The influence of Reynolds numbers on resistance properties of jet pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geng, Q.; Graduate University of Chinese Academy of Sciences, Beijing 100049; Zhou, G.
2014-01-29
Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structuresmore » and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.« less
The influence of Reynolds numbers on resistance properties of jet pumps
NASA Astrophysics Data System (ADS)
Geng, Q.; Zhou, G.; Li, Q.
2014-01-01
Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.
Jet pump-drive system for heat removal
NASA Technical Reports Server (NTRS)
French, J. R. (Inventor)
1985-01-01
A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.
Jet pump-drive system for heat removal
NASA Technical Reports Server (NTRS)
French, James R. (Inventor)
1987-01-01
The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.
An acoustic streaming instability in thermoacoustic devices utilizing jet pumps.
Backhaus, S; Swift, G W
2003-03-01
Thermoacoustic-Stirling hybrid engines and feedback pulse tube refrigerators can utilize jet pumps to suppress streaming that would otherwise cause large heat leaks and reduced efficiency. It is desirable to use jet pumps to suppress streaming because they do not introduce moving parts such as bellows or membranes. In most cases, this form of streaming suppression works reliably. However, in some cases, the streaming suppression has been found to be unstable. Using a simple model of the acoustics in the regenerators and jet pumps of these devices, a stability criterion is derived that predicts when jet pumps can reliably suppress streaming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A.; Enderlin, Carl W.
Million-gallon double-shell tanks at Hanford are used to store transuranic, high-level, and low-level radioactive wastes. These wastes consist of a large volume of salt-laden solution covering a smaller volume of settled sludge primarily containing metal hydroxides. These wastes will be retrieved and processed into immobile waste forms suitable for permanent disposal. Retrieval is an important step in implementing these disposal scenarios. The retrieval concept evaluated is to use submerged dual-nozzle jet mixer pumps with horizontally oriented nozzles located near the tank floor that produce horizontal jets of fluid to mobilize the settled solids. The mixer pumps are oscillated through 180more » about a vertical axis so the high velocity fluid jets sweep across the floor of the tank. After the solids are mobilized, the pumps will continue to operate at a reduced flow rate producing lower velocity jets sufficient to maintain the particles in a uniform suspension (concentration uniformity). Several types of waste and tank configurations exist at Hanford. The jet mixer pump systems and operating conditions required to mobilize sludge and maintain slurry uniformity will be a function of the waste type and tank configuration. The focus of this work was to conduct a 1/12-scale experiment to develop an analytical model to relate slurry uniformity to tank and mixer pump configurations, operating conditions, and sludge properties. This experimental study evaluated concentration uniformity in a 1/12-scale experiment varying the Reynolds number (Re), Froude number (Fr), and gravitational settling parameter (Gs) space. Simulant physical properties were chosen to obtain the required Re and Gs where Re and Gs were varied by adjusting the kinematic viscosity and mean particle diameter, respectively. Test conditions were achieved by scaling the jet nozzle exit velocity in a 75-in. diameter tank using a mock-up of a centrally located dual-opposed jet mixer pump located just above the tank floor. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time in-situ ultrasonic attenuation probe and post-test analysis of discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (≤ ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless parameters. The parameters that best describe the maximum solids volume fraction that can be suspended were found to be 1) the Fr based on nozzle average discharge velocity and tank contents level and 2) the dimensionless particle size based on nozzle diameter. The dependence on the jet Re does not appear to be statistically significant.« less
Solar-thermal jet pumping for irrigation
NASA Astrophysics Data System (ADS)
Clements, L. D.; Dellenback, P. A.; Bell, C. A.
1980-01-01
This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.
NASA Technical Reports Server (NTRS)
Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.
1998-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.
Columnar Transitions in Microscale Evaporating Liquid Jets
NASA Astrophysics Data System (ADS)
Hunter, Hanif; Glezer, Ari
2007-11-01
Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.
Well development by jetting using coiled tubing and simultaneous pumping.
Rosberg, Jan-Erik; Bjelm, Leif
2009-01-01
During flow testing of a deep, 1927-m, gravel packed screen completed well, it became apparent that well development was needed to increase productivity. A hydrojetting system using coiled tubing in combination with simultaneous pumping was developed and tested and found to be successful. To verify whether the jetting improved the well, the results of a pumping test conducted before and after the jetting operation are compared. In addition, flowmeter logging and hydraulic properties obtained from pumping tests conducted during the jetting operation were also used to verify the improvements. Hydrojetting in combination with simultaneous pumping proved to be an effective cleaning method. After 100 min of pumping, around 110 m less drawdown and 15 L/s higher average flow rate were obtained compared to the values before the jetting operation. The skin factor was positive before the jetting operation and negative thereafter, thus providing additional evidence of improvements of the well. The flowmeter data also confirmed the improvements and were valuable in optimizing the jetting operation. It was also found, from the short-term pumping tests conducted during the jetting operation, that the Hantush-Jacob method for leaky confined aquifers is a valuable indicator of the well development. The combination of methods used for the well development in this case can easily be applied on other deep well projects to obtain a controlled and time-efficient well development. Copyright © 2009 The Author(s). Journal Compilation © 2009 National Ground Water Association.
Fluid sampling system for a nuclear reactor
Lau, Louis K.; Alper, Naum I.
1994-01-01
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.
Fluid sampling system for a nuclear reactor
Lau, L.K.; Alper, N.I.
1994-11-22
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.
Seawater Hydraulics: A Multi-Function Tool System for U.S. Navy Construction Divers.
1991-05-01
0.80. Each tool was designed so that it can be repaired in a minimum time. Tool maintenance at the end of the day is satisfied by a fresh- water rinse...oil hydraulic system is used to regulate the speed of the centrifugal pump. The centrifugal pump supplies 200 psi water to a jet eductor pump suspended...in the ocean. The jet eductor pump returns a larger volume of water to fill the 50-gallon reservoir. The seawater output from the jet eductor pump is
NASA Technical Reports Server (NTRS)
1975-01-01
A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.
Acid mine water aeration and treatment system
Ackman, Terry E.; Place, John M.
1987-01-01
An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.
Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Recknagle, K.
Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause amore » criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.« less
Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system
NASA Technical Reports Server (NTRS)
Cady, E. C.; Kendle, D. W.
1972-01-01
A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.
Jet pump assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1978-01-01
This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.
Development of a jet pump-assisted arterial heat pipe
NASA Technical Reports Server (NTRS)
Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.
1977-01-01
The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.
Experimental Investigation and Modeling of Scale Effects in Micro Jet Pumps
NASA Astrophysics Data System (ADS)
Gardner, William Geoffrey
2011-12-01
Since the mid-1990s there has been an active effort to develop hydrocarbon-fueled power generation and propulsion systems on the scale of centimeters or smaller. This effort led to the creation and expansion of a field of research focused around the design and reduction to practice of Power MEMS (microelectromechanical systems) devices, beginning first with microscale jet engines and a generation later more broadly encompassing MEMS devices which generate power or pump heat. Due to small device scale and fabrication techniques, design constraints are highly coupled and conventional solutions for device requirements may not be practicable. This thesis describes the experimental investigation, modeling and potential applications for two classes of microscale jet pumps: jet ejectors and jet injectors. These components pump fluids with no moving parts and can be integrated into Power MEMS devices to satisfy pumping requirements by supplementing or replacing existing solutions. This thesis presents models developed from first principles which predict losses experienced at small length scales and agree well with experimental results. The models further predict maximum achievable power densities at the onset of detrimental viscous losses.
Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties
NASA Technical Reports Server (NTRS)
Sherif, S. A.
1998-01-01
One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the secondary subcooled liquid. The research effort on which this document partly reports described a relatively simple model capable of describing the performance of a two-phase flow jet pump. The model is based on the isentropic homogeneous expansion/compression hypothesis and is capable of fully incorporating the effects of shocks in both the mixing chamber and the throat/diffuser parts of the pump. The physical system chosen is identical to that experimentally tested by Fairuzov and Bredikhin (1995) and should therefore be relatively easy to validate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirrito, A.J.
Combustion jet pumps ingest waste heat gases from power plant engines and boilers to boost their pressure for the ultimate low temperature utilization of the captured heat for heating homes, full-year hot houses, sterilization purposes, recreational hot water, absorption refrigeration and the like. Jet pump energy is sustained from the incineration of solids, liquids and gases and vapors or simply from burning fuels. This is the energy needed to transport the reaction products to the point of heat utilization and to optimize the heat transfer to that point. Sequent jet pumps raise and preserve energy levels. Crypto-steady and special jetmore » pumps increase pumping efficiency. The distribution conduit accepts fluidized solids, liquids, gases and vapors in multiphase flow. Temperature modulation and flow augmentation takes place by water injection. Macro solids such as dried sewage waste are removed by cyclone separation. Micro particles remain entrained and pass out with waste condensate just beyond each point of final heat utilization to recharge the water table. The non-condensible gases separated at this point are treated for pollution control. Further, jet pump reactions are controlled to yield fuel gas as necessary to power jet pumps or other use. In all these effects introduced sequentially, the available energy necessary to provide the flow energy, for the continuously distributed heating medium, is first extracted from fuel and fuel-like additions to the stream. As all energy, any way, finally converts to heat, which in this case is retained or recaptured in the flow, the captured heat is practically 90% available at the point of low temperature utilization. The jet pump for coal gasification is also disclosed as are examples of coal gasification and hydrogen production.« less
Continuous inline blending of antimisting kerosene
NASA Technical Reports Server (NTRS)
Parikh, P.; Yavrouian, A.; Sarohia, V.
1985-01-01
A continuous inline blender was developed to blend polymer slurries with a stream of jet A fuel. The viscosity of the slurries ranged widely. The key element of the blender was a static mixer placed immediately downstream of the slurry injection point. A positive displacement gear pump for jet A was employed, and a progressive cavity rotary screw pump was used for slurry pumping. Turbine flow meters were employed for jet A metering while the slurry flow rate was calibrated against the pressure drop in the injection tube. While using one of the FM-9 variant slurries, a provision was made for a time delay between the addition of slurry and the addition of amine sequentially into the jet A stream.
Separation Of Liquid And Gas In Zero Gravity
NASA Technical Reports Server (NTRS)
Howard, Frank S.; Fraser, Wilson S.
1991-01-01
Pair of reports describe scheme for separating liquid from gas so liquid could be pumped. Designed to operate in absence of gravitation. Jet of liquid, gas, or liquid/gas mixture fed circumferentially into cylindrical tank filled with liquid/gas mixture. Jet starts liquid swirling. Swirling motion centrifugally separates liquid from gas. Liquid then pumped from tank at point approximately diametrically opposite point of injection of jet. Vortex phase separator replaces such devices as bladders and screens. Requires no components inside tank. Pumps for gas and liquid outside tank and easily accessible for maintenance and repairs.
Hydraulic jet pumping in a remote location
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tjondrodiputro, B.; Gaul, R.B.; Gower, G.H.
1986-12-01
Hydraulic jet pumping equipment was installed in six Sembakung field (N.E. Kalimantan) wells by Atlantic Richfield Indonesia Inc., for Pertamina during 1983, and this article presents the experience acquired in the process of installing and operating this type of artificial-lift equipment in a remote location. Characteristics of the wells and equipment are reviewed, and possible future installations in similar circumstances are discussed. Sembakung oil field, discovered in late 1975, contained 17 wells after complete development. By 1983, some were flowing weakly and several zones were dead, indicating the need for some form of artificial lift. The choice of artificial liftmore » methods was limited by the lack of gas-lift gas, absence of a field-wide power distribution system, unavailability of a rod pumping well servicing unit, and lack of roads in the marshy environment. Thus, hydraulic (free-type) jet pumping was selected as the optimum technique. Jet pumps were installed in six of 17 wells in the field at the end of 1983. Downhole equipment was installed using a heli-rig, and all surface equipment was delivered to location using helicopters. Since startup, some operating problems occurred, but they have all been resolved. Well pumping rates range from 340 to 650 bpd gross, with 0 to 50% BSandW. The jet-pumped wells produced satisfactorily through July 1984, at which time operations were turned over to Pertamina Unit IV at the conclusion of the contractual term.« less
Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes
NASA Technical Reports Server (NTRS)
Hickman, K. E.; Hill, P. G.; Gilbert, G. B.
1972-01-01
An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.
21. DREDGING POND USED TO TEST THE ADAPTABILITY OF JET ...
21. DREDGING POND USED TO TEST THE ADAPTABILITY OF JET PUMPS FOR PUMPING SAND, AND WEAR RATES OF DIFFERENT TYPES OF DREDGING PIPE. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS
Steam-jet Chiller for Army Field Kitchens
2009-08-01
Steam-Jet Test-Loop Schematic A vacuum pump removes air from the entire system on startup, and is occasionally used to expel air during...delivered to the tube and shell condenser. The steam is condensed and drains to the vacuum sump tank. 11 Periodically, the condensate pump ... Vacuum Roughing Pump The condenser must be held at vacuum to prevent air from insulating the condenser tubes or create a back-pressure that would
Liquid jet pumped by rising gas bubbles
NASA Technical Reports Server (NTRS)
Hussain, N. A.; Siegel, R.
1975-01-01
A two-phase mathematical model is proposed for calculating the induced turbulent vertical liquid flow. Bubbles provide a large buoyancy force and the associated drag on the liquid moves the liquid upward. The liquid pumped upward consists of the bubble wakes and the liquid brought into the jet region by turbulent entrainment. The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and momentum equations are solved numerically for an axisymmetric air jet submerged in water. Water pumping rates are obtained as a function of air flow rate and depth of submergence. Comparisons are made with limited experimental information in the literature.
Control of reactor coolant flow path during reactor decay heat removal
Hunsbedt, Anstein N.
1988-01-01
An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.
NASA Technical Reports Server (NTRS)
Sherif, S. A.; Steadham, Justin M.
1996-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the authors apart from that of Anand (1992) which accounted for condensation shocks. One of the objectives of this research effort is to develop a comprehensive model in which the effects of phase slip and inter-phase heat transfer as well as the wall friction and shock waves are accounted for. While this modeling effort is predominantly analytical in nature and is primarily intended to provide a parametric understanding of the jet pump performance under different operating scenarios, another parallel effort employing a commercial CFD code is also implemented. The latter effort is primarily intended to model an axisymmetric counterpart of the problem in question. The viability of using the CFD code to model a two-phase flow jet pump will be assessed by attempting to recreate some of the existing performance data of similar jet pumps. The code will eventually be used to generate the jet pump performance characteristics of several scenarios involving jet pump geometries as well as flow regimes in order to be able to determine an optimum design which would be suitable for a two-phase flow boiling test facility at NASA-Marshall. Because of the extensive nature of the analytical model developed, the following section will only provide very brief highlights of it, while leaving the details to a more complete report submitted to the NASA colleague. This report will also contain some of the simulation results obtained using the CFD code.
Thornton, J.D.
1959-03-24
A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.
Assessment of single-shell tank residual-liquid issues at Hanford Site, Washington
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, K.S.; Stout, L.A.; Napier, B.A.
1983-06-01
This report provides an assessment of the overall effectiveness and implications of jet pumping the interstitial liquids (IL) from single-shell tanks at Hanford. The jet-pumping program, currently in progress at Hanford, involves the planned removal of IL contained in 89 of the 149 single-shell tanks and its transfer to double-shell tanks after volume reduction by evaporation. The purpose of this report is to estimate the public and worker doses associated with (1) terminating pumping immediately, (2) pumping to a 100,000-gal limit per tank, (3) pumping to a 50,000-gal limit per tank, and (4) pumping to the maximum practical liquid removalmore » level of 30,000 gal. Assessment of the cost-effectiveness of these various levels of pumping in minimizing any undue health and safety risks to the public or worker is also presented.« less
Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.
Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids. Jet mixer pumps were used in Hanford waste tank 241-AZ-101, and at least 95% of the 0.46-m (18-in.) deep sediment, with a shear strength of 1,500 to 4,200 Pa, was mobilized. Solids with a median particle size of 43 μm, 90th percentile of 94μm, were suspended in tank 241-AZ-101 to at least 5.5 m (216 in.) above the vessel bottom. Analytical calculations for this jet mixer pump test were used to estimate the velocities and wall shear stress that mobilized and suspended the waste. These velocities and wall shear stresses provide design threshold criteria which are metrics for system performance that can be evaluated via testing. If the fluid motion in a specific pulse jet mixed process vessel meets or exceeds the fluid motion of the demonstrated performance in the WFD system, confidence is provided that that vessel will similarly mobilize and suspend those solids if they were within the WTP. The single PJM CFD-calculated jet velocity and wall shear stress compare favorably with the design threshold criterion estimated for the tank 241-AZ-101 process data. Therefore, for both mobilization and suspension, the performance data evaluated from the WFD system testing increases confidence that the performance of the pulse jet mixed process vessels will be sufficient to process that waste even if that waste is not fully characterized.« less
Development of the sonic pump levitator
NASA Technical Reports Server (NTRS)
Dunn, S. A.
1985-01-01
The process and mechanism involved in producing glass microballoons (GMBs) of acceptable quality for laser triggered inertial fusion through use of glass jet levitation and manipulation are considered. The gas jet levitation device, called sonic pumps, provides positioning by timely and appropriate application of gas mementum from one or more of six sonic pumps which are arranged orthogonally in opposed pairs about the levitation region and are activated by an electrooptical, computer controlled, feedback system. The levitation device was fabricated and its associated control systems were assembled into a package and tested in reduced gravity flight regime of the NASA KC-135 aircraft.
Venturi Air-Jet Vacuum Ejector For Sampling Air
NASA Technical Reports Server (NTRS)
Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.
1990-01-01
Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment.../process laboratory quality control wastewater. Notwithstanding any other regulation, process wastewater...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Recknagle, K.P.
The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPESTmore » simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5.« less
ACOUSTIC INSULATION, *TURBOJET EXHAUST NOZZLES, *JET ENGINE NOISE, REDUCTION, JET TRANSPORT AIRCRAFT, THRUST AUGMENTATION , SUPERSONIC NOZZLES, DUCT...INLETS, CONVERGENT DIVERGENT NOZZLES, SUBSONIC FLOW, SUPERSONIC FLOW, SUPPRESSORS, TURBOJET INLETS, BAFFLES, JET PUMPS, THRUST , DRAG, TEMPERATURE
Bach, D; Schmich, F; Masselter, T; Speck, T
2015-09-03
The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet propulsion efficiency or the reduction of wear.
Advanced Hybrid Cooling Loop Technology for High Performance Thermal Management
2006-06-01
and Chung, 2003; Estes and Mudawar , 1995]. Because of the pumping pressure and flow rate requirements, such pumped systems require large pumping and...United States, April 24-25, 2003. 8. Estes, K. and Mudawar , I., “Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays”, Journal of
Investigation of the gas-jet ejector in KamAZ trucks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkret, L.Y.; Berezea, A.I.; Lobkov, A.N.
1984-03-01
This article considers the possibility of using gas-jet vacuum pumps in tank trucks for transporting liquids (water) at drilling sites. The discharge system of the KamAZ trucks can be reliably sealed by an engine brake, an important prerequisite of reliable operation of a gas-jet ejector that is switched on when the tank is being filled. The ejector consists of a housing, a Laval nozzle, a front wall with cylindrical neck, a tin-plate diffuser, an air supply pipe, and a flange for attaching the ejector to the flange of the exhaust muffler of the truck. The gas-jet ejectors are driven bymore » the exhaust gas (EG) of the trucks. The dependences of the EG flow rate, fuel expenditure, EG temperature ahead of the ejector, and the rotational frequency of the engine crankshaft on the diameter at different EG pressures. It is recommended that gas-jet ejectors be used on series produced tank trucks instead of rotary vacuum pumps with mechanical drive.« less
Jet impingement heat transfer enhancement for the GPU-3 Stirling engine
NASA Technical Reports Server (NTRS)
Johnson, D. C.; Congdon, C. W.; Begg, L. L.; Britt, E. J.; Thieme, L. G.
1981-01-01
A computer model of the combustion-gas-side heat transfer was developed to predict the effects of a jet impingement system and the possible range of improvements available. Using low temperature (315 C (600 F)) pretest data in an updated model, a high temperature silicon carbide jet impingement heat transfer system was designed and fabricated. The system model predicted that at the theoretical maximum limit, jet impingement enhanced heat transfer can: (1) reduce the flame temperature by 275 C (500 F); (2) reduce the exhaust temperature by 110 C (200 F); and (3) increase the overall heat into the working fluid by 10%, all for an increase in required pumping power of less than 0.5% of the engine power output. Initial tests on the GPU-3 Stirling engine at NASA-Lewis demonstrated that the jet impingement system increased the engine output power and efficiency by 5% - 8% with no measurable increase in pumping power. The overall heat transfer coefficient was increased by 65% for the maximum power point of the tests.
23. INTERIOR VIEW OF THE OLDEST SECTION OF PUMP HOUSE ...
23. INTERIOR VIEW OF THE OLDEST SECTION OF PUMP HOUSE No. 1. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Auxiliary Buildings & Shops, Along Monongahela River, Homestead, Allegheny County, PA
Ejector/liquid ring pump provides <0. 30 mm Hg vacuum for polymerization vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, A.; Gaines, A.
1982-03-01
Firestone Fibers and Textiles Company, a division of Firestone Tire and Rubber Company, manufactures tire and industrial yarns of polyester and nylon-6. Nylon-6 molding and extrusion resins are also produced at the plant in Hopewell, Virginia. The process for making polyester requires an extremely low vacuum on the polymerization reactor. A consistent polymerization vessel vacuum of 0.3 mm Hg is needed, but the existing vacuum source, a five-stage steam jet ejector, could only provide a 0.5 mm Hg level. Two options were considered when the company decided to replace the original system with a system designed for 0.15 mm Hgmore » with a non-condensible gas load of 10.8 lb/hr. A new five-stage jet ejector system to meet these requirements would use 1395 lb/hr of 100 psig steam. The other option was a hybrid vacuum source composed of a three-stage steam ejector system and a liquid ring vacuum pump that is more energy efficient than ejectors for low vacuum applications. The hybrid system was selected because the three-stage jet ejector would use only 1240 lb/hr of 100 psig steam. The liquid ring vacuum pump would increase the material and installation cost of the system by about $4000, but the savings in steam consumption would pay back the added cost in less than two years. The jet ejector/liquid ring vacuum pump system has provided both the capacity and the extremely low vacuum needed for the polyester polymerization vessel, after making a small modification. The hybrid vacuum source is reliable, requires only routine maintenance, and will contiue to save substantial amounts of steam each year compared to the five-stage steam jet ejector.« less
Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation
NASA Technical Reports Server (NTRS)
Hah, Chunill; Katz, Joseph
2012-01-01
Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.
Zero Gravity Cryogenic Vent System Concepts for Upper Stages
NASA Astrophysics Data System (ADS)
Ravex, Alain; Flachbart, Robin; Holt, Barney
The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. TVS performance testing demonstrated that the spray bar was effective in providing tank pressure control within a 6.89 kPa (1psi) band for fill levels of 90%, 50%, and 25%. Complete destratification of the liquid and ullage was achieved at these fill levels. The axial jet was effective in providing tank pressure control within the same pressure control band at the 90% fill level. However, at the 50% level, the system reached a point at which it was unable to extract enough energy to keep up with the heat leak into the tank. Due to a hardware problem, the recirculation pump operated well below the axial jet design flow rate. Therefore, it is likely that the performance of the axial jet would have improved had the pump operated at the proper flow rate. A CFD model is being used to determine if the desired axial jet performance would be achieved if a higher pump flow rate were available. Testing conducted thus far has demonstrated that both TVS concepts can be effective in destratifying a propellant tank, rejecting stored heat energy, and thus, controlling tank pressure.
Ultra-high pressure water jetting for coating removal and surface preparation
NASA Technical Reports Server (NTRS)
Johnson, Spencer T.
1995-01-01
This paper shall examine the basics of water technology with particular attention paid to systems currently in use and some select new applications. By providing an overview of commercially available water jet systems in the context of recent case histories, potential users may evaluate the process for future applications. With the on going introduction of regulations prohibiting the use of chemical paint strippers, manual scrapping and dry abrasive media blasting, the need for an environmentally compliant coating removal process has been mandated. Water jet cleaning has been a traditional part of many industrial processed for year, although it has only been in the last few years that reliable pumping equipment capable of ultra-high pressure operation have become available. With the advent of water jet pumping equipment capable of sustaining pressures in excess of 36,000 psi. there has been shift away from lower pressure, high water volume systems. One of the major factors in driving industry to seek higher pressures is the ability to offer higher productivity rates while lowering the quantity of water used and subsequently reprocessed. Among benefits of the trend toward higher pressure/lower volume systems is the corresponding reduction in water jet reaction forces making hand held water jetting practical and safe. Other unique applications made possible by these new generation pumping systems include the use of alternative fluids including liquid ammonia for specialized and hazardous material removal applications. A review of the equipment used and the required modifications will be presented along with the conclusions reached reached during this test program.
Progress toward hydrogen peroxide micropulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J C; Dittman, M D; Ledebuhr, A G
1999-07-08
A new self-pressurizing propulsion system has liquid thrusters and gas jet attitude control without heavy gas storage vessels. A pump boosts the pressure of a small fraction of the hydrogen peroxide, so that reacted propellant can controllably pressurize its own source tank. The warm decomposition gas also powers the pump and is supplied to the attitude control jets. The system has been incorporated into a prototype microsatellite for terrestrial maneuvering tests. Additional progress includes preliminary testing of a bipropellant thruster, and storage of unstabilized hydrogen peroxide in small sealed tanks.
Enhanced heat sink with geometry induced wall-jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Md. Mahamudul, E-mail: sohel0991@gmail.com; Tikadar, Amitav; Bari, Fazlul
Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities alongmore » the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.« less
24. INTERIOR VIEW OF SUBTERRANEAN LEVEL OF PUMP HOUSE. No. ...
24. INTERIOR VIEW OF SUBTERRANEAN LEVEL OF PUMP HOUSE. No. 1, FLOODED AT THE TIME OF THE SURVEY. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Auxiliary Buildings & Shops, Along Monongahela River, Homestead, Allegheny County, PA
NASA Astrophysics Data System (ADS)
Wu, Huixuan; Miorini, Rinaldo L.; Katz, Joseph
2011-04-01
Particle image velocimetry (PIV) measurements at varying resolutions focus on the flow structures in the tip region of a water-jet pump rotor, including the tip-clearance flow and the rollup process of a tip leakage vortex (TLV). Unobstructed views of these regions are facilitated by matching the optical refractive index of the transparent pump with that of the fluid. High-magnification data reveal the flow non-uniformities and associated turbulence within the tip gap. Instantaneous data and statistics of spatial distributions and strength of vortices in the rotor passage reveal that the leakage flow emerges as a wall jet with a shear layer containing a train of vortex filaments extending from the tip of the blade. These vortices are entrained into the TLV, but do not have time to merge. TLV breakdown in the aft part of the blade passage further fragments these structures, increasing their number and reducing their size. Analogy is made between the circumferential development of the TLV in the blade passage and that of the starting jet vortex ring rollup. Subject to several assumptions, these flows display similar trends, including conditions for TLV separation from the shear layer feeding vorticity into it.
Molecular line emission models of Herbig-Haro objects. I - H2 emission
NASA Technical Reports Server (NTRS)
Wolfire, Mark G.; Konigl, Arieh
1991-01-01
A comprehensive model for molecular hydrogen emssion in Herbig-Haro objects that are associated with the heads of radiative stellar jets is presented by using a simple representation of the jet head as a comprising a leading bow shock and a trailing jet shock, separated by a dense layer of cool shocked gas. Attention is given to collisional excitation in a nondissociative shock and formation pumping in the molecular reformation zone behind a dissociative shock, employing detailed shock and photodissociation-region emission models that incorporate most of the relevant atomic physics and chemistry. The conditions under which each of these excitation mechanisms may be expected to contribute to the observed emission are discussed, and a general diagnostic scheme for discriminating among them is constructed. Applying this scheme to the HH 1-2 system, strong evidence for excitation by the radiation field of a fast shock is found. It is inferred that FUV pumping contributes a significant fraction of the H2 line emission, and it is shown that this can occur only if the UV pump lines are not strongly self-shielded.
40 CFR 455.21 - Specialized definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... stream and product washes, equipment and floor washes, water used as solvent for raw materials, water used as reaction medium, spent acids, spent bases, contact cooling water, water of reaction, air pollution control blowdown, steam jet blowdown, vacuum pump water, pump seal water, safety equipment...
Houck, Edward D.
1994-01-01
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.
Houck, E.D.
1994-10-11
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.
Inerting Aircraft Fuel Systems Using Exhaust Gases
NASA Technical Reports Server (NTRS)
Hehemann, David G.
2002-01-01
Our purpose in this proposal was to determine the feasibility of using carbon dioxide, possibly obtained from aircraft exhaust gases as a substance to inert the fuel contained in fuel tanks aboard aircraft. To do this, we decided to look at the effects carbon dioxide has upon commercial Jet-A aircraft fuel. In particular, we looked at the solubility of CO2 in Jet-A fuel, the pumpability of CO2-saturated Jet-A fuel, the flashpoint of Jet-A fuel under various mixtures of air and CO2, the static outgassing of CO2-Saturated Jet-A fuel and the dynamic outgassing of Jet-A fuel during pumping of Jet-A fuel.
Dual-Pump CARS Development and Application to Supersonic Combustion
NASA Astrophysics Data System (ADS)
Magnotti, Gaetano
Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.
NASA Astrophysics Data System (ADS)
Fesko, Steve
1996-11-01
Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.
Jet Engines as High-Capacity Vacuum Pumps
NASA Technical Reports Server (NTRS)
Wojciechowski, C. J.
1983-01-01
Large diffuser operations envelope and long run times possible. Jet engine driven ejector/diffuser system combines two turbojet engines and variable-area-ratio ejector in two stages. Applications in such industrial proesses as handling corrosive fumes, evaporation of milk and fruit juices, petroleum distillation, and dehydration of blood plasma and penicillin.
Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode
NASA Astrophysics Data System (ADS)
Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.
2014-03-01
Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.
Development of a Dual-Pump CARS System for Measurements in a Supersonic Combusting Free Jet
NASA Technical Reports Server (NTRS)
Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul
2012-01-01
This work describes the development of a dual-pump CARS system for simultaneous measurements of temperature and absolute mole fraction of N2, O2 and H2 in a laboratory scale supersonic combusting free jet. Changes to the experimental set-up and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperature above 800 K, errors in absolute mole fraction are within 1.5, 0.5, and 1% of the total composition for N2, O2 and H2, respectively. Estimated standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5 and 1.7% of the total composition for O2, and between 1.5 and 3.4% for N2. The standard deviation of H2 is 10% of the average measured mole fraction. Results obtained in the jet with and without combustion are illustrated, and the capabilities and limitations of the dual-pump CARS instrument discussed.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Zhu, Boxing; Zhang, Deping; Gu, Jingwang; Zhao, Dongfeng; Chen, Yang
2017-12-01
We present a pulsed single longitudinal mode optical parametric oscillator that was recently constructed for sub-Doppler spectroscopic studies of transient species in a supersonic slit jet expansion environment. The system consists of a Littman-type grazing-incidence-grating resonator and a KTP crystal and is pumped at 532 nm. By spatially filtering the pump laser beam and employing an active cavity-length-stabilization scheme, a frequency down-conversion efficiency up to 18% and generation of Fourier-transform limited pulses with a typical pulse duration of ˜5.5 ns and a bandwidth less than 120 MHz have been achieved. In combination with a slit jet expansion, a sub-Doppler spectrum of SiC2 has been recorded at ˜498 nm, showing a spectral resolution of Δν/ν ≈ 6.2 × 10-7.
Expandable mixing section gravel and cobble eductor
Miller, Arthur L.; Krawza, Kenneth I.
1997-01-01
In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.
NASA Astrophysics Data System (ADS)
Oguz, Temel; Mourre, Baptiste; Tintoré, Joaquin
2017-08-01
We present a coupled physical-biological modeling study to elucidate the changes in ageostrophic frontal dynamics and the frontogenetic plankton production characteristics of a meandering jet under the impacts of successive westerly/easterly wind events combined with seasonal variations in the upstream transport and buoyancy flux characteristics of the jet, using a case study for the Alboran Sea (Western Mediterranean). Their nonlinear coupling is shown to result in different forms of physical and biological characteristics of the background jet structure that follows a meandering path around two anticyclonic gyres in the western and eastern basins and a cyclonic eddy in between. The westerly, downfront wind events broaden the jet, and result in stronger cross-frontal density contrast and intensify ageostrophic cross-frontal secondary circulation. Thus, they improve the frontogenetic plankton production with respect to the no-wind case. They also support higher production along the northern coast in response to wind-induced coastal upwelling and spreading of resulting nutrient-rich, productive water by mesoscale stirring. These features weaken gradually as the jet transport reduces. In contrast, stronger and longer-lasting easterlies during the reduced jet transport phase weaken the currents and frontal density structure, change the circular Western Alboran Gyre to an elongated form, and shift the main axis of the jet towards the southern basin. Then, frontogenesis fails to contribute to phytoplankton production that becomes limited to the eddy pumping within cyclones. Apart from the frontogenetic production, eddy pumping, mesoscale stirring, and diapycnal mixing of nutrients support intermittent and localized phytoplankton patches over the basin.
Malone-brayton cycle engine/heat pump
NASA Astrophysics Data System (ADS)
Gilmour, Thomas A.
1994-07-01
A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.
Dual-Pump CARS Development and Application to Supersonic Combustion
NASA Technical Reports Server (NTRS)
Magnotti, Gaetano; Cutler, Andrew D.
2012-01-01
A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.
Aeroacoustic Characteristics of a Rectangular Multi-Element Supersonic Jet Mixer-Ejector Nozzle
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Taghavi, Ray
1996-01-01
This paper provides a unique, detailed evaluation of the acoustics and aerodynamics of a rectangular multi-element supersonic jet mixer-ejector noise suppressor. The performance of such mixer-ejectors is important in aircraft engine application for noise suppression and thrust augmentation. In contrast to most prior experimental studies on ejectors that reported either aerodynamic or acoustic data, our work documents both types of data. We present information on the mixing, pumping, ejector wall pressure distribution, thrust augmentation and noise suppression characteristics of four simple, multi-element, jet mixer-ejector configurations. The four configurations included the effect of ejector area ratio (AR = ejector area/primary jet area) and the effect of non-parallel ejector walls. We also studied in detail the configuration that produced the best noise suppression characteristics. Our results show that ejector configurations that produced the maximum maximum pumping (entrained flow per secondary inlet area) also exhibited the lowest wall pressures in the inlet region, and the maximum thrust augmentation. When cases having the same total mass flow were compared, we found that noise suppression trends corresponded with those for pumping. Surprisingly, the mixing (quantified by the peak Mach number, and flow uniformity) at the ejector exit exhibited no relationship to the noise suppression at moderate primary jet fully expanded Mach numbers (Mj is less than 1.4). However, the noise suppression dependence on the mixing was apparent at higher Mj. The above observations are justified by noting that the mixing at the ejector exit is ot a strong factor in determining the radiated noise when noise produced internal to the ejector dominates the noise field outside the ejector.
A highly reliable cryogenic mixing pump with no mechanical moving parts
NASA Astrophysics Data System (ADS)
Chen, W.; Niblick, A. L.
2017-12-01
This paper presents the design and preliminary test results of a novel cryogenic mixing pump based on magnetocaloric effect. The mixing pump is developed to enable long-term cryogenic propellant storage in space by preventing thermal stratification of cryogens in storage tanks. The mixing pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing, eliminating the need for mechanical pumps. Its innovative mechanism uses a solid magnetocaloric material to alternately vaporize and condense the cryogen in the pumping chamber, and thus control the volume of the fluid inside the pumping chamber to produce pumping action. The pump is capable of self-priming and can generate a high-pressure rise. This paper discusses operating mechanism and design consideration of the pump, introduces the configuration of a brassboard cryogenic pump, and presents the preliminary test results of the pump with liquid nitrogen.
Mathematical Model of the Jet Engine Fuel System
NASA Astrophysics Data System (ADS)
Klimko, Marek
2015-05-01
The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.
An experimental study of the noise generating mechanisms in supersonic jets
NASA Technical Reports Server (NTRS)
Mclaughlin, D. K.
1979-01-01
Flow fluctuation measurements with normal and X-wire hot-wire probes and acoustic measurements with a traversing condenser microphone were carried out in small air jets in the Mach number range from M = 0.9 to 2.5. One of the most successful studies involved a moderate Reynolds number M = 2.1 jet. The large scale turbulence properties in the jet, and the noise radiation were characterized. A parallel study involved similar measurements on a low Reynolds number M = 0.9 jet. These measurements show that there are important differences in the noise generation process of the M = 0.9 jet in comparison with low supersonic Mach number (M = 1.4) jets. Problems encounted while performing X-wire measurements in low Reynolds number jets of M = 2.1 and 2.5, and in installing a vacuum pump are discussed.
Synthetic Jet Flow Field Database for CFD Validation
NASA Technical Reports Server (NTRS)
Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome
2004-01-01
An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.
Remotely Adjustable Hydraulic Pump
NASA Technical Reports Server (NTRS)
Kouns, H. H.; Gardner, L. D.
1987-01-01
Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.
The time lag and interval of discharge with a spring actuated fuel injection pump
NASA Technical Reports Server (NTRS)
Matthews, Robertson; Gardiner, A W
1923-01-01
Discussed here is research on a spring activated fuel pump for solid or airless injection with small, high speed internal combustion engines. The pump characteristics under investigation were the interval of fuel injection in terms of degrees of crank travel and in absolute time, the lag between the time the injection pump plunger begins its stroke and the appearance of the jet at the orifice, and the manner in which the fuel spray builds up to a maximum when the fuel valve is opened, and then diminishes.
Adjustable Tuning Spring for Bellows Pump
NASA Technical Reports Server (NTRS)
Green, G. L.; Tu Duc, D.; Hooper, S.
1985-01-01
Adjustable leaf spring increases maximum operating pressure of pump from 2 to over 60 psi (13 to over 400 kN/m2). Small commercial bellows pump using ac-powered electromagnet to vibrate bellows at mechanical resonance modified to operate over wider pressure range.
NASA Technical Reports Server (NTRS)
1987-01-01
Stirling Engine's advanced technology engine offers multiple advantages, principal among them reduced fuel consumption and lower exhaust emissions than comparable internal combustion auto engines, plus multifuel capability. Stirling can use gasoline, kerosene, diesel fuel, jet fuel, alcohol, methanol, butane and that's not the whole list. Applications include irrigation pumping, heat pumps, and electricity generation for submarine, Earth and space systems.
Hamaekers, A E W; Götz, T; Borg, P A J; Enk, D
2010-03-01
Needle cricothyrotomy and subsequent transtracheal jet ventilation (TTJV) is one of the last options to restore oxygenation while managing an airway emergency. However, in cases of complete upper airway obstruction, conventional TTJV is ineffective and dangerous. We transformed a small, industrial ejector into a simple, manual ventilator providing expiratory ventilation assistance (EVA). An ejector pump was modified to allow both insufflation of oxygen and jet-assisted expiration through an attached 75 mm long transtracheal catheter (TTC) with an inner diameter (ID) of 2 mm by alternately occluding and releasing the gas outlet of the ejector pump. In a lung simulator, the modified ejector pump was tested at different compliances and resistances. Inspiration and expiration times were measured and achievable minute volumes (MVs) were calculated to determine the effect of EVA. The modified ejector pump shortened the expiration time and an MV up to 6.6 litre min(-1) could be achieved through a 2 mm ID TTC in a simulated obstructed airway. The principle of ejector-based EVA seems promising and deserves further evaluation.
Comparison of Viscous and Pressure Energy Exchange in Fluid Flow Induction
1981-06-01
phases of the same fluid). 14 VSt PRIMARY JET NOZZLE HIGH VELOCITY CORE SUCT SECONFFARY FLUID FIGURE 1: A SIMPLE JET PUMP A.- ~is * II. BACKGROUND A...ratio. As the helix gets tighter, as from the twenty to thirty-five degree nozzles, the angular speed of the nozzle increases and the number of
Gunasekera, Thusitha S; Striebich, Richard C; Mueller, Susan S; Strobel, Ellen M; Ruiz, Oscar N
2013-01-01
Fuel is a harsh environment for microbial growth. However, some bacteria can grow well due to their adaptive mechanisms. Our goal was to characterize the adaptations required for Pseudomonas aeruginosa proliferation in fuel. We have used DNA-microarrays and RT-PCR to characterize the transcriptional response of P. aeruginosa to fuel. Transcriptomics revealed that genes essential for medium- and long-chain n-alkane degradation including alkB1 and alkB2 were transcriptionally induced. Gas chromatography confirmed that P. aeruginosa possesses pathways to degrade different length n-alkanes, favoring the use of n-C11-18. Furthermore, a gamut of synergistic metabolic pathways, including porins, efflux pumps, biofilm formation, and iron transport, were transcriptionally regulated. Bioassays confirmed that efflux pumps and biofilm formation were required for growth in jet fuel. Furthermore, cell homeostasis appeared to be carefully maintained by the regulation of porins and efflux pumps. The Mex RND efflux pumps were required for fuel tolerance; blockage of these pumps precluded growth in fuel. This study provides a global understanding of the multiple metabolic adaptations required by bacteria for survival and proliferation in fuel-containing environments. This information can be applied to improve the fuel bioremediation properties of bacteria.
NASA Technical Reports Server (NTRS)
Mcardle, Jack G.; Esker, Barbara S.
1993-01-01
Many conceptual designs for advanced short-takeoff, vertical landing (ASTOVL) aircraft need exhaust nozzles that can vector the jet to provide forces and moments for controlling the aircraft's movement or attitude in flight near the ground. A type of nozzle that can both vector the jet and vary the jet flow area is called a vane nozzle. Basically, the nozzle consists of parallel, spaced-apart flow passages formed by pairs of vanes (vanesets) that can be rotated on axes perpendicular to the flow. Two important features of this type of nozzle are the abilities to vector the jet rearward up to 45 degrees and to produce less harsh pressure and velocity footprints during vertical landing than does an equivalent single jet. A one-third-scale model of a generic vane nozzle was tested with unheated air at the NASA Lewis Research Center's Powered Lift Facility. The model had three parallel flow passages. Each passage was formed by a vaneset consisting of a long and a short vane. The longer vanes controlled the jet vector angle, and the shorter controlled the flow area. Nozzle performance for three nominal flow areas (basic and plus or minus 21 percent of basic area), each at nominal jet vector angles from -20 deg (forward of vertical) to +45 deg (rearward of vertical) are presented. The tests were made with the nozzle mounted on a model tailpipe with a blind flange on the end to simulate a closed cruise nozzle, at tailpipe-to-ambient pressure ratios from 1.8 to 4.0. Also included are jet wake data, single-vaneset vector performance for long/short and equal-length vane designs, and pumping capability. The pumping capability arises from the subambient pressure developed in the cavities between the vanesets, which could be used to aspirate flow from a source such as the engine compartment. Some of the performance characteristics are compared with characteristics of a single-jet nozzle previously reported.
Jet Propellant (JP)-8 Fuel Evaluation Test Mk II - Reset (Mk II R) Bridge Erection Boat (BEB)
2008-10-01
diesel engines (fig. 2 and 3) equipped with Delphi rotary fuel injection pumps. Figure 1. Mk II R BEB pushing a two-bay IRB raft. TR No. WF-E-83 2... nozzles . The new pump (serial No. 08813K7B) and gasket were installed. 24 May 07 51.0 50.4 44.9 103 Port Fuel Pump and Injectors Replaced. At the...part No. 3909356) were installed on the injector nozzles . The new pump (serial No. 59640HZB) and gasket were installed. 31 May 07 51.5 50.5 44.9 104
NASA Astrophysics Data System (ADS)
Nishihara, Munetake; Freund, Jonathan B.; Glumac, Nick G.; Elliott, Gregory S.
2018-03-01
This paper presents dual-pump coherent anti-Stokes Raman scattering (CARS) measurements for simultaneous detection of flow temperature and relative concentration, applied to the characterization of a discharge-coupled reacting jet in a cross flow. The diagnostic is hydrogen Q-branch based, providing a much wider dynamic range compared to detection in the S-branch. For a previously developed dielectric barrier discharge, aligned co-axially with the fuel jet, OH planar laser induced fluorescence measurements show that the disturbance in the flame boundary leads to mixing enhancement. The H2-N2 dual-pump CARS measurement was used to map two-dimensional temperature distributions. The increase of the maximum temperature was up to 300 K, with 50% more H2 consumption, providing the reason for the decrease in the flame length by 25%. The increase of the relative H2O-H2 fraction was accompanied with a temperature increase, which indicates local equivalence ratios of below 1. The H2-O2 dual-pump measurements confirmed that the fuel-oxidizer ratios remain in the fuel-lean side at most of the probed locations.
NASA Technical Reports Server (NTRS)
Bartlett, Walter, A , jr; Hagginbotham, William K , Jr
1955-01-01
Data obtained from the first flight test of a ram jet utilizing a magnesium slurry fuel are presented. The ram jet accelerated from a Mach number of 1.75 to a Mach number of 3.48 in 15.5 seconds. During this period a maximum values of air specific impulse and gross thrust coefficient were calculated to be 151 seconds and 0.658, respectively. The rocket gas generator used as a fuel-pumping system operated successfully.
Life-cycle analysis of alternative aviation fuels in GREET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, A.; Han, J.; Wang, M.
2012-07-23
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less
Life-Cycle Analysis of Alternative Aviation Fuels in GREET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, A.; Han, J.; Wang, M.
2012-06-01
The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) formore » (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.« less
NASA Technical Reports Server (NTRS)
1978-01-01
The marine turbine pump pictured is the Jacuzzi 12YJ, a jet propulsion system for pleasure or commercial boating. Its development was aided by a NASA computer program made available by the Computer Software Management and Information Center (COSMIC) at the University of Georgia. The manufacturer, Jacuzzi Brothers, Incorporated, Little Rock, Arkansas, used COSMIC'S Computer Program for Predicting Turbopump Inducer Loading, which enabled substantial savings in development time and money through reduction of repetitive testing.
Effectiveness of Circadian countermeasures in simulated transmeridian flight schedules
NASA Technical Reports Server (NTRS)
Moline, Margaret L.; Monk, Timothy H.
1989-01-01
The symptoms of jet-lag commonly afflict travelers who cross time zones. Insomnia during the new night, daytime fatigue, malaise, sleepiness, and gastrointestinal disturbances can occur for as long as 3 weeks after jet travel across even a few time zones. These symptoms are largely due to the slow rate of adjustment of the internal circadian timing system to the new time zone. Since business (or pleasure) can be seriously interrupted by such symptoms, it is important to determine ways to speed up the adjustment process to ameliorate the symptoms. Airline pilots have reported that they frequently nap to counter jet lag symptoms, and that they view this as a useful technique. Napping as a countermeasure would be attractive since it is practical and would take advantage of a naturally occurring phase of sleepiness after lunch. Napping also makes sense since insomnia is a common jet lag symptom. Thus, a laboratory simulation of jet lag was designed to test the ability of napping to increase the rate of adjustment following a time zone shift in a population of middle-aged men.
Testing the Role of Recollision in N2+ Air Lasing
NASA Astrophysics Data System (ADS)
Britton, Mathew; Laferrière, Patrick; Ko, Dong Hyuk; Li, Zhengyan; Kong, Fanqi; Brown, Graham; Naumov, Andrei; Zhang, Chunmei; Arissian, Ladan; Corkum, P. B.
2018-03-01
It has been known for many years that during filamentation of femtosecond light pulses in air, gain is observed on the B to X transition in N2+ . While the gain mechanism remains unclear, it has been proposed that recollision, a process that is fundamental to much of strong field science, is critical for establishing gain. We probe this hypothesis by directly comparing the influence of the ellipticity of the pump light on gain in air filaments. Then, we decouple filamentation from gain by measuring the gain in a thin gas jet that we also use for high harmonic generation. The latter allows us to compare the dependence of the gain on the ellipticity of the pump with the dependence of the high harmonic signal on the ellipticity of the fundamental. We find that gain and harmonic generation have very different behavior in both filaments and in the jet. In fact, in a jet we even measure gain with circular polarization. Thus, we establish that recollision does not play a significant role in creating the inversion.
POTENTIAL IMPACT OF BLENDING RESIDUAL SOLIDS FROM TANKS 18/19 MOUNDS WITH TANK 7 OPERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibling, R; Erich Hansen, E; Bradley Pickenheim, B
2007-03-29
High level waste tanks 18F and 19F have residual mounds of waste which may require removal before the tanks can be closed. Conventional slurry pump technology, previously used for waste removal and tank cleaning, has been incapable of removing theses mounds from tanks 18F and 19F. A mechanical cleaning method has been identified that is potentially capable of removing and transferring the mound material to tank 7F for incorporation in a sludge batch for eventual disposal in high level waste glass by the Defense Waste Processing Facility. The Savannah River National Laboratory has been requested to evaluate whether the materialmore » transferred from tanks 18F/19F by the mechanical cleaning technology can later be suspended in Tank 7F by conventional slurry pumps after mixing with high level waste sludge. The proposed mechanical cleaning process for removing the waste mounds from tanks 18 and 19 may utilize a high pressure water jet-eductor that creates a vacuum to mobilize solids. The high pressure jet is also used to transport the suspended solids. The jet-eductor system will be mounted on a mechanical crawler for movement around the bottom of tanks 18 and 19. Based on physical chemical property testing of the jet-eductor system processed IE-95 zeolite and size-reduced IE-95 zeolite, the following conclusions were made: (1) The jet-eductor system processed zeolite has a mean and median particle size (volume basis) of 115.4 and 43.3 microns in water. Preferential settling of these large particles is likely. (2) The jet-eductor system processed zeolite rapidly generates settled solid yield stresses in excess of 11,000 Pascals in caustic supernates and will not be easily retrieved from Tank 7 with the existing slurry pump technology. (3) Settled size-reduced IE-95 zeolite (less than 38 microns) in caustic supernate does not generate yield stresses in excess of 600 Pascals in less than 30 days. (4) Preferential settling of size-reduced zeolite is a function of the amount of sludge and the level of dilution for the mixture. (5) Blending the size-reduced zeolite into larger quantities of sludge can reduce the amount of preferential settling. (6) Periodic dilution or resuspension due to sludge washing or other mixing requirements will increase the chances of preferential settling of the zeolite solids. (7) Mixtures of Purex sludge and size-reduced zeolite did not produce yield stresses greater than 200 Pascals for settling times less than thirty days. Most of the sludge-zeolite blends did not exceed 50 Pascals. These mixtures should be removable by current pump technology if sufficient velocities can be obtained. (8) The settling rate of the sludge-zeolite mixtures is a function of the ionic strength (or supernate density) and the zeolite- sludge mixing ratio. (9) Simulant tests indicate that leaching of Si may be an issue for the processed Tank 19 mound material. (10) Floating zeolite fines observed in water for the jet-eductor system and size-reduced zeolite were not observed when the size-reduced zeolite was blended with caustic solutions, indicating that the caustic solutions cause the fines to agglomerate. Based on the test programs described in this report, the potential for successfully removing Tank 18/19 mound material from Tank 7 with the current slurry pump technology requires the reduction of the particle size of the Tank 18/19 mound material.« less
Code of Federal Regulations, 2014 CFR
2014-04-01
..., and a means of propelling the fluid through the tubing, such as an electric roller pump. (b) Classification. Class II (special controls). The device is exempt from the premarket notification procedures in...
Code of Federal Regulations, 2012 CFR
2012-04-01
..., and a means of propelling the fluid through the tubing, such as an electric roller pump. (b) Classification. Class II (special controls). The device is exempt from the premarket notification procedures in...
Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements
NASA Technical Reports Server (NTRS)
Tedder, Sarah Augusta Umberger
2010-01-01
Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows fueled with hydrogen and hydrogen/ethylene mixtures (N2, O2, H2, C2H4, CO, and CO2). This instrument can characterize supersonic combustion fueled with surrogate fuel mixtures of hydrogen and ethylene. This information can lead to a better understanding of the chemistry and performance of supersonic combustion fueled with cracked jet propulsion (JP)-type fuel.
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2011-01-01
An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also be used with NASA's advanced nonflow-through fuel cell power systems by simply incorporating a jet nozzle with an appropriate nozzle diameter.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Sanctuary resources or qualities, including but not limited to: Fishing nets, fishing line, hooks, fuel, oil... than 20 feet in length overall as manufactured, and is propelled by a water jet pump or drive. ...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Sanctuary resources or qualities, including but not limited to: fishing nets, fishing line, hooks, fuel, oil... an inboard motor powering a water jet pump as its primary source of motive power and which is...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Sanctuary resources or qualities, including but not limited to: Fishing nets, fishing line, hooks, fuel, oil... than 20 feet in length overall as manufactured, and is propelled by a water jet pump or drive. ...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Sanctuary resources or qualities, including but not limited to: Fishing nets, fishing line, hooks, fuel, oil... than 20 feet in length overall as manufactured, and is propelled by a water jet pump or drive. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Sanctuary resources or qualities, including but not limited to: Fishing nets, fishing line, hooks, fuel, oil... than 20 feet in length overall as manufactured, and is propelled by a water jet pump or drive. ...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Sanctuary resources or qualities, including but not limited to: fishing nets, fishing line, hooks, fuel, oil... an inboard motor powering a water jet pump as its primary source of motive power and which is...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Sanctuary resources or qualities, including but not limited to: fishing nets, fishing line, hooks, fuel, oil... an inboard motor powering a water jet pump as its primary source of motive power and which is...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Sanctuary resources or qualities, including but not limited to: Fishing nets, fishing line, hooks, fuel, oil... than 20 feet in length overall as manufactured, and is propelled by a water jet pump or drive. ...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Sanctuary resources or qualities, including but not limited to: fishing nets, fishing line, hooks, fuel, oil... an inboard motor powering a water jet pump as its primary source of motive power and which is...
Code of Federal Regulations, 2013 CFR
2013-04-01
... GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Therapeutic Devices § 880.5475..., and a means of propelling the fluid through the tubing, such as an electric roller pump. (b...
NASA Astrophysics Data System (ADS)
Yi, Gong; Jilin, Cheng; Lihua, Zhang; Rentian, Zhang
2010-06-01
According to different processes of tides and peak-valley electricity prices, this paper determines the optimal start up time in pumping station's 24 hours operation between the rating state and adjusting blade angle state respectively based on the optimization objective function and optimization model for single-unit pump's 24 hours operation taking JiangDu No.4 Pumping Station for example. In the meantime, this paper proposes the following regularities between optimal start up time of pumping station and the process of tides and peak-valley electricity prices each day within a month: (1) In the rating and adjusting blade angle state, the optimal start up time in pumping station's 24 hours operation which depends on the tide generation at the same day varies with the process of tides. There are mainly two kinds of optimal start up time which include the time at tide generation and 12 hours after it. (2) In the rating state, the optimal start up time on each day in a month exhibits a rule of symmetry from 29 to 28 of next month in the lunar calendar. The time of tide generation usually exists in the period of peak electricity price or the valley one. The higher electricity price corresponds to the higher minimum cost of water pumping at unit, which means that the minimum cost of water pumping at unit depends on the peak-valley electricity price at the time of tide generation on the same day. (3) In the adjusting blade angle state, the minimum cost of water pumping at unit in pumping station's 24 hour operation depends on the process of peak-valley electricity prices. And in the adjusting blade angle state, 4.85%˜5.37% of the minimum cost of water pumping at unit will be saved than that of in the rating state.
Aircraft Wing Fuel Tank Environmental Simulator Tests for Evaluation of Antimisting Fuels.
1984-10-01
C.*: % _ _ _.__ _ o During boost pump operation, strands of a gel-like, semi-transparent material were observed on the free surface of the fuel and...Boeing Materials Technology (BMT) laboratory to measure the water content of the fuel samples is described in appendix C. 2.5.3 Water Ingestion Results...Jet A pump at 8 gpm 32 .. . . ... . . . . . . . -%tr. go*7 .*.**.*.*..* -*.... * . . recuroed for each fueling increment. From these data a height
VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy.
Goldberg, Lew; McIntosh, Chris; Cole, Brian
2011-02-28
A compact, passively Q-switched Nd:YAG laser utilizing a Cr4+:YAG saturable absorber, is end-pumped by the focused emission from an 804 nm vertical-cavity surface-emitting laser (VCSEL) array. By changing the VCSEL operating current, we demonstrated 2x adjustability in the laser output pulse energy, from 9 mJ to 18 mJ. This energy variation was attributed to changes in the angular distribution of VCSEL emission with drive current, resulting in a change in the pump intensity distribution generated by a pump-light-focusing lens.
Simultaneous Temperature and Velocity Measurements in a Large-Scale, Supersonic, Heated Jet
NASA Technical Reports Server (NTRS)
Danehy, P. M.; Magnotti, G.; Bivolaru, D.; Tedder, S.; Cutler, A. D.
2008-01-01
Two laser-based measurement techniques have been used to characterize an axisymmetric, combustion-heated supersonic jet issuing into static room air. The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) measurement technique measured temperature and concentration while the interferometric Rayleigh scattering (IRS) method simultaneously measured two components of velocity. This paper reports a preliminary analysis of CARS-IRS temperature and velocity measurements from selected measurement locations. The temperature measurements show that the temperature along the jet axis remains constant while dropping off radially. The velocity measurements show that the nozzle exit velocity fluctuations are about 3% of the maximum velocity in the flow.
Apparatus for Teaching Physics
ERIC Educational Resources Information Center
Gottlieb, Herbert H., Ed.
1978-01-01
Describes a simple device for observing solar spectra, an inexpensive circuit to produce two sinusoidal signals, a method of demonstrating Charles' Law with plastic bags, and discusses the hazards of connecting a vacuum pump to a gas jet. (SL)
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Kaplan, Michael L.
1995-01-01
Mesoscale model simulations provide insight into the complex jet streak adjustments on 11-12 July 1981 that preceded the first of two significant gravity wave events to have been generated over the Rocky Mountains in Montana. Simulations employing a variety of terrain treatments indicate that prior to wave formation, geostrophic adjustment processes modified the structure of the mid-upper tropospheric jet streak by creating secondary jetlets to the southeast of the polar jet streak in proximity to the gravity wave generation region. This simulated restructuring of the mid-upper tropospheric jet streak is the result of a four stage process. During stage 1, the wind adjusts to the mass field as the jet streak exit region propagates into the inflection point between the upstream trough and downstream ridge in the height field. Stage 2 is initiated as the mass field is forced to adjust to the new ageostrophic wind field created during stage 1. Stage 3 is defined by a second geostrophic adjustment process occurring in a similar manner but to the south and east of the adjustment which occurs during stage 1. A low-level mesoscale jetlet is formed during stage 4 in response to the low-level pressure falls that are established during stage 3. The perturbation of this jetlet, caused by orographically-induced adiabatic and diabatic physical processes, is the likely mechanism responsible for the generation of the first and second episode of observed gravity waves. The dynamics responsible for this wave episode are discussed as differential surface sensible heating inducing an orographically-forced mountain-plains solenoid, resulting in the formation of additional mesoscale jetlets and internal gravity waves. Also discussed is how convective latent heating modifies the numerically simulated terrain-induced internal gravity waves, especially their amplitude and phase velocities, which provide better agreement with those wave characteristics observed in nature. Finally, the three-dimensional linear response of a zonally uniform barotropic flow in a vertically unbounded, continuously stratified, Boussinesq atmosphere which is perturbed from geostrophic equilibrium is investigated.
Why coronal flux tubes have axially invariant cross-section
NASA Astrophysics Data System (ADS)
Bellan, Paul
2001-10-01
We present here a model that not only explains the long-standing mystery^1 of why solar coronal flux tubes tend towards having axially invariant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. l ^1 J. A. Klimchuk, Solar Phys. 193, 53 (2000)
Why coronal flux tubes have axially invariant cross-section
NASA Astrophysics Data System (ADS)
Bellan, P. M.
2001-12-01
We present here a model that not only explains the long-standing mystery of why solar coronal flux tubes tend towards having axially in-variant cross-sections but also explains several other enigmatic features, namely: rotating jets emanating from the ends (surges), counter-streaming beams, ingestion of photospheric material, and elevated pressure/temperature compared to adjacent plasma. The model shows that when a steady current flows along a flux tube with a bulging middle (i.e., a flux tube that is initially produced by a potential magnetic field), non-conservative forces develop which accelerate fluid axially from both ends towards the middle. Remarkably, this axial pumping of fluid into the flux tube causes the flux tube cross-section and volume to decrease in a manner such that the flux tube develops an axial uniform cross-section as observed in coronal loops. The pumping process produces counter-rotating, counter-streaming Alfvenic bulk motion consistent with observations. Collision of the counter-streaming beams causes non-localized bulk heating. This picture also has relevance to astrophysical jets and coaxial spheromak guns and explains why these systems tend to form an axial jet along the geometric axis. Supported by USDOE. [1]J. A. Klimchuk, Solar Phys. 193, 53 (2000)
Borehole hydraulic coal mining system analysis
NASA Technical Reports Server (NTRS)
Floyd, E. L.
1977-01-01
The borehole hydraulic coal mining system accesses the coal seam through a hole drilled in the overburden. The mining device is lowered through the hole into the coal seam where it fragments the coal with high pressure water jets which pump it to the surface as a slurry by a jet pump located in the center of the mining device. The coal slurry is then injected into a pipeline for transport to the preparation plant. The system was analyzed for performance in the thick, shallow coal seams of Wyoming, and the steeply pitching seams of western Colorado. Considered were all the aspects of the mining operation for a 20-year mine life, producing 2,640,000 tons/yr. Effects on the environment and the cost of restoration, as well as concern for health and safety, were studied. Assumptions for design of the mine, the analytical method, and results of the analysis are detailed.
The liquid nitrogen and supercritical helium cooling loop for the jet pumped divertor cryopump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obert, W.; Mayaux, C.; Perinic, G.
1994-12-31
A key element for the new experimental phase of the European fusion experiment JET is a new cryopump which will be installed inside the torus in order to pump the new divertor configuration. A forced flow of liquid nitrogen and supercritical helium has been chosen for the cooling of the cryoshields and cryocondensation panels for this cryopump. The reasons for this selection are to minimize the inventory of cryogens (to minimize nuclear heating) good heat transfer conditions and minimum time for transient conditions such as cool-down, regeneration and warm-up. The flow of supercritical helium will be driven by the mainmore » compressor of the refrigerator and enhanced by a dedicated cold ejector. The peak load during the plasma pulse will be absorbed by the high thermal capacity of the bulk supercritical helium inside the cryocondensation panel.« less
The Role of Jet Adjustment Processes in Subtropical Dust Storms
NASA Astrophysics Data System (ADS)
Pokharel, Ashok Kumar; Kaplan, Michael L.; Fiedler, Stephanie
2017-11-01
Meso-α/β/γ scale atmospheric processes of jet dynamics responsible for generating Harmattan, Saudi Arabian, and Bodélé Depression dust storms are analyzed with observations and high-resolution modeling. The analysis of the role of jet adjustment processes in each dust storm shows similarities as follows: (1) the presence of a well-organized baroclinic synoptic scale system, (2) cross mountain flows that produced a leeside inversion layer prior to the large-scale dust storm, (3) the presence of thermal wind imbalance in the exit region of the midtropospheric jet streak in the lee of the respective mountains shortly after the time of the inversion formation, (4) dust storm formation accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-β scale adjustment process, (5) substantial low-level turbulence kinetic energy (TKE), and (6) emission and uplift of mineral dust in the lee of nearby mountains. The thermally forced meso-γ scale adjustment processes, which occurred in the canyons/small valleys, may have been the cause of numerous observed dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and TKE generation. This study points to the importance of meso-β to meso-γ scale adjustment processes at low atmospheric levels due to an imbalance within the exit region of an upper level jet streak for the formation of severe dust storms. The low level TKE, which is one of the prerequisites to deflate the dust from the surface, cannot be detected with the low resolution data sets; so our results show that a high spatial resolution is required for better representing TKE as a proxy for dust emission.
Photographic copy of plan of new Dy horizontal station and ...
Photographic copy of plan of new Dy horizontal station and accumulator additions to Test Stand "D," also showing existing Dd test station. JPL drawing by VTN Consolidated, Inc. Engineers, Architects, Planners, 2301 Campus Drive, Irvine, California 92664: "Jet Propulsion Laboratory-Edwards Test Station, Motive Steam Supply & Ejector Pumping System: Plan - Test Stand "D," sheet M-3 (JPL sheet number E24/33), 21 December 1976 - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA
1990-01-01
There are three above ground storage tanks for the storage of JP-4 jet fuel with ancillary piping, pumps, loading and unloading facilities, and...time daily basis. Workers are present to transfer jet fuel from delivery tncks to the storage tanks and from the storage tanks to fueling trucks...Ground-water flow and contaminant migration at Site 4, the fuel storage area, is generally toward the drainage ditch located immediately north of the
NASA Astrophysics Data System (ADS)
Uchimura, Tomohiro; Onoda, Takayuki; Lin, Cheng-Huang; Imasaka, Totaro
1999-08-01
An optical parametric oscillator and a Ti:sapphire laser are used as a pump source for the generation of high-order vibrational stimulated Raman emission in the vacuum ultraviolet region. This tunable laser is employed as an excitation/ionization source in a supersonic jet/multiphoton ionization/time-of-flight mass spectrometric study of benzene. The merits and potential advantages of this approach are discussed in this study.
USDA-ARS?s Scientific Manuscript database
The influence of jet-cooking Prowashonupana barley flour on total phenolic contents, antioxidant activities, water holding capacities, and viscoelastic properties was studied. Barley flour was jet-cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxi...
Inglett, G E; Chen, D; Rose, D J; Berhow, M
2010-08-01
Distillers dried grains (DDG) have potential to be a nutritionally important source of protein, oil and phenolic antioxidants. DDG was subjected to high-shear and jet-cooking, with or without alkaline pH adjustment and autoclaving. Soluble and insoluble fractions were analyzed for protein, oil and ash. Extracts were analyzed for phenolic acids and antioxidant activity. Protein contents were significantly elevated in the insoluble fractions after treatment and the oil content was drastically increased in the insoluble fraction after high-shear and jet-cooking without pH adjustment. Alkaline pH adjustment resulted in a soluble fraction that was highest in phenolic acids, but not antioxidant activity. The highest antioxidant activity was found in the 50% ethanol extract from DDG that had been subjected to high-shear and jet-cooking. These results suggest that high-shear and jet-cooking may be useful processing treatments to increase the value of DDG by producing fractions high in protein, oil and extractable phenolic acids with high antioxidant activity. The DDG fractions and extracts described herein may be useful as food and nutraceutical ingredients, and, if used for these applications, will increase the value of DDG and ease economic burdens on ethanol producers, allowing them to compete in the bio-fuel marketplace.
Steam ejector as an industrial heat pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, H.G.; Huntley, W.R.; Perez-Blanco, H.
1982-01-01
The steam ejector is analyzed for use in industrial heat recovery applications and compared to mechanical compressor heat pumps. An estimated ejector performance was analyzed using methods based on conservation of mass, momentum, and energy; using steam properties to account for continuity; and using appropriate efficiencies for the nozzle and diffuse performance within the ejector. A potential heat pump application at a paper plant in which waste water was available in a hot well downstream of the paper machine was used to describe use of the stream ejector. Both mechanical compression and jet ejector heat pumps were evaluated for recompressionmore » of flashed steam from the hot well. It is noted that another possible application of vapor recompression heat pumps is the recovery of waste heat from large facilities such as the gaseous diffusion plants. The economics of recovering waste heat in similar applications is analyzed. (MCW)« less
NASA Astrophysics Data System (ADS)
Panther, Chad C.
Vertical Axis Wind Turbines (VAWTs) have experienced a renewed interest in development for urban, remote, and offshore applications. Past research has shown that VAWTs cannot compete with Horizontals Axis Wind Turbines (HAWTs) in terms of energy capture efficiency. VAWT performance is plagued by dynamic stall (DS) effects at low tip-speed ratios (lambda), where each blade pitches beyond static stall multiple times per revolution. Furthermore, for lambda<2, blades operate outside of stall during over 70% of rotation. However, VAWTs offer many advantages such as omnidirectional operation, ground proximity of generator, lower sound emission, and non-cantilevered blades with longer life. Thus, mitigating dynamic stall and improving VAWT blade aerodynamics for competitive power efficiency has been a popular research topic in recent years and the directive of this study. Past research at WVU focused on the addition of circulation control (CC) technology to improve VAWT aerodynamics and expand the operational envelope. A novel blade design was generated from the augmentation of a NACA0018 airfoil to include CC capabilities. Static wind tunnel data was collected for a range of steady jet momentum coefficients (0.01≤ Cmu≤0.10) for analytical vortex model performance projections. Control strategies were developed to optimize CC jet conditions throughout rotation, resulting in improved power output for 2≤lambda≤5. However, the pumping power required to produce steady CC jets reduced net power gains of the augmented turbine by approximately 15%. The goal of this work was to investigate pulsed CC jet actuation to match steady jet performance with reduced mass flow requirements. To date, no experimental studies have been completed to analyze pulsed CC performance on a pitching airfoil. The research described herein details the first study on the impact of steady and pulsed jet CC on pitching VAWT blade aerodynamics. Both numerical and experimental studies were implemented, varying Re, k, and +/-alpha to match a typical VAWT operating environment. A range of reduced jet frequencies (0.25≤St≤4) were analyzed with varying Cmu, based on effective ranges from prior flow control airfoil studies. Airfoil pitch was found to increase the baseline lift-to-drag ratio (L/D) by up to 50% due to dynamic stall effects. The influence of dynamic stall on steady CC airfoil performance was greater for Cmu=0.05, increasing L/D by 115% for positive angle-of-attack. Pulsed actuation was shown to match, or improve, steady jet lift performance while reducing required mass flow by up to 35%. From numerical flow visualization, pulsed actuation was shown to reduce the size and strength of wake vorticity during DS, resulting in lower profile drag relative to baseline and steady actuation cases. A database of pitching airfoil test data, including overshoot and hysteresis of aerodynamic coefficients (Cl, Cd), was compiled for improved analytical model inputs to update CCVAWT performance predictions, where the aforementioned L/D improvements will be directly reflected. Relative to a conventional VAWT with annual power output of 1 MW, previous work at WVU proved that the addition of steady jet CC could improve total output to 1.25 MW. However, the pumping cost to generate the continuous jet reduced yearly CCVAWT net gains to 1.15 MW. The current study has shown that pulsed CC jets can recover 4% of the pumping demands due to reduced mass flow requirements, increasing annual CCVAWT net power production to 1.19 MW, a 19% improvement relative to the conventional turbine.
Design of a new abrasive slurry jet generator
NASA Astrophysics Data System (ADS)
Wang, F. C.; Shi, L. L.; Guo, C. W.
2017-12-01
With the advantages of a low system working pressure, good jet convergence and high cutting quality, abrasive slurry jet (ASJ) has broad application prospects in material cutting and equipment cleaning. Considering that the generator plays a crucial role in ASJ system, the paper designed a new type ASJ generator using an electric oil pump, a separate plunger cylinder, and a spring energized seal. According to the determining of structure shape, size and seal type, a new ASJ generator has been manufactured out and tested by a series of experiments. The new generator separates the abrasive slurry from the dynamic hydraulic oil, which can improve the service life of the ASJ system. And the new ASJ system can reach 40 MPa and has good performance in jet convergence, which deserves to popularization and application in materials machining.
2013-08-08
Lay down plastic sheeting that is double the size of the mold covered in fabric in order to fully envelope the mold. o Line half of the sheet (in...the mold and connect to clay tape to create an air tight sealed bag with a hose leading to the outside pump. o Once the seal is created, turn on the...connected pump to remove all air from the bag that has been created. Ensure that as air is removed, the bag fits the form of the desired mold as
Development (design and systematization) of HMS Group pump ranges
NASA Astrophysics Data System (ADS)
Tverdokhleb, I.; Yamburenko, V.
2017-08-01
The article reveals the need for pump range charts development for different applications and describes main principles used by HMS Group. Some modern approaches to pump selection are reviewed and highlighted the need for pump compliance with international standards and modern customer requirements. Even though pump design types are similar for different applications they need adjustment to specific requirements, which gets manufacturers develop their particular design for each pump range. Having wide pump ranges for different applications enables to create pump selection software, facilitating manufacturers to prepare high quality quotations in shortest time.
Investigation of PVdF active diaphragms for synthetic jets
NASA Astrophysics Data System (ADS)
Bailo, Kelly C.; Brei, Diann E.; Calkins, Frederick T.
2000-06-01
Current research has shown that aircraft can gain significant aerodynamic performance benefits by employing active flow control (AFC). One of the enabling technologies of AFC is the synthetic jet. Synthetic jets, also known as zero-net-mass flux actuators, act as bi-directional pumps injecting high momentum air into the local aerodynamic flow. Previous work has concentrated on high frequency synthetic jets based on piezoelectric active diaphragms such as Thunder actuators. Low frequency synthetic jets present a unique challenge requiring large displacements, which current technology has difficulty meeting. Boeing is investigating novel shaped low frequency synthetic jets that can modify the flow over fixed aircraft wings. This paper present the initial study of two promising active diaphragm concepts: a crescent shape and an opposing bender shape. These active diaphragms were numerically modeled utilizing the general-purpose finite element code ABAQUS. Using the ABAQUS results, the dynamic volume change within each jet was calculated and incorporated into an analytical linear Bernoulli model to predict the velocities and pressures at the nozzle. Simulations were performed to determine trends to assist in selection of prototype configurations. Prototypes of both diaphragm concepts were constructed from polyvinylidene fluoride and experimentally tested at Boeing with promising results.
Active control of continuous air jet with bifurcated synthetic jets
NASA Astrophysics Data System (ADS)
Dančová, Petra; Vít, Tomáš; Jašíková, Darina; Novosád, Jan
The synthetic jets (SJs) have many significant applications and the number of applications is increasing all the time. In this research the main focus is on the primary flow control which can be used effectively for the heat transfer increasing. This paper deals with the experimental research of the effect of two SJs worked in the bifurcated mode used for control of an axisymmetric air jet. First, the control synthetic jets were measured alone. After an adjustment, the primary axisymmetric jet was added in to the system. For comparison, the primary flow without synthetic jets control was also measured. All experiments were performed using PIV method whereby the synchronization between synthetic jets and PIV system was necessary to do.
Zero Gravity Cryogenic Vent System Concepts for Upper Stages
NASA Technical Reports Server (NTRS)
Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.
1999-01-01
The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray bar system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy is required. a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point. the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating, boil-off losses.
Zero Gravity Cryogenic Vent System Concepts for Upper Stages
NASA Technical Reports Server (NTRS)
Flachbart, Robin H.; Holt, James B.; Hastings, Leon J.
2001-01-01
The capability to vent in zero gravity without resettling is a technology need that involves practically all uses of sub-critical cryogenics in space, and would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule-Thomson (J-T) valve to extract thermal energy from the propellant. Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (MHTB) was used to test both spray-bar and axial jet TVS concepts. The axial jet system consists of a recirculation pump heat exchanger unit. The spray-bar system consists of a recirculation pump, a parallel flow concentric tube heat exchanger, and a spray-bar positioned close to the longitudinal axis of the tank. The operation of both concepts is similar. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the heat exchanger, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses.
Anderson, Oscar A.
1978-01-01
An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.
40 CFR 165.45 - Refillable container standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pesticide container must be capable of withstanding all operating stresses, taking into account static heat, pressure buildup from pumps and compressors, and any other foreseeable mechanical stresses to which the..., but is not limited to, etching, embossing, ink jetting, stamping, heat stamping, mechanically...
Warm fog dissipation using large volume water sprays
NASA Technical Reports Server (NTRS)
Keller, Vernon W. (Inventor)
1988-01-01
To accomplish the removal of warm fog about an area such as an airport runway, a plurality of nozzles along a line adjacent the area propelled water jets through the fog to heights of approximately twenty-five meters. Each water jet breaks up forming a water drop size distribution that falls through the fog overtaking, colliding, and coalescing with individual fog droplets and thereby removes the fog. A water retrieval system is used to collect the water and return it to reservoirs for pumping it to the nozzles once again.
Experimental investigation of an ejector-powered free-jet facility
NASA Technical Reports Server (NTRS)
Long, Mary JO
1992-01-01
NASA Lewis Research Center's (LeRC) newly developed Nozzle Acoustic Test Rig (NATR) is a large free-jet test facility powered by an ejector system. In order to assess the pumping performance of this ejector concept and determine its sensitivity to various design parameters, a 1/5-scale model of the NATR was built and tested prior to the operation of the actual facility. This paper discusses the results of the 1/5-scale model tests and compares them with the findings from the full-scale tests.
NASA Technical Reports Server (NTRS)
Akin, Lee S.; Townsend, Dennis P.
1989-01-01
This paper develops the mathematical relations for the Virtual Kinetic Model as an improvement over the vectorial model developed earlier. The model solution described provides the most energy efficient means of cooling gears, i.e., it requires the least pressure or pumping power to distribute the coolant onto the tooth surface. Further, this nozzle orientation allows impingement to the root of the tooth if needed and provides the most cooling control when compared to into-mesh and out-of-mesh cooling.
NASA Technical Reports Server (NTRS)
Akin, L. S.; Townsend, D. P.
1989-01-01
This paper develops the mathematical relations for the Virtual Kinetic Model as an improvement over the vectorial model developed earlier. The model solution described provides the most energy efficient means of cooling gears, i.e., it requires the least pressure or pumping power to distribute the coolant onto the tooth surface. Further, this nozzle orientation allows impingement to the root of the tooth if needed and provides the most cooling control when compared to into-mesh and out-of-mesh cooling.
Improved Stirling engine performance using jet impingement
NASA Technical Reports Server (NTRS)
Johnson, D. C.; Britt, E. J.; Thieme, L. G.
1982-01-01
Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.
Post-stenotic plug-like jet with a vortex ring demonstrated by 4D flow MRI.
Kim, Guk Bae; Ha, Hojin; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug
2016-05-01
To investigate the details of the flow structure of a plug-like jet that had a vortex ring in pulsatile stenotic phantoms using 4D flow MRI. Pulsatile Newtonian flows in two stenotic phantoms with 50% and 75% reductions in area were scanned by 4D flow MRI. Blood analog working fluid was circulated via the stenotic phantom using a pulsatile pump at a constant pulsating frequency of 1Hz. The velocity and vorticity fields of the plug-like jet with a vortex ring were quantitatively analyzed in the spatial and temporal domains. Pulsatile stenotic flow showed a plug-like jet at the specific stenotic degree of 50% in our pulsatile waveform design. This plug-like jet was found at the decelerating period in the post-stenotic region of 26.4mm (1.2 D). It revealed a vortex ring structure with vorticity strength in the range of ±100s(-1). We observed a plug-like jet with a vortex ring in pulsatile stenotic flow by in vitro visualization using 4D flow MRI. In this plug-like jet, the local fastest flow region occurred at the post-systole phase in the post-stenotic region, which was distinguishable from a typical stenotic jet flow at systole phase. Copyright © 2015 Elsevier Inc. All rights reserved.
Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD
NASA Astrophysics Data System (ADS)
Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi
2017-04-01
The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.
New jet-aeration system using 'Supercavitation'.
Schmid, Andreas
2010-03-01
A newly developed fine bubble aeration system, by which air is transferred under supercavitation conditions, shows a clearly better performance than traditional, well-known aerators that rely on the jet-pump principle and its performance can be compared to oxygen transfer rates achieved in membrane and foil plate aerators. A prototype supercavitation aerator installed at a sewage treatment plant revealed an air input rate, which was about one third lower than that of the jet-pump system, which it replaced. In spite of this low air input rate, the daily demand of pure oxygen for the additionally installed membrane aeration system went down by approximately 49%, from the original level of about 1,200 m(3)/day to about 600 m(3)/day-and this over a test period of more than 7 months. The observed high oxygen transfer rates cannot be explained by traditional mass transfer mechanisms. It is assumed that a large amount of water being transferred into the gas phase by supercavitation contacting directly oxygen also in the gas phase and thereby overcoming mass transfer hindrances which might be favoured by hydroxyl radicals. With this new aerator, during the first 3 months of test phase, already more than 10,000 Euros had been saved because of the reduced pure oxygen demand.
a Highly-Integrated Supersonic-Jet Fourier Transform Microwave Spectrometer
NASA Astrophysics Data System (ADS)
Gou, Qian; Feng, Gang; Grabow, Jens-Uwe
2017-06-01
A highly integrated supersonic-jet Fourier-transform microwave spectrometer of coaxially oriented beam-resonator arrangement (COBRA) type, covering 2-20GHz, has been recently built at Chongqing University, China. Built up almost entirely in an NI PXIe chassis, we take the advantage of the NI PXIe-5451 Dual-channel arbitrary waveform generator and the PXIe-5654 RF signal generator to create a spectrometer with wobbling capacity for fast resonator tuning. Based on the I/Q modulation, associate with PXI control and sequence boards built at the Leibniz Universitat Hannover, the design of the spectrometer is much simpler and very compact. The Fabry-Pérot resonator is semi-confocal with a spherical reflector of 630 mm diameter and a radius of 900 mm curvature and one circulator plate reflector of 630 mm diameter. The vacuum is effectuated by a three-stage mechanical (two-stage rotary vane and roots booster) pump at the fore line of a DN630 ISO-F 20000 L/s oil-diffusion pump. The supersonic-jet expansion is pulsed by a general valve Series 9 solenoid valve which is controlled by a general valve IOTA one driver governed by the experiment-sequence generation. First molecular examples to illustrate the performance of the new setup will include OCS and CF_3CHFCl.
Energy transfer through a multi-layer liner for shaped charges
Skolnick, Saul; Goodman, Albert
1985-01-01
This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.
NASA Astrophysics Data System (ADS)
Soloviev, A.; Dean, C.
2017-12-01
The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the thermocline. On the way down, the jet partially mixes with the surrounding water reducing the temperature of the upper ocean. The OHC thus can either reduce or increase, depending on the wave-inertia pump parameters. Based on the model results, we discuss feasibility of the implementation of the artificial upwelling system for hurricane intensity mitigation.
A miniature Marine Aerosol Reference Tank (miniMART) as a compact breaking wave analogue
NASA Astrophysics Data System (ADS)
Stokes, M. Dale; Deane, Grant; Collins, Douglas B.; Cappa, Christopher; Bertram, Timothy; Dommer, Abigail; Schill, Steven; Forestieri, Sara; Survilo, Mathew
2016-09-01
In order to understand the processes governing the production of marine aerosols, repeatable, controlled methods for their generation are required. A new system, the miniature Marine Aerosol Reference Tank (miniMART), has been designed after the success of the original MART system, to approximate a small oceanic spilling breaker by producing an evolving bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate bubble plume and foam formation and generate aerosols. This system produces bubble plumes characteristic of small whitecaps without the large external pump inherent in the original MART design. Without the pump it is possible to easily culture delicate planktonic and microbial communities in the bulk water during experiments while continuously producing aerosols for study. However, due to the reduced volume and smaller plunging jet, the absolute numbers of particles generated are approximately an order of magnitude less than in the original MART design.
Experimental study of cleaning aircraft GTE fuel injectors using a vortex ejector
NASA Astrophysics Data System (ADS)
Evdokimov, O. A.; Piralishvili, Sh A.; Veretennikov, S. V.; Elkes, A. A.
2017-11-01
The main ways of cleaning the fuel injectors and the circuits of jet and vortex ejectors used for pumping gas, liquid and two-phase media, as well as for evacuation of enclosed spaces are analyzed. The possibility of organizing the process of pumping the liquid out of the fuel injection manifold secondary circuit using a vortex ejector is shown experimentally. The regimes of manifold evacuation at various inlet liquid pressure values are studied. The technology of carbon cleaning fuel injectors using a washing liquid at various working process parameters is tested.
Baroclinic Adjustment of the Eddy-Driven Jet
NASA Astrophysics Data System (ADS)
Novak, Lenka; Ambaum, Maarten H. P.; Harvey, Ben J.
2017-04-01
The prediction of poleward shift in the midlatitude eddy-driven jets due to anthropogenic climate change is now a robust feature of climate models, but the magnitude of this shift or the processes responsible for it are less certain. This uncertainty comes from the complex response in storm tracks to large-scale forcing and their nonlinear modulation of the jet. This study uses global circulation models to reveal a relationship between eddy growth rate (referred to as baroclinicity) and eddy activity, whereby baroclinicity responds most rapidly to an eddy-dissipating forcing whereas eddy activity responds most rapidly to a baroclinicity-replenishing forcing. This nonlinearity can be generally explained using a two-dimensional dynamical system essentially describing the baroclinic adjustment as a predator-prey relationship. Despite this nonlinearity, the barotropic changes in the eddy-driven jet appear to be of a comparable magnitude for the ranges of both types of forcing tested in this study. It is implied that while changes in eddy activity or baroclinicity may indicate the sign of latitudinal jet shifting, the precise magnitude of this shifting is a result of a balance between these two quantities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric
2015-01-20
We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained bymore » the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.« less
TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburello, D; Si Lee, S; Richard Dimenna, R
2008-09-30
The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximummore » and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.« less
Numerical simulation on the cavitation of waterjet propulsion pump
NASA Astrophysics Data System (ADS)
Xia, C. Z.; Cheng, L.; Shang, Y. N.; Zhou, J. R.; Yang, F.; Jin, Y.
2016-05-01
Waterjet propulsion system is widely used in high speed vessels with advantages of simple transmission mechanism, low noise underwater and good manoeuvrability. Compared with the propeller, waterjet propulsion can be used flow stamping to increasing cavitation resistance at high speed. But under certain conditions, such as low ship speed or high ship speed, cavitation problem still exists. If water-jet propulsion pump is run in cavitation condition for a long time, then the cavitation will cause a great deal of noise CFD is applied to analysis and predict the process of production and development of cavitation in waterjet propulsion pump. Based on the cavitation model of Zwart-Gerber-Belamri and a mixture of homogeneous flow model, commercial CFD software CFX was taken for characteristics of cavitation under the three operating conditions. Commercial software ANSYS 14.0 is used to build entity model, mesh and numerical simulation. The grid independence analysis determine the grid number of mixed flow pump model is about 1.6 million and the grid number of water-jet pump system unit is about 2.7 million. The cavitation characteristics of waterjet pump under three operating conditions are studied. The results show that the cavitation development trend is similar design and small rate of flow condition .Under the design conditions Cavitation bubbles are mainly gathered in suction surface of blade near the inlet side of the hub under the primary stage, and gradually extended to the water side in the direction of the rim with the loss of the inlet total pressure. Cavitation appears in hub before the blade rim, but the maximum value of gas content in blade rim is bigger than that in hub. Under large flow conditions, bubble along the direction of wheel hub extends to the rim gradually. Cavitation is found in the pressure surface of blade near the hub region under the critical point of cavitation nearby. When NPSHa is lower than critical point, the area covering by bubbles is about 40% in the suction surface of blade. It means that the critical point of cavitation of pump system is not the accrue point of install cavitation but cavitation has been developed to a certain stage.
Transformation Craft (T-Craft) Concept Study
2007-08-01
turbines (General Electric LM1600, each at 14MW) 3 high temperature superconductor electric generators 2 permanent magnet motors 2 shafts (pumpjets...pump-jet propulsor and permanent magnet motors at the far aft of the ship, the gas turbine generator sets were moved quite far forward (to directly
Code of Federal Regulations, 2011 CFR
2011-07-01
... (such as reboiler, condenser, vacuum pump, steam jet, etc.), plus any associated recovery system. Flame.... Process heater means a device that transfers heat liberated by burning fuel to fluids contained in tubes... chemicals in § 60.667. A process unit can operate independently if supplied with sufficient fuel or raw...
Resto, Pedro J; Bhat, Abhishek; Stava, Eric; Lor, Chong; Merriam, Elliot; Diaz-Rivera, Ruben E; Pearce, Robert; Blick, Robert; Williams, Justin C
2017-11-01
Surface tension passive pumping is a way to actuate flow without the need for pumps, tubing or valves by using the pressure inside small drop to move liquid via a microfluidic channel. These types of tubeless devices have typically been used in cell biology. Herein we present the use of tubeless devices as a fluid exchange platform for patch clamp electrophysiology. Inertia from high-speed droplets and jets is used to create flow and perform on-the-fly mixing of solutions. These are then flowed over GABA transfected HEK cells under patch in order to perform a dose response analysis. TIRF imaging and electrical recordings are used to study the fluid exchange properties of the microfluidic device, resulting in 0-90% fluid exchange times of hundreds of milliseconds. COMSOL is used to model flow and fluid exchange within the device. Patch-clamping experiments show the ability to use high-speed passive pumping and its derivatives for studying peak dose responses, but not for studying ion channel kinetics. Our system results in fluid exchange times slower than when using a standard 12-barrel application system and is not as stable as traditional methods, but it offers a new platform with added functionality. Surface tension passive pumping and tubeless devices can be used in a limited fashion for electrophysiology. Users may obtain peak dose responses but the system, in its current form, is not capable of fluid exchange fast enough to study the kinetics of most ion channels. Copyright © 2017 Elsevier B.V. All rights reserved.
LeRC NATR Free-Jet Development
NASA Technical Reports Server (NTRS)
Long-Davis, M.; Cooper, B. A.
1999-01-01
The Nozzle Acoustic Test Rig (NATR) was developed to provide additional test capabilities at Lewis needed to meet HSR program goals. The NATR is a large f ree-jet facility (free-jet diameter = 53 in.) with a design Mach number of 0.3. It is located inside a geodesic dome, adjacent to the existing Powered Lift Facility (PLF). The NATR allows nozzle concepts to be acoustically assessed for far-field (approximately 50 feet) noise characteristics under conditions simulating forward flight. An ejector concept was identified as a means of supplying the required airflow for this free-jet facility. The primary stream is supplied through a circular array of choked nozzles and the resulting low pressure in the constant, annular- area mixing section causes a "pumping" action that entrains the secondary stream. The mixed flow expands through an annular diffuser and into a plenum chamber. Once inside the plenum, the flow passes over a honeycomb/screen combination intended to remove large disturbances and provide uniform flow. The flow accelerates through an elliptical contraction section where it achieves a free-jet Mach number of up to 0.3.
Ganeev, Rashid A; Husakou, Anton; Suzuki, Masayuki; Kuroda, Hiroto
2016-02-22
We demonstrate the quasi-phase-matching of a group of harmonics generated in Ag multi-jet plasma using tunable pulses in the region of 1160 - 1540 nm and their second harmonic emission. The numerical treatment of this effect includes microscopic description of the harmonic generation, propagation of the pump pulse, and the propagation of the generated harmonics. We obtained more than 30-fold growth of harmonics at the conditions of quasi-phase-matching in the region of 35 nm using eight-jet plasma compared with the case of imperforated plasma.
NASA Technical Reports Server (NTRS)
Daileda, J. J.; Marroquin, J.; Rogers, C. E.
1976-01-01
A hypersonic shock tunnel test on a 0.010 scale SSV orbital configuration was performed to determine the effects of RCS jet/flow field interactions on SSV aerodynamic stability and control characteristics at various hypersonic Mach and Reynolds numbers. Flow field interaction data were obtained using pitch and roll jets. In addition, direct impingement data were obtained at a Mach number of zero with the test section pumped down to below 10 microns of mercury pressure.
NASA Technical Reports Server (NTRS)
Williams, Alton C. (Editor); Moorehead, Tauna W. (Editor)
1987-01-01
Topics addressed include: laboratory double layers; ion-acoustic double layers; pumping potential wells; ion phase-space vortices; weak double layers; electric fields and double layers in plasmas; auroral double layers; double layer formation in a plasma; beamed emission from gamma-ray burst source; double layers and extragalactic jets; and electric potential between plasma sheet clouds.
This report documents the testing of a new technology that recovers and utilizes vapors from crude oil storage tanks employed in the oil production and processing industry. The COMM Engineering, USA Environmental Vapor Recovery Unit (EVRU) is a non-mechanical eductor, or jet pump...
46 CFR 34.10-90 - Installations contracted for prior to May 26, 1965-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... enough water to the fire main so that the topmost outlet on the fire main emits two jets of water at a... if fuel can drain from fireroom bilges into the engineroom, one of the fire pumps shall be located in...
46 CFR 34.10-90 - Installations contracted for prior to May 26, 1965-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... enough water to the fire main so that the topmost outlet on the fire main emits two jets of water at a... if fuel can drain from fireroom bilges into the engineroom, one of the fire pumps shall be located in...
46 CFR 34.10-90 - Installations contracted for prior to May 26, 1965-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... enough water to the fire main so that the topmost outlet on the fire main emits two jets of water at a... if fuel can drain from fireroom bilges into the engineroom, one of the fire pumps shall be located in...
46 CFR 34.10-90 - Installations contracted for prior to May 26, 1965-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... enough water to the fire main so that the topmost outlet on the fire main emits two jets of water at a... if fuel can drain from fireroom bilges into the engineroom, one of the fire pumps shall be located in...
46 CFR 34.10-90 - Installations contracted for prior to May 26, 1965-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... enough water to the fire main so that the topmost outlet on the fire main emits two jets of water at a... if fuel can drain from fireroom bilges into the engineroom, one of the fire pumps shall be located in...
Pumping Insulin during Exercise: What Healthcare Providers and Diabetic Patients Need To Know.
ERIC Educational Resources Information Center
Colberg, Sheri R.; Walsh, John
2002-01-01
Exercise can decrease insulin resistance. Insulin pumps deliver precise insulin adjustments that improve fuel availability and provide glycemic control to help people with diabetes overcome obstacles to exercise. Physicians, patients, and healthcare providers should be familiar with the features and nuances of specific pump models and follow basic…
Yang, Lei; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Wang, Wei; Zhang, Haibo; Han, Lu; Xu, Liang
2014-10-01
The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.
First Results of the Testing of the Liquid Gallium Jet Limiter Concept for ISTTOK
NASA Astrophysics Data System (ADS)
Gomes, R. B.; Fernandes, H.; Silva, C.; Borba, D.; Carvalho, B.; Varandas, C.; Lielausis, O.; Klyukin, A.; Platacis, E.; Mikelsons, A.; Platnieks, I.
2006-12-01
The use of liquid metals as plasma facing components in tokamaks has recently experienced a renewed interest stimulated by their advantages to the development of a fusion reactor. Liquid metals have been proposed to solve problems related to the erosion and neutronic activation of solid walls submitted to high power loads allowing an efficient heat exhaustion from fusion devices. Presently the most promising materials are Lithium and Gallium. ISTTOK, a small size tokamak, will be used to test the behavior of a liquid Gallium jet in the vacuum chamber and its influence on the plasma. This paper presents a description of the conceived setup as well as experimental results. The liquid Gallium jet is generated by hydrostatic pressure and injected in a radial position close to a moveable stainless steel limiter. Both the jet and the limiter positions are variable allowing for a controlled exposure of the liquid Gallium to the edge plasma. The main components of the Gallium loop are a MHD pump, the liquid metal injector and a filtering system. The MHD pump is of the induction type, based on rotating permanent magnets. The injector is build from a ¼″ stainless steel pipe ended by a shaping nozzle. A setup has been developed to introduce oxide-free Gallium inside the loop's main supply tank. Raw liquid metal is placed inside a chamber heated and degassed under high vacuum while clean Gallium is extracted from the main body of the liquefied metal. Prior to installation on the tokamak, the experimental rig has been implemented using a Pyrex tube as test chamber to investigate the stability of the Gallium jet and its break-up length for several nozzle sizes. Results are presented in this paper. This rig was also useful to assess the behavior of the overall implemented apparatus.
Intracerebroventricular opiate infusion for refractory head and facial pain
Lee, Darrin J; Gurkoff, Gene G; Goodarzi, Amir; Muizelaar, J Paul; Boggan, James E; Shahlaie, Kiarash
2014-01-01
AIM: To study the risks and benefits of intracerebroventricular (ICV) opiate pumps for the management of benign head and face pain. METHODS: SSix patients with refractory trigeminal neuralgia and/or cluster headaches were evaluated for implantation of an ICV opiate infusion pump using either ICV injections through an Ommaya reservoir or external ventricular drain. Four patients received morphine ICV pumps and two patientS received a hydromorphone pump. Of the Four patients with morphine ICV pumps, one patient had the medication changed to hydromorphone. Preoperative and post-operative visual analog scores (VAS) were obtained. Patients were evaluated post-operatively for a minimum of 3 mo and the pump dosage was adjusted at each outpatient clinic visit according to the patient’s pain level. RESULTS: All 6 patients had an intracerebroventricular opiate injection trial period, using either an Ommaya reservoir or an external ventricular drain. There was an average VAS improvement of 75.8%. During the trial period, no complications were observed. Pump implantation was performed an average of 3.7 wk (range 1-7) after the trial injections. After implantation, an average of 20.7 ± 8.3 dose adjustments were made over 3-56 mo after surgery to achieve maximal pain relief. At the most recent follow-up (26.2 mo, range 3-56), VAS scores significantly improved from an average of 7.8 ± 0.5 (range 6-10) to 2.8 ± 0.7 (range 0-5) at the final dose (mean improvement 5.0 ± 1.0, P < 0.001). All patients required a stepwise increase in opiate infusion rates to achieve maximal benefit. The most common complications were nausea and drowsiness, both of which resolved with pump adjustments. On average, infusion pumps were replaced every 4-5 years. CONCLUSION: These results suggest that ICV delivery of opiates may potentially be a viable treatment option for patients with intractable pain from trigeminal neuralgia or cluster headache. PMID:25133146
Yurimoto, Terumi; Hara, Shintaro; Isoyama, Takashi; Saito, Itsuro; Ono, Toshiya; Abe, Yusuke
2016-09-01
Estimation of pressure and flow has been an important subject for developing implantable artificial hearts. To realize real-time viscosity-adjusted estimation of pressure head and pump flow for a total artificial heart, we propose the table estimation method with quasi-pulsatile modulation of rotary blood pump in which systolic high flow and diastolic low flow phased are generated. The table estimation method utilizes three kinds of tables: viscosity, pressure and flow tables. Viscosity is estimated from the characteristic that differential value in motor speed between systolic and diastolic phases varies depending on viscosity. Potential of this estimation method was investigated using mock circulation system. Glycerin solution diluted with salty water was used to adjust viscosity of fluid. In verification of this method using continuous flow data, fairly good estimation could be possible when differential pulse width modulation (PWM) value of the motor between systolic and diastolic phases was high. In estimation under quasi-pulsatile condition, inertia correction was provided and fairly good estimation was possible when the differential PWM value was high, which was not different from the verification results using continuous flow data. In the experiment of real-time estimation applying moving average method to the estimated viscosity, fair estimation could be possible when the differential PWM value was high, showing that real-time viscosity-adjusted estimation of pressure head and pump flow would be possible with this novel estimation method when the differential PWM value would be set high.
Liquid-hydrogen rocket engine development at Aerojet, 1944 - 1950
NASA Technical Reports Server (NTRS)
Osborn, G. H.; Gordon, R.; Coplen, H. L.; James, G. S.
1977-01-01
This program demonstrated the feasibility of virtually all the components in present-day, high-energy, liquid-rocket engines. Transpiration and film-cooled thrust chambers were successfully operated. The first liquid-hydrogen tests of the coaxial injector was conducted and the first pump to successfully produce high pressures in pumping liquid hydrogen was tested. A 1,000-lb-thrust gaseous propellant and a 3,000-lb-thrust liquid-propellant thrust chamber were operated satisfactorily. Also, the first tests were conducted to evaluate the effects of jet overexpansion and separation on performance of rocket thrust chambers with hydrogen-oxygen propellants.
Hayward, Christopher S; Salamonsen, Robert; Keogh, Anne M; Woodard, John; Ayre, Peter; Prichard, Roslyn; Kotlyar, Eugene; Macdonald, Peter S; Jansz, Paul; Spratt, Phillip
2015-09-01
Left ventricular assist devices are crucial in rehabilitation of patients with end-stage heart failure. Whether cardiopulmonary function is enhanced with higher pump output is unknown. 10 patients (aged 39±16 years, mean±SD) underwent monitored adjustment of pump speed to determine minimum safe low speed and maximum safe high speed at rest. Patients were then randomized to these speed settings and underwent three 6-minute walk tests (6MWT) and symptom-limited cardiopulmonary stress tests (CPX) on separate days. Pump speed settings (low, normal and high) resulted in significantly different resting pump flows of 4.43±0.6, 5.03±0.94, and 5.72±1.2 l/min (P<.001). There was a significant enhancement of pump flows (greater at higher speed settings) with exercise (P<0.05). Increased pump speed was associated with a trend to increased 6MWT distance (P=.10); and CPX exercise time (p=.27). Maximum workload achieved and peak oxygen consumption were significantly different comparing low to high pump speed settings only (P<.05). N-terminal-pro-B-type natriuretic peptide release was significantly reduced at higher pump speed with exercise (P<.01). We have found that alteration of pump speed setting resulted in significant variation in estimated pump flow. The high-speed setting was associated with lower natriuretic hormone release consistent with lower myocardial wall stress. This did not, however, improve exercise tolerance.
Correlation between proton pump inhibitors and risk of pyogenic liver abscess.
Lin, Hsien-Feng; Liao, Kuan-Fu; Chang, Ching-Mei; Lin, Cheng-Li; Lai, Shih-Wei
2017-08-01
Little is known about the relationship between proton pump inhibitors use and pyogenic liver abscess. The objective of this study was to evaluate the correlation between proton pump inhibitors use and pyogenic liver abscess in Taiwan. This was a population-based case-control study using the database of the Taiwan National Health Insurance Program since 2000 to 2011. Subjects aged 20 to 84 who experienced their first episode of pyogenic liver abscess were enrolled as the case group (n = 1372). Randomly selected subjects aged 20 to 84 without pyogenic liver abscess were enrolled as the control group (n = 1372). Current use, early use, and late use of proton pump inhibitors was defined as subjects whose last one tablet for proton pump inhibitors was noted ≤30 days, between 31 to 90 days and ≥91 days before the date of admission for pyogenic liver abscess. Subjects who never received a prescription for proton pump inhibitors were defined as nonusers of proton pump inhibitors. A multivariable unconditional logistic regression model was used to measure the odds ratio and 95% confidence interval to evaluate the correlation between proton pump inhibitors use and pyogenic liver abscess. After adjusting for confounders, the adjusted odds ratio of pyogenic liver abscess was 7.59 for subjects with current use of proton pump inhibitors (95% confidence interval 5.05, 11.4), when compared with nonusers. Current use of proton pump inhibitors is associated with a greater risk of pyogenic liver abscess.
Development of PZT Actuated Valveless Micropump.
Munas, Fathima Rehana; Melroy, Gehan; Abeynayake, Chamitha Bhagya; Chathuranga, Hiniduma Liyanage; Amarasinghe, Ranjith; Kumarage, Pubudu; Dau, Van Thanh; Dao, Dzung Viet
2018-04-24
A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT) metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA) sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.
Chirped Grating Tunable Lasers for the Infrared Molecular Fingerprint Spectral Region
2013-09-01
lasers with chirped gratings and compare both normal DFB (pump stripe perpendicular to grating) and -DFB (pump stripe perpendicular to facets...structure. Because the period of grating increases gradually laterally, wavelength tuning is implemented by shifting pump stripe to different positions on...tilted with respect to facets and adjusting the pump stripe normal to the grating. Continuous tuning of 30 nm around 3.1 µm with 320 mW single facet
Distribution and regularity of injection from a multicylinder fuel-injection pump
NASA Technical Reports Server (NTRS)
Rothrock, A M; Marsh, E T
1936-01-01
This report presents the results of performance test conducted on a six-cylinder commercial fuel-injection pump that was adjusted to give uniform fuel distribution among the cylinders at a throttle setting of 0.00038 pound per injection and a pump speed of 750 revolutions per minute. The throttle setting and pump speed were then varied through the operating range to determine the uniformity of distribution and regularity of injection.
NASA Astrophysics Data System (ADS)
Le Mézo, Priscilla; Beaufort, Luc; Bopp, Laurent; Braconnot, Pascale; Kageyama, Masa
2017-07-01
The current-climate Indian monsoon is known to boost biological productivity in the Arabian Sea. This paradigm has been extensively used to reconstruct past monsoon variability from palaeo-proxies indicative of changes in surface productivity. Here, we test this paradigm by simulating changes in marine primary productivity for eight contrasted climates from the last glacial-interglacial cycle. We show that there is no straightforward correlation between boreal summer productivity of the Arabian Sea and summer monsoon strength across the different simulated climates. Locally, productivity is fuelled by nutrient supply driven by Ekman dynamics. Upward transport of nutrients is modulated by a combination of alongshore wind stress intensity, which drives coastal upwelling, and by a positive wind stress curl to the west of the jet axis resulting in upward Ekman pumping. To the east of the jet axis there is however a strong downward Ekman pumping due to a negative wind stress curl. Consequently, changes in coastal alongshore stress and/or curl depend on both the jet intensity and position. The jet position is constrained by the Indian summer monsoon pattern, which in turn is influenced by the astronomical parameters and the ice sheet cover. The astronomical parameters are indeed shown to impact wind stress intensity in the Arabian Sea through large-scale changes in the meridional gradient of upper-tropospheric temperature. However, both the astronomical parameters and the ice sheets affect the pattern of wind stress curl through the position of the sea level depression barycentre over the monsoon region (20-150° W, 30° S-60° N). The combined changes in monsoon intensity and pattern lead to some higher glacial productivity during the summer season, in agreement with some palaeo-productivity reconstructions.
He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang
2018-01-01
Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.
He, Jiang-fu; Li, Li-jia; Luo, Yong-jiang
2018-01-01
Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations. PMID:29768421
CARS Temperature Measurements in a Combustion-Heated Supersonic Jet
NASA Technical Reports Server (NTRS)
Tedder, S. A.; Danehy, P. M.; Magnotti, G.; Cutler, A. D.
2009-01-01
Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed.
Aerosol distribution apparatus
Hanson, W.D.
An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.
Credit PSR. Interior view shows the building equipment room as ...
Credit PSR. Interior view shows the building equipment room as seen looking south southwest (206°) from the doorway. The control console contains switches for chiller pumps, fans, heaters, temperature controls, and alarms - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA
Effects of concurrent noise and jet fuel exposure on hearing loss.
Kaufman, Laura R; LeMasters, Grace K; Olsen, Donna M; Succop, Paul
2005-03-01
We sought to examine the effects of occupational exposure to jet fuel on hearing in military workers. Noise-exposed subjects, with or without jet fuel exposure, underwent hearing tests. Work histories, recreational exposures, protective equipment, medical histories, alcohol, smoking, and demographics were collected by questionnaire. Jet fuel, solvent, and noise exposure data were collected from records. Fuel exposure estimates were less than 34% of the OSHA Threshold Limit Values. Subjects with 3 years of jet fuel exposure had a 70% increase in adjusted odds of hearing loss (OR = 1.7; 95% CI = 1.14-2.53) and the odds increased to 2.41 (95% CI = 1.04-5.57) for 12 years of noise and fuel exposure. These findings suggest that jet fuel has a toxic affect on the auditory system.
NASA Technical Reports Server (NTRS)
Michailova, M N; Neumann, M B
1936-01-01
In the present report a comparison is made between the scale obtained with mixtures of cetane and l-methyl naphthalene in a bomb, and that obtained with the same fuels in a Waukesha engine. The tests were conducted in a metal bomb heated by a Nichrome spiral. The fuel was injected into the bomb from a Bosch jet by means of a specially constructed plunger pump. The instant injection and the pressure curve in the bomb were registered by a beam of light which was reflected from a mirror connected to the needle of the jet and to a membrane indicator.
Single-frequency Ince-Gaussian mode operations of laser-diode-pumped microchip solid-state lasers.
Ohtomo, Takayuki; Kamikariya, Koji; Otsuka, Kenju; Chu, Shu-Chun
2007-08-20
Various single-frequency Ince-Gaussian mode oscillations have been achieved in laser-diode-pumped microchip solid-state lasers, including LiNdP(4)O(12) (LNP) and Nd:GdVO(4), by adjusting the azimuthal symmetry of the short laser resonator. Ince-Gaussian modes formed by astigmatic pumping have been reproduced by numerical simulation.
Smedira, Nicholas G; Blackstone, Eugene H; Ehrlinger, John; Thuita, Lucy; Pierce, Christopher D; Moazami, Nader; Starling, Randall C
2015-12-01
Data from 3 institutions revealed an abrupt increase in HeartMate II (Thoratec) pump thrombosis starting in 2011, associated with 48% mortality at 6 months without transplantation or pump exchange. We sought to discover if the increase occurred nationwide in Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) data, and if so (1) determine if accelerated risk continued, (2) identify predictors, (3) investigate institutional variability, and (4) assess mortality after pump thrombosis. From April 2008 to June 2014, 11,123 HeartMate II devices were implanted at 146 institutions. Machine learning, non-parametric Random Forests for Survival was used to explore risk-adjusted thrombosis based on 87 pre-implant and implant variables, including implant date. A total of 995 pumps thrombosed, with risk peaking within weeks of implant. The risk-adjusted increase in pump thrombosis began in 2010, reached a maximum in 2012, and then plateaued at a level that was 3.3-times higher than pre-2010. Pump exchange, younger age, and larger body mass index were important predictors, and institutional variability was largely explained by implant date, patient profile, and duration of support. The probability of death within 3 months after pump thrombosis was 24%. Accelerated risk of HeartMate II thrombosis was confirmed by Interagency Registry for Mechanically Assisted Circulatory Support data, with risk subsequently leveling at a risk-adjusted rate higher than observed pre-2010. This elevated thrombosis risk emphasizes the need for improved mechanical circulatory support systems and post-market surveillance of adverse events. Clinicians cognizant of these new data should incorporate them into their and their patients' expectations and understanding of risks relative to those of transplantation and continued medical therapy. Copyright © 2015 International Society for Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.
Outdoor unit construction for an electric heat pump
Draper, Robert; Lackey, Robert S.
1984-01-01
The outdoor unit for an electric heat pump is provided with an upper portion 10 containing propeller fan means 14 for drawing air through the lower portion 12 containing refrigerant coil means 16 in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs 64 which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed.
Outdoor unit construction for an electric heat pump
Draper, R.; Lackey, R.S.
1984-09-11
The outdoor unit for an electric heat pump is provided with an upper portion containing propeller fan means for drawing air through the lower portion containing refrigerant coil means in the form of four discrete coils connected together in a subassembly forming a W shape, the unit being provided with four adjustable legs which are retracted in shipment, and are adjusted on site to elevate the unit to a particular height suitable for the particular location in which the unit is installed. 4 figs.
Computational Fluid Dynamics (CFD) Analysis for the Reduction of Impeller Discharge Flow Distortion
NASA Technical Reports Server (NTRS)
Garcia, R.; McConnaughey, P. K.; Eastland, A.
1993-01-01
The use of Computational Fluid Dynamics (CFD) in the design and analysis of high performance rocket engine pumps has increased in recent years. This increase has been aided by the activities of the Marshall Space Flight Center (MSFC) Pump Stage Technology Team (PSTT). The team's goals include assessing the accuracy and efficiency of several methodologies and then applying the appropriate methodology(s) to understand and improve the flow inside a pump. The PSTT's objectives, team membership, and past activities are discussed in Garcia1 and Garcia2. The PSTT is one of three teams that form the NASA/MSFC CFD Consortium for Applications in Propulsion Technology (McConnaughey3). The PSTT first applied CFD in the design of the baseline consortium impeller. This impeller was designed for the Space Transportation Main Engine's (STME) fuel turbopump. The STME fuel pump was designed with three impeller stages because a two-stage design was deemed to pose a high developmental risk. The PSTT used CFD to design an impeller whose performance allowed for a two-stage STME fuel pump design. The availability of this design would have lead to a reduction in parts, weight, and cost had the STME reached production. One sample of the baseline consortium impeller was manufactured and tested in a water rig. The test data showed that the impeller performance was as predicted and that a two-stage design for the STME fuel pump was possible with minimal risk. The test data also verified another CFD predicted characteristic of the design that was not desirable. The classical 'jet-wake' pattern at the impeller discharge was strengthened by two aspects of the design: by the high head coefficient necessary for the required pressure rise and by the relatively few impeller exit blades, 12, necessary to reduce manufacturing cost. This 'jet-wake pattern produces an unsteady loading on the diffuser vanes and has, in past rocket engine programs, lead to diffuser structural failure. In industrial applications, this problem is typically avoided by increasing the space between the impeller and the diffuser to allow the dissipation of this pattern and, hence, the reduction of diffuser vane unsteady loading. This approach leads to small performance losses and, more importantly in rocket engine applications, to significant increases in the pump's size and weight. This latter consideration typically makes this approach unacceptable in high performance rocket engines.
Pore Water Pumping by Upside-Down Jellyfish
NASA Astrophysics Data System (ADS)
Gaddam, Manikantam; Santhanakrishnan, Arvind
2016-11-01
Patchy aggregations of Cassiopea medusae, commonly called upside-down jellyfish, are found in sheltered marine environments with low-speed ambient flows. These medusae exhibit a sessile, non-swimming lifestyle, and are oriented such that their bells are attached to the substrate and oral arms point towards sunlight. Pulsations of their bells are used to generate currents for suspension feeding. Their pulsations have also been proposed to generate forces that can release sediment locked nutrients into the surrounding water. The goal of this study is to examine pore water pumping by Cassiopea individuals in laboratory aquaria, as a model for understanding pore water pumping in unsteady flows. Planar laser-induced fluorescence (PLIF) measurements were conducted to visualize the release of pore water via bell motion, using fluorescent dye introduced underneath the substrate. 2D particle image velocimetry (PIV) measurements were conducted on the same individuals to correlate PLIF-based concentration profiles with the jets generated by pulsing of medusae. The effects of varying bell diameter on pore water release and pumping currents will be discussed.
An Experimental Study of the Near Field Region of a Free Jet with Passive Mixing Tabs
NASA Technical Reports Server (NTRS)
Bohl, D. G.; Foss, J. F.
1997-01-01
An experimental study was performed to determine the flow characteristics of a tabbed free jet. Results were acquired in the near field (nominally 2 tab widths upstream to 2 tab widths downstream of the exit plane) of a tabbed jet. Upstream pressure results showed static pressure distributions in both the x-and y-directions along the top surface of the tunnel. Hot-wire measurements showed rapid expansion of the core fluid into the ambient region. Two counter rotating regions of streamwise vorticity were shown on each side of the primary tab. An enhancement of the tabbed jet concept was proposed and tested. Specifically, two tabs, half the scale of the primary tab, were added to the primary tab to provide attachment surfaces for the normally occurring ejection of fluid. The secondary tabs caused a slight increase in the streamwise vorticity created from the upstream static pressure gradient while significantly increasing the re-oriented boundary layer vorticity. The combined pumping effect of the two counter rotating regions of vorticity caused a significant increase in the transport of the jet core fluid into the surrounding region.
Generating and controlling homogeneous air turbulence using random jet arrays
NASA Astrophysics Data System (ADS)
Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo
2016-12-01
The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.
Experimental study of a staged combustion system for stationary gas turbine applications
NASA Astrophysics Data System (ADS)
Lamont, Warren G.
Two optically accessible experimental test rigs were designed and constructed to investigate a staged or distributed combustion system for stationary gas turbine applications. The test rigs were fuelled with natural gas and featured two combustion zones: the main combustion zone (MCZ) and the secondary combustion zone (SCZ). The MCZ is a swirl stabilized dump combustor and the SCZ, which is axially downstream from the MCZ, is formed by a transverse jet injecting a premixed fuel/air mixture into the vitiated stream. After installing and commissioning the test rig, an emission survey was conducted to investigate the SCZ conditions, equivalence ratio and momentum ratio, that produce low NOx emissions and give a higher temperature rise before a simulated high pressure turbine than firing only the MCZ. The emission survey found several operating conditions that show the benefit of combustion staging. These beneficial conditions had an SCZ equivalence ratio between 0.41 and 1.12. The data from the emission survey was then used to create an artificial neural network (ANN). The ANN used a multi-layer feed-forward network architecture and was trained with experimental data using the backpropagation training algorithm. The ANN was then used to create performance maps and optimum operational regions were sought. Lastly, optical diagnostics were used to obtain information on the nature of the SCZ reactive jet. The diagnostics included high speed CH* chemiluminescence, OH planar laser induced fluorescence (PLIF) and dual-pump coherent anti-Stokes Raman scattering (CARS). The chemiluminescence and PLIF were used to qualitatively determine the size and shape of the transverse jet reaction zone. Dual-pump CARS was used to quantitatively determine the temperature and H2/N2 concentration ratio profile at the mid-plane of the transverse jet. Dual-pump CARS data was collected for four operating conditions but only one is presented in this dissertation. For the condition presented, the temperature ranged from 1200 K to 2500 K, and regions with the highest temperature also corresponded to regions with the most temperature fluctuation, indicating the presence of a reactive shear layer. The concentration ratio of H2/N2 ranged from 6.4×-3 to 4.8×10-2. Regions of high temperature also correspond to high H2/N2 concentration ratios indicating the location of the primary reaction zone.
Toffolon, Marco; Ragazzi, Marco; Righetti, Maurizio; Teodoru, Cristian R; Tubino, Marco; Defrancesco, Chiara; Pozzi, Sabrina
2013-01-15
Artificial oxygenation is a common management technique for lake restoration, but the use of hypolimnetic aeration in shallow basins can have dramatic effects on the dynamics of thermal stratification. This study presents the results of extensive field measurements performed in Lake Serraia (Trentino, Italy) after the installation of a Side Stream Pumping System, whereby oxygen-rich water is injected through 24 jets, uniformly distributed along an octagonal-shaped pipe at approximately 1 m above the sediment floor (10 m in depth). The lake is characterised by an average depth of 7 m, a volume of 3.1 × 10(6) m(3) and a residence time of about one year. Prior to the installation of the pumping system, the undisturbed hypolimnion thickness during summer stratification was relatively small. After the start of oxygen injection (up to 0.5 m(3)/s of oxygen-saturated water), an increase of in-lake temperature over the entire water column was noted with a maximum hypolimnetic temperature increase of up to 9 °C. The analysis of the flow field data and the results of numerical simulations (presented in the companion paper), indicate that the jets were solely responsible for the observed increase in temperature. Moreover, this study shows that modelling efforts are useful to provide guidelines for optimising contrasting needs (e.g., increase in oxygen supply versus jet discharge rate). Copyright © 2012 Elsevier Ltd. All rights reserved.
Oil/gas separator for installation at burning wells
Alonso, C.T.; Bender, D.A.; Bowman, B.R.; Burnham, A.K.; Chesnut, D.A.; Comfort, W.J. III; Guymon, L.G.; Henning, C.D.; Pedersen, K.B.; Sefcik, J.A.; Smith, J.A.; Strauch, M.S.
1993-03-09
An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.
Oil/gas separator for installation at burning wells
Alonso, Carol T.; Bender, Donald A.; Bowman, Barry R.; Burnham, Alan K.; Chesnut, Dwayne A.; Comfort, III, William J.; Guymon, Lloyd G.; Henning, Carl D.; Pedersen, Knud B.; Sefcik, Joseph A.; Smith, Joseph A.; Strauch, Mark S.
1993-01-01
An oil/gas separator is disclosed that can be utilized to return the burning wells in Kuwait to production. Advantageously, a crane is used to install the separator at a safe distance from the well. The gas from the well is burned off at the site, and the oil is immediately pumped into Kuwait's oil gathering system. Diverters inside the separator prevent the oil jet coming out of the well from reaching the top vents where the gas is burned. The oil falls back down, and is pumped from an annular oil catcher at the bottom of the separator, or from the concrete cellar surrounding the well.
Li, Chufeng; Schmidt, Kevin; Spence, John C.
2015-01-01
We compare three schemes for time-resolved X-ray diffraction from protein nanocrystals using an X-ray free-electron laser. We find expressions for the errors in structure factor measurement using the Monte Carlo pump-probe method of data analysis with a liquid jet, the fixed sample pump-probe (goniometer) method (both diffract-and-destroy, and below the safe damage dose), and a proposed two-color method. Here, an optical pump pulse arrives between X-ray pulses of slightly different energies which hit the same nanocrystal, using a weak first X-ray pulse which does not damage the sample. (Radiation damage is outrun in the other cases.) This two-color method, in which separated Bragg spots are impressed on the same detector readout, eliminates stochastic fluctuations in crystal size, shape, and orientation and is found to require two orders of magnitude fewer diffraction patterns than the currently used Monte Carlo liquid jet method, for 1% accuracy. Expressions are given for errors in structure factor measurement for the four approaches, and detailed simulations provided for cathepsin B and IC3 crystals. While the error is independent of the number of shots for the dose-limited goniometer method, it falls off inversely as the square root of the number of shots for the two-color and Monte Carlo methods, with a much smaller pre-factor for the two-color mode, when the first shot is below the damage threshold. PMID:26798813
Schäfer, Karl-Christian; Balog, Júlia; Szaniszló, Tamás; Szalay, Dániel; Mezey, Géza; Dénes, Júlia; Bognár, László; Oertel, Matthias; Takáts, Zoltán
2011-10-15
Direct combination of cavitron ultrasonic surgical aspirator (CUSA) and sonic spray ionization mass spectrometry is presented. A commercially available ultrasonic surgical device was coupled to a Venturi easy ambient sonic-spray ionization (V-EASI) source by directly introducing liquified tissue debris into the Venturi air jet pump. The Venturi air jet pump was found to efficiently nebulize the suspended tissue material for gas phase ion production. The ionization mechanism involving solely pneumatic spraying was associated with that of sonic spray ionization. Positive and negative ionization spectra were obtained from brain and liver samples reflecting the primary application areas of the surgical device. Mass spectra were found to feature predominantly complex lipid-type constituents of tissues in both ion polarity modes. Multiply charged peptide anions were also detected. The influence of instrumental settings was characterized in detail. Venturi pump geometry and flow parameters were found to be critically important in ionization efficiency. Standard solutions of phospholipids and peptides were analyzed in order to test the dynamic range, sensitivity, and suppression effects. The spectra of the intact tissue specimens were found to be highly specific to the histological tissue type. The principal component analysis (PCA) and linear discriminant analysis (LDA) based data analysis method was developed for real-time tissue identification in a surgical environment. The method has been successfully tested on post-mortem and ex vivo human samples including astrocytomas, meningeomas, metastatic brain tumors, and healthy brain tissue. © 2011 American Chemical Society
Resonant Interaction of a Linear Array of Supersonic Rectangular Jets: an Experimental Study
NASA Technical Reports Server (NTRS)
Raman, Ganesh; Taghavi, Ray
1994-01-01
This paper examines a supersonic multi jet interaction problem that we believe is likely to be important for mixing enhancement and noise reduction in supersonic mixer-ejector nozzles. We demonstrate that it is possible to synchronize the screech instability of four rectangular jets by precisely adjusting the inter jet spacing. Our experimental data agrees with a theory that assumes that the phase-locking of adjacent jets occurs through a coupling at the jet lip. Although the synchronization does not change the frequency of the screech tone, its amplitude is augmented by 10 dB. The synchronized multi jets exhibit higher spreading than the unsynchronized jets, with the single jet spreading the least. We compare the nearfield noise of the four jets with synchronized screech to the noise of the sum of four jets operated individually. Our noise measurements reveal that the more rapid mixing of the synchronized multi jets causes the peak jet noise source to move up stream and to radiate noise at larger angles to the flow direction. Based on our results, we believe that screech synchronization is advantageous for noise reduction internal to a mixer-ejector nozzle, since the noise can now be suppressed by a shorter acoustically lined ejector.
Pressure vessel and method therefor
Saunders, Timothy
2017-09-05
A pressure vessel includes a pump having a passage that extends between an inlet and an outlet. A duct at the pump outlet includes at least one dimension that is adjustable to facilitate forming a dynamic seal that limits backflow of gas through the passage.
Brinkman, William T; Squiers, John J; Filardo, Giovanni; Arsalan, Mani; Smith, Robert L; Moore, David; Mack, Michael J; DiMaio, J Michael
2015-12-01
Mini-extracorporeal circulation (MECC) units were developed to reduce postoperative morbidity, transfusion requirements, and inflammation associated with conventional on-pump coronary artery bypass (ONCAB) surgery without the technical demands of the off-pump (OPCAB) technique. We compared perioperative outcomes and inflammatory mediation among OPCAB, MECC, and ONCAB techniques. We prospectively enrolled 102 patients undergoing elective isolated coronary bypass grafting. Perfusion methods were OPCAB (n = 34), MECC (n = 34), and ONCAB (n = 34). Serial blood samples were collected to measure serum inflammatory markers. There were no operative deaths or strokes. Total red blood cell (RBC) products used in OPCAB, MECC, and ONCAB patients were 0.676, 1.000, and 1.235 units, respectively. Adjusted (by splined Society of Thoracic Surgeons operative risk score) analysis showed no statistically significant differences in mean RBC product use among the different operative systems (OPCAB vs MECC, P = 0.580; OPCAB vs ONCAB, P = 0.311; MECC vs ONCAB, P = 0.633). Adjusted (by Society of Thoracic Surgeons risk score and baseline level) mean plasma level differences (24 hours postoperative - baseline) of C-reactive protein for OPCAB (117.89; 95% confidence interval [95% CI], 106.23-129.54) and for MECC (124.88; 95% CI, 113.45-136.32) were significantly higher than for ONCAB (98.82; 95% CI, 86.40-111.24). No significant adjusted differences (P = 0.304) in interleukin-6 level changes were observed. Off-pump coronary artery bypass and MECC did not significantly reduce mean total RBC transfusion requirements. Off-pump coronary artery bypass and MECC were associated with greater C-reactive protein elevation than ONCAB, suggestive of an increased inflammatory response to each of these techniques.
A population-based study of the drug interaction between proton pump inhibitors and clopidogrel
Juurlink, David N.; Gomes, Tara; Ko, Dennis T.; Szmitko, Paul E.; Austin, Peter C.; Tu, Jack V.; Henry, David A.; Kopp, Alex; Mamdani, Muhammad M.
2009-01-01
Background Most proton pump inhibitors inhibit the bioactivation of clopidogrel to its active metabolite. The clinical significance of this drug interaction is unknown. Methods We conducted a population-based nested case–control study among patients aged 66 years or older who commenced clopidogrel between Apr. 1, 2002, and Dec. 31, 2007, following hospital discharge after treatment of acute myocardial infarction. The cases in our study were those readmitted with acute myocardial infarction within 90 days after discharge. We performed a secondary analysis considering events within 1 year. Event-free controls (at a ratio of 3:1) were matched to cases on age, percutaneous coronary intervention and a validated risk score. We categorized exposure to proton pump inhibitors before the index date as current (within 30 days), previous (31–90 days) or remote (91–180 days). Results Among 13 636 patients prescribed clopidogrel following acute myocardial infarction, we identified 734 cases readmitted with myocardial infarction and 2057 controls. After extensive multivariable adjustment, current use of proton pump inhibitors was associated with an increased risk of reinfarction (adjusted odds ratio [OR] 1.27, 95% confidence interval [CI] 1.03–1.57). We found no association with more distant exposure to proton pump inhibitors or in multiple sensitivity analyses. In a stratified analysis, pantoprazole, which does not inhibit cytochrome P450 2C19, had no association with readmission for myocardial infarction (adjusted OR 1.02, 95% CI 0.70–1.47). Interpretation Among patients receiving clopidogrel following acute myocardial infarction, concomitant therapy with proton pump inhibitors other than pantoprazole was associated with a loss of the beneficial effects of clopidogrel and an increased risk of reinfarction. PMID:19176635
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, S. K.; Narumanchi, S.; Mihalic, M.
2014-08-01
Jet impingement on plain and micro-finned enhanced surfaces was compared to a traditional channel flow configuration. The jets provide localized cooling to areas heated by the insulated-gate bipolar transistor and diode devices. Enhanced microfinned surfaces increase surface area and thermal performance. Using lighter materials and designing the fluid path to manage pressure losses increases overall performance while reducing weight, volume, and cost. Powering four diodes in the center power module of the inverter and computational fluid dynamics (CFD) modeling was used to characterize the baseline as well as jet-impingement-based heat exchangers. CFD modeling showed the thermal performance improvements should holdmore » for a fully powered inverter. Increased thermal performance was observed for the jet-impingement configurations when tested at full inverter power (40 to 100 kW output power) on a dynamometer. The reliability of the jets and enhanced surfaces over time was also investigated. Experimentally, the junction-to- coolant thermal resistance was reduced by up to 12.5% for jet impingement on enhanced surfaces s compared to the baseline channel flow configuration. Base plate-to-coolant (convective) resistance was reduced by up to 37.0% for the jet-based configuration compared to the baseline, suggesting that while improvements to the cooling side reduce overall resistance, reducing the passive stack resistance may contribute to lowering overall junction-to-coolant resistance. Full inverter power testing showed reduced thermal resistance from the middle of the module baseplate to coolant of up to 16.5%. Between the improvement in thermal performance and pumping power, the coefficient of performance improved by up to 13% for the jet-based configuration.« less
NASA Astrophysics Data System (ADS)
Han, Bing; Liu, Liu; Ni, Xiao-Wu
2017-08-01
In order to understand the interaction dynamics of a pair of laser-induced bubbles, a double-exposure strobe photography experimental setup is build up to study the temporal evolution of the bubble pairs and to measure the transient bubble-interface moving speed. The interaction mechanisms of the bubble pairs are discussed together with the numerical results obtained through OpenFOAM. It is shown that the direction and the velocity of the jetting could be controlled by the relative size and the relative initiation distance of the bubble pair, when the bubbles are generated at the same time, i.e., in-phase. The liquid jet is considered to be a penetrating jet. The jet is originated from the smaller bubble and clearly protruding outside of the bigger bubble. The parameter space of the relative size and the initiation distance of the bubble pair allowing the formation of the penetrating jet are very narrow. It is concluded that the liquid jet induced by the bubble interactions resulted from the collapse and the rebound of the smaller bubble nearby the bigger bubble. This is defined as the "catapult effect." Such a directional liquid transportation is a promising tool as a micro-injector or a micro-pump. The investigation results could be also supplementary to the understandings of the bubble dynamics.
The MEMS Knudsen Compressor as a Vacuum Pump for Space Exploration Applications
NASA Technical Reports Server (NTRS)
Vargo, S. E.; Muntz, E. P.; Tang, W. C.
2000-01-01
Several lander, probe and rover missions currently under study at the Jet Propulsion Laboratory (JPL) and especially in the Microdevices Laboratory (MDL) Center for Space Microelectronics Technology, focus on utilizing microelectromechanical systems (MEMS) based instruments for science data gathering. These small instruments and NASA's commitment to "faster, better, cheaper" type missions has brought about the need for novel approaches to satisfying mission requirements. Existing in-situ instrument systems clearly lack novel and integrated methods for satisfying their vacuum needs. One attractive candidate for a MEMS vacuum pump is the Knudsen Compressor, which operates based on thermal transpiration. Thermal transpiration describes gas flows induced by temperature differences maintained across orifices, porous membranes or capillary tubes under rarefied conditions. This device has two overwhelmingly attractive features as a MEMS vacuum pump - no moving parts and no fluids. An initial estimate of a Knudsen Compressor's pumping power requirements for a surface atmospheric sampling task on Mars is less than 80 mW, significantly below than alternative pumps. Due to the relatively low energy use for this task and the applicability of the Knudsen Compressor to other applications, the development of a Knudsen Compressor utilizing MEMS fabrication techniques has been initiated. This paper discusses the initial fabrication of a single-stage MEMS Knudsen Compressor vacuum pump, provides performance criteria such as pumping speed, size, energy use and ultimate pressure and details vacuum pump applications in several MDL related in-situ instruments.
NASA Astrophysics Data System (ADS)
Sung, Yu-Ching; Wei, Ta-Chin; Liu, You-Chia; Huang, Chun
2018-06-01
A capacitivly coupled radio-frequency double-pipe atmospheric-pressure plasma jet is used for etching. An argon carrier gas is supplied to the plasma discharge jet; and CH2F2 etch gas is inserted into the plasma discharge jet, near the silicon substrate. Silicon etchings rate can be efficiently-controlled by adjusting the feeding etching gas composition and plasma jet operating parameters. The features of silicon etched by the plasma discharge jet are discussed in order to spatially spreading plasma species. Electronic excitation temperature and electron density are detected by increasing plasma power. The etched silicon profile exhibited an anisotropic shape and the etching rate was maximum at the total gas flow rate of 4500 sccm and CH2F2 concentration of 11.1%. An etching rate of 17 µm/min was obtained at a plasma power of 100 W.
NASA Astrophysics Data System (ADS)
Domke, Matthias; Rapp, Stephan; Huber, Heinz
For the monolithic serial interconnection of CIS thin film solar cells, 470 nm molybdenum films on glass substrates must be separated galvanically. The single pulse ablation with a 660 fs laser at a wavelength of 1053 nm is investigated in a fluence regime from 0.5 to 5.0 J/cm2. At fluences above 2.0 J/cm2 bump and jet formation can be observed that could be used for creating microstructures. For the investigation of the underlying mechanisms of the laser ablation process itself as well as of the bump or jet formation, pump probe microscopy is utilized to resolve the transient ablation behavior.
NUCLEAR FLASH TYPE STEAM GENERATOR
Johns, F.L.; Gronemeyer, E.C.; Dusbabek, M.R.
1962-09-01
A nuclear steam generating apparatus is designed so that steam may be generated from water heated directly by the nuclear heat source. The apparatus comprises a pair of pressure vessels mounted one within the other, the inner vessel containing a nuclear reactor heat source in the lower portion thereof to which water is pumped. A series of small ports are disposed in the upper portion of the inner vessel for jetting heated water under pressure outwardly into the atmosphere within the interior of the outer vessel, at which time part of the jetted water flashes into steam. The invention eliminates the necessity of any intermediate heat transfer medium and components ordinarily required for handling that medium. (AEC)
Design of Intelligent Hydraulic Excavator Control System Based on PID Method
NASA Astrophysics Data System (ADS)
Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong
Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.
Rizzelli, Giuseppe; Iqbal, Md Asif; Gallazzi, Francesca; Rosa, Paweł; Tan, Mingming; Ania-Castañón, Juan Diego; Krzczanowicz, Lukasz; Corredera, Pedro; Phillips, Ian; Forysiak, Wladek; Harper, Paul
2016-12-12
Relative intensity noise transfer from the pump to the signal in 2nd-order ultra-long Raman laser amplifiers for telecommunications is characterized numerically and experimentally. Our results showcase the need for careful adjustment of the front FBG reflectivity and the relative contribution of forward pump power, and their impact on performance. Finally, our analysis is verified through a 10 × 30 GBaud DP-QPSK transmission experiment, showing a large Q factor penalty associated with the combination of high forward pumping and high reflectivities.
NASA Technical Reports Server (NTRS)
Lubenetsky, W S
1936-01-01
This report presents investigations into the design and construction of fuel pumps for diesel engines. The results of the pump tests on the engines showed that, with a good cut-off, accurate injection, assured by the proper adjustment of the pump elements, there is a decrease in the consumption of fuel and hence an increase in the rated power of the engine. Some of the aspects investigated include: cam profile, coefficient of discharge, and characteristics of the injection system.
One-step formation of multiple emulsions in microfluidics.
Abate, Adam R; Thiele, Julian; Weitz, David A
2011-01-21
We present a robust way to create multiple emulsions with controllable shell thicknesses that can vary over a wide range. We use a microfluidic device to create a coaxial jet of immiscible fluids; using a dripping instability, we break the jet into multiple emulsions. By controlling the thickness of each layer of the jet, we adjust the thicknesses of the shells of the multiple emulsions. The same method is also effective in creating monodisperse emulsions from fluids that cannot otherwise be controllably emulsified, such as, for example, viscoelastic fluids.
Jets and Water Clouds on Jupiter
NASA Astrophysics Data System (ADS)
Lian, Yuan; Showman, A. P.
2012-10-01
Ground-based and spacecraft observations show that Jupiter exhibits multiple banded zonal jet structures. These banded jets correlate with dark and bright clouds, often called "belts" and "zones". The mechanisms that produce these banded zonal jets and clouds are poorly understood. Our previous studies showed that the latent heat released by condensation of water vapor could produce equatorial superrotation along with multiple zonal jets in the mid-to-high latitudes. However, that previous work assumed complete and instant removal of condensate and therefore could not predict the cloud formation. Here we present an improved 3D Jupiter model to investigate some effects of cloud microphysics on large-scale dynamics using a closed water cycle that includes condensation, three-dimensional advection of cloud material by the large-scale circulation, evaporation and sedimentation. We use a dry convective adjustment scheme to adjust the temperature towards a dry adiabat when atmospheric columns become convectively unstable, and the tracers are mixed within the unstable layers accordingly. Other physics parameterizations included in our model are the bottom drag and internal heat flux as well as the choices of either Newtonian heating scheme or gray radiative transfer. Given the poorly understood cloud microphysics, we perform case studies by treating the particle size and condensation/evaporation time scale as free parameters. We find that, in some cases, the active water cycle can produce multiple banded jets and clouds. However, the equatorial jet is generally very weak in all the cases because of insufficient supply of eastward eddy momentum fluxes. These differences may result from differences in the overall vertical stratification, baroclinicity, and moisture distribution in our new models relative to the older ones; we expect to elucidate the dynamical mechanisms in continuing work.
2013-08-01
SAR) 18. NUMBER OF PAGES 50 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE unclassified...26 7.0 COST ASSESSMENT ...................................................................................................... 29 7.1 COST MODEL ...12. Data set 7 – energy consumption of heat pump and furnace ................................ 22 Figure 13. Experimentally adjusted TRNSYS model
An Energy Saving System for a Beam Pumping Unit
Lv, Hongqiang; Liu, Jun; Han, Jiuqiang; Jiang, An
2016-01-01
Beam pumping units are widely used in the oil production industry, but the energy efficiency of this artificial lift machinery is generally low, especially for the low-production well and high-production well in the later stage. There are a number of ways for energy savings in pumping units, with the periodic adjustment of stroke speed and rectification of balance deviation being two important methods. In the paper, an energy saving system for a beam pumping unit (ESS-BPU) based on the Internet of Things (IoT) was proposed. A total of four types of sensors, including load sensor, angle sensor, voltage sensor, and current sensor, were used to detect the operating conditions of the pumping unit. Data from these sensors was fed into a controller installed in an oilfield to adjust the stroke speed automatically and estimate the degree of balance in real-time. Additionally, remote supervision could be fulfilled using a browser on a computer or smartphone. Furthermore, the data from a practical application was recorded and analyzed, and it can be seen that ESS-BPU is helpful in reducing energy loss caused by unnecessarily high stroke speed and a poor degree of balance. PMID:27187402
NASA Astrophysics Data System (ADS)
Puzu, N.; Prasertsan, S.; Nuntadusit, C.
2017-09-01
The aim of this research was to study the effect of jet-mainstream velocity ratio on flow and heat transfer characteristics of jet on flat plate flow. The jet from pipe nozzle with inner diameter of D=14 mm was injected perpendicularly to mainstream on flat plate. The flat plate was blown by mainstream with uniform velocity profile at 10 m/s. The velocity ratio (jet to mainstream velociy) was varied at VR=0.25 and 3.5 by adjusting velocity of jet flow. For heat transfer measurement, a thin foil technique was used to evaluate the heat transfer coefficient by measuring temperature distributions on heat transfer surface with constant heat flux by using infrared camera. Flow characteristics were simulated by using a computational fluid dynamics (CFD) with commercial software ANSYS Fluent (Ver.15.0). The results showed that the enhancement of heat transfer along downstream direction for the case of VR=0.25 was from the effect of jet stream whereas for the case of VR=3.5 was from the effect of mainstream.
NASA Astrophysics Data System (ADS)
Otsuka, Kenju; Nemoto, Kana; Kamikariya, Koji; Miyasaka, Yoshihiko; Chu, Shu-Chun
2007-09-01
Detailed oscillation spectra and polarization properties have been examined in laser-diode-pumped (LD-pumped) microchip ceramic (i.e., polycrystalline) Nd:YAG lasers and the inherent segregation of lasing patterns into local modes possessing different polarization states was observed. Single-frequency linearly-polarized stable oscillations were realized by forcing the laser to Ince-Gaussian mode operations by adjusting azimuthal cavity symmetry.
Picosecond pulse measurements using the active laser medium
NASA Technical Reports Server (NTRS)
Bernardin, James P.; Lawandy, N. M.
1990-01-01
A simple method for measuring the pulse lengths of synchronously pumped dye lasers which does not require the use of an external nonlinear medium, such as a doubling crystal or two-photon fluorescence cell, to autocorrelate the pulses is discussed. The technique involves feeding the laser pulses back into the dye jet, thus correlating the output pulses with the intracavity pulses to obtain pulse length signatures in the resulting time-averaged laser power. Experimental measurements were performed using a rhodamine 6G dye laser pumped by a mode-locked frequency-doubled Nd:YAG laser. The results agree well with numerical computations, and the method proves effective in determining lengths of picosecond laser pulses.
Aldasouqi, Saleh A; Reed, Amy J
2014-11-01
The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients' visits, and should remind their patients to always verify these settings. © 2014 Diabetes Technology Society.
Pitfalls of Insulin Pump Clocks
Reed, Amy J.
2014-01-01
The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713
Endoscope system with plasma flushing and coaxial round jet nozzle for off-pump cardiac surgery.
Horiuchi, Tetsuya; Masamune, Ken; Iwase, Yuki; Ymashita, Hiromasa; Tsukihara, Hiroyuki; Motomura, Noboru; Ohta, Yuji; Dohi, Takeyoshi
2011-07-01
To develop a new endoscope for performing simple surgical tasks inside the blood-filled cardiac atrium/chamber, that is, "off-pump" cardiac surgeries. We developed the endoscope system with plasma flushing and coaxial round jet nozzle. The "plasma flushing" system was invented to observe the interior of the blood-filled heart by displacing blood cells in front of the endoscope tip. However, some areas could not be observed with simple flushing of the liquid because the flushed liquid mixed with blood. Further, a large amount of liquid had to be flushed, which posed a risk of cardiac damage caused by excess volume. Therefore, to safely capture high-resolution images of the interior of the heart, an endoscope with a coaxial round jet nozzle through which plasma is flushed has been developed. And to reduce the volume of flushed liquid, the synchronization system of heartbeat and the endoscope system with plasma flushing has been developed. We conducted an in vivo experiment to determine whether we could observe intracardiac tissues in swine without the use of a heart-lung machine. As a result, we successfully observed intracardiac tissues without using a heart-lung machine. By using a coaxial nozzle, we could even observe the tricuspid valve. Moreover, we were able to save up to 30% of the flushed liquid by replacing the original system with a synchronization system. And we evaluated the performance of the endoscope with the coaxial round jet nozzle by conducting fluid analysis and an in vitro experiment. We successfully observed intracardiac tissues without using a heart-lung machine. By using a coaxial nozzle, we could even observe the tricuspid valve. And by replacing an original system to a synchronization system, we were able to save up to 30% of the flushed liquid. As a follow-up study, we plan to create a surgical flexible device for valve disease that can grasp, staple, and repair cardiac valves by endoscopic visualization.
High temperature semiconductor diode laser pumps for high energy laser applications
NASA Astrophysics Data System (ADS)
Campbell, Jenna; Semenic, Tadej; Guinn, Keith; Leisher, Paul O.; Bhunia, Avijit; Mashanovitch, Milan; Renner, Daniel
2018-02-01
Existing thermal management technologies for diode laser pumps place a significant load on the size, weight and power consumption of High Power Solid State and Fiber Laser systems, thus making current laser systems very large, heavy, and inefficient in many important practical applications. To mitigate this thermal management burden, it is desirable for diode pumps to operate efficiently at high heat sink temperatures. In this work, we have developed a scalable cooling architecture, based on jet-impingement technology with industrial coolant, for efficient cooling of diode laser bars. We have demonstrated 60% electrical-to-optical efficiency from a 9xx nm two-bar laser stack operating with propylene-glycolwater coolant, at 50 °C coolant temperature. To our knowledge, this is the highest efficiency achieved from a diode stack using 50 °C industrial fluid coolant. The output power is greater than 100 W per bar. Stacks with additional laser bars are currently in development, as this cooler architecture is scalable to a 1 kW system. This work will enable compact and robust fiber-coupled diode pump modules for high energy laser applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-08-01
The objective of this report is to develop a generalized methodology for examining water distribution systems for adjustable speed drive (ASD) applications and to provide an example (the City of Chicago 68th Street Water Pumping Station) using the methodology. The City of Chicago water system was chosen as the candidate for analysis because it has a large service area distribution network with no storage provisions after the distribution pumps. Many industrial motors operate at only one speed or a few speeds. By speeding up or slowing down, ASDs achieve gentle startups and gradual shutdowns thereby providing plant equipment a longermore » life with fewer breakdowns while minimizing the energy requirements. The test program substantiated that ASDs enhance product quality and increase productivity in many industrial operations, including extended equipment life. 35 figs.« less
NASA Astrophysics Data System (ADS)
Bozeman, Richard J.; Akkerman, James W.; Aber, Greg S.; Vandamm, George A.; Bacak, James W.; Svejkovsky, Paul A.; Benkowski, Robert J.
1993-11-01
A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
NASA Technical Reports Server (NTRS)
Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1993-01-01
A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
Optically Isolated Control of the MOCHI LabJet High Power Pulsed Plasma Experiment
NASA Astrophysics Data System (ADS)
Carroll, Evan; Quinley, Morgan; von der Linden, Jens; You, Setthivoine
2014-10-01
The MOCHI LabJet experiment designed to investigate the dynamics of astrophysical jets at the University of Washington, requires high energy pulsed power supplies for plasma generation and sustainment. Two 600 μ F, 10 kV DC, pulse forming, power supplies have been specifically developed for this application. For safe and convenient user operation, the power supplies are controlled remotely with optical isolation. Three input voltage signals are required for relay actuation, adjusting bank charging voltage, and to fire the experiment: long duration DC signals, long duration user adjustable DC signals and fast trigger pulses with < μ s rise times. These voltage signals are generated from National Instruments timing cards via LabVIEW and are converted to optical signals by coupling photodiodes with custom electronic circuits. At the experiment, the optical signals are converted back to usable voltage signals using custom circuits. These custom circuits and experimental set-up are presented. This work is supported by US DOE Grant DE-SC0010340.
Magnetic heat pump flow director
NASA Technical Reports Server (NTRS)
Howard, Frank S. (Inventor)
1995-01-01
A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.
Shu, Fangjun; Parks, Robert; Maholtz, John; Ash, Steven; Antaki, James F
2009-04-01
Renal Solutions Allient Sorbent Hemodialysis System utilizes a two-chambered pneumatic pump (Pulsar Blood Pump, Renal Solutions, Inc., Warrendale, PA, USA) to avoid limitations associated with peristaltic pumping systems. Single-needle access is enabled by counter-pulsing the two pump chambers, thereby obviating compliance chambers or blood reservoirs. Each chamber propels 20 cc per pulse of 3 s (dual access) or 6 s (single access) duration, corresponding to a peak Reynolds number of approximately 8000 (based on inlet velocity and chamber diameter). A multimodal series of flow visualization studies (tracer particle, dye washout, and dye erosion) was conducted on a sequence of pump designs with varying port locations and diaphragms to improve the geometry with respect to risk of thrombogenesis. Experiments were conducted in a simplified flow loop using occluders to simulate flow resistance induced by tubing and dialyzer. Tracer visualization revealed flow patterns and qualitatively indicated turbulence intensity. Dye washout identified dwell volume and areas of flow stagnation for each design. Dye erosion results indicated the effectiveness and homogeneity of surface washing. Compared to a centered inlet which resulted in a fluid jet that produced two counter-rotating vortices, a tangential inlet introduced a single vortex, and kept the flow laminar. It also provided better surface washing on the pump inner surface. However, a tangential outlet did not present as much benefit as expected. On the contrary, it created a sharp defection to the flow when transiting from filling to ejection.
An experimental study of unsteady sprays at very high injection pressures
NASA Astrophysics Data System (ADS)
Reggiori, A.; Mariani, F.; Parigi, G.; Carlevaro, R.
An experimental study of the development of fuel sprays under very high injection pressures is described. A gas gun capable of generating pressure pulses up to 10,000 bar has been employed as an injection pump. Tests have been carried out with simple cylindrical nozzles, injecting diesel oil in ambient air. The development of the jet has been visualized by means of flash shadowgraphy.
1984-12-31
Code) Washington, DC 20375-5000 8a AEO UDN POSRN FIESMO 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (if aplicable ) Naa i ~ Proulion...pentane mobile phase was maintained at a flow rate of 6.0 ml/min with a Milton Roy Constametric pump operating in the 400-600 psi range. The injector was
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.A. Bamberger; L.M. Liljegren; P.S. Lowery
This document presents an analysis of the mechanisms influencing mixing within double-shell slurry tanks. A research program to characterize mixing of slurries within tanks has been proposed. The research program presents a combined experimental and computational approach to produce correlations describing the tank slurry concentration profile (and therefore uniformity) as a function of mixer pump operating conditions. The TEMPEST computer code was used to simulate both a full-scale (prototype) and scaled (model) double-shell waste tank to predict flow patterns resulting from a stationary jet centered in the tank. The simulation results were used to evaluate flow patterns in the tankmore » and to determine whether flow patterns are similar between the full-scale prototype and an existing 1/12-scale model tank. The flow patterns were sufficiently similar to recommend conducting scoping experiments at 1/12-scale. Also, TEMPEST modeled velocity profiles of the near-floor jet were compared to experimental measurements of the near-floor jet with good agreement. Reported values of physical properties of double-shell tank slurries were analyzed to evaluate the range of properties appropriate for conducting scaled experiments. One-twelfth scale scoping experiments are recommended to confirm the prioritization of the dimensionless groups (gravitational settling, Froude, and Reynolds numbers) that affect slurry suspension in the tank. Two of the proposed 1/12-scale test conditions were modeled using the TEMPEST computer code to observe the anticipated flow fields. This information will be used to guide selection of sampling probe locations. Additional computer modeling is being conducted to model a particulate laden, rotating jet centered in the tank. The results of this modeling effort will be compared to the scaled experimental data to quantify the agreement between the code and the 1/12-scale experiment. The scoping experiment results will guide selection of parameters to be varied in the follow-on experiments. Data from the follow-on experiments will be used to develop correlations to describe slurry concentration profile as a function of mixing pump operating conditions. This data will also be used to further evaluate the computer model applications. If the agreement between the experimental data and the code predictions is good, the computer code will be recommended for use to predict slurry uniformity in the tanks under various operating conditions. If the agreement between the code predictions and experimental results is not good, the experimental data correlations will be used to predict slurry uniformity in the tanks within the range of correlation applicability.« less
NASA Astrophysics Data System (ADS)
Tian, J. J.; Yao, Y.
2011-03-01
We report an experimental demonstration of muliwavelength erbium-doped fiber laser with adjustable wavelength number based on a power-symmetric nonlinear optical loop mirror (NOLM) in a linear cavity. The intensity-dependent loss (IDL) induced by the NOLM is used to suppress the mode competition and realize the stable multiwavelength oscillation. The controlling of the wavelength number is achieved by adjusting the strength of IDL, which is dependent on the pump power. As the pump power increases from 40 to 408 mW, 1-7 lasing line(s) at fixed wavelength around 1601 nm are obtained. The output power stability is also investigated. The most power fluctuation of single wavelength is less than 0.9 dB, when the wavelength number is increased from 1-7.
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1997-01-01
A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
Advanced properties of extended plasmas for efficient high-order harmonic generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganeev, R. A.; Physics Department, Voronezh State University, Voronezh 394006; Suzuki, M.
We demonstrate the advanced properties of extended plasma plumes (5 mm) for efficient harmonic generation of laser radiation compared with the short lengths of plasmas (∼0.3–0.5 mm) used in previous studies. The harmonic conversion efficiency quadratically increased with the growth of plasma length. The studies of this process along the whole extreme ultraviolet range using the long plasma jets produced on various metal surfaces, particularly including the resonance-enhanced laser frequency conversion and two-color pump, are presented. Such plasmas could be used for the quasi-phase matching experiments by proper modulation of the spatial characteristics of extended ablating area and formation of separated plasmamore » jets.« less
Pulse Jet Mixing Tests With Noncohesive Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.
2012-02-17
This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure allmore » solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.« less
NASA Astrophysics Data System (ADS)
Köhler, M.; Boxx, I.; Geigle, K. P.; Meier, W.
2011-05-01
We describe a newly developed combustion diagnostic for the simultaneous planar imaging of soot structure and velocity fields in a highly sooting, lifted turbulent jet flame at 3000 frames per second, or two orders of magnitude faster than "conventional" laser imaging systems. This diagnostic uses short pulse duration (8 ns), frequency-doubled, diode-pumped solid state (DPSS) lasers to excite laser-induced incandescence (LII) at 3 kHz, which is then imaged onto a high framerate CMOS camera. A second (dual-cavity) DPSS laser and CMOS camera form the basis of a particle image velocity (PIV) system used to acquire 2-component velocity field in the flame. The LII response curve (measured in a laminar propane diffusion flame) is presented and the combined diagnostics then applied in a heavily sooting lifted turbulent jet flame. The potential challenges and rewards of application of this combined imaging technique at high speeds are discussed.
20 kHz toluene planar laser-induced fluorescence imaging of a jet in nearly sonic crossflow
NASA Astrophysics Data System (ADS)
Miller, V. A.; Troutman, V. A.; Mungal, M. G.; Hanson, R. K.
2014-10-01
This manuscript describes continuous, high-repetition-rate (20 kHz) toluene planar laser-induced fluorescence (PLIF) imaging in an expansion tube impulse flow facility. Cinematographic image sequences are acquired that visualize an underexpanded jet of hydrogen in Mach 0.9 crossflow, a practical flow configuration relevant to aerospace propulsion systems. The freestream gas is nitrogen seeded with toluene; toluene broadly absorbs and fluoresces in the ultraviolet, and the relatively high quantum yield of toluene produces large signals and high signal-to-noise ratios. Toluene is excited using a commercially available, frequency-quadrupled (266 nm), high-repetition-rate (20 kHz), pulsed (0.8-0.9 mJ per pulse), diode-pumped solid-state Nd:YAG laser, and fluorescence is imaged with a high-repetition-rate intensifier and CMOS camera. The resulting PLIF movie and image sequences are presented, visualizing the jet start-up process and the dynamics of the jet in crossflow; the freestream duration and a measure of freestream momentum flux steadiness are also inferred. This work demonstrates progress toward continuous PLIF imaging of practical flow systems in impulse facilities at kHz acquisition rates using practical, turn-key, high-speed laser and imaging systems.
Mixing and transient interface condensation of a liquid hydrogen tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.; Nyland, T. W.
1993-01-01
Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.
First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver
NASA Astrophysics Data System (ADS)
Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.
2009-01-01
Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series. The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA. With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length. At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.
Time-dependent inhomogeneous jet models for BL Lac objects
NASA Technical Reports Server (NTRS)
Marlowe, A. T.; Urry, C. M.; George, I. M.
1992-01-01
Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.
Time-dependent inhomogeneous jet models for BL Lac objects
NASA Astrophysics Data System (ADS)
Marlowe, A. T.; Urry, C. M.; George, I. M.
1992-05-01
Relativistic beaming can explain many of the observed properties of BL Lac objects (e.g., rapid variability, high polarization, etc.). In particular, the broadband radio through X-ray spectra are well modeled by synchrotron-self Compton emission from an inhomogeneous relativistic jet. We have done a uniform analysis on several BL Lac objects using a simple but plausible inhomogeneous jet model. For all objects, we found that the assumed power-law distribution of the magnetic field and the electron density can be adjusted to match the observed BL Lac spectrum. While such models are typically unconstrained, consideration of spectral variability strongly restricts the allowed parameters, although to date the sampling has generally been too sparse to constrain the current models effectively. We investigate the time evolution of the inhomogeneous jet model for a simple perturbation propagating along the jet. The implications of this time evolution model and its relevance to observed data are discussed.
Kryukova, Nadezhda V
2017-08-01
Musculo-skeletal morphology is an indispensable source for understanding functional adaptations. Analysis of morphology of the branchial apparatus of Hexanchiform sharks can provide insight into aspects of their respiration that are difficult to observe directly. In this study, I compare the structure of the musculo-skeletal system of the gill apparatus of Heptranchias perlo and Squalus acanthias in respect to their adaptation for one of two respiratory mechanisms known in sharks, namely, the active two-pump (oropharyngeal and parabranchial) ventilation and the ram-jet ventilation. In both species, the oropharyngeal pump possesses two sets of muscles, one for compression and the other for expansion. The parabranchial pump only has constrictors. Expansion of this pump occurs only due to passive elastic recoil of the extrabranchial cartilages. In Squalus acanthias the parabranchial chambers are large and equipped by powerful superficial constrictors. These muscles and the outer walls of the parabranchial chambers are much reduced in Heptranchias perlo, and thus it likely cannot use this pump. However, this reduction allows for vertical elongation of outer gill slits which, along with greater number of gill pouches, likely decreases branchial resistance and, at the same time, increases the gill surface area, and can be regarded as an adaptation for ram ventilation at lower speeds. © 2017 Wiley Periodicals, Inc.
TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburello, D; Richard Dimenna, R; Si Lee, S
2009-01-27
The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tankmore » toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.« less
Second Insulin Pump Safety Meeting: Summary Report
Zhang, Yi; Jones, Paul L.; Klonoff, David C.
2010-01-01
Diabetes Technology Society facilitated a second meeting of insulin pump experts at Mills-Peninsula Health Services, San Mateo, California on November 4, 2009, at the request of the Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories. The first such meeting was held in Bethesda, Maryland, on November 12, 2008. The group of physicians, nurses, diabetes educators, and engineers from across the United States discussed safety issues in insulin pump therapy and recommended adjustments to current insulin pump design and use to enhance overall safety. The meeting discussed safety issues in the context of pump operation; software; hardware; physical structure; electrical, biological, and chemical considerations; use; and environment from engineering, medical, nursing, and pump/user perspectives. There was consensus among meeting participants that insulin pump designs have made great progress in improving the quality of life of people with diabetes, but much more remains to be done. PMID:20307411
VCSEL End-Pumped Passively Q-Switched Nd:YAG Laser with Adjustable Pulse Energy
2011-02-28
entire VCSEL array. Neglecting lens aberrations, the focused spot diameter is given by focal length of the lens times the full divergence angle of the...pump intensity distribution generated by a pump-light-focusing lens . ©2011 Optical Society of America OCIS codes: (140.3530) Lasers Neodymium...Passive Q-Switch and Brewster Plate in a Pulsed Nd: YAG Laser,” IEEE J. Quantum Electron. 31(10), 1738–1741 (1995). 6. G. Xiao, and M. Bass, “A
Fully-coupled analysis of jet mixing problems. Three-dimensional PNS model, SCIP3D
NASA Technical Reports Server (NTRS)
Wolf, D. E.; Sinha, N.; Dash, S. M.
1988-01-01
Numerical procedures formulated for the analysis of 3D jet mixing problems, as incorporated in the computer model, SCIP3D, are described. The overall methodology closely parallels that developed in the earlier 2D axisymmetric jet mixing model, SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet mixing equations, cast in mapped cartesian or cylindrical coordinates, employing the explicit MacCormack Algorithm. A pressure split variant of this algorithm is employed in subsonic regions with a sublayer approximation utilized for treating the streamwise pressure component. SCIP3D contains both the ks and kW turbulence models, and employs a two component mixture approach to treat jet exhausts of arbitrary composition. Specialized grid procedures are used to adjust the grid growth in accordance with the growth of the jet, including a hybrid cartesian/cylindrical grid procedure for rectangular jets which moves the hybrid coordinate origin towards the flow origin as the jet transitions from a rectangular to circular shape. Numerous calculations are presented for rectangular mixing problems, as well as for a variety of basic unit problems exhibiting overall capabilities of SCIP3D.
Single-dose volume regulation algorithm for a gas-compensated intrathecal infusion pump.
Nam, Kyoung Won; Kim, Kwang Gi; Sung, Mun Hyun; Choi, Seong Wook; Kim, Dae Hyun; Jo, Yung Ho
2011-01-01
The internal pressures of medication reservoirs of gas-compensated intrathecal medication infusion pumps decrease when medication is discharged, and these discharge-induced pressure drops can decrease the volume of medication discharged. To prevent these reductions, the volumes discharged must be adjusted to maintain the required dosage levels. In this study, the authors developed an automatic control algorithm for an intrathecal infusion pump developed by the Korean National Cancer Center that regulates single-dose volumes. The proposed algorithm estimates the amount of medication remaining and adjusts control parameters automatically to maintain single-dose volumes at predetermined levels. Experimental results demonstrated that the proposed algorithm can regulate mean single-dose volumes with a variation of <3% and estimate the remaining medication volume with an accuracy of >98%. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
What is heartburn worth? A cost-utility analysis of management strategies.
Heudebert, G R; Centor, R M; Klapow, J C; Marks, R; Johnson, L; Wilcox, C M
2000-03-01
To determine the best treatment strategy for the management of patients presenting with symptoms consistent with uncomplicated heartburn. We performed a cost-utility analysis of 4 alternatives: empirical proton pump inhibitor, empirical histamine2-receptor antagonist, and diagnostic strategies consisting of either esophagogastroduodenoscopy (EGD) or an upper gastrointestinal series before treatment. The time horizon of the model was 1 year. The base case analysis assumed a cohort of otherwise healthy 45-year-old individuals in a primary care practice. Empirical treatment with a proton pump inhibitor was projected to provide the greatest quality-adjusted survival for the cohort. Empirical treatment with a histamine2 receptor antagonist was projected to be the least costly of the alternatives. The marginal cost-effectiveness of using a proton pump inhibitor over a histamine2-receptor antagonist was approximately $10,400 per quality-adjusted life year (QALY) gained in the base case analysis and was less than $50,000 per QALY as long as the utility for heartburn was less than 0.95. Both diagnostic strategies were dominated by proton pump inhibitor alternative. Empirical treatment seems to be the optimal initial management strategy for patients with heartburn, but the choice between a proton pump inhibitor or histamine2-receptor antagonist depends on the impact of heartburn on quality of life.
Heudebert, Gustavo R; Centor, Robert M; Klapow, Joshua C; Marks, Robert; Johnson, Lawrence; Wilcox, C Mel
2000-01-01
OBJECTIVE T o determine the best treatment strategy for the management of patients presenting with symptoms consistent with uncomplicated heartburn. METHODS We performed a cost-utility analysis of 4 alternatives: empirical proton pump inhibitor, empirical histamine2-receptor antagonist, and diagnostic strategies consisting of either esophagogastroduodenoscopy (EGD) or an upper gastrointestinal series before treatment. The time horizon of the model was 1 year. The base case analysis assumed a cohort of otherwise healthy 45-year-old individuals in a primary care practice. MAIN RESULTS Empirical treatment with a proton pump inhibitor was projected to provide the greatest quality-adjusted survival for the cohort. Empirical treatment with a histamine2receptor antagonist was projected to be the least costly of the alternatives. The marginal cost-effectiveness of using a proton pump inhibitor over a histamine2-receptor antagonist was approximately $10,400 per quality-adjusted life year (QALY) gained in the base case analysis and was less than $50,000 per QALY as long as the utility for heartburn was less than 0.95. Both diagnostic strategies were dominated by proton pump inhibitor alternative. CONCLUSIONS Empirical treatment seems to be the optimal initial management strategy for patients with heartburn, but the choice between a proton pump inhibitor or histamine2-receptor antagonist depends on the impact of heartburn on quality of life. PMID:10718898
Jet-Cooled Spectroscopy on the Ailes Infrared Beamline of the Synchrotron Radiation Facility Soleil
NASA Astrophysics Data System (ADS)
Georges, Robert
2015-06-01
The Advanced Infrared Line Exploited for Spectroscopy (AILES) extracts the bright far infrared (FIR) synchrotron continuum of the third generation radiation facility SOLEIL. This beamline is equipped with a high resolution (10-3 cm-1) Bruker IFS125 Fourier transform spectrometer which can be operated in the FIR but also in the mid and near infrared by using its internal conventional sources. The jet-AILES consortium (IPR, PhLAM, MONARIS, SOLEIL) has implemented a supersonic-jet apparatus on the beamline to record absorption spectra at very low temperature (5-50 K) and in highly supersaturated gaseous conditions. Heatable slit-nozzles of various lengths and widths are used to set properly the stagnation conditions. A mechanical pumping (roots pumps) was preferred for its ability to evacuate important mass flow rates and therefore to boost the experimental sensitivity of the set-up, the counterpart being a non-negligible consumption of both carrier (argon, helium or nitrogen) and spectroscopic gases. Various molecular systems were investigated up to now using the Jet-AILES apparatus. The very low temperature achieved in the gas expansion was either used to simplify the rotation-vibration structure of monomers, such as SF6, CF4 or naphthalene, or to stabilize the formation of weakly bonded molecular complexes such as the trimer of HF or the dimer of acetic acid. The nucleation of water vapor and the nuclear spin conversion of water were also investigated under free-jet conditions in the mid infrared. High-resolution spectroscopy and analysis of the νb{2} + νb{3} combination band of SF6 in a supersonic jet expansion. V. Boudon, P. Asselin, P. Soulard, M. Goubet, T. R. Huet, R. Georges, O. Pirali, P. Roy, Mol. Phys. 111, 2154-2162 (2013) The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations. O. Pirali, M. Goubet, T.R. Huet, R. Georges, P. Soulard, P. Asselin, J. Courbe, P. Roy and M. Vervloet, Phys. Chem. Chem. Phys. 15, 10141-10150 (2013) The cyclic ground state structure of the HF trimer revealed by far-infrared jet-cooled Fourier transform spectroscopy. P. Asselin, P. Soulard, B. Madebène, M. Goubet, T. R. Huet, R. Georges, O. Pirali and P. Roy, Phys. Chem. Chem. Phys. 16(10), 4797-806 (2014) Standard free energy of the equilibrium between the trans-monomer and the cyclic-dimer of acetic acid in the gas phase from infrared spectroscopy. M. Goubet, P. Soulard, O. Pirali, P. Asselin, F. Réal, S. Gruet, T. R. Huet, P. Roy and R. Georges, Phys. Chem. Chem. Phys. DOI: 10.1039/c4cp05684a
2013-04-19
Type 1 Diabetes With a Subcutaneous Insulin Pump; Adjustment of the Recommended Basal Insulin Flow Rate in the Event of Physical Activity; Adjustment of the Recommended Prandial Insulin in the Event of Physical Activity
Underground mineral extraction
NASA Technical Reports Server (NTRS)
Miller, C. G.; Stephens, J. B.
1980-01-01
A method was developed for extracting underground minerals such as coal, which avoids the need for sending personnel underground and which enables the mining of steeply pitched seams of the mineral. The method includes the use of a narrow vehicle which moves underground along the mineral seam and which is connected by pipes or hoses to water pumps at the surface of the Earth. The vehicle hydraulically drills pilot holes during its entrances into the seam, and then directs sideward jets at the seam during its withdrawal from each pilot hole to comminute the mineral surrounding the pilot hole and combine it with water into a slurry, so that the slurried mineral can flow to a location where a pump raises the slurry to the surface.
Junctional ectopic tachycardia after infant heart surgery: incidence and outcomes.
Zampi, Jeffrey D; Hirsch, Jennifer C; Gurney, James G; Donohue, Janet E; Yu, Sunkyung; LaPage, Martin J; Hanauer, David A; Charpie, John R
2012-12-01
Junctional ectopic tachycardia (JET) is an arrhythmia observed almost exclusively after open heart surgery in children. Current literature on JET has not focused on patients at the highest risk of both developing and being negatively impacted by JET. The purpose of this study was to determine the overall incidence of JET in an infant patient cohort undergoing open cardiac surgery, to identify patient- and procedure-related factors associated with developing JET, and to assess the clinical impact of JET on patient outcomes. We performed a nested case-control study from the complete cohort of patients at our institution younger than 1 year of age who underwent open heart surgery between 2005 and 2010. JET patients were compared with an age matched control group undergoing open heart surgery without JET regarding potential risk factors and outcomes. The overall incidence of JET in infants after open cardiac surgery was 14.3 %. From multivariate analyses, complete repair of tetralogy of Fallot [adjusted odds ratio (AOR) 2.0, 95 % CI 1.12-3.57] and longer aortic cross clamp times (AOR 1.02, 95 % CI 1.01-1.03) increased the risk of developing JET. Patients with JET had longer length of intubation, intensive care unit stays, and total length of hospitalization, and were more likely to require extracorporeal membrane oxygenation support (13 vs. 4.3 %). JET is a common postoperative arrhythmia in infants after open heart operations. Both anatomic substrate and surgical procedure contribute to the overall risk of developing JET. Developing JET is associated with worse clinical outcomes.
Influence of the positive prewhirl on the performance of centrifugal pumps with different airfoils
NASA Astrophysics Data System (ADS)
Zhou, C. M.; Wang, H. M.; Huang, X.; Lin, H.
2012-11-01
According to the basic theory of turbomachinery design and inlet guide vanes prewhirl regulation, two different airfoils inlet guide vanes of prewhirl regulation device were designed, the influence of the positive prewhirl to the performance of centrifugal pump were studied based on different airfoils. The results show that, for a single-suction centrifugal pump: Gottingen bowed blade-type inlet guide vane adjustment effect is better than straight blade-type inlet guide; appropriate design of positive prewhirl can elevate the efficiency of centrifugal pumps. Compared with no vane conditions, the efficiency of centrifugal pump with prewhirl vanes has been greatly improved and the power consumption has been reduced significantly, while has little influence on the head.
Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms
Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc
2014-01-01
Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping designs have been developed to study the pump performance and capacity at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data shows that, the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)
1996-01-01
A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
2012-01-20
surgically inserted into the pineal gland and connected to a peristaltic pump that delivers saline solution at low rate and to a outlet tubing that delivers...Journal of Pineal Research. 48(3):290- 6,2010. 2. "Orcadian Regulation of Pineal Gland Rhythmicity", Jimo Borjigin, L. Samantha Zhang, Anda-Alexandra...specializes in the longitudinal monitoring of pineal melatonin secretion for weeks at a time to decipher mechanisms of circadian pacemaker entrainment
Rodríguez-Molinero, Alejandro; Pérez-Martínez, David A; Català, Andreu; Cabestany, Joan; Yuste, Antonio
2009-04-01
Most recent therapeutic solutions to treat Parkinson's disease seek continuous administration of dopaminergic agonists, as for example rigotine patches or apomorphine infusion pumps. Such drug-delivery devices are aimed at preventing fluctuations in drug plasma levels, which could cause certain symptoms such as wearing-off periods or dyskinesia. However, we postulate that drug plasma levels should not keep constant, but rather adjust to the varying intensity of the different user's activities. The rationale behind this is that the drug amount appropriate to treat a patient at rest is lower than that required to treat the same patient when engaged in physical activity. We propose dynamic real-time dose adjustment, so that the doses increase as the patient starts performing physical activity, thus preventing off periods such as "freeze" phenomenon, and the doses reduce during the resting periods, thus preventing adverse effects. Small portable movement sensors are currently available, which detect the amount and type of activity in a continuous way. Combining such technology with infusion pumps to produce modified pumps capable of adjusting the infusion rate to the user's activity, seems to be feasible in the short-term.
Octopus-inspired drag cancelation by added mass pumping
NASA Astrophysics Data System (ADS)
Weymouth, Gabriel; Giorgio-Serchi, Francesco
2016-11-01
Recent work has shown that when an immersed body suddenly changes its size, such as a deflating octopus during rapid escape jetting, the body experiences large forces due to the variation of added-mass energy. We extend this line of research by investigating a spring-mass oscillator submerged in quiescent fluid subject to periodic changes in its volume. This system isolates the ability of the added-mass thrust to cancel the bluff body resistance (having no jet flow to confuse the analysis) and moves closer to studying how these effects would work in a sustained propulsion case by studying periodic shape-change instead of a "one-shot" escape maneuver. With a combination of analytical, numerical, and experimental results, we show that the recovery of added-mass kinetic energy can be used to completely cancel the drag of the fluid, driving the onset of sustained oscillations with amplitudes as large as four times the average body radius. Moreover, these results are fairly independent of the details of the shape-change kinematics as long as the Stokes number and shape-change number are large. In addition, the effective pumping frequency range based on parametric oscillator analysis is shown to predict large amplitude response region observed in the numerics and experiments.
Implementation plan for underground waste storage tank surveillance and stabilization improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dukelow, G.T.; Maupin, V.D.; Mihalik, L.A.
1989-04-01
Several studies have addressed the need to upgrade the methods currently used for surveillance of underground waste storage tanks, particularly single-shell tanks (SST), which are susceptible to leaks and intrusions. Fifty tasks were proposed to enhance the existing surveillance program; however, prudent budget management dictates that only the tasks with the highest potential for success be selected and funded. This plan identifies fourteen inexpensive improvements that may be implemented in less than two years. Recent developments stress the need to complete interim stabilization of these tanks more quickly than now budgeted and to identify methods to salvage or eliminate themore » interstitial liquid left behind after saltwell jet-pumping. The plan calls for the use of available resources to remove saltwell liquid from SSTs as rapidly as possible rather than committing to new surveillance technologies that might not lead to near-term improvements. This plan describes the selection criteria and provides cost estimates and schedules for implementing the recommendations of the task forces. The proposed improvements result in completion of jet-pumping in FY 1994, two years ahead of the current FY 1996 milestone. While the accelerated plan requires more funding in the early years, the total cost will be the same as completing the work in FY 1996.« less
2011-07-08
CAPE CANAVERAL, Fla. -- T-38 jets and a Shuttle Training Aircraft (STA) sit parked on the tarmac at NASA Kennedy Space Center's Shuttle Landing Facility. An STA is a Gulfstream II jet that is modified to mimic the shuttle's handling during the final phase of landing. STS-135 Commander Chris Ferguson and Pilot Doug Hurley practiced landings as part of standard procedure before space shuttle Atlantis' launch to the International Space Station. Atlantis and its crew of four -- Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim -- are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts to the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Frank Michaux
NASA Astrophysics Data System (ADS)
Boxx, I.; Stöhr, M.; Carter, C.; Meier, W.
2009-04-01
We describe an approach of imaging the dynamic interaction of the flamefront and flowfield. Here, a diode-pumped Nd:YLF laser operating at 5 kHz is used to pump a dye laser, which is then frequency doubled to 283 nm to probe flamefront OH, while a dual cavity diode-pumped Nd:YAG system produces pulse-pairs for particle image velocimetry (PIV). CMOS digital cameras are used to detect both planar laser-induced fluorescence (PLIF) and particle scattering (in a stereo arrangement) such that a 5 kHz measurement frequency is attained. This diagnostic is demonstrated in lifted-jet and swirl-stabilized flames, wherein the dynamics of the flame stabilization processes are seen. Nonperiodic effects such as local ignition and/or extinction, lift-off and flashback events, and their histories can be captured by this technique. As such, this system has the potential to significantly extend our understanding of nonstationary combustion processes relevant to industrial and technical applications.
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; ...
2016-08-22
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; Gati, Cornelius; Kimura, Tetsunari; Milne, Christopher; Milathianaki, Despina; Kubo, Minoru; Wu, Wenting; Conrad, Chelsie; Coe, Jesse; Bean, Richard; Zhao, Yun; Båth, Petra; Dods, Robert; Harimoorthy, Rajiv; Beyerlein, Kenneth R.; Rheinberger, Jan; James, Daniel; DePonte, Daniel; Li, Chufeng; Sala, Leonardo; Williams, Garth J.; Hunter, Mark S.; Koglin, Jason E.; Berntsen, Peter; Nango, Eriko; Iwata, So; Chapman, Henry N.; Fromme, Petra; Frank, Matthias; Abela, Rafael; Boutet, Sébastien; Barty, Anton; White, Thomas A.; Weierstall, Uwe; Spence, John; Neutze, Richard; Schertler, Gebhard; Standfuss, Jörg
2016-01-01
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX. PMID:27545823
Electromagnetic Pumps for Conductive-Propellant Feed Systems
NASA Technical Reports Server (NTRS)
Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado
2005-01-01
Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.
Automation of cutting and drilling of composite components
NASA Technical Reports Server (NTRS)
Warren, Charles W.
1991-01-01
The task was to develop a preliminary plan for an automated system for the cutting and drilling of advanced aerospace composite components. The goal was to automate the production of these components, but the technology developed can be readily extended to other systems. There is an excellent opportunity for developing a state of the art automated system for the cutting and drilling of large composite components at NASA-Marshall. Most of the major system components are in place: the robot, the water jet pump, and the off-line programming system. The drilling system and the part location system are the only major components that need to be developed. Also, another water jet nozzle and a small amount of high pressure plumbing need to be purchased from, and installed.
Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms
NASA Technical Reports Server (NTRS)
Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.
1992-01-01
Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.
NASA Technical Reports Server (NTRS)
Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Tuccillo, J. J.; Coats, G. D.
1982-01-01
A mesoscale atmospheric simulation system is described that is being developed in order to improve the simulation of subsynoptic and mesoscale adjustments associated with cyclogenesis, severe storm development, and significant atmospheric transport processes. Present emphasis in model development is in the parameterization of physical processes, time-dependent boundary conditions, sophisticated initialization and analysis procedures, nested grid solutions, and applications software development. Basic characteristics of the system as of March 1982 are listed. In a case study, the Grand Island tornado outbreak of 3 June 1980 is considered in substantial detail. Results of simulations with a mesoscale atmospheric simulation system indicate that over the high plains subtle interactions between existing jet streaks and deep well mixed boundary layers can lead to well organized patterns of mesoscale divergence and pressure falls. The amplitude and positioning of these mesoscale features is a function of the subtle nonlinear interaction between the pre-existing jet-streak and deep well mixed boundary layers. Model results for the case study indicate that the model has the potential for forecasting the precursor mesoscale convective environment.
Waterhouse, J; Edwards, B; Nevill, A; Carvalho, S; Atkinson, G; Buckley, P; Reilly, T; Godfrey, R; Ramsay, R
2002-02-01
Travelling across multiple time zones disrupts normal circadian rhythms and induces "jet lag". Possible effects of this on training and performance in athletes were concerns before the Sydney Olympic Games. To identify some determinants of jet lag and its symptoms. A mixture of athletes, their coaches, and academics attending a conference (n = 85) was studied during their flights from the United Kingdom to Australia (two flights with a one hour stopover in Singapore), and for the first six days in Australia. Subjects differed in age, sex, chronotype, flexibility of sleeping habits, feelings of languor, fitness, time of arrival in Australia, and whether or not they had previous experience of travel to Australia. These variables and whether the body clock adjusted to new local time by phase advance or delay were tested as predictors for jet lag and some of its symptoms by stepwise multiple regression analyses. The amount of sleep in the first flight was significantly greater in those who had left the United Kingdom in the evening than the morning (medians of 5.5 hours and 1.5 hours respectively; p = 0.0002, Mann-Whitney), whereas there was no significant difference on the second flight (2.5 hours v 2.8 hours; p = 0.72). Only the severity of jet lag and assessments of sleep and fatigue were commonly predicted significantly (p<0.05) by regression analysis, and then by only some of the variables. Thus increasing age and a later time of arrival in Australia were associated with less jet lag and fatigue, and previous experience of travel to Australia was associated with an earlier time of getting to sleep. Subjects who had adjusted by phase advance suffered worse jet lag during the 5th and 6th days in Australia. These results indicate the importance of an appropriate choice of itinerary and lifestyle for reducing the negative effects of jet lag in athletes and others who wish to perform optimally in the new time zone.
Mixing and transient interface condensation of a liquid hydrogen tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.; Nyland, T. W.
1993-01-01
Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.
Tank 26 Evaporator Feed Pump Transfer Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburello, David; Dimenna, Richard; Lee, Si
2009-02-11
The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximummore » and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.« less
Jackson, Larry R; Peterson, Eric D; McCoy, Lisa A; Ju, Christine; Zettler, Marjorie; Baker, Brian A; Messenger, John C; Faries, Douglas E; Effron, Mark B; Cohen, David J; Wang, Tracy Y
2016-10-21
Proton pump inhibitors (PPIs) reduce gastrointestinal bleeding events but may alter clopidogrel metabolism. We sought to understand the comparative effectiveness and safety of prasugrel versus clopidogrel in the context of proton pump inhibitor (PPI) use. Using data on 11 955 acute myocardial infarction (MI) patients treated with percutaneous coronary intervention at 233 hospitals and enrolled in the TRANSLATE-ACS study, we compared whether discharge PPI use altered the association of 1-year adjusted risks of major adverse cardiovascular events (MACE; death, MI, stroke, or unplanned revascularization) and Global Use of Strategies To Open Occluded Arteries (GUSTO) moderate/severe bleeding between prasugrel- and clopidogrel-treated patients. Overall, 17% of prasugrel-treated and 19% of clopidogrel-treated patients received a PPI at hospital discharge. At 1 year, patients discharged on a PPI versus no PPI had higher risks of MACE (adjusted hazard ratio [HR] 1.38, 95% confidence interval [CI] 1.21-1.58) and GUSTO moderate/severe bleeding (adjusted HR 1.55, 95% CI 1.15-2.09). Risk of MACE was similar between prasugrel and clopidogrel regardless of PPI use (adjusted HR 0.88, 95% CI 0.62-1.26 with PPI, adjusted HR 1.07, 95% CI 0.90-1.28 without PPI, interaction P=0.31). Comparative bleeding risk associated with prasugrel versus clopidogrel use differed based on PPI use but did not reach statistical significance (adjusted HR 0.73, 95% CI 0.36-1.48 with PPI, adjusted HR 1.34, 95% CI 0.79-2.27 without PPI, interaction P=0.17). PPIs did not significantly affect the MACE and bleeding risk associated with prasugrel use, relative to clopidogrel. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01088503. © 2016 The Authors and Eli Lilly & Company. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Gradient heating protocol for a diode-pumped alkali laser
NASA Astrophysics Data System (ADS)
Cai, He; Wang, You; Han, Juhong; Yu, Hang; Rong, Kepeng; Wang, Shunyan; An, Guofei; Wang, Hongyuan; Zhang, Wei; Wu, Peng; Yu, Qiang
2018-06-01
A diode-pumped alkali laser (DPAL) has gained rapid development in the recent years. Until now, the structure with single heater has been widely utilized to adjust the temperature of an alkali vapor cell in most of the literatures about DPALs. However, for an end-pumped DPAL using single heater, most pump energy is absorbed by the gain media near the entrance cell window because of the large absorption cross section of atomic alkali. As a result, the temperature in the pumping area around the entrance window will go up rapidly, especially in a case of high pumping density. The temperature rise would bring about some negative influences such as thermal effects and variations in population density. In addition, light scattering and window contamination aroused by the chemical reaction between the alkali vapor and the buffer gas will also affect the output performance of a DPAL system. To find a solution to these problems, we propose a gradient heating approach in which several heaters are tandem-set along the optical axis to anneal an alkali vapor cell. The temperature at the entrance window is adjusted to be lower than that of the other side. By using this novel scheme, one can not only achieve a homogeneous absorption of the pump energy along the cell axis, but also decrease the possibility of the window damage in a DPAL configuration. The theoretical simulation of the laser output features has been carried out for a configuration of multiple heaters. Additionally, the DPAL output performance under different gradient temperatures is also discussed in this paper. The conclusions might be helpful for development of a high-powered and high-beam-quality DPAL.
Computation of turbulent boundary layer flows with an algebraic stress turbulence model
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1986-01-01
An algebraic stress turbulence model is presented, characterized by the following: (1) the eddy viscosity expression is derived from the Reynolds stress turbulence model; (2) the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale; and (3) the diffusion coefficients for turbulence equations are adjusted so that the kinetic energy profile extends further into the free stream region found in most experimental data. The turbulent flow equations were solved using a finite element method. Examples include: fully developed channel flow, fully developed pipe flow, flat plate boundary layer flow, plane jet exhausting into a moving stream, circular jet exhausting into a moving stream, and wall jet flow. Computational results compare favorably with experimental data for most of the examples considered. Significantly improved results were obtained for the plane jet flow, the circular jet flow, and the wall jet flow; whereas the remainder are comparable to those obtained by finite difference methods using the standard kappa-epsilon turbulence model. The latter seems to be promising with further improvement of the expression for the eddy viscosity coefficient.
Skoletsky, Jennifer S.; White, Brian T.; Austin, Jon W.
2007-01-01
Abstract: Despite the advanced technologies of battery back-up for heart-lung consoles and the availability of system-wide generators, electromechanical failure is still occurring. Several heartlung machine manufacturers still provide unsafe handcranking devices to use in the case of an emergency while using a roller blood pump. A new design has been engineered to eliminate safety and quality issues for the perfusionist and the patient when the need for handcranking presents itself. A ratchet-style handcranking device was fabricated by means of a steel plate with adjustable pins. The adjustable pins allow for use with different models of the Cobe, Stockert, and Jostra heart-lung consoles, which contain roller pumps with 180° roller heads. Additional modifications such as a 1:2 transmission and fluorescent markers are also used in the design. This innovative design is an improvement in safety compared with the current handcrank provided by Cobe, Stockert, and Jostra. With this modified handcranking device, accidental reverse rotation of the roller pump head cannot occur. Fluorescent markers will improve visualization of the pump head in low-light situations. The ergonomic design improves efficiency by reducing fatigue. Most importantly, a “safe” safety device will replace the current design provided by these manufacturers, thus improving the quality of care by health care providers. PMID:17672191
Developing an Empirical Model for Jet-Surface Interaction Noise
NASA Technical Reports Server (NTRS)
Brown, Clifford A.
2014-01-01
The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.
Developing an Empirical Model for Jet-Surface Interaction Noise
NASA Technical Reports Server (NTRS)
Brown, Clif
2014-01-01
The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are t to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.
Small Business Innovations (MISER)
NASA Technical Reports Server (NTRS)
1991-01-01
Lightwave Electronics Corporation, Mountain View, CA, developed the Series 120 and 122 non-planner diode pumped ring lasers based on a low noise ring laser with voltage tuning that they delivered to Jet Propulsion Laboratory under a Small Business Innovation Research (SBIR) contract. The voltage tuning feature allows "phase-locking" the lasers, making them "electronic," similar to radio and microwave electronic oscillators. The Series 120 and 122 can be applied to fiber sensing, coherent communications and laser radar.
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
Representing pump-capacity relations in groundwater simulation models
Konikow, Leonard F.
2010-01-01
The yield (or discharge) of constant-speed pumps varies with the total dynamic head (or lift) against which the pump is discharging. The variation in yield over the operating range of the pump may be substantial. In groundwater simulations that are used for management evaluations or other purposes, where predictive accuracy depends on the reliability of future discharge estimates, model reliability may be enhanced by including the effects of head-capacity (or pump-capacity) relations on the discharge from the well. A relatively simple algorithm has been incorporated into the widely used MODFLOW groundwater flow model that allows a model user to specify head-capacity curves. The algorithm causes the model to automatically adjust the pumping rate each time step to account for the effect of drawdown in the cell and changing lift, and will shut the pump off if lift exceeds a critical value. The algorithm is available as part of a new multinode well package (MNW2) for MODFLOW.
Representing pump-capacity relations in groundwater simulati on models
Konikow, Leonard F.
2010-01-01
The yield (or discharge) of constant-speed pumps varies with the total dynamic head (or lift) against which the pump is discharging. The variation in yield over the operating range of the pump may be substantial. In groundwater simulations that are used for management evaluations or other purposes, where predictive accuracy depends on the reliability of future discharge estimates, model reliability may be enhanced by including the effects of head-capacity (or pump-capacity) relations on the discharge from the well. A relatively simple algorithm has been incorporated into the widely used MODFLOW groundwater flow model that allows a model user to specify head-capacity curves. The algorithm causes the model to automatically adjust the pumping rate each time step to account for the effect of drawdown in the cell and changing lift, and will shut the pump off if lift exceeds a critical value. The algorithm is available as part of a new multinode well package (MNW2) for MODFLOW. ?? 2009 National Ground Water Association.
RAMONA-3B application to Browns Ferry ATWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slovik, G.C.; Neymotin, L.; Cazzoli, E.
1984-01-01
This paper discusses two preliminary MSIV clsoure ATWS calculations done using the RAMONA-3B code and the work being done to create the necessary cross section sets for the Browns Ferry Unit 1 reactor. The RAMONA-3B code employs a three-dimensional neutron kinetics model coupled with one-dimensional, four equation, nonhomogeneous, nonequilibrium thermal hydraulics. To be compatible with 3-D neutron kinetics, the code uses parallel coolant channels in the core. It also includes a boron transport model and all necessary BWR components such as jet pump, recirculation pump, steam separator, steamline with safety and relief valves, main steam isolation valve, turbine stop valve,more » and turbine bypass valve. A summary of RAMONA-3B neutron kinetics and thermal hydraulics models is presented in the Appendix.« less
The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Qiao, Erlin
2016-02-01
We interpret the radio/X-ray correlation of L R ~ L X ~1.4 for L X/L Edd >~ 10-3 with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, η, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate L R and L X at different Ṁ, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for L X/L Edd > 10-3. It is found that the value of η for this radio/X-ray correlation for L X/L Edd > 10-3, is systematically less than that of the case for L X/L Edd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.
The coupling of a disk corona and a jet for the radio/X-ray correlation in black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Qiao, Erlin
2015-08-01
We interpret the radio/X-ray correlation of LR ∝ LX1.4 for LX/LEdd >10-3 in black hole X-ray binaries with a detailed disk corona-jet model, in which the accretion flow and the jet are connected by a parameter, ‘η’, describing the fraction of the matter in the accretion flow ejected outward to form the jet. We calculate LR and LX at different mass accretion rates, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that the value of η for this radio/X-ray correlation for LX/LEdd > 10-3, is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high luminosity phase in black hole X-ray binaries.
A simple-source model of military jet aircraft noise
NASA Astrophysics Data System (ADS)
Morgan, Jessica; Gee, Kent L.; Neilsen, Tracianne; Wall, Alan T.
2010-10-01
The jet plumes produced by military jet aircraft radiate significant amounts of noise. A need to better understand the characteristics of the turbulence-induced aeroacoustic sources has motivated the present study. The purpose of the study is to develop a simple-source model of jet noise that can be compared to the measured data. The study is based off of acoustic data collected near a tied-down F-22 Raptor. The simplest model consisted of adjusting the origin of a monopole above a rigid planar reflector until the locations of the predicted and measured interference nulls matched. The model has developed into an extended Rayleigh distribution of partially correlated monopoles which fits the measured data from the F-22 significantly better. The results and basis for the model match the current prevailing theory that jet noise consists of both correlated and uncorrelated sources. In addition, this simple-source model conforms to the theory that the peak source location moves upstream with increasing frequency and lower engine conditions.
Pollard, Daniel John; Brennan, Alan; Dixon, Simon; Waugh, Norman; Elliott, Jackie; Heller, Simon; Lee, Ellen; Campbell, Michael; Basarir, Hasan; White, David
2018-04-07
To assess the long-term cost-effectiveness of insulin pumps and Dose Adjustment for Normal Eating (pumps+DAFNE) compared with multiple daily insulin injections and DAFNE (MDI+DAFNE) for adults with type 1 diabetes mellitus (T1DM) in the UK. We undertook a cost-utility analysis using the Sheffield Type 1 Diabetes Policy Model and data from the Relative Effectiveness of Pumps over Structured Education (REPOSE) trial to estimate the lifetime incidence of diabetic complications, intervention-based resource use and associated effects on costs and quality-adjusted life years (QALYs). All economic analyses took a National Health Service and personal social services perspective and discounted costs and QALYs at 3.5% per annum. A probabilistic sensitivity analysis was performed on the base case. Further uncertainties in the cost of pumps and the evidence used to inform the model were explored using scenario analyses. Eight diabetes centres in England and Scotland. Adults with T1DM who were eligible to receive a structured education course and did not have a strong clinical indication or a preference for a pump. Pumps+DAFNE. MDI+DAFNE. Incremental costs, incremental QALYs gained and incremental cost-effectiveness ratios (ICERs). Compared with MDI+DAFNE, pumps+DAFNE was associated with an incremental discounted lifetime cost of +£18 853 (95% CI £6175 to £31 645) and a gain in discounted lifetime QALYs of +0.13 (95% CI -0.70 to +0.96). The base case mean ICER was £142 195 per QALY gained. The probability of pump+DAFNE being cost-effective using a cost-effectiveness threshold of £20 000 per QALY gained was 14.0%. All scenario and subgroup analyses examined indicated that the ICER was unlikely to fall below £30 000 per QALY gained. Our analysis of the REPOSE data suggests that routine use of pumps in adults without an immediate clinical need for a pump, as identified by National Institute for Health and Care Excellence, would not be cost-effective. ISRCTN61215213. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Diagnosis of boundary-layer circulations.
Beare, Robert J; Cullen, Michael J P
2013-05-28
Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.
Sileshi, Bantayehu; Haglund, Nicholas A; Davis, Mary E; Tricarico, Nicole M; Stulak, John M; Khalpey, Zain; Danter, Matthew R; Deegan, Robert; Kennedy, Jason; Keebler, Mary E; Maltais, Simon
2015-01-01
Minimally invasive left thoracotomy (MILT) and off-pump implantation strategies have been anecdotally reported for implantation of the HeartWare ventricular assist device (HVAD). We analyzed our experience with off-pump MILT implantation techniques and compared early in-hospital outcomes with conventional on-pump sternotomy (CS) implantation strategy. Between January 2013 and February 2014, 51 patients underwent HVAD implantation and were included in this study. Thirty-three patients had CS, whereas 18 patients underwent off-pump MILT. To compare outcomes of these techniques, a multivariate analysis using propensity score modeling was performed after adjusting for age, INTERMACS, Kormos and Leitz-Miller (LM) scores. Mean age at implant was 57 (range 18 to 69) years, and overall in-hospital mortality was 8%. Univariate analysis revealed a statistically significant reduction in days on inotropes (p = 0.04), and a trend toward reduced intra-operative blood product administration (p = 0.08) in the MILT group. There was no difference in intensive-care-unit length of stay (p = 0.5), total length of stay (p = 0.76), post-operative blood product administration (p = 0.34) and total time on mechanical ventilation (p = 0.32). After adjusting for age, INTERMACS profile and Kormos and LM scores, no statistically significant differences were observed between the MILT and CS groups. An off-pump MILT implantation strategy can be utilized as a safe surgical approach for patients undergoing HVAD implantation. Further large collaborative studies are needed to identify advantages of the MILT approach. Published by Elsevier Inc.
A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology.
Wang, Chia; Hong, Guan-Yi; Li, Kuan-Ming; Young, Hong-Tsu
2017-11-12
In this study, a miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 30-250 °C sensitively (B value of ~4310 K) without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface through the Aerosol Jet printing process, which has increased capability for wide temperature-sensing applications.
NASA Technical Reports Server (NTRS)
Uccellini, L. W.; Kocin, P. J.
1981-01-01
An analysis of a tornado outbreak in Wichita Falls, Texas was analyzed. The coupling of upper and lower tropospheric jet streaks, leading to severe storm outbreaks is illustrated. The high resolution SESAME data sets indicate that mass and momentum adjustments which couple upper and lower tropospheric jets occur within a 3 to 6 hr time frame over a 100 to 500 km domain, and establish the role of isallobaric forcing in the storm development. It is suggested that the output rate of data from the existing 12 hr network be increased to provide better temporal resolution of wind, mass and moisture data.
A Miniaturized Nickel Oxide Thermistor via Aerosol Jet Technology
Wang, Chia; Hong, Guan-Yi; Li, Kuan-Ming; Young, Hong-Tsu
2017-01-01
In this study, a miniaturized thermistor sensor was produced using the Aerosol Jet printing process for temperature sensing applications. A nickel oxide nanoparticle ink with a large temperature coefficient of resistance was fabricated. The thermistor was printed with a circular NiO thin film in between the two parallel silver conductive tracks on a cutting tool insert. The printed thermistor, which has an adjustable dimension with a submillimeter scale, operates over a range of 30–250 °C sensitively (B value of ~4310 K) without hysteretic effects. Moreover, the thermistor may be printed on a 3D surface through the Aerosol Jet printing process, which has increased capability for wide temperature-sensing applications. PMID:29137148
Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Chen, Zhenlei
2017-03-20
A high energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator (TPO) has been demonstrated by using a deformed pump. The deformed pump is cut from a beam spot of 2 mm in diameter by a 1-mm-wide slit. In comparison with a small pump spot (1-mm diameter), the THz-wave coupling area for the deformed pump is increased without limitation to the low-frequency end of the tuning range. Besides, the crystal location is specially designed to eliminate the alteration of the output position of the pump during angle tuning, so the initially adjusted nearest pumped region to the THz-wave exit surface is maintained throughout the tuning range. The tuning range is 0.58-2.5 THz for the deformed pump, while its low frequency end is limited at approximately 1.2 THz for the undeformed pump with 2 mm diameter. The highest THz-wave output of 2 μJ, which is 2.25 times as large as that from the pump of 1 mm in diameter, is obtained at 1.15 THz under 38 mJ (300 MW/cm2) pumping. The energy conversion efficiency is 5.3×10-5.
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Kaplan, Michael L.
1994-01-01
An in-depth analysis of observed gravity waves and their relationship to precipitation bands over the Montana mesonetwork during the 11-12 July 1981 CCOPE case study indicated two episodes of coherent waves. While geostrophic adjustment, shearing instability, and terrain were all implicated separately or in combination as possible wave generation mechanisms, the lack of upper-air data within the wave genesis region made it difficult to define the genesis processes from observations alone. The first part of this paper, 3D Numerical Modeling Studies of Terrain-Induced Mass/Momentum Perturbations, employs a mesoscale numerical model to help diagnose the intricate early wave generation mechanisms during the first observed gravity wave episode. The meso-beta scale numerical model is used to study various simulations of the role of multiple geostrophic adjustment processes in focusing a region for gravity wave genesis. The second part of this paper, Linear Theory and Theoretical Modeling, investigates the response of non-resting rotating homogeneous and continuously stratified Boussinesq models of the terrestrial atmosphere to temporally impulsive and uniformly propagating three-dimensional localized zonal momentum sources representative of midlatitude jet streaks. The methods of linear perturbation theory applied to the potential vorticity (PV) and wave field equations are used to study the geostrophic adjustment dynamics. The total zonal and meridional wind perturbations are separated into geostrophic and ageostrophic components in order to define and follow the evolution of both the primary and secondary mesocirculations accompanying midlatitude jetogenesis forced by geostrophic adjustment processes. This problem is addressed to help fill the gap in understanding the dynamics and structure of mesoscale inertia-gravity waves forced by geostrophic adjustment processes in simple two-dimensional quiescent current systems and those produced by mesoscale numerical models simulating the orographic and diabatic perturbation of three-dimensional quasi-geostrophically balanced synoptic scale jet streaks associated with complex baroclinic severe storm producing environments.
NASA Astrophysics Data System (ADS)
Roa, Mario
The proposed PhD thesis research program will be carried out in a staged combustion test rig developed with funding from Siemens Power Generation Inc. and the United States Department of Energy. This research program will study the reacting flow field created by an injector that is axially distributed along the combustor with use the laser diagnostics methods: Coherent Anti-Stokes Raman Spectroscopy (CARS), high repetition rate OH Planar Laser Induced Florescence (OHPLIF), and high repetition rate Particle Image Velocimetry (PIV), to determine why certain conditions result in low NOx emissions. This data will be used to validated the development of more precise computer models. These laser diagnostic techniques will be applied to the reacting jet produced using an extended, premixed 10 mm injector using both natural gas (NG) and hydrogen (H2) as fuels. The objective of this thesis research is to use advance laser diagnostics to gain insight into the reacting flow field resulting form transverse injection into a vitiated cross flow. The advance laser diagnostics will also provide insight into pollution formation mechanisms and will be used for validating CFD models of the transverse jet injection. The following measurements will be performed: (1) dual pump nitrogen/hydrogen (H2/ N2) CARS at the midplane of the extended 10 mm nozzle, (2) high repetition rate OH-PLIF and emission sampling for the same extended nozzle using NG and H2 as secondary fuel, (3) and combing both high repetition OH-PLIF and high repetition rate PIV for extended 10 mm nozzle for both NG and H2 secondary fuel. The PIV measurements will be combined with OH-PLIF in a simultaneous manner, with the OH fluorescence centered between the two PIV laser pulses. The dual pump H2/N2 CARS system will be used to measure both temperature of the reacting jet and the species concentration ratio of H2/ N2. The high repetition rate OH-PLIF, conducted with a 5 kHz, dual cavity Nd:YAG laser that optically pumps a dye laser tuned to the Q1(7) OH florescence transition. It will be used to visualize the flame front of the reacting jet. The high repetition rate PIV will be performed with a dual cavity laser at 10 kHz. High repetition rate PIV will be used to characterize the velocity and vortical structures produced in the reacting flow field. This research project will aid in the understanding of NOx creation in an staged gas turbine combustor and provide crucial data that will be used to develop precise computer models that will be used in designing the next power generation gas turbines. As power generation turbines increase in usage in future due to the abundance of NG as a fuel source or H 2 gas produced via green energy policies, it will be vital to make these new generation turbines more efficient and further reduce pollutant emission levels.
Flight Engineer Donald R. Pettit making a valve adjustment to the FCPA
2003-03-17
ISS006-E-39401 (17 March 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, makes a valve adjustment to the Fluid Control Pump Assembly (FCPA), which is a part of the Internal Thermal Control System (ITCS) in the Destiny laboratory on the International Space Station (ISS).
Flight Engineer Donald R. Pettit making a valve adjustment to the FCPA
2003-03-17
ISS006-E-39400 (17 March 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, makes a valve adjustment to the Fluid Control Pump Assembly (FCPA), which is a part of the Internal Thermal Control System (ITCS) in the Destiny laboratory on the International Space Station (ISS).
Neutral Beam Injection in the JET Trace Tritium Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Surrey, E.; Ciric, D.; Cox, S. J.
Operation of the JET Neutral Beam Injectors with tritium is described. Supplying the tritium feed via the special electrically grounded gas feed compromised the performance of the up-graded high current triode Positive Ion Neutral Injectors (PINI) due to gas starvation of the source and the methods adopted to ameliorate this effect are described. A total of 362 PINI beam pulses were requested, circulating a total of 4.73g tritium, of which 9.3mg was injected into the torus. Safety considerations required a continuous, cumulative total to be maintained of the mass of tritium adsorbed onto the cryo-pumping panel; a daily limit ofmore » 0.5g was adopted for the Trace Tritium Experiment (TTE). A subsequent clean up phase using 115keV deuterium beams completed the isotopic exchange of components in the beamline.« less
1975-10-01
sophisticated wet-cooled systems having scrubbers and their associated water treatment facilities . The United States Navy has recognized these Hush... venturi meter air inlet to measure the pumped air flow and the exhaust enclosure is provided with suitable ports for the flow to exit. The test program...constantan thermo- couple and venturi flow meters were used to measure the aerodynamic/thermo- dynamic information required from the tests (pressure
Air Force Academy Aeronautics Digest - Fall/Winter 1981.
1982-06-01
After all, some guy just peddled across the English Channel?!" In reply wo cite Professor E.S. Taylor , who, in a wonderfully readable article (Ref...to the cadet wing, Spring, 1976. 2. Taylor , Edward S., "Evolution of the Jet Engine," Astronautics and Aeronautics, November 1970, pps. 64-72. 3...heat pump, air conditioner, or refrigerator. The Brayton cycle is the cycle that is used by a turbojet or turbofan engine. We have some fine engine test
Solar-powered Rankine heat pump for heating and cooling
NASA Technical Reports Server (NTRS)
Rousseau, J.
1978-01-01
The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.
Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow
NASA Astrophysics Data System (ADS)
Huntley, Helga S.; Ryan, Patricia
2018-01-01
A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.
Nimri, Revital; Dassau, Eyal; Segall, Tomer; Muller, Ido; Bratina, Natasa; Kordonouri, Olga; Bello, Rachel; Biester, Torben; Dovc, Klemen; Tenenbaum, Ariel; Brener, Avivit; Šimunović, Marko; Sakka, Sophia D; Nevo Shenker, Michal; Passone, Caroline Gb; Rutigliano, Irene; Tinti, Davide; Bonura, Clara; Caiulo, Silvana; Ruszala, Anna; Piccini, Barbara; Giri, Dinesh; Stein, Ronnie; Rabbone, Ivana; Bruzzi, Patrizia; Omladič, Jasna Šuput; Steele, Caroline; Beccuti, Guglielmo; Yackobovitch-Gavan, Michal; Battelino, Tadej; Danne, Thomas; Atlas, Eran; Phillip, Moshe
2018-06-08
To evaluate physicians' adjustments of insulin pump settings based on continuous glucose monitoring (CGM) for patients with type 1 diabetes and to compare physicians' to automated insulin dose adjustments. 26 physicians from 16 centers in Europe, Israel and South-America participated in the study. All were asked to adjust insulin dosing based on insulin pump, CGM and glucometer downloads of 15 patients (mean age 16.2 ± 4.3 y, 6 females, mean A1c 8.3 ± 0.9%) gathered over a 3-week period. Recommendations were compared for the relative changes in the basal, carbohydrate-ratio (CR) and correction-factor (CF) plans among physicians, among centers and between the physicians and an automated algorithm (DreaMed Advisor Pro). Study endpoints were the percentage of comparison points for which there was full agreement on the trend of insulin dose adjustments (same trend), partial agreement (increase/decrease vs. no change) and full disagreement (opposite trend). Percentage of full agreement between physicians on the trend of insulin adjustments of the basal, CR and CF plans was 41±9%, 45±11% and 45.5±13%, and of complete disagreement was 12±7%, 9.5±7% and 10±8%, respectively. Significantly similar results were found between the physicians and the DreaMed Advisor Pro. The Advisor magnitude of insulin dose change was at least equal or less than proposed by the physicians. Physicians provide different insulin dose recommendations based on the same data sets. The automated advice of the DreaMed Advisor Pro didn't differ significantly from the advice given by the physicians in the direction or magnitude of the insulin dosing. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Stevens, Michael C; Wilson, Stephen; Bradley, Andrew; Fraser, John; Timms, Daniel
2014-09-01
Dual rotary left ventricular assist devices (LVADs) can provide biventricular mechanical support during heart failure. Coordination of left and right pump speeds is critical not only to avoid ventricular suction and to match cardiac output with demand, but also to ensure balanced systemic and pulmonary circulatory volumes. Physiological control systems for dual LVADs must meet these objectives across a variety of clinical scenarios by automatically adjusting left and right pump speeds to avoid catastrophic physiological consequences. In this study we evaluate a novel master/slave physiological control system for dual LVADs. The master controller is a Starling-like controller, which sets flow rate as a function of end-diastolic ventricular pressure (EDP). The slave controller then maintains a linear relationship between right and left EDPs. Both left/right and right/left master/slave combinations were evaluated by subjecting them to four clinical scenarios (rest, postural change, Valsalva maneuver, and exercise) simulated in a mock circulation loop. The controller's performance was compared to constant-rotational-speed control and two other dual LVAD control systems: dual constant inlet pressure and dual Frank-Starling control. The results showed that the master/slave physiological control system produced fewer suction events than constant-speed control (6 vs. 62 over a 7-min period). Left/right master/slave control had lower risk of pulmonary congestion than the other control systems, as indicated by lower maximum EDPs (15.1 vs. 25.2-28.4 mm Hg). During exercise, master/slave control increased total flow from 5.2 to 10.1 L/min, primarily due to an increase of left and right pump speed. Use of the left pump as the master resulted in fewer suction events and lower EDPs than when the right pump was master. Based on these results, master/slave control using the left pump as the master automatically adjusts pump speed to avoid suction and increases pump flow during exercise without causing pulmonary venous congestion. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
The effect of gravity-induced pressure gradient on bubble luminescence
NASA Astrophysics Data System (ADS)
Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Dorsaz, Nicolas; Tinguely, Marc; Farhat, Mohamed
2014-11-01
The violent collapse of a bubble can heat up its gaseous contents to temperatures exceeding those on the sun's surface, resulting in a short luminescence flash. Occurring at the very moment of the collapse, luminescence must be highly sensitive to the bubble geometry at the preceding final stage. This represents an important feature as any pressure anisotropy in the surrounding liquid will result in a deformation of an initially spherical bubble, inducing a micro-jet that pierces the bubble and makes it experience a toroidal collapse. We therefore present these as complementary phenomena by investigating the link between jets and luminescence of laser-generated single bubbles. Through ultra-high-speed imaging, the micro-jet formation and evolution of a single bubble are observed with unprecedented detail, whilst the bubble light emission is analyzed by means of a spectrometer. The bubble energy and the micro-jet size are controlled by adjusting the laser-pulse and by varying the gravity level aboard ESA parabolic flights, respectively. We here provide systematic evidence on how bubble-jets suppress luminescence in a considerable manner, even in normal gravity where the jet is barely observable. We conclude that gravity must be accounted for in accurate models of luminescence.
Peristaltic pump-based low range pressure sensor calibration system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinayakumar, K. B.; Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore 5600012; Naveen Kumar, G.
2015-11-15
Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressuremore » leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.« less
NASA Astrophysics Data System (ADS)
Li, Chao-yu; Dong, Jun
2016-08-01
The incident pump beam waist-dependent pulse energy generation in Nd:YAG/Cr4+:YAG composite crystal passively Q-switched microchip laser has been investigated experimentally and theoretically by moving the Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction. Highest pulse energy of 0.4 mJ has been generated when the Nd:YAG/Cr4+:YAG composite crystal is moved about 6 mm away from the focused pump beam waist. Laser pulses with pulse width of 1.7 ns and peak power of over 235 kW have been achieved. The theoretically calculated effective laser beam area at different positions of Nd:YAG/Cr4+:YAG composite crystal along the pump beam direction is in good agreement with the experimental results. The highest peak power can be generated by adjusting the pump beam waist incident on the Nd:YAG/Cr4+:YAG composite crystal to optimize the effective laser beam area in passively Q-switched microchip laser.
Peristaltic pump-based low range pressure sensor calibration system
NASA Astrophysics Data System (ADS)
Vinayakumar, K. B.; Naveen Kumar, G.; Nayak, M. M.; Dinesh, N. S.; Rajanna, K.
2015-11-01
Peristaltic pumps were normally used to pump liquids in several chemical and biological applications. In the present study, a peristaltic pump was used to pressurize the chamber (positive as well negative pressures) using atmospheric air. In the present paper, we discuss the development and performance study of an automatic pressurization system to calibrate low range (millibar) pressure sensors. The system includes a peristaltic pump, calibrated pressure sensor (master sensor), pressure chamber, and the control electronics. An in-house developed peristaltic pump was used to pressurize the chamber. A closed loop control system has been developed to detect and adjust the pressure leaks in the chamber. The complete system has been integrated into a portable product. The system performance has been studied for a step response and steady state errors. The system is portable, free from oil contaminants, and consumes less power compared to existing pressure calibration systems. The veracity of the system was verified by calibrating an unknown diaphragm based pressure sensor and the results obtained were satisfactory.
Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob
Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less
Real-time co-simulation of adjustable-speed pumped storage hydro for transient stability analysis
Mohanpurkar, Manish; Ouroua, Abdelhamid; Hovsapian, Rob; ...
2017-09-12
Pumped storage hydro (PSH) based generation of electricity is a proven grid level storage technique. A new configuration i.e., adjustable speed PSH (AS-PSH) power plant is modeled and discussed in this paper. Hydrodynamic models are created using partial differential equations and the governor topology adopted from an existing, operational AS-PSH unit. Physics-based simulation of both hydrodynamics and power system dynamics has been studied individually in the past. This article demonstrates a co-simulation of an AS-PSH unit between penstock hydrodynamics and power system events in a real-time environment. Co-simulation provides an insight into the dynamic and transient operation of AS-PSH connectedmore » to a bulk power system network. The two modes of AS-PSH operation presented in this paper are turbine and pump modes. A general philosophy of operating in turbine mode is prevalent in the field when the prices of electricity are high and in the pumping mode when prices are low. However, recently there is renewed interest in operating PSH to also provide ancillary services. A real-time co-simulation at sub-second regime of AS-PSH connected to the IEEE 14 bus test system is performed using digital real-time simulator and the results are discussed.« less
Zhang, Peng; Wu, Di; Du, Quanli; Li, Xiaoyan; Han, Kexuan; Zhang, Lizhong; Wang, Tianshu; Jiang, Huilin
2017-12-10
A 1.7 μm band tunable narrow-linewidth Raman fiber laser based on spectrally sliced amplified spontaneous emission (SS-ASE) and multiple filter structures is proposed and experimentally demonstrated. In this scheme, an SS-ASE source is employed as a pump source in order to avoid stimulated Brillouin scattering. The ring configuration includes a 500 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber as the gain medium. A segment of un-pumped polarization-maintaining erbium-doped fiber is used to modify the shape of the spectrum. Furthermore, a nonlinear polarization rotation scheme is applied as the wavelength selector to generate lasers. A high-finesse ring filter and a ring filter are used to narrow the linewidth of the laser, respectively. We demonstrate tuning capabilities of a single laser over 28 nm between 1652 nm and 1680 nm by adjusting the polarization controller (PC) and tunable filter. The tunable laser has a 0.023 nm effective linewidth with the high-finesse ring filter. The stable multi-wavelength laser operation of up to four wavelengths can be obtained by adjusting the PC carefully when the pump power increases.
NASA Astrophysics Data System (ADS)
Sek Tee, Kian; Sharil Saripan, Muhammad; Yap, Hiung Yin; Fhong Soon, Chin
2017-08-01
With the advancement in microfluidic technology, fluid flow control for syringe pump is always essential. In this paper, a mechatronic syringe pump will be developed and customized to control the fluid flow in a poly-dimethylsiloxane (PDMS) microfluidic device based on a polyimide laminating film. The syringe pump is designed to drive fluid with flow rates of 100 and 1000 μl/min which intended to drive continuous fluid in a polyimide based microfluidic device. The electronic system consists of an Arduino microcontroller board and a uni-polar stepper motor. In the system, the uni-polar stepper motor was coupled to a linear slider attached to the plunger of a syringe pump. As the motor rotates, the plunger pumps the liquid out of the syringe. The accuracy of the fluid flow rate was determined by adjusting the number of micro-step/revolution to drive the stepper motor to infuse fluid into the microfluidic device. With the precise control of the electronic system, the syringe pump could accurately inject fluid volume at 100 and 1000 μl/min into a microfluidic device.
Refrigerant charge management in a heat pump water heater
Chen, Jie; Hampton, Justin W.
2014-06-24
Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.
Evaluation of Pump Discontinuation and Associated Factors in the T1D Exchange Clinic Registry
Wong, Jenise C.; Boyle, Claire; DiMeglio, Linda A.; Mastrandrea, Lucy D.; Abel, Kimber-Lee; Cengiz, Eda; Cemeroglu, Pinar A.; Aleppo, Grazia; Largay, Joseph F.; Foster, Nicole C.; Beck, Roy W.; Adi, Saleh
2017-01-01
Background: The objectives of this study were to examine factors associated with insulin pump discontinuation among children and adults followed longitudinally for 1 year in the multicenter T1D Exchange clinic registry, and to provide participant-reported reasons for stopping pump therapy. Methods: We longitudinally followed 8935 participants of all ages using an insulin pump at the time of registry enrollment. Logistic regressions were used to identify demographic and clinical factors associated with pump discontinuation. Pump discontinuation was self-reported by participants on a first annual follow-up survey. Results: The overall frequency of pump discontinuation was 3%. Discontinuation was higher in adolescents (4%) and young adults (4%) than in younger children (3%) or older adults (1%). In multivariate analysis of children between 6 and <13 and 13 and <18 years, participants who discontinued pump use were more likely to have higher HbA1c levels at baseline (adjusted P < .001 for both). The top participant-reported reasons for discontinuing the pump included problems with wearability (57%), disliking the pump or feeling anxious (44%), and problems with glycemic control (30%). Conclusions: In T1D Exchange registry participants, insulin pump discontinuation is uncommon, but more prevalent among adolescents and young adults, and youth with poor glycemic control. Given the known benefits of pump therapy, these populations should be targeted for support and education on troubleshooting pump use. Common reasons for discontinuation should also be considered in future device design and technological improvement. PMID:27595711
Evaluation of Pump Discontinuation and Associated Factors in the T1D Exchange Clinic Registry.
Wong, Jenise C; Boyle, Claire; DiMeglio, Linda A; Mastrandrea, Lucy D; Abel, Kimber-Lee; Cengiz, Eda; Cemeroglu, Pinar A; Aleppo, Grazia; Largay, Joseph F; Foster, Nicole C; Beck, Roy W; Adi, Saleh
2017-03-01
The objectives of this study were to examine factors associated with insulin pump discontinuation among children and adults followed longitudinally for 1 year in the multicenter T1D Exchange clinic registry, and to provide participant-reported reasons for stopping pump therapy. We longitudinally followed 8935 participants of all ages using an insulin pump at the time of registry enrollment. Logistic regressions were used to identify demographic and clinical factors associated with pump discontinuation. Pump discontinuation was self-reported by participants on a first annual follow-up survey. The overall frequency of pump discontinuation was 3%. Discontinuation was higher in adolescents (4%) and young adults (4%) than in younger children (3%) or older adults (1%). In multivariate analysis of children between 6 and <13 and 13 and <18 years, participants who discontinued pump use were more likely to have higher HbA1c levels at baseline (adjusted P < .001 for both). The top participant-reported reasons for discontinuing the pump included problems with wearability (57%), disliking the pump or feeling anxious (44%), and problems with glycemic control (30%). In T1D Exchange registry participants, insulin pump discontinuation is uncommon, but more prevalent among adolescents and young adults, and youth with poor glycemic control. Given the known benefits of pump therapy, these populations should be targeted for support and education on troubleshooting pump use. Common reasons for discontinuation should also be considered in future device design and technological improvement.
Ibáñez-Sanz, Gemma; Garcia, Montse; Rodríguez-Moranta, Francisco; Binefa, Gemma; Gómez-Matas, Javier; Domènech, Xènia; Vidal, Carmen; Soriano, Antonio; Moreno, Víctor
2016-10-01
The most common side effect in population screening programmes is a false-positive result which leads to unnecessary risks and costs. To identify factors associated with false-positive results in a colorectal cancer screening programme with the faecal immunochemical test (FIT). Cross-sectional study of 472 participants with a positive FIT who underwent colonoscopy for confirmation of diagnosis between 2013 and 2014. A false-positive result was defined as having a positive FIT (≥20μg haemoglobin per gram of faeces) and follow-up colonoscopy without intermediate/high-risk lesions or cancer. Women showed a two-fold increased likelihood of a false-positive result compared with men (adjusted OR, 2.3; 95%CI, 1.5-3.4), but no female-specific factor was identified. The other variables associated with a false-positive result were successive screening (adjusted OR, 1.5; 95%CI, 1.0-2.2), anal disorders (adjusted OR, 3.1; 95%CI, 2.1-4.5) and the use of proton pump inhibitors (adjusted OR, 1.8; 95%CI, 1.1-2.9). Successive screening and proton pump inhibitor use were associated with FP in men. None of the other drugs were related to a false-positive FIT. Concurrent use of proton pump inhibitors at the time of FIT might increase the likelihood of a false-positive result. Further investigation is needed to determine whether discontinuing them could decrease the false-positive rate. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
National Sanitation Foundation, Ann Arbor, MI.
THE SCOPE OF THIS STANDARD COVERS ADJUSTABLE OUTPUT RATE CHEMICAL FEEDERS, WHETHER USED FOR SOLUTIONS, SLURRIES OR SOLIDS. IT ALSO INCLUDES AUXILIARY EQUIPMENT SUCH AS PUMPS, STRAINERS, TUBING CONNECTIONS, TANKS, INJECTION FITTINGS AND OTHER REQUIRED COMPONENTS. THE FEEDERS DESCRIBED ARE INTENDED TO BE DESIGNED AND USED SPECIFICALLY FOR CHEMICAL…
Plasma gun with coaxial powder feed and adjustable cathode
NASA Technical Reports Server (NTRS)
Zaplatynsky, Isidor (Inventor)
1991-01-01
An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.
Study of Jet-Propulsion System Comprising Blower, Burner, and Nozzle
NASA Technical Reports Server (NTRS)
Hall, Eldon W
1944-01-01
A study was made of the performance of a jet-propulsion system composed of an engine-driven blower, a combustion chamber, and a discharge nozzle. A simplified analysis is made of this system for the purpose of showing in concise form the effect of the important design variables and operating conditions on jet thrust, thrust horsepower, and fuel consumption. Curves are presented that permit a rapid evaluation of the performance of this system for a range of operating conditions. The performance for an illustrative case of a power plant of the type under consideration id discussed in detail. It is shown that for a given airplane velocity the jet thrust horsepower depends mainly on the blower power and the amount of fuel burned in the jet; the higher the thrust horsepower is for a given blower power, the higher the fuel consumption per thrust horsepower. Within limits the amount of air pumped has only a secondary effect on the thrust horsepower and efficiency. A lower limit on air flow for a given fuel flow occurs where the combustion-chamber temperature becomes excessive on the basis of the strength of the structure. As the air-flow rate is increased, an upper limit is reached where, for a given blower power, fuel-flow rate, and combustion-chamber size, further increase in air flow causes a decrease in power and efficiency. This decrease in power is caused by excessive velocity through the combustion chamber, attended by an excessive pressure drop caused by momentum changes occurring during combustion.
Nutrient Pumping/Advection by Propagating Rossby Waves in the Kuroshio Extension
2010-01-01
sea-elevation changes or SLA variance levels are a maximum as eddies and meanders cross a mean route. This boundary in terms of Chl- a levels (lower...and elevated Chl- a levels ) is south of the KE jet. Kuroshio Extension meanders and rings carry different water types across a mean Kuroshio Extension...Fig. 5A). The ring or eddy currents may also redistribute the surface Chl- a levels , drawing out plumes of locally increased Chl-a from regions of
Self pressuring HTP feed systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, J.
1999-10-14
Hydrogen peroxide tanks can be pressurized with decomposed HTP (high test hydrogen peroxide) originating in the tank itself. In rocketry, this offers the advantage of eliminating bulky and heavy inert gas storage. Several prototype self-pressurizing HTP systems have recently been designed and tested. Both a differential piston tank and a small gas-driven pump have been tried to obtain the pressure boost needed for flow through a gas generator and back to the tank. Results include terrestrial maneuvering tests of a prototype microsatellite, including warm gas attitude control jets.
2003-12-01
construction methods, such as jetting, hydraulic fracturing , and vibratory beam, have been demonstrated at some sites, as they offer some cost... hydraulic fracturing , are available, but there is not as much widespread experience yet with these techniques for PRBs. Also, these innovative... hydraulic fracturing ) can be used at relatively higher cost. The cost comparison of a PRB versus an active remedy, such as a pump-and-treat system, often
Huffman, Lester H.; Knoke, Gerald S.
1985-08-20
A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.
2012-12-01
treated with 9ppm of a QPL-25017 additive. Testing was completed using a Ford 6.7L V8 turbocharged diesel engine. Testing was completed following a...Installation ................................................................................. 3 2. Ford 6.7L Fuel Injection Pump, Rail, & Injector ...5 4. Fuel Injector Component Break-Out
Power consumption of rotary blood pumps: pulsatile versus constant-speed mode.
Pirbodaghi, Tohid; Cotter, Chris; Bourque, Kevin
2014-12-01
We investigated the power consumption of a HeartMate III rotary blood pump based on in vitro experiments performed in a cardiovascular simulator. To create artificial-pulse mode, we modulated the pump speed by decreasing the mean speed by 2000 rpm for 200 ms and then increasing speed by 4000 rpm (mean speeds plus 2000 rpm) for another 200 ms, creating a square waveform shape. The HeartMate III was connected to a cardiovascular simulator consisting of a hydraulic pump system to simulate left ventricle pumping action, arterial and venous compliance chambers, and an adjustable valve for peripheral resistance to facilitate the desired aortic pressure. The simulator operated based on Suga's elastance model to mimic the Starling response of the heart, thereby reproducing physiological blood flow and pressure conditions. We measured the instantaneous total electrical current and voltage of the pump to evaluate its power consumption. The aim was to answer these fundamental questions: (i) How does pump speed modulation affect pump power consumption? (ii) How does the power consumption vary in relation to external pulsatile flow? The results indicate that speed modulation and external pulsatile flow both moderately increase the power consumption. Increasing the pump speed reduces the impact of external pulsatile flow. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Stress Introduction Rate Alters the Benefit of AcrAB-TolC Efflux Pumps.
Langevin, Ariel M; Dunlop, Mary J
2018-01-01
Stress tolerance studies are typically conducted in an all-or-none fashion. However, in realistic settings-such as in clinical or metabolic engineering applications-cells may encounter stresses at different rates. Therefore, how cells tolerate stress may depend on its rate of appearance. To address this, we studied how the rate of stress introduction affects bacterial stress tolerance by focusing on a key stress response mechanism. Efflux pumps, such as AcrAB-TolC of Escherichia coli , are membrane transporters well known for the ability to export a wide variety of substrates, including antibiotics, signaling molecules, and biofuels. Although efflux pumps improve stress tolerance, pump overexpression can result in a substantial fitness cost to the cells. We hypothesized that the ideal pump expression level would involve a rate-dependent trade-off between the benefit of pumps and the cost of their expression. To test this, we evaluated the benefit of the AcrAB-TolC pump under different rates of stress introduction, including a step, a fast ramp, and a gradual ramp. Using two chemically diverse stresses, the antibiotic chloramphenicol and the jet biofuel precursor pinene, we assessed the benefit provided by the pumps. A mathematical model describing these effects predicted the benefit as a function of the rate of stress introduction. Our findings demonstrate that as the rate of introduction is lowered, stress response mechanisms provide a disproportionate benefit to pump-containing strains, allowing cells to survive beyond the original inhibitory concentrations. IMPORTANCE Efflux pumps are ubiquitous in nature and provide stress tolerance in the cells of species ranging from bacteria to mammals. Understanding how pumps provide tolerance has far-reaching implications for diverse fields, from medicine to biotechnology. Here, we investigated how the rate of stressor appearance impacts tolerance. We focused on two distinct substrates of AcrAB-TolC efflux pumps, the antibiotic chloramphenicol and the biofuel precursor pinene. Interestingly, tolerance is highly dependent on the rate of stress introduction. Therefore, it is important to consider not only the total quantity of a stressor but also the rate at which it is applied. The implications of this work are significant because environments are rarely static; antibiotic concentrations change during dosing, and metabolic engineering processes change with time. Copyright © 2017 American Society for Microbiology.
Numerical Simulation of Tubular Pumping Systems with Different Regulation Methods
NASA Astrophysics Data System (ADS)
Zhu, Honggeng; Zhang, Rentian; Deng, Dongsheng; Feng, Xusong; Yao, Linbi
2010-06-01
Since the flow in tubular pumping systems is basically along axial direction and passes symmetrically through the impeller, most satisfying the basic hypotheses in the design of impeller and having higher pumping system efficiency in comparison with vertical pumping system, they are being widely applied to low-head pumping engineering. In a pumping station, the fluctuation of water levels in the sump and discharge pool is most common and at most time the pumping system runs under off-design conditions. Hence, the operation of pump has to be flexibly regulated to meet the needs of flow rates, and the selection of regulation method is as important as that of pump to reduce operation cost and achieve economic operation. In this paper, the three dimensional time-averaged Navier-Stokes equations are closed by RNG κ-ɛ turbulent model, and two tubular pumping systems with different regulation methods, equipped with the same pump model but with different designed system structures, are numerically simulated respectively to predict the pumping system performances and analyze the influence of regulation device and help designers make final decision in the selection of design schemes. The computed results indicate that the pumping system with blade-adjusting device needs longer suction box, and the increased hydraulic loss will lower the pumping system efficiency in the order of 1.5%. The pumping system with permanent magnet motor, by means of variable speed regulation, obtains higher system efficiency partly for shorter suction box and partly for different structure design. Nowadays, the varied speed regulation is realized by varied frequency device, the energy consumption of which is about 3˜4% of output power of the motor. Hence, when the efficiency of variable frequency device is considered, the total pumping system efficiency will probably be lower.
Singh, Ashima; Schaff, Hartzell V.; Mori Brooks, Maria; Hlatky, Mark A.; Wisniewski, Stephen R.; Frye, Robert L.; Sako, Edward Y.
2016-01-01
OBJECTIVES Conclusive evidence is lacking regarding the benefits and risks of performing off-pump versus on-pump coronary artery bypass graft (CABG) for patients with diabetes. This study aims to compare clinical outcomes after off-pump and on-pump procedures for patients with diabetes. METHODS The Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial enrolled patients with type 2 diabetes and documented coronary artery disease, 615 of whom underwent CABG during the trial. The procedural complications, 30-day outcomes, long-term clinical and functional outcomes were compared between the off-pump and on-pump groups overall and within a subset of patients matched on propensity score. RESULTS On-pump CABG was performed in 444 (72%) patients, and off-pump CABG in 171 (28%). The unadjusted 30-day rate of death/myocardial infarction (MI)/stroke was significantly higher after off-pump CABG (7.0 vs 2.9%, P = 0.02) despite fewer complications (10.3 vs 20.7%, P = 0.003). The long-term risk of death [adjusted hazard ratio (aHR): 1.41, P = 0.2197] and major cardiovascular events (death, MI or stroke) (aHR: 1.47, P = 0.1061) did not differ statistically between the off-pump and on-pump patients. Within the propensity-matched sample (153 pairs), patients who underwent off-pump CABG had a higher risk of the composite outcome of death, MI or stroke (aHR: 1.83, P = 0.046); the rates of procedural complications and death did not differ significantly, and there were no significant differences in the functional outcomes. CONCLUSIONS Patients with diabetes had greater risk of major cardiovascular events long-term after off-pump CABG than after on-pump CABG. PMID:25968885
Wavelength-tunable Q-switched Raman fiber laser
NASA Astrophysics Data System (ADS)
Ye, Jun; Xu, Jiangming; Zhang, Hanwei; Wu, Jian; Zhou, Pu
2018-03-01
In this presentation, a wavelength-tunable Q-switched Raman fiber laser is presented for the first time, which has a backward pumped configuration, including a section of 3 km passive fiber, a homemade tunable pump source and a highly reflective fiber loop mirror. The output wavelength of the Raman fiber laser can be tuned continuously with ~44 nm range via adjusting the pump wavelength. By inserting an acoustic-optical modulator, the Q-value of the cavity can be switched between high and low level. As a result, pulsed output with a repetition rate of 500 kHz and duration time of 60-80 ns is achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Shuang; Wang, Kaile; Zuo, Shasha
A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solutionmore » with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.« less
Liu, Xiaobing; Zheng, O'Neill; Niu, Fuxin
2016-01-01
Most commercial ground source heat pump systems (GSHP) in the United States are in a distributed configuration. These systems circulate water or an anti-freeze solution through multiple heat pump units via a central pumping system, which usually uses variable speed pump(s). Variable speed pumps have potential to significantly reduce pumping energy use; however, the energy savings in reality could be far away from its potential due to improper pumping system design and controls. In this paper, a simplified hydronic pumping system was simulated with the dynamic Modelica models to evaluate three different pumping control strategies. This includes two conventional controlmore » strategies, which are to maintain a constant differential pressure across either the supply and return mains, or at the most hydraulically remote heat pump; and an innovative control strategy, which adjusts system flow rate based on the demand of each heat pump. The simulation results indicate that a significant overflow occurs at part load conditions when the variable speed pump is controlled to main a constant differential pressure across the supply and return mains of the piping system. On the other hand, an underflow occurs at part load conditions when the variable speed pump is controlled to maintain a constant differential pressure across the furthest heat pump. The flow-demand-based control can provide needed flow rate to each heat pump at any given time, and with less pumping energy use than the two conventional controls. Finally, a typical distributed GSHP system was studied to evaluate the energy saving potential of applying the flow-demand-based pumping control strategy. This case study shows that the annual pumping energy consumption can be reduced by 62% using the flow-demand-based control compared with that using the conventional pressure-based control to maintain a constant differential pressure a cross the supply and return mains.« less
Association of Proton Pump Inhibitors Usage with Risk of Pneumonia in Dementia Patients.
Ho, Sai-Wai; Teng, Ying-Hock; Yang, Shun-Fa; Yeh, Han-Wei; Wang, Yu-Hsun; Chou, Ming-Chih; Yeh, Chao-Bin
2017-07-01
To determine the association between usages of proton pump inhibitors (PPIs) and subsequent risk of pneumonia in dementia patients. Retrospective cohort study. Taiwanese National Health Insurance Research Database. The study cohort consisted of 786 dementia patients with new PPI usage and 786 matched dementia patients without PPI usage. The study endpoint was defined as the occurrence of pneumonia. The Cox proportional hazard model was used to estimate the pneumonia risk. Defined daily dose methodology was applied to evaluate the cumulative and dose-response relationships of PPI. Incidence of pneumonia was higher among patients with PPI usage (adjusted hazard ratio (HR) = 1.89; 95% CI = 1.51-2.37). Cox model analysis also demonstrated that age (adjusted HR = 1.05; 95% CI = 1.03-1.06), male gender (adjusted HR = 1.57; 95% CI = 1.25-1.98), underlying cerebrovascular disease (adjusted HR = 1.30; 95% CI = 1.04-1.62), chronic pulmonary disease (adjusted HR = 1.39; 95% CI = 1.09-1.76), congestive heart failure (adjusted HR = 1.54; 95% CI = 1.11-2.13), diabetes mellitus (adjusted HR = 1.54; 95% CI = 1.22-1.95), and usage of antipsychotics (adjusted HR = 1.29; 95% CI = 1.03-1.61) were independent risk factors for pneumonia. However, usage of cholinesterase inhibitors and histamine receptor-2 antagonists were shown to decrease pneumonia risk. PPI usage in dementia patients is associated with an 89% increased risk of pneumonia. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.
Numerical study of a confined slot impinging jet with nanofluids
2011-01-01
Background Heat transfer enhancement technology concerns with the aim of developing more efficient systems to satisfy the increasing demands of many applications in the fields of automotive, aerospace, electronic and process industry. A solution for obtaining efficient cooling systems is represented by the use of confined or unconfined impinging jets. Moreover, the possibility of increasing the thermal performances of the working fluids can be taken into account, and the introduction of nanoparticles in a base fluid can be considered. Results In this article, a numerical investigation on confined impinging slot jet working with a mixture of water and Al2O3 nanoparticles is described. The flow is turbulent and a constant temperature is applied on the impinging. A single-phase model approach has been adopted. Different geometric ratios, particle volume concentrations and Reynolds number have been considered to study the behavior of the system in terms of average and local Nusselt number, convective heat transfer coefficient and required pumping power profiles, temperature fields and stream function contours. Conclusions The dimensionless stream function contours show that the intensity and size of the vortex structures depend on the confining effects, given by H/W ratio, Reynolds number and particle concentrations. Furthermore, for increasing concentrations, nanofluids realize increasing fluid bulk temperature, as a result of the elevated thermal conductivity of mixtures. The local Nusselt number profiles show the highest values at the stagnation point, and the lowest at the end of the heated plate. The average Nusselt number increases for increasing particle concentrations and Reynolds numbers; moreover, the highest values are observed for H/W = 10, and a maximum increase of 18% is detected at a concentration equal to 6%. The required pumping power as well as Reynolds number increases and particle concentrations grow, which is almost 4.8 times greater than the values calculated in the case of base fluid. List of symbols PMID:21711743
A disc corona-jet model for the radio/X-ray correlation in black hole X-ray binaries
NASA Astrophysics Data System (ADS)
Qiao, Erlin; Liu, B. F.
2015-04-01
The observed tight radio/X-ray correlation in the low spectral state of some black hole X-ray binaries implies the strong coupling of the accretion and jet. The correlation of L_R ∝ L_X^{˜ 0.5-0.7} was well explained by the coupling of a radiatively inefficient accretion flow and a jet. Recently, however, a growing number of sources show more complicated radio/X-ray correlations, e.g. L_R ∝ L_X^{˜ 1.4} for LX/LEdd ≳ 10-3, which is suggested to be explained by the coupling of a radiatively efficient accretion flow and a jet. In this work, we interpret the deviation from the initial radio/X-ray correlation for LX/LEdd ≳ 10-3 with a detailed disc corona-jet model. In this model, the disc and corona are radiatively and dynamically coupled. Assuming a fraction of the matter in the accretion flow, η ≡ dot{M}_jet/dot{M}, is ejected to form the jet, we can calculate the emergent spectrum of the disc corona-jet system. We calculate LR and LX at different dot{M}, adjusting η to fit the observed radio/X-ray correlation of the black hole X-ray transient H1743-322 for LX/LEdd > 10-3. It is found that always the X-ray emission is dominated by the disc corona and the radio emission is dominated by the jet. We noted that the value of η for the deviated radio/X-ray correlation for LX/LEdd > 10-3 is systematically less than that of the case for LX/LEdd < 10-3, which is consistent with the general idea that the jet is often relatively suppressed at the high-luminosity phase in black hole X-ray binaries.
NASA Technical Reports Server (NTRS)
Ketsdever, Andrew D.; Weaver, David P.; Muntz, E. P.
1994-01-01
Because of the continuing commitment to activity in low-Earth orbit (LEO), a facility is under development to produce energetic atmospheric species, particularly atomic oxygen, with energies ranging from 5 to 80 eV. This relatively high flux facility incorporates an ion engine to produce the corresponding specie ion which is charge exchanged to produce a neutral atomic beam. Ion fluxes of around 10(exp 15) sec(exp -1) with energies of 20-70 eV have been achieved. A geometrically augmented inertially tethered charge exchanger (GAITCE) was designed to provide a large column depth of charge exchange gas while reducing the gas load to the low pressure portion of the atomic beam facility. This is accomplished using opposed containment jets which act as collisional barriers to the escape of the dense gas region formed between the jets. Leak rate gains to the pumping system on the order of 10 were achieved for moderate jet mass flows. This system provides an attractive means for the charge exchange of atomic ions with a variety of gases to produce energetic atomic beams.
Jacobs, P G; El Youssef, J; Reddy, R; Resalat, N; Branigan, D; Condon, J; Preiser, N; Ramsey, K; Jones, M; Edwards, C; Kuehl, K; Leitschuh, J; Rajhbeharrysingh, U; Castle, J R
2016-11-01
To test whether adjusting insulin and glucagon in response to exercise within a dual-hormone artificial pancreas (AP) reduces exercise-related hypoglycaemia. In random order, 21 adults with type 1 diabetes (T1D) underwent three 22-hour experimental sessions: AP with exercise dosing adjustment (APX); AP with no exercise dosing adjustment (APN); and sensor-augmented pump (SAP) therapy. After an overnight stay and 2 hours after breakfast, participants exercised for 45 minutes at 60% of their maximum heart rate, with no snack given before exercise. During APX, insulin was decreased and glucagon was increased at exercise onset, while during SAP therapy, subjects could adjust dosing before exercise. The two primary outcomes were percentage of time spent in hypoglycaemia (<3.9 mmol/L) and percentage of time spent in euglycaemia (3.9-10 mmol/L) from the start of exercise to the end of the study. The mean (95% confidence interval) times spent in hypoglycaemia (<3.9 mmol/L) after the start of exercise were 0.3% (-0.1, 0.7) for APX, 3.1% (0.8, 5.3) for APN, and 0.8% (0.1, 1.4) for SAP therapy. There was an absolute difference of 2.8% less time spent in hypoglycaemia for APX versus APN (p = .001) and 0.5% less time spent in hypoglycaemia for APX versus SAP therapy (p = .16). Mean time spent in euglycaemia was similar across the different sessions. Adjusting insulin and glucagon delivery at exercise onset within a dual-hormone AP significantly reduces hypoglycaemia compared with no adjustment and performs similarly to SAP therapy when insulin is adjusted before exercise. © 2016 John Wiley & Sons Ltd.
... a day to adjust to one to two time zones. So if you travel over three time zones, it will take about two days for ... decisions the first day. Once you arrive, spend time in the sun. This can help reset your internal clock.
The formation of soap bubbles created by blowing on soap films
NASA Astrophysics Data System (ADS)
Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent
2015-11-01
Using either circular bubble wands or long-lasting vertically falling soap films having an adjustable steady state thickness, we study the formation of soap bubbles created when air is blown through a nozzle onto a soap film. We vary nozzle radius, film size, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are generated. The response is sensitive to confinement, that is, the ratio between film and jet sizes, and dissipation in the turbulent gas jet which is a function of the distance from the nozzle to the film. We observe four different regimes that we rationalize by comparing the dynamic pressure of a jet on the film and the Laplace pressure needed to create the curved surface of a bubble.
Hydrodynamics of Peristaltic Propulsion
NASA Astrophysics Data System (ADS)
Athanassiadis, Athanasios; Hart, Douglas
2014-11-01
A curious class of animals called salps live in marine environments and self-propel by ejecting vortex rings much like jellyfish and squid. However, unlike other jetting creatures that siphon and eject water from one side of their body, salps produce vortex rings by pumping water through siphons on opposite ends of their hollow cylindrical bodies. In the simplest cases, it seems like some species of salp can successfully move by contracting just two siphons connected by an elastic body. When thought of as a chain of timed contractions, salp propulsion is reminiscent of peristaltic pumping applied to marine locomotion. Inspired by salps, we investigate the hydrodynamics of peristaltic propulsion, focusing on the scaling relationships that determine flow rate, thrust production, and energy usage in a model system. We discuss possible actuation methods for a model peristaltic vehicle, considering both the material and geometrical requirements for such a system.
Mixing and unmixedness in plasma jets 1: Near-field analysis
NASA Technical Reports Server (NTRS)
Ilegbusi, Olusegun J.
1993-01-01
The flow characteristics in the near-field of a plasma jet are simulated with a two-fluid model. This model accounts for both gradient-diffusion mixing and uni-directional sifting motion resulting from pressure-gradient-body-force imbalance. This latter mechanism is believed to be responsible for the umixedness observed in plasma jets. The unmixedness is considered to be essentially a Rayleigh-Taylor kind instability. Transport equations are solved for the individual plasma and ambient gas velocities, temperatures and volume fractions. Empirical relations are employed for the interface transfers of mass, momentum and heat. The empirical coefficients are first established by comparison of predictions with available experimental data for shear flows. The model is then applied to an Argon plasma jet ejecting into stagnant air. The predicted results show the significant build-up of unmixed air within the plasma gas, even relatively far downstream of the torch. By adjusting the inlet condition, the model adequately reproduces the experimental data.
Ejector device for direct injection fuel jet
Upatnieks, Ansis [Livermore, CA
2006-05-30
Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.
Real-time sensing and gas jet mitigation of VDEs on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Granetz, R. S.; Wolfe, S. M.; Izzo, V. A.; Reinke, M. L.; Terry, J. L.; Hughes, J. W.; Zhurovich, K.; Whyte, D. G.; Bakhtiari, M.; Wurden, G.
2006-10-01
Experiments have been carried out in Alcator C-Mod to test the effectiveness of gas jet disruption mitigation of VDEs with real-time detection and triggering by the C-Mod digital plasma control system (DPCS). The DPCS continuously computes the error in the plasma vertical position from the magnetics diagnostics. When this error exceeds an adjustable preset value, the DPCS triggers the gas jet valve (with a negligible latency time). The high-pressure gas (argon) only takes a few milliseconds to enter the vacuum chamber and begin affecting the plasma, but this is comparable to the VDE timescale on C-Mod. Nevertheless, gas jet injection reduced the halo current, increased the radiated power fraction, and reduced the heating of the divertor compared to unmitigated disruptions, but not quite as well as in earlier mitigation experiments with vertically stable plasmas. Presumably a faster overall response time would be beneficial, and several ways to achieve this will also be discussed.
40nm tunable multi-wavelength fiber laser
NASA Astrophysics Data System (ADS)
Jia, Qingsong; Wang, Tianshu; Zhang, Peng; Dong, Keyan; Jiang, Huilin
2014-12-01
A Brillouin-Erbium multi-wavelength tunable fiber laser at C-band is demostrated. A 10 km long singlemode fiber(SMF), a 6 m long Erbium-doped fiber, two couplers, a wavelength division multiplexer, a isolator, an optical circulator, a 980nm pump laser and a narrow linewidth tunable laser are included in the structure. A segment of 10 km-long single-mode fiber (SMF) between the two ports of a 1×2 coupler is used as Brillouin gain. Ebiumdoped fiber amplifier (EDFA) consists of a segment of 6m er-doped fiber pumped by 980nm laser dioder . A narrow linewidth tunable laser from 1527 to 1607 nm as Brillouin bump, At the Brillouin pump power of 8mW and the 980 nm pump power of 400 mw, 16 output channels with 0.08 nm spacing and tuning range of 40 nm from 1527 nm to 1567 nm are achieved. We realize the tunable output of wavelength by adjusting the 980 nm pump power and the Brillouin pump wavelength. Stability of the multiwavelength fiber laser is also observed.
Variable-speed controller provides flexibility to electrical submersible pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butlin, D.
1986-06-09
The performance of an electric submersible pump (ESP) is dramatically modified by a variable speed controller (VSC). Variable frequency power directly controls pump speed and thus the hydraulic performance of the pump. Even though the ESP is the primary form of artificial lift for high volume, deep oil wells (particularly where gas is unavailable), the biggest disadvantage has been the pump's inflexibility when run at a constant speed, i.e., the unit is limited to a fixed head output at each rate. The VSC has rapidly gained acceptance as a valuable ESP accessory to alleviate this restriction. By allowing the pumpmore » speed to be varied, the rate and head, or both, can be adjusted with no modification of the downhole unit. There are now over 700 VSCs running with ESPs on every continent of the world. Pumping flexibility was the main purpose of applying the VSC to the ESP, but several other benefits have become apparent. Of particular interest are those that can extend downhole equipment life, e.g., soft start, automatically controlled speed, line-transient suppression, and elimination of surface chokes.« less
Chandra Data Reveal Rapidly Whirling Black Holes
NASA Astrophysics Data System (ADS)
2008-01-01
A new study using results from NASA's Chandra X-ray Observatory provides one of the best pieces of evidence yet that many supermassive black holes are spinning extremely rapidly. The whirling of these giant black holes drives powerful jets that pump huge amounts of energy into their environment and affects galaxy growth. A team of scientists compared leading theories of jets produced by rotating supermassive black holes with Chandra data. A sampling of nine giant galaxies that exhibit large disturbances in their gaseous atmospheres showed that the central black holes in these galaxies must be spinning at near their maximum rates. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Jet Power and Black Hole Assortment Revealed in New Chandra Image Erratic Black Hole Regulates Itself "We think these monster black holes are spinning close to the limit set by Einstein's theory of relativity, which means that they can drag material around them at close to the speed of light," said Rodrigo Nemmen, a visiting graduate student at Penn State University, and lead author of a paper on the new results presented at American Astronomical Society in Austin, Texas. The research reinforces other, less direct methods previously used which have indicated that some stellar and supermassive black holes are spinning rapidly. According to Einstein's theory, a rapidly spinning black hole makes space itself rotate. This effect, coupled with gas spiraling toward the black hole, can produce a rotating, tightly wound vertical tower of magnetic field that flings a large fraction of the inflowing gas away from the vicinity of the black hole in an energetic, high-speed jet. Computer simulations by other authors have suggested that black holes may acquire their rapid spins when galaxies merge, and through the accretion of gas from their surroundings. "Extremely fast spin might be very common for large black holes," said co-investigator Richard Bower of Durham University. "This might help us explain the source of these incredible jets that we see stretching for enormous distances across space." One significant connection consequence of powerful, black-hole jets in galaxies in the centers of galaxy clusters is that they can pump enormous amounts of energy into their environments, and heat the gas around them. This heating prevents the gas from cooling, and affects the rate at which new stars form, thereby limiting the size of the central galaxy. Understanding the details of this fundamental feedback loop between supermassive black holes and the formation of the most massive galaxies remains an important goal in astrophysics. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
EUV emission stimulated by use of dual laser pulses from continus liquid microjet targets
NASA Astrophysics Data System (ADS)
Higashiguchi, Takeshi; Rajyaguru, Chirag; Sasaki, Wataru; Kubodera, Shoichi
2004-11-01
A continuous water-jet or water-jet mixed with LiF with several tens μm diameter was formed in a vacuum chamber through a small capillary nozzle. Usage of two laser pulses is an efficient way to produce EUV emission, since a density and temperature of a plasma formed by the first laser pulse are regulated by the second laser pulse. By adjusting the delay of the second pulse, one could maximize the EUV emission. A subpicosecond Ti:Sapphire laser at a wavelength of 800 nm produced a maximum energy around 30 mJ. The beam was divided by a Michelson interferometer, which produced two laser pulses with energies of 5 mJ. The pulse duration was adjusted around 300 fs (FWHM). Both beams were focused on a micro-jet using a lens with a focal length of 15 cm. The delay time between the two pulses was varied from 100 to 800 ps by use of an optical delay line. Clear enhancement of the EUV emission yield was observed when the delay between the two pulses was around 500 ps. The experimentally observed delay agrees reasonably well with that of a plasma to expand to its critical density of 10^21 cm-3.
NASA Astrophysics Data System (ADS)
Limbach, P.; Müller, T.; Skoda, R.
2015-12-01
Commonly, for the simulation of cavitation in centrifugal pumps incompressible flow solvers with VOF kind cavitation models are applied. Since the source/sink terms of the void fraction transport equation are based on simplified bubble dynamics, empirical parameters may need to be adjusted to the particular pump operating point. In the present study a barotropic cavitation model, which is based solely on thermodynamic fluid properties and does not include any empirical parameters, is applied on a single flow channel of a pump impeller in combination with a time-explicit viscous compressible flow solver. The suction head curves (head drop) are compared to the results of an incompressible implicit standard industrial CFD tool and are predicted qualitatively correct by the barotropic model.
Variable delivery, fixed displacement pump
Sommars, Mark F.
2001-01-01
A variable delivery, fixed displacement pump comprises a plurality of pistons reciprocated within corresponding cylinders in a cylinder block. The pistons are reciprocated by rotation of a fixed angle swash plate connected to the pistons. The pistons and cylinders cooperate to define a plurality of fluid compression chambers each have a delivery outlet. A vent port is provided from each fluid compression chamber to vent fluid therefrom during at least a portion of the reciprocal stroke of the piston. Each piston and cylinder combination cooperates to close the associated vent port during another portion of the reciprocal stroke so that fluid is then pumped through the associated delivery outlet. The delivery rate of the pump is varied by adjusting the axial position of the swash plate relative to the cylinder block, which varies the duration of the piston stroke during which the vent port is closed.
Field-effect Flow Control in Polymer Microchannel Networks
NASA Technical Reports Server (NTRS)
Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.
2003-01-01
A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.
Pumping Milk Without Ever Feeding at the Breast in the Moms2Moms Study.
Keim, Sarah A; Boone, Kelly M; Oza-Frank, Reena; Geraghty, Sheela R
2017-09-01
More than 85% of contemporary lactating women in the United States express their milk at least sometimes. Some produce milk exclusively through pumping. We characterized women who pumped but never fed at the breast and compared their infant feeding practices with those of women who fed at the breast with or without pumping. Study participants were those delivered at Ohio State University Wexner Medical Center in 2011 and completed a questionnaire at 12 months postpartum (n = 478). We used bivariate and multivariate approaches (survival analysis) to compare women who pumped but never fed at the breast with women who fed at the breast with or without pumping. Women (n = 33, 6.9%) who pumped but never fed at the breast comprised a diverse group but were more likely to have delivered preterm and were of lower socioeconomic status on average. They initiated pumping and formula feeding earlier (median = day 1 after delivery) and were more likely to report difficulty making enough milk compared with women who fed at the breast with or without pumping. They had much shorter total duration of milk production (adjusted hazard ratio = 3.3, 95% confidence interval: 2.1, 5.2) after controlling for clinical and sociodemographic confounders. Pumping without feeding at the breast is associated with shorter milk feeding duration and earlier introduction of formula compared with feeding at the breast with or without pumping. Establishing feeding at the breast, rather than exclusive pumping, may be important for achieving human milk feeding goals.
Wen, W; Frampton, R; Wright, K; Fattore, S; Shadbolt, B; Perampalam, S
2016-02-01
To identify the knowledge and management factors associated with glycaemic control among adults with Type 1 diabetes mellitus treated with insulin pump therapy. A cross-sectional study of adults with Type 1 diabetes mellitus on insulin pump therapy for at least 12 months (n = 50, 18-70 years old) was undertaken between December 2013 and May 2014. A new questionnaire was developed to evaluate participants' knowledge and management related to insulin pump therapy, and were correlated with insulin pump data, HbA1c and frequency of hypoglycaemia. Participants who changed their insulin pump settings when indicated had significantly better glycaemic control than those who did not (P = 0.04). Multivariate logistic regression analysis found that better overall insulin pump therapy management was a significant predictor of better glycaemic control (odds ratio 4.45, 95% confidence interval 1.61-12.3; P = 0.004) after adjusting for potential confounders including age, gender, duration of diabetes and insulin pump therapy. However, overall insulin pump therapy knowledge was not a significant predictor of glycaemic control (P = 0.058). There was no significant association between frequency of hypoglycaemia and insulin pump therapy knowledge or management. We identified some key knowledge and management factors associated with glycaemic control in adults with Type 1 diabetes mellitus on insulin pump therapy using a newly designed questionnaire. The pilot study assessed the clinical utility of this evaluation tool, which may facilitate provision of targeted education to insulin pump therapy users to achieve optimal glycaemic control. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.
Power scaling of diode-pumped neodymium yttrium aluminum borate laser
NASA Technical Reports Server (NTRS)
Hemmati, Hamid
1991-01-01
Preliminary results are presented of the efficient diode-pumped operation of a neodymium yttrium aluminum borate (NYAB) laser at 531.5 nm using two 1-W diode-laser arrays for the pump. With 1380 mW of CW power incident on the crystal, as much as 51 mW of 532.5-nm laser radiation was obtained with the unoptimized cavity. The corresponding optical-to-optical conversion efficiency was 3.7 percent. A plot of the output 531.5 nm vs incident 807 nm pump power is shown. The crystal output power was critically dependent on the rotational and translational adjustment of the NYAB crystal inside the cavity. It is suggested that a crystal cut at the exact phase matching angle, placed in a cavity with proper optimal reflection and transmission mirror coatings, and pumped at proper wavelength can result in higher output power. Thus, the NYAB output power approaches that of a CW intracavity frequency doubled Nd:YAG laser.
Pulse compression and prepulse suppression apparatus
Dane, Clifford B.; Hackel, Lloyd A.; George, Edward V.; Miller, John L.; Krupke, William F.
1993-01-01
A pulse compression and prepulse suppression apparatus (10) for time compressing the output of a laser (14). A pump pulse (46) is separated from a seed pulse (48) by a first polarized beam splitter (20) according to the orientation of a half wave plate (18). The seed pulse (48) is directed into an SBS oscillator (44) by two plane mirrors (22, 26) and a corner mirror (24), the corner mirror (24) being movable to adjust timing. The pump pulse (46) is directed into an SBS amplifier 34 wherein SBS occurs. The seed pulse (48), having been propagated from the SBS oscillator (44), is then directed through the SBS amplifier (34) wherein it sweeps the energy of the pump pulse (46) out of the SBS amplifier (34) and is simultaneously compressed, and the time compressed pump pulse (46) is emitted as a pulse output (52). A second polarized beam splitter (38) directs any undepleted pump pulse 58 away from the SBS oscillator (44).
Pulse compression and prepulse suppression apparatus
Dane, C.B.; Hackel, L.A.; George, E.V.; Miller, J.L.; Krupke, W.F.
1993-11-09
A pulse compression and prepulse suppression apparatus (10) for time compressing the output of a laser (14). A pump pulse (46) is separated from a seed pulse (48) by a first polarized beam splitter (20) according to the orientation of a half wave plate (18). The seed pulse (48) is directed into an SBS oscillator (44) by two plane mirrors (22, 26) and a corner mirror (24), the corner mirror (24) being movable to adjust timing. The pump pulse (46) is directed into an SBS amplifier 34 wherein SBS occurs. The seed pulse (48), having been propagated from the SBS oscillator (44), is then directed through the SBS amplifier (34) wherein it sweeps the energy of the pump pulse (46) out of the SBS amplifier (34) and is simultaneously compressed, and the time compressed pump pulse (46) is emitted as a pulse output (52). A second polarized beam splitter (38) directs any undepleted pump pulse 58 away from the SBS oscillator (44).
Bauerschmidt, S T; Novoa, D; Russell, P St J
2015-12-11
In 1964 Bloembergen and Shen predicted that Raman gain could be suppressed if the rates of phonon creation and annihilation (by inelastic scattering) exactly balance. This is only possible if the momentum required for each process is identical, i.e., phonon coherence waves created by pump-to-Stokes scattering are identical to those annihilated in pump-to-anti-Stokes scattering. In bulk gas cells, this can only be achieved over limited interaction lengths at an oblique angle to the pump axis. Here we report a simple system that provides dramatic Raman gain suppression over long collinear path lengths in hydrogen. It consists of a gas-filled hollow-core photonic crystal fiber whose zero dispersion point is pressure adjusted to lie close to the pump laser wavelength. At a certain precise pressure, stimulated generation of Stokes light in the fundamental mode is completely suppressed, allowing other much weaker phenomena such as spontaneous Raman scattering to be explored at high pump powers.
Generation of switchable domain wall and Cubic-Quintic nonlinear Schrödinger equation dark pulse
NASA Astrophysics Data System (ADS)
Tiu, Z. C.; Suthaskumar, M.; Zarei, A.; Tan, S. J.; Ahmad, H.; Harun, S. W.
2015-10-01
A switchable domain-wall (DW) and Cubic-Quintic nonlinear Schrödinger equation (CQNLSE) dark soliton pulse generation are demonstrated in Erbium-doped fiber laser (EDFL) for the first time. The DW pulse train operates at 1575 nm with a fundamental repetition rate of 1.52 MHz and pulse width of 203 ns as the pump power is increased above the threshold pump power of 80 mW. The highest pulse energy of 2.24 nJ is obtained at the maximum pump power of 140 mW. CQNLSE pulse can also be realized from the same cavity by adjusting the polarization state but at a higher threshold pump power of 104 mW. The repetition rate and pulse width of the CQNLSE dark pulses are obtained at 1.52 MHz and 219 ns, respectively. The highest energy of 0.58 nJ is obtained for the CQNLSE pulse at pump power of 140 mW.
NASA Astrophysics Data System (ADS)
Liu, Shaoying; Fang, Xiaohui; Wang, Yimeng; Zhang, Xinping
2018-07-01
CsPbBr3 nanocrystals have attracted great interest owing to their high fluorescence quantum efficiency, adjustable photoluminescence wavelength, and good stability. We report a device that consists of disordered gold nanorods underneath a film of CsPbBr3 nanocrystals. Two-photon pumping using femtosecond laser pulses at 800 nm enables amplified spontaneous emission (ASE) at about 523 nm. In this work, a narrow peak with linewidth of 5 nm is observed when the pump fluence reaches a low threshold of 0.65 mJ/cm2. The results show that plasmonic resonance of gold nanorods improves the emission transition rate and enables low threshold ASE.
He, Dingchao; Sznycer-Taub, Nathaniel; Cheng, Yao; McCarter, Robert; Jonas, Richard A.; Hanumanthaiah, Sridhar; Moak, Jeffrey P.
2015-01-01
Magnesium sulfate was given to pediatric cardiac surgical patients during cardiopulmonary bypass period in an attempt to reduce the occurrence of postoperative junctional ectopic tachycardia (PO JET). We reviewed our data to evaluate the effect of magnesium on the occurrence of JET and assess a possible relationship between PO JET and procedure complexity. A total of 1088 congenital heart surgeries (CHS), performed from 2005 to 2010, were reviewed. A total of 750 cases did not receive magnesium, and 338 cases received magnesium (25 mg/kg). All procedures were classified according to Aristotle score from 1 to 4. Overall, there was a statistically significant decrease in PO JET occurrence between the two groups regardless of the Aristotle score, 15.3 % (115/750) in non-magnesium group versus 7.1 % (24/338) in magnesium group, P < 0.001. In the absence of magnesium, the risk of JET increased with increasing Aristotle score, P = 0.01. Following magnesium administration and controlling for body weight, surgical and aortic cross-clamp times in the analyses, reduction in adjusted risk of JET was significantly greater with increasing Aristotle level of complexity (JET in non-magnesium vs. magnesium group, Aristotle level 1: 9.8 vs. 14.3 %, level 4: 11.5 vs. 3.2 %; odds ratio 0.54, 95 % CI 0.31–0.94, P = 0.028). Our data confirmed that intra-operative usage of magnesium reduced the occurrence of PO JET in a larger number and more diverse group of CHS patients than has previously been reported. Further, our data suggest that magnesium’s effect on PO JET occurrence seemed more effective in CHS with higher levels of Aristotle complexity. PMID:25762470
Turbulence intensity's effect on liquid jet breakup from long circular pipes
NASA Astrophysics Data System (ADS)
Trettel, Ben; Ezekoye, Ofodike
2017-11-01
Long pipes which produce fully developed flow are frequently used as a nozzle in jet breakup research. We compiled experimental data from over 20 pipe jet studies for many breakup quantities and developed correlations for these quantities based on existing theories and our own theories. Previous experimental studies often had confounding between some variables (e.g., the Reynolds and Weber numbers), neglected important quantities (e.g., the turbulence intensity), or made apples to oranges comparisons (e.g., different nozzles). By independently tracking the Reynolds number, Weber number, density ratio, and turbulence intensity, and focusing only on pipe jets to keep other variables nearly constant, we minimize these issues. Turbulence is a cause of jet breakup, yet there is little quantitative research on this due to the difficulty of turbulence measurements in free surface flows. To avoid those difficulties, we exploited the fact that adjusting the roughness of a long pipe allows one to quantifiably control the turbulence intensity. We correlated turbulence intensity as a function of the friction factor. Data for rough pipes was used to include turbulence intensity in our study. Comparisons were made with theories for the effect of turbulence intensity on breakup.
Exploration of Piezoelectric Bimorph Deflection in Synthetic Jet Actuators
NASA Astrophysics Data System (ADS)
Housley, Kevin; Amitay, Michael
2017-11-01
The design of piezoelectric bimorphs for synthetic jet actuators could be improved by greater understanding of the deflection of the bimorphs; both their mode shapes and the resulting volume change inside the actuator. The velocity performance of synthetic jet actuators is dependent on this volume change and the associated internal pressure changes. Knowledge of these could aid in refining the geometry of the cavity to improve efficiency. Phase-locked jet velocities and maps of displacement of the surface of the bimorph were compared between actuators of varying diameter. Results from a bimorph of alternate stiffness were also compared. Bimorphs with higher stiffness exhibited a more desirable (0,1) mode shape, which produced a high volume change inside of the actuator cavity. Those with lower stiffness allowed for greater displacement of the surface, initially increasing the volume change, but exhibited higher mode shapes at certain frequency ranges. These higher node shapes sharply reduced the volume change and negatively impacted the velocity of the jet at those frequencies. Adjustments to the distribution of stiffness along the radius of the bimorph could prevent this and allow for improved deflection without the risk of reaching higher modes.
Use of mechanical devices for distal hemoperfusion during balloon catheter coronary angioplasty.
Heibig, J; Angelini, P; Leachman, D R; Beall, M M; Beall, A C
1988-01-01
Previous attempts to protect the dependent myocardium during balloon catheter coronary angioplasty in animals and humans have had generally unsatisfactory results. This paper summarizes the authors' experience in investigating commercially available mechanical pumps for distal coronary hemoperfusion during balloon angioplasty. Both roller and piston pumps can attain adequate distal perfusion without significant side effects in the majority of patients. Our goal was to suppress angina for at least 5 min to prolong balloon inflation in awake patients. Minor T-wave changes without concomitant angina pectoris can be expected when the distal coronary bed is perfused with hypothermic blood. Side branch occlusion by the inflated balloon prevents effective protection of the corresponding part of the dependent myocardium during distal hemoperfusion, which may result in persistent angina and ST-T changes uncorrected by increasing the hemoperfusion rate. Distal coronary diffuse spasm, rare and transient, was the only immediate complication of this procedure. It is suggested that intense local wall stimulation could occur with a higher flow rate (jet effect). Improved balloon catheter pressure/flow characteristics and on-line continuous mechanical pumps should soon make distal coronary hemoperfusion through balloon catheters an accepted clinical technique.
Tamura, M; Tsuchida, Y; Kawano, T; Honna, T; Ishibashi, R; Iwanaka, T; Morita, Y; Hashimoto, H; Tada, H; Miyasaka, K
1988-05-01
High frequency ventilation and extracorporeal membrane oxygenation (ECMO) are devices that are expected to save the lives of newborn infants whose pulmonary conditions have deteriorated. A piston-pump-type high-frequency oscillator (HFO), developed by Bryan and Miyasaka called "Hummingbird," is considered to be superior to high frequency "jet" ventilators or those of the flow-interrupter type, and was used successfully in two neonates with congenital diaphragmatic hernia (CDH) in a high-risk group. The first baby was on a conventional ventilator with pharmacologic support for the first 54 hours and then operated on. Postoperative deterioration necessitated the use of HFO for the next eight days. The infant then recovered uneventfully. For the second baby, HFO was necessary both preoperatively and postoperatively. This baby had a major diaphragmatic defect and her case was complicated with pneumothorax. There was a long stormy course on HFO (total, 70 days), but the patient was successfully extubated on the 75th day postoperatively and is now doing well. We believe active long preoperative stabilization with pharmacologic support and preoperative and postoperative hyperventilation with a piston-pump-type HFO may be a new innovative strategy for the management of severe CDH patients.
Design of a high-pressure circulating pump for viscous liquids.
Seifried, Bernhard; Temelli, Feral
2009-07-01
The design of a reciprocating dual action piston pump capable of circulating viscous fluids at pressures of up to 34 MPa (5000 psi) and temperatures up to 80 degrees C is described. The piston of this pump is driven by a pair of solenoids energized alternatively by a 12 V direct current power supply controlled by an electronic controller facilitating continuously adjustable flow rates. The body of this seal-less pump is constructed using off-the-shelf parts eliminating the need for custom made parts. Both the electronic controller and the pump can be assembled relatively easily. Pump performance has been evaluated at room temperature (22 degrees C) and atmospheric pressure using liquids with low and moderately high viscosities, such as ethanol and corn oil, respectively. At ambient conditions, the pump delivered continuous flow of ethanol and corn oil at a flow rate of up to 170 and 17 cm3/min, respectively. For pumping viscous fluids comparable to corn oil, an optimum reciprocation frequency was ascertained to maximize flow rate. For low viscosity liquids such as ethanol, a linear relationship between the flow rate and reciprocation frequency was determined up to the maximum reciprocation frequency of the pump. Since its fabrication, the pump has been used in our laboratory for circulating triglycerides in contact with supercritical carbon dioxide at pressures of up to 25 MPa (3600 psi) and temperatures up to 70 degrees C on a daily basis for a total of more than 1500 h of operation functioning trouble free.
Abdulrazzaq, Bilal I.; Ibrahim, Omar J.; Kawahito, Shoji; Sidek, Roslina M.; Shafie, Suhaidi; Yunus, Nurul Amziah Md.; Lee, Lini; Halin, Izhal Abdul
2016-01-01
A Delay-Locked Loop (DLL) with a modified charge pump circuit is proposed for generating high-resolution linear delay steps with sub-picosecond jitter performance and adjustable delay range. The small-signal model of the modified charge pump circuit is analyzed to bring forth the relationship between the DLL’s internal control voltage and output time delay. Circuit post-layout simulation shows that a 0.97 ps delay step within a 69 ps delay range with 0.26 ps Root-Mean Square (RMS) jitter performance is achievable using a standard 0.13 µm Complementary Metal-Oxide Semiconductor (CMOS) process. The post-layout simulation results show that the power consumption of the proposed DLL architecture’s circuit is 0.1 mW when the DLL is operated at 2 GHz. PMID:27690040
Optimum conditions for producing Cs2 molecular condensates by stimulated Raman adiabatic passage
NASA Astrophysics Data System (ADS)
Feng, Zhifang; Li, Weidong; Wang, Lirong; Xiao, Liantuan; Jia, Suotang
2009-10-01
The optimum conditions for producing Cs2 molecular condensates from Cs atomic condensates with high transfer efficiency by stimulated Raman adiabatic passage are presented. Under the extended “two-photon” resonance condition, including the two-photon process, the mean-field correction, and the tunneling coupling between two upper excited molecular levels, a high and stable conversion efficiency is realized. The high conversion efficiency could be achieved by following two methods under experimentally less demanding conditions (relatively small effective Rabi frequency for pump laser pulse). One is adjusting the detuning difference between two laser pulses for same effective Rabi frequencies with up to 87.2% transfer efficiency. Another one is adjusting the effective Rabi frequency, the detuning of dump laser for given effective Rabi frequency, and the detuning of pump laser with up to 80.7% transfer efficiency.
Ion Source Development for a Compact Proton Beam Writing System III
2013-06-28
to yield ion beam with energies up to 3 keV. The electrical power required to operate multiple components (like RF Valve , Probe and Extraction...they are powered through an isolation transformer. The required gas, to be ionized in the RF ion source, is fed through a coarse needle valve ...connector, the system can be pumped down to 3×10-2 mbar using an oil roughing pump. Nitrogen gas is feed in by adjusting the gas regulating valve
NASA Technical Reports Server (NTRS)
Erickson, E. F.; Goorvitch, D.; Dix, M. G.; Hitchman, M. J.
1974-01-01
The telescope system was designed as a multi-user facility for observations of celestial objects at infrared wavelengths, where ground-based observations are difficult or impossible due to the effects of telluric atmospheric absorption. The telescope is mounted in a Lear jet model 24B which typically permits 70 min. of observing per flight at altitudes in excess of 45,000 ft (13 km). Telescope system installation is discussed, along with appropriate setup and adjustment procedures. Operation of the guidance system is also explained, and checklists are provided which pertain to the recommended safe operating and in-flight trouble-shooting procedures for the equipment.
Construction of high-density bacterial colony arrays and patterns by the ink-jet method.
Xu, Tao; Petridou, Sevastioni; Lee, Eric H; Roth, Elizabeth A; Vyavahare, Narendra R; Hickman, James J; Boland, Thomas
2004-01-05
We have developed a method for fabricating bacterial colony arrays and complex patterns using commercially available ink-jet printers. Bacterial colony arrays with a density of 100 colonies/cm(2) were obtained by directly ejecting Escherichia coli (E. coli) onto agar-coated substrates at a rapid arraying speed of 880 spots per second. Adjusting the concentration of bacterial suspensions allowed single colonies of viable bacteria to be obtained. In addition, complex patterns of viable bacteria as well as bacteria density gradients were constructed using desktop printers controlled by a simple software program. Copyright 2003 Wiley Periodicals, Inc.
Forbes-Robertson, Sarah; Dudley, Edward; Vadgama, Pankaj; Cook, Christian; Drawer, Scott; Kilduff, Liam
2012-03-01
Jet lag has potentially serious deleterious effects on performance in athletes following transmeridian travel, where time zones are crossed eastwards or westwards; as such, travel causes specific effects related to desynchronization of the athlete's internal body clock or circadian clock. Athletes are particularly sensitive to the effects of jet lag, as many intrinsic aspects of sporting performance show a circadian rhythm, and optimum competitive results require all aspects of the athlete's mind and body to be working in tandem at their peak efficiency. International competition often requires transmeridian travel, and competition timings cannot be adjusted to suit individual athletes. It is therefore in the interest of the individual athlete and team to understand the effects of jet lag and the potential adaptation strategies that can be adopted. In this review, we describe the underlying genetic and physiological mechanisms controlling the circadian clock and its inherent ability to adapt to external conditions on a daily basis. We then examine the fundamentals of the various adaptation stimuli, such as light, chronobiotics (e.g. melatonin), exercise, and diet and meal timing, with particular emphasis on their suitability as strategies for competing athletes on the international circuit. These stimuli can be artificially manipulated to produce phase shifts in the circadian rhythm to promote adaptation in the optimum direction, but care must be taken to apply them at the correct time and dose, as the effects produced on the circadian rhythm follow a phase-response curve, with pronounced shifts in direction at different times. Light is the strongest realigning stimulus and careful timing of light exposure and avoidance can promote adjustment. Chronobiotics such as melatonin can also be used to realign the circadian clock but, as well as timing and dosage issues, there are also concerns as to its legal status in different countries and with the World Anti-Doping Agency. Experimental data concerning the effects of food intake and exercise timing on jet lag is limited to date in humans, and more research is required before firm guidelines can be stated. All these stimuli can also be used in pre-flight adaptation strategies to promote adjustment in the required direction, and implementation of these is described. In addition, the effects of individual variability at the behavioural and genetic levels are also discussed, along with the current limitations in assessment of these factors, and we then put forward three case studies, as examples of practical applications of these strategies, focusing on adaptations to travel involving competition in the Rugby Sevens World Cup and the 2016 Summer Olympics in Rio de Janeiro, Brazil. Finally, we provide a list of practice points for optimal adaptation of athletes to jet lag.
Control of the mixing time in vessels agitated by submerged recirculating jets.
Kennedy, Stephen; Bhattacharjee, Pradipto K; Bhattacharya, Sati N; Eshtiaghi, Nicky; Parthasarathy, Rajarathinam
2018-01-01
Submerged recirculating jet mixing systems are an efficient and economical method of agitating large tanks with a high hydraulic residence time. Much work has been carried out in developing design correlations to aid the predictions of the mixing time in such systems, with the first such correlation being developed nearly 70 years ago. In most of these correlations, the mixing time depends directly on the volume of the vessel and inversely on the injection velocity of the submerged jet. This work demonstrates, for the first time, that the distance between the injection and suction nozzles also significantly affects the mixing time and can be used to control this time scale. The study introduces a non-dimensional quantity that can be used as an adjustable parameter in systems where such control is desired.
Control of the mixing time in vessels agitated by submerged recirculating jets
Bhattacharjee, Pradipto K.; Bhattacharya, Sati N.; Eshtiaghi, Nicky; Parthasarathy, Rajarathinam
2018-01-01
Submerged recirculating jet mixing systems are an efficient and economical method of agitating large tanks with a high hydraulic residence time. Much work has been carried out in developing design correlations to aid the predictions of the mixing time in such systems, with the first such correlation being developed nearly 70 years ago. In most of these correlations, the mixing time depends directly on the volume of the vessel and inversely on the injection velocity of the submerged jet. This work demonstrates, for the first time, that the distance between the injection and suction nozzles also significantly affects the mixing time and can be used to control this time scale. The study introduces a non-dimensional quantity that can be used as an adjustable parameter in systems where such control is desired. PMID:29410817
Inducing jet lag in the laboratory - Patterns of adjustment to an acute shift in routine
NASA Technical Reports Server (NTRS)
Monk, Timothy H.; Moline, Margaret L.; Graeber, R. Curtis
1988-01-01
Eight middle-aged males were studied in a temporal isolation experimental lasting 15 d. After 5 d and nights of entrainment to his own habitual routine, each subject experienced an acute unheralded 6-h phase advance in routine, accomplished by truncating his sixth sleep episode. For the remaining 10 d of the study, subjects were held to a routine 6-h phase advanced to the original. Significant symptoms of jet lag appeared in mood, performance efficiency, sleep, and circadian temperature rhythms. When plotted as a function to days postshift, some variables showed a fairly monotonic recovery to baseline levels, but other variables showed a zig-zag recovery pattern, suggesting the interaction of two competing processes, and reinforcing the need for greater sophistication in the development of jet-lag coping strategies.
Rapid evolution of a jet streak circulation in a pre-convective environment
NASA Technical Reports Server (NTRS)
Kocin, P. J.; Uccellini, L. W.; Petersen, R. A.
1986-01-01
An analysis of the April 10, 1979 Red River Valley severe weather outbreak, using a three-hourly rawinsonde network, indicates that the preconvection environment is influenced by upper-level and lower-level tropospheric jet streaks (ULJs and LLJs) that act to destabilize the atmosphere, and contribute to low-level heat and moisture transports and convergence that act to initiate the storm system. Transformation of an indirect circulation noted within the exit region of the ULJ at 1200 and 1500 GMT is observed within a six-hour period. Dramatic changes are found in the jet streak circulations over a short period of time as the system deviates from that approximated by the geostrophic momentum approximation, and these deviations suggest that adjustments asssociated with ULJs in this case could not be resolved using a simplified two-dimensional approach.
Variation in hospital rates of intraaortic balloon pump use in coronary artery bypass operations.
Ghali, W A; Ash, A S; Hall, R E; Moskowitz, M A
1999-02-01
Little is known about regional patterns of intraaortic balloon pump (IABP) use in coronary artery bypass graft (CABG) operations. Our objectives were (1) to identify clinical variables associated with IABP use, and (2) to examine risk-adjusted rates of IABP use for 12 Massachusetts hospitals performing CABG operations. We used hospital discharge data to identify 6944 CABG surgical cases. Logistic regression was used to identify clinical variables associated with IABP use, and the resulting multivariate model was then used to risk adjust hospital rates of IABP use. The IABP was used in 13.4% of the CABG surgical cases. The clinical variables independently associated with IABP use were cardiogenic shock, same admission angioplasty, prior CABG operation, cardiac arrest, congestive heart failure, recent myocardial infarction, and urgent admission status. Risk-adjusted rates of IABP use varied widely across hospitals from 7.8% to 20.8% (p < 0.0001). Hospital rates of IABP use vary considerably in Massachusetts. This practice variation may be related to the persistent uncertainty regarding the precise clinical indications for the IABP in this patient population.
Cavitation studies in microgravity
NASA Astrophysics Data System (ADS)
Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele
The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion. The aim of our future microgravity experiment is to assess the direct effects of gravity on cavitation bubble collapse through a comparison of single cavitation bubbles collapsing in mi-crogravity, normal gravity, and hypergravity. In particular, we shall investigate the shape of the bubble in its final collapse stage and the amount of energy dissipated in the dominant collapse channels, such as liquid jet, shock wave, and rebound bubble. The highly spherical bubbles will be produced via a point-like plasma generated by a high power laser beam. One major hypothesis that we will test is an increase in shock wave energy with decreasing gravity as a consequence of the higher final sphericity and suppression of liquid jets. To support this, we introduce an analytical model for the gravity-perturbed asymmetric collapse of spherical bubbles, and demonstrate that all initially spherical bubbles develop a gravity-related vertical jet along their collapse.
NASA Technical Reports Server (NTRS)
Gangal, M. D.; Isenberg, L.; Lewis, E. V.
1985-01-01
Proposed system offers safety and large return on investment. System, operating by year 2000, employs machines and processes based on proven principles. According to concept, line of parallel machines, connected in groups of four to service modules, attacks face of coal seam. High-pressure water jets and central auger on each machine break face. Jaws scoop up coal chunks, and auger grinds them and forces fragments into slurry-transport system. Slurry pumped through pipeline to point of use. Concept for highly automated coal-mining system increases productivity, makes mining safer, and protects health of mine workers.
A Summary/Overview of Ejector Augmentor Theory and Performance. Volume 2. Bibliography
1979-09-01
Science, Tech. Rept. TR-UTA-773, April 1977. 264 SPSF P T Covert, E. E., and Haldeman, C. W., "A One-Dimensional Model for NS Compressible Flow in the...H., "Hydrodynamics of SS vertical liquid-solids transport", Ind. & Engng. Chem. - Process Des. & Dev., 14, 3, pp 264 -9 (July, 1975). 755 SPSF A...Margolis, S. G., "Steam jet pump operation at high pressures", SS Bettis Tech. Review. WAPD -BT-14, pp. 120-141. (July, 1959). 877 SPSF A, A, Mark, L
NASA Technical Reports Server (NTRS)
1993-01-01
As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.
NASA Technical Reports Server (NTRS)
Hearth, Donald P; Cubbison, Robert W
1956-01-01
The results indicated increases in auxiliary-inlet pressure recovery with increases in scoop height relative to the boundary-layer thickness. The pressure recovery increased at about the same rate as theoretically predicted for an inlet in a boundary layer having a one-seventh power profile, but was only about 0.68 to 0.75 of the theoretically obtainable values. Under some operating conditions, flow from the primary jet was exhausted through the auxiliary inlet. This phenomenon could be predicted from the ejector pumping characteristics.
2010-08-01
paraffins, olefins, cyclo-parafins ( naphthenes ), aromatics and a host of trace species. Petroleum distillates such as jet fuels are also a complex...LC method consisted of: Mobile Phase: 95% CH3OH + 0.1% (vol) Acetic Acid 5% De-Ionized H2O Injection Volume: 5 µL Needle Wash in Flush...Port for 20 seconds using mobile phase CH3OH + 0.1% (vol) Acetic- Acid Run Time: 10 minute Post Time: 1 minute Binary Pump SL Flow Rate: 0.3 ml/min
Hydrogen-methane fuel control systems for turbojet engines
NASA Technical Reports Server (NTRS)
Goldsmith, J. S.; Bennett, G. W.
1973-01-01
Design, development, and test of a fuel conditioning and control system utilizing liquid methane (natural gas) and liquid hydrogen fuels for operation of a J85 jet engine were performed. The experimental program evaluated the stability and response of an engine fuel control employing liquid pumping of cryogenic fuels, gasification of the fuels at supercritical pressure, and gaseous metering and control. Acceptably stable and responsive control of the engine was demonstrated throughout the sea level power range for liquid gas fuel and up to 88 percent engine speed using liquid hydrogen fuel.
A microfluidic circulatory system integrated with capillary-assisted pressure sensors.
Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai
2017-02-14
The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.
Analysis of insulin pump settings in children and adolescents with type 1 diabetes mellitus.
Lau, Yu Ning; Korula, Sophy; Chan, Albert K; Heels, Kristine; Krass, Ines; Ambler, Geoffrey
2016-08-01
To characterize current insulin pump settings used in young patients with type 1 diabetes mellitus (T1DM) and to assess their relationship to glycemic control. This retrospective study included patients aged <18 yr old with T1DM >1 yr using a Medtronic pump device. Pump data including number of blood glucose (BG) tests per day, basal and bolus insulin parameters, carbohydrate ratio (CR), and insulin sensitivity factors (ISFs) were averaged over 14 d for statistical analyses. Anthropometric data and recent glycosylated hemoglobin A1c (HbA1c) were recorded. A total of 292 patients (144 males and 148 females) were included in the study. Participants had a median age (interquartile range, IQR) of 12.9 yr (10.0-15.1 yr) and pump duration of 2.8 yr (1.5-4.2 yr). No significant differences in median HbA1c (IQR) were observed in preschool [n = 14; HbA1c 7.8% (7.3-8.3%)], prepubertal [n = 105; HbA1c 8.1% (7.7-8.9%)], and adolescent subjects [n = 173; HbA1c 8.4% (7.7-9.0%)]. Adolescents took significantly fewer boluses and BG tests per day compared with younger children (p < 0.05). Age-specific diurnal variation in basal insulin delivery was noted. Additionally, stronger carbohydrate cover and weaker corrections were used in real-life compared with theoretical 500 and 100 rules, respectively. Lower HbA1c was associated with higher number of daily boluses, greater number of BG tests per day, lower average CR/500 rule ratio, and higher average ISF/100 rule ratio adjusted for age (R(2) = 0.22; p < 0.01). Insulin pump therapy requires continuous adjustments and glycemic targets are achieved by a minority. We believe this is the first study in pediatric cohort looking at association between CR and ISF with glycemic control. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Plasma Skimming in a Spiral Groove Bearing of a Centrifugal Blood Pump.
Murashige, Tomotaka; Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Kawaguchi, Yasuo; Yamane, Takashi; Maruyama, Osamu
2016-09-01
Plasma skimming is a phenomenon in which discharge hematocrit is lower than feed hematocrit in microvessels. Plasma skimming has been investigated at a bearing gap in a spiral groove bearing (SGB), as this has the potential to prevent hemolysis in the SGB of a blood pump. However, it is not clear whether plasma skimming occurs in a blood pump with the SGB, because the hematocrit has not been obtained. The purpose of this study is to verify plasma skimming in an SGB of a centrifugal blood pump by developing a hematocrit measurement method in an SGB. Erythrocyte observation using a high-speed microscope and a bearing gap measurement using a laser confocal displacement meter was performed five times. In these tests, bovine blood as a working fluid was diluted with autologous plasma to adjust the hematocrit to 1.0%. A resistor was adjusted to achieve a pressure head of 100 mm Hg and a flow rate of 5.0 L/min at a rotational speed of 2800 rpm. Hematocrit on the ridge region in the SGB was measured using an image analysis based on motion image of erythrocytes, mean corpuscular volume, the measured bearing gap, and a cross-sectional area of erythrocyte. Mean hematocrit on the ridge region in the SGB was linearly reduced from 0.97 to 0.07% with the decreasing mean bearing gap from 38 to 21 μm when the rotational speed was changed from 2250 to 3000 rpm. A maximum plasma skimming efficiency of 93% was obtained with a gap of 21 μm. In conclusion, we succeeded in measuring the hematocrit on the ridge region in the SGB of the blood pump. Hematocrit decreased on the ridge region in the SGB and plasma skimming occurred with a bearing gap of less than 30 μm in the hydrodynamically levitated centrifugal blood pump. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Gomez, Ana Maria; Alfonso-Cristancho, Rafael; Orozco, John Jairo; Lynch, Peter Matthew; Prieto, Diana; Saunders, Rhodri; Roze, Stephane; Valencia, Juan Esteban
2016-11-01
To assess the long-term clinical and economic impact of integrated pump/CGM technology therapy as compared to multiple daily injections (MDI), for the treatment of type 1 diabetes (T1D) in Colombia. The CORE Diabetes Model was used to simulate a hypothetical cohort of patients with T1D. Mean baseline characteristics were taken from a clinical study conducted in Colombia and a healthcare payer perspective was adopted, with a 5% annual discount rate applied to both costs and outcomes. The integrated pump/CGM improved mean life expectancy by 3.51 years compared with MDI. A similar increase occurred in mean quality-adjusted life expectancy with an additional 3.81 quality-adjusted life years (QALYs). Onset of diabetes-related complications was also delayed as compared to MDI, and mean survival time free of complication increased by 1.74 years with integrated pump/CGM. Although this increased treatment costs of diabetes as compared to MDI, savings were achieved thanks to reduced expenditure on diabetes-related complications. The estimated incremental cost-effectiveness ratio (ICER) for SAP was Colombian Pesos (COP) 44,893,950 (approximately USD$23,200) per QALY gained. Improved blood glucose control associated to integrated pump/CGM results in a decreased incidence of diabetes-related complications and improves life expectancy as compared to MDI. Using recommended thresholds from the World Health Organization and previous coverage decisions about health technologies in Colombia, it is a cost-effective alternative to MDI for the treatment of type 1 diabetes in Colombia. Copyright © 2016 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.
Combination ring cavity and backward Raman waveguide amplifier
Kurnit, Norman A.
1983-01-01
A combination regenerative ring and backward Raman waveguide amplifier and a combination regenerative ring oscillator and backward Raman waveguide amplifier which produce Raman amplification, pulse compression, and efficient energy extraction from the CO.sub.2 laser pump signal for conversion into a Stokes radiation signal. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman waveguide amplifier. The backward Raman waveguide amplifier configuration extracts a major portion of the remaining energy from the CO.sub.2 laser pump signal for conversion to Stokes radiation. Additionally, the backward Raman amplifier configuration produces a Stokes radiation signal which has a high intensity and a short duration. Adjustment of the position of overlap of the Stokes signal and the CO.sub.2 laser pump signal in the backward Raman waveguide amplifiers alters the amount of pulse compression which can be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elkuch, E.
1984-01-17
The apparatus comprises at least one positive displacement pump, which is driven by the sea waves. The quantity of delivery of this pump is adjustable in accordance with the lengths of strokes made by the ocean waves. This is made possible in that the positive displacement pump comprises pistons having different volume displacements. The height of the incoming waves is measured by a membrane box connected to a transducer which generates signals such that only that piston of the plurality of pistons is made to operate, which has by design a volume displacement which gives the optimal recovery of themore » energy of the ocean waves. The or these pistons pump a working fluid into a storage vessel, which allows the generation of peak load as well as base load electrical energy.« less
Fiber bundle phase conjugate mirror
Ward, Benjamin G.
2012-05-01
An improved method and apparatus for passively conjugating the phases of a distorted wavefronts resulting from optical phase mismatch between elements of a fiber laser array are disclosed. A method for passively conjugating a distorted wavefront comprises the steps of: multiplexing a plurality of probe fibers and a bundle pump fiber in a fiber bundle array; passing the multiplexed output from the fiber bundle array through a collimating lens and into one portion of a non-linear medium; passing the output from a pump collection fiber through a focusing lens and into another portion of the non-linear medium so that the output from the pump collection fiber mixes with the multiplexed output from the fiber bundle; adjusting one or more degrees of freedom of one or more of the fiber bundle array, the collimating lens, the focusing lens, the non-linear medium, or the pump collection fiber to produce a standing wave in the non-linear medium.
NASA Astrophysics Data System (ADS)
Kerschberger, P.; Gehrer, A.
2010-08-01
In recent years an increased interest in pump-turbines has been recognized in the market. The rapid availability of pumped storage schemes and the benefits to the power system by peak lopping, providing reserve and rapid response for frequency control are becoming of growing advantage. In that context it is requested to develop pump-turbines that reliably stand dynamic operation modes, fast changes of the discharge rate by adjusting the variable diffuser vanes as well as fast changes from pump to turbine operation. Within the present study various flow patterns linked to the operation of a pump-turbine system are discussed. In that context pump and turbine mode are presented separately and different load cases at both operation modes are shown. In order to achieve modern, competitive pump-turbine designs it is further explained which design challenges should be considered during the geometry definition of a pump-turbine impeller. Within the present study a runner-blade profile for a low head pump-turbine has been developed. For the initial hydraulic runner-blade design, an inverse design method has been applied. Within this design procedure, a first blade geometry is generated by imposing the pressure loading-distribution and by means of an inverse 3D potential-flow-solution. The hydraulic behavior of both, pump-mode and turbine-mode is then evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Based on this initial design the blade profile has been further optimized and redesigned considering various hydraulic pump-turbine requirements. Finally, the progress in hydraulic design is demonstrated by model test results which show a significant improvement in hydraulic performance compared to an existing reference design.
You, J H S; Lee, A C M; Wong, S C Y; Chan, F K L
2003-03-15
Studies on the use of low-dose proton pump inhibitor for the maintenance therapy of gastro-oesophageal reflux disease have shown that it might be comparable with standard-dose proton pump inhibitor treatment and superior to standard-dose histamine-2 receptor antagonist therapy. To compare the impact of standard-dose histamine-2 receptor antagonist, low-dose proton pump inhibitor and standard-dose proton pump inhibitor treatment for the maintenance therapy of gastro-oesophageal reflux disease on symptom control and health care resource utilization from the perspective of a public health organization in Hong Kong. A Markov model was designed to simulate, over 12 months, the economic and clinical outcomes of gastro-oesophageal reflux disease patients treated with standard-dose histamine-2 receptor antagonist, low-dose proton pump inhibitor and standard-dose proton pump inhibitor. The transition probabilities were derived from the literature. Resource utilization was retrieved from a group of gastro-oesophageal reflux disease patients in Hong Kong. Sensitivity analysis was conducted to examine the robustness of the model. The standard-dose proton pump inhibitor strategy was associated with the highest numbers of symptom-free patient-years (0.954 years) and quality-adjusted life-years gained (0.999 years), followed by low-dose proton pump inhibitor and standard-dose histamine-2 receptor antagonist. The direct medical cost per patient in the standard-dose proton pump inhibitor group (904 US dollars) was lower than those of the low-dose proton pump inhibitor and standard-dose histamine-2 receptor antagonist groups. The standard-dose proton pump inhibitor strategy appears to be the most effective and least costly for the maintenance management of patients with gastro-oesophageal reflux disease in Hong Kong.
NASA Astrophysics Data System (ADS)
He-Dong, Xiao; Yuan, Dong; Yu, Liu; Shu-Tao, Li; Yong-Ji, Yu; Guang-Yong, Jin
2016-09-01
We adopt a compact intra-cavity pumped structure of Nd:YAG and Nd:YVO4 crystals to develop an efficient dual-wavelength laser that operates at 946 nm and 1064 nm. A 808 nm laser diode is used to pump the Nd:YAG crystal, which emits at 946 nm, and the Nd:YVO4 crystal, which emits at 1064 nm, is intra-cavity pumped at 946 nm. In order to avoid unnecessary pump light passing though the Nd:YAG crystal, reaching the Nd:YVO4 crystal and having an impact on the cavity pump, the two crystals are placed as far from one another as possible in this experiment. The output power at 1064 nm can be adjusted from 1 W-2.9 W by varying the separation between the two crystals. A total output power of 4 W at the dual-wavelengths is achieved at an incident pump power of 30.5 W, where the individual output powers for the 946 nm and 1064 nm emissions are 1.1 W and 2.9 W, respectively.
[Influence of proton pump inhibitors on intestinal fermentative profile: a case-control study].
Senderovky, Melisa; Lasa, Juan; Dima, Guillermo; Peralta, Daniel; Argüello, Mariano; Soifer, Luis
2014-01-01
Proton pump inhibitors could have an impact on the results of breath tests performed in patients with irritable bowel syndrome. This impact could be due to the development of small intestine bacterial overgrowth. To compare the prevalence of fermentative profile alterations of irritable bowel syndrome patients exposed and not-exposed to proton pump inhibitor therapy. Subjects with irritable bowel syndrome were enrolled. A validated questionnaire assessing symptom severity as well as proton pump inhibitor treatment was delivered. A lactulose breath test was undertaken by each enrolled subject. Fermentative profile (area under the curve of hydrogen excretion/time) was compared between proton pump inhibitors consumers and non-consumers. Furthermore, small intestine bacterial overgrowth prevalence was compared. Two hundred and twenty five patients were enrolled. No significant differences were found on the fermentative profile between groups [AUC mediana 3,776 (rango 2,124-5,571) vs 4,347 (rango 2,038-5,481), P = 0.3]. Small intestine bacterial overgrowth prevalence was similar as well [33% vs 27.5%]. These differences remained non-significant after adjusting for proton pump inhibitor dose and treatment time. Surprisingly, symptom score was significantly higher in those patients under proton pump inhibitor therapy [28.5 (23-26) vs 23 (15-29), P = 0.01]. Proton pump inhibitors have no significant influence on lactulose breath tests, regardless of the dosage and time of administration.
Selecting statistical model and optimum maintenance policy: a case study of hydraulic pump.
Ruhi, S; Karim, M R
2016-01-01
Proper maintenance policy can play a vital role for effective investigation of product reliability. Every engineered object such as product, plant or infrastructure needs preventive and corrective maintenance. In this paper we look at a real case study. It deals with the maintenance of hydraulic pumps used in excavators by a mining company. We obtain the data that the owner had collected and carry out an analysis and building models for pump failures. The data consist of both failure and censored lifetimes of the hydraulic pump. Different competitive mixture models are applied to analyze a set of maintenance data of a hydraulic pump. Various characteristics of the mixture models, such as the cumulative distribution function, reliability function, mean time to failure, etc. are estimated to assess the reliability of the pump. Akaike Information Criterion, adjusted Anderson-Darling test statistic, Kolmogrov-Smirnov test statistic and root mean square error are considered to select the suitable models among a set of competitive models. The maximum likelihood estimation method via the EM algorithm is applied mainly for estimating the parameters of the models and reliability related quantities. In this study, it is found that a threefold mixture model (Weibull-Normal-Exponential) fits well for the hydraulic pump failures data set. This paper also illustrates how a suitable statistical model can be applied to estimate the optimum maintenance period at a minimum cost of a hydraulic pump.
NASA Technical Reports Server (NTRS)
Wolf, Bart J.; Johnson, D. R.
1995-01-01
The mutual forcing of a midlatitude upper-tropospheric jet streak by organized mesoscale adiabatic and diabatic processes within a simulated convective system (SCS) is investigated. Using isentropic diagnostics, results from a three-dimensional numerical simulation of an SCS are examined to study the isallobaric flow field, modes of dominant ageostrophic motion, and stability changes in relation to the mutual interdependence of adiabatic processes and latent heat release. Isentropic analysis affords an explicit isolation of a component of isallobaric flow associated with diabatic processes within the SCS. Prior to convective development within the simulations, atmospheric destabilization occurs through adiabatic ageostrophic mass adjustment and low-level convergence in association with the preexisting synoptic-scale upper-tropospheric jet streak. The SCS develops in a baroclinic zone and quickly initiates a vigorous mass circulation. By the mature stage, a pronounced vertical couplet of low-level convergence and upper-level mass divergence is established, linked by intense midtropospoheric diabatic heating. Significant divergence persists aloft for several hours subsequent to SCS decay. The dominant role of ageostrophic motion within which the low-level mass convergence develops is the adiabatic isallobaric component, while the mass divergence aloft develops principally through the diabatic isallobaric component. Both compnents are intrinsically linked to the convectively forced vertical mass transport. The inertial diabatic ageostrophic component is largest near the level of maximum heating and is responsible for the development of inertial instability to the north of SCS, resulting in this quadrant being preferred for outflow. The inertial advective component, the dominant term that produces the new downstream wind maximum, rapidly develops north of the SCS and through mutual adjustment creates the baroclinic support for the new jet streak.
Ahmad, Tariq; Fiuzat, Mona; Neely, Ben; Neely, Megan; Pencina, Michael J.; Kraus, William E.; Zannad, Faiez; Whellan, David J.; Donahue, Mark; Piña, Ileana L.; Adams, Kirkwood; Kitzman, Dalane W.; O’Connor, Christopher M.; Felker, G. Michael
2014-01-01
Objective To determine whether biomarkers of myocardial stress and fibrosis improve prediction of mode of death in patients with chronic heart failure. Background The two most common modes of death in patients with chronic heart failure are pump failure and sudden cardiac death. Prediction of mode of death may facilitate treatment decisions. The relationship between NT-proBNP, galectin-3, and ST2, biomarkers that reflect different pathogenic pathways in heart failure (myocardial stress and fibrosis), and mode of death is unknown. Methods HF-ACTION was a randomized controlled trial of exercise training vs. usual care in patients with chronic heart failure due to left ventricular systolic dysfunction (LVEF<35%). An independent clinical events committee prospectively adjudicated mode of death. NT-proBNP, galectin-3, and ST2 levels were assessed at baseline in 813 subjects. Associations between biomarkers and mode of death were assessed using cause-specific Cox-proportional hazards modeling, and interaction testing was used to measure differential association between biomarkers and pump failure versus sudden cardiac death. Discrimination and risk reclassification metrics were used to assess the added value of galectin-3 and ST2 in predicting mode of death risk beyond a clinical model that included NT-proBNP. Results After a median follow up of 2.5 years, there were 155 deaths: 49 from pump failure 42 from sudden cardiac death, and 64 from other causes. Elevations in all biomarkers were associated with increased risk of both pump failure and sudden cardiac death in both adjusted and unadjusted analyses. In each case, increases in the biomarker had a stronger association with pump failure than sudden cardiac death but this relationship was attenuated after adjustment for clinical risk factors. Clinical variables along with NT-proBNP levels were stronger predictors of pump failure (C statistic: 0.87) than sudden cardiac death (C statistic: 0.73). Addition of ST2 and galectin-3 led to improved net risk classification of 11% for sudden cardiac death, but not pump failure. Conclusions Clinical predictors along with NT-proBNP levels were strong predictors of pump failure risk, with insignificant incremental contributions of ST2 and galectin-3. Predictability of sudden cardiac death risk was less robust and enhanced by information provided by novel biomarkers. PMID:24952693
Price, G.W.
1954-08-01
A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.
NASA Technical Reports Server (NTRS)
Krejsa, Eugene A.; Cooper, Beth A.; Hall, David G.; Khavaran, Abbas
1990-01-01
Acoustic results are presented of a cooperative nozzle test program between NASA and Pratt and Whitney, conducted in the NASA-Lewis 9 x 15 ft Anechoic Wind Tunnel. The nozzle tested was the P and W Hypermix Nozzle concept, a 2-D lobed mixer nozzle followed by a short ejector section made to promote rapid mixing of the induced ejector nozzle flow. Acoustic and aerodynamic measurements were made to determine the amount of ejector pumping, degree of mixing, and noise reduction achieved. A series of tests were run to verify the acoustic quality of this tunnel. The results indicated that the tunnel test section is reasonably anechoic but that background noise can limit the amount of suppression observed from suppressor nozzles. Also, a possible internal noise was observed in the air supply system. The P and W ejector suppressor nozzle demonstrated the potential of this concept to significantly reduce jet noise. Significant reduction in low frequency noise was achieved by increasing the peak jet noise frequency. This was accomplished by breaking the jet into segments with smaller dimensions than those of the baseline nozzle. Variations in ejector parameters had little effect on the noise for the geometries and the range of temperatures and pressure ratios tested.
NASA Astrophysics Data System (ADS)
Su, Rui; Mironov, Andrey; Houlahan, Thomas, Jr.; Eden, J. Gary; LaboratoryOptical Physics; Engineering Team
2016-09-01
Laser-induced fluorescence (LIF) resulting from transitions between different electronic states of helium dimers generated within a microcavity plasma jet was studied with rotational resolution. In particular, the d3Σu+ , e3Πg and f3Σu+ states, all having electronic energies above 24 eV, are populated by a microplasma in 4 bar of helium gas and rotationally cooled through supersonic expansion. Analysis of two dimensional maps (spectrograms) of dimer emission spectra as a function of distance from the nozzle orifice indicates collisional coupling during the expansion between the lowest rotational levels of the e3Πg , f3Σu+ states and high rotational levels (around N=11) of the d3Σu+ state (all of which are in the v = 0 vibrational state). In an attempt to verify the coupling, a scanning dye laser (centered near 596 nm) pumps the b3Πg -> f3Σu+ transition of the molecule several hundred micrometers downstream of the nozzle. As a result, the emission intensities of relevant rotational lines are observed to be enhanced. This research shows the potential of utilizing microcavity plasma jets as a tool to study and manipulate the collisional dynamics of highly-excited diatomic molecules.
Pavela, James; Suresh, Rahul; Blue, Rebecca S; Mathers, Charles H; Belalcazar, L Maria
2018-02-01
Individuals with diabetes are increasingly seeking pretravel advice, but updated professional recommendations remain scant. We performed a systematic review on diabetes management during air travel to summarize current recommendations, assess supporting evidence, and identify areas of future research. A systematic review of the English literature on diabetes management during air travel was undertaken utilizing PubMed and MEDLINE. Publications regarding general travel advice; adjustment of insulin and noninsulin therapies; and the use of insulin pumps, glucometers and subcutaneous glucose sensors at altitude were included. Gathered information was used to create an updated summary of glucose-lowering medication adjustment during air travel. Sixty-one publications were identified, most providing expert opinion and few offering primary data (47 expert opinion, 2 observational studies, 2 case reports, 10 device studies). General travel advice was uniform, with increasing attention to preflight security. Indications for oral antihyperglycemic therapy adjustments varied. There were few recommendations on contemporary agents and on nonhypoglycemic adverse events. There was little consensus on insulin adjustment protocols, many antedating current insulin formulations. Most publications advocated adjusting insulin pump time settings after arrival; however, there was disagreement on timing and rate adjustments. Glucometers and subcutaneous glucose sensors were reported to be less accurate at altitude, but not to an extent that would preclude their clinical use. Recommendations for diabetes management during air travel vary significantly and are mostly based on expert opinion. Data from systematic investigation on glucose-lowering medication adjustment protocols may support the development of a future consensus statement. CSII = continuous subcutaneous insulin infusion (device) DPP-4 = dipeptidyl peptidase 4 EGA = error grid analysis GDH = glucose dehydrogenase GOX = glucose oxidase GLP1 = glucagon-like peptide-1 NPH = neutral protamine Hagedorn SGLT2 = sodium-glucose cotransporter-2.
HOW AGN JETS HEAT THE INTRACLUSTER MEDIUM—INSIGHTS FROM HYDRODYNAMIC SIMULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karen Yang, H.-Y.; Reynolds, Christopher S., E-mail: hsyang@astro.umd.edu
Feedback from active galactic nuclei (AGNs) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms of reproducing the properties of cool cores. We find that there is net heating within two “jet cones” (within ∼30° from the axis of jet precession)more » where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore, forming a “reduced” cooling flow. Consequently, the cluster core is in a process of “gentle circulation” over billions of years. Within the jet cones, there is significant adiabatic cooling as the gas is uplifted by buoyantly rising bubbles; outside the cones, energy is supplied by the inflow of already-heated gas from the jet cones as well as adiabatic compression as the gas moves toward the center. In other words, the fluid dynamics self-adjusts such that it compensates and transports the heat provided by the AGN, and hence no fine-tuning of the heating profile of any process is necessary. Throughout the cluster evolution, turbulent energy is only at the percent level compared to gas thermal energy, and thus turbulent heating is not the main source of heating in our simulation.« less
How AGN Jets Heat the Intracluster Medium—Insights from Hydrodynamic Simulations
NASA Astrophysics Data System (ADS)
Yang, H.-Y. Karen; Reynolds, Christopher S.
2016-10-01
Feedback from active galactic nuclei (AGNs) is believed to prevent catastrophic cooling in galaxy clusters. However, how the feedback energy is transformed into heat, and how the AGN jets heat the intracluster medium (ICM) isotropically, still remain elusive. In this work, we gain insights into the relative importance of different heating mechanisms using three-dimensional hydrodynamic simulations including cold gas accretion and momentum-driven jet feedback, which are the most successful models to date in terms of reproducing the properties of cool cores. We find that there is net heating within two “jet cones” (within ∼30° from the axis of jet precession) where the ICM gains entropy by shock heating and mixing with the hot thermal gas within bubbles. Outside the jet cones, the ambient gas is heated by weak shocks, but not enough to overcome radiative cooling, therefore, forming a “reduced” cooling flow. Consequently, the cluster core is in a process of “gentle circulation” over billions of years. Within the jet cones, there is significant adiabatic cooling as the gas is uplifted by buoyantly rising bubbles; outside the cones, energy is supplied by the inflow of already-heated gas from the jet cones as well as adiabatic compression as the gas moves toward the center. In other words, the fluid dynamics self-adjusts such that it compensates and transports the heat provided by the AGN, and hence no fine-tuning of the heating profile of any process is necessary. Throughout the cluster evolution, turbulent energy is only at the percent level compared to gas thermal energy, and thus turbulent heating is not the main source of heating in our simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leishear, R.; Poirier, M.; Lee, S.
2012-06-26
This paper documents testing methods, statistical data analysis, and a comparison of experimental results to CFD models for blending of fluids, which were blended using a single pump designed with dual opposing nozzles in an eight foot diameter tank. Overall, this research presents new findings in the field of mixing research. Specifically, blending processes were clearly shown to have random, chaotic effects, where possible causal factors such as turbulence, pump fluctuations, and eddies required future evaluation. CFD models were shown to provide reasonable estimates for the average blending times, but large variations -- or scatter -- occurred for blending timesmore » during similar tests. Using this experimental blending time data, the chaotic nature of blending was demonstrated and the variability of blending times with respect to average blending times were shown to increase with system complexity. Prior to this research, the variation in blending times caused discrepancies between CFD models and experiments. This research addressed this discrepancy, and determined statistical correction factors that can be applied to CFD models, and thereby quantified techniques to permit the application of CFD models to complex systems, such as blending. These blending time correction factors for CFD models are comparable to safety factors used in structural design, and compensate variability that cannot be theoretically calculated. To determine these correction factors, research was performed to investigate blending, using a pump with dual opposing jets which re-circulate fluids in the tank to promote blending when fluids are added to the tank. In all, eighty-five tests were performed both in a tank without internal obstructions and a tank with vertical obstructions similar to a tube bank in a heat exchanger. These obstructions provided scale models of vertical cooling coils below the liquid surface for a full scale, liquid radioactive waste storage tank. Also, different jet diameters and different horizontal orientations of the jets were investigated with respect to blending. Two types of blending tests were performed. The first set of eighty-one tests blended small quantities of tracer fluids into solution. Data from these tests were statistically evaluated to determine blending times for the addition of tracer solution to tanks, and blending times were successfully compared to Computational Fluid Dynamics (CFD) models. The second set of four tests blended bulk quantities of solutions of different density and viscosity. For example, in one test a quarter tank of water was added to a three quarters of a tank of a more viscous salt solution. In this case, the blending process was noted to significantly change due to stratification of fluids, and blending times increased substantially. However, CFD models for stratification and the variability of blending times for different density fluids was not pursued, and further research is recommended in the area of blending bulk quantities of fluids. All in all, testing showed that CFD models can be effectively applied if statistically validated through experimental testing, but in the absence of experimental validation CFD model scan be extremely misleading as a basis for design and operation decisions.« less
1-kHz two-dimensional coherent anti-Stokes Raman scattering (2D-CARS) for gas-phase thermometry.
Miller, Joseph D; Slipchenko, Mikhail N; Mance, Jason G; Roy, Sukesh; Gord, James R
2016-10-31
Two-dimensional gas-phase coherent anti-Stokes Raman scattering (2D-CARS) thermometry is demonstrated at 1 kHz in a heated jet. A hybrid femtosecond/picosecond CARS configuration is used in a two-beam phase-matching arrangement with a 100-femtosecond pump/Stokes pulse and a 107-picosecond probe pulse. The femtosecond pulse is generated using a mode-locked oscillator and regenerative amplifier that is synchronized to a separate picosecond oscillator and burst-mode amplifier. The CARS signal is spectrally dispersed in a custom imaging spectrometer and detected using a high-speed camera with image intensifier. 1-kHz, single-shot planar measurements at room temperature exhibit error of 2.6% and shot-to-shot variations of 2.6%. The spatial variation in measured temperature is 9.4%. 2D-CARS temperature measurements are demonstrated in a heated O2 jet to capture the spatiotemporal evolution of the temperature field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabriel, O.; Harskamp, W. E. N. van; Schram, D. C.
The cascaded arc is a plasma source providing high fluxes of excited and reactive species such as ions, radicals and rovibrationally excited molecules. The plasma is produced under pressures of some kPa in a direct current arc with electrical powers up to 10 kW. The plasma leaves the arc channel through a nozzle and expands with supersonic velocity into a vacuum-chamber kept by pumps at low pressures. We investigated the case of a pure hydrogen plasma jet with and without an applied axial magnetic field that confines ions and electrons in the jet. Highly excited molecules and atoms were detectedmore » by means of laser-induced fluorescence and optical emission spectroscopy. In case of an applied magnetic field the atomic state distribution of hydrogen atoms shows an overpopulation between the electronic states p = 5, 4 and 3. The influence of the highly excited hydrogen molecules on H{sup -} ion formation and a possible mechanism involving this negative ion and producing atomic hydrogen in state p = 3 will be discussed.« less
TEMPEST code modifications and testing for erosion-resisting sludge simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onishi, Y.; Trent, D.S.
The TEMPEST computer code has been used to address many waste retrieval operational and safety questions regarding waste mobilization, mixing, and gas retention. Because the amount of sludge retrieved from the tank is directly related to the sludge yield strength and the shear stress acting upon it, it is important to incorporate the sludge yield strength into simulations of erosion-resisting tank waste retrieval operations. This report describes current efforts to modify the TEMPEST code to simulate pump jet mixing of erosion-resisting tank wastes and the models used to test for erosion of waste sludge with yield strength. Test results formore » solid deposition and diluent/slurry jet injection into sludge layers in simplified tank conditions show that the modified TEMPEST code has a basic ability to simulate both the mobility and immobility of the sludges with yield strength. Further testing, modification, calibration, and verification of the sludge mobilization/immobilization model are planned using erosion data as they apply to waste tank sludges.« less
Development of underwater cutting system by abrasive water-jet
NASA Astrophysics Data System (ADS)
Demura, Kenji; Yamaguchi, Hitoshi
1993-09-01
The technology to cut objects in the ocean's depths with abrasive water jets was examined for possible application in view of the greater water depths and sophistication involved in work on the ocean floor today. A test model was developed to study this technology's safety and practicability. The test model was designed for use at great water depths and has functions and a configuration that are unlike equipment used on land. A continuous, stable supply of abrasive is a distinctive design feature. In land applications, there had been problems with plugged tubes and an uneven supply. For this reason, the abrasive was converted to slurry form, and a continuous pressurized tube pump system was adopted for supply to the nozzle head. Also, a hydraulic motor that does not employ oil or electric power was used to provide an underwater drive that is environment-friendly. The report outlines the technology's general design concept including its distinctive functions and its configuration for use at great depths, and the report provides great detail on the equipment.
NASA Astrophysics Data System (ADS)
Kodymová, Jarmila; Špalek, Otomar
1998-01-01
A jet-type singlet oxygen generator based on a gas-liquid chemical reaction yielding singlet oxygen, O2(1Δ g), for pumping the supersonic chemical oxygen-iodine laser was investigated. In addition to O2(1Δ g) and residual chlorine concentrations, a content of water formed during O2(1Δ g) generation was estimated (because of its detrimental effect on lasing) in gas flowing from the generator to the laser active region. The experimental conditions were determined under which an effect of liquid droplets escaping from the generator was negligible, and accordingly, a content of water vapour was suppressed to a value corresponding to the saturated water vapour pressure. It was also proved that a reduction in the relative water content, and a consequent increase in the laser output power, could be achieved by increasing peroxide and hydroxide concentration in the generator liquid, and by decreasing a liquid temperature and a total pressure in the generator.
Development of a compact, sealless, tripod supported, magnetically driven centrifugal blood pump.
Yuhki, A; Nogawa, M; Takatani, S
2000-06-01
In this study, a tripod supported sealless centrifugal blood pump was designed and fabricated for implantable application using a specially designed DC brushless motor. The tripod structure consists of 3 ceramic balls mounted at the bottom surface of the impeller moving in a polyethylene groove incorporated at the bottom pump casing. The follower magnet inside the impeller is coupled to the driver magnet of the motor outside the bottom pump casing, thus allowing the impeller to slide-rotate in the polyethylene groove as the motor turns. The pump driver has a weight of 230 g and a diameter of 60 mm. The acrylic pump housing has a weight of 220 g with the priming volume of 25 ml. At the pump rpm of 1,000 to 2,200, the generated head pressure ranged from 30 to 150 mm Hg with the maximum system efficiency being 12%. When the prototype pump was used in the pulsatile mock loop to assist the ventricle from its apex to the aorta, a strong correlation was obtained between the motor current and bypass flow waveforms. The waveform deformation index (WDI), defined as the ratio of the fundamental to the higher order harmonics of the motor current power spectral density, was computed to possibly detect the suction occurring inside the ventricle due to the prototype centrifugal pump. When the WDI was kept under the value of 0.20 by adjusting the motor rpm, it was successful in suppressing the suction due to the centrifugal pump in the ventricle. The prototype sealless, centrifugal pump together with the control method based on the motor current waveform analysis may offer an intermediate support of the failing left or right ventricle bridging to heart transplantation.
NASA Astrophysics Data System (ADS)
Fugger, Christopher A.
Staged combustion is one design approach in a gas turbine engine to reduce pollutant emission levels. In axially staged combustion, portions of the air and fuel are injected downstream of a lean premixed low NOx primary combustion zone. The gas residence time at elevated temperatures is decreased resulting in lower thermal NOx, and the reduced oxygen and high temperature vitiated primary zone flow further help to reduce pollutant emissions and quickly complete combustion. One implementation of axially staged combustion is transverse fuel jet injection. An important consideration for staged combustion systems, though, is how the primary and secondary combustion zones can couple through the acoustic resonances of the chamber. These couplings can lead to additional source terms that pump energy into the resonant acoustic field and help sustain the high-amplitude combustor pressure oscillations. An understanding of these couplings is important so that it may be possible to design a secondary combustion system that provides inherent damping to the combustor system. To systematically characterize the coupling of a reacting jet in unsteady crossflow in detail, the effects of an an unsteady pressure flowfield and an unsteady velocity flowfield are separately investigated. An optically accessible resonant combustion chamber was designed and built as part of this work to generate a standing wave unsteady vitiated crossflow at a chamber pressure of 0.9 MPa. The location of transverse jet injection corresponds to one of two locations, where one location is the pressure node and the other location the pressure anti-node of the resonant chamber acoustic mode. The injection location is optically accessible, and the dynamic interactions between the transverse jet flow and the 1st and 2nd axial combustor modes are measured using 10 kHz OH-PLIF and 2D PIV. This document analyzes five test cases: two non-reacting jets and three reacting jets. All cases correspond to jet injection near a pressure node of the 1st axial combustor mode, where the dominant flowfield fluctuations are a time-varying crossflow velocity. For the non-reacting jets, the nominal jet-to-crossflow momentum flux ratio is 19. For the reacting jets, the nominal jet-to-crossflow momentum flux ratio is 6. Two cross sectional planes parallel to the jet injection wall are investigated: 1 and 2.7 jet diameters from the jet injection wall. The combustor crossflow high frequency wall mounted pressure data is given for each test case. The velocity and OH-PLIF data is presented as instantaneous snapshots, time and phase averaged flowfields, modal decompositions using Proper Orthogonal Decomposition and Dynamic Mode Decomposition, and a jet cycle analysis relative to the crossflow acoustic cycle. Analysis of the five test cases shows that the jet cross sectional velocity and OH-PLIF dynamics display a multitude of dynamics. These are often organized into shear layer dynamics and wake dynamics, but are not mutually exclusive. For large unsteady crossflow velocity oscillations at the 1st axial combustor mode, both dynamics show strong organization at the unsteady crossflow frequency. Deciphering these dynamics is complicated by the fact that the ostensible jet response to the time-varying crossflow is a time-varying jet penetration. This drives the jet toward and away from the jet injection wall. These motions are perpendicular to the laser sheet and creates significant out-of-plane motions. The amplitude of crossflow unsteadiness appears to play a role in the sharpness of the wake dynamics. For the non-reacting cases, the wake dynamics are strong and dominant spectral features in the flowfield. For the reacting cases, the wake dynamics are spectrally distinct in the lower amplitude crossflow unsteadiness case, but a large unsteady amplitude crossflow appears to suppress the spectral bands in the frequency range corresponding to wake vortex dynamics.
Macaire, P; Nadhari, M; Greiss, H; Godwin, A; Elhanfi, O; Sainudeen, S; Abdul, M; Capdevila, X
2014-01-01
During continuous peripheral nerve blocks, infusion adjustments are essential for postoperative analgesia without side effects. Beside, physicians and nurse visits related to pump's settings and monitoring are time consuming and costly. We hypothesized that a remote control of pump's settings, by telemedicine transmission, adjusted to patients' feedbacks, is feasible and interesting in optimizing patient's postoperative pain management. Fifty-nine ASA physical status I and II patients were included. Ropivacaine 0.2% was infused during 72 h in CPNB catheters. After returning to the surgical ward, the patient was allowed to answer a 10 indicators questionnaire 3 times a day (8.00 AM, 2.00 PM, 8.00 PM), or unlimited on patient's demand. This information was transmitted from the pump to a server through the Internet. If one indicator was out of the predefined thresholds, the anesthesiologist in charge was immediately informed by texto on his cell phone. The anesthesiologist connected to the website, checked the data from the patient and modified the settings of the pump by remote control according to a written protocol. The changes need a secure access with a password and a confirmation. The number of settings changes, the time to realize the procedure and the adverse events related to the technique were noted. When the catheter was removed, the pump was unassigned to the patient and the data archived. Thirty sciatic, 24 femoral and 5 interscalene catheters were inserted in 59 patients. Five catheters were accidentally removed before the end of the 72-h period. The median VAS pain values at rest and during movement were respectively at 2 and 3. Sixteen patients complained about numbness promoting 2 (0-3) changes in pump settings; 9 about motor blockade with 1 (0-2) change; 5 about difficulties for physiotherapy with 1 (0-3) change. The mean time of pump settings modification after response to questionnaire or voluntarily patient's alert was 15 ± 2.2 minutes. Early physiotherapy in the surgical ward was totally uneventful in 54 patients. The mean value of satisfaction scale of the patients was 8.4 ± 1.6. No adverse event necessitated a postoperative analgesia technique change. Remote control pump's feedbacks and e-settings for postoperative analgesia using CPNB permitted a real adaptation to patients' needs, complaints and pain VAS values without nurse and physician physical intervention. Copyright © 2013. Published by Elsevier SAS.
Hoard, Christopher J.; Westjohn, David B.
2001-01-01
Success of agriculture in many areas of Michigan relies on withdrawal of large quantities of ground water for irrigation. In some areas of the State, water-level declines associated with large ground-water withdrawals may adversely affect nearby residential wells. Residential wells in several areas of Saginaw County, in Michigan's east-central Lower Peninsula, recently went dry shortly after irrigation of crop lands commenced; many of these wells also went dry during last year's agricultural cycle (summer 2000). In September 2000, residential wells that had been dry returned to function after cessation of pumping from large-capacity irrigation wells. To evaluate possible effects of groundwater withdrawals from irrigation wells on residential wells, the U.S. Geological Survey used hydrogeologic data including aquifer tests, water-level records, geologic logs, and numerical models to determine whether water-level declines and the withdrawal of ground water for agricultural irrigation are related. Numerical simulations based on representative irrigation well pumping volumes and a 3-month irrigation period indicate water-level declines that range from 5.3 to 20 feet, 2.8 to 12 feet and 1.7 to 6.9 feet at distances of about 0.5, 1.5 and 3 miles from irrigation wells, respectively. Residential wells that are equipped with shallow jet pumps and that are within 0.5 miles of irrigation wells would likely experience reduced yield or loss of yield during peak periods of irrigation. The actual 1 extent that irrigation pumping cause reduced function of residential wells, however, cannot be fully predicted on the basis of the data analyzed because many _other factors may be adversely affecting the yield of residential wells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, C.; Richardson, J. E.; Fallows, P.
2006-07-01
Power Fluidics is the generic name for a range of maintenance-free fluid transfer and mixing devices, capable of handling a wide range of highly radioactive fluids, jointly developed by British Nuclear Group, its US-based subsidiary BNG America, and AEA Technology. Power Fluidic devices include Reverse Flow Diverters (RFDs), Vacuum Operated Slug Lifts (VOSLs), and Air Lifts, all of which have an excellent proven record for pumping radioactive liquids and sludges. Variants of the RFD, termed Pulse Jet Mixers (PJMs) are used to agitate and mix tank contents, where maintenance-free equipment is desirable, and where a high degree of homogenization ismore » necessary. The equipment is designed around the common principle of using compressed air to provide the motive force to transfer liquids and sludges. These devices have no moving parts in contact with the radioactive medium and therefore require no maintenance in radioactive areas of processing plants. Once commissioned, Power Fluidic equipment has been demonstrated to operate for the life of the facility. Over 800 fluidic devices continue to operate safely and reliably in British Nuclear Group's nuclear facilities at the Sellafield site in the United Kingdom, and some of these have done so for almost 40 years. More than 400 devices are being supplied by AEA Technology and BNG America for the Waste Treatment Plant (WTP) at the Hanford Site in southeastern Washington State, USA. This paper discusses: - Principles of operation of fluidic pumps and mixers. - Selection criteria and design of fluidic pumps and mixers. - Operational experience of fluidic pumps and mixers in the United Kingdom. - Applications of fluidic pumps and mixers at the U.S. Department of Energy nuclear sites. (authors)« less
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF DIESEL ENGINE TUNE-UP PROCEDURES AND THE DESIGN OF FRONT END SUSPENSION AND AXLES USED ON DIESEL ENGINE EQUIPMENT. TOPICS ARE (1) PRE-TUNE-UP CHECKS, (2) TIMING THE ENGINE, (3) INJECTOR PLUNGER AND VALVE ADJUSTMENTS, (4) FUEL PUMP ADJUSTMENTS ON THE ENGINE (PTR AND PTG),…
Investigation of Combustion Control in a Dump Combustor Using the Feedback Free Fluidic Oscillator
NASA Technical Reports Server (NTRS)
Meier, Eric J.; Casiano, Matthew J.; Anderson, William E.; Heister, Stephen D.
2015-01-01
A feedback free fluidic oscillator was designed and integrated into a single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. The fluidic oscillator uses internal fluid dynamics to create an unsteady outlet jet at a specific frequency. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the combustor dump plane. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide with an overall O/F ratio of 11.7. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics enabling the study of a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared against equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 67% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. Additionally, computational fluid dynamics analysis of the combustor gives insight into the flow field interaction of the fluidic oscillators. The results indicate that open loop high frequency propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate.
PSH Transient Simulation Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard
PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... Division, Fort Smith, AR: January 6, 2009 TA-W-73,427: Haldex Hydraulics Corporation, Statesville Location... America, Inc., Cinnaminson, NJ: March 1, 2009 TA-W-73,726: Pentair Water, Water Pump Manufacturing Plant...
Development of hybrid fluid jet/float polishing process
NASA Astrophysics Data System (ADS)
Beaucamp, Anthony T. H.; Namba, Yoshiharu; Freeman, Richard R.
2013-09-01
On one hand, the "float polishing" process consists of a tin lap having many concentric grooves, cut from a flat by single point diamond turning. This lap is rotated above a hydrostatic bearing spindle of high rigidity, damping and rotational accuracy. The optical surface thus floats above a thin layer of abrasive particles. But whilst surface texture can be smoothed to ~0.1nm rms (as measured by atomic force microscopy), this process can only be used on flat surfaces. On the other hand, the CNC "fluid jet polishing" process consists of pumping a mixture of water and abrasive particles to a converging nozzle, thus generating a polishing spot that can be moved along a tool path with tight track spacing. But whilst tool path feed can be moderated to ultra-precisely correct form error on freeform optical surfaces, surface finish improvement is generally limited to ~1.5nm rms (with fine abrasives). This paper reports on the development of a novel finishing method, that combines the advantages of "fluid jet polishing" (i.e. freeform corrective capability) with "float polishing" (i.e. super-smooth surface finish of 0.1nm rms or less). To come up with this new "hybrid" method, computational fluid dynamic modeling of both processes in COMSOL is being used to characterize abrasion conditions and adapt the process parameters of experimental fluid jet polishing equipment, including: (1) geometrical shape of nozzle, (2) position relative to the surface, (3) control of inlet pressure. This new process is aimed at finishing of next generation X-Ray / Gamma Ray focusing optics.
A versatile design for resonant guided-wave parametric down-conversion sources for quantum repeaters
NASA Astrophysics Data System (ADS)
Brecht, Benjamin; Luo, Kai-Hong; Herrmann, Harald; Silberhorn, Christine
2016-05-01
Quantum repeaters—fundamental building blocks for long-distance quantum communication—are based on the interaction between photons and quantum memories. The photons must fulfil stringent requirements on central frequency, spectral bandwidth and purity in order for this interaction to be efficient. We present a design scheme for monolithically integrated resonant photon-pair sources based on parametric down-conversion in nonlinear waveguides, which facilitate the generation of such photons. We investigate the impact of different design parameters on the performance of our source. The generated photon spectral bandwidths can be varied between several tens of MHz up to around 1 GHz, facilitating an efficient coupling to different memories. The central frequency of the generated photons can be coarsely tuned by adjusting the pump frequency, poling period and sample temperature, and we identify stability requirements on the pump laser and sample temperature that can be readily fulfilled with off-the-shelf components. We find that our source is capable of generating high-purity photons over a wide range of photon bandwidths. Finally, the PDC emission can be frequency fine-tuned over several GHz by simultaneously adjusting the sample temperature and pump frequency. We conclude our study with demonstrating the adaptability of our source to different quantum memories.
40 CFR 63.341 - Definitions and nomenclature.
Code of Federal Regulations, 2010 CFR
2010-07-01
... electrical insulation) using a chromic acid solution. In chromium anodizing, the part to be anodized acts as... chromium anodizing: rectifiers fitted with controls to allow for voltage adjustments, heat exchanger... electroplating: Rectifiers, anodes, heat exchanger equipment, circulation pumps, and air agitation systems...
VIEW OF THE INTERIOR OF BUILDING 774, THE ORIGINAL LIQUID ...
VIEW OF THE INTERIOR OF BUILDING 774, THE ORIGINAL LIQUID PROCESS WASTEWATER TREATMENT FACILITY. THE PHOTOGRAPH SHOWS STORAGE TANKS AND ASSOCIATED PLUTONIUM-CONTAMINATED SOLUTIONS. THE GLOVE BOX IS USED BY OPERATORS TO MANUALLY OPERATE PUMPS AND VALVES THAT REQUIRE PERIODIC ADJUSTMENT. OTHER VALVES IN THE ROOM WERE INFREQUENTLY ADJUSTED, AND ARE SEALED IN PLASTIC WRAP - Rocky Flats Plant, Waste Treatment Facility, Adjacent to bldg 771C, in northern portion of protected area, Golden, Jefferson County, CO
Heller, Simon; White, David; Lee, Ellen; Lawton, Julia; Pollard, Daniel; Waugh, Norman; Amiel, Stephanie; Barnard, Katharine; Beckwith, Anita; Brennan, Alan; Campbell, Michael; Cooper, Cindy; Dimairo, Munyaradzi; Dixon, Simon; Elliott, Jackie; Evans, Mark; Green, Fiona; Hackney, Gemma; Hammond, Peter; Hallowell, Nina; Jaap, Alan; Kennon, Brian; Kirkham, Jackie; Lindsay, Robert; Mansell, Peter; Papaioannou, Diana; Rankin, David; Royle, Pamela; Smithson, W Henry; Taylor, Carolin
2017-04-01
Insulin is generally administered to people with type 1 diabetes mellitus (T1DM) using multiple daily injections (MDIs), but can also be delivered using infusion pumps. In the UK, pumps are recommended for patients with the greatest need and adult use is less than in comparable countries. Previous trials have been small, of short duration and have failed to control for training in insulin adjustment. To assess the clinical effectiveness and cost-effectiveness of pump therapy compared with MDI for adults with T1DM, with both groups receiving equivalent structured training in flexible insulin therapy. Pragmatic, multicentre, open-label, parallel-group cluster randomised controlled trial, including economic and psychosocial evaluations. After participants were assigned a group training course, courses were randomly allocated in pairs to either pump or MDI. Eight secondary care diabetes centres in the UK. Adults with T1DM for > 12 months, willing to undertake intensive insulin therapy, with no preference for pump or MDI, or a clinical indication for pumps. Pump or MDI structured training in flexible insulin therapy, followed up for 2 years. MDI participants used insulin analogues. Pump participants used a Medtronic Paradigm ® Veo TM (Medtronic, Watford, UK) with insulin aspart (NovoRapid, Novo Nordisk, Gatwick, UK). Primary outcome - change in glycated haemoglobin (HbA 1c ) at 2 years in participants whose baseline HbA 1c was ≥ 7.5% (58 mmol/mol). Key secondary outcome - proportion of participants with HbA 1c ≤ 7.5% at 2 years. Other outcomes at 6, 12 and 24 months - moderate and severe hypoglycaemia; insulin dose; body weight; proteinuria; diabetic ketoacidosis; quality of life (QoL); fear of hypoglycaemia; treatment satisfaction; emotional well-being; qualitative interviews with participants and staff (2 weeks), and participants (6 months); and ICERs in trial and modelled estimates of cost-effectiveness. We randomised 46 courses comprising 317 participants: 267 attended a Dose Adjustment For Normal Eating course (132 pump; 135 MDI); 260 were included in the intention-to-treat analysis, of which 235 (119 pump; 116 MDI) had baseline HbA 1c of ≥ 7.5%. HbA 1c and severe hypoglycaemia improved in both groups. The drop in HbA 1c % at 2 years was 0.85 on pump and 0.42 on MDI. The mean difference (MD) in HbA 1c change at 2 years, at which the baseline HbA 1c was ≥ 7.5%, was -0.24% [95% confidence interval (CI) -0.53% to 0.05%] in favour of the pump ( p = 0.098). The per-protocol analysis showed a MD in change of -0.36% (95% CI -0.64% to -0.07%) favouring pumps ( p = 0.015). Pumps were not cost-effective in the base case and all of the sensitivity analyses. The pump group had greater improvement in diabetes-specific QoL diet restrictions, daily hassle plus treatment satisfaction, statistically significant at 12 and 24 months and supported by qualitative interviews. Blinding of pump therapy was not possible, although an objective primary outcome was used. Adding pump therapy to structured training in flexible insulin therapy did not significantly enhance glycaemic control or psychosocial outcomes in adults with T1DM. To understand why few patients achieve a HbA 1c of < 7.5%, particularly as glycaemic control is worse in the UK than in other European countries. Current Controlled Trials ISRCTN61215213. This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment ; Vol. 21, No. 20. See the NIHR Journals Library website for further project information.
Pavel, Nicolaie; Tsunekane, Masaki; Taira, Takunori
2011-05-09
A passively Q-switched Nd:YAG/Cr(4+):YAG micro-laser with three-beam output was realized. A single active laser source made of a composite, all-ceramics Nd:YAG/Cr(4+):YAG monolithic cavity was pumped by three independent lines. At 5 Hz repetition rate, each line delivered laser pulses with ~2.4 mJ energy and 2.8-MW peak power. The M(2) factor of a laser beam was 3.7, and stable air breakdowns were realized. The increase of pump repetition rate up to 100 Hz improved the laser pulse energy by 6% and required ~6% increase of the pump pulse energy. Pulse timing of the laser-array beams can by adjusted by less than 5% tuning of an individual line pump energy, and therefore simultaneous multi-point ignition is possible. This kind of laser can be used for multi-point ignition of an automobile engine. © 2011 Optical Society of America
Variable temperature seat climate control system
Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.
1997-05-06
A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.
NASA Astrophysics Data System (ADS)
Sowade, R.; Breunig, I.; Kiessling, J.; Buse, K.
2009-07-01
We demonstrate that for a given pump source, there is an optimum pump threshold to achieve the maximum single-frequency output power in singly resonant optical parametric oscillators. Therefore, cavity losses and parametric amplification have to be adjusted. In particular, continuous-wave output powers of 1.5 W were achieved with a 2.5 cm lithium niobate crystal in comparison with 0.5 W by a 5 cm long crystal within the same cavity design. This counter-intuitive result of weaker amplification leading to larger powers can be explained using a model from L.B. Kreuzer (Proc. Joint Conf. Lasers and Opt.-Elect., p. 52, 1969). Kreuzer also states that single-mode operation is possible only up to pump powers which are 4.6 times the threshold value. Additionally, implementing an outcoupling mirror to increase losses, single-frequency waves with powers of 3 W at 3.2 µm and 7 W at 1.5 µm could be generated simultaneously.
Cherry, Gregory S.; Clarke, John S.
2017-10-26
Steady-state simulations using a revised regional groundwater-flow model based on MODFLOW were run to assess the potential long-term effects on the Upper Floridan aquifer (UFA) of pumping the Lower Floridan aquifer (LFA) at well 36Q398, located at Barbour Pointe in coastal Georgia near Savannah. Simulated pumping of well 36Q398 at a rate of 750 gallons per minute (gal/min; or 1.08 million gallons per day [Mgal/d]) indicated a maximum drawdown of about 2.19 feet (ft) in the UFA directly above the pumped well and at least 1 ft of drawdown within a nearly 190-square-mile area (scenario A). Induced vertical leakage from the UFA provided about 98 percent of the water to the pumped well. Simulated pumping of well 36Q398 caused increased downward leakage in all layers above the LFA, decreased upward leakage in all layers above the LFA, increased inflow to and decreased outflow from lateral specified-head boundaries in the UFA and LFA, and an increase in the volume of induced inflow from the general-head boundary representing outcrop units. Water budgets for scenario A indicated that changes in inflows and outflows through general-head boundaries would compose about 45 percent of the simulated pumpage from well 36Q398, with the remaining 55 percent of the pumped water derived from flow across lateral specified-head boundaries.Additional steady-state simulations were run to evaluate a pumping rate in the UFA of 240 gal/min (0.346 Mgal/d), which would produce an equivalent maximum drawdown in the UFA as pumping from well 36Q398 in the LFA at a rate of 750 gal/min (called the “drawdown offset”; scenario B). Simulated pumping in the UFA for the drawdown offset produced about 2.18 ft of drawdown, comparable to 2.19 ft of drawdown in the UFA simulated in scenario A. Water budgets for scenario B also provided favorable comparisons with scenario A, indicating that 42 percent of the drawdown-offset pumpage (0.346 Mgal/d) in the UFA originates as increased inflow and decreased outflow across general-head boundaries from overlying units in the surficial and Brunswick aquifer systems and that the remaining simulated pumpage originates as flow across general- and specified-head boundaries within the UFA and LFA.The revised model was evaluated for sensitivity by first altering horizontal and vertical hydraulic conductivity in the Lower Floridan semiconfining unit and then adjusting horizontal and vertical hydraulic conductivity in the LFA to match the 35.6 ft of drawdown at pumping well 36Q398. These adjustments also affected the maximum simulated drawdown in the UFA and the equivalent offset pumping in the UFA that would produce the same amount of drawdown. The maximum drawdown in the UFA ranged from 1.82 to 2.57 ft and the equivalent offset pumping in the UFA ranged from 199 to 278 gal/min.The revised model reasonably depicts changes in groundwater levels resulting from pumping the LFA at Barbour Pointe at a rate of 750 gal/min. Results are limited, however, by the same model assumptions and design as the original model, and placement of boundaries and type of boundary used exert the greatest control on overall groundwater flow and interaquifer leakage in the system. Simulation results have improved regional characterization of the Floridan aquifer system, which could be used by State officials in evaluating requests for groundwater withdrawal from the LFA.
Miniature Scroll Pumps Fabricated by LIGA
NASA Technical Reports Server (NTRS)
Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam
2009-01-01
Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of <1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.
Proton Pump Inhibitor Use and the Risk of Chronic Kidney Disease.
Lazarus, Benjamin; Chen, Yuan; Wilson, Francis P; Sang, Yingying; Chang, Alex R; Coresh, Josef; Grams, Morgan E
2016-02-01
Proton pump inhibitors (PPIs) are among the most commonly used drugs worldwide and have been linked to acute interstitial nephritis. Less is known about the association between PPI use and chronic kidney disease (CKD). To quantify the association between PPI use and incident CKD in a population-based cohort. In total, 10,482 participants in the Atherosclerosis Risk in Communities study with an estimated glomerular filtration rate of at least 60 mL/min/1.73 m(2) were followed from a baseline visit between February 1, 1996, and January 30, 1999, to December 31, 2011. The data was analyzed from May 2015 to October 2015. The findings were replicated in an administrative cohort of 248,751 patients with an estimated glomerular filtration rate of at least 60 mL/min/1.73 m(2) from the Geisinger Health System. Self-reported PPI use in the Atherosclerosis Risk in Communities study or an outpatient PPI prescription in the Geisinger Health System replication cohort. Histamine2 (H2) receptor antagonist use was considered a negative control and active comparator. Incident CKD was defined using diagnostic codes at hospital discharge or death in the Atherosclerosis Risk in Communities Study, and by a sustained outpatient estimated glomerular filtration rate of less than 60 mL/min/1.73 m(2) in the Geisinger Health System replication cohort. Among 10,482 participants in the Atherosclerosis Risk in Communities study, the mean (SD) age was 63.0 (5.6) years, and 43.9% were male. Compared with nonusers, PPI users were more often of white race, obese, and taking antihypertensive medication. Proton pump inhibitor use was associated with incident CKD in unadjusted analysis (hazard ratio [HR], 1.45; 95% CI, 1.11-1.90); in analysis adjusted for demographic, socioeconomic, and clinical variables (HR, 1.50; 95% CI, 1.14-1.96); and in analysis with PPI ever use modeled as a time-varying variable (adjusted HR, 1.35; 95% CI, 1.17-1.55). The association persisted when baseline PPI users were compared directly with H2 receptor antagonist users (adjusted HR, 1.39; 95% CI, 1.01-1.91) and with propensity score-matched nonusers (HR, 1.76; 95% CI, 1.13-2.74). In the Geisinger Health System replication cohort, PPI use was associated with CKD in all analyses, including a time-varying new-user design (adjusted HR, 1.24; 95% CI, 1.20-1.28). Twice-daily PPI dosing (adjusted HR, 1.46; 95% CI, 1.28-1.67) was associated with a higher risk than once-daily dosing (adjusted HR, 1.15; 95% CI, 1.09-1.21). Proton pump inhibitor use is associated with a higher risk of incident CKD. Future research should evaluate whether limiting PPI use reduces the incidence of CKD.
NASA Astrophysics Data System (ADS)
Melville, Kenneth J.; Farnham, T.; Hoban, S.
2010-10-01
On September 22, 2001, the spacecraft Deep Space 1 (DS1), which was primarily designed for testing advanced technologies in space, preformed an extended mission flyby of the comet 19P/Borrelly. This encounter provided scientists with the best images taken of a comet. These images from the DS1 Miniature Integrated Camera and Spectrometer (MICAS) instrument show features of comet Borrelly's surface; collimated dust jets escaping the nucleus, and the coma of gas and dust that surrounds the nucleus. Properties of the jet, such as rate and angle of expansion have been measured accurately due to the jet's geometric structure and position on the rotation axis of the comet. These measurements have been taken for several points along the spacecrafts approach, flyby, and from additional McDonald ground based observatory images. A model of the jet with similar geometry has been constructed in order to reproduce the observational data found in the flyby images. Other proposed models are tested as well. Once these models has been adjusted to replicate the data, they can be used to investigate the collimation mechanism below the comets surface producing the jet. Comet 19P/Borrelly is the idea test for this model due to the simple structure of the jet, as well as the wide variety of angles and observation times. Using information from this model, scientists may be able to make new assumptions on the composition and physical structure of other comets. This research was supported by the NASA Planetary Data System: Small Bodies Node, and College Student Investigator Program at UMBC Goddard Earth Sciences & Technology Center.
NASA Astrophysics Data System (ADS)
Adhikari, Ek R.; Samara, Vladimir; Ptasinska, Sylwia
2018-05-01
Because environmental conditions, such as room temperature and humidity, fluctuate arbitrarily, effects of atmospheric pressure plasma jets (APPJs) used in medical applications operating at various places and time might vary. Therefore, understanding the possible effects of air components in and outside APPJs is essential for clinical use, which requires reproducibility of plasma performance. These air components can influence the formation of reactive species in the APPJ, and the type and amount of these species formed depend on the feed gas inside the APPJ and the plasma jet environment. In this study, we monitored changes in plasma current and power, as well as in the level of DNA damage attributable to plasma irradiation, by adjusting the fraction of oxygen and water vapor in the plasma jet environment and feed gas. Here, DNA was used as a molecular probe to identify chemical changes that occurred in the plasma jet under these various environmental conditions. The damaged and undamaged fractions of DNA were quantified using agarose gel electrophoresis. We obtained an optimal amount of oxygen or water vapor in the plasma jet environment, as well as in the feed gas, which increased the level of DNA damage significantly. This increase can be attributed primarily to the formation of reactive species caused by water and oxygen decomposition in the APPJ detected with mass spectrometry. Moreover, we observed that the plasma power remained the same or decreased when gas was added to the jet environment or the feed gas, respectively, but in both cases, DNA damage increased. This indicates the superiority of plasma chemistry over the electrical power applied for APPJ ignition of the plasma sources used in medical applications.
White, David; Waugh, Norman; Elliott, Jackie; Lawton, Julia; Barnard, Katharine; Campbell, Michael J; Dixon, Simon; Heller, Simon
2014-09-03
People with type 1 diabetes (T1DM) require insulin therapy to sustain life, and need optimal glycaemic control to prevent diabetic ketoacidosis and serious long-term complications. Insulin is generally administered using multiple daily injections but can also be delivered using an infusion pump (continuous subcutaneous insulin infusion), a more costly option with benefits for some patients. The UK National Institute for Health and Care Excellence (NICE) recommend the use of pumps for patients with the greatest need, citing insufficient evidence to approve extension to a wider population. Far fewer UK adults use pumps than in comparable countries. Previous trials of pump therapy have been small and of short duration and failed to control for training in insulin adjustment. This paper describes the protocol for a large randomised controlled trial comparing pump therapy with multiple daily injections, where both groups are provided with high-quality structured education. A multicentre, parallel group, cluster randomised controlled trial among 280 adults with T1DM. All participants attended the week-long dose adjustment for normal eating (DAFNE) structured education course, and receive either multiple daily injections or pump therapy for 2 years. The trial incorporates a detailed mixed-methods psychosocial evaluation and cost-effectiveness analysis. The primary outcome will be the change in glycosylated haemoglobin (HbA1c) at 24 months in those participants whose baseline HbA1c is at or above 7.5% (58 mmol/mol). The key secondary outcome will be the proportion of participants reaching the NICE target of an HbA1c of 7.5% (58 mmol/mol) or less at 24 months. The protocol was approved by the Research Ethics Committee North West, Liverpool East and received Medicines and Healthcare products Regulatory Agency (MHRA) clinical trials authorisation. Each participating centre gave National Health Service R&D approval. We shall disseminate study findings to study participants and through peer reviewed publications and conference presentations, including lay user groups. ISRCTN 61215213. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup
NASA Astrophysics Data System (ADS)
Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert
2014-04-01
A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was always achievable. Thus, the reliable and robust realization of tunable high-speed monodisperse micro-droplet trains is demonstrated. Some implication for applications is discussed.
Ahmad, Tariq; Fiuzat, Mona; Neely, Benjamin; Neely, Megan L; Pencina, Michael J; Kraus, William E; Zannad, Faiez; Whellan, David J; Donahue, Mark P; Piña, Ileana L; Adams, Kirkwood F; Kitzman, Dalane W; O'Connor, Christopher M; Felker, G Michael
2014-06-01
The aim of this study was to determine whether biomarkers of myocardial stress and fibrosis improve prediction of the mode of death in patients with chronic heart failure. The 2 most common modes of death in patients with chronic heart failure are pump failure and sudden cardiac death. Prediction of the mode of death may facilitate treatment decisions. The relationship between amino-terminal pro-brain natriuretic peptide (NT-proBNP), galectin-3, and ST2, biomarkers that reflect different pathogenic pathways in heart failure (myocardial stress and fibrosis), and mode of death is unknown. HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training) was a randomized controlled trial of exercise training versus usual care in patients with chronic heart failure due to left ventricular systolic dysfunction (left ventricular ejection fraction ≤35%). An independent clinical events committee prospectively adjudicated mode of death. NT-proBNP, galectin-3, and ST2 levels were assessed at baseline in 813 subjects. Associations between biomarkers and mode of death were assessed using cause-specific Cox proportional hazards modeling, and interaction testing was used to measure differential associations between biomarkers and pump failure versus sudden cardiac death. Discrimination and risk reclassification metrics were used to assess the added value of galectin-3 and ST2 in predicting mode of death risk beyond a clinical model that included NT-proBNP. After a median follow-up period of 2.5 years, there were 155 deaths: 49 from pump failure, 42 from sudden cardiac death, and 64 from other causes. Elevations in all biomarkers were associated with increased risk for both pump failure and sudden cardiac death in both adjusted and unadjusted analyses. In each case, increases in the biomarker had a stronger association with pump failure than sudden cardiac death, but this relationship was attenuated after adjustment for clinical risk factors. Clinical variables along with NT-proBNP levels were stronger predictors of pump failure (C statistic: 0.87) than sudden cardiac death (C statistic: 0.73). Addition of ST2 and galectin-3 led to improved net risk classification of 11% for sudden cardiac death, but not pump failure. Clinical predictors along with NT-proBNP levels were strong predictors of pump failure risk, with insignificant incremental contributions of ST2 and galectin-3. Predictability of sudden cardiac death risk was less robust and enhanced by information provided by novel biomarkers. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Impact of Ultrafiltration on Kidney Injury After Cardiac Surgery: The Michigan Experience.
Paugh, Theron A; Dickinson, Timothy A; Martin, James R; Hanson, Eric C; Fuller, John; Heung, Michael; Zhang, Min; Shann, Kenneth G; Prager, Richard L; Likosky, Donald S
2015-11-01
This study examines the relationship between the use and volume of conventional ultrafiltration (CUF) and the risk of acute kidney injury (AKI) after isolated on-pump coronary artery bypass graft surgery. A total of 6,407 consecutive patients underwent isolated on-pump coronary artery bypass graft surgery between 2010 and 2013 at 21 medical centers participating in the PERFusion Measures and Outcomes (PERForm) registry. We assessed the effect of CUF use on AKI and other postoperative sequelae using a generalized linear mixed-effect model with a logit link. We also modeled the effect of increasing volume of CUF per weight on AKI, and tested for any modification by a patient's preoperative kidney function. Patients having CUF were more likely to have diabetes, vascular disease, chronic obstructive pulmonary disease, congestive heart failure, history of a myocardial infarction, or an intraaortic balloon pump (p < 0.05). They had lower preoperative and nadir hematocrits, creatinine clearance, and ejection fraction (p < 0.05). Patients exposed to CUF had higher adjusted risk of AKI (adjusted odds ratio, 1.36; p = 0.002), although similar rates of death, stroke, and reoperation for bleeding (p > 0.05). The risk of AKI was modified by a patient's preoperative kidney function (p < 0.0004). Among patients with a creatinine clearance of less than 99.6 mL/min (95% confidence interval, 67.6 to 137.5), increasing volume of CUF was associated with a higher risk of AKI. Patients exposed to CUF had a higher adjusted risk of AKI. Clinical teams should consider lower volumes of CUF among patients with low creatinine clearance to minimize the risk of AKI. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, L.; Kinzelbach, W.; Yao, H.; Hagmann, A.; Li, N.; Steiner, J. F.
2017-12-01
The North China Plain is one of the most important agricultural regions which relies heavily on groundwater pumping for irrigation powered by electric energy. This region is also facing a severe problem of groundwater over-pumping. Stopping groundwater depletion by controlling pumping for irrigation may harm the agricultural production and affect the interests of the electricity utility who is a direct participant in the irrigation management. Water-saving infrastructures such as sprinklers can be effective means for water conservation but are often difficult to implement due to farmers' unwillingness to pay for the additional electricity consumption. Understanding this food-energy-water nexus is fundamental to implement effective and practical strategies for groundwater over-pumping control in the North China Plain. However, this understanding can be obscured by the missing groundwater pumping monitoring and a lack of access to specific energy data for irrigation use as well as the field observations of pump efficiency. Taking the example of a typical agricultural county (Guantao) in the North China Plain with irrigation pumps generally powered by electricity, this study is focused on the analysis of the energy requirement in the irrigation sector and its application in developing strategies for groundwater over-pumping control at the county scale. 1) Field measurements from pumping tests are used to adjust the pumps' theoretical characteristics. A simple empirical equation is derived to estimate the energy use rate for irrigation given the depth of the groundwater table. Field measurements show that pump efficiency is around 30% in the tested region. 2) We hypothesize that the inter-annual variability of rural energy consumption is caused by the randomness in annual precipitation. This assumption is examined and then applied to separate the energy consumption for irrigation from the total rural energy consumption. 3) Based on the groundwater pumping rate reconstructed from the energy use, the interaction of agricultural production, groundwater resources and energy requirement is analysed and will help in developing practical strategies for groundwater over-pumping control in Guantao County.
Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland
NASA Astrophysics Data System (ADS)
Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. P.; Lüthi, T.; Wernli, H.
2003-11-01
A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. Is was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~3 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several instability diagnostics near the tropopause level provide consistent evidence that the wave is emitted by the geostrophic adjustment of a jet instability associated with an intense, rapidly evolving, anticyclonically curved jet stream. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, an approximate jet instability diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from an unstable jet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romberger, Jeff
An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.
NASA Technical Reports Server (NTRS)
1987-01-01
Diabetics are no longer concerned with scheduling activities around peaking insulin levels since the use of an external pump from Pacesetter Systems, Inc. used to deliver insulin continuously at a preprogrammed individually adjusted rate. The pump wearer can lead a more normal existence, even participate in sports or travel, and there is an even greater benefit. Research indicates that infusion of "short acting" insulin in tiny amounts over a long period - instead of "long- acting" insulin has helped many diabetics achieve better control of blood sugar levels, thereby minimizing the possibility of complications and, in some cases, even halting the progression of complications.
Investigation of 100 mJ all solid state end-pumped 1064 nm Q-switched laser
NASA Astrophysics Data System (ADS)
Xie, Shiyong; Wang, Caili; Liu, Hui; Bo, Yong; Xu, Zuyan
2017-11-01
High energy 1064 nm Q-switched laser output is obtained by LD vertical array end pumping Nd:YAG. Cylindrical lens are used for beam shaping of LD array for different divergence angle of fast and slow axis. Based on the theoretical simulation of fundamental mode radius using ABCD transfer matrix, the resonant cavity is optimized and curvature radius of cavity mirrors is determined. The intracavity power density is calculated according to the output laser pulse energy and transmittance of output coupling mirror is optimized under the condition that optical device is not damaged. 1064 nm laser with a maximum output of 110 mJ is generated under LD pump energy of 600 mJ, corresponding to optical conversion efficiency of 18.3%. The laser pulse width is 11 ns and divergence angle is 1.2 mrad. For saturation phenomenon of Q-switched laser output, LD temperature is adjusted to make wavelength deviate from absorption peak of Nd:YAG crystal. The parasitic oscillation, which affects the enhancement of Q-switched laser energy, can be effectively suppressed by reducing gain of pump end of laser medium, which provides an effective technical means for obtaining high energy end-pumped Q-switched laser.
Exploring the Biotic Pump Hypothesis along Non-linear Transects in Tropical South America
NASA Astrophysics Data System (ADS)
Molina, R.; Bettin, D. M.; Salazar, J. F.; Villegas, J. C.
2014-12-01
Forests might actively transport atmospheric moisture from the oceans, according to the biotic pump of atmospheric moisture (BiPAM) hypothesis. The BiPAM hypothesis appears to be supported by the fact that precipitation drops exponentially with distance from ocean along non-forested land transects, but not on their forested counterparts. Yet researchers have discussed the difficulty in defining proper transects for BiPAM studies. Previous studies calculate precipitation gradients either along linear transects maximizing distance to the ocean, or along polylines following specific atmospheric pathways (e.g., aerial rivers). In this study we analyzed precipitation gradients along curvilinear streamlines of wind in tropical South America. Wind streamlines were computed using long-term quarterly averages of meridional and zonal wind components from the ERA-Interim and NCEP/NCAR reanalyses. Total precipitation along streamlines was obtained from four data sources: TRMM, UDEL, ERA-Interim, and NCEP/NCAR. Precipitation on land versus distance from the ocean was analyzed along selected streamlines for each data source. As predicted by BiPAM, precipitation gradients did not decrease exponentially along streamlines in the vicinity of the Amazon forest, but dropped rapidly as distance from the forest increased. Remarkably, precipitation along streamlines in some areas outside the Amazon forest did not decrease exponentially either. This was possibly owing to convergence of moisture conveyed by low level jets (LLJs) in those areas (e.g., streamlines driven by the Caribbean and CHOCO jets on the Pacific coast of Colombia). Significantly, BiPAM held true even along long transects displaying strong sinuosity. In fact, the general conclusions of previous studies remain valid. Yet effects of LLJs on precipitation gradients need to be thoroughly considered in future BiPAM studies.
Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct
NASA Technical Reports Server (NTRS)
Gashev, Anatoliy A.; Davis, Michael J.; Zawieja, David C.; Delp, M. D. (Principal Investigator)
2002-01-01
There are only a few reports of the influence of imposed flow on an active lymph pump under conditions of controlled intraluminal pressure. Thus, the mechanisms are not clearly defined. Rat mesenteric lymphatics and thoracic ducts were isolated, cannulated and pressurized. Input and output pressures were adjusted to impose various flows. Lymphatic systolic and diastolic diameters were measured and used to determine contraction frequency and pump flow indices. Imposed flow inhibited the active lymph pump in both mesenteric lymphatics and in the thoracic duct. The active pump of the thoracic duct appeared more sensitive to flow than did the active pump of the mesenteric lymphatics. Imposed flow reduced the frequency and amplitude of the contractions and accordingly the active pump flow. Flow-induced inhibition of the active lymph pump followed two temporal patterns. The first pattern was a rapidly developing inhibition of contraction frequency. Upon imposition of flow, the contraction frequency immediately fell and then partially recovered over time during continued flow. This effect was dependent on the magnitude of imposed flow, but did not depend on the direction of flow. The effect also depended upon the rate of change in the direction of flow. The second pattern was a slowly developing reduction of the amplitude of the lymphatic contractions, which increased over time during continued flow. The inhibition of contraction amplitude was dependent on the direction of the imposed flow, but independent of the magnitude of flow. Nitric oxide was partly but not completely responsible for the influence of flow on the mesenteric lymph pump. Exposure to NO mimicked the effects of flow, and inhibition of the NO synthase by N (G)-monomethyl-L-arginine attenuated but did not completely abolish the effects of flow.
Reciprocating down-hole sand pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhle, J.L.
1987-04-28
This patent describes the invention of a continuously-operated reciprocating down-hole sand pump comprising: a steel polished plunger pipe that strokes back and forth within a steel honed pump barrel, and is equipped with a self-lubricating fluorocarbon V-ring system that is pressure-actuated during compression strokes; the self-lubricating fluorocarbon V-ring system also is self-actuated by means of coil springs to provide wiping action to the polished plunger pipe during suction strokes; the self-lubricating fluorocarbons V-ring system also self-adjusts by means of coil springs located adjacent the fluorocarbon V-ring so as to automatically compensate for V-ring wear; and the self-lubricating fluorocarbon V-ring systemmore » also is designed in such a manner so as to eliminate voids and discourage the extrusion of V-rings in high temperature and high-pressure applications.« less
Sakota, Daisuke; Murashige, Tomotaka; Kosaka, Ryo; Nishida, Masahiro; Maruyama, Osamu
2014-09-01
Blood coagulation is one of the primary concerns when using mechanical circulatory support devices such as blood pumps. Noninvasive detection and imaging of thrombus formation is useful not only for the development of more hemocompatible devices but also for the management of blood coagulation to avoid risk of infarction. The objective of this study is to investigate the use of near-infrared light for imaging of thrombus formation in a rotary blood pump. The optical properties of a thrombus at wavelengths ranging from 600 to 750 nm were analyzed using a hyperspectral imaging (HSI) system. A specially designed hydrodynamically levitated centrifugal blood pump with a visible bottom area was used. In vitro antithrombogenic testing was conducted five times with the pump using bovine whole blood in which the activated blood clotting time was adjusted to 200 s prior to the experiment. Two halogen lights were used for the light sources. The forward scattering through the pump and backward scattering on the pump bottom area were imaged using the HSI system. HSI showed an increase in forward scattering at wavelengths ranging from 670 to 750 nm in the location of thrombus formation. The time at which the thrombus began to form in the impeller rotating at 2780 rpm could be detected. The spectral difference between the whole blood and the thrombus was utilized to image thrombus formation. The results indicate the feasibility of dynamically detecting and imaging thrombus formation in a rotary blood pump. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
2017-03-30
Objective To compare the effectiveness of insulin pumps with multiple daily injections for adults with type 1 diabetes, with both groups receiving equivalent training in flexible insulin treatment. Design Pragmatic, multicentre, open label, parallel group, cluster randomised controlled trial (Relative Effectiveness of Pumps Over MDI and Structured Education (REPOSE) trial). Setting Eight secondary care centres in England and Scotland. Participants Adults with type 1 diabetes who were willing to undertake intensive insulin treatment, with no preference for pumps or multiple daily injections. Participants were allocated a place on established group training courses that taught flexible intensive insulin treatment ("dose adjustment for normal eating," DAFNE). The course groups (the clusters) were then randomly allocated in pairs to either pump or multiple daily injections. Interventions Participants attended training in flexible insulin treatment (using insulin analogues) structured around the use of pump or injections, followed for two years. Main outcome measures The primary outcomes were a change in glycated haemoglobin (HbA1c) values (%) at two years in participants with baseline HbA1c value of ≥7.5% (58 mmol/mol), and the proportion of participants achieving an HbA1c value of <7.5%. Secondary outcomes included body weight, insulin dose, and episodes of moderate and severe hypoglycaemia. Ancillary outcomes included quality of life and treatment satisfaction. Results 317 participants (46 courses) were randomised (156 pump and 161 injections). 267 attended courses and 260 were included in the intention to treat analysis, of which 235 (119 pump and 116 injection) had baseline HbA1c values of ≥7.5%. Glycaemic control and rates of severe hypoglycaemia improved in both groups. The mean change in HbA1c at two years was -0.85% with pump treatment and -0.42% with multiple daily injections. Adjusting for course, centre, age, sex, and accounting for missing values, the difference was -0.24% (-2.7 mmol/mol) in favour of pump users (95% confidence interval -0.53 to 0.05, P=0.10). Most psychosocial measures showed no difference, but pump users showed greater improvement in treatment satisfaction and some quality of life domains (dietary freedom and daily hassle) at 12 and 24 months. Conclusions Both groups showed clinically relevant and long lasting decreases in HbA1c, rates of severe hypoglycaemia, and improved psychological measures, although few participants achieved glucose levels currently recommended by national and international guidelines. Adding pump treatment to structured training in flexible intensive insulin treatment did not substantially enhance educational benefits on glycaemic control, hypoglycaemia, or psychosocial outcomes in adults with type 1 diabetes. These results do not support a policy of providing insulin pumps to adults with poor glycaemic control until the effects of training on participants' level of engagement in intensive self management have been determined. Trial registration Current Controlled Trials ISRCTN61215213. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Finite Element Analysis of New Crankshaft Automatic Adjustment Mechanism of Pumping Unit
NASA Astrophysics Data System (ADS)
Wu, Jufei; Wang, Qian
2017-12-01
In this paper, the crankshaft automatic adjustment mechanism designed on CYJY10-4.2-53HF pumping unit is used as the research object. The simulation of the friction and bending moment of the crank is carried out by ANSYS Workbench, and the finite element simulation results are compared with the theoretical calculation results to verify the theoretical calculation. The final result is that the finite element analysis of the friction of the crank is basically consistent with the theoretical calculation; The analysis and calculation of the stress and deformation about the two kinds of ultimate conditions of the guide platform are carried out too; The dynamic state analysis of the mechanism is carried out to obtain the vibration modes and natural frequencies of the vibration of the different parts of the counterweight under the condition of no preload force so that the frequency of the array can avoid the natural frequency, and can effectively avoid the resonance phenomenon, and for different modes we can improve the stiffness of the structure.
Emergence and equilibration of jets in planetary turbulence
NASA Astrophysics Data System (ADS)
Constantinou, Navid; Ioannou, Petros; Farrell, Brian
2013-04-01
Spatially and temporally coherent large scale jets that are not forced directly at the jet scale are prominent feature of rotating turbulence. A familiar example is the midlatitude jet in the Earth's atmosphere and the banded winds of the giants planets. These jets arise and are supported by the systematic organisation of the turbulent Reynolds stresses. Understanding the mechanism producing the required eddy momentum flux convergence, and how the jets and associated eddy field mutually adjust to maintain a steady jet structure at finite amplitude, constitute fundamental theoretical problems. Stochastic Structural Stability Theory (SSST) gives an explanation for jet formation that is fundamentally based on the interaction between jets and their associated field of turbulent eddies. SSST combines the full dynamics of the zonal mean flow with the second order statistics of the turbulent field obtained from a stochastic turbulence model (STM). The quasi-linear (QL) approximation to the full nonlinear dynamics (NL) results when the perturbation-perturbation interactions are parameterized in the perturbation equations, while interaction between the perturbations and the zonal mean flow is retained in the zonal mean equation. SSST consists of an infinite ensemble of perturbations evolving under QL. Therefore, SSST provides a set of dynamical equations for the mean flow and the second order statistics of the second cummulant of the perturbation vorticity field, which are autonomous and fluctuation free and can facilitate analytic study of turbulent equilibria and their stability as a function of parameters. Thus, jet formation in homogeneous beta-turbulence can be identified with an SSST structural instability of a homogeneous (mean flow free) SSTT equilibrium. We investigate the emergence and equilibration of jets from homogeneous barotropic beta-plane turbulence in the absence of coherent external forcing. SSST predicts that infinitesimal perturbations with zonal jet form organise homogeneous turbulence to produce systematic upgradient fluxes, giving rise to exponential jet growth and eventually to the establishment of finite amplitude equilibrium jets. We compare these predictions with simulations of the NL equations and their QL approximation in order to examine further the mechanism of emergence and equilibration of jets from turbulence. We concentrate on the effects of perturbation-perturbation nonlinearity on jet bifurcation and equilibration, and on the influence of perturbations in exciting the manifold of SSST modes with jet structure. We find that the bifurcation structure predicted by SSST for the emergence of zonal jets from a homogeneous turbulent state is confirmed by both QL and NL simulations. Moreover, we show that the finite amplitude equilibrium jets found in NL and QL simulations are as predicted by the fixed point solutions of SSST. Obtaining this agreement between NL and both SSST and QL simulations required in some cases that the modification of the turbulent spectrum caused by the perturbation-perturbation nonlinearity in NL be accounted for in the specification of the stochastic forcing in QL and SSST. These results confirm that jet emergence in barotropic beta-plane turbulence can be traced to the cooperative mean flow/perturbation instability that is captured by SSST.
Measurements in the annular shear layer of high subsonic and under-expanded round jets
NASA Astrophysics Data System (ADS)
Feng, Tong; McGuirk, James J.
2016-01-01
An experimental study has been undertaken to document compressibility effects in the annular shear layers of axisymmetric jets. Comparison is made of the measured flow development with the well-documented influence of compressibility in planar mixing layers. High Reynolds number (~106) and high Mach number jets issuing from a convergent nozzle at nozzle pressure ratios (NPRs) from 1.28 to 3.0 were measured using laser Doppler anemometry instrumentation. Detailed radial profile data are reported, particularly within the potential core region, for mean velocity, turbulence rms, and turbulence shear stress. For supercritical NPRs the presence of the pressure waves in the inviscid shock cell region as the jet expanded back to ambient pressure was found to exert a noticeable effect on shear layer location, causing this to shift radially outwards at high supercritical NPR conditions. After a boundary layer to free shear layer transition zone, the turbulence development displayed a short region of similarity before adjustment to near-field merged jet behaviour. Peak turbulence rms reduction due to compressibility was similar to that observed in planar layers with radial rms suppression much stronger than axial. Comparison of the compressibility-modified annular shear layer growth rate with planar shear layer data on the basis of the convective Mach number ( M C) showed notable differences; in the annular shear layer, compressibility effects began at lower M C and displayed a stronger reduction in growth. For high Mach number aerospace propulsion applications involving round jets, the current measurements represent a new data set for the calibration/validation of compressibility-affected turbulence models.
Initial in vitro evaluation of a pediatric vortex-mixing membrane lung.
Peacock, J A; Bellhouse, B J; Abel, K; Bellhouse, E L; Bellhouse, F H; Jeffree, M A; Sykes, M K; Gardaz, J P
1983-05-01
A new design for a pediatric membrane lung is described in this paper. The lung consists of eight blood compartments, each having six U-shaped blood channels, with microporous PTFE membranes supported on rigid plates in such a way that the membranes form furrowed blood channels. Two rolling diaphragm pumps are attached to the open ends of the U-shaped blood channels; these pumps are operated in antiphase. Mean flow is provided by a roller pump placed at the inlet end of the membrane lung. Pulsatile blood flow within the blood channels produces successive vortex formation and ejection, leading to good blood mixing and high efficiency in gas transport. The design of the rolling diaphragm piston pumps ensures that the blood prime volume is low (280 ml), and the grouping of the pumps at one end of the oxygenator allows the driving mechanism to be simple and compact. The relatively wide blood channels (minimum width 0.5 mm) and vortex mixing make priming the membrane lung particularly easy. The membrane area is 0.39 m2. Preliminary performance testing of the pediatric membrane lung was undertaken by pumping blood around a circuit containing a roller pump, the membrane lung, and a bubble oxygenator (to adjust the blood gases at the inlet to the membrane lung). In five such experiments it was shown that the membrane lung transferred 80 ml O2/min and 120 ml CO2/min at a blood flow rate of 1.5 L/min.
Generating Soap Bubbles by Blowing on Soap Films
NASA Astrophysics Data System (ADS)
Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent
2016-02-01
Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.
Generating Soap Bubbles by Blowing on Soap Films.
Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent
2016-02-19
Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.
2007-01-01
This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).
Regeneration and tritium recovery from the large JET neutral injection cryopump system after the FTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obert, W.; Bell, A.; Davies, J.
1992-12-01
Neutral Beam Injection (NBI) was used to introduce tritium into the plasma for the First Tritium Experiment In addition to the decisive advantage of depositing the tritium into the centre of the plasma, the use of NBI also minimized the total quantity of tritium introduced into the Torus and the contamination of the vacuum vessel. However, because of the relatively low gas efficiency of the positive ion injection system approximately 95% of the total quantity of tritium introduced was pumped by the large condensation cryopumps which form an integral part of the injector. Several hardware and associated software changes weremore » implemented in order to making provision for possible fault scenarios during operation with tritium and to ensure complete regeneration of the tritium from the cryopumps. The tritium released after all subsequent regeneration`s has been monitored carefully in order to determine the amount of tritium retained by the black anodized liquid nitrogen panel surfaces of the cryopump and to compare it with experiments at TSTA on JET samples before the FTE.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obert, W.; Bell, A.; Davies, J.
1992-01-01
Neutral Beam Injection (NBI) was used to introduce tritium into the plasma for the First Tritium Experiment In addition to the decisive advantage of depositing the tritium into the centre of the plasma, the use of NBI also minimized the total quantity of tritium introduced into the Torus and the contamination of the vacuum vessel. However, because of the relatively low gas efficiency of the positive ion injection system approximately 95% of the total quantity of tritium introduced was pumped by the large condensation cryopumps which form an integral part of the injector. Several hardware and associated software changes weremore » implemented in order to making provision for possible fault scenarios during operation with tritium and to ensure complete regeneration of the tritium from the cryopumps. The tritium released after all subsequent regeneration's has been monitored carefully in order to determine the amount of tritium retained by the black anodized liquid nitrogen panel surfaces of the cryopump and to compare it with experiments at TSTA on JET samples before the FTE.« less
On controlling the flow behavior driven by induction electrohydrodynamics in microfluidic channels.
Li, Yanbo; Ren, Yukun; Liu, Weiyu; Chen, Xiaoming; Tao, Ye; Jiang, Hongyuan
2017-04-01
In this study, we develop a nondimensional physical model to demonstrate fluid flow at the micrometer dimension driven by traveling-wave induction electrohydrodynamics (EHD) through direct numerical simulation. In order to realize an enhancement in the pump flow rate as well as a flexible adjustment of anisotropy of flow behavior generated by induction EHD in microchannels, while not adding the risk of causing dielectric breakdown of working solution and material for insulation, a pair of synchronized traveling-wave voltage signals are imposed on double-sided electrode arrays that are mounted on the top and bottom insulating substrate, respectively. Accordingly, we present a model evidence, that not only the pump performance is improved evidently, but a variety of flow profiles, including the symmetrical and parabolic curve, plug-like shape and even biased flow behavior of quite high anisotropy are produced by the device design of "mix-type", "superimposition-type" and "adjustable-type" proposed herein as well, with the resulting controllable fluid motion being able to greatly facilitate an on-demand transportation mode of on-chip bio-microfluidic samples. Besides, automatic conversion in the direction of pump flow is achievable by switching on and off a second voltage wave. Our results provide utilitarian guidelines for constructing flexible electrokinetic framework useful in controllable transportation of particle and fluid samples in modern microfluidic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy scaling of terahertz-wave parametric sources.
Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun
2015-02-23
Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.
Dual-pumped nondegenerate four-wave mixing in semiconductor laser with a built-in external cavity
NASA Astrophysics Data System (ADS)
Wu, Jian-Wei; Qiu, Qi; Hyub Won, Yong
2017-04-01
In this paper, a semiconductor laser system consisting of a conventional multimode Fabry-Pérot laser diode with a built-in external cavity is presented and demonstrated. More than two resonance modes, whose peak levels are significantly higher than other residual modes, are simultaneously supported and output by adjusting the bias current and operating temperature of the active region. Based on this device, dual-pumped nondegenerate four-wave mixing—in which two pump waves and a single signal wave are simultaneously fed into the laser, and the injection power and wavelength of the injected pump and signal waves are changed—is observed and discussed thoroughly. The results show that while the wavelengths of pump wave A and signal wave S are kept constant, the other pump wave B jumps from about 1535 nm to 1578 nm, generating conversion signals with changed wavelengths. The achieved conversion bandwidth between the primary signal and the converted signal waves is broadly tunable in the range of several terahertz frequencies. Both the conversion efficiency and optical signal-to-noise ratio of the newly generated conversion signals are adopted to evaluate the performance of the proposed four-wave mixing process, and are strongly dependent on the wavelength and power of the injected waves. Here, the attained maximum conversion efficiency and optical signal-to-noise ratio are close to -22 dB and 15 dB, respectively.
Installation and assembly device and method of using
Kolsun, George J.
1997-01-01
An installation and assembly device for aligning a first member such as a pump impeller with a second member such as an inlet nozzle of an impeller pump. The installation and assembly device includes a sleeve slideable within the inlet nozzle and a vertical positioning assembly which has a contact member that is extendable out away from the sleeve so as to vertically position the sleeve on a shoulder of the inlet nozzle and to present an upper contact surface spaced a certain distance from the shoulder to provide the desired vertical spacing with respect to the impeller contacting the upper contact surface. The vertical positioning assembly is retractable so as to allow for removal of the sleeve through the nozzle when installation and assembly are completed. The alignment device also includes a radial alignment assembly supported by the sleeve and adjustable to an expanded state for contacting and spacing the interior surface of the impeller a certain distance from the sleeve and hence a certain distance from the inlet nozzle. The radial alignment device being adjustable from a retracted removal state to an expanded state and also being adjustable to fine tune the spacing of the impeller from the sleeve. The radial alignment device also preferably includes members that can be used to releasably secure the sleeve to the impeller.
Test Record of Flight Tests Using Alcohol-to-Jet/JP-8 Blended Fuel
2015-09-01
Fuel Pump Corrosion ……………………………………………………………….... 14, 15 2. Pre-Test Coke (carbon) Buildup on Swirl Cups in T55-GA-714A Engines …………………. 16 3...Post-Test Coke (carbon) Buildup on Swirl Cups in T55-GA-714A Engines ………………... 18 5 LIST OF TABLES Table Title Page 1...significant coke (carbon) buildup on the fuel nozzles and swirl cups was observed. The combustor section inspection criteria stipulates that any
The Linearized Unsteady Lifting Surface Theory Applied to the Pump-Jet Propulsive System.
1981-08-01
61 REFERENCES .......... ....................... ... 63 FIGURES (1-5) APPENDIX A: Evaluation of the e - AND...25 TR-2173 From the e D-integration it is determined that m5= ji , because 2n i(ms lOeD { 2rT for m5- =O (47) S deD { 0 otherwise 0 Since the L-H...rDPR 2 rDPRc SLORO-’"D&t+G Rn - XD R) On substituting I c im 71 7 __ l 7 e(IkIp )K (Iki eiTkdk ( 61 ) RRD m 7=- m7 ( Rm( rD) where 0 eRO - YPD "c2t
Four-wave mixing in an asymmetric double quantum dot molecule
NASA Astrophysics Data System (ADS)
Kosionis, Spyridon G.
2018-06-01
The four-wave mixing (FWM) effect of a weak probe field, in an asymmetric semiconductor double quantum dot (QD) structure driven by a strong pump field is theoretically studied. Similarly to the case of examining several other nonlinear optical processes, the nonlinear differential equations of the density matrix elements are used, under the rotating wave approximation. By suitably tuning the intensity and the frequency of the pump field as well as by changing the value of the applied bias voltage, a procedure used to properly adjust the electron tunneling coupling, we control the FWM in the same way as several other nonlinear optical processes of the system. While in the weak electron tunneling regime, the impact of the pump field intensity on the FWM is proven to be of crucial importance, for even higher rates of the electron tunneling it is evident that the intensity of the pump field has only a slight impact on the form of the FWM spectrum. The number of the spectral peaks, depends on the relation between specific parameters of the system.
Staufert, Daniel; Cudney, Roger S
2018-05-10
We report a laser that emits two Q-switched pulses, one at 1.047 μm and the other at 1.064 μm, generated by a Nd:YLF and a Nd:YVO 4 , respectively. The crystals are pumped by two fiber-coupled diode lasers (808 nm and 880 nm); the delay between the pulses can be controlled by adjusting the power of the pumps. Two kinds of Q-switching techniques are reported, passive (Cr:YAG saturable absorber) and active (electro-optic modulator). We model both the active and passive Q switching and make a comparison between numerical simulations and experiments. We show experimentally and theoretically that in both cases the pulses can be synchronized; however, the stability of the synchronization (sensitivity to pump power fluctuations) is better for active than for passive Q switching. We also report that under certain experimental conditions a third wavelength is obtained, 1156 nm, which corresponds to the first Stokes shift of the 1047 nm pulse produced by stimulated Raman scattering from the Nd:YVO 4 crystal.
Modeling the use of a binary mixture as a control scheme for two-phase thermal systems
NASA Technical Reports Server (NTRS)
Benner, S. M.; Costello, Frederick A.
1990-01-01
Two-phase thermal loops using mechanical pumps, capillary pumps, or a combination of the two have been chosen as the main heat transfer systems for the space station. For these systems to operate optimally, the flow rate in the loop should be controlled in response to the vapor/liquid ratio leaving the evaporator. By substituting a mixture of two non-azeotropic fluids in place of the single fluid normally used in these systems, it may be possible to monitor the temperature of the exiting vapor and determine the vapor/liquid ratio. The flow rate would then be adjusted to maximize the load capability with minimum energy input. A FLUINT model was developed to study the system dynamics of a hybrid capillary pumped loop using this type of control and was found to be stable under all the test conditions.
Investigation of a quadrupole ultra-high vacuum ion pump
NASA Technical Reports Server (NTRS)
Schwarz, H. J.
1974-01-01
The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.
Automated apparatus for producing gradient gels
Anderson, N.L.
1983-11-10
Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.
Automated apparatus for producing gradient gels
Anderson, Norman L.
1986-01-01
Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.
Li, D K; Yan, P; Abou-Samra, A-B; Chung, R T; Butt, A A
2018-01-01
Proton pump inhibitors are among the most commonly prescribed medications in the United States. Their safety in cirrhosis has recently been questioned, but their overall effect on disease progression in noncirrhotic patients with chronic liver disease remains unclear. To determine the impact of proton pump inhibitors on the progression of liver disease in noncirrhotic patients with hepatitis C virus (HCV) infection. Using the electronically retrieved cohort of HCV-infected veterans (ERCHIVES) database, we identified all subjects who received HCV treatment and all incident cases of cirrhosis, hepatic decompensation and hepatocellular carcinoma. Proton pump inhibitor use was measured using cumulative defined daily dose. Multivariate Cox regression analysis was performed after adjusting univariate predictors of cirrhosis and various indications for proton pump inhibitor use. Among 11 526 eligible individuals, we found that exposure to proton pump inhibitors was independently associated with an increased risk of developing cirrhosis (hazard ratio [HR]: 1.32; 95% confidence interval: [1.17, 1.49]). This association remained robust to sensitivity analysis in which only patients who achieved sustained virologic response were analysed as well as analysis excluding those with alcohol abuse/dependence. Proton pump inhibitor exposure was also independently associated with an increased risk of hepatic decompensation (HR: 3.79 [2.58, 5.57]) and hepatocellular carcinoma (HR: 2.01 [1.50, 2.70]). In patients with chronic HCV infection, increasing proton pump inhibitor use is associated with a dose-dependent risk of progression of chronic liver disease to cirrhosis, as well as an increased risk of hepatic decompensation and hepatocellular carcinoma. © 2017 John Wiley & Sons Ltd.
Leme, Juliana; Fonseca, Jeison; Bock, Eduardo; da Silva, Cibele; da Silva, Bruno Utiyama; Dos Santos, Alex Eugênio; Dinkhuysen, Jarbas; Andrade, Aron; Biscegli, José F
2011-05-01
A new model of blood pump for cardiopulmonary bypass (CPB) application has been developed and evaluated in our laboratories. Inside the pump housing is a spiral impeller that is conically shaped and has threads on its surface. Worm gears provide an axial motion of the blood column. Rotational motion of the conical shape generates a centrifugal pumping effect and improves pumping performance. One annular magnet with six poles is inside the impeller, providing magnetic coupling to a brushless direct current motor. In order to study the pumping performance, a mock loop system was assembled. Mock loop was composed of Tygon tubes (Saint-Gobain Corporation, Courbevoie, France), oxygenator, digital flowmeter, pressure monitor, electronic driver, and adjustable clamp for flow control. Experiments were performed on six prototypes with small differences in their design. Each prototype was tested and flow and pressure data were obtained for rotational speed of 1000, 1500, 2000, 2500, and 3000 rpm. Hemolysis was studied using pumps with different internal gap sizes (1.35, 1.45, 1.55, and 1.7 mm). Hemolysis tests simulated CPB application with flow rate of 5 L/min against total pressure head of 350 mm Hg. The results from six prototypes were satisfactory, compared to the results from the literature. However, prototype #6 showed the best results. Best hemolysis results were observed with a gap of 1.45 mm, and showed a normalized index of hemolysis of 0.013 g/100 L. When combined, axial and centrifugal pumping principles produce better hydrodynamic performance without increasing hemolysis. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Kim, Hee Jung; Chung, Jae Eun; Jung, Jae Seung; Kim, In Seup; Son, Ho Sung
2018-05-31
Despite advance in off-pump coronary artery bypass (OPCAB) grafting, there are large debating issues regarding survival benefit between OPCAB and on-pump coronary artery bypass grafting (CABG). The aim of this study is to address appropriateness of OPCAB approach in patients with ischemic heart disease having multiple vessels using South Korea national cohort data. To evaluate the safety and efficacy of OPCAB, we accessed all causes of death, late repeat revascularization, hospitalization for cerebrovascular accident (CVA), and new renal replacement therapy in patients who underwent isolated CABG with multiple grafting (≥2 grafts) and who were registered in the Korean Health Insurance Review and Assessment Service Database between April 2011 and September 2014. OPCAB was performed in 4,692 patients and on-pump CABG in 2,999 patients from 82 hospitals in South Korea. On multivariable analysis, on-pump CABG was associated with a significantly higher adjusted risk of overall all-cause death (hazard ratio [HR]: 1.876, 95% confidence interval [CI]: 1.587-2.216, p < 0.001) and initiation of new renal replacement therapy (HR: 1.618, 95% CI: 1.124-2.331, p = 0.009). However, we observed no significant difference in repeat revascularization and hospitalization for CVA between the two groups. In propensity score matching, matched patients (2,940 pairs) showed results similar to multivariable analysis that on-pump CABG was associated with a higher overall mortality and initiation of new renal replacement therapy ( p < 0.001). In this study, we found that OPCAB was associated with better survival rates and renal preservation compared with on-pump CABG. Georg Thieme Verlag KG Stuttgart · New York.
Single frequency 1083nm ytterbium doped fiber master oscillator power amplifier laser.
Huang, Shenghong; Qin, Guanshi; Shirakawa, Akira; Musha, Mitsuru; Ueda, Ken-Ichi
2005-09-05
Single frequency 1083nm ytterbium fiber master oscillator power amplifier system was demonstrated. The oscillator was a linear fiber cavity with loop mirror filter and polarization controller. The loop mirror with unpumped ytterbium fiber as a narrow bandwidth filter discriminated and selected laser longitudinal modes efficiently. Spatial hole burning effect was restrained by adjusting polarization controller appropriately in the linear cavity. The amplifier was 5 m ytterbium doped fiber pumped by 976nm pigtail coupled laser diode. The linewidth of the single frequency laser was about 2 KHz. Output power up to 177 mW was produced under the launched pump power of 332 mW.
Economics of wind energy for irrigation pumping
NASA Astrophysics Data System (ADS)
Lansford, R. R.; Supalla, R. J.; Gilley, J. R.; Martin, D. L.
1980-07-01
The economic questions associated with wind power as an energy source for irrigation under different situations with seven regions of the nation were studied. Target investment costs for wind turbines used for irrigation pumping and policy makers with bases for adjusting taxes to make alternative sources of energy investments more attractive are analyzed. Three types of wind systems are considered for each of the seven regions. The three types of wind powered irrigation systems evaluated for each region are: (1) wind assist combustion engines (diesel, natural gas, propane panel); (2) wind assist electric engines, with or without sale of surplus electricity; and (3) stand alone reservoir systems with gravity flow reservoirs.
Development of a resonant laser ionization gas cell for high-energy, short-lived nuclei
NASA Astrophysics Data System (ADS)
Sonoda, T.; Wada, M.; Tomita, H.; Sakamoto, C.; Takatsuka, T.; Furukawa, T.; Iimura, H.; Ito, Y.; Kubo, T.; Matsuo, Y.; Mita, H.; Naimi, S.; Nakamura, S.; Noto, T.; Schury, P.; Shinozuka, T.; Wakui, T.; Miyatake, H.; Jeong, S.; Ishiyama, H.; Watanabe, Y. X.; Hirayama, Y.; Okada, K.; Takamine, A.
2013-01-01
A new laser ion source configuration based on resonant photoionization in a gas cell has been developed at RIBF RIKEN. This system is intended for the future PArasitic RI-beam production by Laser Ion-Source (PALIS) project which will be installed at RIKEN's fragment separator, BigRIPS. A novel implementation of differential pumping, in combination with a sextupole ion beam guide (SPIG), has been developed. A few small scroll pumps create a pressure difference from 1000 hPa-10-3 Pa within a geometry drastically miniaturized compared to conventional systems. This system can utilize a large exit hole for fast evacuation times, minimizing the decay loss for short-lived nuclei during extraction from a buffer gas cell, while sufficient gas cell pressure is maintained for stopping high energy RI-beams. In spite of the motion in a dense pressure gradient, the photo-ionized ions inside the gas cell are ejected with an assisting force gas jet and successfully transported to a high-vacuum region via SPIG followed by a quadrupole mass separator. Observed behaviors agree with the results of gas flow and Monte Carlo simulations.
Read disturb errors in a CMOS static RAM chip. [radiation hardened for spacedraft
NASA Technical Reports Server (NTRS)
Wood, Steven H.; Marr, James C., IV; Nguyen, Tien T.; Padgett, Dwayne J.; Tran, Joe C.; Griswold, Thomas W.; Lebowitz, Daniel C.
1989-01-01
Results are reported from an extensive investigation into pattern-sensitive soft errors (read disturb errors) in the TCC244 CMOS static RAM chip. The TCC244, also known as the SA2838, is a radiation-hard single-event-upset-resistant 4 x 256 memory chip. This device is being used by the Jet Propulsion Laboratory in the Galileo and Magellan spacecraft, which will have encounters with Jupiter and Venus, respectively. Two aspects of the part's design are shown to result in the occurrence of read disturb errors: the transparence of the signal path from the address pins to the array of cells, and the large resistance in the Vdd and Vss lines of the cells in the center of the array. Probe measurements taken during a read disturb failure illustrate how address skews and the data pattern in the chip combine to produce a bit flip. A capacitive charge pump formed by the individual cell capacitances and the resistance in the supply lines pumps down both the internal cell voltage and the local supply voltage until a bit flip occurs.
An experimental investigation of rubbing interaction in labyrinth seals at cryogenic temperature
NASA Technical Reports Server (NTRS)
Dolan, F. X.; Kennedy, F. E.; Schulson, E. M.
1985-01-01
An experimental program was carried out to address issues related to the observed cracking of the titanium knife edges on the labyrinth seals of the high pressure fuel pump (HPFP) in the Space Shuttle main engine (SSME). Thermal shock experiments were carried out using a jet specimen with geometry similar to the knife edge geometry. These tests demonstrate that cracking of the titanium alloy is possible in a situation involving repeated thermal cycles over a wide temperature range, as might be realized during a rub in the liquid hydrogen fuel pump. High speed rub interaction tests were conducted using a representative knife edge and seal geometry over a broad range of interaction rates. Alternative materials were also experimentally evaluated. These tests provide information which can be used to design improved labyrinth seals for the HPFP of the SSME. In particular, plasma-sprayed aluminum-graphite was found to be significantly better than aluminum alloy seals used at present from the standpoint of rub performance. Ion nitriding of the titanium alloy knife edges was also found to improve rub performance compared with the untreated baseline knife edge material.
2011-06-20
CAPE CANAVERAL, Fla. -- High above NASA's Kennedy Space Center in Florida, space shuttle Atlantis' crew members get ready to land their T-38 jets at the Shuttle Landing Facility. The astronauts are at Kennedy to participate in a launch countdown dress rehearsal called the Terminal Countdown Demonstration Test (TCDT) and related training in preparation for the upcoming STS-135 mission. Atlantis and its crew are targeted to lift off on July 8, taking with them the Raffaello multi-purpose logistics module packed with supplies, logistics and spare parts to the International Space Station. The STS-135 mission also will fly a system to investigate the potential for robotically refueling existing satellites and return a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 will be the 33rd flight of Atlantis, the 37th shuttle mission to the station, and the 135th and final mission of NASA's Space Shuttle Program. For more information visit, www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: NASA/Kim Shiflett
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S.
2011-05-17
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitativemore » mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.« less
Water entry of cylindrical bodies with various aspect ratios
NASA Astrophysics Data System (ADS)
Kim, Nayoung; Park, Hyungmin
2017-11-01
We experimentally investigate the water entry of cylindrical bodies with different aspect ratio (1.0-8.0), focusing on the deformation of free surface and resulting phenomena over and under the surface. The experiment is performed using a high-speed imaging (upto 10000 fps) and PIV. The head and tail of bodies are hemispherical and the nose part is additionally roughened with a sandpaper to see the effect of roughness as well. The release height is also adjusted to change the impact velocity at the free surface (Reynolds number is order of 105). For smooth surface (without cavity formation), a thin liquid film rises up the body after impacting, gathers at the pole and forms a jet over the free surfaces. The jet is created in the form of a thick and thin jet. The thin jet is produced by a water film riding up the surface of an object, and a thick jet is produced by rising water from underwater as the object sinks. However, as the aspect ratio increases, the liquid film does not fully ride up the body and cannot close, so there is an empty space below the free surface. With roughness (with cavity), the liquid film is detached from the body and splash/dome is formed above the free surface. The splash height and its collapsing time decrease with increasing the aspect ratio. Supported by Grants (MPSS-CG-2016-02, NRF-2017R1A4A1015523) of the Korea government.
Analysis of water levels in the Frenchman Flat area, Nevada Test Site
Bright, D.J.; Watkins, S.A.; Lisle, B.A.
2001-01-01
Analysis of water levels in 21 wells in the Frenchman Flat area, Nevada Test Site, provides information on the accuracy of hydraulic-head calculations, temporal water-level trends, and potential causes of water-level fluctuations. Accurate hydraulic heads are particularly important in Frenchman Flat where the hydraulic gradients are relatively flat (less than 1 foot per mile) in the alluvial aquifer. Temporal water-level trends with magnitudes near or exceeding the regional hydraulic gradient may have a substantial effect on ground-water flow directions. Water-level measurements can be adjusted for the effects of barometric pressure, formation water density (from water-temperature measurements), borehole deviation, and land-surface altitude in selected wells in the Frenchman Flat area. Water levels in one well were adjusted for the effect of density; this adjustment was significantly greater (about 17 feet) than the adjustment of water levels for barometric pressure, borehole deviation, or land-surface altitude (less than about 4 feet). Water-level measurements from five wells exhibited trends that were statistically and hydrologically significant. Statistically significant water-level trends were observed for three wells completed in the alluvial aquifer (WW-5a, UE-5n, and PW-3), for one well completed in the carbonate aquifer (SM-23), and for one well completed in the quartzite confining unit (Army-6a). Potential causes of water-level fluctuations in wells in the Frenchman Flat area include changes in atmospheric conditions (precipitation and barometric pressure), Earth tides, seismic activity, past underground nuclear testing, and nearby pumping. Periodic water-level measurements in some wells completed in the carbonate aquifer indicate cyclic-type water-level fluctuations that generally correlate with longer term changes (more than 5 years) in precipitation. Ground-water pumping fromthe alluvial aquifer at well WW-5c and pumping and discharge from well RNM-2s appear to cause water-level fluctuations in nearby observation wells. The remaining known sources of water-level fluctuations do not appear to substantially affect water-level changes (seismic activity and underground nuclear testing) or do not affect changes over a period of more than 1 year (barometric pressure and Earth tides) in wells in the Frenchman Flat area.
Heller, Simon; White, David; Lee, Ellen; Lawton, Julia; Pollard, Daniel; Waugh, Norman; Amiel, Stephanie; Barnard, Katharine; Beckwith, Anita; Brennan, Alan; Campbell, Michael; Cooper, Cindy; Dimairo, Munyaradzi; Dixon, Simon; Elliott, Jackie; Evans, Mark; Green, Fiona; Hackney, Gemma; Hammond, Peter; Hallowell, Nina; Jaap, Alan; Kennon, Brian; Kirkham, Jackie; Lindsay, Robert; Mansell, Peter; Papaioannou, Diana; Rankin, David; Royle, Pamela; Smithson, W Henry; Taylor, Carolin
2017-01-01
BACKGROUND Insulin is generally administered to people with type 1 diabetes mellitus (T1DM) using multiple daily injections (MDIs), but can also be delivered using infusion pumps. In the UK, pumps are recommended for patients with the greatest need and adult use is less than in comparable countries. Previous trials have been small, of short duration and have failed to control for training in insulin adjustment. OBJECTIVE To assess the clinical effectiveness and cost-effectiveness of pump therapy compared with MDI for adults with T1DM, with both groups receiving equivalent structured training in flexible insulin therapy. DESIGN Pragmatic, multicentre, open-label, parallel-group cluster randomised controlled trial, including economic and psychosocial evaluations. After participants were assigned a group training course, courses were randomly allocated in pairs to either pump or MDI. SETTING Eight secondary care diabetes centres in the UK. PARTICIPANTS Adults with T1DM for > 12 months, willing to undertake intensive insulin therapy, with no preference for pump or MDI, or a clinical indication for pumps. INTERVENTIONS Pump or MDI structured training in flexible insulin therapy, followed up for 2 years. MDI participants used insulin analogues. Pump participants used a Medtronic Paradigm(®) Veo(TM) (Medtronic, Watford, UK) with insulin aspart (NovoRapid, Novo Nordisk, Gatwick, UK). MAIN OUTCOME MEASURES Primary outcome - change in glycated haemoglobin (HbA1c) at 2 years in participants whose baseline HbA1c was ≥ 7.5% (58 mmol/mol). Key secondary outcome - proportion of participants with HbA1c ≤ 7.5% at 2 years. Other outcomes at 6, 12 and 24 months - moderate and severe hypoglycaemia; insulin dose; body weight; proteinuria; diabetic ketoacidosis; quality of life (QoL); fear of hypoglycaemia; treatment satisfaction; emotional well-being; qualitative interviews with participants and staff (2 weeks), and participants (6 months); and ICERs in trial and modelled estimates of cost-effectiveness. RESULTS We randomised 46 courses comprising 317 participants: 267 attended a Dose Adjustment For Normal Eating course (132 pump; 135 MDI); 260 were included in the intention-to-treat analysis, of which 235 (119 pump; 116 MDI) had baseline HbA1c of ≥ 7.5%. HbA1c and severe hypoglycaemia improved in both groups. The drop in HbA1c% at 2 years was 0.85 on pump and 0.42 on MDI. The mean difference (MD) in HbA1c change at 2 years, at which the baseline HbA1c was ≥ 7.5%, was -0.24% [95% confidence interval (CI) -0.53% to 0.05%] in favour of the pump (p = 0.098). The per-protocol analysis showed a MD in change of -0.36% (95% CI -0.64% to -0.07%) favouring pumps (p = 0.015). Pumps were not cost-effective in the base case and all of the sensitivity analyses. The pump group had greater improvement in diabetes-specific QoL diet restrictions, daily hassle plus treatment satisfaction, statistically significant at 12 and 24 months and supported by qualitative interviews. LIMITATION Blinding of pump therapy was not possible, although an objective primary outcome was used. CONCLUSION Adding pump therapy to structured training in flexible insulin therapy did not significantly enhance glycaemic control or psychosocial outcomes in adults with T1DM. RESEARCH PRIORITY To understand why few patients achieve a HbA1c of < 7.5%, particularly as glycaemic control is worse in the UK than in other European countries. TRIAL REGISTRATION Current Controlled Trials ISRCTN61215213. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 21, No. 20. See the NIHR Journals Library website for further project information. PMID:28440211
Collapse of optical wave arrested by cross-phase modulation in nonlinear metamaterials
NASA Astrophysics Data System (ADS)
Zhang, Jinggui; Li, Ying; Xiang, Yuanjiang; Lei, Dajun; Zhang, Lifu
2016-03-01
In this article, we put forward a novel strategy to realize the management of wave collapse through designing probe-pump configuration where probe wave is assumed to propagate in the positive-index region of metamaterials (MMs), while pump wave is assumed to propagate in the negative-index region. We disclose that cross-phase modulation (XPM) in MMs as a new physical mechanism that can be used to arrest the collapse of probe wave in the positive-index region by copropagating it together with pump wave in the negative-index region. Further, we observe that pump wave will evolve into a ring while probe wave will develop a side lob in the wings during the course of coupled waves propagation, different from the corresponding counterpart in the ordinary positive-index materials (OMs) where they simultaneously exhibit the catastrophic self-focusing behavior. Meanwhile, we also discuss how to control the collapse of probe wave by adjusting intensity-detuned pump wave. Our analysis is performed by directly numerically solving the coupled nonlinear Schrödinger equations, as well as using the variational approximation, both showing consistent results. The finding demonstrates XPM as a specific physical mechanism in MMs can provide us unique opportunities unattainable in OMs to manipulate self-focusing of high-power laser.
Karl von Frisch lecture. Signals and flexibility in the dance communication of honeybees.
Michelsen, Axel
2003-03-01
Progress in understanding dance communication in honeybees is reviewed. The behaviour of both dancers and follower bees contain flexible and stereotypic elements. The transfer of specific information about direction and distance probably involves more than one sensory modality. The follower bees need to stay behind the dancer (within the angle of wagging) during at least one waggle run in order to perceive the specific information. Within this zone, a small stationary air-flow receiver (like the antenna of a follower bee) experiences a well-defined maximum when the abdomen of the wagging dancer passes by. Within 1 mm from the tip of the abdomen, the maximum may be caused by oscillating flows generated by the wagging motion. At other positions and distances (up to several millimetres from the dancer) the maximum is due to a spatially narrow jet air flow generated by the vibrating wings. The time pattern of these maxima is a function of the angular position of the receiver relative to the axis of the waggle run and thus a potential cue for direction. In addition to the narrow jet air flows, the dancers can generate a broad jet. The jets are not automatic by-products of wing vibration, since they can be switched on and off when the dancer adjusts the position of her wings.
IEC Thrusters for Space Probe Applications and Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miley, George H.; Momota, Hiromu; Wu Linchun
Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In thismore » spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a 'plasma analytic probe' for interrogation of the object.« less
NASA Astrophysics Data System (ADS)
Niazi, A.; Bentley, L. R.; Hayashi, M.
2016-12-01
Geostatistical simulations are used to construct heterogeneous aquifer models. Optimally, such simulations should be conditioned with both lithologic and hydraulic data. We introduce an approach to condition lithologic geostatistical simulations of a paleo-fluvial bedrock aquifer consisting of relatively high permeable sandstone channels embedded in relatively low permeable mudstone using hydraulic data. The hydraulic data consist of two-hour single well pumping tests extracted from the public water well database for a 250-km2 watershed in Alberta, Canada. First, lithologic models of the entire watershed are simulated and conditioned with hard lithological data using transition probability - Markov chain geostatistics (TPROGS). Then, a segment of the simulation around a pumping well is used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone are then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated pumping test data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each well that has pumping test data. The method creates a local groundwater model that honors both the lithologic model and pumping test data and provides estimates of hydraulic conductivity and specific storage. Eventually, the simulations will be integrated into a watershed-scale groundwater model.
Choroidal microcirculation in patients with rotary cardiac assist device.
Polska, Elzbieta; Schima, Heinrich; Wieselthaler, Georg; Schmetterer, Leopold
2007-06-01
In recent years, fully implanted rotary blood pumps have been used for long-term cardiac assist in patients with end-stage heart failure. With these pumps, the pulsatility of arterial blood flow and arterial pressure pulse is considerably reduced. Effects on end-organ perfusion, particularly microcirculation, have been assessed. The ocular choroid offers a unique opportunity to study the pulsatile component of blood flow by measurement of fundus pulsation amplitude (FPA) as well as the microcirculation by laser Doppler flowmetry. Both techniques were applied in three male patients with rotary pumps (MicroMed DeBakey VAD), in whom pump velocity was adjusted to four levels of flow between individual minimal need and maximal support. In addition, blood flow velocities in the ophthalmic artery (peak, end-diastolic and mean flow velocity--PSV, EDV and MFV, respectively) were measured using color Doppler imaging. Systolic blood pressure increased by 6 to 22 mm Hg with increasing support. At maximal support FPA was reduced by -60% to -52% as compared with minimal pump support. Blood flow in the choroidal microvasculature, however, did not show relevant changes. A reduction in PSV (-31%, range -47% to -21%) and a pronounced rise in EDV (+93%, range +28% to +147%) was observed, whereas MFV was independent of pump flow. Our data indicate that mean choroidal blood flow is maintained when pump support is varied within therapeutic values, whereas the ratio of pulsatile to non-pulsatile choroidal flow changes. This study shows that, in patients with ventricular assist devices, a normal perfusion rate in the ocular microcirculation is maintained over a wide range of support conditions.
Pulse Jet Mixing Tests With Noncohesive Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.
2009-05-11
This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants. The test data were used to independently develop mixing models that can be used to predict full-scale WTP vessel performance and to rate current WTP mixing system designs against two specific performance requirements. One requirement is to ensure that all solids have been disturbed during the mixing action, which is important tomore » release gas from the solids. The second requirement is to maintain a suspended solids concentration below 20 weight percent at the pump inlet. The models predict the height to which solids will be lifted by the PJM action, and the minimum velocity needed to ensure all solids have been lifted from the floor. From the cloud height estimate we can calculate the concentration of solids at the pump inlet. The velocity needed to lift the solids is slightly more demanding than "disturbing" the solids, and is used as a surrogate for this metric. We applied the models to assess WTP mixing vessel performance with respect to the two perform¬ance requirements. Each mixing vessel was evaluated against these two criteria for two defined waste conditions. One of the wastes was defined by design limits and one was derived from Hanford waste characterization reports. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The assessment predicts that three vessel types will satisfy the design criteria for all conditions evaluated. Seven vessel types will not satisfy the performance criteria used for any of the conditions evaluated. The remaining three vessel types provide varying assessments when the different particle characteristics are evaluated. The HLP-022 vessel was also evaluated using 12 m/s pulse jet velocity with 6-in. nozzles, and this design also did not satisfy the criteria for all of the conditions evaluated.« less
Improvement of Baltic proper water quality using large-scale ecological engineering.
Stigebrandt, Anders; Gustafsson, Bo G
2007-04-01
Eutrophication of the Baltic proper has led to impaired water quality, demonstrated by, e.g., extensive blooming of cyanobacteria during the premium summer holiday season and severe oxygen deficit in the deepwater. Sustainable improvements in water quality by the reduction of phosphorus (P) supplies will take several decades before giving full effects because of large P storages both in soils in the watershed and in the water column and bottom sediments of the Baltic proper. In this article it is shown that drastically improved water quality may be obtained within a few years using large-scale ecological engineering methods. Natural variations in the Baltic proper during the last decades have demonstrated how rapid improvements may be achieved. The present article describes the basic dynamics of P, organic matter, and oxygen in the Baltic proper. It also briefly discusses the advantages and disadvantages of different classes of methods of ecological engineering aimed at restoring the Baltic proper from eutrophication effects. Preliminary computations show that the P content might be halved within a few years if about 100 kg O2 s(-1) are supplied to the upper deepwater. This would require 100 pump stations, each transporting about 100 m3 s(-1) of oxygen-rich so-called winter water from about 50 to 125 m depth where the water is released as a buoyant jet. Each pump station needs a power supply of 0.6 MW. Offshore wind power technology seems mature enough to provide the power needed by the pump stations. The cost to install 100 wind-powered pump stations, each with 0.6 MW power, at about 125-m depth is about 200 million Euros.
Response of the Benguela upwelling systems to spatial variations in the wind stress
NASA Astrophysics Data System (ADS)
Fennel, Wolfgang; Junker, Tim; Schmidt, Martin; Mohrholz, Volker
2012-08-01
In this paper we combine field observations, numerical modeling and an idealized analytical theory to study some features of the Benguela upwelling system. The current system can be established through a combination of observations and realistic simulations with an advanced numerical model. The poleward undercurrent below the equator-ward coastal jet is often found as a countercurrent that reaches the sea surface seaward of the coastal jet. The coastal band of cold upwelled water appears to broaden from south to north and at the northern edge of the wind band an offshore flow is often detected, which deflects the coastal Angola current to the west. These features can be explained and understood with an idealized analytical model forced by a spatially variable wind. A crucial role is played by the wind stress curl, which shapes the oceanic response through Ekman-pumping. The interplay of the curl driven effects and the coastal Ekman upwelling together with the coastal jet, Kelvin waves, and the undercurrent is the key to understand the formation of the three-dimensional circulation patterns in the Benguela system. While the numerical model is based on the full set of primitive equations, realistic topography and forcing, the analytic model uses a linear, flat-bottomed f-plane ocean, where the coast is a straight wall and the forcing is represented by an alongshore band of dome-shaped wind stress. Although the analytical model is highly idealized it is very useful to grasp the basic mechanisms leading to the response patterns.
Wing-Fixed PIV and force measurements of a large transverse gust encounter
NASA Astrophysics Data System (ADS)
Perrotta, Gino
2015-11-01
The unsteady aerodynamics of an aspect ratio 4 flat plate wing encountering a large-amplitude transverse gust were investigated using PIV in the wing-fixed reference frame and direct unsteady force measurements. Using a new experimental facility at the University of Maryland, the wing was towed at Reynolds number 20,000 through a 7m-long tank of nominally quiescent water containing a single cross-stream planar jet with velocity equal to the wing's towed velocity - a transverse gust ratio equal to one. The planar jet was created by pumping water through 30 cylindrical nozzles arranged in a single row. PIV confirms that the individual jets converge into a single, narrow, planar gust with a streamwise velocity profile resembling a canonical cosine-squared gust. Forces and fluid velocities of this wing-gust interaction will be presented for two pre-gust conditions: attached flow on the wing and stalled flow over the wing. In both cases, the gust encounter results in a momentary spike in lift coefficient. The peak lift coefficient was measured between 3 and 6 and varies with angle of attack. At low angle of attack, the attached flow wing produces less lift before the gust and much more (non-circulatory) lift during the gust than the stalled wing. Although the flow over the wing at low angle of attack separates during the gust and reattaches afterwards, the recovery time is similar to that of the high angle case, on the order of 10 chord lengths travelled.
NASA Astrophysics Data System (ADS)
Miller, Joseph D.; Jiang, Naibo; Slipchenko, Mikhail N.; Mance, Jason G.; Meyer, Terrence R.; Roy, Sukesh; Gord, James R.
2016-12-01
100-kHz particle image velocimetry (PIV) is demonstrated using a double-pulsed, burst-mode laser with a burst duration up to 100 ms. This enables up to 10,000 time-sequential vector fields for capturing a temporal dynamic range spanning over three orders of magnitude in high-speed turbulent flows. Pulse doublets with inter-pulse spacing of 2 µs and repetition rate of 100 kHz are generated using a fiber-based oscillator and amplified through an all-diode-pumped, burst-mode amplifier. A physics-based model of pulse doublet amplification in the burst-mode amplifier is developed and used to accurately predict oscillator pulse width and pulse intensity inputs required to generate equal-energy pulse doublets at 532 nm for velocity measurements. The effect of PIV particle response and high-speed-detector limitations on the spatial and temporal resolution are estimated in subsonic turbulent jets. An effective spatial resolution of 266-275 µm and temporal resolution of 10 µs are estimated from the 8 × 8 pixel correlation window and inter-doublet time spacing, respectively. This spatiotemporal resolution is sufficient for quantitative assessment of integral time and length scales in highly turbulent jets with Reynolds numbers in the range 15,000-50,000. The temporal dynamic range of the burst-mode PIV measurement is 1200, limited by the 85-ms high-energy portion of the burst and 30-kHz high-frequency noise limit.
Microscope-on-Chip Using Micro-Channel and Solid State Image Sensors
NASA Technical Reports Server (NTRS)
Wang, Yu
2000-01-01
Recently, Jet Propulsion Laboratory has invented and developed a miniature optical microscope, microscope-on-chip using micro-channel and solid state image sensors. It is lightweight, low-power, fast speed instrument, it has no image lens, does not need focus adjustment, and the total mass is less than 100g. A prototype has been built and demonstrated at JPL.
2008-01-01
130, etc), the option to re-engine or place winglets on the wings of TACAIR aircraft does not exist. Bio-fuel is not an option for aviation35 and...TACAIR aircraft can not use alternative fuels, re-engine their aircraft, install winglets , or adjust their sortie lengths in an effort to reduce jet
H-mode fueling optimization with the supersonic deuterium jet in NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soukhanovskii, V A; Bell, M G; Bell, R E
2008-06-18
High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphitemore » Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms-scale controls and a reservoir gas pressure up to P{sub 0} = 5000 Torr. In this paper we summarize recent progress toward optimization of H-mode fueling in NSTX using the SGI-U.« less
Daly, Amanda R; Sobajima, Hideo; Olia, Salim E; Takatani, Setsuo; Kameneva, Marina V
2010-01-01
In vitro evaluation of the potential of a circulatory-assist device to damage blood cells has generally been performed using blood from various species. Problems with this approach include the variability of blood sensitivity to mechanical stress in different species, preparation of blood including the adjustment of hematocrit to a standard value, changes in the mechanical properties of blood that occur during storage, and necessity to pool blood samples to obtain an adequate amount of blood for in vitro circulating systems. We investigated whether the mechanical degradation of a drag-reducing polymer (DRP) solution resulting in the loss of drag-reducing ability can indicate the degree of shear-induced blood damage within blood pumps. DRP solution (polyethylene oxide, 4,500 kDa, 1,000 ppm) or porcine blood were driven through a turbulent flow system by a centrifugal pump, either the Bio-Pump BPX-80 (Medtronic, Inc.) or CentriMag (Levitronix LLC) at a constant pressure gradient of 300 mm Hg for 120 minutes. DRP mechanical degradation was evaluated by reduction of flow rate and solution viscosity. A proposed index of DRP mechanical degradation (PDI) is similar to the normalized index of hemolysis (NIH) typically used to quantify the results of in vitro testing of blood pumps. Results indicate that the mechanical degradation of DRP solutions may provide a sensitive standard method for the evaluation of potential blood trauma produced by blood pumps without the use of blood.
Daly, Amanda R.; Sobajima, Hideo; Olia, Salim E.; Takatani, Setsuo; Kameneva, Marina V.
2011-01-01
In vitro evaluation of the potential of a circulatory-assist device to damage blood cells has generally been performed using blood from various species. Problems with this approach include the variability of blood sensitivity to mechanical stress in different species, preparation of blood including the adjustment of hematocrit to a standard value, changes in the mechanical properties of blood that occur during storage, and necessity to pool blood samples to obtain an adequate amount of blood for in vitro circulating systems. We investigated whether the mechanical degradation of a drag-reducing polymer (DRP) solution resulting in the loss of drag-reducing ability can indicate the degree of shear-induced blood damage within blood pumps. DRP solution (polyethylene oxide, 4,500 kDa, 1,000 ppm) or porcine blood were driven through a turbulent flow system by a centrifugal pump, either the Bio-Pump BPX-80 (Medtronic, Inc.) or CentriMag (Levitronix LLC) at a constant pressure gradient of 300 mm Hg for 120 minutes. DRP mechanical degradation was evaluated by reduction of flow rate and solution viscosity. A proposed index of DRP mechanical degradation (PDI) is similar to the normalized index of hemolysis (NIH) typically used to quantify the results of in vitro testing of blood pumps. Results indicate that the mechanical degradation of DRP solutions may provide a sensitive standard method for the evaluation of potential blood trauma produced by blood pumps without the use of blood. PMID:20019596
PMMA/PDMS valves and pumps for disposable microfluidics.
Zhang, Wenhua; Lin, Shuichao; Wang, Chunming; Hu, Jia; Li, Cong; Zhuang, Zhixia; Zhou, Yongliang; Mathies, Richard A; Yang, Chaoyong James
2009-11-07
Poly(methyl methacrylate) (PMMA) is gaining in popularity in microfluidic devices because of its low cost, excellent optical transparency, attractive mechanical/chemical properties, and simple fabrication procedures. It has been used to fabricate micromixers, PCR reactors, CE and many other microdevices. Here we present the design, fabrication, characterization and application of pneumatic microvalves and micropumps based on PMMA. Valves and pumps are fabricated by sandwiching a PDMS membrane between PMMA fluidic channel and manifold wafers. Valve closing or opening can be controlled by adjusting the pressure in a displacement chamber on the pneumatic layer via a computer regulated solenoid. The valve provides up to 15.4 microL s(-1) at 60 kPa fluid pressure and seals reliably against forward fluid pressure as high as 60 kPa. A PMMA diaphragm pump can be assembled by simply connecting three valves in series. By varying valve volume or opening time, pumping rates ranging from nL to microL per second can be accurately achieved. The PMMA based valves and pumps were further tested in a disposable automatic nucleic acid extraction microchip to extract DNA from human whole blood. The DNA extraction efficiency was about 25% and the 260 nm/280 nm UV absorption ratio for extracted DNA was 1.72. Because of its advantages of inexpensive, facile fabrication, robust and easy integration, the PMMA valve and pump will find their wide application for fluidic manipulation in portable and disposable microfluidic devices.
Experimental investigation of the noise reduction of supersonic exhaust jets with fluidic inserts
NASA Astrophysics Data System (ADS)
Powers, Russell William Walter
The noise produced by the supersonic, high temperature jets that exhaust from military aircraft is becoming a hazard to naval personnel and a disturbance to communities near military bases. Methods to reduce the noise produced from these jets in a practical full-scale environment are difficult. The development and analysis of distributed nozzle blowing for the reduction of radiated noise from supersonic jets is described. Model scale experiments of jets that simulate the exhaust jets from typical low-bypass ratio military jet aircraft engines during takeoff are performed. Fluidic inserts are created that use distributed blowing in the divergent section of the nozzle to simulate mechanical, hardwall corrugations, while having the advantage of being an active control method. This research focuses on model scale experiments to better understand the fluidic insert noise reduction method. Distributed blowing within the divergent section of the military-style convergent divergent nozzle alters the shock structure of the jet in addition to creating streamwise vorticity for the reduction of mixing noise. Enhancements to the fluidic insert design have been performed along with experiments over a large number of injection parameters and core jet conditions. Primarily military-style round nozzles have been used, with preliminary measurements of hardwall corrugations and fluidic inserts in rectangular nozzle geometries also performed. It has been shown that the noise reduction of the fluidic inserts is most heavily dependent upon the momentum flux ratio between the injector and core jet. Maximum reductions of approximately 5.5 dB OASPL have been observed with practical mass flow rates and injection pressures. The first measurements with fluidic inserts in the presence of a forward flight stream have been performed. Optimal noise reduction occurs at similar injector parameters in the presence of forward flight. Fluidic inserts in the presence of a forward flight stream were observed to reduce the peak mixing noise below the already reduced levels by nearly 4 dB OASP and the broadband shock-associated noise by nearly 3 dB OASP. Unsteady velocity measurements are used to complement acoustic results of jets with fluidic inserts. Measured axial turbulence intensities and mean axial velocity are examined to illuminate the differences in the flow field from jets with fluidic inserts. Comparisons of laser Doppler measurements with RANS CFD simulations are shown with good agreement. Analysis of the effect of spatial turbulence on the measured quantities is performed. Experimental model scale measurements of jets with and without fluidic inserts over a simulated carrier deck are presented. The model carrier environment consists of a ground plane of adjustable distance below the jet, and a simulated jet blast deflector similar to those found in practice. Measurements are performed with far-field microphones, near-field microphones, and unsteady pressure sensors. The constructive and destructive interference that results from the interaction of the direct and reflected sound waves is observed and compared with results from free jets. The noise reduction of fluidic inserts in a realistic carrier deck environment with steering of the "quiet planes" is examined. The overall sound pressure level in heat-simulated jets is reduced by 3-5 dB depending on the specific angle and ground plane height. Jets impinging upon a modeled jet blast deflector are tested in addition to jets solely in the presence of the carrier deck. Observed modifications to the acoustic field from the presence of the jet blast deflector include downstream acoustic shielding and low frequency augmentation. The region of maximum noise radiation for heat-simulated jets from nozzles with fluidic inserts impinging on the jet blast deflector is reduced in overall sound pressure level by 4-7 dB. This region includes areas where aircraft carrier personnel are located. iv.
NASA Astrophysics Data System (ADS)
Wu, Yulin; Wang, Zhengwei; Yuan, Shouqi; Shi, Weidong; Liu, Shuhong; Luo, Xingqi; Wang, Fujun
2013-12-01
The 6th International Conference on Pumps and Fans with Compressors and Wind Turbines (ICPF 2013) was held in Beijing, China, 19-22 September 2013, which was jointly organized by Tsinghua University and Jiangsu University. The co-organizers were Zhejiang University, Zhejiang Sci-Tech University, The State Key Laboratory of Hydroscience and Engineering, The State Key Laboratory of Automotive Safety and Energy and Beijing International Science and Technology Cooperation Base for CO2 Utilization and Reduction. The sponsor of the conference was Concepts NREC. The First International Conference on Pumps and Systems (May 1992), the Second International Conference on Pumps and Fans (October 1995), the Third International Conference on Pumps and Fans (October 1998), and the Fourth International Conference on Pumps and Fans (26-29 August 2002) were all held in Beijing and were organized by the late famous Chinese professor on fluid machinery and engineering, Professor Zuyan Mei of Tsinghua University. The conference was interrupted by the death of Professor Mei in 2003. In order to commemorate Professor Mei, the organizing committee of ICPF decided to continue organizing the conference series. The Fifth Conference on Pumps and Systems (2010 ICPF) took place in Hangzhou, Zhejiang Province, China, 18-21 October 2010, and it was jointly organized by Zhejiang University and Tsinghua University. With the development of renewable energy and new energy in China and in the world, some small types of compressor and some types of pump, as well as wind turbines are developing very fast; therefore the ICPF2013 conference included compressors and wind turbines. The theme of the conference was the application of renewable energy of pumps, compressors, fans and blowers. The content of the conference was the basic study, design and experimental study of compressors, fans, blowers and pumps; the CFD application on pumps and fans, their transient behavior, unsteady flows and multi-phase flow; other fluid machinery and devices, such as, wind turbines, turbochargers and reversible pump-turbines, clearance and sealing, jets, filters and mixers; and their engineering application and their system behavior, especially, the application of the renewable energy of pumps, compressors, fans and blowers. The objective of the conference was to provide an opportunity for researchers, engineers and students to report on the latest developments in the fields of pumps, compressors, fans and turbochargers, as well as systems. The participants were encouraged to present their work in progress with a short lead time, and the conference promoted discussion of the problems encountered. The ICPF2013 brought together 191 scientists and researchers from 14 countries, affiliated with universities, technology centers and industrial firms to debate topics related to advanced technologies for pumps and fans, which would enhance the sustainable development of fluid machinery and fluid engineering. The Scientific Committee selected 166 technical papers on the following topics: (i) Principles of Fluid Machinery, (ii) Pumps, (iii) Compressors, Fans and Turbochargers, (iv) Turbines, (v) Cavitation and Multiphase Flow, (vi) Systems and Other Fluid Machinery, and 10 invited plenary and invited session lectures, which were presented at the conference, to be included in the proceedings. All the papers of ICPF2013, which were published in this volume of IOP Conference Series: Materials Science and Engineering, have been peer reviewed through processes administered by the editors of the ICPF2013, those are Yulin Wu, Zhengwei Wang, Shouqi Yuan, Weidong Shi, Shuhong Liu, Xingqi Luo and Fujun Wang. We sincerely hope that the 6th International Conference on Pumps and Fans with Compressors and Wind Turbines is a significant step forward in the worldwide efforts to address the present challenges facing modern fluid machines. Professor Yulin Wu Chairman of the Local Organizing Committee 6th International Conference on Pumps and Fans with Compressors and Wind Turbines (ICPF2013) October 2013 The PDF contains a list of organizers, sponsors and committees.
Model Refinement and Simulation of Groundwater Flow in Clinton, Eaton, and Ingham Counties, Michigan
Luukkonen, Carol L.
2010-01-01
A groundwater-flow model that was constructed in 1996 of the Saginaw aquifer was refined to better represent the regional hydrologic system in the Tri-County region, which consists of Clinton, Eaton, and Ingham Counties, Michigan. With increasing demand for groundwater, the need to manage withdrawals from the Saginaw aquifer has become more important, and the 1996 model could not adequately address issues of water quality and quantity. An updated model was needed to better address potential effects of drought, locally high water demands, reduction of recharge by impervious surfaces, and issues affecting water quality, such as contaminant sources, on water resources and the selection of pumping rates and locations. The refinement of the groundwater-flow model allows simulations to address these issues of water quantity and quality and provides communities with a tool that will enable them to better plan for expansion and protection of their groundwater-supply systems. Model refinement included representation of the system under steady-state and transient conditions, adjustments to the estimated regional groundwater-recharge rates to account for both temporal and spatial differences, adjustments to the representation and hydraulic characteristics of the glacial deposits and Saginaw Formation, and updates to groundwater-withdrawal rates to reflect changes from the early 1900s to 2005. Simulations included steady-state conditions (in which stresses remained constant and changes in storage were not included) and transient conditions (in which stresses changed in annual and monthly time scales and changes in storage within the system were included). These simulations included investigation of the potential effects of reduced recharge due to impervious areas or to low-rainfall/drought conditions, delineation of contributing areas with recent pumping rates, and optimization of pumping subject to various quantity and quality constraints. Simulation results indicate potential declines in water levels in both the upper glacial aquifer and the upper sandstone bedrock aquifer under steady-state and transient conditions when recharge was reduced by 20 and 50 percent in urban areas. Transient simulations were done to investigate reduced recharge due to low rainfall and increased pumping to meet anticipated future demand with 24 months (2 years) of modified recharge or modified recharge and pumping rates. During these two simulation years, monthly recharge rates were reduced by about 30 percent, and monthly withdrawal rates for Lansing area production wells were increased by 15 percent. The reduction in the amount of water available to recharge the groundwater system affects the upper model layers representing the glacial aquifers more than the deeper bedrock layers. However, with a reduction in recharge and an increase in withdrawals from the bedrock aquifer, water levels in the bedrock layers are affected more than those in the glacial layers. Differences in water levels between simulations with reduced recharge and reduced recharge with increased pumping are greatest in the Lansing area and least away from pumping centers, as expected. Additionally, the increases in pumping rates had minimal effect on most simulated streamflows. Additional simulations included updating the estimated 10-year wellhead-contributing areas for selected Lansing-area wells under 2006-7 pumping conditions. Optimization of groundwater withdrawals with a water-resource management model was done to determine withdrawal rates while minimizing operational costs and to determine withdrawal locations to achieve additional capacity while meeting specified head constraints. In these optimization scenarios, the desired groundwater withdrawals are achieved by simulating managed wells (where pumping rates can be optimized) and unmanaged wells (where pumping rates are not optimized) and by using various combinations of existing and proposed well locations.
Cruise control for segmented flow.
Abolhasani, Milad; Singh, Mayank; Kumacheva, Eugenia; Günther, Axel
2012-11-21
Capitalizing on the benefits of microscale segmented flows, e.g., enhanced mixing and reduced sample dispersion, so far requires specialist training and accommodating a few experimental inconveniences. For instance, microscale gas-liquid flows in many current setups take at least 10 min to stabilize and iterative manual adjustments are needed to achieve or maintain desired mixing or residence times. Here, we report a cruise control strategy that overcomes these limitations and allows microscale gas-liquid (bubble) and liquid-liquid (droplet) flow conditions to be rapidly "adjusted" and maintained. Using this strategy we consistently establish bubble and droplet flows with dispersed phase (plug) velocities of 5-300 mm s(-1), plug lengths of 0.6-5 mm and continuous phase (slug) lengths of 0.5-3 mm. The mixing times (1-5 s), mass transfer times (33-250 ms) and residence times (3-300 s) can therefore be directly imposed by dynamically controlling the supply of the dispersed and the continuous liquids either from external pumps or from local pressurized reservoirs. In the latter case, no chip-external pumps, liquid-perfused tubes or valves are necessary while unwanted dead volumes are significantly reduced.
Wróbel, Krzysztof; Kurnicka, Katarzyna; Zygier, Marcin; Dyk, Wojciech; Wojdyga, Ryszard; Zieliński, Dariusz; Jarzębska, Małgorzata; Juraszyński, Zbigniew; Lichodziejewska, Barbara; Pruszczyk, Piotr; Biederman, Andrzej; Speziali, Giovanni; Kasten, Uwe
2017-01-01
Artificial chord implantation to repair a flail or prolapsing mitral valve leaflet requires open heart surgery and cardiopulmonary bypass. Transapical off-pump artificial chordae implantation is a new surgical technique proposed to treat degenerative mitral valve regurgitation. The procedure is performed using the NeoChord DS1000 system (NeoChord, Inc., St. Louis Park, MN, USA), which facilitates both implantation and lenght adjustment of the artificial chordae under two (2D)- and three (3D)-dimensional transoesophageal echocardiographic (TEE) guidance on a beating heart. Two male patients aged 60 and 55 years with severe mitral regurgitation due to posterior leaflet prolapse underwent transapical off-pump artificial chordae implantation on September 3, 2015. The procedure was performed by left minithoracotomy under general anaesthesia in a cardiac surgical theatre, using 2D and 3D TEE guidance. Early procedural success as confirmed by 3D TEE was achieved in both patients, with implantation of 6 artificial chordae in the first patient and 3 artificial chordae in the second patient. Both procedures were uneventful, and no postoperative complications were noted. The patients were discharged home on the 8th and 6th postoperative day, respectively. The NeoChord DS1000 system allows both implantation and lenght adjustment of artificial chordae under 2D and 3D TEE guidance on a beating heart. Our initial experience in 2 patients with posterior mitral leaflet prolapse indicates that the procedure is feasible and safe.
Characterization of a Heated Liquid Jet in Crossflow
NASA Astrophysics Data System (ADS)
Wiest, Heather K.
The liquid jet in crossflow (LJICF) is a widely utilized fuel injection method for airbreathing propulsion devices such as low NO x gas turbine combustors, turbojet afterburners, scramjet/ramjet engines, and rotating detonation engines (RDE's). This flow field allows for efficient fuel-air mixing as aerodynamic forces from the crossflow augment atomization. Additionally, increases in the thermal demands of advanced aeroengines necessitates the use of fuel as a primary coolant. The resulting higher fuel temperatures can cause flash atomization of the liquid fuel as it is injected into a crossflow, potentially leading to a large reduction in the jet penetration. While many experimental works have characterized the overall atomization process of a room temperature liquid jet in an ambient temperature and pressure crossflow, the aggressive conditions associated with flash atomization especially in an air crossflow with elevated temperatures and pressures have been less studied in the community. A successful test campaign was conducted to study the effects of fuel temperature on a liquid jet injected transversely into a steady air crossflow at ambient as well as elevated temperature and pressure conditions. Modifications were made to an existing optically accessible rig, and a new fuel injector was designed for this study. Backlit imaging was utilized to record changes in the overall spray characteristics and jet trajectory as fuel temperature and crossflow conditioners were adjusted. Three primary analysis techniques were applied to the heated LJICF data: linear regression of detected edges to determine trajectory correlations, exploratory study of pixel intensity variations both temporally as well as spatially, and modal decomposition of the data. The overall objectives of this study was to assess the trajectory, breakup, and mixing of the LJICF undery varying jet and crossflow conditions, develop a trajectory correlation to predict changes in jet penetration due to fuel temperature increases, and characterize the changes in underlying physics in the LJICF flow field. Based on visual inspection, the increase in fuel temperature leads to a finer and denser fuel spray. With increasingly elevated liquid temperatures, the penetration of the jet typically decreases. At or near flashing conditions, the jet had a tendency to penetrate upstream before bending over in the crossflow as well as experiences a rapid expansion causing the jet column to increase in width. Two trajectory correlations were determined, one for each set of crossflow conditions, based on normalized axial distance, normalized liquid viscosity, and normalized jet diameter as liquid is vaporized. The pixel intensity analysis showed that the highest temperature jet in the ambient temperature and pressure crossflow exhibited periodic behavior that was also found using various modal techniques including proper orthogonal decomposition and dynamic mode decomposition. Dominant frequencies determined for most test cases were associated with the bulk or flapping motion of the jet. Most notably, the DMD analysis in this study was successful in identifying robust modes across different subgroupings of the data even though the modes identified were not the highest power modes in each DMD spectrum.
Sohbatzadeh, F; Eshghabadi, M; Mohsenpour, T
2018-06-29
The surface modification of cotton samples was carried out using a liquid (ethanol) electrospray-assisted atmospheric pressure plasma jet. X-ray photoelectron spectroscopy (XPS) and Raman analysis confirmed the successful deposition of diamond like carbon (DLC) nano structures on the cotton surface. The super hydrophobic state of the samples was probed by contact angle measurements. The water repellency of the layers was tuned by controlling the voltage applied to the electrospray electrode. An investigation of the morphological and chemical structures of the samples by field emission scanning microscopy, atomic force microscopy (AFM) and XPS indicated that the physical shape, distribution and amorphization of the DLC structures were successfully adjusted and improved by applying a voltage to the electrospray electrode. Finally wash durability of the best sample was tested for 35 cycles. In this work, the use of a well-developed atmospheric pressure plasma jet for DLC nano structures deposition can enable a promising environmentally friendly and low-cost approach for modifying cotton fabrics for super water-repellent fabric applications.
Page, Jason S.; Bogdanov, Bogdan; Vilkov, Andrey N.; Prior, David C.; Buschbach, Michael A.; Tang, Keqi; Smith, Richard D.
2007-01-01
We report on the use of a jet disrupter electrode in an electrodynamic ion funnel as an electronic valve to regulate the intensity of the ion beam transmitted through the interface of a mass spectrometer in order to perform automatic gain control (AGC). The ion flux is determined by either directly detecting the ion current on the conductance limiting orifice of the ion funnel or using a short mass spectrometry acquisition. Based upon the ion flux intensity, the voltage of the jet disrupter is adjusted to alter the transmission efficiency of the ion funnel to provide a desired ion population to the mass analyzer. Ion beam regulation by an ion funnel is shown to provide control to within a few percent of a targeted ion intensity or abundance. The utility of ion funnel AGC was evaluated using a protein tryptic digest analyzed with liquid chromatography Fourier transform ion cyclotron resonance (LC-FTICR) mass spectrometry. The ion population in the ICR cell was accurately controlled to selected levels, which improved data quality and provided better mass measurement accuracy. PMID:15694774
Understanding High Recession Rates of Carbon Ablators Seen in Shear Tests in an Arc Jet
NASA Technical Reports Server (NTRS)
Driver, David M.; Olson, Michael W.; Barnhardt, Michael D.; MacLean, Matthew
2010-01-01
High rates of recession in arc jet shear tests of Phenolic Impregnated Carbon Ablator (PICA) inspired a series of tests and analysis on FiberForm (a carbon preform used in the fabrication of PICA). Arc jet tests were performed on FiberForm in both air and pure nitrogen for stagnation and shear configurations. The nitrogen tests showed little or no recession, while the air tests of FiberForm showed recession rates similar to that of PICA (when adjusted for the difference in density). While mechanical erosion can not be ruled out, this is the first step in doing so. Analysis using a carbon oxidation boundary condition within DPLR was used to predict the recession rate of FiberForm. The analysis indicates that much of the anomalous recession behavior seen in shear tests may simply be an artifact of the non-flight like test configuration (copper upstream of the test article) a result of dissimilar enthalpy and oxygen concentration profiles on the copper. Shape change effects were also investigated and shown to be relatively small.