seismicity consisting of both crustal and deep slab earthquakes with magnitude 3 < Mw < 6 recorded by different temporary and permanent seismological networks. Our main goal is to determine both the kinematics and the geometry of the subducting slab in order to help the geodynamical interpretation of such particular active margin. The Spectral Elements Method (SPECFEM3D code) is used to generate the synthetic seismograms and it will be applied for the iterative minimization based on adjoint techniques. The numerical mesh is 600 km x 600 km in horizontal coordinates and 220 km depth. As a first step, we are faced to well-known issues concerning mesh generation (resolution, quality, absorbing boundary conditions). In particular, we must evaluate the influence of free surface topography, as well as the MOHO and other geological interfaces in the synthetic seismograms. The initial velocity model from a previous travel-time tomography study, is linearly interpolated to the Gauss-Lobatto-Legendre grid. The comparison between the first forward simulations (up to 4 seconds minimum period) validate the initial velocity model of the study area, although many features not reproduced by the initial model have already been identified. Next step will concentrate in the comparison between finite-frequency kernels calculated by travel-time methods with ones based on adjoint methods, in order to highlight advantages and disadvantages in terms of resolution, accuracy, but also computational cost.
Imaging Earth's Interior based on Spectral-Element and Adjoint Methods (Invited)
NASA Astrophysics Data System (ADS)
Tromp, J.; Zhu, H.; Bozdag, E.
2013-12-01
We use spectral-element and adjoint methods to iteratively improve 3D tomographic images of Earth's interior, ranging from global to continental to exploration scales. The spectral-element method, a high-order finite-element method with the advantage of a diagonal mass matrix, is used to accurately calculate three-component synthetic seismograms in a complex 3D Earth model. An adjoint method is used to numerically compute Frechét derivatives of a misfit function based on the interaction between the wavefield for a reference Earth model and a wavefield obtained by using time-reversed differences between data and synthetics at all receivers as simultaneous sources. In combination with gradient-based optimization methods, such as a preconditioned conjugate gradient or L-BSGF method, we are able to iteratively improve 3D images of Earth's interior and gradually minimize discrepancies between observed and simulated seismograms. Various misfit functions may be chosen to quantify these discrepancies, such as cross-correlation traveltime differences, frequency-dependent phase and amplitude anomalies as well as full-waveform differences. Various physical properties of the Earth are constrained based on this method, such as elastic wavespeeds, radial anisotropy, shear attenuation and impedance contrasts. We apply this method to study seismic inverse problems at various scales, from global- and continental-scale seismic tomography to exploration-scale full-waveform inversion.
Adjoint Sensitivity Computations for an Embedded-Boundary Cartesian Mesh Method and CAD Geometry
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis,Michael J.
2006-01-01
Cartesian-mesh methods are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric Computer-Aided Design (CAD) tools. Our goal is to combine the automation capabilities of Cartesian methods with an eficient computation of design sensitivities. We address this issue using the adjoint method, where the computational cost of the design sensitivities, or objective function gradients, is esseutially indepeudent of the number of design variables. In previous work, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm included the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The objective of the present work is to extend our adjoint formulation to problems involving general shape changes. Central to this development is the computation of volume-mesh sensitivities to obtain a reliable approximation of the objective finction gradient. Motivated by the success of mesh-perturbation schemes commonly used in body-fitted unstructured formulations, we propose an approach based on a local linearization of a mesh-perturbation scheme similar to the spring analogy. This approach circumvents most of the difficulties that arise due to non-smooth changes in the cut-cell layer as the boundary shape evolves and provides a consistent approximation tot he exact gradient of the discretized abjective function. A detailed gradient accurace study is presented to verify our approach
Magnetic Field Separation Around Planets Using an Adjoint-Method Approach
NASA Astrophysics Data System (ADS)
Nabert, Christian; Glassmeier, Karl-Heinz; Heyner, Daniel; Othmer, Carsten
The two spacecraft of the BepiColombo mission will reach planet Mercury in 2022. The magnetometers on-board these polar orbiting spacecraft will provide a detailed map of the magnetic field in Mercury's environment. Unfortunately, a separation of the magnetic field into internal and external parts using the classical Gauss-algorithm is not possible due to strong electric currents in the orbit region of the spacecraft. These currents are due to the interaction of the solar wind with Mercury's planetary magnetic field. We use an MHD code to simulate this interaction process. This requires a first choice of Mercury's planetary field which is used and modified until the simulation results fit to the actual measurements. This optimization process is carried out most efficiently using an adjoint-method. The adjoint-method is well known for its low computational cost in order to determine sensitivities required for the minimization. In a first step, the validity of our approach to separate magnetic field contributions into internal and external parts is demonstrated using synthetic generated data. Furthermore, we apply our approach to satellite measurements of the Earth's magnetic field. We can compare the results with the well known planetary field of the Earth to prove practical suitability.
Seismic imaging and inversion based on spectral-element and adjoint methods
NASA Astrophysics Data System (ADS)
Luo, Yang
One of the most important topics in seismology is to construct detailed tomographic images beneath the surface, which can be interpreted geologically and geochemically to understand geodynamic processes happening in the interior of the Earth. Classically, these images are usually produced based upon linearized traveltime anomalies involving several particular seismic phases, whereas nonlinear inversion fitting synthetic seismograms and recorded signals based upon the adjoint method becomes more and more favorable. The adjoint tomography, also referred to as waveform inversion, is advantageous over classical techniques in several aspects, such as better resolution, while it also has several drawbacks, e.g., slow convergence and lack of quantitative resolution analysis. In this dissertation, we focus on solving these remaining issues in adjoint tomography, from a theoretical perspective and based upon synthetic examples. To make the thesis complete by itself and easy to follow, we start from development of the spectral-element method, a wave equation solver that enables access to accurate synthetic seismograms for an arbitrary Earth model, and the adjoint method, which provides Frechet derivatives, also named as sensitivity kernels, of a given misfit function. Then, the sensitivity kernels for waveform misfit functions are illustrated, using examples from exploration seismology, in other words, for migration purposes. Next, we show step by step how these gradient derivatives may be utilized in minimizing the misfit function, which leads to iterative refinements on the Earth model. Strategies needed to speed up the inversion, ensure convergence and improve resolution, e.g., preconditioning, quasi-Newton methods, multi-scale measurements and combination of traveltime and waveform misfit functions, are discussed. Through comparisons between the adjoint tomography and classical tomography, we address the resolution issue by calculating the point-spread function, the
Using Adjoint Methods to Improve 3-D Velocity Models of Southern California
NASA Astrophysics Data System (ADS)
Liu, Q.; Tape, C.; Maggi, A.; Tromp, J.
2006-12-01
We use adjoint methods popular in climate and ocean dynamics to calculate Fréchet derivatives for tomographic inversions in southern California. The Fréchet derivative of an objective function χ(m), where m denotes the Earth model, may be written in the generic form δχ=int Km(x) δln m(x) d3x, where δln m=δ m/m denotes the relative model perturbation. For illustrative purposes, we construct the 3-D finite-frequency banana-doughnut kernel Km, corresponding to the misfit of a single traveltime measurement, by simultaneously computing the 'adjoint' wave field s† forward in time and reconstructing the regular wave field s backward in time. The adjoint wave field is produced by using the time-reversed velocity at the receiver as a fictitious source, while the regular wave field is reconstructed on the fly by propagating the last frame of the wave field saved by a previous forward simulation backward in time. The approach is based upon the spectral-element method, and only two simulations are needed to produce density, shear-wave, and compressional-wave sensitivity kernels. This method is applied to the SCEC southern California velocity model. Various density, shear-wave, and compressional-wave sensitivity kernels are presented for different phases in the seismograms. We also generate 'event' kernels for Pnl, S and surface waves, which are the Fréchet kernels of misfit functions that measure the P, S or surface wave traveltime residuals at all the receivers simultaneously for one particular event. Effectively, an event kernel is a sum of weighted Fréchet kernels, with weights determined by the associated traveltime anomalies. By the nature of the 3-D simulation, every event kernel is also computed based upon just two simulations, i.e., its construction costs the same amount of computation time as an individual banana-doughnut kernel. One can think of the sum of the event kernels for all available earthquakes, called the 'misfit' kernel, as a graphical
NASA Astrophysics Data System (ADS)
Truchet, G.; Leconte, P.; Peneliau, Y.; Santamarina, A.; Malvagi, F.
2014-06-01
Pile-oscillation experiments are performed in the MINERVE reactor at the CEA Cadarache to improve nuclear data accuracy. In order to precisely calculate small reactivity variations (<10 pcm) obtained in these experiments, a reference calculation need to be achieved. This calculation may be accomplished using the continuous-energy Monte Carlo code TRIPOLI-4® by using the eigenvalue difference method. This "direct" method has shown limitations in the evaluation of very small reactivity effects because it needs to reach a very small variance associated to the reactivity in both states. To answer this problem, it has been decided to implement the exact perturbation theory in TRIPOLI-4® and, consequently, to calculate a continuous-energy adjoint flux. The Iterated Fission Probability (IFP) method was chosen because it has shown great results in some other Monte Carlo codes. The IFP method uses a forward calculation to compute the adjoint flux, and consequently, it does not rely on complex code modifications but on the physical definition of the adjoint flux as a phase-space neutron importance. In the first part of this paper, the IFP method implemented in TRIPOLI-4® is described. To illustrate the effciency of the method, several adjoint fluxes are calculated and compared with their equivalent obtained by the deterministic code APOLLO-2. The new implementation can calculate angular adjoint flux. In the second part, a procedure to carry out an exact perturbation calculation is described. A single cell benchmark has been used to test the accuracy of the method, compared with the "direct" estimation of the perturbation. Once again the method based on the IFP shows good agreement for a calculation time far more inferior to the "direct" method. The main advantage of the method is that the relative accuracy of the reactivity variation does not depend on the magnitude of the variation itself, which allows us to calculate very small reactivity perturbations with high
Comparison of adjoint and nudging methods to initialise ice sheet model basal conditions
NASA Astrophysics Data System (ADS)
Mosbeux, Cyrille; Gillet-Chaulet, Fabien; Gagliardini, Olivier
2016-07-01
Ice flow models are now routinely used to forecast the ice sheets' contribution to 21st century sea-level rise. For such short term simulations, the model response is greatly affected by the initial conditions. Data assimilation algorithms have been developed to invert for the friction of the ice on its bedrock using observed surface velocities. A drawback of these methods is that remaining uncertainties, especially in the bedrock elevation, lead to non-physical ice flux divergence anomalies resulting in undesirable transient effects. In this study, we compare two different assimilation algorithms based on adjoints and nudging to constrain both bedrock friction and elevation. Using synthetic twin experiments with realistic observation errors, we show that the two algorithms lead to similar performances in reconstructing both variables and allow the flux divergence anomalies to be significantly reduced.
NASA Astrophysics Data System (ADS)
Zahr, M. J.; Persson, P.-O.
2016-12-01
The fully discrete adjoint equations and the corresponding adjoint method are derived for a globally high-order accurate discretization of conservation laws on parametrized, deforming domains. The conservation law on the deforming domain is transformed into one on a fixed reference domain by the introduction of a time-dependent mapping that encapsulates the domain deformation and parametrization, resulting in an Arbitrary Lagrangian-Eulerian form of the governing equations. A high-order discontinuous Galerkin method is used to discretize the transformed equation in space and a high-order diagonally implicit Runge-Kutta scheme is used for the temporal discretization. Quantities of interest that take the form of space-time integrals are discretized in a solver-consistent manner. The corresponding fully discrete adjoint method is used to compute exact gradients of quantities of interest along the manifold of solutions of the fully discrete conservation law. These quantities of interest and their gradients are used in the context of gradient-based PDE-constrained optimization. The adjoint method is used to solve two optimal shape and control problems governed by the isentropic, compressible Navier-Stokes equations. The first optimization problem seeks the energetically optimal trajectory of a 2D airfoil given a required initial and final spatial position. The optimization solver, driven by gradients computed via the adjoint method, reduced the total energy required to complete the specified mission nearly an order of magnitude. The second optimization problem seeks the energetically optimal flapping motion and time-morphed geometry of a 2D airfoil given an equality constraint on the x-directed impulse generated on the airfoil. The optimization solver satisfied the impulse constraint to greater than 8 digits of accuracy and reduced the required energy between a factor of 2 and 10, depending on the value of the impulse constraint, as compared to the nominal configuration.
MCNP: Multigroup/adjoint capabilities
Wagner, J.C.; Redmond, E.L. II; Palmtag, S.P.; Hendricks, J.S.
1994-04-01
This report discusses various aspects related to the use and validity of the general purpose Monte Carlo code MCNP for multigroup/adjoint calculations. The increased desire to perform comparisons between Monte Carlo and deterministic codes, along with the ever-present desire to increase the efficiency of large MCNP calculations has produced a greater user demand for the multigroup/adjoint capabilities. To more fully utilize these capabilities, we review the applications of the Monte Carlo multigroup/adjoint method, describe how to generate multigroup cross sections for MCNP with the auxiliary CRSRD code, describe how to use the multigroup/adjoint capability in MCNP, and provide examples and results indicating the effectiveness and validity of the MCNP multigroup/adjoint treatment. This information should assist users in taking advantage of the MCNP multigroup/adjoint capabilities.
Geothermal reservoir monitoring based upon spectral-element and adjoint methods
NASA Astrophysics Data System (ADS)
Morency, C.; Templeton, D. C.; Harris, D.; Mellors, R. J.
2011-12-01
Induced seismicity associated with CO2 sequestration, enhanced oil recovery, and enhanced geothermal systems is triggered by fracturing during fluid injection. These events range from magnitude -1 (microseismicity) up to 3.5, for induced seismicity on pre-existing faults. In our approach, we are using seismic data collected at the Salton Sea geothermal field, to improve the current structural model (SCEC CVM4.0 including a 10m resolution topography) and to invert for the moment tensor and source location of the microseismic events. The key here is to refine the velocity model to then precisely invert for the location and mechanism (tensile or shear) of fracture openings. This information is crucial for geothermal reservoir assessment, especially in an unconventional setting where hydrofracturing is used to enhance productivity. The location of pre-existing and formed fractures as well as their type of openings are important elements for strategic decisions. Numerical simulations are performed using a spectral-element method, which contrary to finite-element methods (FEM), uses high degree Lagrange polynomials, allowing the technique to not only handle complex geometries, like the FEM, but also to retain the strength of exponential convergence and accuracy due to the use of high degree polynomials. Finite-frequency sensitivity kernels, used in the non-linear iterative inversions, are calculated based on an adjoint method.
Automated divertor target design by adjoint shape sensitivity analysis and a one-shot method
Dekeyser, W.; Reiter, D.; Baelmans, M.
2014-12-01
As magnetic confinement fusion progresses towards the development of first reactor-scale devices, computational tokamak divertor design is a topic of high priority. Presently, edge plasma codes are used in a forward approach, where magnetic field and divertor geometry are manually adjusted to meet design requirements. Due to the complex edge plasma flows and large number of design variables, this method is computationally very demanding. On the other hand, efficient optimization-based design strategies have been developed in computational aerodynamics and fluid mechanics. Such an optimization approach to divertor target shape design is elaborated in the present paper. A general formulation of the design problems is given, and conditions characterizing the optimal designs are formulated. Using a continuous adjoint framework, design sensitivities can be computed at a cost of only two edge plasma simulations, independent of the number of design variables. Furthermore, by using a one-shot method the entire optimization problem can be solved at an equivalent cost of only a few forward simulations. The methodology is applied to target shape design for uniform power load, in simplified edge plasma geometry.
Parameter estimates of a zero-dimensional ecosystem model applying the adjoint method
NASA Astrophysics Data System (ADS)
Schartau, Markus; Oschlies, Andreas; Willebrand, Jürgen
Assimilation experiments with data from the Bermuda Atlantic Time-series Study (BATS, 1989-1993) were performed with a simple mixed-layer ecosystem model of dissolved inorganic nitrogen ( N), phytoplankton ( P) and herbivorous zooplankton ( H). Our aim is to optimize the biological model parameters, such that the misfits between model results and observations are minimized. The utilized assimilation method is the variational adjoint technique, starting from a wide range of first-parameter guesses. A twin experiment displayed two kinds of solutions, when Gaussian noise was added to the model-generated data. The expected solution refers to the global minimum of the misfit model-data function, whereas the other solution is biologically implausible and is associated with a local minimum. Experiments with real data showed either bottom-up or top-down controlled ecosystem dynamics, depending on the deep nutrient availability. To confine the solutions, an additional constraint on zooplankton biomass was added to the optimization procedure. This inclusion did not produce optimal model results that were consistent with observations. The modelled zooplankton biomass still exceeded the observations. From the model-data discrepancies systematic model errors could be determined, in particular when the chlorophyll concentration started to decline before primary production reached its maximum. A direct comparision of measured 14C-production data with modelled phytoplankton production rates is inadequate at BATS, at least when a constant carbon to nitrogen C : N ratio is assumed for data assimilation.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chang, Lang-Ping
1992-01-01
Recent developments in the field of data assimilation have pointed to variational analysis (essentially least-squares fitting of a model solution to observed data) using the adjoint method as a new direction that holds the potential of major improvements over the current optimal interpolation method. This paper describes the initial effort in the development of a 4D variational analysis system. Although the development is based on the Goddard Laboratory for Atmospheres General Circulation Model (GCM), the methods and procedures described in this paper can be applied to any model. The adjoint code that computes the gradients needed in the analysis can be written directly from the GCM code. An easy error-detection technique was devised in the construction of the adjoint model. Also, a method of determining the weights and the preconditioning scales for the cases where model-generated data, which are error free, are used as observation is proposed. Two test experiments show that the dynamics part of the system has been successfully completed.
Hep, J.; Konecna, A.; Krysl, V.; Smutny, V.
2011-07-01
This paper describes the application of effective source in forward calculations and the adjoint method to the solution of fast neutron fluence and activation detector activities in the reactor pressure vessel (RPV) and RPV cavity of a VVER-440 reactor. Its objective is the demonstration of both methods on a practical task. The effective source method applies the Boltzmann transport operator to time integrated source data in order to obtain neutron fluence and detector activities. By weighting the source data by time dependent decay of the detector activity, the result of the calculation is the detector activity. Alternatively, if the weighting is uniform with respect to time, the result is the fluence. The approach works because of the inherent linearity of radiation transport in non-multiplying time-invariant media. Integrated in this way, the source data are referred to as the effective source. The effective source in the forward calculations method thereby enables the analyst to replace numerous intensive transport calculations with a single transport calculation in which the time dependence and magnitude of the source are correctly represented. In this work, the effective source method has been expanded slightly in the following way: neutron source data were performed with few group method calculation using the active core calculation code MOBY-DICK. The follow-up neutron transport calculation was performed using the neutron transport code TORT to perform multigroup calculations. For comparison, an alternative method of calculation has been used based upon adjoint functions of the Boltzmann transport equation. Calculation of the three-dimensional (3-D) adjoint function for each required computational outcome has been obtained using the deterministic code TORT and the cross section library BGL440. Adjoint functions appropriate to the required fast neutron flux density and neutron reaction rates have been calculated for several significant points within the RPV
Sensitivity analysis of a model of CO{sub 2} exchange in tundra ecosystems by the adjoint method
Waelbroeck, C.; Louis, J.F.
1995-02-20
A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO{sub 2} flux to perturbations in initial conditions, climatic inputs, and model`s main parameters describing current seasonal CO{sub 2} exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO{sub 2} flux is more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO{sub 2} exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO{sub 2}-induced warming is a significant increase in CO{sub 2} emission, creating a positive feedback to atmospheric CO{sub 2} accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO{sub 2}, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO{sub 2} flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results. 38 refs., 10 figs., 7 tabs.
Comparison of Observation Impacts in Two Forecast Systems using Adjoint Methods
NASA Technical Reports Server (NTRS)
Gelaro, Ronald; Langland, Rolf; Todling, Ricardo
2009-01-01
An experiment is being conducted to compare directly the impact of all assimilated observations on short-range forecast errors in different operational forecast systems. We use the adjoint-based method developed by Langland and Baker (2004), which allows these impacts to be efficiently calculated. This presentation describes preliminary results for a "baseline" set of observations, including both satellite radiances and conventional observations, used by the Navy/NOGAPS and NASA/GEOS-5 forecast systems for the month of January 2007. In each system, about 65% of the total reduction in 24-h forecast error is provided by satellite observations, although the impact of rawinsonde, aircraft, land, and ship-based observations remains significant. Only a small majority (50- 55%) of all observations assimilated improves the forecast, while the rest degrade it. It is found that most of the total forecast error reduction comes from observations with moderate-size innovations providing small to moderate impacts, not from outliers with very large positive or negative innovations. In a global context, the relative impacts of the major observation types are fairly similar in each system, although regional differences in observation impact can be significant. Of particular interest is the fact that while satellite radiances have a large positive impact overall, they degrade the forecast in certain locations common to both systems, especially over land and ice surfaces. Ongoing comparisons of this type, with results expected from other operational centers, should lead to more robust conclusions about the impacts of the various components of the observing system as well as about the strengths and weaknesses of the methodologies used to assimilate them.
NASA Technical Reports Server (NTRS)
Grossman, Bernard
1999-01-01
The technical details are summarized below: Compressible and incompressible versions of a three-dimensional unstructured mesh Reynolds-averaged Navier-Stokes flow solver have been differentiated and resulting derivatives have been verified by comparisons with finite differences and a complex-variable approach. In this implementation, the turbulence model is fully coupled with the flow equations in order to achieve this consistency. The accuracy demonstrated in the current work represents the first time that such an approach has been successfully implemented. The accuracy of a number of simplifying approximations to the linearizations of the residual have been examined. A first-order approximation to the dependent variables in both the adjoint and design equations has been investigated. The effects of a "frozen" eddy viscosity and the ramifications of neglecting some mesh sensitivity terms were also examined. It has been found that none of the approximations yielded derivatives of acceptable accuracy and were often of incorrect sign. However, numerical experiments indicate that an incomplete convergence of the adjoint system often yield sufficiently accurate derivatives, thereby significantly lowering the time required for computing sensitivity information. The convergence rate of the adjoint solver relative to the flow solver has been examined. Inviscid adjoint solutions typically require one to four times the cost of a flow solution, while for turbulent adjoint computations, this ratio can reach as high as eight to ten. Numerical experiments have shown that the adjoint solver can stall before converging the solution to machine accuracy, particularly for viscous cases. A possible remedy for this phenomenon would be to include the complete higher-order linearization in the preconditioning step, or to employ a simple form of mesh sequencing to obtain better approximations to the solution through the use of coarser meshes. . An efficient surface parameterization based
NASA Technical Reports Server (NTRS)
Grossman, Bernard
1999-01-01
Compressible and incompressible versions of a three-dimensional unstructured mesh Reynolds-averaged Navier-Stokes flow solver have been differentiated and resulting derivatives have been verified by comparisons with finite differences and a complex-variable approach. In this implementation, the turbulence model is fully coupled with the flow equations in order to achieve this consistency. The accuracy demonstrated in the current work represents the first time that such an approach has been successfully implemented. The accuracy of a number of simplifying approximations to the linearizations of the residual have been examined. A first-order approximation to the dependent variables in both the adjoint and design equations has been investigated. The effects of a "frozen" eddy viscosity and the ramifications of neglecting some mesh sensitivity terms were also examined. It has been found that none of the approximations yielded derivatives of acceptable accuracy and were often of incorrect sign. However, numerical experiments indicate that an incomplete convergence of the adjoint system often yield sufficiently accurate derivatives, thereby significantly lowering the time required for computing sensitivity information. The convergence rate of the adjoint solver relative to the flow solver has been examined. Inviscid adjoint solutions typically require one to four times the cost of a flow solution, while for turbulent adjoint computations, this ratio can reach as high as eight to ten. Numerical experiments have shown that the adjoint solver can stall before converging the solution to machine accuracy, particularly for viscous cases. A possible remedy for this phenomenon would be to include the complete higher-order linearization in the preconditioning step, or to employ a simple form of mesh sequencing to obtain better approximations to the solution through the use of coarser meshes. An efficient surface parameterization based on a free-form deformation technique has been
NASA Astrophysics Data System (ADS)
Martin, William; Cairns, Brian; Bal, Guillaume
2014-09-01
This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth's atmosphere.
Tomography, Adjoint Methods, Time-Reversal, and Banana-Doughnut Kernels
NASA Astrophysics Data System (ADS)
Tape, C.; Tromp, J.; Liu, Q.
2004-12-01
We demonstrate that Fréchet derivatives for tomographic inversions may be obtained based upon just two calculations for each earthquake: one calculation for the current model and a second, `adjoint', calculation that uses time-reversed signals at the receivers as simultaneous, fictitious sources. For a given model~m, we consider objective functions χ(m) that minimize differences between waveforms, traveltimes, or amplitudes. We show that the Fréchet derivatives of such objective functions may be written in the generic form δ χ=∫ VK_m( {x}) δ ln m( {x}) d3 {x}, where δ ln m=δ m/m denotes the relative model perturbation. The volumetric kernel Km is defined throughout the model volume V and is determined by time-integrated products between spatial and temporal derivatives of the regular displacement field {s} and the adjoint displacement field {s} obtained by using time-reversed signals at the receivers as simultaneous sources. In waveform tomography the time-reversed signal consists of differences between the data and the synthetics, in traveltime tomography it is determined by synthetic velocities, and in amplitude tomography it is controlled by synthetic displacements. For each event, the construction of the kernel Km requires one forward calculation for the regular field {s} and one adjoint calculation involving the fields {s} and {s}. For multiple events the kernels are simply summed. The final summed kernel is controlled by the distribution of events and stations and thus determines image resolution. In the case of traveltime tomography, the kernels Km are weighted combinations of banana-doughnut kernels. We demonstrate also how amplitude anomalies may be inverted for lateral variations in elastic and anelastic structure. The theory is illustrated based upon 2D spectral-element simulations.
Numerical study of tidal dynamics in the South China Sea with adjoint method
NASA Astrophysics Data System (ADS)
Gao, Xiumin; Wei, Zexun; Lv, Xianqing; Wang, Yonggang; Fang, Guohong
2015-08-01
We adopt a parameterized internal tide dissipation term to the two-dimensional (2-D) shallow water equations, and develop the corresponding adjoint model to investigate tidal dynamics in the South China Sea (SCS). The harmonic constants derived from 63 tidal gauge stations and 24 TOPEX/Poseidon (T/P) satellite altimeter crossover points are assimilated into the adjoint model to minimize the deviations of the simulated results and observations by optimizing the bottom friction coefficient and the internal tide dissipation coefficient. Tidal constituents M2, S2, K1 and O1 are simulated simultaneously. The numerical results (assimilating only tidal gauge data) agree well with T/P data showing that the model results are reliable. The co-tidal charts of M2, S2, K1 and O1 are obtained, which reflect the characteristics of tides in the SCS. The tidal energy flux is analyzed based on numerical results. The strongest tidal energy flux appears in the Luzon Strait (LS) for both semi-diurnal and diurnal tidal constituents. The analysis of tidal energy dissipation indicates that the bottom friction dissipation occurs mainly in shallow water area, meanwhile the internal tide dissipation is mainly concentrated in the LS and the deep basin of the SCS. The tidal energetics in the LS is examined showing that the tidal energy input closely balances the tidal energy dissipation.
Healy, R.W.; Russell, T.F.
1993-01-01
Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods for solute transport problems that are dominated by advection. FVELLAM systematically conserves mass globally with all types of boundary conditions. Integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking of characteristic lines intersecting inflow boundaries. FVELLAM extends previous results by obtaining mass conservation locally on Lagrangian space-time elements. -from Authors
Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ardema, Mark
2006-01-01
This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch
Adjoint-based optimization of fish swimming gaits
NASA Astrophysics Data System (ADS)
Floryan, Daniel; Rowley, Clarence W.; Smits, Alexander J.
2016-11-01
We study a simplified model of fish swimming, namely a flat plate periodically pitching about its leading edge. Using gradient-based optimization, we seek periodic gaits that are optimal in regards to a particular objective (e.g. maximal thrust). The two-dimensional immersed boundary projection method is used to investigate the flow states, and its adjoint formulation is used to efficiently calculate the gradient of the objective function needed for optimization. The adjoint method also provides sensitivity information, which may be used to elucidate the physics responsible for optimality. Supported under ONR MURI Grants N00014-14-1-0533, Program Manager Bob Brizzolara.
NASA Astrophysics Data System (ADS)
Chen, H.; Li, K.
2012-12-01
We applied a wave-equation based adjoint wavefield method for seismic illumination/resolution analyses and full waveform inversion. A two-way wave-equation is used to calculate directional and diffracted energy fluxes for waves propagating between sources and receivers to the subsurface target. The first-order staggered-grid pressure-velocity formulation, which lacks the characteristic of being self-adjoint is further validated and corrected to render the modeling operator before its practical application. Despite most published papers on synthetic kernel research, realistic applications to two field experiments are demonstrated and emphasize its practical needs. The Fréchet sensitivity kernels are used to quantify the target illumination conditions. For realistic illumination measurements and resolution analyses, two completely different survey geometries and nontrivial pre-conditioning strategies based on seismic data type are demonstrated and compared. From illumination studies, particle velocity responses are more sensitive to lateral velocity variations than pressure records. For waveform inversion, the more accurately estimated velocity model obtained the deeper the depth of investigation would be reached. To achieve better resolution and illumination, closely spaced OBS receiver interval is preferred. Based on the results, waveform inversion is applied for a gas hydrate site in Taiwan for shallow structure and BSR detection. Full waveform approach potentially provides better depth resolution than ray approach. The quantitative analyses, a by-product of full waveform inversion, are useful for quantifying seismic processing and depth migration strategies.llumination/resolution analysis for a 3D MCS/OBS survey in 2008. Analysis of OBS data shows that pressure (top), horizontal (middle) and vertical (bottom) velocity records produce different resolving power for gas hydrate exploration. ull waveform inversion of 8 OBS data along Yuan-An Ridge in SW Taiwan
On the role of self-adjointness in the continuum formulation of topological quantum phases
NASA Astrophysics Data System (ADS)
Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak
2016-11-01
Topological quantum phases of matter are characterized by an intimate relationship between the Hamiltonian dynamics away from the edges and the appearance of bound states localized at the edges of the system. Elucidating this correspondence in the continuum formulation of topological phases, even in the simplest case of a one-dimensional system, touches upon fundamental concepts and methods in quantum mechanics that are not commonly discussed in textbooks, in particular the self-adjoint extensions of a Hermitian operator. We show how such topological bound states can be derived in a prototypical one-dimensional system. Along the way, we provide a pedagogical exposition of the self-adjoint extension method as well as the role of symmetries in correctly formulating the continuum, field-theory description of topological matter with boundaries. Moreover, we show that self-adjoint extensions can be characterized generally in terms of a conserved local current associated with the self-adjoint operator.
Sonic Boom Mitigation Through Aircraft Design and Adjoint Methodology
NASA Technical Reports Server (NTRS)
Rallabhandi, Siriam K.; Diskin, Boris; Nielsen, Eric J.
2012-01-01
This paper presents a novel approach to design of the supersonic aircraft outer mold line (OML) by optimizing the A-weighted loudness of sonic boom signature predicted on the ground. The optimization process uses the sensitivity information obtained by coupling the discrete adjoint formulations for the augmented Burgers Equation and Computational Fluid Dynamics (CFD) equations. This coupled formulation links the loudness of the ground boom signature to the aircraft geometry thus allowing efficient shape optimization for the purpose of minimizing the impact of loudness. The accuracy of the adjoint-based sensitivities is verified against sensitivities obtained using an independent complex-variable approach. The adjoint based optimization methodology is applied to a configuration previously optimized using alternative state of the art optimization methods and produces additional loudness reduction. The results of the optimizations are reported and discussed.
Towards magnetic sounding of the Earth's core by an adjoint method
NASA Astrophysics Data System (ADS)
Li, K.; Jackson, A.; Livermore, P. W.
2013-12-01
Earth's magnetic field is generated and sustained by the so called geodynamo system in the core. Measurements of the geomagnetic field taken at the surface, downwards continued through the electrically insulating mantle to the core-mantle boundary (CMB), provide important constraints on the time evolution of the velocity, magnetic field and temperature anomaly in the fluid outer core. The aim of any study in data assimilation applied to the Earth's core is to produce a time-dependent model consistent with these observations [1]. Snapshots of these ``tuned" models provide a window through which the inner workings of the Earth's core, usually hidden from view, can be probed. We apply a variational data assimilation framework to an inertia-free magnetohydrodynamic system (MHD) [2]. Such a model is close to magnetostrophic balance [3], to which we have added viscosity to the dominant forces of Coriolis, pressure, Lorentz and buoyancy, believed to be a good approximation of the Earth's dynamo in the convective time scale. We chose to study the MHD system driven by a static temperature anomaly to mimic the actual inner working of Earth's dynamo system, avoiding at this stage the further complication of solving for the time dependent temperature field. At the heart of the models is a time-dependent magnetic field to which the core-flow is enslaved. In previous work we laid the foundation of the adjoint methodology, applied to a subset of the full equations [4]. As an intermediate step towards our ultimate vision of applying the techniques to a fully dynamic mode of the Earth's core tuned to geomagnetic observations, we present the intermediate step of applying the adjoint technique to the inertia-free Navier-Stokes equation in continuous form. We use synthetic observations derived from evolving a geophysically-reasonable magnetic field profile as the initial condition of our MHD system. Based on our study, we also propose several different strategies for accurately
Adjoint Error Estimation for Linear Advection
Connors, J M; Banks, J W; Hittinger, J A; Woodward, C S
2011-03-30
An a posteriori error formula is described when a statistical measurement of the solution to a hyperbolic conservation law in 1D is estimated by finite volume approximations. This is accomplished using adjoint error estimation. In contrast to previously studied methods, the adjoint problem is divorced from the finite volume method used to approximate the forward solution variables. An exact error formula and computable error estimate are derived based on an abstractly defined approximation of the adjoint solution. This framework allows the error to be computed to an arbitrary accuracy given a sufficiently well resolved approximation of the adjoint solution. The accuracy of the computable error estimate provably satisfies an a priori error bound for sufficiently smooth solutions of the forward and adjoint problems. The theory does not currently account for discontinuities. Computational examples are provided that show support of the theory for smooth solutions. The application to problems with discontinuities is also investigated computationally.
Heberton, C.I.; Russell, T.F.; Konikow, L.F.; Hornberger, G.Z.
2000-01-01
This report documents the U.S. Geological Survey Eulerian-Lagrangian Localized Adjoint Method (ELLAM) algorithm that solves an integral form of the solute-transport equation, incorporating an implicit-in-time difference approximation for the dispersive and sink terms. Like the algorithm in the original version of the U.S. Geological Survey MOC3D transport model, ELLAM uses a method of characteristics approach to solve the transport equation on the basis of the velocity field. The ELLAM algorithm, however, is based on an integral formulation of conservation of mass and uses appropriate numerical techniques to obtain global conservation of mass. The implicit procedure eliminates several stability criteria required for an explicit formulation. Consequently, ELLAM allows large transport time increments to be used. ELLAM can produce qualitatively good results using a small number of transport time steps. A description of the ELLAM numerical method, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. The ELLAM algorithm was evaluated for the same set of problems used to test and evaluate Version 1 and Version 2 of MOC3D. These test results indicate that ELLAM offers a viable alternative to the explicit and implicit solvers in MOC3D. Its use is desirable when mass balance is imperative or a fast, qualitative model result is needed. Although accurate solutions can be generated using ELLAM, its efficiency relative to the two previously documented solution algorithms is problem dependent.
D.L. Henderson; S. Yoo; M. Kowalok; T.R. Mackie; B.R. Thomadsen
2001-10-30
The goal of this project is to investigate the use of the adjoint method, commonly used in the reactor physics community, for the optimization of radiation therapy patient treatment plans. Two different types of radiation therapy are being examined, interstitial brachytherapy and radiotherapy. In brachytherapy radioactive sources are surgically implanted within the diseased organ such as the prostate to treat the cancerous tissue. With radiotherapy, the x-ray source is usually located at a distance of about 1-metere from the patient and focused on the treatment area. For brachytherapy the optimization phase of the treatment plan consists of determining the optimal placement of the radioactive sources, which delivers the prescribed dose to the disease tissue while simultaneously sparing (reducing) the dose to sensitive tissue and organs. For external beam radiation therapy the optimization phase of the treatment plan consists of determining the optimal direction and intensity of beam, which provides complete coverage of the tumor region with the prescribed dose while simultaneously avoiding sensitive tissue areas. For both therapy methods, the optimal treatment plan is one in which the diseased tissue has been treated with the prescribed dose and dose to the sensitive tissue and organs has been kept to a minimum.
NASA Astrophysics Data System (ADS)
Martinec, Zdenek; Sasgen, Ingo; Velimsky, Jakub
2014-05-01
In this study, two new methods for computing the sensitivity of the glacial isostatic adjustment (GIA) forward solution with respect to the Earth's mantle viscosity are presented: the forward sensitivity method (FSM) and the adjoint sensitivity method (ASM). These advanced formal methods are based on the time-domain,spectral-finite element method for modelling the GIA response of laterally heterogeneous earth models developed by Martinec (2000). There are many similarities between the forward method and the FSM and ASM for a general physical system. However, in the case of GIA, there are also important differences between the forward and sensitivity methods. The analysis carried out in this study results in the following findings. First, the forward method of GIA is unconditionally solvable, regardless of whether or not a combined ice and ocean-water load contains the first-degree spherical harmonics. This is also the case for the FSM, however, the ASM must in addition be supplemented by nine conditions on the misfit between the given GIA-related data and the forward model predictions to guarantee the existence of a solution. This constrains the definition of data least-squares misfit. Second, the forward method of GIA implements an ocean load as a free boundary-value function over an ocean area with a free geometry. That is, an ocean load and the shape of ocean, the so-called ocean function, are being sought, in addition to deformation and gravity-increment fields, by solving the forward method. The FSM and ASM also apply the adjoint ocean load as a free boundary-value function, but instead over an ocean area with the fixed geometry given by the ocean function determined by the forward method. In other words, a boundary-value problem for the forward method of GIA is free with respect to determining (i) the boundary-value data over an ocean area and (ii) the ocean function itself, while the boundary-value problems for the FSM and ASM are free only with respect to
AN EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHOD FOR THE ADVECTION-DIFFUSION EQUATION
Many numerical methods use characteristic analysis to accommodate the advective component of transport. Such characteristic methods include Eulerian-Lagrangian methods (ELM), modified method of characteristics (MMOC), and operator splitting methods. A generalization of characteri...
Adjoint-Based Algorithms for Adaptation and Design Optimizations on Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.
2006-01-01
Schemes based on discrete adjoint algorithms present several exciting opportunities for significantly advancing the current state of the art in computational fluid dynamics. Such methods provide an extremely efficient means for obtaining discretely consistent sensitivity information for hundreds of design variables, opening the door to rigorous, automated design optimization of complex aerospace configuration using the Navier-Stokes equation. Moreover, the discrete adjoint formulation provides a mathematically rigorous foundation for mesh adaptation and systematic reduction of spatial discretization error. Error estimates are also an inherent by-product of an adjoint-based approach, valuable information that is virtually non-existent in today's large-scale CFD simulations. An overview of the adjoint-based algorithm work at NASA Langley Research Center is presented, with examples demonstrating the potential impact on complex computational problems related to design optimization as well as mesh adaptation.
NASA Astrophysics Data System (ADS)
Horbach, A.; Bunge, H.-P.
2012-04-01
Forward simulations of mantle circulation processes in the Earth's interior suffer from the problem of an unknown initial condition, that is the temperature distribution of the past is not known a-priori. With the help of the adjoint method (Bunge (2003)), we are able to determine an optimal initial condition iteratively, given a temperature model of the present time. Here we use an s-wave tomography (Grand (1997)) as the estimator for present-day Earth structure. The seismic model is converted into temperature using a published self-consistent mineralogical model (Piazzoni (2007)), allowing us to constrain a time series of mantle flow consistent with the present-day estimator for the past 40 Myrs. Temperature fluctuations initiate density anomalies, which in turn influence the Earth's external gravitational field. Gravity provides an important constraint for geodynamic modelling. We find a very high correlation of our model geoid for the present time to current satellite derived geoid solutions. Furthermore, our models of paleo circulation allow us to determine time-series of the geoid for the past 40 Ma. Some remarkable geodynamic features can be recognized from our proof-of-concept models, especially the sinking of the Farallon and the Tethys slab through the Earth's mantle, and their associated effects on past topography and geoid.
NASA Astrophysics Data System (ADS)
Bozdag, Ebru; Lefebvre, Matthieu; Lei, Wenjie; Peter, Daniel; Smith, James; Komatitsch, Dimitri; Tromp, Jeroen
2015-04-01
We will present our initial results of global adjoint tomography based on 3D seismic wave simulations which is one of the most challenging examples in seismology in terms of intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated in inversions. Using a spectral-element method, we incorporate full 3D wave propagation in seismic tomography by running synthetic seismograms and adjoint simulations to compute exact sensitivity kernels in realistic 3D background models. We run our global simulations on the Oak Ridge National Laboratory's Cray XK7 "Titan" system taking advantage of the GPU version of the SPECFEM3D_GLOBE package. We have started iterations with initially selected 253 earthquakes within the magnitude range of 5.5 < Mw < 7.0 and numerical simulations having resolution down to ~27 s to invert for a transversely isotropic crust and mantle model using a non-linear conjugate gradient algorithm. The measurements are currently based on frequency-dependent traveltime misfits. We use both minor- and major-arc body and surface waves by running 200 min simulations where inversions are performed with more than 2.6 million measurements. Our initial results after 12 iterations already indicate several prominent features such as enhanced slab (e.g., Hellenic, Japan, Bismarck, Sandwich), plume/hotspot (e.g., the Pacific superplume, Caroline, Yellowstone, Hawaii) images, etc. To improve the resolution and ray coverage, particularly in the lower mantle, our aim is to increase the resolution of numerical simulations first going down to ~17 s and then to ~9 s to incorporate high-frequency body waves in inversions. While keeping track of the progress and illumination of features in our models with a limited data set, we work towards to assimilate all available data in inversions from all seismic networks and earthquakes in the global CMT catalogue.
Design sensitivity analysis with Applicon IFAD using the adjoint variable method
NASA Technical Reports Server (NTRS)
Frederick, Marjorie C.; Choi, Kyung K.
1984-01-01
A numerical method is presented to implement structural design sensitivity analysis using the versatility and convenience of existing finite element structural analysis program and the theoretical foundation in structural design sensitivity analysis. Conventional design variables, such as thickness and cross-sectional areas, are considered. Structural performance functionals considered include compliance, displacement, and stress. It is shown that calculations can be carried out outside existing finite element codes, using postprocessing data only. That is, design sensitivity analysis software does not have to be imbedded in an existing finite element code. The finite element structural analysis program used in the implementation presented is IFAD. Feasibility of the method is shown through analysis of several problems, including built-up structures. Accurate design sensitivity results are obtained without the uncertainty of numerical accuracy associated with selection of a finite difference perturbation.
NASA Technical Reports Server (NTRS)
Gelaro, Ron; Liu, Emily; Sienkiewicz, Meta
2011-01-01
The adjoint of a data assimilation system provides a flexible and efficient tool for estimating observation impacts on short-range weather forecasts. The impacts of any or all observations can be estimated simultaneously based on a single execution of the adjoint system. The results can be easily aggregated according to data type, location, channel, etc., making this technique especially attractive for examining the impacts of new hyper-spectral satellite instruments and for conducting regular, even near-real time, monitoring of the entire observing system. In this talk, we present results from the adjoint-based observation impact monitoring tool in NASA's GEOS-5 global atmospheric data assimilation and forecast system. The tool has been running in various off-line configurations for some time, and is scheduled to run as a regular part of the real-time forecast suite beginning in autumn 20 I O. We focus on the impacts of the newest components of the satellite observing system, including AIRS, IASI and GPS. For AIRS and IASI, it is shown that the vast majority of the channels assimilated have systematic positive impacts (of varying magnitudes), although some channels degrade the forecast. Of the latter, most are moisture-sensitive or near-surface channels. The impact of GPS observations in the southern hemisphere is found to be a considerable overall benefit to the system. In addition, the spatial variability of observation impacts reveals coherent patterns of positive and negative impacts that may point to deficiencies in the use of certain observations over, for example, specific surface types. When performed in conjunction with selected observing system experiments (OSEs), the adjoint results reveal both redundancies and dependencies between observing system impacts as observations are added or removed from the assimilation system. Understanding these dependencies appears to pose a major challenge for optimizing the use of the current observational network and
NASA Technical Reports Server (NTRS)
Martin, William G.; Cairns, Brian; Bal, Guillaume
2014-01-01
This paper derives an efficient procedure for using the three-dimensional (3D) vector radiative transfer equation (VRTE) to adjust atmosphere and surface properties and improve their fit with multi-angle/multi-pixel radiometric and polarimetric measurements of scattered sunlight. The proposed adjoint method uses the 3D VRTE to compute the measurement misfit function and the adjoint 3D VRTE to compute its gradient with respect to all unknown parameters. In the remote sensing problems of interest, the scalar-valued misfit function quantifies agreement with data as a function of atmosphere and surface properties, and its gradient guides the search through this parameter space. Remote sensing of the atmosphere and surface in a three-dimensional region may require thousands of unknown parameters and millions of data points. Many approaches would require calls to the 3D VRTE solver in proportion to the number of unknown parameters or measurements. To avoid this issue of scale, we focus on computing the gradient of the misfit function as an alternative to the Jacobian of the measurement operator. The resulting adjoint method provides a way to adjust 3D atmosphere and surface properties with only two calls to the 3D VRTE solver for each spectral channel, regardless of the number of retrieval parameters, measurement view angles or pixels. This gives a procedure for adjusting atmosphere and surface parameters that will scale to the large problems of 3D remote sensing. For certain types of multi-angle/multi-pixel polarimetric measurements, this encourages the development of a new class of three-dimensional retrieval algorithms with more flexible parametrizations of spatial heterogeneity, less reliance on data screening procedures, and improved coverage in terms of the resolved physical processes in the Earth?s atmosphere.
Adjoint affine fusion and tadpoles
NASA Astrophysics Data System (ADS)
Urichuk, Andrew; Walton, Mark A.
2016-06-01
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are written for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.
Double-difference adjoint seismic tomography
NASA Astrophysics Data System (ADS)
Yuan, Yanhua O.; Simons, Frederik J.; Tromp, Jeroen
2016-09-01
We introduce a `double-difference' method for the inversion for seismic wave speed structure based on adjoint tomography. Differences between seismic observations and model predictions at individual stations may arise from factors other than structural heterogeneity, such as errors in the assumed source-time function, inaccurate timings and systematic uncertainties. To alleviate the corresponding non-uniqueness in the inverse problem, we construct differential measurements between stations, thereby reducing the influence of the source signature and systematic errors. We minimize the discrepancy between observations and simulations in terms of the differential measurements made on station pairs. We show how to implement the double-difference concept in adjoint tomography, both theoretically and practically. We compare the sensitivities of absolute and differential measurements. The former provide absolute information on structure along the ray paths between stations and sources, whereas the latter explain relative (and thus higher resolution) structural variations in areas close to the stations. Whereas in conventional tomography a measurement made on a single earthquake-station pair provides very limited structural information, in double-difference tomography one earthquake can actually resolve significant details of the structure. The double-difference methodology can be incorporated into the usual adjoint tomography workflow by simply pairing up all conventional measurements; the computational cost of the necessary adjoint simulations is largely unaffected. Rather than adding to the computational burden, the inversion of double-difference measurements merely modifies the construction of the adjoint sources for data assimilation.
NASA Astrophysics Data System (ADS)
Kano, Masayuki; Miyazaki, Shin'ichi; Ishikawa, Yoichi; Hiyoshi, Yoshihisa; Ito, Kosuke; Hirahara, Kazuro
2015-10-01
Data assimilation is a technique that optimizes the parameters used in a numerical model with a constraint of model dynamics achieving the better fit to observations. Optimized parameters can be utilized for the subsequent prediction with a numerical model and predicted physical variables are presumably closer to observations that will be available in the future, at least, comparing to those obtained without the optimization through data assimilation. In this work, an adjoint data assimilation system is developed for optimizing a relatively large number of spatially inhomogeneous frictional parameters during the afterslip period in which the physical constraints are a quasi-dynamic equation of motion and a laboratory derived rate and state dependent friction law that describe the temporal evolution of slip velocity at subduction zones. The observed variable is estimated slip velocity on the plate interface. Before applying this method to the real data assimilation for the afterslip of the 2003 Tokachi-oki earthquake, a synthetic data assimilation experiment is conducted to examine the feasibility of optimizing the frictional parameters in the afterslip area. It is confirmed that the current system is capable of optimizing the frictional parameters A-B, A and L by adopting the physical constraint based on a numerical model if observations capture the acceleration and decaying phases of slip on the plate interface. On the other hand, it is unlikely to constrain the frictional parameters in the region where the amplitude of afterslip is less than 1.0 cm d-1. Next, real data assimilation for the 2003 Tokachi-oki earthquake is conducted to incorporate slip velocity data inferred from time dependent inversion of Global Navigation Satellite System time-series. The optimized values of A-B, A and L are O(10 kPa), O(102 kPa) and O(10 mm), respectively. The optimized frictional parameters yield the better fit to the observations and the better prediction skill of slip
Adjoint Sensitivity Analysis of a Coupled Groundwater-Surface Water Model
NASA Astrophysics Data System (ADS)
Kelley, V. A.
2013-12-01
Derivation of the exact equations of Adjoint Sensitivity Analysis for a coupled Groundwater-Surface water model is presented here, with reference to the Stream package in MODFLOW-2005. MODFLOW-2005 offers two distinct packages to simulate river boundary conditions in an aquifer model. They are the RIV (RIVer) Package and the STR (STReam) Package. The STR package simulates a coupled Groundwater and Surface Water flow model. As a result of coupling between the Groundwater and the Surface Water flows, the flows to/from the aquifer depend not just on the river stage and aquifer head at that location (as would happen in the RIV package); but on the river stages and aquifer heads at all upstream locations, in the complex network of streams with all its distributaries and diversions. This requires a substantial modification of the adjoint state equations (not required in RIV Package). The necessary equations for the STR Package have now been developed and implemented the MODFLOW-ADJOINT Code. The exact STR Adjoint code has been validated by comparing with the results from the parameter perturbation method, for the case of San Pedro Model (USGS) and Northern Arizona Regional Aquifer Model (USGS). When the RIV package is used for the same models, the sensitivity analysis results are incorrect for some nodes, indicating the advantage of using the exact methods of the STR Package in MODFLOW-Adjoint code. This exact analysis has been used for deriving the capture functions in the management of groundwater, subject to the constraints on the depletion of surface water supplies. Capture maps are used for optimal location of the pumping wells, their rates of withdrawals, and their timing. Because of the immense savings in computational times, with this Adjoint strategy, it is feasible to embed the groundwater management problem in a stochastic framework (probabilistic approach) to address the uncertainties in the groundwater model.
Galanti, Eli; Kaspi, Yohai
2016-04-01
During 2016–17, the Juno and Cassini spacecraft will both perform close eccentric orbits of Jupiter and Saturn, respectively, obtaining high-precision gravity measurements for these planets. These data will be used to estimate the depth of the observed surface flows on these planets. All models to date, relating the winds to the gravity field, have been in the forward direction, thus only allowing the calculation of the gravity field from given wind models. However, there is a need to do the inverse problem since the new observations will be of the gravity field. Here, an inverse dynamical model is developed to relate the expected measurable gravity field, to perturbations of the density and wind fields, and therefore to the observed cloud-level winds. In order to invert the gravity field into the 3D circulation, an adjoint model is constructed for the dynamical model, thus allowing backward integration. This tool is used for the examination of various scenarios, simulating cases in which the depth of the wind depends on latitude. We show that it is possible to use the gravity measurements to derive the depth of the winds, both on Jupiter and Saturn, also taking into account measurement errors. Calculating the solution uncertainties, we show that the wind depth can be determined more precisely in the low-to-mid-latitudes. In addition, the gravitational moments are found to be particularly sensitive to flows at the equatorial intermediate depths. Therefore, we expect that if deep winds exist on these planets they will have a measurable signature by Juno and Cassini.
2006-01-30
for travel-time [11], and the viscosity solution for the eikonal equation with a point -source condition is the least travel-time from the source to...paper. 2 Governing Equations We start from the eikonal equation with a point source condition in an isotropic medium which occupies an open, bounded...tomography so that we can avoid the cumbersome ray-tracing. We start from the eikonal equation, define a mismatching functional and derive the gradient
Extension of the ADjoint Approach to a Laminar Navier-Stokes Solver
NASA Astrophysics Data System (ADS)
Paige, Cody
The use of adjoint methods is common in computational fluid dynamics to reduce the cost of the sensitivity analysis in an optimization cycle. The forward mode ADjoint is a combination of an adjoint sensitivity analysis method with a forward mode automatic differentiation (AD) and is a modification of the reverse mode ADjoint method proposed by Mader et al.[1]. A colouring acceleration technique is presented to reduce the computational cost increase associated with forward mode AD. The forward mode AD facilitates the implementation of the laminar Navier-Stokes (NS) equations. The forward mode ADjoint method is applied to a three-dimensional computational fluid dynamics solver. The resulting Euler and viscous ADjoint sensitivities are compared to the reverse mode Euler ADjoint derivatives and a complex-step method to demonstrate the reduced computational cost and accuracy. Both comparisons demonstrate the benefits of the colouring method and the practicality of using a forward mode AD. [1] Mader, C.A., Martins, J.R.R.A., Alonso, J.J., and van der Weide, E. (2008) ADjoint: An approach for the rapid development of discrete adjoint solvers. AIAA Journal, 46(4):863-873. doi:10.2514/1.29123.
Global adjoint tomography: First-generation model
Bozdag, Ebru; Peter, Daniel; Lefebvre, Matthieu; Komatitsch, Dimitri; Tromp, Jeroen; Hill, Judith C.; Podhorszki, Norbert; Pugmire, David
2016-09-22
We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3-D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Fréchet derivatives were calculated in 3-D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named ‘Titan’, a computer with 18 688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematically reduced differences between observed and simulated three-component seismograms. Our starting model combined 3-D mantle model S362ANI with 3-D crustal model Crust2.0. We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used ‘crustal corrections’. We used data from 253 earthquakes in the magnitude range 5.8 ≤ M_{w} ≤ 7.0. We started inversions by combining ~30 s body-wave data with ~60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined ~17 s body waves with ~45 s surface waves. We started using 180 min long seismograms after the 12th iteration and assimilated minor- and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching
Global adjoint tomography: First-generation model
Bozdag, Ebru; Peter, Daniel; Lefebvre, Matthieu; ...
2016-09-22
We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3-D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Fréchet derivatives were calculated in 3-D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named ‘Titan’, a computer with 18 688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematicallymore » reduced differences between observed and simulated three-component seismograms. Our starting model combined 3-D mantle model S362ANI with 3-D crustal model Crust2.0. We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used ‘crustal corrections’. We used data from 253 earthquakes in the magnitude range 5.8 ≤ Mw ≤ 7.0. We started inversions by combining ~30 s body-wave data with ~60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined ~17 s body waves with ~45 s surface waves. We started using 180 min long seismograms after the 12th iteration and assimilated minor- and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching
Global adjoint tomography: first-generation model
NASA Astrophysics Data System (ADS)
Bozdağ, Ebru; Peter, Daniel; Lefebvre, Matthieu; Komatitsch, Dimitri; Tromp, Jeroen; Hill, Judith; Podhorszki, Norbert; Pugmire, David
2016-12-01
We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3-D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Fréchet derivatives were calculated in 3-D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named `Titan', a computer with 18 688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematically reduced differences between observed and simulated three-component seismograms. Our starting model combined 3-D mantle model S362ANI with 3-D crustal model Crust2.0. We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used `crustal corrections'. We used data from 253 earthquakes in the magnitude range 5.8 ≤ Mw ≤ 7.0. We started inversions by combining ˜30 s body-wave data with ˜60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined ˜17 s body waves with ˜45 s surface waves. We started using 180 min long seismograms after the 12th iteration and assimilated minor- and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching the resolution
Optimal ignition placement using nonlinear adjoint looping
NASA Astrophysics Data System (ADS)
Qadri, Ubaid; Schmid, Peter; Magri, Luca; Ihme, Matthias
2016-11-01
Spark ignition of a turbulent mixture of fuel and oxidizer is a highly sensitive process. Traditionally, a large number of parametric studies are used to determine the effects of different factors on ignition and this can be quite tedious. In contrast, we treat ignition as an initial value problem and seek to find the initial condition that maximizes a given cost function. We use direct numerical simulation of the low Mach number equations with finite rate one-step chemistry, and of the corresponding adjoint equations, to study an axisymmetric jet diffusion flame. We find the L - 2 norm of the temperature field integrated over a short time to be a suitable cost function. We find that the adjoint fields localize around the flame front, identifying the most sensitive region of the flow. The adjoint fields provide gradient information that we use as part of an optimization loop to converge to a local optimal ignition location. We find that the optimal locations correspond with the stoichiometric surface downstream of the jet inlet plane. The methods and results of this study can be easily applied to more complex flow geometries.
Nonlinear self-adjointness and conservation laws of Klein-Gordon-Fock equation with central symmetry
NASA Astrophysics Data System (ADS)
Abdulwahhab, Muhammad Alim
2015-05-01
The concept of nonlinear self-adjointness, introduced by Ibragimov, has significantly extends approaches to constructing conservation laws associated with symmetries since it incorporates the strict self-adjointness, the quasi self-adjointness as well as the usual linear self-adjointness. Using this concept, the nonlinear self-adjointness condition for the Klein-Gordon-Fock equation was established and subsequently used to construct simplified but infinitely many nontrivial and independent conserved vectors. The Noether's theorem was further applied to the Klein-Gordon-Fock equation to explore more distinct first integrals, result shows that conservation laws constructed through this approach are exactly the same as those obtained under strict self-adjointness of Ibragimov's method.
A new mathematical adjoint for the modified SAAF_{-SN} equations
Schunert, Sebastian; Wang, Yaqi; Martineau, Richard; DeHart, Mark D.
2015-01-01
We present a new adjoint FEM weak form, which can be directly used for evaluating the mathematical adjoint, suitable for perturbation calculations, of the self-adjoint angular flux SN equations (SAAF_{-SN}) without construction and transposition of the underlying coefficient matrix. Stabilization schemes incorporated in the described SAAF_{-SN} method make the mathematical adjoint distinct from the physical adjoint, i.e. the solution of the continuous adjoint equation with SAAF_{-SN} . This weak form is implemented into RattleSnake, the MOOSE (Multiphysics Object-Oriented Simulation Environment) based transport solver. Numerical results verify the correctness of the implementation and show its utility both for fixed source and eigenvalue problems.
Optimization of wind plant layouts using an adjoint approach
King, Ryan N.; Dykes, Katherine; Graf, Peter; ...
2017-03-10
Using adjoint optimization and three-dimensional steady-state Reynolds-averaged Navier–Stokes (RANS) simulations, we present a new gradient-based approach for optimally siting wind turbines within utility-scale wind plants. By solving the adjoint equations of the flow model, the gradients needed for optimization are found at a cost that is independent of the number of control variables, thereby permitting optimization of large wind plants with many turbine locations. Moreover, compared to the common approach of superimposing prescribed wake deficits onto linearized flow models, the computational efficiency of the adjoint approach allows the use of higher-fidelity RANS flow models which can capture nonlinear turbulent flowmore » physics within a wind plant. The steady-state RANS flow model is implemented in the Python finite-element package FEniCS and the derivation and solution of the discrete adjoint equations are automated within the dolfin-adjoint framework. Gradient-based optimization of wind turbine locations is demonstrated for idealized test cases that reveal new optimization heuristics such as rotational symmetry, local speedups, and nonlinear wake curvature effects. Layout optimization is also demonstrated on more complex wind rose shapes, including a full annual energy production (AEP) layout optimization over 36 inflow directions and 5 wind speed bins.« less
Adjoint-Based Methodology for Time-Dependent Optimization
NASA Technical Reports Server (NTRS)
Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.
2008-01-01
This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.
Adjoint sensitivity analysis of an ultrawideband antenna
Stephanson, M B; White, D A
2011-07-28
The frequency domain finite element method using H(curl)-conforming finite elements is a robust technique for full-wave analysis of antennas. As computers become more powerful, it is becoming feasible to not only predict antenna performance, but also to compute sensitivity of antenna performance with respect to multiple parameters. This sensitivity information can then be used for optimization of the design or specification of manufacturing tolerances. In this paper we review the Adjoint Method for sensitivity calculation, and apply it to the problem of optimizing a Ultrawideband antenna.
NASA Astrophysics Data System (ADS)
Fang, F.; Pain, C. C.; Gaddard, A. J. H.; de Oliveira, C. R. E.; Piggott, M. D.; Umpleby, A. P.; Copeland, G. J. M.
2003-04-01
There are often uncertain factors in ocean numerical models, e.g. the initial and boundary conditions, parameters. With the introduction of advanced observational techniques, more attention has been given to data assimilation to improve the predictive capabilities of ocean models. The question is how and where best to assimilate the observations for reducing the dependence of solutions on the initial and boundary data and getting a better representation of non-stratified water flows around and over coastal topography. In this investigation, we aim to introduce an adjoint model into the Imperial College Ocean Model (ICOM), which is a 3D nonlinear non-hydrostatic model with mesh adaptivity and optimal Domain Decomposition Method (DDM) parallel solver. By using an unstructured mesh, ICOM can automatically conform to the complicated coastal topography and with mesh adaptivity the resolution can be designed to meet physics demands such as flows in region of high shear and flow separation at coastlines. In the initial stage of this investigation, we discuss various adjoint methods and their consistence. To accelerate the convergence of the gradient calculation and reduce the memory requirement, the numerical techniques: Nonlinear Conjugate Gradient and Check Pointing are introduced. We then apply the adjoint method to 1D nonlinear shallow water and 2D coastal flow past a headland with the inversion of both boundary and initial conditions. We give an initial insight to (1) Effect of data information to be inverted; (2) Role of the nonlinear terms in the inversion; (3) Possibility of adopting non-consistent discretization schemes in the forward and backward adjoint models; (4) Effect of various boundary conditions, e.g. uniform flow and wave/tidal flow.
Adjoint simulation of stream depletion due to aquifer pumping.
Neupauer, Roseanna M; Griebling, Scott A
2012-01-01
If an aquifer is hydraulically connected to an adjacent stream, a pumping well operating in the aquifer will draw some water from aquifer storage and some water from the stream, causing stream depletion. Several analytical, semi-analytical, and numerical approaches have been developed to estimate stream depletion due to pumping. These approaches are effective if the well location is known. If a new well is to be installed, it may be desirable to install the well at a location where stream depletion is minimal. If several possible locations are considered for the location of a new well, stream depletion would have to be estimated for all possible well locations, which can be computationally inefficient. The adjoint approach for estimating stream depletion is a more efficient alternative because with one simulation of the adjoint model, stream depletion can be estimated for pumping at a well at any location. We derive the adjoint equations for a coupled system with a confined aquifer, an overlying unconfined aquifer, and a river that is hydraulically connected to the unconfined aquifer. We assume that the stage in the river is known, and is independent of the stream depletion, consistent with the assumptions of the MODFLOW river package. We describe how the adjoint equations can be solved using MODFLOW. In an illustrative example, we show that for this scenario, the adjoint approach is as accurate as standard forward numerical simulation methods, and requires substantially less computational effort.
Kim, Min-Geun; Jang, Hong-Lae; Cho, Seonho
2013-05-01
An efficient adjoint design sensitivity analysis method is developed for reduced atomic systems. A reduced atomic system and the adjoint system are constructed in a locally confined region, utilizing generalized Langevin equation (GLE) for periodic lattice structures. Due to the translational symmetry of lattice structures, the size of time history kernel function that accounts for the boundary effects of the reduced atomic systems could be reduced to a single atom’s degrees of freedom. For the problems of highly nonlinear design variables, the finite difference method is impractical for its inefficiency and inaccuracy. However, the adjoint method is very efficient regardless of the number of design variables since one additional time integration is required for the adjoint GLE. Through numerical examples, the derived adjoint sensitivity turns out to be accurate and efficient through the comparison with finite difference sensitivity.
Adjoint-based approach to Enhancing Mixing in Rayleigh-Taylor Turbulence
NASA Astrophysics Data System (ADS)
Kord, Ali; Capecelatro, Jesse
2016-11-01
A recently developed adjoint method for multi-component compressible flow is used to measure sensitivity of the mixing rate to initial perturbations in Rayleigh-Taylor (RT) turbulence. Direct numerical simulations (DNS) of RT instabilities are performed at moderate Reynolds numbers. The DNS are used to provide an initial prediction, and the corresponding space-time discrete-exact adjoint provides a sensitivity gradient for a specific quantity of interest (QoI). In this work, a QoI is defined based on the time-integrated scalar field to quantify the mixing rate. Therefore, the adjoint solution is used to measure sensitivity of this QoI to a set of initial perturbations, and inform a gradient-based line search to optimize mixing. We first demonstrate the adjoint approach in the linear regime and compare the optimized initial conditions to the expected values from linear stability analysis. The adjoint method is then used in the high Reynolds number limit where theory is no longer valid. Finally, chaos is known to contaminate the accuracy of the adjoint gradient in turbulent flows when integrated over long time horizons. We assess the influence of chaos on the accuracy of the adjoint gradient to guide the work of future studies on adjoint-based sensitivity of turbulent mixing. PhD Student, Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI.
Adjoints and Low-rank Covariance Representation
NASA Technical Reports Server (NTRS)
Tippett, Michael K.; Cohn, Stephen E.
2000-01-01
Quantitative measures of the uncertainty of Earth System estimates can be as important as the estimates themselves. Second moments of estimation errors are described by the covariance matrix, whose direct calculation is impractical when the number of degrees of freedom of the system state is large. Ensemble and reduced-state approaches to prediction and data assimilation replace full estimation error covariance matrices by low-rank approximations. The appropriateness of such approximations depends on the spectrum of the full error covariance matrix, whose calculation is also often impractical. Here we examine the situation where the error covariance is a linear transformation of a forcing error covariance. We use operator norms and adjoints to relate the appropriateness of low-rank representations to the conditioning of this transformation. The analysis is used to investigate low-rank representations of the steady-state response to random forcing of an idealized discrete-time dynamical system.
NASA Astrophysics Data System (ADS)
Tang, T.; Boroumand, A.; Abriola, L. M.; Miller, E. L.
2013-12-01
Characterization of dense non-aqueous phase liquid (DNAPL) source zones is a critical component for successful remediation of sites contaminated by chlorinated solvents. Although Push-Pull Tracer Tests (PPTTs) offer a promising approach for local in situ source zone characterization, non-equilibrium mass transfer effects and the spatial variability of saturation make their interpretation difficult. To better understand the dependence of well test data on these factors and as the basis for the estimation of the spatial DNAPL distribution, here we develop numerical methods based on the use of adjoint sensitivity mehtods to explore the sensitivity of PPTT observations to the distribution of DNAPL saturation. We examine the utility of the developed approach using three-dimensional hypothetical source zones containing heterogeneous DNAPL distributions. For model applications the flow fields are generated with MODFLOW and non-equilibrium tracer mass transfer is described by a linear driving force expression. Comprehensive modeling of partitioning tracer tests requires the solution of tracer mass balance equations in the aqueous and DNAPL phases. Consistent with this process coupling, the developed adjoint method introduces a vector of adjoint variables to formulate the coupled adjoint states equations for tracer concentrations in both the aqueous and NAPL phases. For the sensitivity analysis, we investigate how the tracer concentration in the well changes with perturbations of the saturation within the interrogated zone. Using the calculated sensitivity functions, coupled with the observed tracer breakthrough curve, we develop a nonlinear least-squares inverse method to determine three metrics related to the spatial distribution of DNAPL in the source zone: average DNAPL saturation, total mass of DNAPL and distance of the DNAPL from the test well. These results have utility for local source zone characterization and can provide an initial quantitative understanding of
Self-adjointness of deformed unbounded operators
Much, Albert
2015-09-15
We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.
MS S4.03.002 - Adjoint-Based Design for Configuration Shaping
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2009-01-01
This slide presentation discusses a method of inverse design for low sonic boom using adjoint-based gradient computations. It outlines a method for shaping a configuration in order to match a prescribed near-field signature.
Numerical Computation of Sensitivities and the Adjoint Approach
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael
1997-01-01
We discuss the numerical computation of sensitivities via the adjoint approach in optimization problems governed by differential equations. We focus on the adjoint problem in its weak form. We show how one can avoid some of the problems with the adjoint approach, such as deriving suitable boundary conditions for the adjoint equation. We discuss the convergence of numerical approximations of the costate computed via the weak form of the adjoint problem and show the significance for the discrete adjoint problem.
NASA Astrophysics Data System (ADS)
Tan, Z.; Zhuang, Q.; Henze, D. K.; Frankenberg, C.; Dlugokencky, E. J.; Sweeney, C.; Turner, A. J.
2015-12-01
Understanding CH4 emissions from wetlands and lakes are critical for the estimation of Arctic carbon balance under fast warming climatic conditions. To date, our knowledge about these two CH4 sources is almost solely built on the upscaling of discontinuous measurements in limited areas to the whole region. Many studies indicated that, the controls of CH4 emissions from wetlands and lakes including soil moisture, lake morphology and substrate content and quality are notoriously heterogeneous, thus the accuracy of those simple estimates could be questionable. Here we apply a high spatial resolution atmospheric inverse model (nested-grid GEOS-Chem Adjoint) over the Arctic by integrating SCIAMACHY and NOAA/ESRL CH4 measurements to constrain the CH4 emissions estimated with process-based wetland and lake biogeochemical models. Our modeling experiments using different wetland CH4 emission schemes and satellite and surface measurements show that the total amount of CH4 emitted from the Arctic wetlands is well constrained, but the spatial distribution of CH4 emissions is sensitive to priors. For CH4 emissions from lakes, our high-resolution inversion shows that the models overestimate CH4 emissions in Alaskan costal lowlands and East Siberian lowlands. Our study also indicates that the precision and coverage of measurements need to be improved to achieve more accurate high-resolution estimates.
Adjoint sensitivity study on idealized explosive cyclogenesis
NASA Astrophysics Data System (ADS)
Chu, Kekuan; Zhang, Yi
2016-06-01
The adjoint sensitivity related to explosive cyclogenesis in a conditionally unstable atmosphere is investigated in this study. The PSU/NCAR limited-area, nonhydrostatic primitive equation numerical model MM5 and its adjoint system are employed for numerical simulation and adjoint computation, respectively. To ensure the explosive development of a baroclinic wave, the forecast model is initialized with an idealized condition including an idealized two-dimensional baroclinic jet with a balanced three-dimensional moderate-amplitude disturbance, derived from a potential vorticity inversion technique. Firstly, the validity period of the tangent linear model for this idealized baroclinic wave case is discussed, considering different initial moisture distributions and a dry condition. Secondly, the 48-h forecast surface pressure center and the vertical component of the relative vorticity of the cyclone are selected as the response functions for adjoint computation in a dry and moist environment, respectively. The preliminary results show that the validity of the tangent linear assumption for this idealized baroclinic wave case can extend to 48 h with intense moist convection, and the validity period can last even longer in the dry adjoint integration. Adjoint sensitivity analysis indicates that the rapid development of the idealized baroclinic wave is sensitive to the initial wind and temperature perturbations around the steering level in the upstream. Moreover, the moist adjoint sensitivity can capture a secondary high sensitivity center in the upper troposphere, which cannot be depicted in the dry adjoint run.
Adjoint-Based Design of Rotors using the Navier-Stokes Equations in a Noninertial Reference Frame
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.
2009-01-01
Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated using comparisons with a complex-variable technique, and a number of single- and multi-point optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.
Adjoint-Based Design of Rotors Using the Navier-Stokes Equations in a Noninertial Reference Frame
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Jones, William T.
2010-01-01
Optimization of rotorcraft flowfields using an adjoint method generally requires a time-dependent implementation of the equations. The current study examines an intermediate approach in which a subset of rotor flowfields are cast as steady problems in a noninertial reference frame. This technique permits the use of an existing steady-state adjoint formulation with minor modifications to perform sensitivity analyses. The formulation is valid for isolated rigid rotors in hover or where the freestream velocity is aligned with the axis of rotation. Discrete consistency of the implementation is demonstrated by using comparisons with a complex-variable technique, and a number of single- and multipoint optimizations for the rotorcraft figure of merit function are shown for varying blade collective angles. Design trends are shown to remain consistent as the grid is refined.
Unsteady adjoint for large eddy simulation of a coupled turbine stator-rotor system
NASA Astrophysics Data System (ADS)
Talnikar, Chaitanya; Wang, Qiqi; Laskowski, Gregory
2016-11-01
Unsteady fluid flow simulations like large eddy simulation are crucial in capturing key physics in turbomachinery applications like separation and wake formation in flow over a turbine vane with a downstream blade. To determine how sensitive the design objectives of the coupled system are to control parameters, an unsteady adjoint is needed. It enables the computation of the gradient of an objective with respect to a large number of inputs in a computationally efficient manner. In this paper we present unsteady adjoint solutions for a coupled turbine stator-rotor system. As the transonic fluid flows over the stator vane, the boundary layer transitions to turbulence. The turbulent wake then impinges on the rotor blades, causing early separation. This coupled system exhibits chaotic dynamics which causes conventional adjoint solutions to diverge exponentially, resulting in the corruption of the sensitivities obtained from the adjoint solutions for long-time simulations. In this presentation, adjoint solutions for aerothermal objectives are obtained through a localized adjoint viscosity injection method which aims to stabilize the adjoint solution and maintain accurate sensitivities. Preliminary results obtained from the supercomputer Mira will be shown in the presentation.
Adjoint Fokker-Planck equation and runaway electron dynamics
Liu, Chang; Brennan, Dylan P.; Bhattacharjee, Amitava; Boozer, Allen H.
2016-01-15
The adjoint Fokker-Planck equation method is applied to study the runaway probability function and the expected slowing-down time for highly relativistic runaway electrons, including the loss of energy due to synchrotron radiation. In direct correspondence to Monte Carlo simulation methods, the runaway probability function has a smooth transition across the runaway separatrix, which can be attributed to effect of the pitch angle scattering term in the kinetic equation. However, for the same numerical accuracy, the adjoint method is more efficient than the Monte Carlo method. The expected slowing-down time gives a novel method to estimate the runaway current decay time in experiments. A new result from this work is that the decay rate of high energy electrons is very slow when E is close to the critical electric field. This effect contributes further to a hysteresis previously found in the runaway electron population.
Adjoint Fokker-Planck equation and runaway electron dynamics
NASA Astrophysics Data System (ADS)
Liu, Chang; Brennan, Dylan P.; Bhattacharjee, Amitava; Boozer, Allen H.
2016-01-01
The adjoint Fokker-Planck equation method is applied to study the runaway probability function and the expected slowing-down time for highly relativistic runaway electrons, including the loss of energy due to synchrotron radiation. In direct correspondence to Monte Carlo simulation methods, the runaway probability function has a smooth transition across the runaway separatrix, which can be attributed to effect of the pitch angle scattering term in the kinetic equation. However, for the same numerical accuracy, the adjoint method is more efficient than the Monte Carlo method. The expected slowing-down time gives a novel method to estimate the runaway current decay time in experiments. A new result from this work is that the decay rate of high energy electrons is very slow when E is close to the critical electric field. This effect contributes further to a hysteresis previously found in the runaway electron population.
A comparison of adjoint and data-centric verification techniques.
Wildey, Timothy Michael; Cyr, Eric C; Shadid, John N; Pawlowski, Roger P; Smith, Thomas Michael
2013-03-01
This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. We compare the adjoint-based a posteriori error estimation approach with a recent variant of a data-centric verification technique. We provide a brief overview of each technique and then we discuss their relative advantages and disadvantages. We use Drekar::CFD to produce numerical results for steady-state Navier Stokes and SARANS approximations. 3
Consistent Adjoint Driven Importance Sampling using Space, Energy and Angle
Peplow, Douglas E.; Mosher, Scott W; Evans, Thomas M
2012-08-01
For challenging radiation transport problems, hybrid methods combine the accuracy of Monte Carlo methods with the global information present in deterministic methods. One of the most successful hybrid methods is CADIS Consistent Adjoint Driven Importance Sampling. This method uses a deterministic adjoint solution to construct a biased source distribution and consistent weight windows to optimize a specific tally in a Monte Carlo calculation. The method has been implemented into transport codes using just the spatial and energy information from the deterministic adjoint and has been used in many applications to compute tallies with much higher figures-of-merit than analog calculations. CADIS also outperforms user-supplied importance values, which usually take long periods of user time to develop. This work extends CADIS to develop weight windows that are a function of the position, energy, and direction of the Monte Carlo particle. Two types of consistent source biasing are presented: one method that biases the source in space and energy while preserving the original directional distribution and one method that biases the source in space, energy, and direction. Seven simple example problems are presented which compare the use of the standard space/energy CADIS with the new space/energy/angle treatments.
GPU-Accelerated Adjoint Algorithmic Differentiation.
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2016-03-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the "tape". Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.
GPU-accelerated adjoint algorithmic differentiation
NASA Astrophysics Data System (ADS)
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2016-03-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the "tape". Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.
GPU-Accelerated Adjoint Algorithmic Differentiation
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2015-01-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the “tape”. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography
A Generalized Adjoint Approach for Quantifying Reflector Assembly Discontinuity Factor Uncertainties
Yankov, Artem; Collins, Benjamin; Jessee, Matthew Anderson; Downar, Thomas
2012-01-01
Sensitivity-based uncertainty analysis of assembly discontinuity factors (ADFs) can be readily performed using adjoint methods for infinite lattice models. However, there is currently no adjoint-based methodology to obtain uncertainties for ADFs along an interface between a fuel and reflector region. To accommodate leakage effects in a reflector region, a 1D approximation is usually made in order to obtain the homogeneous interface flux required to calculate the ADF. Within this 1D framework an adjoint-based method is proposed that is capable of efficiently calculating ADF uncertainties. In the proposed method the sandwich rule is utilized to relate the covariance of the input parameters of 1D diffusion theory in the reflector region to the covariance of the interface ADFs. The input parameters covariance matrix can be readily obtained using sampling-based codes such as XSUSA or adjoint-based codes such as TSUNAMI. The sensitivity matrix is constructed using a fixed-source adjoint approach for inputs characterizing the reflector region. An analytic approach is then used to determine the sensitivity of the ADFs to fuel parameters using the neutron balance equation. A stochastic approach is used to validate the proposed adjoint-based method.
Application of Adjoint Methodology in Various Aspects of Sonic Boom Design
NASA Technical Reports Server (NTRS)
Rallabhandi, Sriram K.
2014-01-01
One of the advances in computational design has been the development of adjoint methods allowing efficient calculation of sensitivities in gradient-based shape optimization. This paper discusses two new applications of adjoint methodology that have been developed to aid in sonic boom mitigation exercises. In the first, equivalent area targets are generated using adjoint sensitivities of selected boom metrics. These targets may then be used to drive the vehicle shape during optimization. The second application is the computation of adjoint sensitivities of boom metrics on the ground with respect to parameters such as flight conditions, propagation sampling rate, and selected inputs to the propagation algorithms. These sensitivities enable the designer to make more informed selections of flight conditions at which the chosen cost functionals are less sensitive.
Adjoint optimal control problems for the RANS system
NASA Astrophysics Data System (ADS)
Attavino, A.; Cerroni, D.; Da Vià, R.; Manservisi, S.; Menghini, F.
2017-01-01
Adjoint optimal control in computational fluid dynamics has become increasingly popular recently because of its use in several engineering and research studies. However the optimal control of turbulent flows without the use of Direct Numerical Simulation is still an open problem and various methods have been proposed based on different approaches. In this work we study optimal control problems for a turbulent flow modeled with a Reynolds-Averaged Navier-Stokes system. The adjoint system is obtained through the use of a Lagrangian multiplier method by setting as objective of the control a velocity matching profile or an increase or decrease in the turbulent kinetic energy. The optimality system is solved with an in-house finite element code and numerical results are reported in order to show the validity of this approach.
Accurate adjoint design sensitivities for nano metal optics.
Hansen, Paul; Hesselink, Lambertus
2015-09-07
We present a method for obtaining accurate numerical design sensitivities for metal-optical nanostructures. Adjoint design sensitivity analysis, long used in fluid mechanics and mechanical engineering for both optimization and structural analysis, is beginning to be used for nano-optics design, but it fails for sharp-cornered metal structures because the numerical error in electromagnetic simulations of metal structures is highest at sharp corners. These locations feature strong field enhancement and contribute strongly to design sensitivities. By using high-accuracy FEM calculations and rounding sharp features to a finite radius of curvature we obtain highly-accurate design sensitivities for 3D metal devices. To provide a bridge to the existing literature on adjoint methods in other fields, we derive the sensitivity equations for Maxwell's equations in the PDE framework widely used in fluid mechanics.
On the adjoint operator in photoacoustic tomography
NASA Astrophysics Data System (ADS)
Arridge, Simon R.; Betcke, Marta M.; Cox, Ben T.; Lucka, Felix; Treeby, Brad E.
2016-11-01
Photoacoustic tomography (PAT) is an emerging biomedical imaging from coupled physics technique, in which the image contrast is due to optical absorption, but the information is carried to the surface of the tissue as ultrasound pulses. Many algorithms and formulae for PAT image reconstruction have been proposed for the case when a complete data set is available. In many practical imaging scenarios, however, it is not possible to obtain the full data, or the data may be sub-sampled for faster data acquisition. In such cases, image reconstruction algorithms that can incorporate prior knowledge to ameliorate the loss of data are required. Hence, recently there has been an increased interest in using variational image reconstruction. A crucial ingredient for the application of these techniques is the adjoint of the PAT forward operator, which is described in this article from physical, theoretical and numerical perspectives. First, a simple mathematical derivation of the adjoint of the PAT forward operator in the continuous framework is presented. Then, an efficient numerical implementation of the adjoint using a k-space time domain wave propagation model is described and illustrated in the context of variational PAT image reconstruction, on both 2D and 3D examples including inhomogeneous sound speed. The principal advantage of this analytical adjoint over an algebraic adjoint (obtained by taking the direct adjoint of the particular numerical forward scheme used) is that it can be implemented using currently available fast wave propagation solvers.
Continuous adjoint sensitivity analysis for aerodynamic and acoustic optimization
NASA Astrophysics Data System (ADS)
Ghayour, Kaveh
1999-11-01
A gradient-based shape optimization methodology based on continuous adjoint sensitivities has been developed for two-dimensional steady Euler equations on unstructured meshes and the unsteady transonic small disturbance equation. The continuous adjoint sensitivities of the Helmholtz equation for acoustic applications have also been derived and discussed. The highlights of the developments for the steady two-dimensional Euler equations are the generalization of the airfoil surface boundary condition of the adjoint system to allow a proper closure of the Lagrangian functional associated with a general cost functional and the results for an inverse problem with density as the prescribed target. Furthermore, it has been demonstrated that a transformation to the natural coordinate system, in conjunction with the reduction of the governing state equations to the control surface, results in sensitivity integrals that are only a function of the tangential derivatives of the state variables. This approach alleviates the need for directional derivative computations with components along the normal to the control surface, which can render erroneous results. With regard to the unsteady transonic small disturbance equation (UTSD), the continuous adjoint methodology has been successfully extended to unsteady flows. It has been demonstrated that for periodic airfoil oscillations leading to limit-cycle behavior, the Lagrangian functional can be only closed if the time interval of interest spans one or more periods of the flow oscillations after the limit-cycle has been attained. The steady state and limit-cycle sensitivities are then validated by comparing with the brute-force derivatives. The importance of accounting for the flow circulation sensitivity, appearing in the form of a Dirac delta in the wall boundary condition at the trailing edge, has been stressed and demonstrated. Remarkably, the cost of an unsteady adjoint solution is about 0.2 times that of a UTSD solution
Adjoint-field errors in high fidelity compressible turbulence simulations for sound control
NASA Astrophysics Data System (ADS)
Vishnampet, Ramanathan; Bodony, Daniel; Freund, Jonathan
2013-11-01
A consistent discrete adjoint for high-fidelity discretization of the three-dimensional Navier-Stokes equations is used to quantify the error in the sensitivity gradient predicted by the continuous adjoint method, and examine the aeroacoustic flow-control problem for free-shear-flow turbulence. A particular quadrature scheme for approximating the cost functional makes our discrete adjoint formulation for a fourth-order Runge-Kutta scheme with high-order finite differences practical and efficient. The continuous adjoint-based sensitivity gradient is shown to to be inconsistent due to discretization truncation errors, grid stretching and filtering near boundaries. These errors cannot be eliminated by increasing the spatial or temporal resolution since chaotic interactions lead them to become O (1) at the time of control actuation. Although this is a known behavior for chaotic systems, its effect on noise control is much harder to anticipate, especially given the different resolution needs of different parts of the turbulence and acoustic spectra. A comparison of energy spectra of the adjoint pressure fields shows significant error in the continuous adjoint at all wavenumbers, even though they are well-resolved. The effect of this error on the noise control mechanism is analyzed.
Adjoint based sensitivity analysis of a reacting jet in crossflow
NASA Astrophysics Data System (ADS)
Sashittal, Palash; Sayadi, Taraneh; Schmid, Peter
2016-11-01
With current advances in computational resources, high fidelity simulations of reactive flows are increasingly being used as predictive tools in various industrial applications. In order to capture the combustion process accurately, detailed/reduced chemical mechanisms are employed, which in turn rely on various model parameters. Therefore, it would be of great interest to quantify the sensitivities of the predictions with respect to the introduced models. Due to the high dimensionality of the parameter space, methods such as finite differences which rely on multiple forward simulations prove to be very costly and adjoint based techniques are a suitable alternative. The complex nature of the governing equations, however, renders an efficient strategy in finding the adjoint equations a challenging task. In this study, we employ the modular approach of Fosas de Pando et al. (2012), to build a discrete adjoint framework applied to a reacting jet in crossflow. The developed framework is then used to extract the sensitivity of the integrated heat release with respect to the existing combustion parameters. Analyzing the sensitivities in the three-dimensional domain provides insight towards the specific regions of the flow that are more susceptible to the choice of the model.
Effect of the acoustic environment on adjoint sound speed inversions
NASA Astrophysics Data System (ADS)
Richards, Edward
The recent prevalence of low cost robotic platforms such as oceanographic gliders has increased the availability of long-term measurements of the ocean environment. Gliders can take direct measurements of the ocean sound speed environment, which is of interest in many ocean acoustic problems, including source localization and tomography. These measurements, however, have a low spatial-temporal resolution that makes them difficult to use directly. These measurements have the potential to provide an accurate environmental parameterization for acoustic inversions, which could in turn be used to measure the sound speed field at a much higher spatial-temporal resolution. This study uses glider measurements to provide the environmental parameterization used in the adjoint inversion method. The adjoint method calculates the gradient of a cost function describing the mismatch between observed data and acoustic model predictions with respect to the ocean sound speed. This gradient is a measure of how changing the sound speed at any point in the acoustic environment would affect this misfit. This cost function and its gradient information is then used as inputs to a numerical optimization routine, which efficiently finds a local minimum. There are two challenges of this method addressed in this study; the first is restricting the search space of this inversion. Proper parameterization of the inversion will ensure that the local minimum found in the numerical optimization routine is the correct result of the inversion. This parameterization allows for the combination of the relative strengths of both methods of measuring the sound speed field, the robust direct measurement of the glider and the near instantaneous result of an acoustic inversion. A covariance matrix is created from glider measurements of the range dependent sound speed field, which is then decomposed into an empirical orthogonal function (EOF) base. The mean profile and the significant EOF bases then form the
Adjoint operator approach in marginal separation theory
NASA Astrophysics Data System (ADS)
Braun, Stefan; Scheichl, Stefan; Kluwick, Alfred
2013-10-01
Thin airfoils are prone to localized flow separation at their leading edge if subjected to moderate angles of attack α. Although 'laminar separation bubbles' at first do not significantly alter the airfoil performance, they tend to 'burst' if a is increased further or perturbations acting upon the flow reach a certain intensity. This then leads either to global flow separation (stall) or triggers the laminar-turbulent transition process within the boundary layer flow. The present paper addresses the asymptotic analysis of the early stages of the latter phenomenon in the limit as the characteristic Reynolds number Re → ∞, commonly referred to as marginal separation theory (MST). A new approach based on the adjoint operator method is presented to derive the fundamental similarity laws of MST and to extend the analysis to higher order. Special emphasis is placed on the breakdown of the flow description, i.e. the formation of finite time singularities (a manifestation of the bursting process), and its resolution based on asymptotic reasoning. The computation of the spatio-temporal evolution of the flow in the subsequent triple deck stage is performed by means of a Chebyshev spectral method. The associated numerical treatment of fractional integrals characteristic of MST is based on barycentric Lagrange interpolation, which is described in detail.
Adjoint Optimization of Wind Plant Layouts
King, Ryan N.; Dykes, Katherine; Graf, Peter; ...
2016-08-31
Using adjoint optimization and three-dimensional Reynolds-averaged Navier Stokes (RANS) simulations, we present a new gradient-based approach for optimally siting wind turbines within utility-scale wind plants. By solving the adjoint equations of the flow model, the gradients needed for optimization are found at a cost that is independent of the number of control variables, thereby permitting optimization of large wind plants with many turbine locations. Moreover, compared to the common approach of superimposing prescribed wake deficits onto linearized flow models, the computational efficiency of the adjoint approach allows the use of higher-fidelity RANS flow models which can capture nonlinear turbulent flowmore » physics within a wind plant. The RANS flow model is implemented in the Python finite element package FEniCS and the derivation of the adjoint equations is automated within the dolfin-adjoint framework. Gradient-based optimization of wind turbine locations is demonstrated on idealized test cases that reveal new optimization heuristics such as rotational symmetry, local speedups, and nonlinear wake curvature effects. Layout optimization is also demonstrated on more complex wind rose shapes, including a full annual energy production (AEP) layout optimization over 36 inflow directions and 5 windspeed bins.« less
Adjoint Optimization of Wind Plant Layouts
King, Ryan N.; Dykes, Katherine; Graf, Peter; Hamlington, Peter E.
2016-08-31
Using adjoint optimization and three-dimensional Reynolds-averaged Navier Stokes (RANS) simulations, we present a new gradient-based approach for optimally siting wind turbines within utility-scale wind plants. By solving the adjoint equations of the flow model, the gradients needed for optimization are found at a cost that is independent of the number of control variables, thereby permitting optimization of large wind plants with many turbine locations. Moreover, compared to the common approach of superimposing prescribed wake deficits onto linearized flow models, the computational efficiency of the adjoint approach allows the use of higher-fidelity RANS flow models which can capture nonlinear turbulent flow physics within a wind plant. The RANS flow model is implemented in the Python finite element package FEniCS and the derivation of the adjoint equations is automated within the dolfin-adjoint framework. Gradient-based optimization of wind turbine locations is demonstrated on idealized test cases that reveal new optimization heuristics such as rotational symmetry, local speedups, and nonlinear wake curvature effects. Layout optimization is also demonstrated on more complex wind rose shapes, including a full annual energy production (AEP) layout optimization over 36 inflow directions and 5 windspeed bins.
Adjoint-Based Sensitivity Maps for the Nearshore
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Ngodock, Hans
2013-04-01
The wave model SWAN (Booij et al., 1999) solves the spectral action balance equation to produce nearshore wave forecasts and climatologies. It is widely used by the coastal modeling community and is part of a variety of coupled ocean-wave-atmosphere model systems. A variational data assimilation system (Orzech et al., 2013) has recently been developed for SWAN and is presently being transitioned to operational use by the U.S. Naval Oceanographic Office. This system is built around a numerical adjoint to the fully nonlinear, nonstationary SWAN code. When provided with measured or artificial "observed" spectral wave data at a location of interest on a given nearshore bathymetry, the adjoint can compute the degree to which spectral energy levels at other locations are correlated with - or "sensitive" to - variations in the observed spectrum. Adjoint output may be used to construct a sensitivity map for the entire domain, tracking correlations of spectral energy throughout the grid. When access is denied to the actual locations of interest, sensitivity maps can be used to determine optimal alternate locations for data collection by identifying regions of greatest sensitivity in the mapped domain. The present study investigates the properties of adjoint-generated sensitivity maps for nearshore wave spectra. The adjoint and forward SWAN models are first used in an idealized test case at Duck, NC, USA, to demonstrate the system's effectiveness at optimizing forecasts of shallow water wave spectra for an inaccessible surf-zone location. Then a series of simulations is conducted for a variety of different initializing conditions, to examine the effects of seasonal changes in wave climate, errors in bathymetry, and variations in size and shape of the inaccessible region of interest. Model skill is quantified using two methods: (1) a more traditional correlation of observed and modeled spectral statistics such as significant wave height, and (2) a recently developed RMS
Modeling Finite Faults Using the Adjoint Wave Field
NASA Astrophysics Data System (ADS)
Hjörleifsdóttir, V.; Liu, Q.; Tromp, J.
2004-12-01
Time-reversal acoustics, a technique in which an acoustic signal is recorded by an array of transducers, time-reversed, and retransmitted, is used, e.g., in medical therapy to locate and destroy gallstones (for a review see Fink, 1997). As discussed by Tromp et al. (2004), time-reversal techniques for locating sources are closely linked to so-called `adjoint methods' (Talagrand and Courtier, 1987), which may be used to evaluate the gradient of a misfit function. Tromp et al. (2004) illustrate how a (finite) source inversion may be implemented based upon the adjoint wave field by writing the change in the misfit function, δ χ, due to a change in the moment-density tensor, δ m, as an integral of the adjoint strain field ɛ x,t) over the fault plane Σ : δ χ = ∫ 0T∫_Σ ɛ x,T-t) :δ m(x,t) d2xdt. We find that if the real fault plane is located at a distance δ h in the direction of the fault normal hat n, then to first order an additional factor of ∫ 0T∫_Σ δ h (x) ∂ n ɛ x,T-t):m(x,t) d2xdt is added to the change in the misfit function. The adjoint strain is computed by using the time-reversed difference between data and synthetics recorded at all receivers as simultaneous sources and recording the resulting strain on the fault plane. In accordance with time-reversal acoustics, all the resulting waves will constructively interfere at the position of the original source in space and time. The level of convergence will be deterimined by factors such as the source-receiver geometry, the frequency of the recorded data and synthetics, and the accuracy of the velocity structure used when back propagating the wave field. The terms ɛ x,T-t) and ∂ n ɛ x,T-t):m(x,t) can be viewed as sensitivity kernels for the moment density and the faultplane location respectively. By looking at these quantities we can make an educated choice of fault parametrization given the data in hand. The process can then be repeated to invert for the best source model, as
Adjoint-Based Uncertainty Quantification with MCNP
Seifried, Jeffrey E.
2011-09-01
This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence in the simulation is acquired.
Adjoint-Based Uncertainty Quantification with MCNP
NASA Astrophysics Data System (ADS)
Seifried, Jeffrey Edwin
This work serves to quantify the instantaneous uncertainties in neutron transport simulations born from nuclear data and statistical counting uncertainties. Perturbation and adjoint theories are used to derive implicit sensitivity expressions. These expressions are transformed into forms that are convenient for construction with MCNP6, creating the ability to perform adjoint-based uncertainty quantification with MCNP6. These new tools are exercised on the depleted-uranium hybrid LIFE blanket, quantifying its sensitivities and uncertainties to important figures of merit. Overall, these uncertainty estimates are small (< 2%). Having quantified the sensitivities and uncertainties, physical understanding of the system is gained and some confidence in the simulation is acquired.
A self-adjoint decomposition of the radial momentum operator
NASA Astrophysics Data System (ADS)
Liu, Q. H.; Xiao, S. F.
2015-12-01
With acceptance of the Dirac's observation that the canonical quantization entails using Cartesian coordinates, we examine the operator erPr rather than Pr itself and demonstrate that there is a decomposition of erPr into a difference of two self-adjoint but noncommutative operators, in which one is the total momentum and another is the transverse one. This study renders the operator Pr indirectly measurable and physically meaningful, offering an explanation of why the mean value of Pr over a quantum mechanical state makes sense and supporting Dirac's claim that Pr "is real and is the true momentum conjugate to r".
Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.
2000-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local
Examining Tropical Cyclone - Kelvin Wave Interactions using Adjoint Diagnostics
NASA Astrophysics Data System (ADS)
Reynolds, C. A.; Doyle, J. D.; Hong, X.
2015-12-01
Adjoint-based tools can provide valuable insight into the mechanisms that influence the evolution and predictability of atmospheric phenomena, as they allow for the efficient and rigorous computation of forecast sensitivity to changes in the initial state. We apply adjoint-based tools from the non-hydrostatic Coupled Atmosphere/Ocean Mesoscale Prediction System (COAMPS) to explore the initial-state sensitivity and interactions between a tropical cyclone and atmospheric equatorial waves associated with the Madden Julian Oscillation (MJO) in the Indian Ocean during the DYNAMO field campaign. The development of Tropical Cyclone 5 (TC05) coincided with the passage of an equatorial Kelvin wave and westerly wind burst associated with an MJO that developed in the Indian Ocean in late November 2011, but it was unclear if and how one affected the other. COAMPS 24-h and 36-h adjoint sensitivities are analyzed for both TC05 and the equatorial waves to understand how the evolution of each system is sensitive to the other. The sensitivity of equatorial westerlies in the western Indian Ocean on 23 November shares characteristics with the classic Gill (1980) Rossby and Kelvin wave response to symmetric heating about the equator, including symmetric cyclonic circulations to the north and south of the westerlies, and enhanced heating in the area of convergence between the equatorial westerlies and easterlies. In addition, there is sensitivity in the Bay of Bengal associated with the cyclonic circulation that eventually develops into TC05. At the same time, the developing TC05 system shows strongest sensitivity to local wind and heating perturbations, but sensitivity to the equatorial westerlies is also clear. On 24 November, when the Kelvin wave is immediately south of the developing tropical cyclone, both phenomena are sensitive to each other. On 25 November TC05 no longer shows sensitivity to the Kelvin wave, while the Kelvin Wave still exhibits some weak sensitivity to TC05. In
Wronskian Method for Bound States
ERIC Educational Resources Information Center
Fernandez, Francisco M.
2011-01-01
We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…
Adjoint sensitivity studies of loop current and eddy shedding in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Ganesh; Cornuelle, Bruce D.; Hoteit, Ibrahim
2013-07-01
Adjoint model sensitivity analyses were applied for the loop current (LC) and its eddy shedding in the Gulf of Mexico (GoM) using the MIT general circulation model (MITgcm). The circulation in the GoM is mainly driven by the energetic LC and subsequent LC eddy separation. In order to understand which ocean regions and features control the evolution of the LC, including anticyclonic warm-core eddy shedding in the GoM, forward and adjoint sensitivities with respect to previous model state and atmospheric forcing were computed using the MITgcm and its adjoint. Since the validity of the adjoint model sensitivities depends on the capability of the forward model to simulate the real LC system and the eddy shedding processes, a 5 year (2004-2008) forward model simulation was performed for the GoM using realistic atmospheric forcing, initial, and boundary conditions. This forward model simulation was compared to satellite measurements of sea-surface height (SSH) and sea-surface temperature (SST), and observed transport variability. Despite realistic mean state, standard deviations, and LC eddy shedding period, the simulated LC extension shows less variability and more regularity than the observations. However, the model is suitable for studying the LC system and can be utilized for examining the ocean influences leading to a simple, and hopefully generic LC eddy separation in the GoM. The adjoint sensitivities of the LC show influences from the Yucatan Channel (YC) flow and Loop Current Frontal Eddy (LCFE) on both LC extension and eddy separation, as suggested by earlier work. Some of the processes that control LC extension after eddy separation differ from those controlling eddy shedding, but include YC through-flow. The sensitivity remains stable for more than 30 days and moves generally upstream, entering the Caribbean Sea. The sensitivities of the LC for SST generally remain closer to the surface and move at speeds consistent with advection by the high-speed core of
Fully automatic adjoints: a robust and efficient mechanism for generating adjoint ocean models
NASA Astrophysics Data System (ADS)
Ham, D. A.; Farrell, P. E.; Funke, S. W.; Rognes, M. E.
2012-04-01
The problem of generating and maintaining adjoint models is sufficiently difficult that typically only the most advanced and well-resourced community ocean models achieve it. There are two current technologies which each suffer from their own limitations. Algorithmic differentiation, also called automatic differentiation, is employed by models such as the MITGCM [2] and the Alfred Wegener Institute model FESOM [3]. This technique is very difficult to apply to existing code, and requires a major initial investment to prepare the code for automatic adjoint generation. AD tools may also have difficulty with code employing modern software constructs such as derived data types. An alternative is to formulate the adjoint differential equation and to discretise this separately. This approach, known as the continuous adjoint and employed in ROMS [4], has the disadvantage that two different model code bases must be maintained and manually kept synchronised as the model develops. The discretisation of the continuous adjoint is not automatically consistent with that of the forward model, producing an additional source of error. The alternative presented here is to formulate the flow model in the high level language UFL (Unified Form Language) and to automatically generate the model using the software of the FEniCS project. In this approach it is the high level code specification which is differentiated, a task very similar to the formulation of the continuous adjoint [5]. However since the forward and adjoint models are generated automatically, the difficulty of maintaining them vanishes and the software engineering process is therefore robust. The scheduling and execution of the adjoint model, including the application of an appropriate checkpointing strategy is managed by libadjoint [1]. In contrast to the conventional algorithmic differentiation description of a model as a series of primitive mathematical operations, libadjoint employs a new abstraction of the simulation
Adjoint-based constrained topology optimization for viscous flows, including heat transfer
NASA Astrophysics Data System (ADS)
Kontoleontos, E. A.; Papoutsis-Kiachagias, E. M.; Zymaris, A. S.; Papadimitriou, D. I.; Giannakoglou, K. C.
2013-08-01
In fluid mechanics, topology optimization is used for designing flow passages, connecting predefined inlets and outlets, with optimal performance based on selected criteria. In this article, the continuous adjoint approach to topology optimization in incompressible ducted flows with heat transfer is presented. A variable porosity field, to be determined during the optimization, is the means to define the optimal topology. The objective functions take into account viscous losses and the amount of heat transfer. Turbulent flows are handled using the Spalart-Allmaras model and the proposed adjoint is exact, i.e. the adjoint to the turbulence model equation is formulated and solved, too. This is an important novelty in this article which extends the porosity-based method to account for heat transfer flow problems in turbulent flows. In problems such as the design of manifolds, constraints on the outlet flow direction, rates and mean outlet temperatures are imposed.
Advances in Global Adjoint Tomography -- Massive Data Assimilation
NASA Astrophysics Data System (ADS)
Ruan, Y.; Lei, W.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Krischer, L.; Tromp, J.
2015-12-01
Azimuthal anisotropy and anelasticity are key to understanding a myriad of processes in Earth's interior. Resolving these properties requires accurate simulations of seismic wave propagation in complex 3-D Earth models and an iterative inversion strategy. In the wake of successes in regional studies(e.g., Chen et al., 2007; Tape et al., 2009, 2010; Fichtner et al., 2009, 2010; Chen et al.,2010; Zhu et al., 2012, 2013; Chen et al., 2015), we are employing adjoint tomography based on a spectral-element method (Komatitsch & Tromp 1999, 2002) on a global scale using the supercomputer ''Titan'' at Oak Ridge National Laboratory. After 15 iterations, we have obtained a high-resolution transversely isotropic Earth model (M15) using traveltime data from 253 earthquakes. To obtain higher resolution images of the emerging new features and to prepare the inversion for azimuthal anisotropy and anelasticity, we expanded the original dataset with approximately 4,220 additional global earthquakes (Mw5.5-7.0) --occurring between 1995 and 2014-- and downloaded 300-minute-long time series for all available data archived at the IRIS Data Management Center, ORFEUS, and F-net. Ocean Bottom Seismograph data from the last decade are also included to maximize data coverage. In order to handle the huge dataset and solve the I/O bottleneck in global adjoint tomography, we implemented a python-based parallel data processing workflow based on the newly developed Adaptable Seismic Data Format (ASDF). With the help of the data selection tool MUSTANG developed by IRIS, we cleaned our dataset and assembled event-based ASDF files for parallel processing. We have started Centroid Moment Tensors (CMT) inversions for all 4,220 earthquakes with the latest model M15, and selected high-quality data for measurement. We will statistically investigate each channel using synthetic seismograms calculated in M15 for updated CMTs and identify problematic channels. In addition to data screening, we also modified
NASA Astrophysics Data System (ADS)
Humbird, Kelli D.; McClarren, Ryan G.
2017-03-01
Uncertainty quantification and sensitivity analyses are a vital component for predictive modeling in the sciences and engineering. The adjoint approach to sensitivity analysis requires solving a primary system of equations and a mathematically related set of adjoint equations. The information contained in the equations can be combined to produce sensitivity information in a computationally efficient manner. In this work, sensitivity analyses are performed on systems described by flux-limited radiative diffusion using the adjoint approach. The sensitivities computed are shown to agree with standard perturbation theory and require significantly less computational time. The adjoint approach saves the computational cost of one forward solve per sensitivity, making the method attractive when multiple sensitivities are of interest.
Optimal Multistage Algorithm for Adjoint Computation
Aupy, Guillaume; Herrmann, Julien; Hovland, Paul; Robert, Yves
2016-01-01
We reexamine the work of Stumm and Walther on multistage algorithms for adjoint computation. We provide an optimal algorithm for this problem when there are two levels of checkpoints, in memory and on disk. Previously, optimal algorithms for adjoint computations were known only for a single level of checkpoints with no writing and reading costs; a well-known example is the binomial checkpointing algorithm of Griewank and Walther. Stumm and Walther extended that binomial checkpointing algorithm to the case of two levels of checkpoints, but they did not provide any optimality results. We bridge the gap by designing the first optimal algorithm in this context. We experimentally compare our optimal algorithm with that of Stumm and Walther to assess the difference in performance.
Chiral phases of fundamental and adjoint quarks
Natale, A. A.
2016-01-22
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.
Chiral phases of fundamental and adjoint quarks
NASA Astrophysics Data System (ADS)
Natale, A. A.
2016-01-01
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (nf ≈ 11 - 13) in agreement with lattice data.
NASA Astrophysics Data System (ADS)
Ito, Shin-Ichi; Nagao, Hiromichi; Yamanaka, Akinori; Tsukada, Yuhki; Koyama, Toshiyuki; Inoue, Junya
Phase field (PF) method, which phenomenologically describes dynamics of microstructure evolutions during solidification and phase transformation, has progressed in the fields of hydromechanics and materials engineering. How to determine, based on observation data, an initial state and model parameters involved in a PF model is one of important issues since previous estimation methods require too much computational cost. We propose data assimilation (DA), which enables us to estimate the parameters and states by integrating the PF model and observation data on the basis of the Bayesian statistics. The adjoint method implemented on DA not only finds an optimum solution by maximizing a posterior distribution but also evaluates the uncertainty in the estimations by utilizing the second order information of the posterior distribution. We carried out an estimation test using synthetic data generated by the two-dimensional Kobayashi's PF model. The proposed method is confirmed to reproduce the true initial state and model parameters we assume in advance, and simultaneously estimate their uncertainties due to quality and quantity of the data. This result indicates that the proposed method is capable of suggesting the experimental design to achieve the required accuracy.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
NASA Astrophysics Data System (ADS)
Al-Hashimi, M. H.; Salman, M.; Shalaby, A.; Wiese, U.-J.
2013-10-01
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.
Generalized uncertainty principle and self-adjoint operators
Balasubramanian, Venkat; Das, Saurya; Vagenas, Elias C.
2015-09-15
In this work we explore the self-adjointness of the GUP-modified momentum and Hamiltonian operators over different domains. In particular, we utilize the theorem by von-Neumann for symmetric operators in order to determine whether the momentum and Hamiltonian operators are self-adjoint or not, or they have self-adjoint extensions over the given domain. In addition, a simple example of the Hamiltonian operator describing a particle in a box is given. The solutions of the boundary conditions that describe the self-adjoint extensions of the specific Hamiltonian operator are obtained.
NASA Astrophysics Data System (ADS)
Niwa, Yosuke; Tomita, Hirofumi; Satoh, Masaki; Imasu, Ryoichi; Sawa, Yousuke; Tsuboi, Kazuhiro; Matsueda, Hidekazu; Machida, Toshinobu; Sasakawa, Motoki; Belan, Boris; Saigusa, Nobuko
2017-03-01
A four-dimensional variational (4D-Var) method is a popular algorithm for inverting atmospheric greenhouse gas (GHG) measurements. In order to meet the computationally intense 4D-Var iterative calculation, offline forward and adjoint transport models are developed based on the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). By introducing flexibility into the temporal resolution of the input meteorological data, the forward model developed in this study is not only computationally efficient, it is also found to nearly match the transport performance of the online model. In a transport simulation of atmospheric carbon dioxide (CO2), the data-thinning error (error resulting from reduction in the time resolution of the meteorological data used to drive the offline transport model) is minimized by employing high temporal resolution data of the vertical diffusion coefficient; with a low 6-hourly temporal resolution, significant concentration biases near the surface are introduced. The new adjoint model can be run in discrete or continuous adjoint mode for the advection process. The discrete adjoint is characterized by perfect adjoint relationship with the forward model that switches off the flux limiter, while the continuous adjoint is characterized by an imperfect but reasonable adjoint relationship with its corresponding forward model. In the latter case, both the forward and adjoint models use the flux limiter to ensure the monotonicity of tracer concentrations and sensitivities. Trajectory analysis for high CO2 concentration events are performed to test adjoint sensitivities. We also demonstrate the potential usefulness of our adjoint model for diagnosing tracer transport. Both the offline forward and adjoint models have computational efficiency about 10 times higher than the online model. A description of our new 4D-Var system that includes an optimization method, along with its application in an atmospheric CO2 inversion and the effects of using either the
NASA Astrophysics Data System (ADS)
Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.
2015-12-01
We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.
NASA Astrophysics Data System (ADS)
Liu, Yaning; Niu, Fenglin; Chen, Min; Yang, Wencai
2017-03-01
We construct a new 3-D shear wave speed model of the crust and the uppermost mantle beneath Northeast China using the ambient noise adjoint tomography method. Without intermediate steps of measuring phase dispersion, the adjoint tomography inverts for shear wave speeds of the crust and uppermost mantle directly from 6-40 s waveforms of Empirical Green's functions (EGFs) of Rayleigh waves, which are derived from interferometry of two years of ambient noise data recorded by the 127 Northeast China Extended Seismic Array stations. With an initial 3-D model derived from traditional asymptotic surface wave tomography method, adjoint tomography refines the 3-D model by iteratively minimizing the frequency-dependent traveltime misfits between EGFs and synthetic Green's functions measured in four period bands: 6-15 s, 10-20 s, 15-30 s, and 20-40 s. Our new model shows shear wave speed anomalies that are spatially correlated with known tectonic units such as the Great Xing'an range and the Changbaishan mountain range. The new model also reveals low wave speed conduits in the mid-lower crust and the uppermost mantle with a wave speed reduction indicative of partial melting beneath the Halaha, Xilinhot-Abaga, and Jingpohu volcanic complexes, suggesting that the Cenozoic volcanism in the area has a deep origin. Overall, the adjoint tomographic images show more vertically continuous velocity anomalies with larger amplitudes due to the consideration of the finite frequency and 3-D effects.
Haydock's recursive solution of self-adjoint problems. Discrete spectrum
NASA Astrophysics Data System (ADS)
Moroz, Alexander
2014-12-01
Haydock's recursive solution is shown to underline a number of different concepts such as (i) quasi-exactly solvable models, (ii) exactly solvable models, (iii) three-term recurrence solutions based on Schweber's quantization criterion in Hilbert spaces of entire analytic functions, and (iv) a discrete quantum mechanics of Odake and Sasaki. A recurrent theme of Haydock's recursive solution is that the spectral properties of any self-adjoint problem can be mapped onto a corresponding sequence of polynomials {pn(E) } in energy variable E. The polynomials {pn(E) } are orthonormal with respect to the density of states n0(E) and energy eigenstate | E > is the generating function of {pn(E) } . The generality of Haydock's recursive solution enables one to see the different concepts from a unified perspective and mutually benefiting from each other. Some results obtained within the particular framework of any of (i) to (iv) may have much broader significance.
Adjoint-based Aeroacoustic Control
2006-05-01
temperature To - 1/(y - 1) Table 1: Vectors used for different controls: F [fl f2 f 3 f4 T defined in (4); F’ = [fl’ f2 f3 f]’T defined in (15); A = [ 0 a; a...listed in table 1 for the different types of control considered. 4.2.3 Numerical methods The flow equations were solved numerically and without any...The F’ correspond- ing to the specific controls we consider are listed in table 1. With an inner product defined (c, d) c . d dxdt f cn(x, t)dn(x, t
Elementary operators on self-adjoint operators
NASA Astrophysics Data System (ADS)
Molnar, Lajos; Semrl, Peter
2007-03-01
Let H be a Hilbert space and let and be standard *-operator algebras on H. Denote by and the set of all self-adjoint operators in and , respectively. Assume that and are surjective maps such that M(AM*(B)A)=M(A)BM(A) and M*(BM(A)B)=M*(B)AM*(B) for every pair , . Then there exist an invertible bounded linear or conjugate-linear operator and a constant c[set membership, variant]{-1,1} such that M(A)=cTAT*, , and M*(B)=cT*BT, .
Using adjoint-based optimization to study wing flexibility in flapping flight
NASA Astrophysics Data System (ADS)
Wei, Mingjun; Xu, Min; Dong, Haibo
2014-11-01
In the study of flapping-wing flight of birds and insects, it is important to understand the impact of wing flexibility/deformation on aerodynamic performance. However, the large control space from the complexity of wing deformation and kinematics makes usual parametric study very difficult or sometimes impossible. Since the adjoint-based approach for sensitivity study and optimization strategy is a process with its cost independent of the number of input parameters, it becomes an attractive approach in our study. Traditionally, adjoint equation and sensitivity are derived in a fluid domain with fixed solid boundaries. Moving boundary is only allowed when its motion is not part of control effort. Otherwise, the derivation becomes either problematic or too complex to be feasible. Using non-cylindrical calculus to deal with boundary deformation solves this problem in a very simple and still mathematically rigorous manner. Thus, it allows to apply adjoint-based optimization in the study of flapping wing flexibility. We applied the ``improved'' adjoint-based method to study the flexibility of both two-dimensional and three-dimensional flapping wings, where the flapping trajectory and deformation are described by either model functions or real data from the flight of dragonflies. Supported by AFOSR.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
Al-Hashimi, M.H.; Salman, M.; Shalaby, A.; Wiese, U.-J.
2013-10-15
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.
NASA Astrophysics Data System (ADS)
Sandu, Adrian; Daescu, Dacian N.; Carmichael, Gregory R.
The analysis of comprehensive chemical reactions mechanisms, parameter estimation techniques, and variational chemical data assimilation applications require the development of efficient sensitivity methods for chemical kinetics systems. The new release (KPP-1.2) of the kinetic preprocessor (KPP) contains software tools that facilitate direct and adjoint sensitivity analysis. The direct-decoupled method, built using BDF formulas, has been the method of choice for direct sensitivity studies. In this work, we extend the direct-decoupled approach to Rosenbrock stiff integration methods. The need for Jacobian derivatives prevented Rosenbrock methods to be used extensively in direct sensitivity calculations; however, the new automatic and symbolic differentiation technologies make the computation of these derivatives feasible. The direct-decoupled method is known to be efficient for computing the sensitivities of a large number of output parameters with respect to a small number of input parameters. The adjoint modeling is presented as an efficient tool to evaluate the sensitivity of a scalar response function with respect to the initial conditions and model parameters. In addition, sensitivity with respect to time-dependent model parameters may be obtained through a single backward integration of the adjoint model. KPP software may be used to completely generate the continuous and discrete adjoint models taking full advantage of the sparsity of the chemical mechanism. Flexible direct-decoupled and adjoint sensitivity code implementations are achieved with minimal user intervention. In a companion paper, we present an extensive set of numerical experiments that validate the KPP software tools for several direct/adjoint sensitivity applications, and demonstrate the efficiency of KPP-generated sensitivity code implementations.
NASA Technical Reports Server (NTRS)
Ustinov, Eugene A.; Sunseri, Richard F.
2005-01-01
An approach is presented to the inversion of gravity fields based on evaluation of partials of observables with respect to gravity harmonics using the solution of adjoint problem of orbital dynamics of the spacecraft. Corresponding adjoint operator is derived directly from the linear operator of the linearized forward problem of orbital dynamics. The resulting adjoint problem is similar to the forward problem and can be solved by the same methods. For given highest degree N of gravity harmonics desired, this method involves integration of N adjoint solutions as compared to integration of N2 partials of the forward solution with respect to gravity harmonics in the conventional approach. Thus, for higher resolution gravity models, this approach becomes increasingly more effective in terms of computer resources as compared to the approach based on the solution of the forward problem of orbital dynamics.
Gauge mediation models with adjoint messengers
NASA Astrophysics Data System (ADS)
Gogoladze, Ilia; Mustafayev, Azar; Shafi, Qaisar; Ün, Cem Salih
2016-10-01
We present a class of models in the framework of gauge mediation supersymmetry breaking where the messenger fields transform in the adjoint representation of the standard model gauge symmetry. To avoid unacceptably light right-handed sleptons in the spectrum we introduce a nonzero U (1 )B-L D-term. This leads to an additional contribution to the soft supersymmetry breaking mass terms which makes the right-handed slepton masses compatible with the current experimental bounds. We show that in this framework the observed 125 GeV Higgs boson mass can be accommodated with the sleptons accessible at the LHC, while the squarks and gluinos lie in the multi-TeV range. We also discuss the issue of the fine-tuning and show that the desired relic dark matter abundance can also be accommodated.
Self-adjointness and conservation laws of difference equations
NASA Astrophysics Data System (ADS)
Peng, Linyu
2015-06-01
A general theorem on conservation laws for arbitrary difference equations is proved. The theorem is based on an introduction of an adjoint system related with a given difference system, and it does not require the existence of a difference Lagrangian. It is proved that the system, combined by the original system and its adjoint system, is governed by a variational principle, which inherits all symmetries of the original system. Noether's theorem can then be applied. With some special techniques, e.g. self-adjointness properties, this allows us to obtain conservation laws for difference equations, which are not necessary governed by Lagrangian formalisms.
Adjoint tomography of crust and upper-mantle structure beneath Continental China
NASA Astrophysics Data System (ADS)
Chen, M.; Niu, F.; Liu, Q.; Tromp, J.
2013-12-01
Four years of regional earthquake recordings from 1,869 seismic stations are used for high-resolution and high-fidelity seismic imaging of the crust and upper-mantle structure beneath Continental China. This unprecedented high-density dataset is comprised of seismograms recorded by the China Earthquake Administration Array (CEArray), NorthEast China Extended SeiSmic Array (NECESSArray), INDEPTH-IV Array, F-net and other global and regional seismic networks, and involves 1,326,384 frequency-dependent phase measurements. Adjoint tomography is applied to this unprecedented dataset, aiming to resolve detailed 3D maps of compressional and shear wavespeeds, and radial anisotropy. Contrary to traditional ray-theory based tomography, adjoint tomography takes into account full 3D wave propagation effects and off-ray-path sensitivity. In our implementation, it utilizes a spectral-element method for precise wave propagation simulations. The tomographic method starts with a 3D initial model that combines smooth radially anisotropic mantle model S362ANI and 3D crustal model Crust2.0. Traveltime and amplitude misfits are minimized iteratively based on a conjugate gradient method, harnessing 3D finite-frequency kernels computed for each updated 3D model. After 17 iterations, our inversion reveals strong correlations of 3D wavespeed heterogeneities in the crust and upper mantle with surface tectonic units, such as the Himalaya Block, the Tibetan Plateau, the Tarim Basin, the Ordos Block, and the South China Block. Narrow slab features emerge from the smooth initial model above the transition zone beneath the Japan, Ryukyu, Philippine, Izu-Bonin, Mariana and Andaman arcs. 3D wavespeed variations appear comparable to or much sharper than in high-frequency P-and S-wave models from previous studies. Moreover our results include new information, such as 3D variations of radial anisotropy and the Vp/Vs ratio, which are expected to shed new light to the composition, thermal state, flow
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Kleb, William L.
2005-01-01
A methodology is developed and implemented to mitigate the lengthy software development cycle typically associated with constructing a discrete adjoint solver for aerodynamic simulations. The approach is based on a complex-variable formulation that enables straightforward differentiation of complicated real-valued functions. An automated scripting process is used to create the complex-variable form of the set of discrete equations. An efficient method for assembling the residual and cost function linearizations is developed. The accuracy of the implementation is verified through comparisons with a discrete direct method as well as a previously developed handcoded discrete adjoint approach. Comparisons are also shown for a large-scale configuration to establish the computational efficiency of the present scheme. To ultimately demonstrate the power of the approach, the implementation is extended to high temperature gas flows in chemical nonequilibrium. Finally, several fruitful research and development avenues enabled by the current work are suggested.
Efficient Construction of Discrete Adjoint Operators on Unstructured Grids Using Complex Variables
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Kleb, William L.
2005-01-01
A methodology is developed and implemented to mitigate the lengthy software development cycle typically associated with constructing a discrete adjoint solver for aerodynamic simulations. The approach is based on a complex-variable formulation that enables straightforward differentiation of complicated real-valued functions. An automated scripting process is used to create the complex-variable form of the set of discrete equations. An efficient method for assembling the residual and cost function linearizations is developed. The accuracy of the implementation is verified through comparisons with a discrete direct method as well as a previously developed handcoded discrete adjoint approach. Comparisons are also shown for a large-scale configuration to establish the computational efficiency of the present scheme. To ultimately demonstrate the power of the approach, the implementation is extended to high temperature gas flows in chemical nonequilibrium. Finally, several fruitful research and development avenues enabled by the current work are suggested.
NASA Astrophysics Data System (ADS)
Marcotte, Christopher D.; Grigoriev, Roman O.
2016-09-01
This paper introduces a numerical method for computing the spectrum of adjoint (left) eigenfunctions of spiral wave solutions to reaction-diffusion systems in arbitrary geometries. The method is illustrated by computing over a hundred eigenfunctions associated with an unstable time-periodic single-spiral solution of the Karma model on a square domain. We show that all leading adjoint eigenfunctions are exponentially localized in the vicinity of the spiral tip, although the marginal modes (response functions) demonstrate the strongest localization. We also discuss the implications of the localization for the dynamics and control of unstable spiral waves. In particular, the interaction with no-flux boundaries leads to a drift of spiral waves which can be understood with the help of the response functions.
Optimizing Spectral Wave Estimates with Adjoint-Based Sensitivity Maps
2014-02-18
forecasts of nearshore wave conditions are important to a diverse constituency, including vacation destinations such as Miami Beach or San Diego, coastal...a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 18 FEB 2014 2. REPORT TYPE 3. DATES...Sensitivity maps for wave spectra For any type of adjoint, sensitivity maps may be constructed from adjoint output to track the response of system properties
Unsteady adjoint of a gas turbine inlet guide vane
NASA Astrophysics Data System (ADS)
Talnikar, Chaitanya; Wang, Qiqi
2015-11-01
Unsteady fluid flow simulations like large eddy simulation have been shown to be crucial in accurately predicting heat transfer in turbomachinery applications like transonic flow over an inlet guide vane. To compute sensitivities of aerothermal objectives for a vane with respect to design parameters an unsteady adjoint is required. In this talk we present unsteady adjoint solutions for a vane from VKI using pressure loss and heat transfer over the vane surface as the objectives. The boundary layer on the suction side near the trailing edge of the vane is turbulent and this poses a challenge for an adjoint solver. The chaotic dynamics cause the adjoint solution to diverge exponentially to infinity from that region when simulated backwards in time. The prospect of adding artificial viscosity to the adjoint equations to dampen the adjoint fields is investigated. Results for the vane from simulations performed on the Titan supercomputer will be shown and the effect of the additional viscosity on the accuracy of the sensitivities will be discussed.
Neural network training by integration of adjoint systems of equations forward in time
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad (Inventor); Barhen, Jacob (Inventor)
1992-01-01
A method and apparatus for supervised neural learning of time dependent trajectories exploits the concepts of adjoint operators to enable computation of the gradient of an objective functional with respect to the various parameters of the network architecture in a highly efficient manner. Specifically, it combines the advantage of dramatic reductions in computational complexity inherent in adjoint methods with the ability to solve two adjoint systems of equations together forward in time. Not only is a large amount of computation and storage saved, but the handling of real-time applications becomes also possible. The invention has been applied it to two examples of representative complexity which have recently been analyzed in the open literature and demonstrated that a circular trajectory can be learned in approximately 200 iterations compared to the 12000 reported in the literature. A figure eight trajectory was achieved in under 500 iterations compared to 20000 previously required. The trajectories computed using our new method are much closer to the target trajectories than was reported in previous studies.
Neural Network Training by Integration of Adjoint Systems of Equations Forward in Time
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad (Inventor); Barhen, Jacob (Inventor)
1999-01-01
A method and apparatus for supervised neural learning of time dependent trajectories exploits the concepts of adjoint operators to enable computation of the gradient of an objective functional with respect to the various parameters of the network architecture in a highly efficient manner. Specifically. it combines the advantage of dramatic reductions in computational complexity inherent in adjoint methods with the ability to solve two adjoint systems of equations together forward in time. Not only is a large amount of computation and storage saved. but the handling of real-time applications becomes also possible. The invention has been applied it to two examples of representative complexity which have recently been analyzed in the open literature and demonstrated that a circular trajectory can be learned in approximately 200 iterations compared to the 12000 reported in the literature. A figure eight trajectory was achieved in under 500 iterations compared to 20000 previously required. Tbc trajectories computed using our new method are much closer to the target trajectories than was reported in previous studies.
Seismic wave-speed structure beneath the metropolitan area of Japan based on adjoint tomography
NASA Astrophysics Data System (ADS)
Miyoshi, T.; Obayashi, M.; Tono, Y.; Tsuboi, S.
2015-12-01
We have obtained a three-dimensional (3D) model of seismic wave-speed structure beneath the metropolitan area of Japan. We applied the spectral-element method (e.g. Komatitsch and Tromp 1999) and adjoint method (Liu and Tromp 2006) to the broadband seismograms in order to infer the 3D model. We used the travel-time tomography result (Matsubara and Obara 2011) as an initial 3D model and used broadband waveforms recorded at the NIED F-net stations. We selected 147 earthquakes with magnitude of larger than 4.5 from the F-net earthquake catalog and used their bandpass filtered seismograms between 5 and 20 second with a high S/N ratio. The 3D model used for the forward and adjoint simulations is represented as a region of approximately 500 by 450 km in horizontal and 120 km in depth. Minimum period of theoretical waveforms was 4.35 second. For the adjoint inversion, we picked up the windows of the body waves from the observed and theoretical seismograms. We used SPECFEM3D_Cartesian code (e.g. Peter et al. 2011) for the forward and adjoint simulations, and their simulations were implemented by K-computer in RIKEN. Each iteration required about 0.1 million CPU hours at least. The model parameters of Vp and Vs were updated by using the steepest descent method. We obtained the fourth iterative model (M04), which reproduced observed waveforms better than the initial model. The shear wave-speed of M04 was significantly smaller than the initial model at any depth. The model of compressional wave-speed was not improved by inversion because of small alpha kernel values. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We thank to the NIED for providing seismological data.
Adjoint equations and analysis of complex systems: Application to virus infection modelling
NASA Astrophysics Data System (ADS)
Marchuk, G. I.; Shutyaev, V.; Bocharov, G.
2005-12-01
Recent development of applied mathematics is characterized by ever increasing attempts to apply the modelling and computational approaches across various areas of the life sciences. The need for a rigorous analysis of the complex system dynamics in immunology has been recognized since more than three decades ago. The aim of the present paper is to draw attention to the method of adjoint equations. The methodology enables to obtain information about physical processes and examine the sensitivity of complex dynamical systems. This provides a basis for a better understanding of the causal relationships between the immune system's performance and its parameters and helps to improve the experimental design in the solution of applied problems. We show how the adjoint equations can be used to explain the changes in hepatitis B virus infection dynamics between individual patients.
Towards efficient backward-in-time adjoint computations using data compression techniques
Cyr, E. C.; Shadid, J. N.; Wildey, T.
2014-12-16
In the context of a posteriori error estimation for nonlinear time-dependent partial differential equations, the state-of-the-practice is to use adjoint approaches which require the solution of a backward-in-time problem defined by a linearization of the forward problem. One of the major obstacles in the practical application of these approaches, we found, is the need to store, or recompute, the forward solution to define the adjoint problem and to evaluate the error representation. Our study considers the use of data compression techniques to approximate forward solutions employed in the backward-in-time integration. The development derives an error representation that accounts for themore » difference between the standard-approach and the compressed approximation of the forward solution. This representation is algorithmically similar to the standard representation and only requires the computation of the quantity of interest for the forward solution and the data-compressed reconstructed solution (i.e. scalar quantities that can be evaluated as the forward problem is integrated). This approach is then compared with existing techniques, such as checkpointing and time-averaged adjoints. Lastly, we provide numerical results indicating the potential efficiency of our approach on a transient diffusion–reaction equation and on the Navier–Stokes equations. These results demonstrate memory compression ratios up to 450×450× while maintaining reasonable accuracy in the error-estimates.« less
Baryogenesis via leptogenesis in adjoint SU(5)
Blanchet, Steve; Fileviez Perez, Pavel E-mail: fileviez@physics.wisc.edu
2008-08-15
The possibility of explaining the baryon asymmetry in the Universe through the leptogenesis mechanism in the context of adjoint SU(5) is investigated. In this model neutrino masses are generated through the type I and type III seesaw mechanisms, and the field responsible for the type III seesaw, called {rho}{sub 3}, generates the B-L asymmetry needed to satisfy the observed value of the baryon asymmetry in the Universe. We find that the CP asymmetry originates only from the vertex correction, since the self-energy contribution is not present. When neutrino masses have a normal hierarchy, successful leptogenesis is possible for 10{sup 11} GeV{approx}
Adjoint estimation of ozone climate penalties
NASA Astrophysics Data System (ADS)
Zhao, Shunliu; Pappin, Amanda J.; Morteza Mesbah, S.; Joyce Zhang, J. Y.; MacDonald, Nicole L.; Hakami, Amir
2013-10-01
adjoint of a regional chemical transport model is used to calculate location-specific temperature influences (climate penalties) on two policy-relevant ozone metrics: concentrations in polluted regions (>65 ppb) and short-term mortality in Canada and the U.S. Temperature influences through changes in chemical reaction rates, atmospheric moisture content, and biogenic emissions exhibit significant spatial variability. In particular, high-NOx, polluted regions are prominently distinguished by substantial climate penalties (up to 6.2 ppb/K in major urban areas) as a result of large temperature influences through increased biogenic emissions and nonnegative water vapor sensitivities. Temperature influences on ozone mortality, when integrated across the domain, result in 369 excess deaths/K in Canada and the U.S. over a summer season—an impact comparable to a 5% change in anthropogenic NOx emissions. As such, we suggest that NOx control can be also regarded as a climate change adaptation strategy with regard to ozone air quality.
Big Data Challenges in Global Seismic 'Adjoint Tomography' (Invited)
NASA Astrophysics Data System (ADS)
Tromp, J.; Bozdag, E.; Krischer, L.; Lefebvre, M.; Lei, W.; Smith, J.
2013-12-01
The challenge of imaging Earth's interior on a global scale is closely linked to the challenge of handling large data sets. The related iterative workflow involves five distinct phases, namely, 1) data gathering and culling, 2) synthetic seismogram calculations, 3) pre-processing (time-series analysis and time-window selection), 4) data assimilation and adjoint calculations, 5) post-processing (pre-conditioning, regularization, model update). In order to implement this workflow on modern high-performance computing systems, a new seismic data format is being developed. The Adaptable Seismic Data Format (ASDF) is designed to replace currently used data formats with a more flexible format that allows for fast parallel I/O. The metadata is divided into abstract categories, such as "source" and "receiver", along with provenance information for complete reproducibility. The structure of ASDF is designed keeping in mind three distinct applications: earthquake seismology, seismic interferometry, and exploration seismology. Existing time-series analysis tool kits, such as SAC and ObsPy, can be easily interfaced with ASDF so that seismologists can use robust, previously developed software packages. ASDF accommodates an automated, efficient workflow for global adjoint tomography. Manually managing the large number of simulations associated with the workflow can rapidly become a burden, especially with increasing numbers of earthquakes and stations. Therefore, it is of importance to investigate the possibility of automating the entire workflow. Scientific Workflow Management Software (SWfMS) allows users to execute workflows almost routinely. SWfMS provides additional advantages. In particular, it is possible to group independent simulations in a single job to fit the available computational resources. They also give a basic level of fault resilience as the workflow can be resumed at the correct state preceding a failure. Some of the best candidates for our particular workflow
A Posteriori Analysis for Hydrodynamic Simulations Using Adjoint Methodologies
Woodward, C S; Estep, D; Sandelin, J; Wang, H
2009-02-26
This report contains results of analysis done during an FY08 feasibility study investigating the use of adjoint methodologies for a posteriori error estimation for hydrodynamics simulations. We developed an approach to adjoint analysis for these systems through use of modified equations and viscosity solutions. Targeting first the 1D Burgers equation, we include a verification of the adjoint operator for the modified equation for the Lax-Friedrichs scheme, then derivations of an a posteriori error analysis for a finite difference scheme and a discontinuous Galerkin scheme applied to this problem. We include some numerical results showing the use of the error estimate. Lastly, we develop a computable a posteriori error estimate for the MAC scheme applied to stationary Navier-Stokes.
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony; Alonso, Juan Jose; Rimlinger, Mark J.; Saunders, David
1997-01-01
An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on a higher order CFD method. In order to facilitate the integration of these high fidelity CFD approaches into future multi-disciplinary optimization (NW) applications, new methods must be developed which are capable of simultaneously addressing complex geometries, multiple objective functions, and geometric design constraints. In our earlier studies, we coupled the adjoint based design formulations with unconstrained optimization algorithms and showed that the approach was effective for the aerodynamic design of airfoils, wings, wing-bodies, and complex aircraft configurations. In many of the results presented in these earlier works, geometric constraints were satisfied either by a projection into feasible space or by posing the design space parameterization such that it automatically satisfied constraints. Furthermore, with the exception of reference 9 where the second author initially explored the use of multipoint design in conjunction with adjoint formulations, our earlier works have focused on single point design efforts. Here we demonstrate that the same methodology may be extended to treat
Assimilating Remote Ammonia Observations with a Refined Aerosol Thermodynamics Adjoint"
Ammonia emissions parameters in North America can be refined in order to improve the evaluation of modeled concentrations against observations. Here, we seek to do so by developing and applying the GEOS-Chem adjoint nested over North America to conductassimilation of observations...
Self-adjoint commuting differential operators of rank two
NASA Astrophysics Data System (ADS)
Mironov, A. E.
2016-08-01
This is a survey of results on self-adjoint commuting ordinary differential operators of rank two. In particular, the action of automorphisms of the first Weyl algebra on the set of commuting differential operators with polynomial coefficients is discussed, as well as the problem of constructing algebro-geometric solutions of rank l>1 of soliton equations. Bibliography: 59 titles.
Dynamical sensitivity analysis of tropical cyclone steering and genesis using an adjoint model
NASA Astrophysics Data System (ADS)
Hoover, Brett T.
The adjoint of a numerical weather prediction (NWP) model is a powerful tool for efficiently calculating the "sensitivity" of some function of the model forecast state with respect to small but otherwise arbitrary perturbations to the model state at earlier times. Physical interpretation of these sensitivity gradients for functions describing some phenomenon of dynamical interest allows the user to approach a variety of dynamical problems in atmospheric science from the perspective of the potential impact of small perturbations on the future development of that phenomenon; the integration of adjoint-derived sensitivity gradients as a dynamical tool for approaching these problems can be called dynamical sensitivity analysis. A methodology for dynamical sensitivity analysis is developed and applied to problems related to the steering and genesis of modeled tropical cyclones. Functions defining the steering and genesis of tropical cyclones are developed and tested, and sensitivity gradients of those functions with respect to model initial conditions are interpreted physically. Results indicate that regions of strong sensitivity tend to localize where small vorticity perturbations have the capacity to grow quickly and impact the future state of the model, such as regions of strong ascent and subsidence surrounding midlatitude troughs, or near zonal jets where upshear-tilted perturbations can grow barotropically. Consequences for dynamics and predictability of these events are discussed.
Aerodynamic Shape Optimization of Complex Aircraft Configurations via an Adjoint Formulation
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony; Farmer, James; Martinelli, Luigi; Saunders, David
1996-01-01
This work describes the implementation of optimization techniques based on control theory for complex aircraft configurations. Here control theory is employed to derive the adjoint differential equations, the solution of which allows for a drastic reduction in computational costs over previous design methods (13, 12, 43, 38). In our earlier studies (19, 20, 22, 23, 39, 25, 40, 41, 42) it was shown that this method could be used to devise effective optimization procedures for airfoils, wings and wing-bodies subject to either analytic or arbitrary meshes. Design formulations for both potential flows and flows governed by the Euler equations have been demonstrated, showing that such methods can be devised for various governing equations (39, 25). In our most recent works (40, 42) the method was extended to treat wing-body configurations with a large number of mesh points, verifying that significant computational savings can be gained for practical design problems. In this paper the method is extended for the Euler equations to treat complete aircraft configurations via a new multiblock implementation. New elements include a multiblock-multigrid flow solver, a multiblock-multigrid adjoint solver, and a multiblock mesh perturbation scheme. Two design examples are presented in which the new method is used for the wing redesign of a transonic business jet.
Generation of perturbations by means of decoupled equations and their adjoints
NASA Astrophysics Data System (ADS)
Torres Del Castillo, G. F.
1990-10-01
It is shown that the procedure introduced by Wald for constructing solutions of a coupled system of linear partial differential equations from the solution of a single equation, based on the concept of the adjoint of a linear partial differential operator, can be extended to equations involving spinor fields, matrix fields and two or more fields. Some results concerning massless spinor fields are presented and the application of the method to linear perturbations of Yang-Mills fields and of Einstein-Maxwell fields is indicated.
NASA Astrophysics Data System (ADS)
Liu, Lijun; Gurnis, Michael
2008-08-01
Through the assimilation of present-day mantle seismic structure, adjoint methods can be used to constrain the structure of the mantle at earlier times, i.e., mantle initial conditions. However, the application to geophysical problems is restricted through both the high computational expense from repeated iteration between forward and adjoint models and the need to know mantle properties (such as viscosity and the absolute magnitude of temperature or density) a priori. We propose that an optimal first guess to the initial condition can be obtained through a simple backward integration (SBI) of the governing equations, thus lessening the computational expense. Given a model with known mantle properties, we show that a solution based on an SBI-generated first guess has smaller residuals than arbitrary guesses. Mantle viscosity and the effective Rayleigh number are crucial for mantle convection models, neither of which is exactly known. We place additional constraints on these basic mantle properties when the convection-induced dynamic topography on Earth's surface is considered within an adjoint inverse method. Besides assimilating present-day seismic structure as a constraint, we use dynamic topography and its rate of change in an inverse method that allows simultaneous inversion of the absolute upper and lower mantle viscosities, scaling between seismic velocity and thermal anomalies, and initial condition. The theory is derived from the governing equations of mantle convection and validated by synthetic experiments for both one-layer viscosity and two-layer viscosity regionally bounded spherical shells. For the one-layer model, at any instant of time, the magnitude of dynamic topography is controlled by the temperature scaling while the rate of change of topography is controlled by the absolute value of viscosity. For the two-layer case, the rate of change of topography constrains upper mantle viscosity while the magnitude of dynamic topography determines the
Gardner, Adam R.; Hayakawa, Carole K.; Venugopalan, Vasan
2014-01-01
Abstract. We present a coupled forward-adjoint Monte Carlo (cFAMC) method to determine the spatially resolved sensitivity distributions produced by optical interrogation of three-dimensional (3-D) tissue volumes. We develop a general computational framework that computes the spatial and angular distributions of the forward-adjoint light fields to provide accurate computations in mesoscopic tissue volumes. We provide full computational details of the cFAMC method and provide results for low- and high-scattering tissues probed using a single pair of optical fibers. We examine the effects of source-detector separation and orientation on the sensitivity distributions and consider how the degree of angular discretization used in the 3-D tissue model impacts the accuracy of the resulting absorption sensitivity profiles. We discuss the value of such computations for optical imaging and the design of optical measurements. PMID:24972356
NASA Astrophysics Data System (ADS)
McGovern, Jonathan; Rutt, Ian; Murray, Tavi; Utke, Jean
2013-04-01
Studying the future behaviour of the Greenland Ice Sheet is important considering the ice sheet has a sea-level equivalent of 7 metres and the rate of mass loss from it is increasing (Velicogna, 2009). Examining the modelled response of the Greenland Ice Sheet to changes in forcing parameters can give insight into how it will behave in the future. The response of the ice sheet to specific changes in forcing parameters is referred to as the sensitivity. Being able to obtain model sensitivities in as little computation time as possible would be useful for examining the future response of the Greenland Ice Sheet. Adjoint models allow sensitivities to be obtained more efficiently than the conventional way, when considering spatially varying parameters. Conventionally, such sensitivities are obtained by perturbing a parameter at every grid point in turn and calculating the sensitivity at every grid point. Adjoint sensitivities, though, are calculated in a single step. This reduces the computational cost when obtaining sensitivities over large model domains. The adjoint method also has the advantage that it gives the exact value of the model sensitivity, rather than a finite difference approximation to it. We present the adjoint of a finite difference, shallow ice, thermomechanical ice sheet model with basal sliding, applied to the Greenland Ice Sheet. This adjoint model is obtained using the OpenAD automatic differentiation tool (Utke, 2006), which is open source. The adjoint model is validated by comparing adjoint and forward model sensitivities over 100 years. This work builds on the work of Heimbach (2009). We use the adjoint model to examine the sensitivity of the model to changes in basal sliding. About half the mass loss from the Greenland Ice Sheet occurs from surface runoff and half from dynamic mass loss (Broeke, 2009). Melt-water from Greenland Ice Sheet supra-glacial lakes can percolate to the bed through moulins. The melt-water that reaches the bed can then
Three-Dimensional Turbulent RANS Adjoint-Based Error Correction
NASA Technical Reports Server (NTRS)
Park, Michael A.
2003-01-01
Engineering problems commonly require functional outputs of computational fluid dynamics (CFD) simulations with specified accuracy. These simulations are performed with limited computational resources. Computable error estimates offer the possibility of quantifying accuracy on a given mesh and predicting a fine grid functional on a coarser mesh. Such an estimate can be computed by solving the flow equations and the associated adjoint problem for the functional of interest. An adjoint-based error correction procedure is demonstrated for transonic inviscid and subsonic laminar and turbulent flow. A mesh adaptation procedure is formulated to target uncertainty in the corrected functional and terminate when error remaining in the calculation is less than a user-specified error tolerance. This adaptation scheme is shown to yield anisotropic meshes with corrected functionals that are more accurate for a given number of grid points then isotropic adapted and uniformly refined grids.
Abhyankar, Shrirang; Anitescu, Mihai; Constantinescu, Emil; Zhang, Hong
2016-03-31
Sensitivity analysis is an important tool to describe power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this work, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating trajectory sensitivities of larger systems and is consistent, within machine precision, with the function whose sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as DC exciters, by deriving and implementing the adjoint jump conditions that arise from state and time-dependent discontinuities. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach.
Seismic Window Selection and Misfit Measurements for Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Lei, W.; Bozdag, E.; Lefebvre, M.; Podhorszki, N.; Smith, J. A.; Tromp, J.
2013-12-01
Global Adjoint Tomography requires fast parallel processing of large datasets. After obtaing the preprocessed observed and synthetic seismograms, we use the open source software packages FLEXWIN (Maggi et al. 2007) to select time windows and MEASURE_ADJ to make measurements. These measurements define adjoint sources for data assimilation. Previous versions of these tools work on a pair of SAC files---observed and synthetic seismic data for the same component and station, and loop over all seismic records associated with one earthquake. Given the large number of stations and earthquakes, the frequent read and write operations create severe I/O bottlenecks on modern computing platforms. We present new versions of these tools utilizing a new seismic data format, namely the Adaptive Seismic Data Format(ASDF). This new format shows superior scalability for applications on high-performance computers and accommodates various types of data, including earthquake, industry and seismic interferometry datasets. ASDF also provides user-friendly APIs, which can be easily integrated into the adjoint tomography workflow and combined with other data processing tools. In addition to solving the I/O bottleneck, we are making several improvements to these tools. For example, FLEXWIN is tuned to select windows for different types of earthquakes. To capture their distinct features, we categorize earthquakes by their depths and frequency bands. Moreover, instead of only picking phases between the first P arrival and the surface-wave arrivals, our aim is to select and assimilate many other later prominent phases in adjoint tomography. For example, in the body-wave band (17 s - 60 s), we include SKS, sSKS and their multiple, while in the surface-wave band (60 s - 120 s) we incorporate major-arc surface waves.
NASA Astrophysics Data System (ADS)
Yu, Jia; Ji, Lucheng; Li, Weiwei; Yi, Weilin
2016-06-01
Adjoint method is an important tool for design refinement of multistage compressors. However, the radial static pressure distribution deviates during the optimization procedure and deteriorates the overall performance, producing final designs that are not well suited for realistic engineering applications. In previous development work on multistage turbomachinery blade optimization using adjoint method and thin shear-layer N-S equations, the entropy production is selected as the objective function with given mass flow rate and total pressure ratio as imposed constraints. The radial static pressure distribution at the interfaces between rows is introduced as a new constraint in the present paper. The approach is applied to the redesign of a five-stage axial compressor, and the results obtained with and without the constraint on the radial static pressure distribution at the interfaces between rows are discussed in detail. The results show that the redesign without the radial static pressure distribution constraint (RSPDC) gives an optimal solution that shows deviations on radial static pressure distribution, especially at rotor exit tip region. On the other hand, the redesign with the RSPDC successfully keeps the radial static pressure distribution at the interfaces between rows and make sure that the optimization results are applicable in a practical engineering design.
Adjoint Tomography of Taiwan Region: From Travel-Time Toward Waveform Inversion
NASA Astrophysics Data System (ADS)
Huang, H. H.; Lee, S. J.; Tromp, J.
2014-12-01
The complicated tectonic environment such as Taiwan region can modulate the seismic waveform severely and hamper the discrimination and the utilization of later phases. Restricted to the use of only first arrivals of P- and S-wave, the travel-time tomographic models of Taiwan can simulate the seismic waveform barely to a frequency of 0.2 Hz to date. While it has been sufficient for long-period studies, e.g. source inversion, this frequency band is still far from the applications to the community and high-resolution studies. To achieve a higher-frequency simulation, more data and the considerations of off-path and finite-frequency effects are necessary. Based on the spectral-element and the adjoint method recently developed, we prepared 94 MW 3.5-6.0 earthquakes with well-defined location and focal mechanism solutions from Real-Time Moment Tensor Monitoring System (RMT), and preformed an iterative gradient-based inversion employing waveform modeling and finite-frequency measurements of adjoint method. By which the 3-D sensitivity kernels are taken into account realistically and the full waveform information are naturally sought, without a need of any phase pick. A preliminary model m003 using 10-50 sec data was demonstrated and compared with previous travel-time models. The primary difference appears in the mountainous area, where the previous travel-time model may underestimate the S-wave speed in the upper crust, but overestimates in the lower crust.
Adjoint modeling for atmospheric pollution process sensitivity at regional scale
NASA Astrophysics Data System (ADS)
Menut, Laurent
2003-09-01
During the summer 1998, a strong pollution event was documented over Paris as part of the Etude et Simulation de la Qualité de l'air en Ile-de-France (ESQUIF) project (second intensive observation period (IOP2)). From 7 to 9 August 1998 the pollution event changes from a well-marked ozone plume issued from Paris to a more general pollution over the whole Ile-de-France region. Using a three-dimensional chemistry-transport model and its adjoint part, the sensitivity of ozone, Ox, and NOx peaks to model parameters is investigated. For two locations, Paris and a suburban site, the influence of both meteorological and chemical model parameters on the simulated field concentrations is hourly quantified for each day. Processes leading to a urban polluted event are compared. It is shown that the pollutant concentrations are mainly driven by traffic and solvent surface emissions and meteorological parameters such as temperature. Since the adjoint approach is limited to infinitesimal model perturbation, some scenario simulations are carried out to evaluate the linearity of the impact of the most sensitive parameters within the uncertainty range. It is shown that the sensitivities determined from the adjoint approach can be extrapolated until their uncertainty ranges except for the wind speed.
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
NASA Astrophysics Data System (ADS)
Larour, Eric; Utke, Jean; Bovin, Anton; Morlighem, Mathieu; Perez, Gilberto
2016-11-01
Within the framework of sea-level rise projections, there is a strong need for hindcast validation of the evolution of polar ice sheets in a way that tightly matches observational records (from radar, gravity, and altimetry observations mainly). However, the computational requirements for making hindcast reconstructions possible are severe and rely mainly on the evaluation of the adjoint state of transient ice-flow models. Here, we look at the computation of adjoints in the context of the NASA/JPL/UCI Ice Sheet System Model (ISSM), written in C++ and designed for parallel execution with MPI. We present the adaptations required in the way the software is designed and written, but also generic adaptations in the tools facilitating the adjoint computations. We concentrate on the use of operator overloading coupled with the AdjoinableMPI library to achieve the adjoint computation of the ISSM. We present a comprehensive approach to (1) carry out type changing through the ISSM, hence facilitating operator overloading, (2) bind to external solvers such as MUMPS and GSL-LU, and (3) handle MPI-based parallelism to scale the capability. We demonstrate the success of the approach by computing sensitivities of hindcast metrics such as the misfit to observed records of surface altimetry on the northeastern Greenland Ice Stream, or the misfit to observed records of surface velocities on Upernavik Glacier, central West Greenland. We also provide metrics for the scalability of the approach, and the expected performance. This approach has the potential to enable a new generation of hindcast-validated projections that make full use of the wealth of datasets currently being collected, or already collected, in Greenland and Antarctica.
NASA Astrophysics Data System (ADS)
Verdugo, Francesc; Parés, Núria; Díez, Pedro
2014-08-01
This article presents a space-time adaptive strategy for transient elastodynamics. The method aims at computing an optimal space-time discretization such that the computed solution has an error in the quantity of interest below a user-defined tolerance. The methodology is based on a goal-oriented error estimate that requires accounting for an auxiliary adjoint problem. The major novelty of this paper is using modal analysis to obtain a proper approximation of the adjoint solution. The idea of using a modal-based description was introduced in a previous work for error estimation purposes. Here this approach is used for the first time in the context of adaptivity. With respect to the standard direct time-integration methods, the modal solution of the adjoint problem is highly competitive in terms of computational effort and memory requirements. The performance of the proposed strategy is tested in two numerical examples. The two examples are selected to be representative of different wave propagation phenomena, one being a 2D bulky continuum and the second a 2D domain representing a structural frame.
Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes
NASA Astrophysics Data System (ADS)
Peter, Daniel; Komatitsch, Dimitri; Luo, Yang; Martin, Roland; Le Goff, Nicolas; Casarotti, Emanuele; Le Loher, Pieyre; Magnoni, Federica; Liu, Qinya; Blitz, Céline; Nissen-Meyer, Tarje; Basini, Piero; Tromp, Jeroen
2011-08-01
We present forward and adjoint spectral-element simulations of coupled acoustic and (an)elastic seismic wave propagation on fully unstructured hexahedral meshes. Simulations benefit from recent advances in hexahedral meshing, load balancing and software optimization. Meshing may be accomplished using a mesh generation tool kit such as CUBIT, and load balancing is facilitated by graph partitioning based on the SCOTCH library. Coupling between fluid and solid regions is incorporated in a straightforward fashion using domain decomposition. Topography, bathymetry and Moho undulations may be readily included in the mesh, and physical dispersion and attenuation associated with anelasticity are accounted for using a series of standard linear solids. Finite-frequency Fréchet derivatives are calculated using adjoint methods in both fluid and solid domains. The software is benchmarked for a layercake model. We present various examples of fully unstructured meshes, snapshots of wavefields and finite-frequency kernels generated by Version 2.0 'Sesame' of our widely used open source spectral-element package SPECFEM3D.
Global Adjoint Tomography: Combining Big Data with HPC Simulations
NASA Astrophysics Data System (ADS)
Bozdag, E.; Lefebvre, M. P.; Lei, W.; Peter, D. B.; Smith, J. A.; Komatitsch, D.; Tromp, J.
2014-12-01
The steady increase in data quality and the number of global seismographic stations have substantially grown the amount of data available for construction of Earth models. Meanwhile, developments in the theory of wave propagation, numerical methods and HPC systems have enabled unprecedented simulations of seismic wave propagation in realistic 3D Earth models which lead the extraction of more information from data, ultimately culminating in the use of entire three-component seismograms.Our aim is to take adjoint tomography further to image the entire planet which is one of the extreme cases in seismology due to its intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated in inversions. We have started low resolution (T > 27 s, soon will be > 17 s) global inversions with 253 earthquakes for a transversely isotropic crust and mantle model on Oak Ridge National Laboratory's Cray XK7 "Titan" system. Recent improvements in our 3D solvers, such as the GPU version of the SPECFEM3D_GLOBE package, will allow us perform higher-resolution (T > 9 s) and longer-duration (~180 m) simulations to take the advantage of high-frequency body waves and major-arc surface waves to improve imbalanced ray coverage as a result of uneven distribution of sources and receivers on the globe. Our initial results after 10 iterations already indicate several prominent features reported in high-resolution continental studies, such as major slabs (Hellenic, Japan, Bismarck, Sandwich, etc.) and enhancement in plume structures (the Pacific superplume, the Hawaii hot spot, etc.). Our ultimate goal is to assimilate seismic data from more than 6,000 earthquakes within the magnitude range 5.5 ≤ Mw ≤ 7.0. To take full advantage of this data set on ORNL's computational resources, we need a solid framework for managing big data sets during pre-processing (e.g., data requests and quality checks), gradient calculations, and post-processing (e
Utilisation de sources et d'adjoints dragon pour les calculs TRIPOLI
NASA Astrophysics Data System (ADS)
Camand, Corentin
usually non significant. The second method is to use of the adjoint neutron flux calculated by DRAGON as an importance function for Monte Carlo biaising in TRIPOLI. The objective is to improve the figure of merit of the detector response located far away of the neutron source. The neutron source initialisation of a TRIPOLI calculation required to develop the development of a module in DRAGON that generates a list of sources in the TRIPOLI syntaxe, including for each source, its intensity, its position and the energy domain it covers. We tested our method on a complete 17×17 PWR-UOX assembly and on a reduced 3×3 model. We first verified that the DRAGON and TRIPOLI models were consistent in order to ensure that TRIPOLI receives a coherent source distribution. Then we tested the use of DRAGON sources in TRIPOLI with neutron flux and the effective multiplying coefficient (keff). We observe slightly better standard deviations, of an order of 10 pcm, on keff for simulations using DRAGON sources distributions as compared to simulations with less precise initial sources. Flux convergence is also improved. However some incoherence were also observed in the results, some flux converging slower with DRAGON sources when fewer neutrons per batch are considered. In addition, a very large number of sources is too heavy to insert in TRIPOLI. It seems that our method is perfectible in order to improve implementation and convergence. Study of more complex geometries, with less regular sources distributions (for instance using MOX or irradiated fuel) may provide better performances using our method. For biaising TRIPOLI calculations using the DRAGON adjoint flux we created a module that produces importance maps readable by TRIPOLI. We tested our method on a source-detector shielding problem in one dimension. After checking the coherence of DRAGON and TRIPOLI models, we biaised TRIPOLI simulations using the DRAGON adjoint flux, and using INIPOND, the internal biaising option of TRIPOLI. We
Andrade, F.M.; Silva, E.O.; Pereira, M.
2013-12-15
In this work the bound state and scattering problems for a spin- 1/2 particle undergone to an Aharonov–Bohm potential in a conical space in the nonrelativistic limit are considered. The presence of a δ-function singularity, which comes from the Zeeman spin interaction with the magnetic flux tube, is addressed by the self-adjoint extension method. One of the advantages of the present approach is the determination of the self-adjoint extension parameter in terms of physics of the problem. Expressions for the energy bound states, phase-shift and S matrix are determined in terms of the self-adjoint extension parameter, which is explicitly determined in terms of the parameters of the problem. The relation between the bound state and zero modes and the failure of helicity conservation in the scattering problem and its relation with the gyromagnetic ratio g are discussed. Also, as an application, we consider the spin- 1/2 Aharonov–Bohm problem in conical space plus a two-dimensional isotropic harmonic oscillator. -- Highlights: •Planar dynamics of a spin- 1/2 neutral particle. •Bound state for Aharonov–Bohm systems. •Aharonov–Bohm scattering. •Helicity nonconservation. •Determination of the self-adjoint extension parameter.
NASA Technical Reports Server (NTRS)
Andrews, Arlyn; Kawa, Randy; Zhu, Zhengxin; Burris, John; Abshire, Jim
2004-01-01
A detailed mechanistic understanding of the sources and sinks of CO2 will be required to reliably predict future CO2 levels and climate. A commonly used technique for deriving information about CO2 exchange with surface reservoirs is to solve an 'inverse problem', where CO2 observations are used with an atmospheric transport model to find the optimal distribution of sources and sinks. Synthesis inversion methods are powerful tools for addressing this question, but the results are disturbingly sensitive to the details of the calculation. Studies done using different atmospheric transport models and combinations of surface station data have produced substantially different distributions of surface fluxes. Adjoint methods are now being developed that will more effectively incorporate diverse datasets in estimates of surface fluxes of CO2. In an adjoint framework, it will be possible to combine CO2 concentration data from longterm surface and aircraft monitoring stations with data from intensive field campaigns and with proposed future satellite observations. We have recently developed an adjoint for the GSFC 3-D Parameterized Chemistry and Transport Model (PCTM). Here, we will present results from a PCTM Adjoint study comparing the sampling footprints of tall tower, aircraft and potential future lidar observations of CO2. The vertical resolution and extent of the profiles and the observation frequency will be considered for several sites in North America.
State Methods for a Cyber Incident
2012-03-01
Statewide Emergency Response and Response Plan SIPC State Infrastructure Protection Center SIRT Security Incident Response Team SIRT State Incident...by statute and policy to report agency information security incidents to the state Security Incident Response Team ( SIRT ). Those reports are made...through recent state statutes. P-16 Yes, agencies are required by statute and policy to report information security incidents to the SIRT . Q-17
Resolution of group velocity models obtained by adjoint inversion in the Czech Republic region
NASA Astrophysics Data System (ADS)
Valentova, Lubica; Gallovic, Frantisek; Ruzek, Bohuslav; de la Puente, Josep
2013-04-01
We performed tomographic inversion of crosscorrelation traveltimes of group waves in the Bohemian massif. The traveltimes used for inversion come from ambient seismic noise measurements between pairs of stations filtered for several period ranges between 2-20s. The inverse problem was solved by the conjugate gradients, which were calculated using efficient adjoint method. Assuming that the propagation of group waves can be approximated by membrane waves for each period separately, the computations are reduced to 2D domain. The numerical calculations were carried out using adjoint version of SeisSol, which solves elastodynamic system using Discontinuous Galerkin method with arbitrary high order time derivatives (ADER-DG). The adjoint inversion is based on computation of so called sensitivity kernels for each data, which are then combined into Fréchet kernel of misfit gradient. Therefore, if using only the longest wavelength data i.e. the traveltimes of 20s and 16s group waves, structures of even shorter wavelengths can be obtained by the inversion. However, these smaller-scale structures are possibly more affected by data noise and thus require careful treatment. Note that in the classical tomography based on ray method, such structures are subdued by regularization. This leads to question on the influence of data noise on the obtained models. Several synthetic tests were carried out to reveal the effect of data errors on the resulting model. Firstly, we tested the level of data noise required to obtain artificial small scale structures. As a target model we constructed simple heterogenous model consisting of one very long wavelength structure. The synthetic traveltime data were modified using random shifts for several distributions with different variances. The method appears to be extremely sensitive even for relatively small level of noise. The other set of tests concentrated on the main feature of models obtained from the real data. All models inverted using
Adjoint-Based Methodology for Time-Dependent Optimal Control (AMTOC)
NASA Technical Reports Server (NTRS)
Yamaleev, Nail; Diskin, boris; Nishikawa, Hiroaki
2012-01-01
During the five years of this project, the AMTOC team developed an adjoint-based methodology for design and optimization of complex time-dependent flows, implemented AMTOC in a testbed environment, directly assisted in implementation of this methodology in the state-of-the-art NASA's unstructured CFD code FUN3D, and successfully demonstrated applications of this methodology to large-scale optimization of several supersonic and other aerodynamic systems, such as fighter jet, subsonic aircraft, rotorcraft, high-lift, wind-turbine, and flapping-wing configurations. In the course of this project, the AMTOC team has published 13 refereed journal articles, 21 refereed conference papers, and 2 NIA reports. The AMTOC team presented the results of this research at 36 international and national conferences, meeting and seminars, including International Conference on CFD, and numerous AIAA conferences and meetings. Selected publications that include the major results of the AMTOC project are enclosed in this report.
Supersonic wing and wing-body shape optimization using an adjoint formulation
NASA Technical Reports Server (NTRS)
Reuther, James; Jameson, Antony
1995-01-01
This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design of supersonic configurations. The work represents an extension of our earlier research in which control theory is used to devise a design procedure that significantly reduces the computational cost by employing an adjoint equation. In previous studies it was shown that control theory could be used toeviseransonic design methods for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. The method has also been implemented for both transonic potential flows and transonic flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can treat more general configurations. Here results are presented for three-dimensional design cases subject to supersonic flows governed by the Euler equation.
2015-11-10
Accepted 12 October 2015 Available online 10 November 2015 Keywords: Data assimilation Ajoint analysis Regional modeling a b s t r a c t Performance of...the adjoint and adjoint-free 4-dimensional variational (4dVar) data assimilation techniques is compared in application to the hydrographic surveys...and velocity observations collected in the Adriatic Sea in 2006. Assimilating the data into the Navy Coastal Ocean Model (NCOM) has shown that both
Spectral functions of non-essentially self-adjoint operators
NASA Astrophysics Data System (ADS)
Falomir, H. A.; Pisani, P. A. G.
2012-09-01
One of the many problems to which Dowker devoted his attention is the effect of a conical singularity in the base manifold on the behavior of the quantum fields. In particular, he studied the small-t asymptotic expansion of the heat-kernel trace on a cone and its effects on physical quantities as the Casimir energy. In this paper, we review some peculiar results found in the last decade, regarding the appearance of non-standard powers of t, and even negative integer powers of log t, in this asymptotic expansion for the self-adjoint extensions of some symmetric operators with singular coefficients. Similarly, we show that the ζ-function associated with these self-adjoint extensions presents an unusual analytic structure. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’.
Towards Multi-resolution Adjoint Tomography of the European Crust and Upper Mantle
NASA Astrophysics Data System (ADS)
Basini, P.; Nissen-Meyer, T.; Boschi, L.; Schenk, O.; Verbeke, J.; Hanasoge, S.; Giardini, D.
2010-12-01
Thanks to continuously improved instrument coverage, and the growth of high-performance computational infrastructure, it is now possible to enhance the resolution at which seismologists image the Earth's interior. While most algorithms in global seismic tomography today are grounded on the ray-theory approximation, however, resolution and model complexity can effectively be enhanced only through the application of more advanced techniques accounting for the many complexities of the partial derivatives relating seismic data and Earth structure. These include full-wave forward modelling methods and adjoint algorithms, which together set a framework for iterative, nonlinear inversion upon complex 3D structures. We take advantage of these methodological improvements using a newly developed, flexible spectral-element method (SPECFEM3D) with embedded adjoint capabilities to devise new tomographic models of the European crust and upper mantle. We chose a two-scale strategy, in which we use global surface wave data to first constrain the large-scale structures, and simultaneously invert for high-resolution, regional structures based on measurements of ambient noise in central and southern Europe. By its very nature, and as a result of the dense station coverage over the continent, the ambient-noise method affords us a particularly uniform seismic coverage. To define surface-wave sensitivity kernels, we construct a flexible, global mesh of the upper mantle only (i.e., a spherical shell) honoring all global discontinuities, and include 3D starting models down to periods of 30 seconds. The noise data are cross-correlated to obtain station-to-station Green's functions. We will present examples of sensitivity kernels computed for these noise-based Green's functions and discuss the data-specific validity of the underlying assumptions to extract Green's functions. The local setup, which is constructed using the same software as in the global case, needs to honor internal and
Towards adjoint-based inversion of time-dependent mantle convection with non-linear viscosity
NASA Astrophysics Data System (ADS)
Li, Dunzhu; Gurnis, Michael; Stadler, Georg
2017-01-01
We develop and study an adjoint-based inversion method for the simultaneous recovery of initial temperature conditions and viscosity parameters in time-dependent mantle convection from the current mantle temperature and historic plate motion. Based on a realistic rheological model with temperature- and strain rate-dependent viscosity, we formulate the inversion as a PDE-constrained optimization problem. The objective functional includes the misfit of surface velocity (plate motion) history, the misfit of the current mantle temperature, and a regularization for the uncertain initial condition. The gradient of this functional with respect to the initial temperature and the uncertain viscosity parameters is computed by solving the adjoint of the mantle convection equations. This gradient is used in a preconditioned quasi-Newton minimization algorithm. We study the prospects and limitations of the inversion, as well as the computational performance of the method using two synthetic problems, a sinking cylinder and a realistic subduction model. The subduction model is characterized by the migration of a ridge toward a trench whereby both plate motions and subduction evolve. The results demonstrate: (1) for known viscosity parameters, the initial temperature can be well recovered, as in previous initial condition-only inversions where the effective viscosity was given; (2) for known initial temperature, viscosity parameters can be recovered accurately, despite the existence of trade-offs due to ill-conditioning; (3) for the joint inversion of initial condition and viscosity parameters, initial condition and effective viscosity can be reasonably recovered, but the high dimension of the parameter space and the resulting ill-posedness may limit recovery of viscosity parameters.
A Note About HARP's State Trimming Method
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Hayhurst, Kelly J.; Johnson, Sally C.
1998-01-01
This short note provides some additional insight into how the HARP program works. In some cases, it is possible for HARP to tdm away too many states and obtain an optimistic result. The HARP Version 7.0 manual warns the user that 'Unlike the ALL model, the SAME model can automatically drop failure modes for certain system models. The user is cautioned to insure that no important failure modes are dropped; otherwise, a non-conservative result can be given.' This note provides an example of where this occurs and a pointer to further documentation that gives a means of bounding the error associated with trimming these states.
Variational methods in steady state diffusion problems
Lee, C.E.; Fan, W.C.P.; Bratton, R.L.
1983-01-01
Classical variational techniques are used to obtain accurate solutions to the multigroup multiregion one dimensional steady state neutron diffusion equation. Analytic solutions are constructed for benchmark verification. Functionals with cubic trial functions and conservational lagrangian constraints are exhibited and compared with nonconservational functionals with respect to neutron balance and to relative flux and current at interfaces. Excellent agreement of the conservational functionals using cubic trial functions is obtained in comparison with analytic solutions.
Development of Variational Data Assimilation Methods for the MoSST Geodynamo Code
NASA Astrophysics Data System (ADS)
Egbert, G. D.; Erofeeva, S.; Kuang, W.; Tangborn, A.; Dimitrova, L. L.
2013-12-01
A range of different approaches to data assimilation for Earth's geodynamo are now being pursued, from sequential schemes based on approximate covariances of various degrees of sophistication, to variational methods for models of varying degrees of physical completeness. While variational methods require development of adjoint (and possible tangent linear) variants on the forward code---a challenging programming task for a fully self-consistent modern dynamo code---this approach may ultimately offer significant advantages. For example, adjoint based variational approaches allow initial, boundary, and forcing terms to be explicitly adjusted to combine data from modern and historical eras into dynamically consistent maps of core state, including flow, buoyancy and magnetic fields. Here we describe development of tangent linear and adjoint codes for the Modular Scalable Self-consistent Three-dimensional (MoSST) geodynamo simulator, and present initial results from simple synthetic data assimilation experiments. Our approach has been to develop the exact linearization and adjoint of the actual discrete functions represented by the computer code. To do this we use a 'divide-and-concur' approach: the code is decomposed as the sequential action of a series of linear and non-linear procedures on specified inputs. Non-linear procedures are first linearized about a pre-computed input background state (derived by running the non-linear forward model), and a tangent linear time-step code is developed. For small perturbations of initial state the linearization appears to remain valid for times comparable to the secular variation time-scale. Adjoints for each linear (or linearized) procedure were then developed and tested separately (for symmetry), and then merged into adjoint procedures of increasing complexity. We have completed development of the adjoint for a serial version of the MoSST code, explore time limits of forward operator linearization, and discuss next steps
Self-adjoint integral operator for bounded nonlocal transport
NASA Astrophysics Data System (ADS)
Maggs, J. E.; Morales, G. J.
2016-11-01
An integral operator is developed to describe nonlocal transport in a one-dimensional system bounded on both ends by material walls. The "jump" distributions associated with nonlocal transport are taken to be Lévy α -stable distributions, which become naturally truncated by the bounding walls. The truncation process results in the operator containing a self-consistent, convective inward transport term (pinch). The properties of the integral operator as functions of the Lévy distribution parameter set [α ,γ ] and the wall conductivity are presented. The integral operator continuously recovers the features of local transport when α =2 . The self-adjoint formulation allows for an accurate description of spatial variation in the Lévy parameters in the nonlocal system. Spatial variation in the Lévy parameters is shown to result in internally generated flows. Examples of cold-pulse propagation in nonlocal systems illustrate the capabilities of the methodology.
Self-adjoint integral operator for bounded nonlocal transport.
Maggs, J E; Morales, G J
2016-11-01
An integral operator is developed to describe nonlocal transport in a one-dimensional system bounded on both ends by material walls. The "jump" distributions associated with nonlocal transport are taken to be Lévy α-stable distributions, which become naturally truncated by the bounding walls. The truncation process results in the operator containing a self-consistent, convective inward transport term (pinch). The properties of the integral operator as functions of the Lévy distribution parameter set [α,γ] and the wall conductivity are presented. The integral operator continuously recovers the features of local transport when α=2. The self-adjoint formulation allows for an accurate description of spatial variation in the Lévy parameters in the nonlocal system. Spatial variation in the Lévy parameters is shown to result in internally generated flows. Examples of cold-pulse propagation in nonlocal systems illustrate the capabilities of the methodology.
NASA Astrophysics Data System (ADS)
Parkinson, Samuel D.; Funke, Simon W.; Hill, Jon; Piggott, Matthew D.; Allison, Peter A.
2017-03-01
Turbidity currents are one of the main drivers of sediment transport from the continental shelf to the deep ocean. The resulting sediment deposits can reach hundreds of kilometres into the ocean. Computer models that simulate turbidity currents and the resulting sediment deposit can help us to understand their general behaviour. However, in order to recreate real-world scenarios, the challenge is to find the turbidity current parameters that reproduce the observations of sediment deposits. This paper demonstrates a solution to the inverse sediment transportation problem: for a known sedimentary deposit, the developed model reconstructs details about the turbidity current that produced the deposit. The reconstruction is constrained here by a shallow water sediment-laden density current model, which is discretised by the finite-element method and an adaptive time-stepping scheme. The model is differentiated using the adjoint approach, and an efficient gradient-based optimisation method is applied to identify the turbidity parameters which minimise the misfit between the modelled and the observed field sediment deposits. The capabilities of this approach are demonstrated using measurements taken in the Miocene Marnoso-arenacea Formation (Italy). We find that whilst the model cannot match the deposit exactly due to limitations in the physical processes simulated, it provides valuable insights into the depositional processes and represents a significant advance in our toolset for interpreting turbidity current deposits.
Optimizing spectral wave estimates with adjoint-based sensitivity maps
NASA Astrophysics Data System (ADS)
Orzech, Mark; Veeramony, Jay; Flampouris, Stylianos
2014-04-01
A discrete numerical adjoint has recently been developed for the stochastic wave model SWAN. In the present study, this adjoint code is used to construct spectral sensitivity maps for two nearshore domains. The maps display the correlations of spectral energy levels throughout the domain with the observed energy levels at a selected location or region of interest (LOI/ROI), providing a full spectrum of values at all locations in the domain. We investigate the effectiveness of sensitivity maps based on significant wave height ( H s ) in determining alternate offshore instrument deployment sites when a chosen nearshore location or region is inaccessible. Wave and bathymetry datasets are employed from one shallower, small-scale domain (Duck, NC) and one deeper, larger-scale domain (San Diego, CA). The effects of seasonal changes in wave climate, errors in bathymetry, and multiple assimilation points on sensitivity map shapes and model performance are investigated. Model accuracy is evaluated by comparing spectral statistics as well as with an RMS skill score, which estimates a mean model-data error across all spectral bins. Results indicate that data assimilation from identified high-sensitivity alternate locations consistently improves model performance at nearshore LOIs, while assimilation from low-sensitivity locations results in lesser or no improvement. Use of sub-sampled or alongshore-averaged bathymetry has a domain-specific effect on model performance when assimilating from a high-sensitivity alternate location. When multiple alternate assimilation locations are used from areas of lower sensitivity, model performance may be worse than with a single, high-sensitivity assimilation point.
NASA Technical Reports Server (NTRS)
Arian, Eyal; Salas, Manuel D.
1997-01-01
We derive the adjoint equations for problems in aerodynamic optimization which are improperly considered as "inadmissible." For example, a cost functional which depends on the density, rather than on the pressure, is considered "inadmissible" for an optimization problem governed by the Euler equations. We show that for such problems additional terms should be included in the Lagrangian functional when deriving the adjoint equations. These terms are obtained from the restriction of the interior PDE to the control surface. Demonstrations of the explicit derivation of the adjoint equations for "inadmissible" cost functionals are given for the potential, Euler, and Navier-Stokes equations.
Discrete Adjoint-Based Design Optimization of Unsteady Turbulent Flows on Dynamic Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Diskin, Boris; Yamaleev, Nail K.
2009-01-01
An adjoint-based methodology for design optimization of unsteady turbulent flows on dynamic unstructured grids is described. The implementation relies on an existing unsteady three-dimensional unstructured grid solver capable of dynamic mesh simulations and discrete adjoint capabilities previously developed for steady flows. The discrete equations for the primal and adjoint systems are presented for the backward-difference family of time-integration schemes on both static and dynamic grids. The consistency of sensitivity derivatives is established via comparisons with complex-variable computations. The current work is believed to be the first verified implementation of an adjoint-based optimization methodology for the true time-dependent formulation of the Navier-Stokes equations in a practical computational code. Large-scale shape optimizations are demonstrated for turbulent flows over a tiltrotor geometry and a simulated aeroelastic motion of a fighter jet.
Almost commuting self-adjoint matrices: The real and self-dual cases
NASA Astrophysics Data System (ADS)
Loring, Terry A.; Sørensen, Adam P. W.
2016-08-01
We show that a pair of almost commuting self-adjoint, symmetric matrices is close to a pair of commuting self-adjoint, symmetric matrices (in a uniform way). Moreover, we prove that the same holds with self-dual in place of symmetric and also for paths of self-adjoint matrices. Since a symmetric, self-adjoint matrix is real, we get a real version of Huaxin Lin’s famous theorem on almost commuting matrices. Similarly, the self-dual case gives a version for matrices over the quaternions. To prove these results, we develop a theory of semiprojectivity for real C*-algebras and also examine various definitions of low-rank for real C*-algebras.
Method for solid state crystal growth
Nolas, George S.; Beekman, Matthew K.
2013-04-09
A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.
Preliminary Results from the Application of Automated Adjoint Code Generation to CFL3D
NASA Technical Reports Server (NTRS)
Carle, Alan; Fagan, Mike; Green, Lawrence L.
1998-01-01
This report describes preliminary results obtained using an automated adjoint code generator for Fortran to augment a widely-used computational fluid dynamics flow solver to compute derivatives. These preliminary results with this augmented code suggest that, even in its infancy, the automated adjoint code generator can accurately and efficiently deliver derivatives for use in transonic Euler-based aerodynamic shape optimization problems with hundreds to thousands of independent design variables.
Improving Upon String Methods for Transition State Discovery.
Chaffey-Millar, Hugh; Nikodem, Astrid; Matveev, Alexei V; Krüger, Sven; Rösch, Notker
2012-02-14
Transition state discovery via application of string methods has been researched on two fronts. The first front involves development of a new string method, named the Searching String method, while the second one aims at estimating transition states from a discretized reaction path. The Searching String method has been benchmarked against a number of previously existing string methods and the Nudged Elastic Band method. The developed methods have led to a reduction in the number of gradient calls required to optimize a transition state, as compared to existing methods. The Searching String method reported here places new beads on a reaction pathway at the midpoint between existing beads, such that the resolution of the path discretization in the region containing the transition state grows exponentially with the number of beads. This approach leads to favorable convergence behavior and generates more accurate estimates of transition states from which convergence to the final transition states occurs more readily. Several techniques for generating improved estimates of transition states from a converged string or nudged elastic band have been developed and benchmarked on 13 chemical test cases. Optimization approaches for string methods, and pitfalls therein, are discussed.
NASA Technical Reports Server (NTRS)
Lee-Rausch, E. M.; Park, M. A.; Jones, W. T.; Hammond, D. P.; Nielsen, E. J.
2005-01-01
This paper demonstrates the extension of error estimation and adaptation methods to parallel computations enabling larger, more realistic aerospace applications and the quantification of discretization errors for complex 3-D solutions. Results were shown for an inviscid sonic-boom prediction about a double-cone configuration and a wing/body segmented leading edge (SLE) configuration where the output function of the adjoint was pressure integrated over a part of the cylinder in the near field. After multiple cycles of error estimation and surface/field adaptation, a significant improvement in the inviscid solution for the sonic boom signature of the double cone was observed. Although the double-cone adaptation was initiated from a very coarse mesh, the near-field pressure signature from the final adapted mesh compared very well with the wind-tunnel data which illustrates that the adjoint-based error estimation and adaptation process requires no a priori refinement of the mesh. Similarly, the near-field pressure signature for the SLE wing/body sonic boom configuration showed a significant improvement from the initial coarse mesh to the final adapted mesh in comparison with the wind tunnel results. Error estimation and field adaptation results were also presented for the viscous transonic drag prediction of the DLR-F6 wing/body configuration, and results were compared to a series of globally refined meshes. Two of these globally refined meshes were used as a starting point for the error estimation and field-adaptation process where the output function for the adjoint was the total drag. The field-adapted results showed an improvement in the prediction of the drag in comparison with the finest globally refined mesh and a reduction in the estimate of the remaining drag error. The adjoint-based adaptation parameter showed a need for increased resolution in the surface of the wing/body as well as a need for wake resolution downstream of the fuselage and wing trailing edge
7 CFR 215.5 - Method of payment to States.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 4 2011-01-01 2011-01-01 false Method of payment to States. 215.5 Section 215.5 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.5 Method of payment to States....
7 CFR 215.5 - Method of payment to States.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 4 2013-01-01 2013-01-01 false Method of payment to States. 215.5 Section 215.5 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.5 Method of payment to States....
7 CFR 215.5 - Method of payment to States.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 4 2014-01-01 2014-01-01 false Method of payment to States. 215.5 Section 215.5 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.5 Method of payment to States....
7 CFR 215.5 - Method of payment to States.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 4 2010-01-01 2010-01-01 false Method of payment to States. 215.5 Section 215.5 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.5 Method of payment to States....
7 CFR 215.5 - Method of payment to States.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 4 2012-01-01 2012-01-01 false Method of payment to States. 215.5 Section 215.5 Agriculture Regulations of the Department of Agriculture (Continued) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.5 Method of payment to States....
The adjoint neutron transport equation and the statistical approach for its solution
NASA Astrophysics Data System (ADS)
Saracco, P.; Dulla, S.; Ravetto, P.
2016-11-01
The adjoint equation was introduced in the early days of neutron transport and its solution, the neutron importance, has been used for several applications in neutronics. The work presents at first a critical review of the adjoint neutron transport equation. Afterwards, the adjont model is constructed for a reference physical situation, for which an analytical approach is viable, i.e. an infinite homogeneous scattering medium. This problem leads to an equation that is the adjoint of the slowing-down equation, which is well known in nuclear reactor physics. A general closed-form analytical solution to such adjoint equation is obtained by a procedure that can be used also to derive the classical Placzek functions. This solution constitutes a benchmark for any statistical or numerical approach to the adjoint equation. A sampling technique to evaluate the adjoint flux for the transport equation is then proposed and physically interpreted as a transport model for pseudo-particles. This can be done by introducing appropriate kernels describing the transfer of the pseudo-particles in the phase space. This technique allows estimating the importance function by a standard Monte Carlo approach. The sampling scheme is validated by comparison with the analytical results previously obtained.
Plumes, Hotspot & Slabs Imaged by Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Bozdag, E.; Lefebvre, M. P.; Lei, W.; Peter, D. B.; Smith, J. A.; Komatitsch, D.; Tromp, J.
2015-12-01
We present the "first generation" global adjoint tomography model based on 3D wave simulations, which is the result of 15 conjugate-gradient iterations with confined transverse isotropy to the upper mantle. Our starting model is the 3D mantle and crustal models S362ANI (Kustowski et al. 2008) and Crust2.0 (Bassin et al. 2000), respectively. We take into account the full nonlinearity of wave propagation in numerical simulations including attenuation (both in forward and adjoint simulations), topography/bathymetry, etc., using the GPU version of the SPECFEM3D_GLOBE package. We invert for crust and mantle together without crustal corrections to avoid any bias in mantle structure. We started with an initial selection of 253 global CMT events within the magnitude range 5.8 ≤ Mw ≤ 7.0 with numerical simulations having resolution down to 27 s combining 30-s body and 60-s surface waves. After the 12th iteration we increased the resolution to 17 s, including higher-frequency body waves as well as going down to 45 s in surface-wave measurements. We run 180-min seismograms and assimilate all minor- and major-arc body and surface waves. Our 15th iteration model update shows a tantalisingly enhanced image of the Tahiti plume as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone, Erebus, etc. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the initial model. Point-spread function tests (Fichtner & Trampert 2011) suggest that we are close to the resolution of continental-scale studies in our global inversions and able to confidently map features, for instance, at the scale of the Yellowstone hotspot. This is a clear consequence of our multi-scale smoothing strategy, in which we define our smoothing operator as a function of the approximate Hessian kernel and smooth our gradients less wherever we have good ray coverage
Solid state lighting devices and methods with rotary cooling structures
Koplow, Jeffrey P.
2017-03-21
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipation methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.
A flexible transition state searching method for atmospheric reaction systems
NASA Astrophysics Data System (ADS)
Lin, Xiao-Xiao; Liu, Yi-Rong; Huang, Teng; Chen, Jiao; Jiang, Shuai; Huang, Wei
2015-04-01
The precise and rapid exploration of transition states (TSs) is a major challenge when studying atmospheric reactions due to their complexity. In this work, a Monte Carlo Transition State Search Method (MCTSSM), which integrates Monte Carlo sampling technique with transition state optimization methods using an efficient computer script, has been developed for transition state searches. The efficiency and the potential application in atmospheric reactions of this method have been demonstrated by three types of test suits related to the reactions of atmospheric volatile organic compounds (VOCs): (1) OH addition, (2) OH hydrogen-abstraction, and (3) the other reactive group (e.g. Cl, O3, NO3), especially for the reaction of β-pinene-sCI (stabilized Criegee Intermediates) with water. It was shown that the application of this method with effective restricted parameters has greatly simplified the time-consuming and tedious manual search procedure for transition state (TS) of the bimolecular reaction systems.
A Flexible Transition State Searching Method for Atmospheric Reaction Systems
Lin, Xiao-Xiao; Liu, Yi-Rong; Huang, Teng; Chen, Jiao; Jiang, Shuai; Huang, Wei
2015-04-01
The precise and rapid exploration of transition states (TSs) is a major challenge when studying atmospheric reactions due to their complexity. In this work, a Monte Carlo Transition State Search Method (MCTSSM), which integrates Monte Carlo sampling technique with transition state optimization methods using an efficient computer script, has been developed for transition state searches. The efficiency and the potential application in atmospheric reactions of this method have been demonstrated by three types of test suits related to the reactions of atmospheric volatile organic compounds (VOCs): (1) OH addition, (2) OH hydrogen-abstraction, and (3) the other reactive group (e.g. Cl, O3, NO3), especially for the reaction of β-pinene-sCI (stabilized Criegee Intermediates) with water. It was shown that the application of this method with effective restricted parameters has greatly simplified the time-consuming and tedious manual search procedure for transition state (TS) of the bimolecular reaction systems.
Methods for thermodynamic evaluation of battery state of health
Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T
2013-05-21
Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.
NASA Astrophysics Data System (ADS)
Chen, M.; Masy, J.; Niu, F.; Levander, A.
2014-12-01
We present a high-resolution 3D crustal model of Eastern Venezuela from a full waveform inversion adjoint tomography technique, based on the spectral-element method. Empirical Green's functions (EGFs) of Rayleigh waves from ambient noise interferometry serve as the observed waveforms. Rayleigh wave signals in the period range of 10 - 50 s were extracted by cross-correlations of 48 stations from both Venezuelan national seismic network and the BOLIVAR project array. The synthetic Green's functions (SGFs) are calculated with an initial regional 3D shear wave model determined from ballistic Rayleigh wave tomography from earthquake records with periods longer than 20 s. The frequency-dependent traveltime time misfits between the SGFs and EGFs are minimized iteratively using adjoint tomography = to refine 3D crustal structure [Chen et al. 2014]. The final 3D model shows lateral shear wave velocity variations that are well correlated with the geological terranes within the continental interior. In particular, the final model reveals low velocities distributed along the axis of the Espino Graben, indicating that the graben has a substantially different crustal structure than the rest of the Eastern Venezuela Basin. We also observe high shear velocities in the lower crust beneath some of the subterranes of the Proterozoic-Archean Guayana Shield.
NASA Astrophysics Data System (ADS)
Morimoto, Kenichi; Kinoshita, Hidenori; Suzuki, Yuji
2016-11-01
In the present study, an adjoint-based shape-optimization method has been developed for designing extended heat transfer surfaces in conjugate heat transfer problems. Here we specifically consider heat conduction-dominated solidification problem under different thermal boundary conditions: (i) the isothermal condition, and (ii) the conjugate condition with thermal coupling between the solidified liquid and the solid wall inside the domain bounded by the extended heat transfer surface. In the present shape-optimization scheme, extended heat transfer surfaces are successively refined in a local way based on the variational information of a cost functional with respect to the shape modification. In the computation of the developed scheme, a meshless method is employed for dealing with the complex boundary shape. For high-resolution analyses with boundary-fitted node arrangement, we have introduced a bubble-mesh method combined with a high-efficiency algorithm for searching neighboring bubbles within a cut-off distance. The present technique can be easily applied to convection problems including high Reynolds number flow. We demonstrate, for the isothermal boundary condition, that the present optimization leads to tree-like fin shapes, which achieve the temperature field with global similarity for different initial fin shapes. We will also show the computational results for the conjugate condition, which would regularize the present optimization due to the fin-efficiency effect.
NASA Astrophysics Data System (ADS)
Freire, Igor Leite; Santos Sampaio, Júlio Cesar
2014-02-01
In this paper we consider a class of evolution equations up to fifth-order containing many arbitrary smooth functions from the point of view of nonlinear self-adjointness. The studied class includes many important equations modeling different phenomena. In particular, some of the considered equations were studied previously by other researchers from the point of view of quasi self-adjointness or strictly self-adjointness. Therefore we find new local conservation laws for these equations invoking the obtained results on nonlinearly self-adjointness and the conservation theorem proposed by Nail Ibragimov.
Comparison of Ensemble and Adjoint Approaches to Variational Optimization of Observational Arrays
NASA Astrophysics Data System (ADS)
Nechaev, D.; Panteleev, G.; Yaremchuk, M.
2015-12-01
Comprehensive monitoring of the circulation in the Chukchi Sea and Bering Strait is one of the key prerequisites of the successful long-term forecast of the Arctic Ocean state. Since the number of continuously maintained observational platforms is restricted by logistical and political constraints, the configuration of such an observing system should be guided by an objective strategy that optimizes the observing system coverage, design, and the expenses of monitoring. The presented study addresses optimization of system consisting of a limited number of observational platforms with respect to reduction of the uncertainties in monitoring the volume/freshwater/heat transports through a set of key sections in the Chukchi Sea and Bering Strait. Variational algorithms for optimization of observational arrays are verified in the test bed of the set of 4Dvar optimized summer-fall circulations in the Pacific sector of the Arctic Ocean. The results of an optimization approach based on low-dimensional ensemble of model solutions is compared against a more conventional algorithm involving application of the tangent linear and adjoint models. Special attention is paid to the computational efficiency and portability of the optimization procedure.
Multi-point Adjoint-Based Design of Tilt-Rotors in a Noninertial Reference Frame
NASA Technical Reports Server (NTRS)
Jones, William T.; Nielsen, Eric J.; Lee-Rausch, Elizabeth M.; Acree, Cecil W.
2014-01-01
Optimization of tilt-rotor systems requires the consideration of performance at multiple design points. In the current study, an adjoint-based optimization of a tilt-rotor blade is considered. The optimization seeks to simultaneously maximize the rotorcraft figure of merit in hover and the propulsive efficiency in airplane-mode for a tilt-rotor system. The design is subject to minimum thrust constraints imposed at each design point. The rotor flowfields at each design point are cast as steady-state problems in a noninertial reference frame. Geometric design variables used in the study to control blade shape include: thickness, camber, twist, and taper represented by as many as 123 separate design variables. Performance weighting of each operational mode is considered in the formulation of the composite objective function, and a build up of increasing geometric degrees of freedom is used to isolate the impact of selected design variables. In all cases considered, the resulting designs successfully increase both the hover figure of merit and the airplane-mode propulsive efficiency for a rotor designed with classical techniques.
A New Method for Incremental Testing of Finite State Machines
NASA Technical Reports Server (NTRS)
Pedrosa, Lehilton Lelis Chaves; Moura, Arnaldo Vieira
2010-01-01
The automatic generation of test cases is an important issue for conformance testing of several critical systems. We present a new method for the derivation of test suites when the specification is modeled as a combined Finite State Machine (FSM). A combined FSM is obtained conjoining previously tested submachines with newly added states. This new concept is used to describe a fault model suitable for incremental testing of new systems, or for retesting modified implementations. For this fault model, only the newly added or modified states need to be tested, thereby considerably reducing the size of the test suites. The new method is a generalization of the well-known W-method and the G-method, but is scalable, and so it can be used to test FSMs with an arbitrarily large number of states.
Vincent M. Laboure; Yaqi Wang; Mark D. DeHart
2016-05-01
In this paper, we study the Least-Squares (LS) PN form of the transport equation compatible with voids in the context of Continuous Finite Element Methods (CFEM).We first deriveweakly imposed boundary conditions which make the LS weak formulation equivalent to the Self-Adjoint Angular Flux (SAAF) variational formulation with a void treatment, in the particular case of constant cross-sections and a uniform mesh. We then implement this method in Rattlesnake with the Multiphysics Object Oriented Simulation Environment (MOOSE) framework using a spherical harmonics (PN) expansion to discretize in angle. We test our implementation using the Method of Manufactured Solutions (MMS) and find the expected convergence behavior both in angle and space. Lastly, we investigate the impact of the global non-conservation of LS by comparing the method with SAAF on a heterogeneous test problem.
NASA Astrophysics Data System (ADS)
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.
2016-09-01
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier-Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.
Shadid, J.N.; Smith, T.M.; Cyr, E.C.; Wildey, T.M.; Pawlowski, R.P.
2016-09-15
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. In this respect the understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In this study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. Initial results are presented that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; Wildey, T. M.; Pawlowski, R. P.
2016-05-20
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-based computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.
Shadid, J. N.; Smith, T. M.; Cyr, E. C.; ...
2016-05-20
A critical aspect of applying modern computational solution methods to complex multiphysics systems of relevance to nuclear reactor modeling, is the assessment of the predictive capability of specific proposed mathematical models. The understanding of numerical error, the sensitivity of the solution to parameters associated with input data, boundary condition uncertainty, and mathematical models is critical. Additionally, the ability to evaluate and or approximate the model efficiently, to allow development of a reasonable level of statistical diagnostics of the mathematical model and the physical system, is of central importance. In our study we report on initial efforts to apply integrated adjoint-basedmore » computational analysis and automatic differentiation tools to begin to address these issues. The study is carried out in the context of a Reynolds averaged Navier–Stokes approximation to turbulent fluid flow and heat transfer using a particular spatial discretization based on implicit fully-coupled stabilized FE methods. We present the initial results that show the promise of these computational techniques in the context of nuclear reactor relevant prototype thermal-hydraulics problems.« less
Finn, John M.
2015-03-01
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.
On urban road traffic state evaluation index system and method
NASA Astrophysics Data System (ADS)
Su, Fei; Dong, Honghui; Jia, Limin; Sun, Xuan
2017-01-01
Traffic state evaluation is a basic and critical work in the research on road traffic congestion. It can provide basic data support for the improvement measures and information release in traffic management and service. The aim of this research is to obtain a comprehensive value to describe traffic state accurately based on the evaluation index system. In this paper, it is carried out using fuzzy c-means (FCM) algorithm and fuzzy entropy weight method. In the framework, traffic flow was classified into six different states to determine the fuzzy range of indices using the improved FCM clustering analysis. Besides, fuzzy entropy weight method is proposed to compute the evaluation result of traffic state for section, road and road network, respectively. The experiments based on the traffic information in a subset of Beijing’s road network prove that the findings of traffic evaluation are in accordance with the actual situation and people’s sense of traffic state.
Adjoint-based airfoil shape optimization in transonic flow
NASA Astrophysics Data System (ADS)
Gramanzini, Joe-Ray
The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques are employed to study their effect and the number of design variables on the final optimized shape: Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD) and the BandAids free-form deformation technique. For the two airfoil cases, angle of attack is treated as a global design variable. The thickness and camber distributions are the local design variables for MASSOUD, and selected airfoil surface grid points are the local design variables for BandAids. Using the MASSOUD technique, a drag reduction of 72.14% is achieved for the NACA 0012 case, reducing the total number of drag counts from 473.91 to 130.59. Employing the BandAids technique yields a 78.67% drag reduction, from 473.91 to 99.98. The RAE 2822 case exhibited a drag reduction from 217.79 to 132.79 counts, a 39.05% decrease using BandAids.
NASA Astrophysics Data System (ADS)
Moore, A. M.; Dilorenzo, E.; Arango, H. G.; Lewis, C. V.; Powell, T. M.; Miller, A. J.; Cornuelle, B. D.
2005-12-01
The adjoint of the tangent linear version of the Regional Ocean Modeling System (ROMS) coupled to a four component nitrogen-based trophic model (NPZD) has been used to explore the sensitivity of various physical and biological aspects of the southern arm of the California Current system to linear variations in the physical and biological attributes of the system. The aspects of the system of interest are characterized by suitably defined indices of variability that include measures of coastal upwelling, eddy kinetic energy, and biological tracer concentrations. The adjoint approach is particularly well suited to this kind of analysis because all of the model linear sensitivities can be computed from a single integration of the adjoint model for each index. The adjoint model provides two- and three-dimensional, time-dependent fields of sensitivity from which clear signatures of processes such as advection and instability can be identified. By comparing the sensitivities that arise from perturbing different physical variables in an appropriate way, the relative importance of different physical and biological processes and their potential to control a chosen index can be determined. We will show examples of such adjoint sensitivity analyses for the coupled physical-biological model computed in this way, and discuss their implications.
Generalized adjoint consistent treatment of wall boundary conditions for compressible flows
NASA Astrophysics Data System (ADS)
Hartmann, Ralf; Leicht, Tobias
2015-11-01
In this article, we revisit the adjoint consistency analysis of Discontinuous Galerkin discretizations of the compressible Euler and Navier-Stokes equations with application to the Reynolds-averaged Navier-Stokes and k- ω turbulence equations. Here, particular emphasis is laid on the discretization of wall boundary conditions. While previously only one specific combination of discretizations of wall boundary conditions and of aerodynamic force coefficients has been shown to give an adjoint consistent discretization, in this article we generalize this analysis and provide a discretization of the force coefficients for any consistent discretization of wall boundary conditions. Furthermore, we demonstrate that a related evaluation of the cp- and cf-distributions is required. The freedom gained in choosing the discretization of boundary conditions without loosing adjoint consistency is used to devise a new adjoint consistent discretization including numerical fluxes on the wall boundary which is more robust than the adjoint consistent discretization known up to now. While this work is presented in the framework of Discontinuous Galerkin discretizations, the insight gained is also applicable to (and thus valuable for) other discretization schemes. In particular, the discretization of integral quantities, like the drag, lift and moment coefficients, as well as the discretization of local quantities at the wall like surface pressure and skin friction should follow as closely as possible the discretization of the flow equations and boundary conditions at the wall boundary.
Methods for determining the physiological state of a plant
Kramer, David M.; Sacksteder, Colette
2003-09-23
The present invention provides methods for measuring a photosynthetic parameter. The methods of the invention include the steps of: (a) illuminating a plant leaf until steady-state photosynthesis is achieved; (b) subjecting the illuminated plant leaf to a period of darkness; (c) using a kinetic spectrophotometer or kinetic spectrophotometer/fluorimeter to collect spectral data from the plant leaf treated in accordance with steps (a) and (b); and (d) determining a photosynthetic parameter from the spectral data. In another aspect, the invention provides methods for determining the physiological state of a plant.
NASA Astrophysics Data System (ADS)
Liu, L.; Gurnis, M.
2007-12-01
The adjoint method widely used in meteorology and oceanography was introduced into mantle convection by Bunge et al (2003) and Ismail et al (2004). We implemented the adjoint method in CitcomS, a finite-element code that solves for thermal convection within a spherical shell. This method constrains the initial condition by minimizing the mismatch of prediction to observation. Since the present day mantle thermal structure is inferred from seismic tomography, we converted seismic velocity to temperature, an uncertain conversion. Moreover, since mantle viscosity is also uncertain, the inference of mantle initial conditions from tomography is not unique. We have developed a method that incorporates dynamic topography as an additional constraint and are able to jointly invert for mantle viscosity and the seismic to thermal scaling. We assume the thermal structure of present day mantle has the same ¡°pattern¡± as inferred from tomography, but leave the scaling to temperature as an unknown. The other constraint is the evolving dynamic topography recorded at specific points on earth's surface. From the governing equations of mantle convection, we derive the relations between dynamic topography, thermal anomaly and mantle viscosities. These relations allow a two- layer looping algorithm that inverts for viscosity and thermal anomaly: the inner loop takes the tomographic image as a constraint and the outer loop takes dynamic topography and its rate of change. Starting with incorrect values of thermal anomaly and viscosities, we show with synthetic experiments that all variables converge to their correct values after a finite number of iterations. Our method is examined both in a uniformly viscous mantle and a mantle with depth- and temperature-dependent viscosity. The method has been applied to the descent of the Farallon slab beneath North America.
Note: Excited State Studies of Ozone using State-Specific Multireference Coupled Cluster Methods
Bhaskaran-Nair, Kiran; Kowalski, Karol
2012-12-07
Vertical excitation energies obtained with state-specific multi-reference coupled cluster (MRCC) methods are reported for the ozone molecule. Using state-specific MRCC non-iterative methods with singles, doubles, and non-iterative triples (MRCCSD(T)) we obtain 4.40 eV for the challenging doubly excited 21A1 state when using a reliable model space. This estimate is in good agreement with experiment (4.5 eV). We also compare our MRCC results with the excitation energies obtained with high-order equation-of-motion coupled cluster methods
NASA Astrophysics Data System (ADS)
Poirier, Vincent
Mesh deformation schemes play an important role in numerical aerodynamic optimization. As the aerodynamic shape changes, the computational mesh must adapt to conform to the deformed geometry. In this work, an extension to an existing fast and robust Radial Basis Function (RBF) mesh movement scheme is presented. Using a reduced set of surface points to define the mesh deformation increases the efficiency of the RBF method; however, at the cost of introducing errors into the parameterization by not recovering the exact displacement of all surface points. A secondary mesh movement is implemented, within an adjoint-based optimization framework, to eliminate these errors. The proposed scheme is tested within a 3D Euler flow by reducing the pressure drag while maintaining lift of a wing-body configured Boeing-747 and an Onera-M6 wing. As well, an inverse pressure design is executed on the Onera-M6 wing and an inverse span loading case is presented for a wing-body configured DLR-F6 aircraft.
Design methods for fault-tolerant finite state machines
NASA Technical Reports Server (NTRS)
Niranjan, Shailesh; Frenzel, James F.
1993-01-01
VLSI electronic circuits are increasingly being used in space-borne applications where high levels of radiation may induce faults, known as single event upsets. In this paper we review the classical methods of designing fault tolerant digital systems, with an emphasis on those methods which are particularly suitable for VLSI-implementation of finite state machines. Four methods are presented and will be compared in terms of design complexity, circuit size, and estimated circuit delay.
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael
1997-01-01
This paper discusses the calculation of sensitivities. or derivatives, for optimization problems involving systems governed by differential equations and other state relations. The subject is examined from the point of view of nonlinear programming, beginning with the analytical structure of the first and second derivatives associated with such problems and the relation of these derivatives to implicit differentiation and equality constrained optimization. We also outline an error analysis of the analytical formulae and compare the results with similar results for finite-difference estimates of derivatives. We then attend to an investigation of the nature of the adjoint method and the adjoint equations and their relation to directions of steepest descent. We illustrate the points discussed with an optimization problem in which the variables are the coefficients in a differential operator.
Inversion of Gravity Fields From the Spacecraft Orbital Data Using an Adjoint Operator Approach
NASA Technical Reports Server (NTRS)
Ustinov, E. A.
1999-01-01
In perturbation approximation, the forward problem of orbital dynamics (equations with initial conditions) is linear with respect to variations of coordinates and/or velocities of the spacecraft and to corresponding variations of the gravity field in the models used. The linear operator adjoint to the linear operator of such forward problem turns out to be instrumental in inversion of differences between observed and predicted coordinates/velocities in terms of the updates of harmonics in the initial gravity field model. Based on this approach, the solution of resulting adjoint problem of orbital dynamics can be used to directly evaluate the matrix of partial derivatives of observable differences with respect to the gravity field harmonics. General discussion of the adjoint problem of orbital dynamics is given and an example of a mathematical formalism for the practical retrieval algorithm is presented.
Time dependent adjoint-based optimization for coupled fluid-structure problems
NASA Astrophysics Data System (ADS)
Mishra, Asitav; Mani, Karthik; Mavriplis, Dimitri; Sitaraman, Jay
2015-07-01
A formulation for sensitivity analysis of fully coupled time-dependent aeroelastic problems is given in this paper. Both forward sensitivity and adjoint sensitivity formulations are derived that correspond to analogues of the fully coupled non-linear aeroelastic analysis problem. Both sensitivity analysis formulations make use of the same iterative disciplinary solution techniques used for analysis, and make use of an analogous coupling strategy. The information passed between fluid and structural solvers is dimensionally equivalent in all cases, enabling the use of the same data structures for analysis, forward and adjoint problems. The fully coupled adjoint formulation is then used to perform rotor blade design optimization for a four bladed HART2 rotor in hover conditions started impulsively from rest. The effect of time step size and mesh resolution on optimization results is investigated.
NASA Technical Reports Server (NTRS)
Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony
1996-01-01
This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods. The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations. In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that this basic methodology could be ported to distributed memory parallel computing architectures. In this paper, our concern will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.
NASA Technical Reports Server (NTRS)
Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony
1996-01-01
This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods (13, 12, 44, 38). The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method (19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9) was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations (39, 25). In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that the basic methodology could be ported to distributed memory parallel computing architectures [241. In this paper, our concem will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.
A simple method for labeling CT images with respiratory states
Berlinger, Kajetan; Sauer, Otto; Vences, Lucia; Roth, Michael
2006-09-15
A method is described for labeling CT images with their respiratory state by a needle, connected to the patient's chest/abdomen. By means of a leverage the needle follows the abdominal respiratory motion. The needle is visible as a blurred spot in every CT slice. The method was tested with nine patients. A series of volume scans during free breathing was performed. The detected positions of the moving needle in every single slice were compared to each other thus enabling respiratory state assignment. The tool is an inexpensive alternative to complex respiratory measuring tools for four dimensional (4D) CT and was greatly accepted in the clinic due to its simplicity.
Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods.
Prlj, Antonio; Sandoval-Salinas, María Eugenia; Casanova, David; Jacquemin, Denis; Corminboeuf, Clémence
2016-06-14
The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard electronic structure methods do not provide a balanced description of the two (typically) lowest singlet state (La and Lb) excitations. While the Lb state is highly sensitive to correlation effects, La suffers from the same drawbacks as charge transfer excitations. We show that the comparison between CIS/CIS(D) can serve as a diagnostic for detecting the two problematic excited states. Standard TD-DFT and even its spin-flip variant lead to inaccurate excitation energies and interstate gaps, with only a double hybrid functional performing somewhat better. The complication inherent to a balanced description of these states is so important that even CC2 and ADC(2) do not necessarily match the ADC(3) reference.
An Extended Equation of State Modeling Method II. Mixtures
NASA Astrophysics Data System (ADS)
Scalabrin, G.; Marchi, P.; Stringari, P.; Richon, D.
2006-09-01
This work is the extension of previous work dedicated to pure fluids. The same method is extended to the representation of thermodynamic properties of a mixture through a fundamental equation of state in terms of the Helmholtz energy. The proposed technique exploits the extended corresponding-states concept of distorting the independent variables of a dedicated equation of state for a reference fluid using suitable scale factor functions to adapt the equation to experimental data of a target system. An existing equation of state for the target mixture is used instead of an equation for the reference fluid, completely avoiding the need for a reference fluid. In particular, a Soave-Redlich-Kwong cubic equation with van der Waals mixing rules is chosen. The scale factors, which are functions of temperature, density, and mole fraction of the target mixture, are expressed in the form of a multilayer feedforward neural network, whose coefficients are regressed by minimizing a suitable objective function involving different kinds of mixture thermodynamic data. As a preliminary test, the model is applied to five binary and two ternary haloalkane mixtures, using data generated from existing dedicated equations of state for the selected mixtures. The results show that the method is robust and straightforward for the effective development of a mixture- specific equation of state directly from experimental data.
NASA Astrophysics Data System (ADS)
Xu, X.; Wang, J.; Henze, D. K.; Qu, W.; Kopacz, M.
2012-12-01
The knowledge of aerosol emissions from both natural and anthropogenic sources are needed to study the impacts of tropospheric aerosol on atmospheric composition, climate, and human health, but large uncertainties persist in quantifying the aerosol sources with the current bottom-up methods. This study presents a new top-down approach that spatially constrains the amount of aerosol emissions from satellite (MODIS) observed reflectance with the adjoint of a chemistry transport model (GEOS-Chem). We apply this technique with a one-month case study (April 2008) over the East Asia. The bottom-up estimated sulfate-nitrate-ammonium precursors, such as sulfur dioxide (SO2), ammonia (NH3), and nitrogen oxides (NOx), all from INTEX-B 2006 inventory, emissions of black carbon (BC), organic carbon (OC) from Bond-2007 inventory, and mineral dust simulated from DEAD dust mobilization scheme, are spatially optimized from the GEOS-Chem model and its adjoint constrained by the aerosol optical depth (AOD) that are derived from MODIS reflectance with the GEOS-Chem aerosol single scattering properties. The adjoint inverse modeling for the study period yields notable decreases in anthropogenic aerosol emissions over China: 436 Gg (33.5%) for SO2, 378 Gg (34.5%) for NH3, 319 (18.8%) for NOx, 10 Gg (9.1%) for BC, and 30 Gg (15.0%) for OC. The total amount of the mineral dust emission is reduced by 56.4% from the DEAD mobilization module which simulates dust production of 19020 Gg. Sub-regional adjustments are significant and directions of changes are spatially different. The model simulation with optimized aerosol emissions shows much better agreement with independent observations from sun-spectrophotometer observed AOD from AERONET, MISR (Multi-angle Imaging SpectroRadiometer) AOD, OMI (Ozone Monitoring Instrument) NO2 and SO2 columns, and surface aerosol concentrations measured over both anthropogenic pollution and dust source regions. Assuming the used bottom-up anthropogenic
NASA Astrophysics Data System (ADS)
Yoshida, Keisuke
This study describes the methodology on an inverse estimation of the bed roughness coefficients in open-channels with flood plains. The coefficients are identified by an adjoint shallow-water model and an optimal control theory. Several twin experiments were carried out with the synthetic data in order to validate the method. The data assimilated consists of values of the water level and depth-averaged velocity. The results showed that the coefficients can be accurately predicted with the velocity data, while the estimation fails with the water level data. This is because the cross-sectionally distributed bed roughness does not always influence the lateral profile of the water level, but the local velocity field. Namely, the relation between the lateral profile of the water level and the bed roughness turns out to be non-unique in open-channels with flood plains.
42 CFR 455.452 - Other State screening methods.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 4 2011-10-01 2011-10-01 false Other State screening methods. 455.452 Section 455.452 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS PROGRAM INTEGRITY: MEDICAID Provider Screening and Enrollment §...
Expiratory model-based method to monitor ARDS disease state
2013-01-01
Introduction Model-based methods can be used to characterise patient-specific condition and response to mechanical ventilation (MV) during treatment for acute respiratory distress syndrome (ARDS). Conventional metrics of respiratory mechanics are based on inspiration only, neglecting data from the expiration cycle. However, it is hypothesised that expiratory data can be used to determine an alternative metric, offering another means to track patient condition and guide positive end expiratory pressure (PEEP) selection. Methods Three fully sedated, oleic acid induced ARDS piglets underwent three experimental phases. Phase 1 was a healthy state recruitment manoeuvre. Phase 2 was a progression from a healthy state to an oleic acid induced ARDS state. Phase 3 was an ARDS state recruitment manoeuvre. The expiratory time-constant model parameter was determined for every breathing cycle for each subject. Trends were compared to estimates of lung elastance determined by means of an end-inspiratory pause method and an integral-based method. All experimental procedures, protocols and the use of data in this study were reviewed and approved by the Ethics Committee of the University of Liege Medical Faculty. Results The overall median absolute percentage fitting error for the expiratory time-constant model across all three phases was less than 10 %; for each subject, indicating the capability of the model to capture the mechanics of breathing during expiration. Provided the respiratory resistance was constant, the model was able to adequately identify trends and fundamental changes in respiratory mechanics. Conclusion Overall, this is a proof of concept study that shows the potential of continuous monitoring of respiratory mechanics in clinical practice. Respiratory system mechanics vary with disease state development and in response to MV settings. Therefore, titrating PEEP to minimal elastance theoretically results in optimal PEEP selection. Trends matched clinical
Characterizing Awake and Anesthetized States Using a Dimensionality Reduction Method.
Mirsadeghi, M; Behnam, H; Shalbaf, R; Jelveh Moghadam, H
2016-01-01
Distinguishing between awake and anesthetized states is one of the important problems in surgery. Vital signals contain valuable information that can be used in prediction of different levels of anesthesia. Some monitors based on electroencephalogram (EEG) such as the Bispectral (BIS) index have been proposed in recent years. This study proposes a new method for characterizing between awake and anesthetized states. We validated our method by obtaining data from 25 patients during the cardiac surgery that requires cardiopulmonary bypass. At first, some linear and non-linear features are extracted from EEG signals. Then a method called "LLE"(Locally Linear Embedding) is used to map high-dimensional features in a three-dimensional output space. Finally, low dimensional data are used as an input to a quadratic discriminant analyzer (QDA). The experimental results indicate that an overall accuracy of 88.4 % can be obtained using this method for classifying the EEG signal into conscious and unconscious states for all patients. Considering the reliability of this method, we can develop a new EEG monitoring system that could assist the anesthesiologists to estimate the depth of anesthesia accurately.
Fault detection in electromagnetic suspension systems with state estimation methods
Sinha, P.K.; Zhou, F.B.; Kutiyal, R.S. . Dept. of Engineering)
1993-11-01
High-speed maglev vehicles need a high level of safety that depends on the whole vehicle system's reliability. There are many ways of attaining high reliability for the system. Conventional method uses redundant hardware with majority vote logic circuits. Hardware redundancy costs more, weigh more and occupy more space than that of analytically redundant methods. Analytically redundant systems use parameter identification and state estimation methods based on the system models to detect and isolate the fault of instruments (sensors), actuator and components. In this paper the authors use the Luenberger observer to estimate three state variables of the electromagnetic suspension system: position (airgap), vehicle velocity, and vertical acceleration. These estimates are compared with the corresponding sensor outputs for fault detection. In this paper, they consider FDI of the accelerometer, the sensor which provides the ride quality.
NASA Astrophysics Data System (ADS)
Peter, Daniel; Videau, Brice; Pouget, Kevin; Komatitsch, Dimitri
2015-04-01
Improving the resolution of tomographic images is crucial to answer important questions on the nature of Earth's subsurface structure and internal processes. Seismic tomography is the most prominent approach where seismic signals from ground-motion records are used to infer physical properties of internal structures such as compressional- and shear-wave speeds, anisotropy and attenuation. Recent advances in regional- and global-scale seismic inversions move towards full-waveform inversions which require accurate simulations of seismic wave propagation in complex 3D media, providing access to the full 3D seismic wavefields. However, these numerical simulations are computationally very expensive and need high-performance computing (HPC) facilities for further improving the current state of knowledge. During recent years, many-core architectures such as graphics processing units (GPUs) have been added to available large HPC systems. Such GPU-accelerated computing together with advances in multi-core central processing units (CPUs) can greatly accelerate scientific applications. There are mainly two possible choices of language support for GPU cards, the CUDA programming environment and OpenCL language standard. CUDA software development targets NVIDIA graphic cards while OpenCL was adopted mainly by AMD graphic cards. In order to employ such hardware accelerators for seismic wave propagation simulations, we incorporated a code generation tool BOAST into an existing spectral-element code package SPECFEM3D_GLOBE. This allows us to use meta-programming of computational kernels and generate optimized source code for both CUDA and OpenCL languages, running simulations on either CUDA or OpenCL hardware accelerators. We show here applications of forward and adjoint seismic wave propagation on CUDA/OpenCL GPUs, validating results and comparing performances for different simulations and hardware usages.
On optimal methods for adiabatic quantum state transformations
NASA Astrophysics Data System (ADS)
Somma, Rolando
2013-03-01
Many problems in science could be solved by preparing the low-energy quantum state (or any eigenstate) of a Hamiltonian. A common example is the Boolean satisfiability problem, where each clause can be mapped to the energy of an interacting many-body system, and the problem reduces to minimizing the energy. In quantum computing, adiabatic quantum state transformations (ASTs) provide a tool for preparing the quantum state. ASTs are conventionally implemented via slow or adiabatic perturbations to the Hamiltonian, relying on the quantum adiabatic theorem. Nevertheless, more efficient implementations of ASTs exist. In this talk I will review recently developed methods for ASTs that are more efficient and require less assumptions on the Hamiltonians than the conventional implementation. Such methods involve measurements of the states along the evolution path and have a best-case implementation cost of L/G, where L is the length of the (evolved) state path and G is a lower bound to the spectral gap of the Hamiltonians. I will show that this cost is optimal and comment on results of the gap amplification problem, where the goal is to reduce the cost by increasing G. We acknowledge support from NSF through the CCF program and the LDRD programs at Los Alamos National Laboratory and Sandia National Laboratories.
Analysis of Correlated Coupling of Monte Carlo Forward and Adjoint Histories
Ueki, Taro; Hoogenboom, J.E.; Kloosterman, J. L.
2001-02-15
In Monte Carlo correlated coupling, forward and adjoint particle histories are initiated in exactly opposite directions at an arbitrarily placed surface between a physical source and a physical detector. It is shown that this coupling calculation can become more efficient than standard forward calculations. In many cases, the basic form of correlated coupling is less efficient than standard forward calculations. This inherent inefficiency can be overcome by applying a black absorber perturbation to either the forward or the adjoint problem and by processing the product of batch averages as one statistical entity. The usage of the black absorber is based on the invariance of the response flow integral with a material perturbation in either the physical detector side volume in the forward problem or the physical source side volume in the adjoint problem. The batch-average product processing makes use of a quadratic increase of the nonzero coupled-score probability. All the developments have been done in such a way that improved efficiency schemes available in widely distributed Monte Carlo codes can be applied to both the forward and adjoint simulations. Also, the physical meaning of the black absorber perturbation is interpreted based on surface crossing and is numerically validated. In addition, the immediate reflection at the intermediate surface with a controlled direction change is investigated within the invariance framework. This approach can be advantageous for a void streaming problem.
Popov, A. V.
2016-01-15
Metallic lithium is used to demonstrate the possibilities of applying non-self-adjoint operators for quantitative description of orbital excitations of electrons in crystals. It is shown that, the nonequilibrium distribution function can be calculated when solving the spectral problem; therefore, the kinetic properties of a material can also be described with the unified band theory.
Adjoint-operators and non-adiabatic learning algorithms in neural networks
NASA Technical Reports Server (NTRS)
Toomarian, N.; Barhen, J.
1991-01-01
Adjoint sensitivity equations are presented, which can be solved simultaneously (i.e., forward in time) with the dynamics of a nonlinear neural network. These equations provide the foundations for a new methodology which enables the implementation of temporal learning algorithms in a highly efficient manner.
Use of an adjoint model for finding triggers for Alpine lee cyclogenesis
NASA Technical Reports Server (NTRS)
Vukicevic, Tomislava; Raeder, Kevin
1995-01-01
The authors propose a new procedure, designated the adjoint-based genesis diagnostic (AGD) procedure, for studying triggering mechanisms and the subsequent genesis of the synoptic phenomena of interest. This procedure makes use of a numerical model sensitivity to initial conditions and the nonlinear evolution of the initial perturbations that are designed using this sensitivity. The model sensitivity is evaluated using the associated adjoint model. This study uses the dry version of the National Center for Atmospheric Research Mesoscale Adjoint Modeling System (MAMS) for the numerical experiments. The authors apply the AGD procedure to two cases of Alpine lee cyclogenesis that were observed during the Alpine Experiment special observations period. The results show that the sensitivity fields that are produced by the adjoint model and the associated initial perturbations are readily related to the probable triggering mechanisms for these cyclones. Additionally, the nonlinear evolution of these initial perturbations points toward the physical processes involved in the lee cyclone formation. The AGD experiments for a weak cyclone case indicate that the MAMS forecast model has an underrepresented topographic forcing due to the sigma vertical coordinate and that this model error can be compensated by adjustments in the initial conditions that are related to the triggering mechanisms, which is not associated with the topographic blocking mechanism.
An inverse dynamic method yielding flexible manipulator state trajectories
NASA Technical Reports Server (NTRS)
Kwon, Dong-Soo; Book, Wayne J.
1990-01-01
An inverse dynamic equation for a flexible manipulator is derived in a state form. By dividing the inverse system into the causal part and the anticausal part, torque is calculated in the time domain for a certain end point trajectory, as well as trajectories of all state variables. The open loop control of the inverse dynamic method shows an excellent result in simulation. For practical applications, a control strategy adapting feedback tracking control to the inverse dynamic feedforward control is illustrated, and its good experimental result is presented.
Brabec, Jiri; Banik, Subrata; Kowalski, Karol; Pittner, Jiří
2016-10-28
The implementation details of the universal state-selective (USS) multi-reference coupled cluster (MRCC) formalism with singles and doubles (USS(2)) are discussed on the example of several benchmark systems. We demonstrate that the USS(2) formalism is capable of improving accuracies of state specific multi-reference coupled-cluster (MRCC) methods based on the Brillouin-Wigner and Mukherjee’s sufficiency conditions. Additionally, it is shown that the USS(2) approach significantly alleviates problems associated with the lack of invariance of MRCC theories upon the rotation of active orbitals. We also discuss the perturbative USS(2) formulations that significantly reduce numerical overhead of the full USS(2) method.
Demographic estimation methods for plants with unobservable life-states
Kery, M.; Gregg, K.B.; Schaub, M.
2005-01-01
Demographic estimation of vital parameters in plants with an unobservable dormant state is complicated, because time of death is not known. Conventional methods assume that death occurs at a particular time after a plant has last been seen aboveground but the consequences of assuming a particular duration of dormancy have never been tested. Capture-recapture methods do not make assumptions about time of death; however, problems with parameter estimability have not yet been resolved. To date, a critical comparative assessment of these methods is lacking. We analysed data from a 10 year study of Cleistes bifaria, a terrestrial orchid with frequent dormancy, and compared demographic estimates obtained by five varieties of the conventional methods, and two capture-recapture methods. All conventional methods produced spurious unity survival estimates for some years or for some states, and estimates of demographic rates sensitive to the time of death assumption. In contrast, capture-recapture methods are more parsimonious in terms of assumptions, are based on well founded theory and did not produce spurious estimates. In Cleistes, dormant episodes lasted for 1-4 years (mean 1.4, SD 0.74). The capture-recapture models estimated ramet survival rate at 0.86 (SE~ 0.01), ranging from 0.77-0.94 (SEs # 0.1) in anyone year. The average fraction dormant was estimated at 30% (SE 1.5), ranging 16 -47% (SEs # 5.1) in anyone year. Multistate capture-recapture models showed that survival rates were positively related to precipitation in the current year, but transition rates were more strongly related to precipitation in the previous than in the current year, with more ramets going dormant following dry years. Not all capture-recapture models of interest have estimable parameters; for instance, without excavating plants in years when they do not appear aboveground, it is not possible to obtain independent timespecific survival estimates for dormant plants. We introduce rigorous
NASA Astrophysics Data System (ADS)
Ng, Cheuk-Yiu
2014-04-01
Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.
Ng, Cheuk-Yiu
2014-01-01
Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (Vis)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. VUV laser photoionization coupled with velocity-map-imaging threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolution but has higher-detection sensitivities than those observed in VUV laser pulsed field ionization photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and Vis-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE, and Vis-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.
Electron excitation from ground state to first excited state: Bohmian mechanics method
NASA Astrophysics Data System (ADS)
Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li
2016-03-01
The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).
Effective Casimir conditions and group coherent states
NASA Astrophysics Data System (ADS)
Bojowald, Martin; Tsobanjan, Artur
2014-06-01
Properties of group coherent states can be derived ‘effectively’ without knowing full wave functions. The procedure is detailed in this paper as an example of general methods for effective constraints. The role of constraints in the present context is played by a Casimir condition that puts states within an irreducible representation of a Lie group (or, equivalently, on a quantization of a co-adjoint orbit of the dual Lie algebra). Simplifications implied by a Casimir condition, compared with general first-class constraints, allows one to show that the correct number of degrees of freedom is obtained after imposing the condition. When combined with conditions to saturate uncertainty relations, moments of group coherent states can be derived. A detailed example in quantum cosmology (cosmic forgetfulness) illustrates the usefulness of the methods.
State Machine Based Method for Consolidating Vehicle Data
NASA Astrophysics Data System (ADS)
Dittmann, Florian; Geramani, Konstantina; Fäßler, Victor; Damiani, Sergio
The increasing number of information and assistance systems built into modern vehicles raises the demand for appropriate preparation of their output. On one side, crucial information has to be emphasized and prioritized, as well as relevant changes in the driving situation and surrounding environment have to be recognized and transmitted. On the other side, marginal alterations should be suitably filtered, while duplications of messages should be avoided completely. These issues hold in particular when assistance systems overlap each other in terms of their situation coverage. In this work it is described how such a consolidation of information can be meaningfully supported. The method is integrated in a system that collects messages from various data acquisition units and prepares them to be forwarded. Thus, subsequent actions can be taken on a consolidated and tailored set of messages. Situation assessment modules that rely on immediate estimation of situations are primary recipients of the messages. To meet their major demand—rapid decision taking—the method generates events by applying the concept of state machines. The state machines form the anchor to merge and fuse input, track changes, and generate output messages on higher levels. Besides this feature of consolidating vehicle data, the state machines also facilitate the transformation of continuous data to event messages for the rapid decision taking. Eventually, comprehensive driver support is facilitated, also enabling unprecedented features to improve road safety by decreasing the cognitive workload of drivers.
NASA Astrophysics Data System (ADS)
Finn, John M.
2015-03-01
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a "special divergence-free" (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012
Finn, John M.
2015-03-01
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a 'special divergence-free' property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. Wemore » also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Ref. [11], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Ref. [35], appears to work very well.« less
Finn, John M.
2015-03-15
Properties of integration schemes for solenoidal fields in three dimensions are studied, with a focus on integrating magnetic field lines in a plasma using adaptive time stepping. It is shown that implicit midpoint (IM) and a scheme we call three-dimensional leapfrog (LF) can do a good job (in the sense of preserving KAM tori) of integrating fields that are reversible, or (for LF) have a “special divergence-free” (SDF) property. We review the notion of a self-adjoint scheme, showing that such schemes are at least second order accurate and can always be formed by composing an arbitrary scheme with its adjoint. We also review the concept of reversibility, showing that a reversible but not exactly volume-preserving scheme can lead to a fractal invariant measure in a chaotic region, although this property may not often be observable. We also show numerical results indicating that the IM and LF schemes can fail to preserve KAM tori when the reversibility property (and the SDF property for LF) of the field is broken. We discuss extensions to measure preserving flows, the integration of magnetic field lines in a plasma and the integration of rays for several plasma waves. The main new result of this paper relates to non-uniform time stepping for volume-preserving flows. We investigate two potential schemes, both based on the general method of Feng and Shang [Numer. Math. 71, 451 (1995)], in which the flow is integrated in split time steps, each Hamiltonian in two dimensions. The first scheme is an extension of the method of extended phase space, a well-proven method of symplectic integration with non-uniform time steps. This method is found not to work, and an explanation is given. The second method investigated is a method based on transformation to canonical variables for the two split-step Hamiltonian systems. This method, which is related to the method of non-canonical generating functions of Richardson and Finn [Plasma Phys. Controlled Fusion 54, 014004 (2012
Chen, Jen-Hao; Chern, I-Liang; Wang Weichung
2011-03-20
A pseudo-arclength continuation method (PACM) is employed to compute the ground state and excited state solutions of spin-1 Bose-Einstein condensates (BEC). The BEC is governed by the time-independent coupled Gross-Pitaevskii equations (GPE) under the conservations of the mass and magnetization. The coupling constants that characterize the spin-independent and spin-exchange interactions are chosen as the continuation parameters. The continuation curve starts from a ground state or an excited state with very small coupling parameters. The proposed numerical schemes allow us to investigate the effect of the coupling constants and study the bifurcation diagrams of the time-independent coupled GPE. Numerical results on the wave functions and their corresponding energies of spin-1 BEC with repulsive/attractive and ferromagnetic/antiferromagnetic interactions are presented. Furthermore, we reveal that the component separation and population transfer between the different hyperfine states can only occur in excited states due to the spin-exchange interactions.
NASA Astrophysics Data System (ADS)
Pankratov, Oleg; Kuvshinov, Alexey
2015-03-01
3-D electromagnetic (EM) studies of the Earth have advanced significantly over the past decade. Despite a certain success of the 3-D EM inversions of real data sets, the quantitative assessment of the recovered models is still a challenging problem. It is known that one can gain valuable information about model uncertainties from the analysis of Hessian matrix. However, even with modern computational capabilities the calculation of the Hessian matrix based on numerical differentiation is extremely time consuming. Much more efficient way to compute the Hessian matrix is provided by an `adjoint sources' methodology. The computation of Hessian matrix (and Hessian-vector products) using adjoint formulation is now well-established approach, especially in seismic inverse modelling. As for EM inverse modelling we did not find in the literature a description of the approach, which would allow EM researchers to apply this methodology in a straightforward manner to their scenario of interest. In the paper, we present formalism for the efficient calculation of the Hessian matrix using adjoint sources approach. We also show how this technique can be implemented to calculate multiple Hessian-vector products very efficiently. The formalism is general in the sense that it allows to work with responses that arise in EM problem set-ups either with natural- or controlled-source excitations. The formalism allows for various types of parametrization of the 3-D conductivity distribution. Using this methodology one can readily obtain appropriate formulae for the specific sounding methods. To illustrate the concept we provide such formulae for two EM techniques: magnetotellurics and controlled-source sounding with vertical magnetic dipole as a source.
Method for joining metal by solid-state bonding
Burkhart, L. Elkin; Fultz, Chester R.; Maulden, Kerry A.
1979-01-01
The present development is directed to a method for joining metal at relatively low temperatures by solid-state bonding. Planar surfaces of the metal workpieces are placed in a parallel abutting relationship with one another. A load is applied to at least one of the workpieces for forcing the workpieces together while one of the workpieces is relatively slowly oscillated in a rotary motion over a distance of about 1.degree.. After a preselected number of oscillations, the rotary motion is terminated and the bond between the abutting surfaces is effected. An additional load may be applied to facilitate the bond after terminating the rotary motion.
NASA Astrophysics Data System (ADS)
Li, Yineng; Peng, Shiqiu; Liu, Duanling
2014-12-01
This study investigates the effect of adaptive (or targeted) observation on improving the midrange (30 days) forecast skill of ocean state of the South China Sea (SCS). A region associated with the South China Sea Western Boundary Current (SCSWBC) is chosen as the "target" of the adaptive observation. The Conditional Nonlinear Optimal Perturbation (CNOP) approach is applied to a three-dimensional ocean model and its adjoint model for determining the sensitive region. Results show that the initial errors in the sensitive region determined by the CNOP approach have significant impacts on the forecast of ocean state in the target region; thus, reducing these initial errors through adaptive observation can lead to a better 30 day prediction of ocean state in the target region. Our results suggest that implementing adaptive observation is an effective and cost-saving way to improve an ocean model's forecast skill over the SCS.
Reliable Transition State Searches Integrated with the Growing String Method.
Zimmerman, Paul
2013-07-09
The growing string method (GSM) is highly useful for locating reaction paths connecting two molecular intermediates. GSM has often been used in a two-step procedure to locate exact transition states (TS), where GSM creates a quality initial structure for a local TS search. This procedure and others like it, however, do not always converge to the desired transition state because the local search is sensitive to the quality of the initial guess. This article describes an integrated technique for simultaneous reaction path and exact transition state search. This is achieved by implementing an eigenvector following optimization algorithm in internal coordinates with Hessian update techniques. After partial convergence of the string, an exact saddle point search begins under the constraint that the maximized eigenmode of the TS node Hessian has significant overlap with the string tangent near the TS. Subsequent optimization maintains connectivity of the string to the TS as well as locks in the TS direction, all but eliminating the possibility that the local search leads to the wrong TS. To verify the robustness of this approach, reaction paths and TSs are found for a benchmark set of more than 100 elementary reactions.
Application of Adjoint Methodology to Supersonic Aircraft Design Using Reversed Equivalent Areas
NASA Technical Reports Server (NTRS)
Rallabhandi, Sriram K.
2013-01-01
This paper presents an approach to shape an aircraft to equivalent area based objectives using the discrete adjoint approach. Equivalent areas can be obtained either using reversed augmented Burgers equation or direct conversion of off-body pressures into equivalent area. Formal coupling with CFD allows computation of sensitivities of equivalent area objectives with respect to aircraft shape parameters. The exactness of the adjoint sensitivities is verified against derivatives obtained using the complex step approach. This methodology has the benefit of using designer-friendly equivalent areas in the shape design of low-boom aircraft. Shape optimization results with equivalent area cost functionals are discussed and further refined using ground loudness based objectives.
A Low-Order Galerkin Model Based on DMD and Adjoint-DMD modes
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wei, Mingjun
2016-11-01
Dynamic Mode Decomposition (DMD) has emerged as a new tool for the understanding of flow dynamics associated with frequencies. The DMD modes computed by this process have been considered as an alternative of base functions for model order reduction. However, DMD modes are not orthogonal bases which are usually desired for the simplicity of Galerkin models. Therefore, we used the bi-orthogonal pair of DMD modes and adjoint DMD modes to solve this problem, and introduced an easy approach to derive a simple DMD-Galerkin projection model. The introduction of adjoint DMD modes also provides an easy way to rank DMD modes for order reduction. The approach is applied on a flow-passing-cylinder case in both transition and periodic stages. For the periodic case, DMD-Galerkin model is similar to POD-Galerkin model; and for the transition case, DMD-Galerkin model carries more clear frequency features. Supported by ARL.
NASA Astrophysics Data System (ADS)
Maziero, Jonas
2015-12-01
The numerical generation of random quantum states (RQS) is an important procedure for investigations in quantum information science. Here, we review some methods that may be used for performing that task. We start by presenting a simple procedure for generating random state vectors, for which the main tool is the random sampling of unbiased discrete probability distributions (DPD). Afterwards, the creation of random density matrices is addressed. In this context, we first present the standard method, which consists in using the spectral decomposition of a quantum state for getting RQS from random DPDs and random unitary matrices. In the sequence, the Bloch vector parametrization method is described. This approach, despite being useful in several instances, is not in general convenient for RQS generation. In the last part of the article, we regard the overparametrized method (OPM) and the related Ginibre and Bures techniques. The OPM can be used to create random positive semidefinite matrices with unit trace from randomly produced general complex matrices in a simple way that is friendly for numerical implementations. We consider a physically relevant issue related to the possible domains that may be used for the real and imaginary parts of the elements of such general complex matrices. Subsequently, a too fast concentration of measure in the quantum state space that appears in this parametrization is noticed.
Adjoint-Free Variational Data Assimilation into a Regional Wave Model
2015-07-01
algorithm assimilating HFR data was ex- ecuted in 74 s on a single processor . A series of OI and a4DVAR experiments were con- ducted, involving assimilation...Adjoint-Free Variational Data Assimilation into a Regional Wave Model GLEB PANTELEEV University of Alaska Fairbanks, Fairbanks, Alaska, and National...Manuscript received 12 September 2014, in final form 23 December 2014) ABSTRACT A variational data assimilation algorithm is developed for the ocean
Adjoint-based uncertainty quantification and sensitivity analysis for reactor depletion calculations
NASA Astrophysics Data System (ADS)
Stripling, Hayes Franklin
Depletion calculations for nuclear reactors model the dynamic coupling between the material composition and neutron flux and help predict reactor performance and safety characteristics. In order to be trusted as reliable predictive tools and inputs to licensing and operational decisions, the simulations must include an accurate and holistic quantification of errors and uncertainties in its outputs. Uncertainty quantification is a formidable challenge in large, realistic reactor models because of the large number of unknowns and myriad sources of uncertainty and error. We present a framework for performing efficient uncertainty quantification in depletion problems using an adjoint approach, with emphasis on high-fidelity calculations using advanced massively parallel computing architectures. This approach calls for a solution to two systems of equations: (a) the forward, engineering system that models the reactor, and (b) the adjoint system, which is mathematically related to but different from the forward system. We use the solutions of these systems to produce sensitivity and error estimates at a cost that does not grow rapidly with the number of uncertain inputs. We present the framework in a general fashion and apply it to both the source-driven and k-eigenvalue forms of the depletion equations. We describe the implementation and verification of solvers for the forward and ad- joint equations in the PDT code, and we test the algorithms on realistic reactor analysis problems. We demonstrate a new approach for reducing the memory and I/O demands on the host machine, which can be overwhelming for typical adjoint algorithms. Our conclusion is that adjoint depletion calculations using full transport solutions are not only computationally tractable, they are the most attractive option for performing uncertainty quantification on high-fidelity reactor analysis problems.
NASA Astrophysics Data System (ADS)
Wells, K. C.; Millet, D. B.; Bousserez, N.; Henze, D. K.; Chaliyakunnel, S.; Griffis, T. J.; Dlugokencky, E. J.; Prinn, R. G.; O'Doherty, S.; Weiss, R. F.; Dutton, G. S.; Elkins, J. W.; Krummel, P. B.; Langenfelds, R. L.; Steele, P.
2015-12-01
Nitrous oxide (N2O) is a long-lived greenhouse gas with a global warming potential approximately 300 times that of CO2, and plays a key role in stratospheric ozone depletion. Human perturbation of the nitrogen cycle has led to a rise in atmospheric N2O, but large uncertainties exist in the spatial and temporal distribution of its emissions. Here we employ a 4D-Var inversion framework for N2O based on the GEOS-Chem chemical transport model and its adjoint to derive new constraints on the space-time distribution of global land and ocean N2O fluxes. Based on an ensemble of global surface measurements, we find that emissions are overestimated over Northern Hemisphere land areas and underestimated in the Southern Hemisphere. Assigning these biases to particular land or ocean regions is more difficult given the long lifetime of N2O. To quantitatively evaluate where the current N2O observing network provides local and regional emission constraints, we apply a new, efficient information content analysis technique involving radial basis functions. The technique yields optimal state vector dimensions for N2O source inversions, with model grid cells grouped in space and time according to the resolution that can actually be provided by the network of global observations. We then use these optimal state vectors in an analytical inversion to refine current top-down emission estimates.
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.
Self-adjointness of the Fourier expansion of quantized interaction field Lagrangians
Paneitz, S. M.; Segal, I. E.
1983-01-01
Regularity properties significantly stronger than were previously known are developed for four-dimensional non-linear conformally invariant quantized fields. The Fourier coefficients of the interaction Lagrangian in the interaction representation—i.e., evaluated after substitution of the associated quantized free field—is a densely defined operator on the associated free field Hilbert space K. These Fourier coefficients are with respect to a natural basis in the universal cosmos ˜M, to which such fields canonically and maximally extend from Minkowski space-time M0, which is covariantly a submanifold of ˜M. However, conformally invariant free fields over M0 and ˜M are canonically identifiable. The kth Fourier coefficient of the interaction Lagrangian has domain inclusive of all vectors in K to which arbitrary powers of the free hamiltonian in ˜M are applicable. Its adjoint in the rigorous Hilbert space sense is a-k in the case of a hermitian Lagrangian. In particular (k = 0) the leading term in the perturbative expansion of the S-matrix for a conformally invariant quantized field in M0 is a self-adjoint operator. Thus, e.g., if ϕ(x) denotes the free massless neutral scalar field in M0, then ∫M0:ϕ(x)4:d4x is a self-adjoint operator. No coupling constant renormalization is involved here. PMID:16593346
Quasiparticle density of states by inversion with maximum entropy method
NASA Astrophysics Data System (ADS)
Sui, Xiao-Hong; Wang, Han-Ting; Tang, Hui; Su, Zhao-Bin
2016-10-01
We propose to extract the quasiparticle density of states (DOS) of the superconductor directly from the experimentally measured superconductor-insulator-superconductor junction tunneling data by applying the maximum entropy method to the nonlinear systems. It merits the advantage of model independence with minimum a priori assumptions. Various components of the proposed method have been carefully investigated, including the meaning of the targeting function, the mock function, as well as the role and the designation of the input parameters. The validity of the developed scheme is shown by two kinds of tests for systems with known DOS. As a preliminary application to a Bi2Sr2CaCu2O8 +δ sample with its critical temperature Tc=89 K , we extract the DOS from the measured intrinsic Josephson junction current data at temperatures of T =4.2 K , 45 K , 55 K , 95 K , and 130 K . The energy gap decreases with increasing temperature below Tc, while above Tc, a kind of energy gap survives, which provides an angle to investigate the pseudogap phenomenon in high-Tc superconductors. The developed method itself might be a useful tool for future applications in various fields.
Systematic variational method for statistical nonlinear state and parameter estimation
NASA Astrophysics Data System (ADS)
Ye, Jingxin; Rey, Daniel; Kadakia, Nirag; Eldridge, Michael; Morone, Uriel I.; Rozdeba, Paul; Abarbanel, Henry D. I.; Quinn, John C.
2015-11-01
In statistical data assimilation one evaluates the conditional expected values, conditioned on measurements, of interesting quantities on the path of a model through observation and prediction windows. This often requires working with very high dimensional integrals in the discrete time descriptions of the observations and model dynamics, which become functional integrals in the continuous-time limit. Two familiar methods for performing these integrals include (1) Monte Carlo calculations and (2) variational approximations using the method of Laplace plus perturbative corrections to the dominant contributions. We attend here to aspects of the Laplace approximation and develop an annealing method for locating the variational path satisfying the Euler-Lagrange equations that comprises the major contribution to the integrals. This begins with the identification of the minimum action path starting with a situation where the model dynamics is totally unresolved in state space, and the consistent minimum of the variational problem is known. We then proceed to slowly increase the model resolution, seeking to remain in the basin of the minimum action path, until a path that gives the dominant contribution to the integral is identified. After a discussion of some general issues, we give examples of the assimilation process for some simple, instructive models from the geophysical literature. Then we explore a slightly richer model of the same type with two distinct time scales. This is followed by a model characterizing the biophysics of individual neurons.
A new method of determining the critical state in superconductors
NASA Astrophysics Data System (ADS)
Campbell, A. M.
2007-03-01
A new numerical method for solving the critical state, based on the force-displacement curve of the flux lines, is described. The equation can be expressed in terms of the vector potential and can be solved by commercial finite element programs. It gives the critical state directly as a first approximation but a flux flow resistivity can easily be added. It avoids some of the numerical problems that occur if an E-J curve of the form E \\propto J^{n} is used with large values of n. It is particularly advantageous for problems involving trapped flux where a power law leads to decay at a rate dependent on the power assumed and the very low electric fields mean that the E-J curve is probably exponential. The flux flow resistivity can be included and since the relevant power law is 1/n rather than n the solutions are more stable. Multiphysics packages, such as FlexPDE, which allow simultaneous equations to be solved, can find the temperature distribution by adding the heat flow equation.
Investigating Sensitivity to Saharan Dust in Tropical Cyclone Formation Using Nasa's Adjoint Model
NASA Technical Reports Server (NTRS)
Holdaway, Daniel
2015-01-01
As tropical cyclones develop from easterly waves coming of the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the
Investigating sensitivity to Saharan dust in tropical cyclone formation using NASA's adjoint model
NASA Astrophysics Data System (ADS)
Holdaway, Daniel
2015-04-01
As tropical cyclones develop from easterly waves coming off the coast of Africa they interact with dust from the Sahara desert. There is a long standing debate over whether this dust inhibits or advances the developing storm and how much influence it has. Dust can surround the storm and absorb incoming solar radiation, cooling the air below. As a result an energy source for the system is potentially diminished, inhibiting growth of the storm. Alternatively dust may interact with clouds through micro-physical processes, for example by causing more moisture to condense, potentially increasing the strength. As a result of climate change, concentrations and amount of dust in the atmosphere will likely change. It it is important to properly understand its effect on tropical storm formation. The adjoint of an atmospheric general circulation model provides a very powerful tool for investigating sensitivity to initial conditions. The National Aeronautics and Space Administration (NASA) has recently developed an adjoint version of the Goddard Earth Observing System version 5 (GEOS-5) dynamical core, convection scheme, cloud model and radiation schemes. This is extended so that the interaction between dust and radiation is also accounted for in the adjoint model. This provides a framework for examining the sensitivity to dust in the initial conditions. Specifically the set up allows for an investigation into the extent to which dust affects cyclone strength through absorption of radiation. In this work we investigate the validity of using an adjoint model for examining sensitivity to dust in hurricane formation. We present sensitivity results for a number of systems that developed during the Atlantic hurricane season of 2006. During this period there was a significant outbreak of Saharan dust and it is has been argued that this outbreak was responsible for the relatively calm season. This period was also covered by an extensive observation campaign. It is shown that the
NASA Astrophysics Data System (ADS)
Mazaheri, K.; Nejati, A.; Chaharlang Kiani, K.; Taheri, R.
2016-07-01
A shock control bump (SCB) is a flow control method that uses local small deformations in a flexible wing surface to considerably reduce the strength of shock waves and the resulting wave drag in transonic flows. Most of the reported research is devoted to optimization in a single flow condition. Here, we have used a multi-point adjoint optimization scheme to optimize shape and location of the SCB. Practically, this introduces transonic airfoils equipped with the SCB that are simultaneously optimized for different off-design transonic flight conditions. Here, we use this optimization algorithm to enhance and optimize the performance of SCBs in two benchmark airfoils, i.e., RAE-2822 and NACA-64-A010, over a wide range of off-design Mach numbers. All results are compared with the usual single-point optimization. We use numerical simulation of the turbulent viscous flow and a gradient-based adjoint algorithm to find the optimum location and shape of the SCB. We show that the application of SCBs may increase the aerodynamic performance of an RAE-2822 airfoil by 21.9 and by 22.8 % for a NACA-64-A010 airfoil compared to the no-bump design in a particular flight condition. We have also investigated the simultaneous usage of two bumps for the upper and the lower surfaces of the airfoil. This has resulted in a 26.1 % improvement for the RAE-2822 compared to the clean airfoil in one flight condition.
NASA Astrophysics Data System (ADS)
Tjiputra, Jerry F.; Polzin, Dierk; Winguth, Arne M. E.
2007-03-01
An adjoint method is applied to a three-dimensional global ocean biogeochemical cycle model to optimize the ecosystem parameters on the basis of SeaWiFS surface chlorophyll observation. We showed with identical twin experiments that the model simulated chlorophyll concentration is sensitive to perturbation of phytoplankton and zooplankton exudation, herbivore egestion as fecal pellets, zooplankton grazing, and the assimilation efficiency parameters. The assimilation of SeaWiFS chlorophyll data significantly improved the prediction of chlorophyll concentration, especially in the high-latitude regions. Experiments that considered regional variations of parameters yielded a high seasonal variance of ecosystem parameters in the high latitudes, but a low variance in the tropical regions. These experiments indicate that the adjoint model is, despite the many uncertainties, generally capable to optimize sensitive parameters and carbon fluxes in the euphotic zone. The best fit regional parameters predict a global net primary production of 36 Pg C yr-1, which lies within the range suggested by Antoine et al. (1996). Additional constraints of nutrient data from the World Ocean Atlas showed further reduction in the model-data misfit and that assimilation with extensive data sets is necessary.
NASA Technical Reports Server (NTRS)
Wang, Jun; Xu, Xiaoguang; Henze, Daven K.; Zeng, Jing; Ji, Qiang; Tsay, Si-Chee; Huang, Jianping
2012-01-01
Predicting the influences of dust on atmospheric composition, climate, and human health requires accurate knowledge of dust emissions, but large uncertainties persist in quantifying mineral sources. This study presents a new method for combined use of satellite-measured radiances and inverse modeling to spatially constrain the amount and location of dust emissions. The technique is illustrated with a case study in May 2008; the dust emissions in Taklimakan and Gobi deserts are spatially optimized using the GEOSChem chemical transport model and its adjoint constrained by aerosol optical depth (AOD) that are derived over the downwind dark-surface region in China from MODIS (Moderate Resolution Imaging Spectroradiometer) reflectance with the aerosol single scattering properties consistent with GEOS-chem. The adjoint inverse modeling yields an overall 51% decrease in prior dust emissions estimated by GEOS-Chem over the Taklimakan-Gobi area, with more significant reductions south of the Gobi Desert. The model simulation with optimized dust emissions shows much better agreement with independent observations from MISR (Multi-angle Imaging SpectroRadiometer) AOD and MODIS Deep Blue AOD over the dust source region and surface PM10 concentrations. The technique of this study can be applied to global multi-sensor remote sensing data for constraining dust emissions at various temporal and spatial scales, and hence improving the quantification of dust effects on climate, air quality, and human health.
CMT Source Inversions for Massive Data Assimilation in Global Adjoint Tomography
NASA Astrophysics Data System (ADS)
Lei, W.; Ruan, Y.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Modrak, R. T.; Komatitsch, D.; Song, X.; Liu, Q.; Tromp, J.; Peter, D. B.
2015-12-01
Full Waveform Inversion (FWI) is a vital tool for probing the Earth's interior and enhancing our knowledge of the underlying dynamical processes [e.g., Liu et al., 2012]. Using the adjoint tomography method, we have successfully obtained a first-generation global FWI model named M15 [Bozdag et al., 2015]. To achieve higher resolution of the emerging new structural features and to accommodate azimuthal anisotropy and anelasticity in the next-generation model, we expanded our database from 256 to 4,224 earthquakes. Previous studies have shown that ray-theory-based Centroid Moment Tensor (CMT) inversion algorithms can produce systematic biases in earthquake source parameters due to tradeoffs with 3D crustal and mantle heterogeneity [e.g., Hjorleifsdottir et al., 2010]. To reduce these well-known tradeoffs, we performed CMT inversions in our current 3D global model before resuming the structural inversion with the expanded database. Initial source parameters are selected from the global CMT database [Ekstrom et al., 2012], with moment magnitudes ranging from 5.5 to 7.0 and occurring between 1994 and 2015. Data from global and regional networks were retrieved from the IRIS DMC. Synthetic seismograms were generated based on the spectral-element-based seismic wave propagation solver (SPECFEM3D GLOBE) in model M15. We used a source inversion algorithm based on a waveform misfit function while allowing time shifts between data and synthetics to accommodate additional unmodeled 3D heterogeneity [Liu et al., 2004]. To accommodate the large number of earthquakes and time series (more than 10,000,000 records), we implemented a source inversion workflow based on the newly developed Adaptive Seismic Data Format (ASDF) [Krischer, Smith, et al., 2015] and ObsPy [Krischer et al., 2015]. In ASDF, each earthquake is associated with a single file, thereby eliminating I/O bottlenecks in the workflow and facilitating fast parallel processing. Our preliminary results indicate that errors
Methods to determine hydration states of minerals and cement hydrates
Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars
2014-11-15
This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.
NASA Astrophysics Data System (ADS)
Lapina, K.; Henze, D. K.; Milford, J. B.
2014-12-01
Frequent exposure to elevated levels of ozone leads to negative impacts on ecosystems including the loss of ozone-sensitive tree species and agricultural crops in many regions of the United States. Information on emission sources contributing to these losses is crucial for developing a successful strategy to mitigate the negative effects of ozone on vegetation. A cumulative ozone exposure metric, W126, has been considered by the US EPA for use as secondary ozone standard. The rural West of the US has been demonstrated to have an especially great potential for disconnect between attaining primary versus W126-based ozone standards. In this work we separate the relative impact of emissions sources for the W126 in the Western US using forward and adjoint simulations with the global chemical transport model GEOS-Chem. The obtained source contributions are separated by different locations, species, and sectors and are combined with representative concentration pathway (RCP) anthropogenic emission scenarios to project future changes in W126 through 2050. Focusing on the foreign influences we find that the change in Chinese emissions alone is projected to lead to up to 20% increase in the W126 levels in the West and is strongly dependent on the RCP scenario. We further use concentration-response functions based on the W126 index to estimate the loss of four ozone-sensitive species in the West - ponderosa pine, Douglas Fir, red alder and quacking aspen.
NASA Astrophysics Data System (ADS)
Boulin, P. F.; Bretonnier, P.; Gland, N.
2010-12-01
Very low permeability geomaterials (order of nanoDarcy (10-21 m2)), such as clays rocks, are studied for many industrial applications such as production from unconventional reserves of oil and gas, CO2 geological storage and deep geological disposal of high-level long-lived nuclear wastes. For these last two applications, clay efficiency as barrier relies mainly on their very low permeability. Laboratory measurement of low permeability to water (below 10-19 m2) remains a technical challenge. Some authors argue that steady state methods are irrelevant due to the time required to stabilize water fluxes in such low permeability media. Most of the authors measuring low permeabilities use a transient technique called pulse decay. This study aims to compare objectively these different types of permeability tests performed on a single clay sample. For the steady state method, a high precision pump was used to impose a pressure gradient and to measure the small resulting water flow rate at steady state. We show that with a suitable set-up, the steady state method enables to measure a very low permeability of 8 10-22 m2 in a period of three days. For a comparable duration, the pulse decay test, most commonly used for such low permeability measurements, provides only an average estimate of the permeability. Permeability measurements by pulse decay require to perform simulations to interpret the pressure relaxation signals. Many uncertainties remain such as the determination of the reservoirs storage factor, micro leakage effect, or the determination of the initial pulse pressure. All these uncertainties have a very significant impact on the determination of sample permeability and specific storage. Opposite to the wide-spread idea that transient techniques are required to measure very low permeability, we show that direct steady state measurement of water permeability with suitable equipments can be much faster and more accurate than measurement by pulse decay, especially in
ERIC Educational Resources Information Center
Blank, Rolf; Selden, Ramsay
State assessment directors and State science supervisors discussed alternative methods for assessing student learning in science at a conference. The conference had two objectives: (1) to increase the knowledge of state science supervisors and assessment directors of recent experience at international, national, and state levels with alternative…
Dynamic State Estimation Utilizing High Performance Computing Methods
Schneider, Kevin P.; Huang, Zhenyu; Yang, Bo; Hauer, Matthew L.; Nieplocha, Jaroslaw
2009-03-18
The state estimation tools which are currently deployed in power system control rooms are based on a quasi-steady-state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper presents an overview of the Kalman Filtering process and then focuses on the implementation of the predication component on multiple processors.
NASA Astrophysics Data System (ADS)
Urano, Shoichi; Mori, Hiroyuki
This paper proposes a new technique for determining of state values in power systems. Recently, it is useful for carrying out state estimation with data of PMU (Phasor Measurement Unit). The authors have developed a method for determining state values with artificial neural network (ANN) considering topology observability in power systems. ANN has advantage to approximate nonlinear functions with high precision. The method evaluates pseudo-measurement state values of the data which are lost in power systems. The method is successfully applied to the IEEE 14-bus system.
A user's manual for MASH 1. 0: A Monte Carlo Adjoint Shielding Code System
Johnson, J.O.
1992-03-01
The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the dose importance'' of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.
Adjoint transport calculations for sensitivity analysis of the Hiroshima air-over-ground environment
Broadhead, B.L.; Cacuci, D.G.; Pace, J.V. III
1984-01-01
A major effort within the US Dose Reassessment Program is aimed at recalculating the transport of initial nuclear radiation in an air-over-ground environment. This paper is the first report of results from adjoint calculations in the Hiroshima air-over-ground environment. The calculations use a Hiroshima/Nagasaki multi-element ground, ENDF/B-V nuclear data, one-dimensional ANISN flux weighting for neutron and gamma cross sections, a source obtained by two-dimensional hydrodynamic and three-dimensional transport calculations, and best-estimate atmospheric conditions from Japanese sources. 7 references, 2 figures.
Aguilo Valentin, Miguel Alejandro
2016-07-01
This study presents a new nonlinear programming formulation for the solution of inverse problems. First, a general inverse problem formulation based on the compliance error functional is presented. The proposed error functional enables the computation of the Lagrange multipliers, and thus the first order derivative information, at the expense of just one model evaluation. Therefore, the calculation of the Lagrange multipliers does not require the solution of the computationally intensive adjoint problem. This leads to significant speedups for large-scale, gradient-based inverse problems.
Ginsparg-Wilson relation on a fuzzy 2-sphere for adjoint matter
Aoki, Hajime
2010-10-15
We formulate a Ginsparg-Wilson relation on a fuzzy 2-sphere for matter in the adjoint representation of the gauge group. Because of the Ginsparg-Wilson relation, an index theorem is satisfied. Our formulation is applicable to topologically nontrivial configurations as monopoles. It gives a solid basis for obtaining chiral fermions, which are an important ingredient of the standard model, from matrix model formulations of the superstring theory, such as the IIB matrix model, by considering topological configurations in the extra dimensions. We finally discuss whether this mechanism really works.
A forward operator and its adjoint for GPS slant total delays
NASA Astrophysics Data System (ADS)
Zus, Florian; Dick, Galina; Heise, Stefan; Wickert, Jens
2015-05-01
In a recent study we developed a fast and accurate algorithm to compute Global Positioning System (GPS) Slant Total Delay (STDs) utilizing numerical weather model data. Having developed a forward operator we construct in this study the tangent linear (adjoint) operator by application of the chain rule of differential calculus in forward (reverse) mode. Armed with these operators we show in a simulation study the potential benefit of GPS STDs in inverse modeling. We conclude that the developed operators are tailored for three (four)-dimensional variational data assimilation and/or travel time tomography.
Descriptive Methods for Evaluation of State-Based Intervention Programs
ERIC Educational Resources Information Center
Davis, William W.; Graubard, Barry I.; Hartman, Anne M.; Stillman, Frances A.
2003-01-01
In this article, the authors discuss program evaluation of intervention studies when the outcome of interest is collected routinely at equally spaced intervals of time. They illustrate concepts using data from the American Stop Smoking Intervention Study, where the outcome is state per capita tobacco consumption. States differ widely in mean…
Methods of analysis of illegal immigration into the United States.
Briggs, V
1984-01-01
The inadequacy of existing data on illegal immigration to the United States is described. The attempts that have been made by various government agencies and individual researchers to measure the extent and employment impact of illegal immigrants are then reviewed.
Dupree, S. A.
1980-06-01
The use of adjoint techniques to determine the interaction of externally incident collimated beams of particles with cylindrical targets is a convenient means of examining a class of problems important in radiation transport studies. The theory relevant to such applications is derived, and a simple example involving a fissioning target is discussed. Results from both discrete ordinates and Monte Carlo transport-code calculations are presented, and comparisons are made with results obtained from forward calculations. The accuracy of the discrete ordinates adjoint results depends on the order of angular quadrature used in the calculation. Reasonable accuracy by using EQN quadratures can be expected from order S/sub 16/ or higher.
Liu, Junzi; Zhang, Yong; Bao, Peng; Yi, Yuanping
2017-02-14
Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-ΔSCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-ΔSCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.
NASA Astrophysics Data System (ADS)
Capps, S. L.; Pinder, R. W.; Loughlin, D. H.; Bash, J. O.; Turner, M. D.; Henze, D. K.; Percell, P.; Zhao, S.; Russell, M. G.; Hakami, A.
2014-12-01
Tropospheric ozone (O3) affects the productivity of ecosystems in addition to degrading human health. Concentrations of this pollutant are significantly influenced by precursor gas emissions, many of which emanate from energy production and use processes. Energy system optimization models could inform policy decisions that are intended to reduce these harmful effects if the contribution of precursor gas emissions to human health and ecosystem degradation could be elucidated. Nevertheless, determining the degree to which precursor gas emissions harm ecosystems and human health is challenging because of the photochemical production of ozone and the distinct mechanisms by which ozone causes harm to different crops, tree species, and humans. Here, the adjoint of a regional chemical transport model is employed to efficiently calculate the relative influences of ozone precursor gas emissions on ecosystem and human health degradation, which informs an energy system optimization. Specifically, for the summer of 2007 the Community Multiscale Air Quality (CMAQ) model adjoint is used to calculate the location- and sector-specific influences of precursor gas emissions on potential productivity losses for the major crops and sensitive tree species as well as human mortality attributable to chronic ozone exposure in the continental U.S. The atmospheric concentrations are evaluated with 12-km horizontal resolution with crop production and timber biomass data gridded similarly. These location-specific factors inform the energy production and use technologies selected in the MARKet ALlocation (MARKAL) model.
Improving the Fit of a Land-Surface Model to Data Using its Adjoint
NASA Astrophysics Data System (ADS)
Raoult, N.; Jupp, T. E.; Cox, P. M.; Luke, C.
2015-12-01
Land-surface models (LSMs) are of growing importance in the world of climate prediction. They are crucial components of larger Earth system models that are aimed at understanding the effects of land surface processes on the global carbon cycle. The Joint UK Land Environment Simulator (JULES) is the land-surface model used by the UK Met Office. It has been automatically differentiated using commercial software from FastOpt, resulting in an analytical gradient, or 'adjoint', of the model. Using this adjoint, the adJULES parameter estimation system has been developed, to search for locally optimum parameter sets by calibrating against observations. adJULES presents an opportunity to confront JULES with many different observations, and make improvements to the model parameterisation. In the newest version of adJULES, multiple sites can be used in the calibration, to giving a generic set of parameters that can be generalised over plant functional types. We present an introduction to the adJULES system and its applications to data from a variety of flux tower sites. We show that calculation of the 2nd derivative of JULES allows us to produce posterior probability density functions of the parameters and how knowledge of parameter values is constrained by observations.
Eguchi-Kawai reduction with one flavor of adjoint Möbius fermion
NASA Astrophysics Data System (ADS)
Cunningham, William; Giedt, Joel
2016-02-01
We study the single site lattice gauge theory of S U (N ) coupled to one Dirac flavor of fermion in the adjoint representation. We utilize Möbius fermions for this study, and accelerate the calculation with graphics processing units. Our Monte Carlo simulations indicate that for sufficiently large inverse 't Hooft coupling b =1 /g2N , and for N ≤10 the distribution of traced Polyakov loops has "fingers" that extend from the origin. However, in the massless case the distribution of eigenvalues of the untraced Polyakov loop becomes uniform at large N , indicating preservation of center symmetry in the thermodynamic limit. By contrast, for a large mass and large b , the distribution is highly nonuniform in the same limit, indicating spontaneous center symmetry breaking. These conclusions are confirmed by comparing to the quenched case, as well as by examining another observable based on the average value of the modulus of the traced Polyakov loop. The result of this investigation is that with massless adjoint fermions center symmetry is stabilized and the Eguchi-Kawai reduction should be successful; this is in agreement with most other studies.
Tide-surge adjoint modeling: A new technique to understand forecast uncertainty
NASA Astrophysics Data System (ADS)
Wilson, Chris; Horsburgh, Kevin J.; Williams, Jane; Flowerdew, Jonathan; Zanna, Laure
2013-10-01
For a simple dynamical system, such as a pendulum, it is easy to deduce where and when applied forcing might produce a particular response. However, for a complex nonlinear dynamical system such as the ocean or atmosphere, this is not as obvious. Knowing when or where the system is most sensitive, to observational uncertainty or otherwise, is key to understanding the physical processes, improving and providing reliable forecasts. We describe the application of adjoint modeling to determine the sensitivity of sea level at a UK coastal location, Sheerness, to perturbations in wind stress preceding an extreme North Sea storm surge event on 9 November 2007. Sea level at Sheerness is one of the most important factors used to decide whether to close the Thames Flood Barrier, which protects London. Adjoint modeling has been used by meteorologists since the 1990s, but is a relatively new technique for ocean modeling. It may be used to determine system sensitivity beyond the scope of ensemble modeling and in a computationally efficient way. Using estimates of wind stress error from Met Office forecasts, we find that for this event total sea level at Sheerness is most sensitive in the 3 h preceding the time of its unperturbed maximum level and over a radius of approximately 300 km. We also find that the pattern of sensitivity follows a simple sequence when considered in the reverse-time direction.
Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion
NASA Astrophysics Data System (ADS)
Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.
2017-01-01
We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.
Adjoint-based minimization of the sound radiated by a Mach 1.3 turbulent jet
NASA Astrophysics Data System (ADS)
Kim, Jeonglae; Bodony, Daniel; Freund, Jonathan
2010-11-01
A control optimization using the adjoint of the perturbed and linearized Navier--Stokes equations is applied to a simulation of a Mach 1.3 turbulent jet to reduce its radiated sound. The solution of the adjoint system provides gradient information for a minimization algorithm to circumvent the flow complexity and reduce the sound directly. Comparisons between the loud and the perturbed-but-quiet versions of the same jet are examined to identify sound mechanisms. The overall algorithm is designed such that the control can be optimized with degrees of freedom comparable to that of the numerical discretization or with constraints on its spatial or temporal profiles to reflect hardware limitations. The large-eddy simulation of the uncontrolled, baseline jet is carried out in curvilinear coordinates using a non-dissipative high-order finite-difference. The far-field sound is computed using a Ffowcs Williams and Hawkings surface. Turbulence and far-field sound statistics agree with experimental data. An unconstrained optimal control reduces the sound cost functional by 17%. The far-field sound is reduced at all angles with a maximum reduction of 2.7dB in the peak radiation direction. Constraining the control in actuator-like zones shows a similar result. Optimizations are ongoing.
Paulot, Fabien; Jacob, Daniel J; Henze, Daven K
2013-04-02
Anthropogenic enrichment of reactive nitrogen (Nr) deposition is an ecological concern. We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to identify the sources and processes that control Nr deposition to an ensemble of biodiversity hotspots worldwide and two U.S. national parks (Cuyahoga and Rocky Mountain). We find that anthropogenic sources dominate deposition at all continental sites and are mainly regional (less than 1000 km) in origin. In Hawaii, Nr supply is controlled by oceanic emissions of ammonia (50%) and anthropogenic sources (50%), with important contributions from Asia and North America. Nr deposition is also sensitive in complicated ways to emissions of SO2, which affect Nr gas-aerosol partitioning, and of volatile organic compounds (VOCs), which affect oxidant concentrations and produce organic nitrate reservoirs. For example, VOC emissions generally inhibit deposition of locally emitted NOx but significantly increase Nr deposition downwind. However, in polluted boreal regions, anthropogenic VOC emissions can promote Nr deposition in winter. Uncertainties in chemical rate constants for OH + NO2 and NO2 hydrolysis also complicate the determination of source-receptor relationships for polluted sites in winter. Application of our adjoint sensitivities to the representative concentration pathways (RCPs) scenarios for 2010-2050 indicates that future decreases in Nr deposition due to NOx emission controls will be offset by concurrent increases in ammonia emissions from agriculture.
NASA Astrophysics Data System (ADS)
Xia, Ya-Rong; Xin, Xiang-Peng; Zhang, Shun-Li
2017-01-01
This paper mainly discusses the (2+1)-dimensional modified dispersive water-wave (MDWW) system which will be proved nonlinear self-adjointness. This property is applied to construct conservation laws corresponding to the symmetries of the system. Moreover, via the truncated Painlevé analysis and consistent tanh-function expansion (CTE) method, the soliton-cnoidal periodic wave interaction solutions and corresponding images will be eventually achieved. Supported by National Natural Science Foundation of China under Grant Nos. 11371293, 11505090, the Natural Science Foundation of Shaanxi Province under Grant No. 2014JM2-1009, Research Award Foundation for Outstanding Young Scientists of Shandong Province under Grant No. BS2015SF009 and the Science and Technology Innovation Foundation of Xi’an under Grant No. CYX1531WL41
Pressure updating methods for the steady-state fluid equations
NASA Technical Reports Server (NTRS)
Fiterman, A.; Turkel, E.; Vatsa, V.
1995-01-01
We consider the steady state equations for a compressible fluid. Since we wish to solve for a range of speeds we must consider the equations in conservation form. For transonic speeds these equations are of mixed type. Hence, the usual approach is to add time derivatives to the steady state equations and then march these equations in time. One then adds a time derivative of the density to the continuity equation, a derivative of the momentum to the momentum equation and a derivative of the total energy to the energy equation. This choice is dictated by the time consistent equations. However, since we are only interested in the steady state this is not necessary. Thus we shall consider the possibility of adding a time derivative of the pressure to the continuity equation and similar modifications for the energy equation. This can then be generalized to adding combinations of time derivatives to each equation since these vanish in the steady state. When using acceleration techniques such as residual smoothing, multigrid, etc. these are applied to the pressure rather than the density. Hence, the code duplicates the behavior of the incompressible equations for low speeds.
2012-09-03
use of so-called probability-one methods [22]. The significant advantage of homotopy method to compute steady state solutions is free of Courant ...A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws Wenrui Hao∗ Jonathan D. Hauenstein† Chi...robustness of the new method . Keywords homotopy continuation, hyperbolic conservation laws, WENO scheme, steady state problems. ∗Department of Applied and
Position sensitive solid-state photomultipliers, systems and methods
Shah, Kanai S; Christian, James; Stapels, Christopher; Dokhale, Purushottam; McClish, Mickel
2014-11-11
An integrated silicon solid state photomultiplier (SSPM) device includes a pixel unit including an array of more than 2.times.2 p-n photodiodes on a common substrate, a signal division network electrically connected to each photodiode, where the signal division network includes four output connections, a signal output measurement unit, a processing unit configured to identify the photodiode generating a signal or a center of mass of photodiodes generating a signal, and a global receiving unit.
Classical Methods for Frequency-Based Equations of State
2007-03-01
quality of the fit to the summation form is improved, such that the model and fit curves become indistinguishable. All parameters in this fit are ambient ... ambient -state material constants, as given in Table 1. Until such time, however, that the material parameter (dlfl/dV)o may be measured with greater...5 DEPARTMENTO DE QUIMICA FISICA I FACULTAD DE CIENCIAS QUIMICAS UNIVERSIDAD COMPLUTENSE DE MADRID V G BAONZA M TARAVILLO J E F
Research and Methods for Simulation Design: State of the Art
1990-09-01
designers. Designers may use this review to identify methods to aid the training-device design process and individuals who manage research programs...maximum training effectiveness at a given cost. The methods should apply to the concept-formulation phase’of the training-device development process ...design process . Finally, individuals who manage research programs may use this information to set priorities for future research efforts. viii RESEARCH
Concrete Mixing Methods and Concrete Mixers: State of the Art
Ferraris, Chiara F.
2001-01-01
As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029
Development of Methods of Characterizing Coal in Its Plastic State
NASA Technical Reports Server (NTRS)
Lloyd, W. G.
1978-01-01
Coal in its plastic state (typically 400-460 C) was examined by the isothermal Gieseler plastometry of seven selected coals of widely varying plastic properties. Kinetic models were proposed for the isothermal plastometric curves. Plastic behavior was compared with a variety of laboratory analyses and characterizations of these coals, including classical coal analysis; mineral analysis; microstructural analysis (extractable fractions, surface area measurement, and petrographic analysis); and thermal analysis (thermogravimetric analysis, thermomechanical analysis, and differential scanning calorimetry). The phenomenon of a sharp, large, poorly reproducible exotherm in the differential scanning calorimetric analysis of coking coals was examined. Several coal extrudates show mineral distribution, organic maceral composition and overall calorific value to be little affected by 800 F extrusion. Volatile matter and plastic properties are moderately reduced, and the network structure (as gauged by extractables) appears to be slightly degraded in the extrusion process.
Strauss, Y.
2010-02-15
In nonrelativistic quantum mechanics time enters as a parameter in the Schroedinger equation. However, there are various situations where the need arises to view time as a dynamical variable. In this paper we consider the dynamical role of time through the construction of a Lyapunov variable - i.e., a self-adjoint quantum observable whose expectation value varies monotonically as time increases. It is shown, in a constructive way, that a certain class of models admits a Lyapunov variable and that the existence of a Lyapunov variable implies the existence of a transformation mapping the original quantum mechanical problem to an equivalent irreversible representation. In addition, it is proven that in the irreversible representation there exists a natural time ordering observable splitting the Hilbert space at each t>0 into past and future subspaces.
Mantle-driven uplift of Hangai Dome: New seismic constraints from adjoint tomography
NASA Astrophysics Data System (ADS)
Chen, Min; Niu, Fenglin; Liu, Qinya; Tromp, Jeroen
2015-09-01
The origin of Hangai Dome, an unusual large-scale, high-elevation low-relief landform in central Mongolia, remains enigmatic partly due to lack of constraints on its underlying seismic structure. Using adjoint tomography—a full waveform tomographic technique—and a large seismic waveform data set in East Asia, we discover beneath the dome a deep low shear wave speed (low-V) conduit indicating a slightly warmer (54 K to 127 K) upwelling from the transition zone. This upwelling is spatially linked to a broader uppermost mantle low-V region underlying the dome. Further observations of high compressional to shear wave speed ratios and positive radial anisotropy in the low-V region suggest partial melting and horizontal melt transport. We propose that the mantle upwelling induced decompression melting in the uppermost mantle and that excess heat associated with melt transport modified the lithosphere that isostatically compensates the surface uplift at upper mantle depths (>80 km).
Discrete Adjoint-Based Design for Unsteady Turbulent Flows On Dynamic Overset Unstructured Grids
NASA Technical Reports Server (NTRS)
Nielsen, Eric J.; Diskin, Boris
2012-01-01
A discrete adjoint-based design methodology for unsteady turbulent flows on three-dimensional dynamic overset unstructured grids is formulated, implemented, and verified. The methodology supports both compressible and incompressible flows and is amenable to massively parallel computing environments. The approach provides a general framework for performing highly efficient and discretely consistent sensitivity analysis for problems involving arbitrary combinations of overset unstructured grids which may be static, undergoing rigid or deforming motions, or any combination thereof. General parent-child motions are also accommodated, and the accuracy of the implementation is established using an independent verification based on a complex-variable approach. The methodology is used to demonstrate aerodynamic optimizations of a wind turbine geometry, a biologically-inspired flapping wing, and a complex helicopter configuration subject to trimming constraints. The objective function for each problem is successfully reduced and all specified constraints are satisfied.
Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces
Bagarello, F.
2015-11-15
In a recent paper we have introduced several possible inequivalent descriptions of the dynamics and of the transition probabilities of a quantum system when its Hamiltonian is not self-adjoint. Our analysis was carried out in finite dimensional Hilbert spaces. This is useful, but quite restrictive since many physically relevant quantum systems live in infinite dimensional Hilbert spaces. In this paper we consider this situation, and we discuss some applications to well known models, introduced in the literature in recent years: the extended harmonic oscillator, the Swanson model and a generalized version of the Landau levels Hamiltonian. Not surprisingly we will find new interesting features not previously found in finite dimensional Hilbert spaces, useful for a deeper comprehension of this kind of physical systems.
Adjoint-optimization algorithm for spatial reconstruction of a scalar source
NASA Astrophysics Data System (ADS)
Wang, Qi; Hasegawa, Yosuke; Meneveau, Charles; Zaki, Tamer
2016-11-01
Identifying the location of the source of passive scalar transported in a turbulent environment based on remote measurements is an ill-posed problem. A conjugate-gradient algorithm is proposed, and relies on eddy-resolving simulations of both the forward and adjoint scalar transport equations to reconstruct the spatial distribution of the source. The formulation can naturally accommodate measurements from multiple sensors. The algorithm is evaluated for scalar dispersion in turbulent channel flow (Reτ = 180). As the distance between the source and sensor increases, the accuracy of the source recovery deteriorates due to diffusive effects. Improvement in performance is demonstrated for higher Prantl numbers and also with increasing number of sensors. This study is supported by the National Science Foundation (Grant CNS 1461870).
The efficiency of geophysical adjoint codes generated by automatic differentiation tools
NASA Astrophysics Data System (ADS)
Vlasenko, A. V.; Köhl, A.; Stammer, D.
2016-02-01
The accuracy of numerical models that describe complex physical or chemical processes depends on the choice of model parameters. Estimating an optimal set of parameters by optimization algorithms requires knowledge of the sensitivity of the process of interest to model parameters. Typically the sensitivity computation involves differentiation of the model, which can be performed by applying algorithmic differentiation (AD) tools to the underlying numerical code. However, existing AD tools differ substantially in design, legibility and computational efficiency. In this study we show that, for geophysical data assimilation problems of varying complexity, the performance of adjoint codes generated by the existing AD tools (i) Open_AD, (ii) Tapenade, (iii) NAGWare and (iv) Transformation of Algorithms in Fortran (TAF) can be vastly different. Based on simple test problems, we evaluate the efficiency of each AD tool with respect to computational speed, accuracy of the adjoint, the efficiency of memory usage, and the capability of each AD tool to handle modern FORTRAN 90-95 elements such as structures and pointers, which are new elements that either combine groups of variables or provide aliases to memory addresses, respectively. We show that, while operator overloading tools are the only ones suitable for modern codes written in object-oriented programming languages, their computational efficiency lags behind source transformation by orders of magnitude, rendering the application of these modern tools to practical assimilation problems prohibitive. In contrast, the application of source transformation tools appears to be the most efficient choice, allowing handling even large geophysical data assimilation problems. However, they can only be applied to numerical models written in earlier generations of programming languages. Our study indicates that applying existing AD tools to realistic geophysical problems faces limitations that urgently need to be solved to allow the
A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System
C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler
1998-10-01
The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.
Stabilizing State-Feedback Design via the Moving Horizon Method.
1982-01-01
aide if necessary and identify by block number) Stabilizing control design; linear time varying systems; fixed depth horizon; index optimization methods...dual system. 20. ABSTRACT (Continue an reverse side If necessary and Identify by block number) Li _ A stabilizing control design for general linear...Apprvyed for pb~ ~~* 14 ~dl Stri but ion uni imit Oe, ABSTRACT A stabilizing control design for general linear time vary- invariant systems through
NASA Technical Reports Server (NTRS)
Marotzke, T. L. J.
1997-01-01
To study seasonal circulation and meridional heat transport of the Indian Ocean by synthesizing dynamics with data, climatological monthly temperatures and salinities, surface heat and freshewater fluxes, and wind stresses, together with monthly ensembles of three years (93-95) of TOPEX-derived surface geostrophic velocity anomalies, are assimilated into an Indian Ocean GCM.
A Coupled-Adjoint Method for High-Fidelity Aero-Structural Optimization
2002-10-01
geometry engine, and an efficient gradient-based optimization algorithm. The aero-structural solver ensures accurate solutions by using high-fidelity...22 2.3.1 Geometry Engine and Database . . . . . . . . . . . . . . . . . . . . . 23 2.3.2 Displacement Transfer...86 5-6 Airfoil geometry at the root. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5-7 Airfoil geometry at mid semi-span
Solid state neutron detector and method for use
Doty, F. Patrick; Zwieback, Ilya; Ruderman, Warren
2002-01-01
Crystals of lithium tetraborate or alpha-barium borate had been found to be neutron detecting materials. The crystals are prepared using known crystal growing techniques, wherein the process does not include the common practice of using a fluxing agent, such as sodium oxide or sodium fluoride, to reduce the melting temperature of the crystalline compound. Crystals prepared by this method can be sliced into thin single or polycrystalline wafers, or ground to a powder and prepared as a sintered compact or a print paste, and then configured with appropriate electronic hardware, in order to function as neutron detectors.
Moments Method for the Nuclear Density of States
NASA Astrophysics Data System (ADS)
Teran, Edgar; Johnson, Calvin
2006-04-01
We utilize statistical spectroscopy to model the nuclear level density in the interacting shell model. Low-lying statistical moments of each configuration of the shell model space are computed. Partial (configuration) densities are generated from the moments, and the sum of all the contributions is the total level density. Modified Breit-Wigner (MBW) distributions are used to model the partial densities. The properties of such functions allow for exact reproduction of the moments at large asymmetries, which are needed to accurately reproduce the overall level density. We work in the sd-shell with USD interaction, and the pf-shell with GXPF1, FPD6G an KB3G interactions. Results from level densities generated with method will be shown in the sd-shell and pf-shell, as well as comparisons to exact calculations and experimental data.
Electromagnetic methods for development and production: State of the art
Wilt, M.; Alumbaugh, D.
1997-10-01
Electromagnetic (EM) methods, long used for borehole logging as a formation evaluation tool in developed oil fields, are rarely applied in surface or crosshole configurations or applied in cased wells. This is largely due to the high levels of cultural noise and the preponderance of steel well casing. However, recent experimental success with crosshole EM systems for water and steam flood monitoring using fiberglass cased wells has shown promise in applying these techniques to development and production (D & P) problems. This paper describes technological solutions that will allow for successful application of EM techniques in oil fields, despite surface noise and steel casing. First an example sites the application of long offset logging to map resistivity structure away from the borehole. Next, a successful application of crosshole EM where one of the wells is steel cased is described. The potential application of earth`s field nuclear magnetic resonance (NMR) to map fluid saturation at large distances from the boreholes is also discussed.
Comparative Study of Three Data Assimilation Methods for Ice Sheet Model Initialisation
NASA Astrophysics Data System (ADS)
Mosbeux, Cyrille; Gillet-Chaulet, Fabien; Gagliardini, Olivier
2015-04-01
The current global warming has direct consequences on ice-sheet mass loss contributing to sea level rise. This loss is generally driven by an acceleration of some coastal outlet glaciers and reproducing these mechanisms is one of the major issues in ice-sheet and ice flow modelling. The construction of an initial state, as close as possible to current observations, is required as a prerequisite before producing any reliable projection of the evolution of ice-sheets. For this step, inverse methods are often used to infer badly known or unknown parameters. For instance, the adjoint inverse method has been implemented and applied with success by different authors in different ice flow models in order to infer the basal drag [ Schafer et al., 2012; Gillet-chauletet al., 2012; Morlighem et al., 2010]. Others data fields, such as ice surface and bedrock topography, are easily measurable with more or less uncertainty but only locally along tracks and interpolated on finer model grid. All these approximations lead to errors on the data elevation model and give rise to an ill-posed problem inducing non-physical anomalies in flux divergence [Seroussi et al, 2011]. A solution to dissipate these divergences of flux is to conduct a surface relaxation step at the expense of the accuracy of the modelled surface [Gillet-Chaulet et al., 2012]. Other solutions, based on the inversion of ice thickness and basal drag were proposed [Perego et al., 2014; Pralong & Gudmundsson, 2011]. In this study, we create a twin experiment to compare three different assimilation algorithms based on inverse methods and nudging to constrain the bedrock friction and the bedrock elevation: (i) cyclic inversion of friction parameter and bedrock topography using adjoint method, (ii) cycles coupling inversion of friction parameter using adjoint method and nudging of bedrock topography, (iii) one step inversion of both parameters with adjoint method. The three methods show a clear improvement in parameters
NASA Astrophysics Data System (ADS)
Castaings, W.; Dartus, D.; Le Dimet, F.-X.; Saulnier, G.-M.
2009-04-01
Variational methods are widely used for the analysis and control of computationally intensive spatially distributed systems. In particular, the adjoint state method enables a very efficient calculation of the derivatives of an objective function (response function to be analysed or cost function to be optimised) with respect to model inputs. In this contribution, it is shown that the potential of variational methods for distributed catchment scale hydrology should be considered. A distributed flash flood model, coupling kinematic wave overland flow and Green Ampt infiltration, is applied to a small catchment of the Thoré basin and used as a relatively simple (synthetic observations) but didactic application case. It is shown that forward and adjoint sensitivity analysis provide a local but extensive insight on the relation between the assigned model parameters and the simulated hydrological response. Spatially distributed parameter sensitivities can be obtained for a very modest calculation effort (~6 times the computing time of a single model run) and the singular value decomposition (SVD) of the Jacobian matrix provides an interesting perspective for the analysis of the rainfall-runoff relation. For the estimation of model parameters, adjoint-based derivatives were found exceedingly efficient in driving a bound-constrained quasi-Newton algorithm. The reference parameter set is retrieved independently from the optimization initial condition when the very common dimension reduction strategy (i.e. scalar multipliers) is adopted. Furthermore, the sensitivity analysis results suggest that most of the variability in this high-dimensional parameter space can be captured with a few orthogonal directions. A parametrization based on the SVD leading singular vectors was found very promising but should be combined with another regularization strategy in order to prevent overfitting.
NASA Astrophysics Data System (ADS)
An, Xing Qin; Xian Zhai, Shi; Jin, Min; Gong, Sunling; Wang, Yu
2016-06-01
The aerosol adjoint module of the atmospheric chemical modeling system GRAPES-CUACE (Global-Regional Assimilation and Prediction System coupled with the CMA Unified Atmospheric Chemistry Environment) is constructed based on the adjoint theory. This includes the development and validation of the tangent linear and the adjoint models of the three parts involved in the GRAPES-CUACE aerosol module: CAM (Canadian Aerosol Module), interface programs that connect GRAPES and CUACE, and the aerosol transport processes that are embedded in GRAPES. Meanwhile, strict mathematical validation schemes for the tangent linear and the adjoint models are implemented for all input variables. After each part of the module and the assembled tangent linear and adjoint models is verified, the adjoint model of the GRAPES-CUACE aerosol is developed and used in a black carbon (BC) receptor-source sensitivity analysis to track influential haze source areas in north China. The sensitivity of the average BC concentration over Beijing at the highest concentration time point (referred to as the Objective Function) is calculated with respect to the BC amount emitted over the Beijing-Tianjin-Hebei region. Four types of regions are selected based on the administrative division or the sensitivity coefficient distribution. The adjoint sensitivity results are then used to quantify the effect of reducing the emission sources at different time intervals over different regions. It is indicated that the more influential regions (with relatively larger sensitivity coefficients) do not necessarily correspond to the administrative regions. Instead, the influence per unit area of the sensitivity selected regions is greater. Therefore, controlling the most influential regions during critical time intervals based on the results of the adjoint sensitivity analysis is much more efficient than controlling administrative regions during an experimental time period.
NASA Astrophysics Data System (ADS)
Belikov, Dmitry A.; Maksyutov, Shamil; Yaremchuk, Alexey; Ganshin, Alexander; Kaminski, Thomas; Blessing, Simon; Sasakawa, Motoki; Gomez-Pelaez, Angel J.; Starchenko, Alexander
2016-02-01
We present the development of the Adjoint of the Global Eulerian-Lagrangian Coupled Atmospheric (A-GELCA) model that consists of the National Institute for Environmental Studies (NIES) model as an Eulerian three-dimensional transport model (TM), and FLEXPART (FLEXible PARTicle dispersion model) as the Lagrangian Particle Dispersion Model (LPDM). The forward tangent linear and adjoint components of the Eulerian model were constructed directly from the original NIES TM code using an automatic differentiation tool known as TAF (Transformation of Algorithms in Fortran; http://www.FastOpt.com, with additional manual pre- and post-processing aimed at improving transparency and clarity of the code and optimizing the performance of the computing, including MPI (Message Passing Interface). The Lagrangian component did not require any code modification, as LPDMs are self-adjoint and track a significant number of particles backward in time in order to calculate the sensitivity of the observations to the neighboring emission areas. The constructed Eulerian adjoint was coupled with the Lagrangian component at a time boundary in the global domain. The simulations presented in this work were performed using the A-GELCA model in forward and adjoint modes. The forward simulation shows that the coupled model improves reproduction of the seasonal cycle and short-term variability of CO2. Mean bias and standard deviation for five of the six Siberian sites considered decrease roughly by 1 ppm when using the coupled model. The adjoint of the Eulerian model was shown, through several numerical tests, to be very accurate (within machine epsilon with mismatch around to ±6 e-14) compared to direct forward sensitivity calculations. The developed adjoint of the coupled model combines the flux conservation and stability of an Eulerian discrete adjoint formulation with the flexibility, accuracy, and high resolution of a Lagrangian backward trajectory formulation. A-GELCA will be incorporated
Organic solid state optical switches and method for producing organic solid state optical switches
Wasielewski, M.R.; Gaines, G.L.; Niemczyk, M.P.; Johnson, D.G.; Gosztola, D.J.; O`Neil, M.P.
1993-01-01
This invention consists of a light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, and a method for making said compound.
Wasielewski, Michael R.; Gaines, George L.; Niemczyk, Mark P.; Johnson, Douglas G.; Gosztola, David J.; O'Neil, Michael P.
1996-01-01
A light-intensity dependent molecular switch comprised of a compound which shuttles an electron or a plurality of electrons from a plurality of electron donors to an electron acceptor upon being stimulated with light of predetermined wavelengths, said donors selected from porphyrins and other compounds, and a method for making said compound.
A Novel Clustering Method Curbing the Number of States in Reinforcement Learning
NASA Astrophysics Data System (ADS)
Kotani, Naoki; Nunobiki, Masayuki; Taniguchi, Kenji
We propose an efficient state-space construction method for a reinforcement learning. Our method controls the number of categories with improving the clustering method of Fuzzy ART which is an autonomous state-space construction method. The proposed method represents weight vector as the mean value of input vectors in order to curb the number of new categories and eliminates categories whose state values are low to curb the total number of categories. As the state value is updated, the size of category becomes small to learn policy strictly. We verified the effectiveness of the proposed method with simulations of a reaching problem for a two-link robot arm. We confirmed that the number of categories was reduced and the agent achieved the complex task quickly.
NASA Technical Reports Server (NTRS)
Li, Y.; Navon, I. M.; Courtier, P.; Gauthier, P.
1993-01-01
An adjoint model is developed for variational data assimilation using the 2D semi-Lagrangian semi-implicit (SLSI) shallow-water equation global model of Bates et al. with special attention being paid to the linearization of the interpolation routines. It is demonstrated that with larger time steps the limit of the validity of the tangent linear model will be curtailed due to the interpolations, especially in regions where sharp gradients in the interpolated variables coupled with strong advective wind occur, a synoptic situation common in the high latitudes. This effect is particularly evident near the pole in the Northern Hemisphere during the winter season. Variational data assimilation experiments of 'identical twin' type with observations available only at the end of the assimilation period perform well with this adjoint model. It is confirmed that the computational efficiency of the semi-Lagrangian scheme is preserved during the minimization process, related to the variational data assimilation procedure.
Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods
NASA Astrophysics Data System (ADS)
Sıdır, İsa; Gülseven Sıdır, Yadigar
2015-01-01
Absorption and fluorescence spectra of Oil Red O (abbreviated as ORO) are recorded in various solvents with different polarity in the range of 250-900 nm, at room temperature. The solvatochromic shift methods have been used to determine the ground state (μg) and excited state (μe) dipole moments depending on dielectric constant and refractive index functions. It is observed that fluorescence spectra show positive solvatochromism whereas absorption spectra do not indicates sensitive behavior to solvent polarity. Excited state dipole moment is found as higher than those of ground state for all of the used methods and it is attributed to more polar excited state of ORO. Theoretical μg has been determined by quantum chemical calculations using DFT and semi empirical methods. HOMO, LUMO, molecular electrostatic potential (MEP) and solvent accessible surface of ORO are calculated by using DFT-B3LYP method.
Estimation of ground and excited state dipole moments of Oil Red O by solvatochromic shift methods.
Sıdır, İsa; Gülseven Sıdır, Yadigar
2015-01-25
Absorption and fluorescence spectra of Oil Red O (abbreviated as ORO) are recorded in various solvents with different polarity in the range of 250-900 nm, at room temperature. The solvatochromic shift methods have been used to determine the ground state (μg) and excited state (μe) dipole moments depending on dielectric constant and refractive index functions. It is observed that fluorescence spectra show positive solvatochromism whereas absorption spectra do not indicates sensitive behavior to solvent polarity. Excited state dipole moment is found as higher than those of ground state for all of the used methods and it is attributed to more polar excited state of ORO. Theoretical μg has been determined by quantum chemical calculations using DFT and semi empirical methods. HOMO, LUMO, molecular electrostatic potential (MEP) and solvent accessible surface of ORO are calculated by using DFT-B3LYP method.
Methods and systems for thermodynamic evaluation of battery state of health
Yazami, Rachid; McMenamin, Joseph; Reynier, Yvan; Fultz, Brent T
2014-12-02
Described are systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and battery systems and for characterizing the state of health of electrodes and battery systems. Measurement of physical attributes of electrodes and batteries corresponding to thermodynamically stabilized electrode conditions permit determination of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and battery systems, such as energy, power density, current rate, cycle life and state of health. Also provided are systems and methods for charging a battery according to its state of health.
Handschin, E.; Langer, M.; Kliokys, E.
1995-12-31
The possibility of power system state estimation with non-traditional measurement configuration is investigated. It is assumed that some substations are equipped with current magnitude measurements. Unique state estimation is possible, in such a situation, if currents are combined with voltage or power measurements and inequality constraints on node power injections are taken into account. The state estimation algorithm facilitating the efficient incorporation of inequality constraints is developed using an interior point optimization method. Simulation results showing the performance of the algorithm are presented. The method can be used for state estimation in medium voltage subtransmission and distribution networks.
NASA Astrophysics Data System (ADS)
Spak, S.; Henze, D. K.; Carmichael, G. R.
2013-12-01
The science and policy communities both need common metrics that clearly, comprehensively, and intuitively communicate the relative sensitivities of air quality and climate to emissions control strategies, include emissions and process uncertainties, and minimize the range of error that is transferred to the metric. This is particularly important because most emissions control policies impact multiple short-lived climate forcing agents, and non-linear climate and health responses in space and time limit the accuracy and policy value of simple emissions-based calculations. Here we describe and apply new second-order elasticity metrics to support the direct comparison of emissions control policies for air quality and health co-benefits analyses using adjoint chemical transport and chemistry-climate models. Borrowing an econometric concept, the simplest elasticities in the atmospheric system are the percentage changes in concentrations due to a percentage change in the emissions. We propose a second-order elasticity metric, the Emissions Reduction Efficiency, which supports comparison across compounds, to long-lived climate forcing agents like CO2, and to other air quality impacts, at any temporal or spatial scale. These adjoint-based metrics (1) possess a single uncertainty range; (2) allow for the inclusion of related health and other impacts effects within the same framework; (3) take advantage of adjoint and forward sensitivity models; and (4) are easily understood. Using global simulations with the adjoint of GEOS-Chem, we apply these metrics to identify spatial and sectoral variability in the climate and health co-benefits of sectoral emissions controls on black carbon, sulfur dioxide, and PM2.5. We find spatial gradients in optimal control strategies on every continent, along with differences among megacities.
General Method for Constructing Local Hidden Variable Models for Entangled Quantum States
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Guerini, L.; Rabelo, R.; Skrzypczyk, P.
2016-11-01
Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality. A central question is to determine the precise relation between entanglement and nonlocality. Here we present the first general test to decide whether a quantum state is local, and show that the test can be implemented by semidefinite programing. This method can be applied to any given state and for the construction of new examples of states with local hidden variable models for both projective and general measurements. As applications, we provide a lower-bound estimate of the fraction of two-qubit local entangled states and present new explicit examples of such states, including those that arise from physical noise models, Bell-diagonal states, and noisy Greenberger-Horne-Zeilinger and W states.
NASA Astrophysics Data System (ADS)
Bakkiyaraj, Ashok; Kumarappan, N.
2015-09-01
This paper presents a new approach for evaluating the reliability indices of a composite power system that adopts binary differential evolution (BDE) algorithm in the search mechanism to select the system states. These states also called dominant states, have large state probability and higher loss of load curtailment necessary to maintain real power balance. A chromosome of a BDE algorithm represents the system state. BDE is not applied for its traditional application of optimizing a non-linear objective function, but used as tool for exploring more number of dominant states by producing new chromosomes, mutant vectors and trail vectors based on the fitness function. The searched system states are used to evaluate annualized system and load point reliability indices. The proposed search methodology is applied to RBTS and IEEE-RTS test systems and results are compared with other approaches. This approach evaluates the indices similar to existing methods while analyzing less number of system states.
Adjoint-based computation of U.S. nationwide ozone exposure isopleths
NASA Astrophysics Data System (ADS)
Ashok, Akshay; Barrett, Steven R. H.
2016-05-01
Population exposure to daily maximum ozone is associated with an increased risk of premature mortality, and efforts to mitigate these impacts involve reducing emissions of nitrogen oxides (NOx) and volatile organic compounds (VOCs). We quantify the dependence of U.S. national exposure to annually averaged daily maximum ozone on ambient VOC and NOx concentrations through ozone exposure isopleths, developed using emissions sensitivities from the adjoint of the GEOS-Chem air quality model for 2006. We develop exposure isopleths for all locations within the contiguous US and derive metrics based on the isopleths that quantify the impact of emissions on national ozone exposure. This work is the first to create ozone exposure isopleths using adjoint sensitivities and at a large scale. We find that across the US, 29% of locations experience VOC-limited conditions (where increased NOx emissions lower ozone) during 51% of the year on average. VOC-limited conditions are approximately evenly distributed diurnally and occur more frequently during the fall and winter months (67% of the time) than in the spring and summer (37% of the time). The VOC/NOx ratio of the ridge line on the isopleth diagram (denoting a local maximum in ozone exposure with respect to NOx concentrations) is 9.2 ppbC/ppb on average across grid cells that experience VOC-limited conditions and 7.9, 10.1 and 6.7 ppbC/ppb at the three most populous US cities of New York, Los Angeles and Chicago, respectively. Emissions that are ozone exposure-neutral during VOC-limited exposure conditions result in VOC/NOx concentration ratios of 0.63, 1.61 and 0.72 ppbC/ppb at each of the three US cities respectively, and between 0.01 and 1.91 ppbC/ppb at other locations. The sensitivity of national ozone exposure to NOx and VOC emissions is found to be highest near major cities in the US. Together, this information can be used to assess the effectiveness of NOx and VOC emission reductions on mitigating ozone exposure in the
A new method for observing the running states of a single-variable nonlinear system.
Meng, Yu; Chen, Hong; Chen, Cheng
2015-03-01
In order to timely grasp a single variable nonlinear system running states, a new method called Scatter Point method is put forward in this paper. It can be used to observe or monitor the running states of a single variable nonlinear system in real-time. In this paper, the definition of the method is given at first, and then its working principle is expounded theoretically, after this, some physical experiments based on Chua's nonlinear system are conducted. At the same time, many scatter point graphs are measured by a general analog oscilloscope. The motion, number, and distribution of these scatter points shown on the oscilloscope screen can directly reflect the current states of the tested system. The experimental results further confirm that the method is effective and practical, in which the system running states are not easily lost. In addition, this method is not only suitable for single variable systems but also for multivariable systems.
Curvature theory for point-path and plane-envelope in spherical kinematics by new adjoint approach
NASA Astrophysics Data System (ADS)
Wang, Wei; Wang, Delun
2014-11-01
Planar kinematics has been studied systematically based on centrodes, however axodes are underutilized to set up the curvature theories in spherical and spatial kinematics. Through a spherical adjoint approach, an axode-based theoretical system of spherical kinematics is established. The spherical motion is re-described by the adjoint approach and vector equation of spherical instant center is concisely derived. The moving and fixed axodes for spherical motion are mapped onto a unit sphere to obtain spherical centrodes, whose kinematic invariants totally reflect the intrinsic property of spherical motion. Based on the spherical centrodes, the curvature theories for a point and a plane of a rigid body in spherical motion are revealed by spherical fixed point and plane conditions. The Euler-Savary analogue for point-path is presented. Tracing points with higher order curvature features are located in the moving body by means of algebraic equations. For plane-envelope, the construction parameters are obtained. The osculating conditions for plane-envelope and circular cylindrical surface or circular conical surface are given. A spherical four-bar linkage is taken as an example to demonstrate the spherical adjoint approach and the curvature theories. The research proposes systematic spherical curvature theories with the axode as logical starting-point, and sets up a bridge from the centrode-based planar kinematics to the axode-based spatial kinematics.
Load Modeling and State Estimation Methods for Power Distribution Systems: Final Report
Tom McDermott
2010-05-07
The project objective was to provide robust state estimation for distribution systems, comparable to what has been available on transmission systems for decades. This project used an algorithm called Branch Current State Estimation (BCSE), which is more effective than classical methods because it decouples the three phases of a distribution system, and uses branch current instead of node voltage as a state variable, which is a better match to current measurement.
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method.
Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation
NASA Technical Reports Server (NTRS)
Park, Michael A.
2002-01-01
Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.
NASA Astrophysics Data System (ADS)
Äkäslompolo, S.; Bonheure, G.; Tardini, G.; Kurki-Suonio, T.; The ASDEX Upgrade Team
2015-10-01
The activation probe is a robust tool to measure flux of fusion products from a magnetically confined plasma. A carefully chosen solid sample is exposed to the flux, and the impinging ions transmute the material making it radioactive. Ultra-low level gamma-ray spectroscopy is used post mortem to measure the activity and, thus, the number of fusion products. This contribution presents the numerical analysis of the first measurement in the ASDEX Upgrade tokamak, which was also the first experiment to measure a single discharge. The ASCOT suite of codes was used to perform adjoint/reverse Monte Carlo calculations of the fusion products. The analysis facilitates, for the first time, a comparison of numerical and experimental values for absolutely calibrated flux. The results agree to within a factor of about two, which can be considered a quite good result considering the fact that all features of the plasma cannot be accounted in the simulations.Also an alternative to the present probe orientation was studied. The results suggest that a better optimized orientation could measure the flux from a significantly larger part of the plasma. A shorter version of this contribution is due to be published in PoS at: 1st EPS conference on Plasma Diagnostics
Improving NO(x) cap-and-trade system with adjoint-based emission exchange rates.
Mesbah, S Morteza; Hakami, Amir; Schott, Stephan
2012-11-06
Cap-and-trade programs have proven to be effective instruments for achieving environmental goals while incurring minimum cost. The nature of the pollutant, however, affects the design of these programs. NO(x), an ozone precursor, is a nonuniformly mixed pollutant with a short atmospheric lifetime. NO(x) cap-and-trade programs in the U.S. are successful in reducing total NO(x) emissions but may result in suboptimal environmental performance because location-specific ozone formation potentials are neglected. In this paper, the current NO(x) cap-and-trade system is contrasted to a hypothetical NO(x) trading policy with sensitivity-based exchange rates. Location-specific exchange rates, calculated through adjoint sensitivity analysis, are combined with constrained optimization for prediction of NO(x) emissions trading behavior and post-trade ozone concentrations. The current and proposed policies are examined in a case study for 218 coal-fired power plants that participated in the NO(x) Budget Trading Program in 2007. We find that better environmental performance at negligibly higher system-wide abatement cost can be achieved through inclusion of emission exchange rates. Exposure-based exchange rates result in better environmental performance than those based on concentrations.
Muon g -2 in gauge mediated supersymmetry breaking models with adjoint messengers
NASA Astrophysics Data System (ADS)
Gogoladze, Ilia; Ün, Cem Salih
2017-02-01
We explored the sparticle mass spectrum in light of the muon g -2 anomaly and the little hierarchy problem in a class of the gauge mediated supersymmetry breaking model. Here, the messenger fields transform in the adjoint representation of the Standard Model gauge symmetry. To avoid unacceptably light right-handed slepton masses, the Standard Model is supplemented by the additional U (1 )B-L gauge symmetry. A nonzero U (1 )B-L D term makes the right-handed slepton masses compatible with the current experimental bounds. We show that in the framework of Λ3<0 and μ <0 the muon g -2 anomaly and the observed 125 GeV Higgs boson mass can be simultaneously accommodated. The slepton masses in this case are predicted to lie in the few hundred GeV range, which can be tested at the LHC. Despite the heavy colored sparticle spectrum, the little hierarchy problem in this model can be ameliorated, and the electroweak fine-tuning parameter can be as low as 10 or so.
Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices
NASA Astrophysics Data System (ADS)
Joglekar, Yogesh N.; Karr, William A.
2011-03-01
We investigate the level density σ(x) and the level-spacing distribution p(s) of random matrices M=AF≠M†, where F is a (diagonal) inner product and A is a random, real, symmetric or complex, Hermitian matrix with independent entries drawn from a probability distribution q(x) with zero mean and finite higher moments. Although not Hermitian, the matrix M is self-adjoint with respect to F and thus has purely real eigenvalues. We find that the level density σF(x) is independent of the underlying distribution q(x) and solely characterized by F, and therefore generalizes the Wigner semicircle distribution σW(x). We find that the level-spacing distributions p(s) are independent of q(x), and are dependent upon both the inner product F and whether A is real or complex, and therefore generalize the Wigner surmise for level spacing. Our results suggest F-dependent generalizations of the well-known Gaussian Orthogonal Ensemble and Gaussian Unitary Ensemble classes.
Seismic structure of the European crust and upper mantle based on adjoint tomography
NASA Astrophysics Data System (ADS)
Zhu, H.; Bozdag, E.; Peter, D.; Tromp, J.
2013-12-01
We present a new crustal and upper mantle model for the European continent and the North Atlantic Ocean, named EU60. It is constructed based on adjoint tomography and involves 3D variations in elastic wavespeeds, anelastic attenuation, and radial/azimuthal anisotropy. Long-wavelength elastic wavespeed structure of EU60 agree with previous body- and surface-wave tomographic models. Some hitherto unidentified features, such as the Adria microplate, naturally emerge from smoothed starting model. Subducting slabs, slab detachment, ancient suture zones, continental rifts and back-arc basins are well resolved in EU60. For anelastic structure, we find an anti-correlation between shear wavespeeds and anelastic attenuation at shallow depths. At greater depths, this anti-correlation becomes relatively weak, in agreement with previous attenuation studies at global scales. Consistent with radial anisotropy in 1D reference models, the European continent is dominated by features with radially anisotropic parameter xi>1, indicating the presence of horizontal flow within the upper mantle. In addition, subduction zones, such as the Apennines and Hellenic arcs, are characterized as vertical flow with xi<1 at depths greater than 150~km. For azimuthal anisotropy, we find that the direction of fast anisotropic axis is well correlated with complicated tectonic evolution in this region, such as extension along the North Atlantic Ridge, trench retreat in the Mediterranean and counter-clockwise rotation of the Anatolian Plate. The ``point spread function'' is used to assess image quality and analyze tradeoff between different model parameters.
Development of Methods to Determine the Hugoniot Equation-of-State of Concrete
Methods used to determine the Hugoniot equation - of - state were experimentally evaluated for structural concrete having 3/4 in. (prototype) and 1/8 in... equation - of - state of the prototype concrete can be matched with a modeled concrete mixture. Shock propagation simulations of a computer modeled
Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.
2017-04-04
An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.
Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.
2016-05-03
An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.
NASA Technical Reports Server (NTRS)
Eaker, Charles W.; Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
This paper describes the use of an exact fast Fourier transform (FFT) method to prepare specified vibrational-rotational states of triatomic molecules. The method determines the Fourier coefficients needed to describe the coordinates and momenta of a vibrating-rotating triatomic molecule. Once the Fourier coefficients of a particular state are determined, it is possible to easily generate as many random sets of initial cartesian coordinates and momenta as desired. All the members of each set will correspond to the particular vibrational-rotational state selected. For example, in the case of the ground vibrational state of a non-rotating water molecule, the calculated actions of 100 sets of initial conditions produced actions within 0.001 h(bar) of the specified quantization values and energies within 5 cm(sup -1) of the semiclassical eigenvalue. The numerical procedure is straightforward for states in which all the fundamental frequencies are independent. However for states for which the fundamental frequencies become commensurate (resonance states), there are additional complications. In these cases it is necessary to determine a new set of "fundamental" frequencies and to modify the quantization conditions. Once these adjustments are made, good results are obtained for resonance states. The major problems are in labelling the large number of Fourier coefficients and the presence of regions of chaotic motion. Results are presented for the vibrational states of H2O and HCN and the ro-vibrational states of H2O.
Optimization methods, flux conserving methods for steady state Navier-Stokes equation
NASA Technical Reports Server (NTRS)
Adeyeye, John; Attia, Nauib
1995-01-01
Navier-Stokes equation as discretized by new flux conserving method proposed by Chang and Scott results in the system: vector F(vector x) = 0, where F is a vector valued function. The Optimization method we use is based on Quasi-Newton methods: given a nonlinear function vector F(vector x) = 0, we solve, Delta(vector x) = -BF(vector x), where Delta(vector x) is the correction term and B is the inverse Jacobian of F(x). Then, iteratively, vector(x(sub (i+1))) = vector(x (sub i)) + alpha.Delta(vector x(sub i)), where alpha is a line search correction term determined by a line search routine. We use the BFCG's update the Jacobian matrix B(sub k) at each iteration. It is well known that B(sub k) approaches B(*) at the solution X(*). This algorithm has several advantages over the Newton-Raphson method. For example, we do not need to calculate the Jacobian matrix at each iteration which is computationally very expensive.
A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates
Wang, Hanquan
2014-10-01
In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can be computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.
Two-state model based on the block-localized wave function method
NASA Astrophysics Data System (ADS)
Mo, Yirong
2007-06-01
The block-localized wave function (BLW) method is a variant of ab initio valence bond method but retains the efficiency of molecular orbital methods. It can derive the wave function for a diabatic (resonance) state self-consistently and is available at the Hartree-Fock (HF) and density functional theory (DFT) levels. In this work we present a two-state model based on the BLW method. Although numerous empirical and semiempirical two-state models, such as the Marcus-Hush two-state model, have been proposed to describe a chemical reaction process, the advantage of this BLW-based two-state model is that no empirical parameter is required. Important quantities such as the electronic coupling energy, structural weights of two diabatic states, and excitation energy can be uniquely derived from the energies of two diabatic states and the adiabatic state at the same HF or DFT level. Two simple examples of formamide and thioformamide in the gas phase and aqueous solution were presented and discussed. The solvation of formamide and thioformamide was studied with the combined ab initio quantum mechanical and molecular mechanical Monte Carlo simulations, together with the BLW-DFT calculations and analyses. Due to the favorable solute-solvent electrostatic interaction, the contribution of the ionic resonance structure to the ground state of formamide and thioformamide significantly increases, and for thioformamide the ionic form is even more stable than the covalent form. Thus, thioformamide in aqueous solution is essentially ionic rather than covalent. Although our two-state model in general underestimates the electronic excitation energies, it can predict relative solvatochromic shifts well. For instance, the intense π →π* transition for formamide upon solvation undergoes a redshift of 0.3eV, compared with the experimental data (0.40-0.5eV).
State of charge monitoring methods for vanadium redox flow battery control
NASA Astrophysics Data System (ADS)
Skyllas-Kazacos, Maria; Kazacos, Michael
2011-10-01
During operation of redox flow batteries, differential transfer of ions and electrolyte across the membrane and gassing side reactions during charging, can lead to an imbalance between the two half-cells that results in loss of capacity. This capacity loss can be corrected by either simple remixing of the two solutions, or by chemical or electrochemical rebalancing. In order to develop automated electrolyte management systems therefore, the state-of-charge of each half-cell electrolyte needs to be known. In this study, two state-of-charge monitoring methods are investigated for use in the vanadium redox flow battery. The first method utilizes conductivity measurements to independently measure the state-of-charge of each half-cell electrolyte. The second method is based on spectrophotometric principles and uses the different colours of the charged and discharged anolyte and catholyte to monitor system balance and state-of charge of each half-cell of the VRB during operation.
Systems and Methods for Automated Vessel Navigation Using Sea State Prediction
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L. (Inventor); Rankin, Arturo (Inventor); Aghazarian, Hrand (Inventor); Howard, Andrew B. (Inventor); Reinhart, Rene Felix (Inventor)
2015-01-01
Systems and methods for sea state prediction and autonomous navigation in accordance with embodiments of the invention are disclosed. One embodiment of the invention includes a method of predicting a future sea state including generating a sequence of at least two 3D images of a sea surface using at least two image sensors, detecting peaks and troughs in the 3D images using a processor, identifying at least one wavefront in each 3D image based upon the detected peaks and troughs using the processor, characterizing at least one propagating wave based upon the propagation of wavefronts detected in the sequence of 3D images using the processor, and predicting a future sea state using at least one propagating wave characterizing the propagation of wavefronts in the sequence of 3D images using the processor. Another embodiment includes a method of autonomous vessel navigation based upon a predicted sea state and target location.
Method and System for Controlling a Dexterous Robot Execution Sequence Using State Classification
NASA Technical Reports Server (NTRS)
Sanders, Adam M. (Inventor); Platt, Robert J., Jr. (Inventor); Quillin, Nathaniel (Inventor); Permenter, Frank Noble (Inventor); Pfeiffer, Joseph (Inventor)
2014-01-01
A robotic system includes a dexterous robot and a controller. The robot includes a plurality of robotic joints, actuators for moving the joints, and sensors for measuring a characteristic of the joints, and for transmitting the characteristics as sensor signals. The controller receives the sensor signals, and is configured for executing instructions from memory, classifying the sensor signals into distinct classes via the state classification module, monitoring a system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the system state. A method for controlling the robot in the above system includes receiving the signals via the controller, classifying the signals using the state classification module, monitoring the present system state of the robot using the classes, and controlling the robot in the execution of alternative work tasks based on the present system state.
Method for Synthesizing Metal Nanowires in Anodic Alumina Membranes Using Solid State Reduction
NASA Technical Reports Server (NTRS)
Martinez-Inesta, Maria M (Inventor); Feliciano, Jennie (Inventor); Quinones-Fontalvo, Leonel (Inventor)
2016-01-01
The invention proposes a novel method for the fabrication of regular arrays of MNWs using solid-state reduction (SSR). Using this method copper (Cu), silver (Ag), and palladium (Pd) nanowire (NWs) arrays were synthesized using anodic alumina membranes (AAMs) as templates. Depending on the metal loading used the NWs reached different diameters.
How do respiratory state and measurement method affect bra size calculations?
McGhee, D E; Steele, J R
2006-01-01
Objectives To investigate the effects of respiratory state and measurement method on bra size calculation. Methods The bra sizes of 16 large‐breasted women were measured during two respiratory states, end voluntary inspiration and relaxed voluntary expiration, and using two sizing methods, which were compared against subject‐reported bra sizes. Results Both respiratory state and measurement method significantly affected bra size estimations, whereby measuring chest circumference during inspiration increased both band and decreased cup size. However, whereas bra size calculated using the standard method differed significantly from subject‐reported bra size, cup size calculated using the breast hemi‐circumference method did not differ significantly from subject‐reported cup size. Conclusions As respiratory state significantly affects bra sizes, it should be standardised during bra size measurements. A more valid and reliable bra sizing method should be developed, possibly using the breast hemi‐circumference method for cup size estimations and raw under‐bust chest circumference values for band size. PMID:17021004
Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik
2015-01-01
Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The
Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik
2015-01-01
Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The
Aerosol Health Impact Source Attribution Studies with the CMAQ Adjoint Air Quality Model
NASA Astrophysics Data System (ADS)
Turner, M. D.
Fine particulate matter (PM2.5) is an air pollutant consisting of a mixture of solid and liquid particles suspended in the atmosphere. Knowledge of the sources and distributions of PM2.5 is important for many reasons, two of which are that PM2.5 has an adverse effect on human health and also an effect on climate change. Recent studies have suggested that health benefits resulting from a unit decrease in black carbon (BC) are four to nine times larger than benefits resulting from an equivalent change in PM2.5 mass. The goal of this thesis is to quantify the role of emissions from different sectors and different locations in governing the total health impacts, risk, and maximum individual risk of exposure to BC both nationally and regionally in the US. We develop and use the CMAQ adjoint model to quantify the role of emissions from all modeled sectors, times, and locations on premature deaths attributed to exposure to BC. From a national analysis, we find that damages resulting from anthropogenic emissions of BC are strongly correlated with population and premature death. However, we find little correlation between damages and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damages resulting from BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Additionally, emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. From a regional analysis, we find that emissions from outside each of six urban areas account for 7% to 27% of the premature deaths attributed to exposure to BC within the region. Within the region encompassing New York City and Philadelphia
NASA Astrophysics Data System (ADS)
Nath, Bijoyendra
A methodology for aerodynamic shape optimization on two-dimensional unstructured grids using Euler equations is presented. The sensitivity derivatives are obtained using the discrete adjoint formulation. The Euler equations are solved using a fully implicit, upwind, cell-vertex, median-dual finite volume scheme. Roe's upwind flux-difference-splitting scheme is used to determine the inviscid fluxes. To enable discontinuities to be captured without oscillations, limiters are used at the reconstruction stage. The derivation of the accurate discretization of the flux Jacobians due to the conserved variables and the entire mesh required for the costate equation is developed and its efficient accumulation algorithm on an edge-based loop is implemented and documented. Exact linearization of Roe's approximate Riemann solver is incorporated into the aerodynamic analysis as well as the sensitivity analysis. Higher-order discretization is achieved by including all distance-one and -two terms due to the reconstruction and the limiter, although the limiter is not linearized. Two-dimensional body conforming grid movement strategy and grid sensitivity are obtained by considering the grid to be a system of interconnected springs. Arbitrary airfoil geometries are obtained using an algorithm for generalized von Mises airfoils with finite trailing edges. An incremental iterative formulation is used to solve the large sparse linear systems of equations obtained from the sensitivity analysis. The discrete linear systems obtained from the equations governing the flow and those from the sensitivity analysis are solved iteratively using the preconditioned GMRES (Generalized Minimum Residual) algorithm. For the optimization process, a constrained nonlinear programming package which uses a sequential quadratic programming algorithm is used. This study presents the process of analytically obtaining the exact discrete sensitivity derivatives and computationally cost-effective algorithms to
The boundary element method in stress-state problems for an ansiotropic plate with holes
Neskorodev, N.M.
1995-12-25
We propose a method of solving the problem of the stress state of an anisotropic plate with holes of arbitrary shape. The method is based on approximating the boundary of a region by curved boundary elements. These elements are taken to be a family of semi-ellipses. To satisfy the boundary conditions we use the pointwise least-square method. Numerical experiments showed good agreement of the computations with results known earlier.
A numerical method for solving optimal control problems using state parametrization
NASA Astrophysics Data System (ADS)
Mehne, H.; Borzabadi, A.
2006-06-01
A numerical method for solving a special class of optimal control problems is given. The solution is based on state parametrization as a polynomial with unknown coefficients. This converts the problem to a non-linear optimization problem. To facilitate the computation of optimal coefficients, an improved iterative method is suggested. Convergence of this iterative method and its implementation for numerical examples are also given.
Markov chain Monte Carlo methods for state-space models with point process observations.
Yuan, Ke; Girolami, Mark; Niranjan, Mahesan
2012-06-01
This letter considers how a number of modern Markov chain Monte Carlo (MCMC) methods can be applied for parameter estimation and inference in state-space models with point process observations. We quantified the efficiencies of these MCMC methods on synthetic data, and our results suggest that the Reimannian manifold Hamiltonian Monte Carlo method offers the best performance. We further compared such a method with a previously tested variational Bayes method on two experimental data sets. Results indicate similar performance on the large data sets and superior performance on small ones. The work offers an extensive suite of MCMC algorithms evaluated on an important class of models for physiological signal analysis.
Auger decay rates of core hole states using equation of motion coupled cluster method
NASA Astrophysics Data System (ADS)
Ghosh, Aryya; Vaval, Nayana; Pal, Sourav
2017-01-01
The recent development of Linac coherent light source high intense X-ray laser makes it possible to create double core ionization in the molecule. The generation of double core hole state and its decay is identified by Auger spectroscopy. The decay of this double core hole (DCH) states can be used as a powerful spectroscopic tool in chemical analysis. In the present work, we have implemented a promising approach, known as CAP-EOMCC method, which is a combination of complex absorbing potential (CAP) and equation-of-motion coupled cluster (EOMCC) approach to calculate the lifetime of single and double core hole states. We have applied this method to calculate the lifetime of the single core hole (K-LL) and double core hole (KK-KLL) states of CH4, NH3 and HF molecules. The predicted lifetime is found to be extremely short.
NASA Astrophysics Data System (ADS)
Gusev, M. I.
2016-10-01
We study the penalty function type methods for computing the reachable sets of nonlinear control systems with state constraints. The state constraints are given by a finite system of smooth inequalities. The proposed methods are based on removing the state constraints by replacing the original system with an auxiliary system without constraints. This auxiliary system is obtained by modifying the set of velocities of the original system around the boundary of constraints. The right-hand side of the system depends on a penalty parameter. We prove that the reachable sets of the auxiliary system approximate in the Hausdorff metric the reachable set of the original system with state constraints as the penalty parameter tends to zero (infinity) and give the estimates of the rate of convergence. The numerical algorithms for computing the reachable sets, based on Pontryagin's maximum principle, are also considered.
A novel method for the injection and manipulation of magnetic charge states in nanostructures
Gartside, J. C.; Burn, D. M.; Cohen, L. F.; Branford, W. R.
2016-01-01
Realising the promise of next-generation magnetic nanotechnologies is contingent on the development of novel methods for controlling magnetic states at the nanoscale. There is currently demand for simple and flexible techniques to access exotic magnetisation states without convoluted fabrication and application processes. 360° domain walls (metastable twists in magnetisation separating two domains with parallel magnetisation) are one such state, which is currently of great interest in data storage and magnonics. Here, we demonstrate a straightforward and powerful process whereby a moving magnetic charge, provided experimentally by a magnetic force microscope tip, can write and manipulate magnetic charge states in ferromagnetic nanowires. The method is applicable to a wide range of nanowire architectures with considerable benefits over existing techniques. We confirm the method’s efficacy via the injection and spatial manipulation of 360° domain walls in Py and Co nanowires. Experimental results are supported by micromagnetic simulations of the tip-nanowire interaction. PMID:27615372
NASA Astrophysics Data System (ADS)
Brown, Frank R.
Coherent state techniques have proved a useful formal tool for obtaining the N = infty limit of a variety of quantum mechanical systems, in part because they allow one to explicitly construct the classical Hamiltonian and classical phase space that define the dynamics of the large N system. This construction is sufficiently concrete that it naturally suggests methods for carrying out practical calculations. We discuss two such methods, one numerical and the other a classical strong coupling expansion, for calculating the mass spectrum of pure U (infty) Hamiltonian lattice gauge theory. Both involve calculating coherent state expectation values of the quantum Hamiltonian to obtain a classical Hamiltonian as a function on the space of coherent states, and solving for the coherent state (the point in classical configuration space) that minimizes this classical Hamiltonian. Finally the frequencies of classical small oscillations about this minimum give the large N limit of the quantum mechanical excitation spectrum.
NASA Astrophysics Data System (ADS)
Wang, Wenke; Song, Yuepeng; Gao, Dongsheng; Yoon, Eun Yoo; Lee, Dong Jun; Lee, Chong Soo; Kim, Hyoung Seop
2013-09-01
High pressure torsion (HPT) is useful for achieving substantial grain refinement to ultrafine grained/nanocrystalline states in bulk metallic solids. Most publications that analyzed the HPT process used experimental and numerical simulation approaches, whereas theoretical stress analyses for the HPT process are rare. Because of the key role of compression stage for the deformation of HPT, this paper aims to conduct a theoretical analysis and to establish a practical formula for stress and forming parameters of HPT process using the slab analysis method. Three equations were obtained via equations derivation to describe the normal stress states corresponding to the three zones of plastic deformation for HPT process as stick zone, drag zone and slip zone. As to the compression stage of HPT, the stress distribution results using the finite element method agree well with those using the slab analysis method. There are drag and stick zones on the contact surface of the HPT sample, as verified by the finite element method (FEM) and slab analysis method.
Piezoelectrically forced vibrations of electroded doubly rotated quartz plates by state space method
NASA Technical Reports Server (NTRS)
Chander, R.
1990-01-01
The purpose of this investigation is to develop an analytical method to study the vibration characteristics of piezoelectrically forced quartz plates. The procedure can be summarized as follows. The three dimensional governing equations of piezoelectricity, the constitutive equations and the strain-displacement relationships are used in deriving the final equations. For this purpose, a state vector consisting of stresses and displacements are chosen and the above equations are manipulated to obtain the projection of the derivative of the state vector with respect to the thickness coordinate on to the state vector itself. The solution to the state vector at any plane is then easily obtained in a closed form in terms of the state vector quantities at a reference plane. To simplify the analysis, simple thickness mode and plane strain approximations are used.
Doppler-shift attenuation method lifetime measurements of low-lying states in 111In
NASA Astrophysics Data System (ADS)
Bucurescu, D.; Căta-Danil, I.; Ilaş, G.; Ivaşcu, M.; Mărginean, N.; Stroe, L.; Ur, C. A.
1996-11-01
The lifetimes of nine low-lying excited states in 111In have been measured with the Doppler-shift attenuation method in the 111Cd(p,nγ) reaction. A comparison of experimental quantities with predictions based on the interacting boson-fermion model unravels the states due to the coupling of a g9/2 proton hole to the quadrupole vibrations of the core.
Density-of-states based Monte Carlo methods for simulation of biological systems
NASA Astrophysics Data System (ADS)
Rathore, Nitin; Knotts, Thomas A.; de Pablo, Juan J.
2004-03-01
We have developed density-of-states [1] based Monte Carlo techniques for simulation of biological molecules. Two such methods are discussed. The first, Configurational Temperature Density of States (CTDOS) [2], relies on computing the density of states of a peptide system from knowledge of its configurational temperature. The reciprocal of this intrinsic temperature, computed from instantaneous configurational information of the system, is integrated to arrive at the density of states. The method shows improved efficiency and accuracy over techniques that are based on histograms of random visits to distinct energy states. The second approach, Expanded Ensemble Density of States (EXEDOS), incorporates elements from both the random walk method and the expanded ensemble formalism. It is used in this work to study mechanical deformation of model peptides. Results are presented in the form of force-extension curves and the corresponding potentials of mean force. The application of this proposed technique is further generalized to other biological systems; results will be presented for ion transport through protein channels, base stacking in nucleic acids and hybridization of DNA strands. [1]. F. Wang and D. P. Landau, Phys. Rev. Lett., 86, 2050 (2001). [2]. N. Rathore, T. A. Knotts IV and J. J. de Pablo, Biophys. J., Dec. (2003).
A user`s manual for MASH 1.0: A Monte Carlo Adjoint Shielding Code System
Johnson, J.O.
1992-03-01
The Monte Carlo Adjoint Shielding Code System, MASH, calculates neutron and gamma-ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air-over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system include the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. MASH is the successor to the Vehicle Code System (VCS) initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the ``dose importance`` of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response a a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user`s manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem (input data and selected output edits) for each code.
A review on the computational methods for emotional state estimation from the human EEG.
Kim, Min-Ki; Kim, Miyoung; Oh, Eunmi; Kim, Sung-Phil
2013-01-01
A growing number of affective computing researches recently developed a computer system that can recognize an emotional state of the human user to establish affective human-computer interactions. Various measures have been used to estimate emotional states, including self-report, startle response, behavioral response, autonomic measurement, and neurophysiologic measurement. Among them, inferring emotional states from electroencephalography (EEG) has received considerable attention as EEG could directly reflect emotional states with relatively low costs and simplicity. Yet, EEG-based emotional state estimation requires well-designed computational methods to extract information from complex and noisy multichannel EEG data. In this paper, we review the computational methods that have been developed to deduct EEG indices of emotion, to extract emotion-related features, or to classify EEG signals into one of many emotional states. We also propose using sequential Bayesian inference to estimate the continuous emotional state in real time. We present current challenges for building an EEG-based emotion recognition system and suggest some future directions.
Smolin, John A; Gambetta, Jay M; Smith, Graeme
2012-02-17
We provide an efficient method for computing the maximum-likelihood mixed quantum state (with density matrix ρ) given a set of measurement outcomes in a complete orthonormal operator basis subject to Gaussian noise. Our method works by first changing basis yielding a candidate density matrix μ which may have nonphysical (negative) eigenvalues, and then finding the nearest physical state under the 2-norm. Our algorithm takes at worst O(d(4)) for the basis change plus O(d(3)) for finding ρ where d is the dimension of the quantum state. In the special case where the measurement basis is strings of Pauli operators, the basis change takes only O(d(3)) as well. The workhorse of the algorithm is a new linear-time method for finding the closest probability distribution (in Euclidean distance) to a set of real numbers summing to one.
Orlowska-Kowalska, Teresa; Kaminski, Marcin
2014-01-01
The paper deals with the implementation of optimized neural networks (NNs) for state variable estimation of the drive system with an elastic joint. The signals estimated by NNs are used in the control structure with a state-space controller and additional feedbacks from the shaft torque and the load speed. High estimation quality is very important for the correct operation of a closed-loop system. The precision of state variables estimation depends on the generalization properties of NNs. A short review of optimization methods of the NN is presented. Two techniques typical for regularization and pruning methods are described and tested in detail: the Bayesian regularization and the Optimal Brain Damage methods. Simulation results show good precision of both optimized neural estimators for a wide range of changes of the load speed and the load torque, not only for nominal but also changed parameters of the drive system. The simulation results are verified in a laboratory setup.
Round-robin differential-phase-shift quantum key distribution with a passive decoy state method
NASA Astrophysics Data System (ADS)
Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan
2017-02-01
Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen.
Round-robin differential-phase-shift quantum key distribution with a passive decoy state method.
Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan
2017-02-13
Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen.
Round-robin differential-phase-shift quantum key distribution with a passive decoy state method
Liu, Li; Guo, Fen-Zhuo; Qin, Su-Juan; Wen, Qiao-Yan
2017-01-01
Recently, a new type of protocol named Round-robin differential-phase-shift quantum key distribution (RRDPS QKD) was proposed, where the security can be guaranteed without monitoring conventional signal disturbances. The active decoy state method can be used in this protocol to overcome the imperfections of the source. But, it may lead to side channel attacks and break the security of QKD systems. In this paper, we apply the passive decoy state method to the RRDPS QKD protocol. Not only can the more environment disturbance be tolerated, but in addition it can overcome side channel attacks on the sources. Importantly, we derive a new key generation rate formula for our RRDPS protocol using passive decoy states and enhance the key generation rate. We also compare the performance of our RRDPS QKD to that using the active decoy state method and the original RRDPS QKD without any decoy states. From numerical simulations, the performance improvement of the RRDPS QKD by our new method can be seen. PMID:28198808
A weighted adjoint-source for weight-window generation by means of a linear tally combination
Sood, Avneet; Booth, Thomas E; Solomon, Clell J
2009-01-01
A new importance estimation technique has been developed that allows weight-window optimization for a linear combination of tallies. This technique has been implemented in a local version of MCNP and effectively weights the adjoint source term for each tally in the combination. Optimizing weight window parameters for the linear tally combination allows the user to optimize weight windows for multiple regions at once. In this work, we present our results of solutions to an analytic three-tally-region test problem and a flux calculation on a 100,000 voxel oil-well logging tool problem.
Gavrilov, S.P.; Gitman, D.M.; Smirnov, A.A.
2003-02-01
We study solutions of Dirac equation in the field of Aharonov-Bohm solenoid and a collinear uniform magnetic field. On this base we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We reduce (3+1)-dimensional problem to (2+1)-dimensional one by a proper choice of spin operator. Then we study the problem doing a finite radius regularization of the solenoid field. We exploit solutions of the latter problem to specify boundary conditions in the singular case.
Newton's method as applied to the Riemann problem for media with general equations of state
NASA Astrophysics Data System (ADS)
Moiseev, N. Ya.; Mukhamadieva, T. A.
2008-06-01
An approach based on Newton’s method is proposed for solving the Riemann problem for media with normal equations of state. The Riemann integrals are evaluated using a cubic approximation of an isentropic curve that is superior to the Simpson method in terms of accuracy, convergence rate, and efficiency. The potentials of the approach are demonstrated by solving problems for media obeying the Mie-Grüneisen equation of state. The algebraic equation of the isentropic curve and some exact solutions for configurations with rarefaction waves are explicitly given.
Iterative methods for the WLS state estimation on RISC, vector, and parallel computers
Nieplocha, J.; Carroll, C.C.
1993-10-01
We investigate the suitability and effectiveness of iterative methods for solving the weighted-least-square (WLS) state estimation problem on RISC, vector, and parallel processors. Several of the most popular iterative methods are tested and evaluated. The best performing preconditioned conjugate gradient (PCG) is very well suited for vector and parallel processing as is demonstrated for the WLS state estimation of the IEEE standard test systems. A new sparse matrix format for the gain matrix improves vector performance of the PCG algorithm and makes it competitive to the direct solver. Internal parallelism in RISC processors, used in current multiprocessor systems, can be taken advantage of in an implementation of this algorithm.
NASA Technical Reports Server (NTRS)
Ibrahim, A. H.; Tiwari, S. N.; Smith, R. E.
1997-01-01
Variational methods (VM) sensitivity analysis employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite difference sensitivity analysis.
Zhang, Xiao-Jie; Shang, Cheng; Liu, Zhi-Pan
2013-12-10
Toward the activity prediction with large-scale computations, here a double-ended surface walking (DESW) method is developed for connecting two minima on a potential energy surface (PES) and locating the associated transition state (TS) using only the first derivatives. The method operates two images starting from the initial and the final states, respectively, to walk in a stepwise manner toward each other. The surface walking involves repeated bias potential addition and local relaxation with the constrained Broyden dimer method to correct the walking direction. We apply the method to a model PES, a large set of gas phase Baker reactions, and complex surface catalytic reactions, which demonstrates that the DESW method can establish a low energy pathway linking two minima even without iterative optimization of the pathway, from which the TS can be located readily. By comparing the efficiency of the new method with the existing methods, we show that the DESW method is much less computationally demanding and is applicable for reactions with complex PESs. We hope that the DESW method may be integrated with the PES sampling methods for automated reaction prediction.
A chain-of-states acceleration method for the efficient location of minimum energy paths
Hernández, E. R. Herrero, C. P.; Soler, J. M.
2015-11-14
We describe a robust and efficient chain-of-states method for computing Minimum Energy Paths (MEPs) associated to barrier-crossing events in poly-atomic systems, which we call the acceleration method. The path is parametrized in terms of a continuous variable t ∈ [0, 1] that plays the role of time. In contrast to previous chain-of-states algorithms such as the nudged elastic band or string methods, where the positions of the states in the chain are taken as variational parameters in the search for the MEP, our strategy is to formulate the problem in terms of the second derivatives of the coordinates with respect to t, i.e., the state accelerations. We show this to result in a very simple and efficient method for determining the MEP. We describe the application of the method to a series of test cases, including two low-dimensional problems and the Stone-Wales transformation in C{sub 60}.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Yang, Wei-Yu; Todling, Ricardo; Navon, I. Michael
1997-01-01
A detailed description of the development of the tangent linear model (TLM) and its adjoint model of the Relaxed Arakawa-Schubert moisture parameterization package used in the NASA GEOS-1 C-Grid GCM (Version 5.2) is presented. The notational conventions used in the TLM and its adjoint codes are described in detail.
R-matrix with Pseudo-States (RMPS) method: application to CH+ resonances curves
NASA Astrophysics Data System (ADS)
Madden, Dermot; Tennyson, Jonathan; Zhang, Rui
2011-07-01
In a series of calculations on both electron and positron collisions with small molecules the R-Matrix with Pseudo-States (RMPS) method has been found to recover polarisation effects neglected in other close-coupling methods including the standard R-matrix procedure. The molecular R-Matrix and RMPS methods is being applied to determine low-lying resonance states of CH+ as a function of internuclear separation. Initial results are presented for both a standard R-matrix close-coupling model and for an RMPS calculation. Eigenphase sums and resonances below the 3Π threshold are presented for 2Π total symmetry. These resonances are classified by their quantum defects and compared to previous results. Prospects for these and other calculations using the RMPS method are discussed.
Liu, Qian; OuYang, Liangfei; Liang, Heng; Li, Nan; Geng, Xindu
2012-06-01
A novel thermodynamic state recursion (TSR) method, which is based on nonequilibrium thermodynamic path described by the Lagrangian-Eulerian representation, is presented to simulate the whole chromatographic process of frontal analysis using the spatial distribution of solute bands in time series like as a series of images. TSR differs from the current numerical methods using the partial differential equations in Eulerian representation. The novel method is used to simulate the nonideal, nonlinear hydrophobic interaction chromatography (HIC) processes of lysozyme and myoglobin under the discrete complex boundary conditions. The results show that the simulated breakthrough curves agree well with the experimental ones. The apparent diffusion coefficient and the Langmuir isotherm parameters of the two proteins in HIC are obtained by the state recursion inverse method. Due to its the time domain and Markov characteristics, TSR is applicable to the design and online control of the nonlinear multicolumn chromatographic systems.
State-To Spectroscopy and Dynamics of Ions and Neutrals by Photoionization and Photoelectron Methods
NASA Astrophysics Data System (ADS)
Ng, Cheuk-Yiu
2014-06-01
Recent advances in high-resolution photoionization, photoelectron, and photodissociation studies based on single-photon vacuum ultraviolet (VUV) and two-color infrared (IR)-VUV, visible (VIS)-ultraviolet (UV), and VUV-VUV laser excitations are illustrated with selected examples. We show that VUV laser photoionization coupled with velocity-map-imaging (VMI)-threshold photoelectron (VMI-TPE) detection can achieve comparable energy resolutions, but higher detection sensitivities than those observed in VUV laser pulsed field ionization-photoelectron (PFI-PE) measurements. For molecules with known intermediate states, IR-VUV and VIS-UV excitation schemes are highly sensitive for rovibronically selected and resolved PFI-PE studies. The successful applications of the VUV-PFI-PE, VUV-VMI-TPE and VIS-UV-PFI-PE methods to state-resolved and state-to-state photoelectron studies of transient radicals and transitional metal-containing molecules are highlighted. The most recently established VUV-VUV pump-probe time-slice VMI-photoion method is shown to be promising for state-to-state photodissociation studies of small molecules relevant to planetary atmospheres and for the fundamental understanding of photodissociation dynamics.
Modified Inverse First Order Reliability Method (I-FORM) for Predicting Extreme Sea States.
Eckert-Gallup, Aubrey Celia; Sallaberry, Cedric Jean-Marie; Dallman, Ann Renee; Neary, Vincent Sinclair
2014-09-01
Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulation s as a part of the stand ard current practice for designing marine structure s to survive extreme sea states. Such environmental contours are characterized by combinations of significant wave height ( ) and energy period ( ) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first - order reliability method (IFORM) i s standard design practice for generating environmental contours. In this paper, the traditional appli cation of the IFORM to generating environmental contours representing extreme sea states is described in detail and its merits and drawbacks are assessed. The application of additional methods for analyzing sea state data including the use of principal component analysis (PCA) to create an uncorrelated representation of the data under consideration is proposed. A reexamination of the components of the IFORM application to the problem at hand including the use of new distribution fitting techniques are shown to contribute to the development of more accurate a nd reasonable representations of extreme sea states for use in survivability analysis for marine struc tures. Keywords: In verse FORM, Principal Component Analysis , Environmental Contours, Extreme Sea State Characteri zation, Wave Energy Converters
Investigation of the behaviour of elastomer structures at different states based on the FE-method
NASA Astrophysics Data System (ADS)
Kirichevskij, V. V.
1994-05-01
A procedure is presented for the derivation of the Pang-Lundle and Lindley laws of state for low-compressible elastomers on the basis of the Finger form. An algorithm for the solution of nonlinear problems by the finite-element method in the form of the translation method is described and the numerical results for free and constrained deformation of thin-layered structures obtained on the basis of the CODETOM computing system are given.
Li, Ke; Deb, Kalyanmoy; Zhang, Qingfu; Zhang, Qiang
2016-11-08
Nondominated sorting (NDS), which divides a population into several nondomination levels (NDLs), is a basic step in many evolutionary multiobjective optimization (EMO) algorithms. It has been widely studied in a generational evolution model, where the environmental selection is performed after generating a whole population of offspring. However, in a steady-state evolution model, where a population is updated right after the generation of a new candidate, the NDS can be extremely time consuming. This is especially severe when the number of objectives and population size become large. In this paper, we propose an efficient NDL update method to reduce the cost for maintaining the NDL structure in steady-state EMO. Instead of performing the NDS from scratch, our method only updates the NDLs of a limited number of solutions by extracting the knowledge from the current NDL structure. Notice that our NDL update method is performed twice at each iteration. One is after the reproduction, the other is after the environmental selection. Extensive experiments fully demonstrate that, comparing to the other five state-of-the-art NDS methods, our proposed method avoids a significant amount of unnecessary comparisons, not only in the synthetic data sets, but also in some real optimization scenarios. Last but not least, we find that our proposed method is also useful for the generational evolution model.
Resting state fMRI: A review of methods and clinical applications
Lee, Megan H.; Smyser, Christopher D.; Shimony, Joshua S.
2014-01-01
Resting state fMRI measures spontaneous, low frequency fluctuations in the BOLD signal to investigate the functional architecture of the brain. Application of this technique has allowed for the identification of various RSNs, or spatially distinct areas of the brain that demonstrate synchronous BOLD fluctuations at rest. Various methods exist for analyzing resting state data, including seed based approaches, independent component analysis, graph methods, clustering algorithms, neural networks, and pattern classifiers. Clinical applications of resting state fMRI are at an early stage of development. However, its use in presurgical planning for brain tumor and epilepsy patients demonstrates early promise, and the technique may also have a future role in providing diagnostic and prognostic information for neurological and psychiatric diseases. PMID:22936095
A simple method of interface-state reduction in metal-nitride-oxide-semiconductor structures
NASA Astrophysics Data System (ADS)
Sheu, Yea-Dean
1991-04-01
A method for reducing the interface-state density in polysilicon gate metal-nitride-oxide-semiconductor (MNOS) capacitors is reported. The method involves deposition of a sacrificial blanket aluminum layer on top of a chemical-vapor-deposition (CVD) oxide over MNOS capacitors. The entire stack was then annealed at 450 °C in nitrogen and then the metal and CVD oxide were stripped away. The interface state density was reduced from 1011 to 1010 cm-2 eV-1 after this anneal. It is believed that Al reacts with trace water in the CVD oxide and generates active hydrogen. The hydrogen diffuses to the Si/SiO2 interface and passivates the interface states.
The Application of Decision Analysis Methods to Source Selection in the United States Air Force
1991-08-01
Specifically, Multiattribute Utility Theory (MAUT) and the Analytic Hierarchy Process (AHP) are applied to source selection within the United States Air... Multiattribute Utility Theory , Analytic 137 Heirarchy Process, Source Selection, System Acquisition 16. PRICE CODE 17. SECURITY CLASSIFICATION 18 SECURITY...decision analysis methods to the selection of the ’best" contractor for defense systems acquisition. Specifically, Multiattribute Utility Theory (MAUT
Teaching the Properties of Chromium's Oxidation States with a Case Study Method
ERIC Educational Resources Information Center
Ozdilek, Zehra
2015-01-01
The purpose of this study was to investigate how a mixed-method case study affects pre-service science teachers' awareness of hexavalent chromium pollution and content knowledge about the properties of chromium's different oxidation states. The study was conducted in Turkey with 55 sophomores during the fall semester of 2013-2014. The students…
45 CFR 235.50 - State plan requirements for methods of personnel administration.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 2 2010-10-01 2010-10-01 false State plan requirements for methods of personnel administration. 235.50 Section 235.50 Public Welfare Regulations Relating to Public Welfare OFFICE OF FAMILY... established and maintained in public agencies administering or supervising the administration of the...
[Study of the state of mitochondria at low temperatures by the ESR method].
Nardid, O A; Zagnoĭko, V I; Moiseev, V A; Lugovoĭ, V I
1984-01-01
Possible usage of ESR probe method for studying low temperature effect on structural and functional state of mitochondria is under study. It is shown that during freezing out of mitochondrial water there is sharp dehydration of intermitochondrial matrix and membrane thickening. The facts are given about damage of barrier function of the membrane at the moment of appearance of extramitochondrial liquid phase during thawing.
Technology Transfer Automated Retrieval System (TEKTRAN)
Several flux-calculation (FC) schemes are available for determining soil-to-atmosphere emissions of nitrous oxide (N2O) and other trace gases using data from non-steady-state flux chambers. Recently developed methods claim to provide more accuracy in estimating the true pre-deployment flux (f0) comp...
46 CFR 356.7 - Methods of establishing ownership by United States Citizens.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 8 2014-10-01 2014-10-01 false Methods of establishing ownership by United States Citizens. 356.7 Section 356.7 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MISCELLANEOUS REQUIREMENTS FOR VESSELS OF 100 FEET OR GREATER IN REGISTERED LENGTH TO OBTAIN A FISHERY ENDORSEMENT TO...
46 CFR 356.7 - Methods of establishing ownership by United States Citizens.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 8 2012-10-01 2012-10-01 false Methods of establishing ownership by United States Citizens. 356.7 Section 356.7 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MISCELLANEOUS REQUIREMENTS FOR VESSELS OF 100 FEET OR GREATER IN REGISTERED LENGTH TO OBTAIN A FISHERY ENDORSEMENT TO...
46 CFR 356.7 - Methods of establishing ownership by United States Citizens.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 8 2011-10-01 2011-10-01 false Methods of establishing ownership by United States Citizens. 356.7 Section 356.7 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MISCELLANEOUS REQUIREMENTS FOR VESSELS OF 100 FEET OR GREATER IN REGISTERED LENGTH TO OBTAIN A FISHERY ENDORSEMENT TO...
46 CFR 356.7 - Methods of establishing ownership by United States Citizens.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 8 2010-10-01 2010-10-01 false Methods of establishing ownership by United States Citizens. 356.7 Section 356.7 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MISCELLANEOUS REQUIREMENTS FOR VESSELS OF 100 FEET OR GREATER IN REGISTERED LENGTH TO OBTAIN A FISHERY ENDORSEMENT TO...
46 CFR 356.7 - Methods of establishing ownership by United States Citizens.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 8 2013-10-01 2013-10-01 false Methods of establishing ownership by United States Citizens. 356.7 Section 356.7 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MISCELLANEOUS REQUIREMENTS FOR VESSELS OF 100 FEET OR GREATER IN REGISTERED LENGTH TO OBTAIN A FISHERY ENDORSEMENT TO...
ON THE PIECEWISE PARABOLIC METHOD FOR COMPRESSIBLE FLOW WITH STELLAR EQUATIONS OF STATE
Zingale, Michael; Katz, Max P.
2015-02-01
The piecewise parabolic method and related schemes are widely used to model stellar flows. Several different methods for extending the validity of these methods to a general equation of state (EOS) have been proposed over time, but direct comparisons among one-another and exact solutions with stellar EOSs are not widely available. We introduce some simple test problems with exact solutions run with a popular stellar EOS and test how two existing codes with different approaches to incorporating general gases perform. The source code for generating the exact solutions is made available.
NASA Astrophysics Data System (ADS)
Dinh, Khanh N.; Sidje, Roger B.
2016-06-01
The finite state projection (FSP) method has enabled us to solve the chemical master equation of some biological models that were considered out of reach not long ago. Since the original FSP method, much effort has gone into transforming it into an adaptive time-stepping algorithm as well as studying its accuracy. Some of the improvements include the multiple time interval FSP, the sliding windows, and most notably the Krylov-FSP approach. Our goal in this tutorial is to give the reader an overview of the current methods that build on the FSP.
Dry fracture method for simultaneous measurement of in-situ stress state and material properties
Serata, S.; Oka, S.; Kikuchi, S.
1996-04-01
Based on the dry fracture principle, a computerized borehole probe has been developed to measure stress state and material properties, simultaneously. The probe is designed to obtain a series of measurements in a continuing sequence along a borehole length, without any interruptive measures, such as resetting packers, taking indentation of borehole wall, overcoming, etc. The new dry fracture probe for the single fracture method is designed to overcome the difficulties posed by its ancestor which was based on the double fracture method. The accuracy of the single fracture method is confirmed by a close agreement with the theory, FE modeling and laboratory testing.
Data Processing And Machine Learning Methods For Multi-Modal Operator State Classification Systems
NASA Technical Reports Server (NTRS)
Hearn, Tristan A.
2015-01-01
This document is intended as an introduction to a set of common signal processing learning methods that may be used in the software portion of a functional crew state monitoring system. This includes overviews of both the theory of the methods involved, as well as examples of implementation. Practical considerations are discussed for implementing modular, flexible, and scalable processing and classification software for a multi-modal, multi-channel monitoring system. Example source code is also given for all of the discussed processing and classification methods.
Dinh, Khanh N; Sidje, Roger B
2016-05-13
The finite state projection (FSP) method has enabled us to solve the chemical master equation of some biological models that were considered out of reach not long ago. Since the original FSP method, much effort has gone into transforming it into an adaptive time-stepping algorithm as well as studying its accuracy. Some of the improvements include the multiple time interval FSP, the sliding windows, and most notably the Krylov-FSP approach. Our goal in this tutorial is to give the reader an overview of the current methods that build on the FSP.
NASA Astrophysics Data System (ADS)
Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan
2017-02-01
We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.
Han, Qiang
2010-01-27
In this paper, we present a method to construct the eigenspace of the tight-binding electrons moving on a 2D square lattice with nearest-neighbor hopping in the presence of a perpendicular uniform magnetic field which imposes (quasi-)periodic boundary conditions for the wavefunctions in the magnetic unit cell. Exact unitary transformations are put forward to correlate the discrete eigenvectors of the 2D electrons with those of the Harper equation. The cyclic tridiagonal matrix associated with the Harper equation is then tridiagonalized by another unitary transformation. The obtained truncated eigenbasis is utilized to expand the Bogoliubov-de Gennes equations for the superconducting vortex lattice state, which shows the merit of our method in studying large-sized systems. To test our method, we have applied our results to study the vortex lattice state of an s-wave superconductor.
State-space-split method for some generalized Fokker-Planck-Kolmogorov equations in high dimensions.
Er, Guo-Kang; Iu, Vai Pan
2012-06-01
The state-space-split method for solving the Fokker-Planck-Kolmogorov equations in high dimensions is extended to solving the generalized Fokker-Planck-Kolmogorov equations in high dimensions for stochastic dynamical systems with a polynomial type of nonlinearity and excited by Poissonian white noise. The probabilistic solution of the motion of the stretched Euler-Bernoulli beam with cubic nonlinearity and excited by uniformly distributed Poissonian white noise is analyzed with the presented solution procedure. The numerical analysis shows that the results obtained with the state-space-split method together with the exponential polynomial closure method are close to those obtained with the Monte Carlo simulation when the relative value of the basic system relaxation time and the mean arrival time of the Poissonian impulse is in some limited range.
The comparability and reliability of five health-state valuation methods.
Krabbe, P F; Essink-Bot, M L; Bonsel, G J
1997-12-01
The objective of the study was to consider five methods for valuing health states with respect to their comparability (convergent validity, value functions) and reliability. Valuation tasks were performed by 104 student volunteers using five frequently used valuation methods: standard gamble (SG), time trade-off (TTO), rating scale (RS), willingness-to-pay (WTP) and the paired comparisons method (PC). Throughout the study, the EuroQol classification system was used to construct 13 health-state descriptions. Validity was investigated using the multitrait-multimethod (MTMM) methodology. The extent to which results of one method could be predicted by another was examined by transformations. Reliability of the methods was studied parametrically with Generalisability Theory (an ANOVA extension), as well as non-parametrically. Mean values for SG were slightly higher than TTO values. The RS could be distinguished from the other methods. After a simple power transformation, the RS values were found to be close to SG and TTO. Mean values of WTP were linearly related to SG and TTO, except at the extremes of the scale. However, the reliability of WTP was low and the number of inconsistencies substantial. Valuations made by the RS proved to be the most reliable. Paired comparisons did not provide stable results. In conclusion, the results of the parametric transformation function between RS and SG/TTO provide evidence to justify the current use of RS (with transformations) not only for reasons of feasibility and reliability but also for reasons of comparability. A definite judgement on PC requires data of a complete design. Due to the specific structure of the correlation matrix which is inherent in valuing health states, we believe that full MTMM is not applicable for the standard analysis of health-state valuations.
Carretero, Luis; Acebal, Pablo; Blaya, Salvador
2013-04-01
We present a complete electromagnetic study, which includes electric, magnetic, and Poynting vector fields of diffracted convergent spherical waves under all possible polarization states compatible with Maxwell's equations. Exit pupil boundary conditions for these polarizations were obtained by means of Hertz potentials. Using these boundary conditions, two-dimensional Luneburg diffraction integrals for the three components of electric and magnetic fields were formulated, and after some approximations, we showed that the complete electromagnetic description of the inhomogeneous polarization states of spherical waves is reduced to the knowledge of seven one-dimensional integrals. The consistency of the method was tested by comparison with other previously reported methods for linearly polarized (LP), TE, and TM polarizations, while the versatility of the method was showed with the study of nonstandard polarization states, for example, that resulting from the superposition of TE and TM dephased spherical waves, which shows a helicoidal behavior of the Poynting vector at the focalization region, or the inhomogeneous LP state that exhibits a ring structure for the Poynting vector at the focal plane.
White, Alec F; Head-Gordon, Martin; McCurdy, C William
2017-01-28
The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. We critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the Πg2 shape resonance of N2(-) which has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.
NASA Astrophysics Data System (ADS)
White, Alec F.; Head-Gordon, Martin; McCurdy, C. William
2017-01-01
The computation of Siegert energies by analytic continuation of bound state energies has recently been applied to shape resonances in polyatomic molecules by several authors. We critically evaluate a recently proposed analytic continuation method based on low order (type III) Padé approximants as well as an analytic continuation method based on high order (type II) Padé approximants. We compare three classes of stabilizing potentials: Coulomb potentials, Gaussian potentials, and attenuated Coulomb potentials. These methods are applied to a model potential where the correct answer is known exactly and to the Π2g shape resonance of N2- which has been studied extensively by other methods. Both the choice of stabilizing potential and method of analytic continuation prove to be important to the accuracy of the results. We conclude that an attenuated Coulomb potential is the most effective of the three for bound state analytic continuation methods. With the proper potential, such methods show promise for algorithmic determination of the positions and widths of molecular shape resonances.
A novel state of health estimation method of Li-ion battery using group method of data handling
NASA Astrophysics Data System (ADS)
Wu, Ji; Wang, Yujie; Zhang, Xu; Chen, Zonghai
2016-09-01
In this paper, the control theory is applied to assist the estimation of state of health (SoH) which is a key parameter to battery management. Battery can be treated as a system, and the internal state, e.g. SoH, can be observed through certain system output data. Based on the philosophy of human health and athletic ability estimation, variables from a specific process, which is a constant current charge subprocess, are obtained to depict battery SoH. These variables are selected according to the differential geometric analysis of battery terminal voltage curves. Moreover, the relationship between the differential geometric properties and battery SoH is modelled by the group method of data handling (GMDH) polynomial neural network. Thus, battery SoH can be estimated by GMDH with inputs of voltage curve properties. Experiments have been conducted on different types of Li-ion battery, and the results show that the proposed method is valid for SoH estimation.
Low-lying electronic states of CuN calculated by MRCI method
NASA Astrophysics Data System (ADS)
Zhang, Shu-Dong; Liu, Chao
2016-10-01
The high accuracy ab initio calculation method of multi-reference configuration interaction (MRCI) is used to compute the low-lying eight electronic states of CuN. The potential energy curves (PECs) of the X3Σ-, 13Π, 23Σ-, 13Δ, 11Δ, 11Σ-, 11Π, and 5Σ- in a range of R = 0.1 nm-0.5 nm are obtained and they are goodly asymptotes to the Cu(2Sg) + N(4Su) and Cu(2Sg) + N(2Du) dissociation limits. All the possible vibrational levels, rotational constants, and spectral constants for the six bound states of X3Σ-, 13Π, 23Σ-, 11Δ, 11Σ-, and 11Π are obtained by solving the radial Schrödinger equation of nuclear motion with the Le Roy provided Level8.0 program. Also the transition dipole moments from the ground state X3Σ- to the excited states 13Π and 23Σ- are calculated and the result indicates that the 23Σ--X3Σ- transition has a much higher transition dipole moment than the 13Π-X3Σ- transition even though the 13Π state is much lower in energy than the 23Σ- state.
Orthoclinostatic test as one of the methods for evaluating the human functional state
NASA Technical Reports Server (NTRS)
Doskin, V. A.; Gissen, L. D.; Bomshteyn, O. Z.; Merkin, E. N.; Sarychev, S. B.
1980-01-01
The possible use of different methods to evaluate the autonomic regulation in hygienic studies were examined. The simplest and most objective tests were selected. It is shown that the use of the optimized standards not only makes it possible to detect earlier unfavorables shifts, but also permits a quantitative characterization of the degree of impairment in the state of the organism. Precise interpretation of the observed shifts is possible. Results indicate that the standards can serve as one of the criteria for evaluating the state and can be widely used in hygienic practice.
NASA Astrophysics Data System (ADS)
An, Zhe; Rey, Daniel; Ye, Jingxin; Abarbanel, Henry D. I.
2017-01-01
The problem of forecasting the behavior of a complex dynamical system through analysis of observational time-series data becomes difficult when the system expresses chaotic behavior and the measurements are sparse, in both space and/or time. Despite the fact that this situation is quite typical across many fields, including numerical weather prediction, the issue of whether the available observations are "sufficient" for generating successful forecasts is still not well understood. An analysis by Whartenby et al. (2013) found that in the context of the nonlinear shallow water equations on a β plane, standard nudging techniques require observing approximately 70 % of the full set of state variables. Here we examine the same system using a method introduced by Rey et al. (2014a), which generalizes standard nudging methods to utilize time delayed measurements. We show that in certain circumstances, it provides a sizable reduction in the number of observations required to construct accurate estimates and high-quality predictions. In particular, we find that this estimate of 70 % can be reduced to about 33 % using time delays, and even further if Lagrangian drifter locations are also used as measurements.
Testing for causality in reconstructed state spaces by an optimized mixed prediction method
NASA Astrophysics Data System (ADS)
Krakovská, Anna; Hanzely, Filip
2016-11-01
In this study, a method of causality detection was designed to reveal coupling between dynamical systems represented by time series. The method is based on the predictions in reconstructed state spaces. The results of the proposed method were compared with outcomes of two other methods, the Granger VAR test of causality and the convergent cross-mapping. We used two types of test data. The first test example is a unidirectional connection of chaotic systems of Rössler and Lorenz type. The second one, the fishery model, is an example of two correlated observables without a causal relationship. The results showed that the proposed method of optimized mixed prediction was able to reveal the presence and the direction of coupling and distinguish causality from mere correlation as well.
Improvement of S-factor method for evaluation of MOS interface state density
NASA Astrophysics Data System (ADS)
Cai, Weili; Takenaka, Mitsuru; Takagi, Shinichi
2015-04-01
In this paper, the accuracy of the S-factor method for evaluating the energy distribution of density of interface states (Dit) at MOS interfaces is examined by device simulation. Based on the analysis, we propose an improved S-factor method including the accurate depletion layer capacitance (Cd) values as a function of gate voltage, determined by gate-substrate capacitance (Cgb) and gate-channel capacitance (Cgc), and a new term, proportion to S/φs, in the analytical formulation of the relationship between Dit and the S-factor. The accuracy of Dit in this improved method is also quantitatively studied through the simulation. The above modifications for the S-factor method allow us to accurately provide the energy distribution of Dit. It has been found that the accuracy of lower half of 1010 cm-2 eV-1 order can be obtained for Dit extracted by using the improved S-factor method.
2016-01-01
The semiempirical orthogonalization-corrected OMx methods (OM1, OM2, and OM3) go beyond the standard MNDO model by including additional interactions in the electronic structure calculation. When augmented with empirical dispersion corrections, the resulting OMx-Dn approaches offer a fast and robust treatment of noncovalent interactions. Here we evaluate the performance of the OMx and OMx-Dn methods for a variety of ground-state properties using a large and diverse collection of benchmark sets from the literature, with a total of 13035 original and derived reference data. Extensive comparisons are made with the results from established semiempirical methods (MNDO, AM1, PM3, PM6, and PM7) that also use the NDDO (neglect of diatomic differential overlap) integral approximation. Statistical evaluations show that the OMx and OMx-Dn methods outperform the other methods for most of the benchmark sets. PMID:26771261
A new method of modeling and state of charge estimation of the battery
NASA Astrophysics Data System (ADS)
Liu, Congzhi; Liu, Weiqun; Wang, Lingyan; Hu, Guangdi; Ma, Luping; Ren, Bingyu
2016-07-01
Accurately estimating the State of Charge (SOC) of the battery is the basis of Battery Management System (BMS). This paper has introduced a new modeling and state estimation method for the lithium battery system, which utilizes the fractional order theories. Firstly, a fractional order model based on the PNGV (Partnership for a New Generation of Vehicle) model is proposed after analyzing the impedance characteristics of the lithium battery and compared with the integer order model. With the observability of the discrete non-linear model of the battery confirmed, the method of the state observer based on the extended fractional Kalman filter (EFKF) and the least square identification method of battery parameters are studied. Then, it has been applied successfully to estimate the battery SOC using the measured battery current and voltage. Finally, a standard HPPC (Hybrid Pulse Power Characteristic) test is used for parameter identification and several experimental validations are investigated on a ternary manganese-nickel-cobalt lithium battery pack with a nominal capacity of 24 Ah which consists of ten Sony commercial cells (US18650GR G7) in parallels. The results demonstrate the effectiveness of the fractional order model and the estimation method.
Murg, V; Verstraete, F; Schneider, R; Nagy, P R; Legeza, Ö
2015-03-10
We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement.
NASA Astrophysics Data System (ADS)
Li, Qiwei; Zhang, Chunmin; Yan, Tingyu; Wei, Yutong
2016-11-01
The basic principle of channeled Fourier-transform imaging spectropolarimeter (CFTISP) is outlined. The two mainstream techniques existing for performing polarization state demodulation are analyzed, which show uncertainty that may not be suitable for CFTISP based on lateral shear interferometer. A modified demodulation method for Stokes parameters is described. The method separate the phase of the sign and the high-order retarders' retardations from the total phase acquired from the fast Fourier transform of the interferogram, which will not cause the amplitude error from the reference beam. Furthermore, the retardations and the residual phase error in each band introduced by instrument can be seen directly in this method. The effectiveness of this method is experimentally demonstrated with four known input states of polarization, and the results are satisfactory. The RMS error of each Stokes parameters is also presented, which demonstrates that the low spectral signal-to-noise ratio can increase the RMS error by nearly a factor of 2-5 for the individual Stokes parameters. The comparison of reconstructed results by four methods further demonstrates the effectiveness of the proposed method.
Method of Enhancing On-Board State Estimation Using Communication Signals
NASA Technical Reports Server (NTRS)
Anzalone, Evan J. (Inventor); Chuang, Jason C. H. (Inventor)
2015-01-01
A method of enhancing on-board state estimation for a spacecraft utilizes a network of assets to include planetary-based assets and space-based assets. Communication signals transmitted from each of the assets into space are defined by a common protocol. Data is embedded in each communication signal transmitted by the assets. The data includes a time-of-transmission for a corresponding one of the communication signals and a position of a corresponding one of the assets at the time-of-transmission. A spacecraft is equipped to receive the communication signals, has a clock synchronized to the space-wide time reference frame, and has a processor programmed to generate state estimates of the spacecraft. Using its processor, the spacecraft determines a one-dimensional range from itself to at least one of the assets and then updates its state estimates using each one-dimensional range.
Gamberg, Leonard; Schlegel, Marc
2010-01-18
In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditions the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.
Gamberg, Leonard; Schlegel, Marc
2010-01-18
In the factorized picture of semi-inclusive hadronic processes the naive time reversal-odd parton distributions exist by virtue of the gauge link which renders it color gauge invariant. The link characterizes the dynamical effect of initial/final-state interactions of the active parton due soft gluon exchanges with the target remnant. Though these interactions are non-perturbative, studies of final-state interaction have been approximated by perturbative one-gluon approximation in Abelian models. We include higher-order contributions by applying non-perturbative eikonal methods incorporating color degrees of freedom in a calculation of the Boer-Mulders function of the pion. Lastly, using this framework we explore under what conditionsmore » the Boer Mulders function can be described in terms of factorization of final state interactions and a spatial distribution in impact parameter space.« less
Single molecule sensing with solid-state nanopores: novel materials, methods, and applications.
Miles, Benjamin N; Ivanov, Aleksandar P; Wilson, Kerry A; Doğan, Fatma; Japrung, Deanpen; Edel, Joshua B
2013-01-07
This tutorial review will introduce and explore the fundamental aspects of nanopore (bio)sensing, fabrication, modification, and the emerging technologies and applications that both intrigue and inspire those working in and around the field. Although nanopores can be classified into two categories, solid-state and biological, they are essentially two sides of the same coin. For instance, both garner popularity due to their ability to confine analytes of interest to a nanoscale volume. Due to the vast diversity of nanopore platforms and applications, no single review can cover the entire landscape of published work in the field. Therefore, in this article focus will be placed on recent advancements and developments taking place in the field of solid-state nanopores. It should be stated that the intention of this tutorial review is not to cite all articles relating to solid-state nanopores, but rather to highlight recent, select developments that will hopefully benefit the new and seasoned scientist alike. Initially we begin with the fundamentals of solid-state nanopore sensing. Then the spotlight is shone on the sophisticated fabrication methods that have their origins in the semiconductor industry. One inherent advantage of solid-state nanopores is in the ease of functionalizing the surface with a range of molecules carrying functional groups. Therefore, an entire section is devoted to highlighting various chemical and bio-molecular modifications and explores how these permit the development of novel sensors with specific targets and functions. The review is completed with a discussion on novel detection strategies using nanopores. Although the most popular mode of nanopore sensing is based upon what has come to be known as ionic-current blockade sensing, there is a vast, growing literature based around exploring alternative detection techniques to further expand on the versatility of the sensors. Such techniques include optical, electronic, and force based methods
Recommended methods for range-wide monitoring of prairie dogs in the United States
McDonald, Lyman L.; Stanley, Thomas R.; Otis, David L.; Biggins, Dean E.; Stevens, Patricia D.; Koprowski, John L.; Ballard, Warren
2011-01-01
One of the greatest challenges for conserving grassland, prairie scrub, and shrub-steppe ecosystems is maintaining prairie dog populations across the landscape. Of the four species of prairie dogs found in the United States, the Utah prairie dog (Cynomys parvidens) is listed under the Endangered Species Act (ESA) as threatened, the Gunnison's prairie dog (C. gunnisoni) is a candidate for listing in a portion of its range, and the black-tailed prairie dog (C. ludovicianus) and white-tailed prairie dog (C. leucurus) have each been petitioned for listing at least once in recent history. Although the U.S. Fish and Wildlife Service (USFWS) determined listing is not warranted for either the black-tailed prairie dog or white-tailed prairie dog, the petitions and associated reviews demonstrated the need for the States to monitor and manage for self-sustaining populations. In response to these findings, a multi-State conservation effort was initiated for the nonlisted species which included the following proposed actions: (1) completing an assessment of each prairie dog species in each State, (2) developing a range-wide monitoring protocol for each species using a statistically valid sampling procedure that would allow comparable analyses across States, and (3) monitoring prairie dog status every 3-5 years depending upon the species. To date, each State has completed an assessment and currently is monitoring prairie dog status; however, for some species, the inconsistency in survey methodology has made it difficult to compare data year-to-year or State-to-State. At the Prairie Dog Conservation Team meeting held in November 2008, there was discussion regarding the use of different methods to survey prairie dogs. A recommendation from this meeting was to convene a panel in a workshop-type forum and have the panel review the different methods being used and provide recommendations for range-wide monitoring protocols for each species of prairie dog. Consequently, the Western
A periodogram-based method for the detection of steady-state visually evoked potentials.
Liavas, A P; Moustakides, G V; Henning, G; Psarakis, E Z; Husar, P
1998-02-01
The task of objective perimetry is to scan the visual field and find an answer about the function of the visual system. Flicker-burst stimulation--a physiological sensible combination of transient and steady-state stimulation--is used to generate deterministic sinusoidal responses or visually evoked potentials (VEP's) at the visual cortex, which are derived from the electroencephalogram by a suitable electrode array. In this paper we develop a new method for the detection of VEP's. Based on the periodogram of a time-series, we test the data for the presence of hidden periodic components, which correspond to steady-state VEP's. The method is applied successfully to real data.
Gradient methods for variational optimization of projected entangled-pair states
NASA Astrophysics Data System (ADS)
Vanderstraeten, Laurens; Haegeman, Jutho; Corboz, Philippe; Verstraete, Frank
2016-10-01
We present a conjugate-gradient method for the ground-state optimization of projected entangled-pair states (PEPS) in the thermodynamic limit, as a direct implementation of the variational principle within the PEPS manifold. Our optimization is based on an efficient and accurate evaluation of the gradient of the global energy functional by using effective corner environments, and is robust with respect to the initial starting points. It has the additional advantage that physical and virtual symmetries can be straightforwardly implemented. We provide the tools to compute static structure factors directly in momentum space, as well as the variance of the Hamiltonian. We benchmark our method on Ising and Heisenberg models, and show a significant improvement on the energies and order parameters as compared to algorithms based on imaginary-time evolution.
Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
NASA Astrophysics Data System (ADS)
Yang, Guang; Lian, Bao-Wang; Nie, Min
2016-08-01
Multi-qubit entanglement states are the key resources for various multipartite quantum communication tasks. For a class of generalized three-qubit quantum entanglement, W-like state, we demonstrate that the weak measurement and the reversal measurement are capable of suppressing the amplitude damping decoherence by reducing the initial damping factor into a smaller equivalent damping factor. Furthermore, we propose an iteration method in the weak measurement and the reversal measurement to enhance the success probability of the total measurements. Finally, we discuss how the number of the iterations influences the overall effect of decoherence suppression, and find that the “half iteration” method is a better option that has more practical value. Project supported by the National Natural Science Foundation of China (Grant No. 61172071), the International Scientific Cooperation Program of Shaanxi Province, China (Grant No. 2015KW-013), and the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711).
Gudjonsson, G H
1988-05-01
This paper attempts to investigate empirically in 30 subjects some of the theoretical components related to individual differences that are thought by Gudjonsson & Clark (1986) to mediate interrogative suggestibility as measured by the Gudjonsson Suggestibility Scale (GSS; Gudjonsson, 1984a). The variables studied were: assertiveness, social-evaluative anxiety, state anxiety and the coping methods subjects are able to generate and implement during interrogation. Low assertiveness and high evaluative anxiety were found to correlate moderately with suggestibility, but no significant correlations emerged for 'social avoidance and distress'. State anxiety correlated significantly with suggestibility, particularly after negative feedback had been administered. Coping methods (active-cognitive/behavioural vs. avoidance) significantly predicted suggestibility scores. The findings give strong support to the theoretical model of Gudjonsson & Clark.
Preparation of circular Rydberg states in helium using the crossed-fields method
NASA Astrophysics Data System (ADS)
Zhelyazkova, V.; Hogan, S. D.
2016-08-01
Helium atoms have been prepared in the circular |n =55 ,ℓ =54 , mℓ=+54 > Rydberg state using the crossed electric and magnetic fields method. The atoms, initially traveling in pulsed supersonic beams, were photoexcited from the metastable 1 s 2 s S31 level to the outermost, mℓ=0 Rydberg-Stark state with n =55 in the presence of a strong electric field and weak perpendicular magnetic field. Following excitation, the electric field was adiabatically switched off causing the atoms to evolve into the circular state with mℓ=+54 defined with respect to the magnetic-field quantization axis. The circular states were detected by ramped electric-field ionization along the magnetic-field axis. The dependence of the circular state production efficiency on the strength of the excitation electric field, and the electric-field switch-off time was studied, and microwave spectroscopy of the circular-to-circular |55 ,54 ,+54 >→|56 ,55 ,+55 > transition at ˜38.5 GHz was performed.
Weston, Louise Marie
2007-09-01
A recent report on criticality accidents in nuclear facilities indicates that human error played a major role in a significant number of incidents with serious consequences and that some of these human errors may be related to the emotional state of the individual. A pre-shift test to detect a deleterious emotional state could reduce the occurrence of such errors in critical operations. The effectiveness of pre-shift testing is a challenge because of the need to gather predictive data in a relatively short test period and the potential occurrence of learning effects due to a requirement for frequent testing. This report reviews the different types of reliability and validity methods and testing and statistical analysis procedures to validate measures of emotional state. The ultimate value of a validation study depends upon the percentage of human errors in critical operations that are due to the emotional state of the individual. A review of the literature to identify the most promising predictors of emotional state for this application is highly recommended.
Method for estimating pesticide use for county areas of the conterminous United States
Thelin, Gail P.; Gianessi, Leonard P.
2000-01-01
Information on the amount and distribution of pesticide compounds used throughout the United States is essential to evaluate the relation between water quality and pesticide use. This information is the basis of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program studies of the effects of pesticides on water quality in 57 major hydrologic systems, or study units, located throughout the conterminous United States. To support these studies, a method was devised to estimate county pesticide use for the conterminous United States by combining (1) state-level information on pesticide use rates available from the National Center for Food and Agricultural Policy, and (2) county-level information on harvested crop acreage from the Census of Agriculture. The average annual pesticide use, the total amount of pesticides applied (in pounds), and the corresponding area treated (in acres) were compiled for the 208 pesticide compounds that are applied to crops in the conterminous United States. Pesticide use was ranked by compound and crop on the basis of the amount of each compound applied to 86 selected crops. Tabular summaries of pesticide use for NAWQA study units and for the Nation were prepared, along with maps that show the distribution of selected pesticides to agricultural land.
Device and Method for Continuously Equalizing the Charge State of Lithium Ion Battery Cells
NASA Technical Reports Server (NTRS)
Schwartz, Paul D. (Inventor); Martin, Mark N. (Inventor); Roufberg, Lewis M. (Inventor)
2015-01-01
A method of equalizing charge states of individual cells in a battery includes measuring a previous cell voltage for each cell, measuring a previous shunt current for each cell, calculating, based on the previous cell voltage and the previous shunt current, an adjusted cell voltage for each cell, determining a lowest adjusted cell voltage from among the calculated adjusted cell voltages, and calculating a new shunt current for each cell.
A Comparison of Four Approaches to Account for Method Effects in Latent State-Trait Analyses
Geiser, Christian; Lockhart, Ginger
2012-01-01
Latent state-trait (LST) analysis is frequently applied in psychological research to determine the degree to which observed scores reflect stable person-specific effects, effects of situations and/or person-situation interactions, and random measurement error. Most LST applications use multiple repeatedly measured observed variables as indicators of latent trait and latent state residual factors. In practice, such indicators often show shared indicator-specific (or methods) variance over time. In this article, the authors compare four approaches to account for such method effects in LST models and discuss the strengths and weaknesses of each approach based on theoretical considerations, simulations, and applications to actual data sets. The simulation study revealed that the LST model with indicator-specific traits (Eid, 1996) and the LST model with M − 1 correlated method factors (Eid, Schneider, & Schwenkmezger, 1999) performed well, whereas the model with M orthogonal method factors used in the early work of Steyer, Ferring, and Schmitt (1992) and the correlated uniqueness approach (Kenny, 1976) showed limitations under conditions of either low or high method-specificity. Recommendations for the choice of an appropriate model are provided. PMID:22309958
A comparison of four approaches to account for method effects in latent state-trait analyses.
Geiser, Christian; Lockhart, Ginger
2012-06-01
Latent state-trait (LST) analysis is frequently applied in psychological research to determine the degree to which observed scores reflect stable person-specific effects, effects of situations and/or person-situation interactions, and random measurement error. Most LST applications use multiple repeatedly measured observed variables as indicators of latent trait and latent state residual factors. In practice, such indicators often show shared indicator-specific (or method) variance over time. In this article, the authors compare 4 approaches to account for such method effects in LST models and discuss the strengths and weaknesses of each approach based on theoretical considerations, simulations, and applications to actual data sets. The simulation study revealed that the LST model with indicator-specific traits (Eid, 1996) and the LST model with M - 1 correlated method factors (Eid, Schneider, & Schwenkmezger, 1999) performed well, whereas the model with M orthogonal method factors used in the early work of Steyer, Ferring, and Schmitt (1992) and the correlated uniqueness approach (Kenny, 1976) showed limitations under conditions of either low or high method-specificity. Recommendations for the choice of an appropriate model are provided.
New method for identifying abnormal milling states of an otological drill.
Li, Yunqing; Li, Xisheng; Feng, Guodong; Gao, Zhiqiang; Shen, Peng
2015-01-01
Surgeons are continuing to strive toward achieving higher quality minimally invasive surgery. With the growth of modern technology, intelligent medical devices are being used to improve the safety of surgery. Milling beyond the bone tissue wall is a common abnormal milling state in ear surgery, as well as entanglement of the drill bit with the cotton swab, which will do harm to the patient's encephalic tissues. Various methods have been investigated by engineers and surgeons in an effort to avoid this type of abnormal milling state during surgery. This paper outlines a new method for identifying these two types of abnormal milling states. Five surgeons were invited to perform experiments on calvarial bones. The average recognition rate for otological drill milling through a bone tissue wall was 93%, with only 2% of normal millings being incorrectly identified as milling faults. The average recognition rate for entanglement of the drill bit with a cotton swab was 92%, with only 2% of normal millings being identified as milling faults. The method presented here can be adapted to the needs of the individual surgeon and reliably identify milling faults.
An unsteady state tracer method for characterizing fractures in bedrock wells.
Libby, Jill L; Robbins, Gary A
2014-01-01
Evaluating contaminants impacting wells in fractured crystalline rock requires knowledge of the individual fractures contributing water. This typically involves using a sequence of tools including downhole geophysics, flow meters, and straddle packers. In conjunction with each other these methods are expensive, time consuming, and can be logistically difficult to implement. This study demonstrates an unsteady state tracer method as a cost-effective alternative for gathering fracture information in wells. The method entails introducing tracer dye throughout the well, inducing fracture flow into the well by conducting a slug test and then profiling the tracer concentration in the well to locate water contributing fractures where the dye has been diluted. By monitoring the development of the dilution zones within the wellbore with time, the transmissivity and the hydraulic head of the water contributing fractures can be determined. Ambient flow conditions and the contaminant concentration within the fractures can also be determined from the tracer dilution. This method was tested on a large physical model well and a bedrock well. The model well was used to test the theory underlying the method and to refine method logistics. The approach located the fracture and generated transmissivity values that were in excellent agreement with those calculated by slug testing. For the bedrock well tested, two major active fractures were located. Fracture location and ambient well conditions matched results from conventional methods. Estimates of transmissivity values by the tracer method were within an order of magnitude of those calculated using heat-pulse flow meter data.
Methods for Estimating Water Withdrawals for Aquaculture in the United States, 2005
Lovelace, John K.
2009-01-01
Aquaculture water use is associated with raising organisms that live in water - such as finfish and shellfish - for food, restoration, conservation, or sport. Aquaculture production occurs under controlled feeding, sanitation, and harvesting procedures primarily in ponds, flow-through raceways, and, to a lesser extent, cages, net pens, and tanks. Aquaculture ponds, raceways, and tanks usually require the withdrawal or diversion of water from a ground or surface source. Most water withdrawn or diverted for aquaculture production is used to maintain pond levels and/or water quality. Water typically is added for maintenance of levels, oxygenation, temperature control, and flushing of wastes. This report documents methods used to estimate withdrawals of fresh ground water and surface water for aqua-culture in 2005 for each county and county-equivalent in the United States, Puerto Rico, and the U.S. Virgin Islands by using aquaculture statistics and estimated water-use coefficients and water-replacement rates. County-level data for commercial and noncommercial operations compiled for the 2005 Census of Aquaculture were obtained from the National Agricultural Statistics Service. Withdrawals of water used at commercial and noncommercial operations for aquaculture ponds, raceways, tanks, egg incubators, and pens and cages for alligators were estimated and totaled by ground-water or surface-water source for each county and county equivalent. Use of the methods described in this report, when measured or reported data are unavailable, could result in more consistent water-withdrawal estimates for aquaculture that can be used by water managers and planners to determine water needs and trends across the United States. The results of this study were distributed to U.S. Geological Survey water-use personnel in each State during 2007. Water-use personnel are required to submit estimated withdrawals for all categories of use in their State to the U.S. Geological Survey National
Comparison of State and Parameter Estimation Methods for Soil Moisture Data Assimilation
NASA Astrophysics Data System (ADS)
Huang, C.; Chen, W.; Shen, H.; Li, X.
2015-12-01
Model parameters are a source of uncertainty that can easily cause systematic deviation and significantly affect the accuracy of soil moisture generation in assimilation systems. This study addresses the issue of retrieving model parameters related to soil moisture via the simultaneous estimation of states and parameters based on the Common Land Model (CoLM). The state-parameter estimation algorithms AEnKF (Augmented Ensemble Kalman Filter) DEnKF (Dual Ensemble Kalman Filter) and SODA (Simultaneous optimization and data assimilation) are entirely implemented within an EnKF framework to investigate how the three algorithms can correct model parameters and improve the accuracy of soil moisture estimation. The analysis is illustrated by assimilating the surface soil moisture levels from varying observation intervals using data from Mongolian plateau sites. Furthermore, a radiation transfer model is introduced as an observation operator to analyze the influence of brightness temperature assimilation on states and parameters that are estimated at different microwave signal frequencies. Three cases were analyzed for both soil moisture and brightness temperature assimilation, focusing on the progressive incorporation of parameter uncertainty, forcing data uncertainty and model uncertainty. It has been demonstrated that EnKF is outperformed by all other methods, as it consistently maintains a bias. State-parameter estimation algorithms can provide a more accurate estimation of soil moisture than EnKF. AEnKF is the most robust method, with the lowest RMSE values for retrieving states and parameters dealing only with parameter uncertainty, but it possesses disadvantages related to increasing sources of uncertainty and decreasing numbers of observations. SODA performs well under the complex situations in which DEnKF shows slight disadvantages in terms of statistical indicators; however, the former consumes far more memory and time than the latter.
NASA Astrophysics Data System (ADS)
Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Li, Xin
2015-12-01
Model parameters are a source of uncertainty that can easily cause systematic deviation and significantly affect the accuracy of soil moisture generation in assimilation systems. This study addresses the issue of retrieving model parameters related to soil moisture via the simultaneous estimation of states and parameters based on the Common Land Model (CoLM). The state-parameter estimation algorithms AEnKF (Augmented Ensemble Kalman Filter), DEnKF (Dual Ensemble Kalman Filter) and SODA (Simultaneous optimization and data assimilation) are entirely implemented within an EnKF framework to investigate how the three algorithms can correct model parameters and improve the accuracy of soil moisture estimation. The analysis is illustrated by assimilating the surface soil moisture levels from varying observation intervals using data from Mongolian plateau sites. Furthermore, a radiation transfer model is introduced as an observation operator to analyze the influence of brightness temperature assimilation on states and parameters that are estimated at different microwave signal frequencies. Three cases were analyzed for both soil moisture and brightness temperature assimilation, focusing on the progressive incorporation of parameter uncertainty, forcing data uncertainty and model uncertainty. It has been demonstrated that EnKF is outperformed by all other methods, as it consistently maintains a bias. State-parameter estimation algorithms can provide a more accurate estimation of soil moisture than EnKF. AEnKF is the most robust method, with the lowest RMSE values for retrieving states and parameters dealing only with parameter uncertainty, but it possesses disadvantages related to increasing sources of uncertainty and decreasing numbers of observations. SODA performs well under the complex situations in which DEnKF shows slight disadvantages in terms of statistical indicators; however, the former consumes far more memory and time than the latter.
Transition state-finding strategies for use with the growing string method.
Goodrow, Anthony; Bell, Alexis T; Head-Gordon, Martin
2009-06-28
Efficient identification of transition states is important for understanding reaction mechanisms. Most transition state search algorithms require long computational times and a good estimate of the transition state structure in order to converge, particularly for complex reaction systems. The growing string method (GSM) [B. Peters et al., J. Chem. Phys. 120, 7877 (2004)] does not require an initial guess of the transition state; however, the calculation is still computationally intensive due to repeated calls to the quantum mechanics code. Recent modifications to the GSM [A. Goodrow et al., J. Chem. Phys. 129, 174109 (2008)] have reduced the total computational time for converging to a transition state by a factor of 2 to 3. In this work, three transition state-finding strategies have been developed to complement the speedup of the modified-GSM: (1) a hybrid strategy, (2) an energy-weighted strategy, and (3) a substring strategy. The hybrid strategy initiates the string calculation at a low level of theory (HF/STO-3G), which is then refined at a higher level of theory (B3LYP/6-31G(*)). The energy-weighted strategy spaces points along the reaction pathway based on the energy at those points, leading to a higher density of points where the energy is highest and finer resolution of the transition state. The substring strategy is similar to the hybrid strategy, but only a portion of the low-level string is refined using a higher level of theory. These three strategies have been used with the modified-GSM and are compared in three reactions: alanine dipeptide isomerization, H-abstraction in methanol oxidation on VO(x)/SiO(2) catalysts, and C-H bond activation in the oxidative carbonylation of toluene to p-toluic acid on Rh(CO)(2)(TFA)(3) catalysts. In each of these examples, the substring strategy was proved most effective by obtaining a better estimate of the transition state structure and reducing the total computational time by a factor of 2 to 3 compared to the
Transition state-finding strategies for use with the growing string method
NASA Astrophysics Data System (ADS)
Goodrow, Anthony; Bell, Alexis T.; Head-Gordon, Martin
2009-06-01
Efficient identification of transition states is important for understanding reaction mechanisms. Most transition state search algorithms require long computational times and a good estimate of the transition state structure in order to converge, particularly for complex reaction systems. The growing string method (GSM) [B. Peters et al., J. Chem. Phys. 120, 7877 (2004)] does not require an initial guess of the transition state; however, the calculation is still computationally intensive due to repeated calls to the quantum mechanics code. Recent modifications to the GSM [A. Goodrow et al., J. Chem. Phys. 129, 174109 (2008)] have reduced the total computational time for converging to a transition state by a factor of 2 to 3. In this work, three transition state-finding strategies have been developed to complement the speedup of the modified-GSM: (1) a hybrid strategy, (2) an energy-weighted strategy, and (3) a substring strategy. The hybrid strategy initiates the string calculation at a low level of theory (HF/STO-3G), which is then refined at a higher level of theory (B3LYP/6-31G∗). The energy-weighted strategy spaces points along the reaction pathway based on the energy at those points, leading to a higher density of points where the energy is highest and finer resolution of the transition state. The substring strategy is similar to the hybrid strategy, but only a portion of the low-level string is refined using a higher level of theory. These three strategies have been used with the modified-GSM and are compared in three reactions: alanine dipeptide isomerization, H-abstraction in methanol oxidation on VOx/SiO2 catalysts, and C-H bond activation in the oxidative carbonylation of toluene to p-toluic acid on Rh(CO)2(TFA)3 catalysts. In each of these examples, the substring strategy was proved most effective by obtaining a better estimate of the transition state structure and reducing the total computational time by a factor of 2 to 3 compared to the modified
The self-consistent electron pairs method for multiconfiguration reference state functions
NASA Astrophysics Data System (ADS)
Werner, Hans-Joachim; Reinsch, Ernst-Albrecht
1982-03-01
An efficient direct CI method which includes all singly and doubly substituted configurations with respect to an arbitrary multiconfiguration (MCSCF) reference function is described. The configurations are generated by subsequently applying spin-coupled two-particle annihilation and creation operators to the complete MCSCF function. This considerably reduces the size of the n-electron basis and the computational effort as compared to previous multireference CI treatments, in which the configurations are defined with respect to the individual reference configurations. The formalism of the method is very similar to the closed-shell ''self-consistent electron pairs'' (SCEP) method of Meyer. The vector Hc is obtained in terms of simple matrix operations involving coefficient and integral matrices. A full transformation of the two-electron integrals is not required. Test calculations with large basis sets have been performed for the 3B1 and 1A1 states of CH2 (ΔE = 9.5 kcal/mol) and for the CH2(3B1) +H2→CH3+H reaction barrier (ΔE = 10.7 kcal/mol). As a preliminary test for the accuracy of the results obtained with contracted wave functions of the above type the potential energy and dipole moment functions of the OH X 2Π and A 2Σ+ states have been calculated. For the 2Π state re and ωe deviate by less than 10-3 Å and 1 cm-1, respectively, from the experimental data. For the 2Σ+ state the agreement is somewhat less good, which is probably due to basis set defects. Around the equilibrium distance the calculated dipole moment functions are in very close agreement with those previously obtained from PNO- CEPA functions.
NASA Technical Reports Server (NTRS)
Gainer, Patrick A.; Aiken, William S., Jr.
1959-01-01
A method is presented for shortening the computations required to determine the steady-state span loading on flexible wings in subsonic flight. The method makes use of tables of downwash factors to find the necessary aerodynamic-influence coefficients for the application of lifting-line theory. Explicit matrix equations of equilibrium are converted into a matrix power series with a finite number of terms by utilizing certain characteristic properties of matrices. The number of terms in the series is determined by a trial-and-error process dependent upon the required accuracy of the solution. Spanwise distributions of angle of attack, airload, shear, bending moment, and pitching moment are readily obtained as functions of qm(sub R) where q denotes the dynamic pressure and mR denotes the lift-curve slope of a rigid wing. This method is intended primarily to make it practical to solve steady-state aeroelastic problems on the ordinary manually operated desk calculators, but the method is also readily adaptable to automatic computing equipment.
NASA Astrophysics Data System (ADS)
Das, T. P.; Pink, R. H.; Dubey, Archana; Scheicher, R. H.; Chow, Lee
2011-03-01
As part of our continuing test of accuracy of the variational methods, Variational Hartree-Fock Many Body Perturbation Theory (VHFMBPT) and Variational Density Functional Theory (VDFT) for study of energy and wave-function dependent properties in molecular and solid state systems we are studying the magnetic hyperfine interactions in the ground state of sodium atom for comparison by these methods with the available results from experiment 1 and the linked cluster many-body many body perturbation theory (LCMBPT) for atoms 2 , which has provided very accurate results for the one-electron and many-electron contributions and total hyperfine constants in atomic systems. Comparison will also be made with the corresponding results obtained already from the (VHFMBPT) and (VDFT) methods in lithium 3 to draw general conclusions about the nature of possible improvements needed for the variational methods. 1. M. Arditi and R. T. Carver, Phys. Rev. 109, 1012 (1958); 2. T. Lee, N.C. Dutta, and T.P. Das, Hyperfine Structure of Sodium, Phys. Rev. A 1, 995 (1970); 3. Third Joint HFI-NQI International Conference on Hyperfine Interactions, CERN, Geneva, September 2010.
Method for the determination of bulk and interface density of states in thin-film transistors
Lui, O. K. B.; Tam, S. W.-B.; Migliorato, P.; Shimoda, T.
2001-06-01
In this article we present a method for the accurate determination of interface and bulk density of states (DOS) in thin-film transistors (TFTs), based on the combined analysis of transfer (I{sub D}{endash}V{sub GS}) and capacitance{endash}voltage characteristics. This analysis has achieved a number of results, eliminating sources of inaccuracies that are known to be present in other methods. A procedure for the determination of the electron and hole flatband conductances and bulk Fermi energy is demonstrated. A recursive procedure is employed to extract the bulk DOS directly from Poisson{close_quote}s equation. The advantages of this method are the greater immunity to noise from the original data, the use of the complete Fermi function (no 0 K approximation), and the applicability to thin active layers. This method yields the interface state density spectrum as well as the bulk DOS. This information is very important for device design, process characterization, and modeling of TFTs. {copyright} 2001 American Institute of Physics.