Science.gov

Sample records for adjustable jet pump

  1. Experiment on performance of adjustable jet pump

    NASA Astrophysics Data System (ADS)

    Zhu, J. M.; Long, X. P.; Zhang, S. B.; Lu, X.

    2012-11-01

    When the water level of upper or lower reaches of hydraulic power station changes, the adjustable jet pump which is different from traditional fixed jet pump can maintain stable pressure and flow rate for the system of technical water supply of hydraulic power plant. The model test indicates that the efficiency of the adjustable jet pump is slightly lower than fixed jet pump near rating operation point. With the decrease of opening degree, both efficiencies are more and more close to each other. The fundamental performance of I-type adjustable jet pump is better than II-type and the cavitation performance of I-type adjustable jet pump is worse than II-type. Test data also indicate that the performance of adjustable jet pump is very different from fixed jet pump, so the theory of fixed jet pump is not able to be copied to adjustable jet pump. It is necessary to farther study on the performance of the adjustable jet pump. This paper has reference value for analogous design of system of circulation water supply to turbine units in hydraulic power station.

  2. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  3. Jet pump assisted artery

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  4. Jet pump with labyrinth seal

    SciTech Connect

    Chi, L.L.; Kudirka, A.A.

    1981-08-25

    In a jet pump for a nuclear reactor a slip joint is provided between the mixer and diffuser sections thereof to facilitate jet pump maintenance and to allow thermal expansion. To limit leakage flow through the slip joint to a rate below that which causes unacceptable flow induced vibration of the pump, there is provided a labyrinth seal for the slip joint in the form of a series of flow expansion chambers formed by a series of spaced grooves in the annulus of the slip joint.

  5. Left ventricular assist using a jet pump.

    PubMed

    Rhee, K; Blackshear, P L

    1990-01-01

    A simple, effective, cardiac assist device was developed using a jet pump, a device that performs pumping by energy transfer from a high speed jet to low speed surrounding fluids. This jet pump is inserted retrograde through the aorta and placed in the left ventricle transvalvularly. The jet of oxygenated venous blood entrains blood inside the left ventricle and pumps into the aorta through the aortic valve. Jet velocity is kept below the hemolytic threshold of 1000 cm/sec. The device was placed in a mock circulatory system that stimulates the left ventricle and vascular system by generating a pressure wave (120/75 mmHg) with a 4 L/min cardiac output (CO). A bypass loop (from the venous reservoir to aorta using a Biomedicus pump, Biomedicus Inc., Eden Prairie, MN) was set up, and the jet pump was installed. When the jet pump is turned on, bypass flow rate (BF) is 2.5 L/min, entrainment pumping 1.5 L/min, and peak ventricular pressure (VP) falls below aortic pressure (AP), while maintaining the mean AP. Time tension index (TTI) is decreased 31%. This result, when compared with simple bypass at differing BF, shows more than a 20% reduction in TTI. This simple jet pump provided significant unloading of the left ventricle and may be potentially useful as a left ventricular assist device. PMID:2252738

  6. Solar-thermal jet pumping for irrigation

    NASA Astrophysics Data System (ADS)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  7. Jet pump assisted arterial heat pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1978-01-01

    This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.

  8. An acoustic streaming instability in thermoacoustic devices utilizing jet pumps.

    PubMed

    Backhaus, S; Swift, G W

    2003-03-01

    Thermoacoustic-Stirling hybrid engines and feedback pulse tube refrigerators can utilize jet pumps to suppress streaming that would otherwise cause large heat leaks and reduced efficiency. It is desirable to use jet pumps to suppress streaming because they do not introduce moving parts such as bellows or membranes. In most cases, this form of streaming suppression works reliably. However, in some cases, the streaming suppression has been found to be unstable. Using a simple model of the acoustics in the regenerators and jet pumps of these devices, a stability criterion is derived that predicts when jet pumps can reliably suppress streaming. PMID:12656366

  9. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  10. Flow Analysis for Single and Multi-Nozzle Jet Pump

    NASA Astrophysics Data System (ADS)

    Narabayashi, Tadashi; Yamazaki, Yukitaka; Kobayashi, Hidetoshi; Shakouchi, Toshihiko

    Jet pumps, driven by a Primary-Loop Recirculation (PLR) Pump, have been widely used in Boiling Water Reactor (BWR) plants to recirculate the reactor core coolant. A jet pump consists of a driving nozzle, a bell-mouth, a throat and a diffuser. The improvement of the jet pump efficiency for BWR plants brings an economic advantage because it reduces the operating power cost of the PLR pump. In order to improve the efficiency of the BWR jet pump, a 1/5 scale jet pump test loop for BWR plant was used and intensive tests were conducted focusing on the types of driving nozzles and shapes of the throat. These test data were used for CFD flow analysis code verification. The analytical data showed good agreement with the test results. After the analytical model verification, improvement of jet pump efficiency was conducted. It was shown by the CFD analysis that the peak efficiency of the improved jet pump will be 36% with the tapered throat.

  11. Liquid jet pumps for two-phase flows

    SciTech Connect

    Cunningham, R.G.

    1995-06-01

    Isothermal compression of a bubbly secondary fluid in a mixing-throat and diffuser is described by a one-dimensional flow model of a liquid-jet pump. Friction-loss coefficients used in the four equations may be determined experimentally, or taken from the literature. The model reduces to the liquid-jet gas compressor case if the secondary liquid is zero. Conversely, a zero secondary-gas flow reduces the liquid-jet gas and liquid (LJGL) model to that of the familiar liquid-jet liquid pump. A ``jet loss`` occurs in liquid-jet pumps if the nozzle tip is withdrawn from the entrance plane of the throat, and jet loss is included in the efficiency equations. Comparisons are made with published test data for liquid-jet liquid pumps and for liquid-jet gas compressors. The LJGL model is used to explore jet pump responses to two-phase secondary flows, nozzle-to-throat area ratio, and primary-jet velocity. The results are shown in terms of performance curves versus flow ratios. Predicted peak efficiencies are approximately 50 percent. Under sever operating conditions, LJGL pump performance curves exhibit maximum-flow ratios or cut-offs. Cut-offs occurs when two-phase secondary-flow steams attain sonic values at the entry of the mixing throat. A dimensionless number correlates flow-ratio cut-offs with pump geometry and operating conditions. Throat-entry choking of the secondary flow can be predicted, hence avoided, in designing jet pumps to hand two-phase fluids.

  12. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, J. R. (Inventor)

    1985-01-01

    A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.

  13. Jet Boost Pumps For The Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Meng, Sen Y.

    1991-01-01

    Brief report proposes use of jet boost pumps in conjunction with main pumps supplying liquid hydrogen and liquid oxygen to main engine of Space Shuttle. Main part of pump has no moving parts. Benefits include increased reliability, simplified ducts, and decreased weight.

  14. Development of a jet pump-assisted arterial heat pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1977-01-01

    The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.

  15. Oscillatory flow in jet pumps: nonlinear effects and minor losses.

    PubMed

    Petculescu, A; Wilen, L A

    2003-03-01

    A nonresonant, lumped-element technique is used to investigate the behavior of tapered cylindrical flow constrictions (jet pumps) in the nonlinear oscillatory flow regime. The array of samples studied spans a wide range of inlet curvature radii and taper angles. By measuring the rectified steady pressure component developed across a jet pump as well as the acoustic impedance, the minor loss coefficients for flow into and out of the narrow end of the jet pump are determined. These coefficients are found to be relatively insensitive to all but the smallest curvature radii (i.e., sharp edges). For fixed radius of curvature, the inflow minor loss coefficient increases with increasing taper angle while the outflow coefficient remains relatively constant. For all of the samples, the steady flow minor loss coefficients are also measured and compared to their oscillatory flow counterparts. The agreement is good, confirming the so-called Iguchi hypothesis. PMID:12656363

  16. Experimental studies on an air-air jet exhaust pump

    SciTech Connect

    Chou, S.K.

    1986-01-01

    Industrial ventilation employing an air-air jet exhaust pump connected to a compressed-air line was investigated. The motive air supply pressure was maintained between 2 and 3 bar. A unique ejector housing was constructed to receive both the convergent-divergent primary nozzle and the mixing chamber. The entire unit adapts readily to any existing compressed-air system. The mixing chamber was so constructed that the length of its cylindrical section may be changed. Pressure variations along the mixing chamber were recorded, and this offered a valuable appreciation of the effects of the length-to-diameter ratios. Results indicate the influence of the supply air pressure and pressure ratio on the jet entrainment capacity and efficiency. It has also been shown that the present design is capable of achieving the maximum reported jet-pump efficiency of around 25% corresponding to a nozzle-to-mixing chamber area ratio of 0.15.

  17. Retrieval Pump Flexible Suction Hose Dynamic Response Induced by Impact of a Mixer Pump Jet

    SciTech Connect

    Enderlin, C.W.; Terrones, G.; Bamberger, J.A.; White, M.; Combs, W.H.

    1999-10-07

    Experiments were conducted to investigate whether it may be feasible to simultaneously mix and retrieve radioactive waste slurries that are stored in million-gallon, double-shell tanks at the Hanford Site in Richland, Washington. Oscillating mixer pumps, located near the floor of these tanks, are used to mobilize and mix the slurry prior to retrieval. Operational scenarios that may be beneficial for retrieval may require simultaneous operation of a decant/transfer pump and the jet mixer pumps. The effects of jet-induced agitation and jet impingement upon the decant/transfer pump's flexible suction hose have not previously been experimentally evaluated. Possible effects of the jet impacting the hose include hose fatigue, hose collision or entanglement with other structures, and induced static and dynamic loads on the decant/transfer pump equipment. The objective of this work was to create operating conditions in a test tank that produce a dynamic response (in the flexible suction hose upon impingement from an above-floor jet) that is similar to that anticipated in the actual tank. A scaling analysis was conducted to define the interactions between the jet, the tank floor and the suction hose. The complexity of scaling the multi-layer flexible hose (matching its hydroelastic parameters at full and 1/4-scale) led to an alternate approach, that of matching the expected full-scale forces on the full-scale hose in the scaled tank. Two types of tests were conducted: characterization of the jet velocity profile in the test tank at two axial locations from the nozzle and observation of the motion induced in the flexible retrieval hose from impact by the jet. The velocity profile of the jet in the test tank was measured to compare the measured profiles with profile predictions for an above-floor jet. These data were used to obtain a refined estimate of the velocity profile and therefore, the force acting upon the test article at a particular location in the tank. The hose

  18. Jet mixer pump testing in Hanford Tank 241-SY-101

    SciTech Connect

    Stewart, C.W.

    1994-11-01

    A mixer pump was found effective in controlling and possibly eliminating large episodic flammable gas releases from Hanford Tank 241-SY-101. A gas release event (GRE) is initiated when the gas-bearing sludge layer accumulates sufficient gas to become buoyant. The buoyant sludge pulls free from the surrounding material and rises through the surface crust releasing the trapped gas to the dome space. Mixer pump operation is intended to keep enough of the gas-generating material in suspension so that it releases gas continuously instead of periodically in large, potentially dangerous GREs. A mixer pump was installed in the tank on July 3, 1993, seven days after a typical GRE that met the safety criteria for pump installation. Because nozzle plugging did occur, bump speed and duration were increased, eventually arriving at the accepted five-minute period at 1000 rpm on July 26. There has been no nozzle plugging since. Bumping was initially performed twice daily through mid-August and once daily until the start of Phase B testing. By the end of Phase B, thrice-weekly bumping during non-testing periods became the rule. The jets were aimed into previously undisturbed material and gas release induced by the pump increased immediately. In November, the pump was indexed progressively around the entire tank in 30{degrees} steps. This steadily released a large quantity of retained gas at each position and reduced the waste level to 400 inches, the minimum level in many years. By December, the jets had apparently excavated most of the gas-bearing sludge within reach, because only modest gas releases and essentially no level change occurred after pump operation. For the rest of Phase B testing, there were no large gas releases that would suggest a large volume of unmixed waste. The two thermocouple trees showed a uniform vertical temperature profile. In the month following Phase B, minimal pump operation apparently maintained most of the mixing achieved during testing.

  19. Jet Pump Design Optimization by Multi-Surrogate Modeling

    NASA Astrophysics Data System (ADS)

    Mohan, S.; Samad, A.

    2015-01-01

    A basic approach to reduce the design and optimization time via surrogate modeling is to select a right type of surrogate model for a particular problem, where the model should have better accuracy and prediction capability. A multi-surrogate approach can protect a designer to select a wrong surrogate having high uncertainty in the optimal zone of the design space. Numerical analysis and optimization of a jet pump via multi-surrogate modeling have been reported in this work. Design variables including area ratio, mixing tube length to diameter ratio and setback ratio were introduced to increase the hydraulic efficiency of the jet pump. Reynolds-averaged Navier-Stokes equations were solved and responses were computed. Among different surrogate models, Sheppard function based surrogate shows better accuracy in data fitting while the radial basis neural network produced highest enhanced efficiency. The efficiency enhancement was due to the reduction of losses in the flow passage.

  20. Numerical Simulation of Cavitation Characteristics for Pump-jet Propeller

    NASA Astrophysics Data System (ADS)

    Shi, Yao; Pan, Guang; Huang, Qiaogao; Du, Xiaoxu

    2015-09-01

    With k — ε turbulent model, non-cavitating performance of a pump-jet propeller was obtained by calculating RANS equations. The comparison between calculation results and experiment data shown that the numerical model and method was reliable. The cavitating hydrodynamic performance of it was calculated and analyzed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations and sliding mesh. The effects of different inlet velocity ratio, cavitation number and flow velocity on cavitation characteristics of pump-jet were studied. When the cavitation occurred on the blades, the propeller thrust and torque decreased significantly, thereby causing open water efficiency reduced 15%. For the same cavitation number, as the inlet velocity ratio decreased, the pump-jet propeller blade cavitation phenomenon was more obvious. While for the same ratio, the smaller the number of cavitation, cavitation phenomenon was more remarkable. The more significant was that while the cavitation number was greater than a certain value, the blade cavitation phenomenon disappeared.

  1. An experimental study on the airlift pump with air jet nozzle and booster pump.

    PubMed

    Cho, Nam-Cheol; Hwang, In-Ju; Lee, Chae-Moon; Park, Jung-Won

    2009-01-01

    The experiments for high head airlifting performance with vertical tube were examined for wastewater treatment. Comparing with the centrifugal pump and other pumps, the airlift pump has some problems and limited applications. However, an advantage of an airlift pump is in its geometrical simplicity, not having any moving parts, so it is suitable in lifting fluids including tiny pieces of metal or grit. In this study, for the purpose of high lifting head, an air jet nozzle was used. We have performed experimentally according to various characteristics of the airlift pump system such as the change of submerged depth, lifting head of liquid-air mixture (total head) and air flow rate. This work has verified through experiments that airlift pump shows lifting ability for 3 m (Sr = 0.3) in comparison with conventional height, 2 m (Sr = 0.4). Also, we suggested that the new airlift pump system with the air booster pump be used to improve the higher lifting head performance. PMID:25084423

  2. Characterization and reduction of flow separation in jet pumps for laminar oscillatory flows

    NASA Astrophysics Data System (ADS)

    Timmer, Michael A. G.; Oosterhuis, Joris P.; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H.

    2016-01-01

    A computational fluid dynamics model is used to predict the oscillatory flow through tapered cylindrical tube sections (jet pumps). The asymmetric shape of jet pumps results in a time-averaged pressure drop that can be used to suppress Gedeon streaming in closed-loop thermoacoustic devices. However, previous work has shown that flow separation in the diverging flow direction counteracts the time-averaged pressure drop. In this work, the characteristics of flow separation in jet pumps are identified and coupled with the observed jet pump performance. Furthermore, it is shown that the onset of flow separation can be shifted to larger displacement amplitudes by designs that have a smoother transition between the small opening and the tapered surface of the jet pump. These design alterations also reduce the duration of separated flow, resulting in more effective and robust jet pumps. To make the proposed jet pump designs more compact without reducing their performance, the minimum big opening radius that can be implemented before the local minor losses have an influence on the jet pump performance is investigated. To validate the numerical results, they are compared with experimental results for one of the proposed jet pump designs.

  3. Characterization and reduction of flow separation in jet pumps for laminar oscillatory flows.

    PubMed

    Timmer, Michael A G; Oosterhuis, Joris P; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H

    2016-01-01

    A computational fluid dynamics model is used to predict the oscillatory flow through tapered cylindrical tube sections (jet pumps). The asymmetric shape of jet pumps results in a time-averaged pressure drop that can be used to suppress Gedeon streaming in closed-loop thermoacoustic devices. However, previous work has shown that flow separation in the diverging flow direction counteracts the time-averaged pressure drop. In this work, the characteristics of flow separation in jet pumps are identified and coupled with the observed jet pump performance. Furthermore, it is shown that the onset of flow separation can be shifted to larger displacement amplitudes by designs that have a smoother transition between the small opening and the tapered surface of the jet pump. These design alterations also reduce the duration of separated flow, resulting in more effective and robust jet pumps. To make the proposed jet pump designs more compact without reducing their performance, the minimum big opening radius that can be implemented before the local minor losses have an influence on the jet pump performance is investigated. To validate the numerical results, they are compared with experimental results for one of the proposed jet pump designs. PMID:26827017

  4. Stimulated emission pumping spectroscopy of jet-cooled C3

    NASA Astrophysics Data System (ADS)

    Rohlfing, Eric A.; Goldsmith, J. E. M.

    1989-06-01

    We report a dispersed fluorescence spectrum obtained for excitation of a ∑+u-∑+g vibronic band of C3 at 33 588 cm-1, part of a newly discovered electronic system. Rotationally resolved stimulated-emission-pumping spectra of jet-cooled C3 using this ∑+u intermediate state are presented for dumping to the 0v121 (1≤v2≤13) and 6v121 (1≤v2≤5) levels in the 1Σ+g ground state. Vibrational term energies, rotational constants, and l-type doubling parameters are determined for each level.

  5. Design method of water jet pump towards high cavitation performances

    NASA Astrophysics Data System (ADS)

    Cao, L. L.; Che, B. X.; Hu, L. J.; Wu, D. Z.

    2016-05-01

    As one of the crucial components for power supply, the propulsion system is of great significance to the advance speed, noise performances, stabilities and other associated critical performances of underwater vehicles. Developing towards much higher advance speed, the underwater vehicles make more critical demands on the performances of the propulsion system. Basically, the increased advance speed requires the significantly raised rotation speed of the propulsion system, which would result in the deteriorated cavitation performances and consequently limit the thrust and efficiency of the whole system. Compared with the traditional propeller, the water jet pump offers more favourite cavitation, propulsion efficiency and other associated performances. The present research focuses on the cavitation performances of the waterjet pump blade profile in expectation of enlarging its advantages in high-speed vehicle propulsion. Based on the specifications of a certain underwater vehicle, the design method of the waterjet blade with high cavitation performances was investigated in terms of numerical simulation.

  6. On the performance and flow characteristics of jet pumps with multiple orifices.

    PubMed

    Oosterhuis, Joris P; Timmer, Michael A G; Bühler, Simon; van der Meer, Theo H; Wilcox, Douglas

    2016-05-01

    The design of compact thermoacoustic devices requires compact jet pump geometries, which can be realized by employing jet pumps with multiple orifices. The oscillatory flow through the orifice(s) of a jet pump generates asymmetric hydrodynamic end effects, which result in a time-averaged pressure drop that can counteract Gedeon streaming in traveling wave thermoacoustic devices. In this study, the performance of jet pumps having 1-16 orifices is characterized experimentally in terms of the time-averaged pressure drop and acoustic power dissipation. Upon increasing the number of orifices, a significant decay in the jet pump performance is observed. Further analysis shows a relation between this performance decay and the diameter of the individual holes. Possible causes of this phenomenon are discussed. Flow visualization is used to study the differences in vortex ring interaction from adjacent jet pump orifices. The mutual orifice spacing is varied and the corresponding jet pump performance is measured. The orifice spacing is shown to have less effect on the jet pump performance compared to increasing the number of orifices. PMID:27250166

  7. The influence of Reynolds numbers on resistance properties of jet pumps

    SciTech Connect

    Geng, Q.; Zhou, G.; Li, Q.

    2014-01-29

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  8. Jet pumps for thermoacoustic applications: Design guidelines based on a numerical parameter study

    NASA Astrophysics Data System (ADS)

    Oosterhuis, Joris P.; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H.

    2015-10-01

    The oscillatory flow through tapered cylindrical tube sections (jet pumps) is characterized by a numerical parameter study. The shape of a jet pump results in asymmetric hydrodynamic end effects which cause a time-averaged pressure drop to occur under oscillatory flow conditions. Hence, jet pumps are used as streaming suppressors in closed-loop thermoacoustic devices. A two-dimensional axisymmetric computational fluid dynamics model is used to calculate the performance of a large number of conical jet pump geometries in terms of time-averaged pressure drop and acoustic power dissipation. The investigated geometrical parameters include the jet pump length, taper angle, waist diameter and waist curvature. In correspondence with previous work, four flow regimes are observed which characterize the jet pump performance and dimensionless parameters are introduced to scale the performance of the various jet pump geometries. The simulation results are compared to an existing quasi-steady theory and it is shown that this theory is only applicable in a small operation region. Based on the scaling parameters, an optimum operation region is defined and design guidelines are proposed which can be directly used for future jet pump design.

  9. The influence of Reynolds numbers on resistance properties of jet pumps

    NASA Astrophysics Data System (ADS)

    Geng, Q.; Zhou, G.; Li, Q.

    2014-01-01

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  10. Jet pumps for thermoacoustic applications: Design guidelines based on a numerical parameter study.

    PubMed

    Oosterhuis, Joris P; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H

    2015-10-01

    The oscillatory flow through tapered cylindrical tube sections (jet pumps) is characterized by a numerical parameter study. The shape of a jet pump results in asymmetric hydrodynamic end effects which cause a time-averaged pressure drop to occur under oscillatory flow conditions. Hence, jet pumps are used as streaming suppressors in closed-loop thermoacoustic devices. A two-dimensional axisymmetric computational fluid dynamics model is used to calculate the performance of a large number of conical jet pump geometries in terms of time-averaged pressure drop and acoustic power dissipation. The investigated geometrical parameters include the jet pump length, taper angle, waist diameter, and waist curvature. In correspondence with previous work, four flow regimes are observed which characterize the jet pump performance and dimensionless parameters are introduced to scale the performance of the various jet pump geometries. The simulation results are compared to an existing quasi-steady theory and it is shown that this theory is only applicable in a small operation region. Based on the scaling parameters, an optimum operation region is defined and design guidelines are proposed which can be directly used for future jet pump design. PMID:26520283

  11. Numerical investigation on the jet pump performance based on different turbulence models

    NASA Astrophysics Data System (ADS)

    Yang, X. L.; Long, X. P.

    2012-11-01

    This paper aims to figure out the influence of turbulence model and wall boundary condition on the simulation of performance and flow field of jet pumps. And then try to find out one combination of turbulence model and wall treatment method that gives out more accurate performance prediction and reasonable internal flow details. Six turbulence models, (namely the three k-epsilon, the standard and SST k-omega, and Reynolds stress models) and two wall treatment methods (standard wall functions and enhanced wall treatment) were involved. A jet pump model used in an experiment was chosen as the simulation prototype. The static pressure distribution along the wall and the performance data from the experiment were used as the reference data for validating with those from the simulation results. It is found that all the ten combinations agree well with the experiment data when the volumetric flow ratio is low, however, none of them could give a performance prediction with errors less than 10% under the lager flow ratio work conditions. The errors between predicted results by several combinations and the experiment data were lowered to be less than 5% under all the working conditions by adjusting the model constants.

  12. Controlling device for a fuel-quantity adjusting member of a fuel injection pump

    SciTech Connect

    Eheim, F.; Hofer, G.; Konrath, K.; Straubel, M.

    1987-11-03

    This patent describes a controlling device for a fuel-quantity adjustment element of a fuel injection pump including an adjusting lever pivotable around a shaft. The adjusting lever is coupled with a fuel-quantity adjusting element, a drag lever pivotable around the shaft of the adjusting lever. The drag lever communicates with the adjusting lever by way of a coupling element. An adjustable governor spring assembly is arranged to act on the drag lever, a stop for stopping the drag lever, further including a device for generating rpm-dependent force transmittable to the drag lever by means of an actuating element thereof and counter to the governor spring assembly, whereby the drag lever and the adjusting lever are coupled for movement together at least at the end of each relative movement effected by the actuating element. The actuating element acts directly upon the drag lever and the adjusting lever during deflection by way of a predetermined relative adjustment distance between the drag lever and the adjusting lever for adjustment by the actuating element, at least one spring arranged between the adjusting lever and a fixed support. At least one spring acts on the adjusting lever to force the adjusting lever into contact with an adjustable stop which is adjustable in dependence from the operating parameters of the combustion engine.

  13. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    SciTech Connect

    Onishi, Y.; Recknagle, K.

    1997-04-01

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause a criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.

  14. Gain change by adjusting the pumping wavelength in an end-pumped Nd:YVO4 amplifier.

    PubMed

    Nie, Mingming; Liu, Qiang; Ji, Encai; Fu, Xing; Gong, Mali

    2016-06-20

    In this paper, the performance of an end-pumped laser amplifier was experimentally studied by adjusting the pumping wavelength of a laser diode. An interesting phenomenon was observed: that the gain would decrease with an increase in absorbed pump power. The scaled output power of 0.3 at. % doped 20 mm long Nd:YVO4 crystal decreased from 0.48 to 0.2 W when the absorbed pump power increased from 17.5 to 17.8 W. Theoretical analysis was demonstrated according to our previous model. The long crystal length is the main reason for the observed phenomenon. This phenomenon could be utilized to enhance amplifier gain and improve thermal performance, including the maximal temperature and thermal stress of the crystal. PMID:27409123

  15. Flow-induced vibration characteristics of the BWR/5-201 jet pump

    SciTech Connect

    LaCroix, L.V.

    1982-09-01

    A General Electric boiling water reactor BWR/5-201 jet pump was tested for flow-induced vibration (FIV) characteristics in the Large Steam Water Test Facility at Moss Landing, CA, during the period June-July 1978. High level periodic FIV were observed at reactor operating conditions (1027 psia, 532/sup 0/F and prototypical flow rates) for the specific single jet pump assembly tested. High level FIV of similar amplitude and character have been shown capable of damaging jet pump components and associated support hardware if allowed to continue unchecked. High level FIV were effectively suppressed in two special cases tested: (1) lateral load (>500 lb) at the mixer to diffuser slip joint; and (2) a labyrinth seal (5 small, circumferential grooves) on the mixer at the slip joint. Stability criteria for the particular jet pump tested were developed from test data. A cause-effect relationship between the dynamic pressure within the slip joint and the jet pump vibration was established.

  16. Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.

  17. Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes

    NASA Technical Reports Server (NTRS)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.

  18. VCSEL end-pumped passively Q-switched Nd:YAG laser with adjustable pulse energy.

    PubMed

    Goldberg, Lew; McIntosh, Chris; Cole, Brian

    2011-02-28

    A compact, passively Q-switched Nd:YAG laser utilizing a Cr4+:YAG saturable absorber, is end-pumped by the focused emission from an 804 nm vertical-cavity surface-emitting laser (VCSEL) array. By changing the VCSEL operating current, we demonstrated 2x adjustability in the laser output pulse energy, from 9 mJ to 18 mJ. This energy variation was attributed to changes in the angular distribution of VCSEL emission with drive current, resulting in a change in the pump intensity distribution generated by a pump-light-focusing lens. PMID:21369256

  19. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  20. A numerical investigation on the vortex formation and flow separation of the oscillatory flow in jet pumps.

    PubMed

    Oosterhuis, Joris P; Bühler, Simon; van der Meer, Theo H; Wilcox, Douglas

    2015-04-01

    A two-dimensional computational fluid dynamics model is used to predict the oscillatory flow through a tapered cylindrical tube section (jet pump) placed in a larger outer tube. Due to the shape of the jet pump, an asymmetry in the hydrodynamic end effects will exist which will cause a time-averaged pressure drop to occur that can be used to cancel Gedeon streaming in a closed-loop thermoacoustic device. The performance of two jet pump geometries with different taper angles is investigated. A specific time-domain impedance boundary condition is implemented in order to simulate traveling acoustic wave conditions. It is shown that by scaling the acoustic displacement amplitude to the jet pump dimensions, similar minor losses are observed independent of the jet pump geometry. Four different flow regimes are distinguished and the observed flow phenomena are related to the jet pump performance. The simulated jet pump performance is compared to an existing quasi-steady approximation which is shown to only be valid for small displacement amplitudes compared to the jet pump length. PMID:25920825

  1. A numerical investigation on the vortex formation and flow separation of the oscillatory flow in jet pumps

    NASA Astrophysics Data System (ADS)

    Oosterhuis, Joris P.; Bühler, Simon; van der Meer, Theo H.; Wilcox, Douglas

    2015-04-01

    A two-dimensional computational fluid dynamics model is used to predict the oscillatory flow through a tapered cylindrical tube section (jet pump) placed in a larger outer tube. Due to the shape of the jet pump, there will exist an asymmetry in the hydrodynamic end effects which will cause a time-averaged pressure drop to occur that can be used to cancel Gedeon streaming in a closed-loop thermoacoustic device. The performance of two jet pump geometries with different taper angles is investigated. A specific time-domain impedance boundary condition is implemented in order to simulate traveling acoustic wave conditions. It is shown that by scaling the acoustic displacement amplitude to the jet pump dimensions, similar minor losses are observed independent of the jet pump geometry. Four different flow regimes are distinguished and the observed flow phenomena are related to the jet pump performance. The simulated jet pump performance is compared to an existing quasi-steady approximation which is shown to only be valid for small displacement amplitudes compared to the jet pump length.

  2. Fabrication and Basic Characterization of a Piezoelectric Valveless Micro Jet Pump

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsuhiko; Thanh Dau, Van; Sakamoto, Ryohei; Dinh, Thien Xuan; Viet Dao, Dzung; Sugiyama, Susumu

    2008-11-01

    A piezoelectric-driven valveless micro jet pump with a novel channel structure has been designed and fabricated. The simple structure micro jet pump consists of a lead zirconate titanate (PZT) diaphragm and flow channels. The design of the flow channels focuses on a cross junction formed by the neck of the pump chamber and one outlet and two opposite inlet channels. This structure allows differences in fluidic resistance and fluidic momentum inside the channels during each pump vibration cycle. To confirm the pump operation, a prototype was fabricated using polymethyl methacrylate as a base plate and a conventional machining technique. Two types of pump with nozzle depths of 0.5 and 0.2 mm were prepared, and the depth effect on the flow rate was investigated. The pump chamber has an 11.8 mm diameter, a 0.5 mm depth, and a volume of 0.055 cm3. The maximum flow rate of 17 ml/min at 400 Pa was obtained when the pump was driven at a resonant frequency of approximately 6 kHz by a sinusoidal voltage of 30 Vp-p.

  3. Jet mixer pump testing in Hanford tank 241-SY-101

    SciTech Connect

    Stewart, C.W.

    1994-12-31

    A mixer pump was found effective in controlling and possibly eliminating large flammable gas releases from Hanford Tank 241-SY-101. A gas release event (GRE) is initiated when gas-bearing sludge accumulates sufficient gas to become buoyant. The buoyant sludge pulls free from the surrounding material and rises to the surface releasing the trapped gas. Mixer pump operation is intended to keep gas-generating material in suspension so that it releases gas continuously instead of periodically in large, potentially dangerous GREs. A mixer pump was installed July 3, 1993, 7 days after a typical GRE. The initial pump operation in phase-A testing was extremely gentle, beginning with a series of daily pump {open_quotes}bumps{close_quotes} intended to keep the pump nozzles clear. Because nozzle plugging did occur, bump speed and duration were increased, eventually arriving at the accepted 5-min period at 1000 rpm on July 26. There has been no nozzle plugging since. Bumping was initially performed twice daily through mid-August and once daily until the start of phase-B testing. By the end of phase B, thrice-weekly bumping became the rule.

  4. Jet Engines as High-Capacity Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.

    1983-01-01

    Large diffuser operations envelope and long run times possible. Jet engine driven ejector/diffuser system combines two turbojet engines and variable-area-ratio ejector in two stages. Applications in such industrial proesses as handling corrosive fumes, evaporation of milk and fruit juices, petroleum distillation, and dehydration of blood plasma and penicillin.

  5. Matrix Algorithms for Dynamic Gain-Spectrum Adjustment of Backward-Pumped Distributed Fiber Raman Amplifier

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Xiao, Li; Peng, Jiangde

    2006-03-01

    Two matrix algorithms aiming at a dynamic gain-spectrum adjustment in a backward-pumped distributed fiber Raman amplifier (B-DFRA) are developed based on the relation between changes in the pump power and the gain spectrum. Characteristic channels are chosen to reduce the dimension of matrices in the algorithm, which can be implemented by built-in microprocessors or DSP chips inside the B-DFRA module. Furthermore, as shown by the theoretical analysis and the numerical simulation, elements in the matrices can be directly and easily measured in deployed fiber plants without information on fiber parameters. These matrix algorithms are capable of adjusting the gain spectrum to fit the arbitrary profile desired in reality, while a wide dynamic range can be achieved by a multistage adjustment using matrices measured under several gain levels.

  6. NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BU

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BUILDING ERB - ALKALI METAL LOW PRESSURE PUMP FACILITY AND ALKALI METAL HIGH PRESSURE PUMP FACILITY IN CELL W-6 OF THE COMPRESSOR & TURBINE WING C&T

  7. Analysis and Modeling of a Two-Phase Jet Pump of a Thermal Management System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.

    1998-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.

  8. Research on Optimal Operation by Adjusting Blade Angle in Jiangdu No. 4 Pumping Station of China

    NASA Astrophysics Data System (ADS)

    Lihua, Zhang; Jilin, Chang; Rentian, Zhang; Yi, Gong

    2010-06-01

    A Nonlinear Programming Model for the optimal day-operation of multi-units pump in one pumping station by adjusting blade angle has been put out, where the peak-valley electricity prices is considered in this paper. The model takes the minimal operation cost of pump assembly as objective function. In the meantime, the periods are defined as stage variables. The blade angle and the number of the working-pumps are expressed as decision variables and the water volume pumped in one day as constraint condition. The problem is very difficult to be settled by regular methods. This paper presents a new method which adopts experimental optimization method of adjusting blade angle in different periods and linear integral programming method to select the number of pumps. After applying the method to the optimal operation of Jiangdu No.4 pumping station, which is the source pump station of Eastern Route Project of South-to-North Water Diversion(Where there are seven pumps and the design flow rate of single-unit is 30.0m3/sec), we get the results which are as follows:(1) With the constraint conditions of typical tidal process which are average tidal levels from December to February of next year, designed average pumping head of 7.8m, and the operation load at 100%,80%,60% of full-load(the water volume when the pumps working with the blade angle of 0 degree and the speed of 150r/min in full day), the relative energy-saving reaches 5.18%˜33.02% comparing with the state of keeping the pump operating at its designed blade angle which is 0 degree when considering peak-valley electricity prices. While not considering the peak-valley electricity prices, the number is 1.96%˜9.71%, and less load corresponds to more cost-saving. (2) The key factory on deciding the operation state of pumps is electricity price when we consider the peak-valley electricity prices. All the pumps should be working and the blade angle should be in the largest state when at the valley price, while the number

  9. Fabrication of a gas flow device consisting of micro-jet pump and flow sensor

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsuhiko; Dau, Van T.; Otake, Tomonori; Dinh, Thien X.; Sugiyama, Susumu

    2008-12-01

    A gas-flow device consisting of a valveless micro jet pump and flow sensor has been designed and fabricated using a Si micromachining process. The valveless micro pump is composed of a piezoelectric lead zirconate titanate (PZT) diaphragm actuator and flow channels. The design of the valvless pump focuses on a crosss junction formed by the neck of the pump chamber and one outlet and two opposite inlet channnels. The structure allows differences in the fluidic resistance and fluidic momentum inside the channels during each pump vibration cycle, which leads to the gas flow being rectified without valves. Before the Si micro-pump was developed, a prototype of it was fabricated using polymethyl methacrylate (PMMA) and a conventional machining techinique, and experiments on it confirmed the working principles underlying the pump. The Si micro-pump was designed and fabricated based on these working principles. The Si pump was composed of a Si flow channel plate and top and botom covers of PMMA. The flow channels were easily fabricated by using a silicon etching process. To investigate the effects of the step nozzle structure on the gas flow rate, two types of pumps with different channel depths (2D- and 3D-nozzle structures) were designed, and flow simulations were done using ANSYS-Fluent software. The simulations and excperimental data revealed that the 3D-nozzle structure is more advantageous than the 2D-nozzle structure. A flow rate of 4.3 ml/min was obtained for the pump with 3D-nozzle structure when the pump was driven at a resonant frequency of 7.9 kHz by a sinusoidal voltage of 40Vpp. A hot wire was fabricated as a gas-flow sensor near the outlet port on the Si wafer.

  10. Bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump.

    PubMed

    Kosaka, Ryo; Yoshida, Fumihiko; Nishida, Masahiro; Maruyama, Osamu; Kawaguchi, Yasuo; Yamane, Takashi

    2015-01-01

    The purpose of the present study is to investigate a bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump to realize a blood pump with a low hemolysis level. The impeller levitates axially by balancing a gravitational force, buoyancy, a magnetic force, and hydrodynamic forces on the top and bottom sides of the impeller. To adjust the levitation position of the impeller, the balance of acting forces on the impeller was adjusted by changing the shroud area on the bottom impeller. Three pumps having various shroud area were prepared as tested models: 817 mm(2) (HH-S), 875 mm(2) (HH-M) and 931 mm(2) (HH-L). First, for evaluating the bearing gap adjustment, the bearing gap was estimated by calculating a balancing position of the acting forces on the impeller. We actually measured the gravitational force, buoyancy and the magnetic force, and numerically analyzed hydrodynamic forces on the top and bottom sides of the impeller. Second, to verify accuracy of the estimated bearing gap, the measurement test of the bearing gap was performed. Finally, an in-vitro hemolysis test was performed to evaluate a hemolysis level of the pump. As a result, bottom bearing gaps were estimated as 40 μm (HH-S), 60 μm (HH-M) and 238 μm (HH-L). In the measurement test, bottom bearing gaps were measured as 63 μm (HH-S), 219 μm (HH-M), and 231 μm (HH-L). The estimated bearing gaps had positively correlated with the measured bearing gaps in relation to the shroud area on the impeller. In the hemolysis test, hemolysis level in every model was almost equivalent to that of BPX-80, when the bearing gap was adjusted greater than 60 μm. We could adjust the bearing gap by changing the shroud area on the impeller for improvement of levitation performance to realize a blood pump with a low hemolysis level. PMID:26736996

  11. Jet Pump for Liquid Helium Circulation Through the Fast Cycling Magnets of Nuclotron

    NASA Astrophysics Data System (ADS)

    Agapov, Nikolay; Emelianov, Nikita; Mitrofanova, Julia; Nikiforov, Dmitry

    Nuclotron is the first fast cycling superconducting synchrotron intended for the acceleration of high-energy nuclei and heavy ions. Its cryogenic system includes two helium refrigerators with a total capacity of 4000 W at 4.5 K. The 251.5 m long accelerator ring consists of 144 superconducting dipole and quadruple magnets. The magnets connected in parallel are refrigerated by a two-phase flow of boiling helium. In order to increase liquid helium flow directed to the superconducting magnets, jet pumps are used. We explain theoretical and experimental results that allow one to determinate main technical specifications and optimal geometric dimensions of the jet pumps. The experience of using this device and corresponding flow diagrams are described.

  12. Prediction and analysis of jet pump cavitation using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Zi, Hai; Zhou, Lingjiu; Meng, Long

    2015-12-01

    3D LES numerical simulations were performed to investigate cavitation performance inside a jet pump. The results were found to match the test data most closely. The cavitation characteristics of the jet pump were then analyzed using changes in the inlet and outlet pressure to isolate its effect on cavitation. Both results shows that the increase of the inlet pressure generally increases the Renolds number but decrease the cavitation number, thus aggravate cavitation. The closing of the outlet valve increase the outlet pressure but decrease the flowrate ratio, resulting in the increase of velocity difference and vorticity in the mixing layer. So the cavitation first declines and then grows. The cavities appear slender and extended longer in the throat with high flowrate ratio. Conversely, the cavities look short and located in the front part of the throat with low flowrate ratio. Flow analysis indicated that the turbulence behavior in the shear layer and the overall mean pressure has great influence on the local pressure in jet pump, which reveal the reason of different cavitation shape observed in experiment.

  13. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  14. Practical Electrode System for EHD Liquid Jet Generation and Properties of Liquid Pumping

    NASA Astrophysics Data System (ADS)

    Hanaoka, Ryoichi; Hosodani, Naoki; Takahashi, Ichiro; Takata, Shinzo; Fukami, Tadashi

    The coaxial cone to rod electrode system was devised to generate a powerful electrohydrodynamic (EHD) liquid jet and the performance as a liquid pump was investigated using an isothermal weakly conducting liquid, HFC43-10. When a positive dc voltage was applied to the rod electrode, the liquid spouted forcibly from the glass tube outlet installed in the top of grounded conical electrode. The properties of liquid jet: pumping pressure, flow velocity and flow pattern were examined for the electrode systems with various cone angles (θ =40°∼90°) of the conical electrode. The potential distribution in the electrode gap and the conduction current also were measured as a function of applied voltage. In this paper, it is shown that the pumping pressure is almost independent of the cone angle of electrode systems as well as the flow velocity, but is raised effectively by a partial insulating coating of rod electrode surface and the current is reduced by a coating. The potential distribution in the gap revealed the existence of heterocharge layer in the vicinity of the electrode surfaces. It is considered that the EHD pumping in this study is attributed to a space charge layer with single ionic polarity near the rod electrode, which is formed by a non-uniform electric field.

  15. Viscous pumping and the spin-down of thermospheric gyres and jets

    NASA Technical Reports Server (NTRS)

    Walterscheid, R. L.; Schubert, G.

    1986-01-01

    Strong gyres and jets can be generated at auroral latitudes in the thermosphere by enhanced electric fields during geomagnetic substorms. Typical height profiles of ion density suggest that the ion drag force should generate large curvature in the vertical profile of the winds in the highly viscous region of the thermosphere above about 200 km. It is proposed that the poststorm spin-down of these gyres and jets proceeds via Ekman circulations driven by the curvatures in the height profiles of the winds. Analytic and numerical calculations of the ageostrophic winds forced by curvature in model geostrophic wind profiles show that the ageostrophic wind speeds and directions depend mainly on the kinematic viscosity in the region of curvature and the total change in shear in the geostrophic wind. Ageostrophic wind speeds for typical thermospheric jets can exceed 200 m/s (about 50 percent of the jet winds). Spin-down times of thermospheric jets and cyclonic gyres by the Ekman pumping mechanism are estimated at less than about 6 hours.

  16. Controlled pitch-adjustment of impeller blades for an intravascular blood pump.

    PubMed

    Throckmorton, Amy L; Sciolino, Michael G; Downs, Emily A; Saxman, Robert S; López-Isaza, Sergio; Moskowitz, William B

    2012-01-01

    Thousands of mechanical blood pumps are currently providing circulatory support, and the incidence of their use continues to increase each year. As the use of blood pumps becomes more pervasive in the treatment of those patients with congestive heart failure, critical advances in design features to address known limitations and the integration of novel technologies become more imperative. To advance the current state-of-the-art in blood pump design, this study investigates the inclusion of pitch-adjusting blade features in intravascular blood pumps as a means to increase energy transfer; an approach not explored to date. A flexible impeller prototype was constructed with a configuration to allow for a variable range of twisted blade geometries of 60-250°. Hydraulic experiments using a blood analog fluid were conducted to characterize the pressure-flow performance for each of these twisted positions. The flexible, twisted impeller was able to produce 1-25 mmHg for 0.5-4 L/min at rotational speeds of 5,000-8,000 RPM. For a given twisted position, the pressure rise was found to decrease as a function of increasing flow rate, as expected. Generally, a steady increase in the pressure rise was observed as a function of higher twisted degrees for a constant rotational speed. Higher rotational speeds for a specific twisted impeller configuration resulted in a more substantial pressure generation. The findings of this study support the continued exploration of this unique design approach in the development of intravascular blood pumps. PMID:22691415

  17. Nozzle optimization for water jet propulsion with a positive displacement pump

    NASA Astrophysics Data System (ADS)

    Yang, You-sheng; Xie, Ying-chun; Nie, Song-lin

    2014-06-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  18. DOE/GRI development and testing of a downhole pump for jet-assist drilling

    SciTech Connect

    1995-07-01

    The objective of this project is to accelerate development and commercialization of a high pressure downhole pump (DHP{trademark}) to be used for ultra-high pressure, jet-assisted drilling. The purpose of jet-assisted drilling is to increase the rate of penetration (ROP) in the drilling of deeper gas and oil wells where the rocks become harder and more difficult to drill. As a means to accomplishing this objective, a second generation commercial prototype of a DHP is to be designed, fabricated, tested in the laboratory, and eventually tested in the field. The design of the DOE commercial prototype DHP is current in progress. The layout of the complete DHP is expected to be completed by mid-April. Fabrication and laboratory experimentation is expected to be completed in September. Pending successful completion of the laboratory testing phase, the DOE commercial DHP should be ready for testing in the field by the end of the calendar year.

  19. Photovoltaic array driven adjustable speed heat pump and power system scheme for a lunar based habitat

    SciTech Connect

    Domijan, A. Jr.; Buchh, T.A.

    1998-12-01

    A high reliability power system scheme, incorporating a photovoltaic power supply and adjustable speed heat pump for life support is presented in this paper. Initial design guidelines and also a description of the state of technology available is presented herein. The power supply scheme will be used as input to an Adjustable Speed Drive (ASD) which will be driving a heat pump. A brief study of various aspects of ASDs is presented, further a summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems and control techniques for a photovoltaic array driven ASD for an aerospace application are discussed. Also discussed are several possible power system designs for a potential lunar habitat.

  20. Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.

    1998-01-01

    One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the

  1. Structure optimization of an annular jet pump using design of experiment method and CFD

    NASA Astrophysics Data System (ADS)

    Long, X. P.; Zeng, Q. L.; Yang, X. L.; Xiao, L.

    2012-11-01

    This paper adopts DOE (the design of experiment method) to find out the optimum structure combination of an annular jet pump for maximum efficiency. The annular jet pump (AJP) model used by previous researcher, which area ratio is 1.75, was chosen as the simulation prototype. The performance data from the experiment were used to validate the simulation results. Then four important factors namely the flow ratio, the relative throat length and the included angles of the diffuser and the suction chamber were selected for the structure optimization by DOE. The most desirable combination is obtained, namely suction angle of 15 degree, throat length of 2.45 times of throat diameter, diffuser angle of 4 degree. The flow ratio corresponding to the most desirable combination is 0.6. The maximum efficiency predicted by the design method is 36.3% close to that of the CFD results 35.8%. The flow ratio has prevailing influence on the AJP efficiency. In the three construction parameters, the relative throat length has greater influence on the AJP performance than the diffuser angle and the suction angle. With proper experimental design method, effort to experiment could be greatly saved and analysis of experiment results could be more logical.

  2. Development of a Dual-Pump CARS System for Measurements in a Supersonic Combusting Free Jet

    NASA Technical Reports Server (NTRS)

    Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul

    2012-01-01

    This work describes the development of a dual-pump CARS system for simultaneous measurements of temperature and absolute mole fraction of N2, O2 and H2 in a laboratory scale supersonic combusting free jet. Changes to the experimental set-up and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperature above 800 K, errors in absolute mole fraction are within 1.5, 0.5, and 1% of the total composition for N2, O2 and H2, respectively. Estimated standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5 and 1.7% of the total composition for O2, and between 1.5 and 3.4% for N2. The standard deviation of H2 is 10% of the average measured mole fraction. Results obtained in the jet with and without combustion are illustrated, and the capabilities and limitations of the dual-pump CARS instrument discussed.

  3. Pressure optimization of high harmonic generation in a differentially pumped Ar or H2 gas jet

    NASA Astrophysics Data System (ADS)

    Sayrac, M.; Kolomenskii, A. A.; Anumula, S.; Boran, Y.; Hart, N. A.; Kaya, N.; Strohaber, J.; Schuessler, H. A.

    2015-04-01

    We experimentally studied the dependence of high harmonic generation in argon and molecular hydrogen on pressure changes in a gas jet that cause variations of the phase matching conditions and absorption. The study was performed at a peak laser intensity of ˜1.5 × 1014 W/cm2. To enable measurements over a wide range of pressures, we employed differential pumping with an additional cell (˜20 cm3 volume) enclosing the gas jet. By increasing the pressure in the gas jet up to a maximum of 1.5 bars with argon or 0.5 bars with hydrogen, we observed an increase in the high harmonic (HH) yield until an optimum pressure of 0.2 bars was reached for Ar, beyond which the output began decreasing. For H2, we observed an increase of the HH output up to the maximum pressure of 0.5 bars. This pressure-dependence study allowed us to achieve a tenfold enhancement in the high harmonic yield at the optimum pressure.

  4. Comparing Two Types of Magnetically-Coupled Adjustable Speed Drives with Variable Frequency Drives in Pump and Fan Applications

    SciTech Connect

    Anderson, Kenneth J.; Chvala, William D.

    2003-05-30

    This paper presents the results from laboratory tests on MagnaDrive Corporation’s fixed magnet, magnetically-coupled adjustable speed drive and Coyote Electronics electromagnetic, magnetically-coupled adjustable speed drive, compared to a typical variable frequency drive (VFDs) for fan and pump loads. It also discusses advantages and disadvantages of using mechanical magnetically-coupled adjustable speed drives versus variable frequency drives, and it provides field experience with VFDs in food storage as well as adjustable speed drives in wastewater and other field applications.

  5. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    SciTech Connect

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  6. A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples

    NASA Astrophysics Data System (ADS)

    Picchiotti, Alessandra; Prokhorenko, Valentyn I.; Miller, R. J. Dwayne

    2015-09-01

    We describe the design and provide the results of the full characterization of a closed-loop pump-driven wire-guided flow jet system. The jet has excellent optical quality with a wide range of liquids spanning from alcohol to water based solutions, including phosphate buffers used for biological samples. The thickness of the jet film varies depending on the flow rate between 90 μm and 370 μm. The liquid film is very stable, and its thickness varies only by 0.76% under optimal conditions. Measured transmitted signal reveals a long term optical stability (hours) with a RMS of 0.8%, less than the overall noise of the spectroscopy setup used in our experiments. The closed loop nature of the overall jet design has been optimized for the study of precious biological samples, in limited volumes, to remove window contributions from spectroscopic observables. This feature is particularly important for femtosecond studies in the UV range.

  7. PV Array Driven Adjustable Speed Drive for a Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Domijan, Alexander, Jr.; Buchh, Tariq Aslam

    1995-01-01

    A study of various aspects of Adjustable Speed Drives (ASD) is presented. A summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is now widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems for a photovoltaic array driven ASD for an aerospace application are discussed. The discussion is based on the experience of the authors, various researchers and industry. In chapter 2 a PV array power supply scheme has been proposed, this scheme will have an enhanced reliability in addition to the other known advantages of the case where a stand alone PV array is feeding the heat pump. In chapter 3 the results of computer simulation of PV array driven induction motor drive system have been included. A discussion on these preliminary simulation results have also been included in this chapter. Chapter 4 includes a brief discussion on various control techniques for three phase induction motors. A discussion on different power devices and their various performance characteristics is given in Chapter 5.

  8. Plasma jets subject to adjustable current polarities and external magnetic fields

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Schrafel, Peter; Gourdain, Pierre; Seyler, Charles; Kusse, Bruce

    2014-12-01

    In the present research, collimated plasma jets form from ablation of a radial foil (Al 20 μm thin disk) using a pulsed power generator (COBRA) with 1 MA peak current and 100 ns rise time. Plasma dynamics of the jet are diagnosed with and without an applied uniform axial magnetic field (1 T) and under a change of current polarities, which correspond to current moving either radially outward or inward from the foil's central axis. Experimental results are compared with numerical simulations (PERSEUS). The influence of the Hall effect on the jet development is observed under opposite current polarities. Additionally, the magnetic field compression within the jet is examined. Further studies will compare the laboratory-generated plasma jets and astrophysical jets with embedded magnetic fields.

  9. Plasma Jets Subject to Adjustable Current Polarities and External Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Schrafel, Peter; Gourdain, Pierre; Seyler, Charles; Kusse, Bruce

    2014-10-01

    In the present research, collimated plasma jets form from ablation of a radial foil (Al 20 μm thin disk) using a pulsed power generator (COBRA) with 1 MA peak current and 100 ns rise time. Plasma dynamics of the jet are diagnosed with and without an applied uniform external field (1-1.5 T) and under a change of current polarities, which correspond to current moving either radially outward or inward from the foil's central axis. Experimental results are compared with numerical simulations (PERSEUS). The influence of the Hall effect on the jet development is observed under opposite current polarities. Additionally, the magnetic field compression within the jet is examined. Further studies will compare the laboratory-generated plasma jets and astrophysical jets with embedded magnetic fields.

  10. Analysis and Modeling of a Two-Phase Jet Pump of a Flow Boiling Test Facility for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.; Steadham, Justin M.

    1996-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no

  11. Performance evaluation of rotating pump jet mixing of radioactive wastes in Hanford Tanks 241-AP-102 and -104

    SciTech Connect

    Onishi, Y.; Recknagle, K.P.

    1998-07-01

    The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPEST simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5.

  12. A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples.

    PubMed

    Picchiotti, Alessandra; Prokhorenko, Valentyn I; Miller, R J Dwayne

    2015-09-01

    We describe the design and provide the results of the full characterization of a closed-loop pump-driven wire-guided flow jet system. The jet has excellent optical quality with a wide range of liquids spanning from alcohol to water based solutions, including phosphate buffers used for biological samples. The thickness of the jet film varies depending on the flow rate between 90 μm and 370 μm. The liquid film is very stable, and its thickness varies only by 0.76% under optimal conditions. Measured transmitted signal reveals a long term optical stability (hours) with a RMS of 0.8%, less than the overall noise of the spectroscopy setup used in our experiments. The closed loop nature of the overall jet design has been optimized for the study of precious biological samples, in limited volumes, to remove window contributions from spectroscopic observables. This feature is particularly important for femtosecond studies in the UV range. PMID:26429427

  13. Inducing jet lag in the laboratory - Patterns of adjustment to an acute shift in routine

    NASA Technical Reports Server (NTRS)

    Monk, Timothy H.; Moline, Margaret L.; Graeber, R. Curtis

    1988-01-01

    Eight middle-aged males were studied in a temporal isolation experimental lasting 15 d. After 5 d and nights of entrainment to his own habitual routine, each subject experienced an acute unheralded 6-h phase advance in routine, accomplished by truncating his sixth sleep episode. For the remaining 10 d of the study, subjects were held to a routine 6-h phase advanced to the original. Significant symptoms of jet lag appeared in mood, performance efficiency, sleep, and circadian temperature rhythms. When plotted as a function to days postshift, some variables showed a fairly monotonic recovery to baseline levels, but other variables showed a zig-zag recovery pattern, suggesting the interaction of two competing processes, and reinforcing the need for greater sophistication in the development of jet-lag coping strategies.

  14. Development and testing of a high-pressure downhole pump for jet-assist drilling. Final report

    SciTech Connect

    1996-07-01

    The goal of jet-assist drilling is to increase the rate of penetration (ROP) in deeper gas and oil wells, where the rocks become harder and more difficult to drill. Increasing the ROP can result in fewer drilling days, and therefore, less drilling cost. In late 1993, FlowDril and the Gas Research Institute (GRI) began a three-year development of a down hole pump (DHP{trademark}) capable of producing 30,000 psi out pressure to provide the high-pressure flow for high-pressure jet-assist of the drill bit. The US Department of Energy (DOE) through its Morgantown, WV (DOE-Morgantown) field office, joined with GRI and FlowDril to develop and test a second prototype designed for drilling in 7-7/8 inch holes. This project, `Development and Testing of a High-Pressure Down Hole Pump for Jet-Assist Drilling,` is for the development and testing of the second prototype. It was planned in two phases. Phase I included an update of a market analysis, a design, fabrication, and an initial laboratory test of the second prototype. Phase II is continued iterative laboratory and field developmental testing. This report summarizes the results of Phase I. The project was originally proposed to extend the DHP and jet-assist drilling technology to drilling slimholes. Results of the market analysis for DHP jet-assisted slimhole drilling indicated that the slimhole market would be small (about 1/20th) compared to 7-7/8 inch hole size. The best U.S. land market locations for use of the DHP were identified as East Texas RR District 3, Oklahoma, and East Texas RR District 6. For gas drilling alone, areas with the largest market potential were East Texas RR District 6, Oklahoma and Wyoming. As a consequence of the market size for 7-7/8 inch holes, associated savings to the industry, and a desire to promote earlier commercialization of the DHP jet-assisted drilling technology, this project was re-directed from slimhole applications to development of a second prototype DHP for 7-7/8 inch hole size.

  15. Dynamic Modeling of Adjustable-Speed Pumped Storage Hydropower Plant: Preprint

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.; Mohanpurkar, M.; Havsapian, R.; Koritarov, V.

    2015-04-06

    Hydropower is the largest producer of renewable energy in the U.S. More than 60% of the total renewable generation comes from hydropower. There is also approximately 22 GW of pumped storage hydropower (PSH). Conventional PSH uses a synchronous generator, and thus the rotational speed is constant at synchronous speed. This work details a hydrodynamic model and generator/power converter dynamic model. The optimization of the hydrodynamic model is executed by the hydro-turbine controller, and the electrical output real/reactive power is controlled by the power converter. All essential controllers to perform grid-interface functions and provide ancillary services are included in the model.

  16. Wear analysis of diesel-engine fuel-injection pumps from military ground equipment fueled with Jet A-1. Interim report Jan-May 91

    SciTech Connect

    Lacey, P.I.

    1991-05-01

    The U.S. Department of Defense has adopted the single fuel for the battlefield concept. During Operation Desert Shield/Storm, Jet A-1 replaced diesel in many applications. A simultaneous increase in fuel injection pump failures was observed during that operation. Prior to its introduction, a number of studies had indicated that JP-8 is compatible with the current fleet of ground equipment. This report forms part of an ongoing study to define the fuel lubricity requirements of ground equipment. The report also details the wear and failure mechanisms observed from used pumps. The results indicate that, although Jet A-1 does increase wear, many other failure mechanisms are also prevalent.

  17. The prostatic urethra as a Venturi effect urine-jet pump to drain prostatic fluid.

    PubMed

    Zaichick, Vladimir

    2014-07-01

    Several experiments show that prostatic fluid is continuously produced and it is drained from the prostate during urination and ejaculation. The mechanism which causes prostatic fluid to drain from the prostatic acini during urination is currently unclear. Also in current opinion such structures of the prostatic urethra as the urethral crest and the colliculus seminalis have no apparent functional significance. This article describes a mechanism for the draining of the prostatic acini that involves these prostatic urethral structures. It is hypothesized that the prostatic urethra works as a pump using the Venturi effect, in which urine is the carrying or motive liquid during voiding, in order to drain prostatic fluid (the carried liquid) from the acini. The urethral crest and the colliculus seminalis take part in controlling flow rates and liquid pressures for this pump to be effective. The calculated estimation of a pressure drop in the region of the colliculus seminalis during micturition was obtained using morphometric and uroflowmetric data and was used to confirm this hypothesis of prostatic acini drainage. As a consequence of this, a previously unknown function for these intra-prostatic urethral structures is described. PMID:24767941

  18. BRIEF COMMUNICATIONS: Dye-jet laser pumped by the second harmonic of a Q-switched and mode-locked YAG:Nd3+ laser

    NASA Astrophysics Data System (ADS)

    Golubev, V. A.; Goncharov, A. N.; Maĭorov, A. P.; Makukha, V. K.; Smirnov, Vitalii A.; Tarasov, V. M.

    1981-05-01

    A report is given of the operating parameters of a dye jet laser pumped by the second harmonic of a cw Q-switched mode-locked YAG:Nd3+ laser. The dye laser emitted a continuous train of 250 nsec pulses at a repetition frequency of 25 kHz or a sequence of ultrashort pulse trains. A Lyot filter was used to tune the emission wavelength in the range 560-630 nm.

  19. [Improved Response to 5-FU Using Dose Adjustment and Elastomeric Pump Selection Based on Monitoring of the 5-FU Level--A Case Report].

    PubMed

    Muneoka, Katsuki; Shirai, Yoshio; Kanda, Junkichi; Sasaki, Masataka; Wakai, Toshifumi; Wakabayashi, Hiroyuki

    2015-10-01

    A 6 1-year-old man with unresectable multiple hepatic metastases after resection of sigmoid colon carcinoma was treated with irinotecan and infused 5-fluorouracil (5-FU) plus Leucovorin (FOLFIRI). Since the levels of tumor markers increased, the 5-FU dose was increased from 2,700 to 3,000 mg/m2 using a Jackson-type pump and an extended infusion time of 53 hours. The blood level of 5-FU was 507 ng/mL 16 hours after starting the infusion. The pump was then changed to a bottle-type pump with the same dose of 3,000 mg/m2. At 16 hours, the 5-FU level was 964.5 ng/mL. The areas under the concentration vs. time curve (AUC mg・h/L)were 21 and 44 mg・h/L for the Jackson- and bottle-type pumps, respectively. Owing to the development of Grade 3 stomatitis and hand-foot syndrome, 5-FU was reduced to 2,700 mg/m2 with a bottle-type pump. The AUC decreased to 27 mg・h/L, but the liver metastases were reduced and the adverse effects subsided to Grade 1. This case shows that individual dose adjustment of 5-FU to the appropriate AUC based on pharmacokinetic monitoring of the blood 5-FU level can improve the response, reduce adverse effects, and have a clinical benefit. PMID:26489552

  20. Analysis of the contrast in normal-incidence surface plasmon photoemission microscopy in a pump-probe experiment with adjustable polarization

    NASA Astrophysics Data System (ADS)

    Podbiel, Daniel; Kahl, Philip; Meyer zu Heringdorf, Frank-J.

    2016-04-01

    We investigate the fringe contrast in surface plasmon polariton-based two-photon photoemission microscopy in a normal-incidence geometry. In a pump-probe experiment with freely adjustable polarization of the probe pulse, we find a maximum contrast whenever the probe pulse polarization is parallel (or anti-parallel) to the propagation direction of the surface plasmon polariton wave packet. The experimental observation is compared to a wave simulation based on the known TM solution for surface plasmon polaritons. We estimate that at the Au/vacuum interface the in-plane component of the electric field of the surface plasmon polariton inside the metal is about five times larger than its out-of-plane component. We conclude that the locations of maximum plasmon-related nonlinear photoemission yield in a pump-probe experiment are the ones where the in-plane component of the electric field of the surface plasmon polariton is maximal.

  1. Highly efficient tabletop x-ray laser at {lambda}=41.8 nm in Pd-like xenon pumped by optical-field ionization in a cluster jet

    SciTech Connect

    Ivanova, E. P.

    2011-10-15

    The atomic-kinetic calculations of gain at 41.8 nm in Pd-like xenon are performed. The interpretation of known experiments has proved that x-ray laser in Pd-like xenon is feasible in the extremely wide range of atomic densities: 10{sup 17}{<=}[Xe{sup 8+}]{<=} 3 x 10{sup 19} cm{sup -3}. This result is due to the large cross sections (and rates) of level excitations in Pd-like xenon by electron impact. We propose a highly efficient tabletop x-ray laser pumped by optical-field ionization in a xenon cluster jet. The efficiency of {approx}0.5% is possible with a pump laser pulse energy of {>=}0.001 J and an intensity of {approx}10{sup 16} W/cm{sup 2}.

  2. Analytical investigation of turbines with adjustable stator blades and effect of these turbines on jet-engine performance

    NASA Technical Reports Server (NTRS)

    Silvern, David H; Slivka, William R

    1950-01-01

    Adjustable-stator turbines are applied to turbojet engines and probable performance is compared with conventional engines with and without variable-area exhaust nozzles. Variation in stator-exit angle and exhaust area was not excessive for wide ranges of engine output. Variation in turbine efficiency for contemporary turbines equipped with adjustable stators was small. Improvements from 4.5 to 17 percent in over-all engine specific fuel consumption over conventional engines and from 2 to 8.5 percent over engines equipped with only adjustable-area exhaust nozzles were obtained at 60-percent rated power with adjustable-stator turbines and variable-area exhaust nozzles. The improvements depend on design parameters.

  3. Failure analysis of fuel-injection pumps from generator sets fueled with Jet A-1. Interim report, Nov 90-Jan 91

    SciTech Connect

    Lacey, P.I.; Lestz, S.J.

    1991-01-01

    The U.S. Department of Defense (DOD) has adopted the single fuel for the battlefield concept. Diesel fuel will be replaced by JP-8/Jet A-1 in compression ignition engines, thereby lowering the fuel logistics burden. These fuels have successfully undergone extensive testing in both the laboratory and in field trials. However, increased failure rates are being reported on a number of fuel-sensitive components during Operation Desert Shield in Saudi Arabia. Five failed Stanadyne rotary fuel injection pumps were returned to the Belvoir Fuels and Lubricants Research Facility (BFLRF) at Southwest Research Institute (SwRI) for disassembly and post-failure analysis. Particular attention was given to the possible effects of low-lubricity fuel. The results of the investigation indicate that most of the failures may be attributed to causes other than poor fuel lubricity. The reason for failure of specific components in two of the pumps could not be conclusively determines. However, it is believed that they would not have occurred as a result of short-term operation with Jet A-1.

  4. Resolving the Bright HCN(1-0) Emission toward the Seyfert 2 Nucleus of M51: Shock Enhancement by Radio Jets and Weak Masing by Infrared Pumping?

    NASA Astrophysics Data System (ADS)

    Matsushita, Satoki; Trung, Dinh-V.-; Boone, Frédéric; Krips, Melanie; Lim, Jeremy; Muller, Sebastien

    2015-01-01

    We present high angular resolution observations of the HCN(1-0) emission (at ~1'' or ~34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ~1'' (~34 pc) resolution, and consistent with the Seyfert 2 classification picture.

  5. Prewhirl Jet Model

    NASA Technical Reports Server (NTRS)

    Meng, S. Y.; Jensen, M.; Jackson, E. D.

    1985-01-01

    Simple accurate model of centrifugal or rocket engine pumps provides information necessary to design inducer backflow deflector, backflow eliminator and prewhirl jet in jet mixing zones. Jet design based on this model shows improvement in inducer suction performance and reduced cavitation damage.

  6. RESOLVING THE BRIGHT HCN(1–0) EMISSION TOWARD THE SEYFERT 2 NUCLEUS OF M51: SHOCK ENHANCEMENT BY RADIO JETS AND WEAK MASING BY INFRARED PUMPING?

    SciTech Connect

    Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric; Krips, Melanie; Lim, Jeremy; Muller, Sebastien

    2015-01-20

    We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.

  7. Experimental investigation of vortex control with an axial jet in the draft tube of a model pump-turbine

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Schmidt, H.; Ruprecht, A.; Mader, R.; Meusburger, P.

    2010-08-01

    The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.

  8. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  9. Marine Jet

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The marine turbine pump pictured is the Jacuzzi 12YJ, a jet propulsion system for pleasure or commercial boating. Its development was aided by a NASA computer program made available by the Computer Software Management and Information Center (COSMIC) at the University of Georgia. The manufacturer, Jacuzzi Brothers, Incorporated, Little Rock, Arkansas, used COSMIC'S Computer Program for Predicting Turbopump Inducer Loading, which enabled substantial savings in development time and money through reduction of repetitive testing.

  10. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of..., and a means of propelling the fluid through the tubing, such as an electric roller pump....

  11. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of..., and a means of propelling the fluid through the tubing, such as an electric roller pump....

  12. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of..., and a means of propelling the fluid through the tubing, such as an electric roller pump....

  13. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of..., and a means of propelling the fluid through the tubing, such as an electric roller pump....

  14. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of..., and a means of propelling the fluid through the tubing, such as an electric roller pump....

  15. The Design of Jet Pumps

    NASA Technical Reports Server (NTRS)

    Flugel, Gustav

    1941-01-01

    This report shows that by applying both energy and impulse theorems the optimum throat dimension of the mixing nozzle and the best shape of intake can be predicted approximately in a relatively simple manner. The necessary length of the mixing nozzle follows from Prandtl's turbulent mixing theory. The calculations are carried out for the mixing of similar and dissimilar fluids.

  16. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  17. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  18. Jet shielding of jet noise

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.; Amiet, R. K.; Schlinker, R. H.

    1986-01-01

    An experimental and theoretical study was conducted to develop a validated first principle analysis for predicting the jet noise reduction achieved by shielding one jet exhaust flow with a second, closely spaced, identical jet flow. A generalized fuel jet noise analytical model was formulated in which the acoustic radiation from a source jet propagates through the velocity and temperature discontinuity of the adjacent shielding jet. Input variables to the prediction procedure include jet Mach number, spacing, temperature, diameter, and source frequency. Refraction, diffraction, and reflection effects, which control the dual jet directivity pattern, are incorporated in the theory. The analysis calculates the difference in sound pressure level between the dual jet configuration and the radiation field based on superimposing two independent jet noise directivity patterns. Jet shielding was found experimentally to reduce noise levels in the common plane of the dual jet system relative to the noise generated by two independent jets.

  19. Condensate and feedwater systems, pumps, and water chemistry. Volume seven

    SciTech Connect

    Not Available

    1986-01-01

    Subject matter includes condensate and feedwater systems (general features of condensate and feedwater systems, condenser hotwell level control, condensate flow, feedwater flow), pumps (principles of fluid flow, types of pumps, centrifugal pumps, positive displacement pumps, jet pumps, pump operating characteristics) and water chemistry (water chemistry fundamentals, corrosion, scaling, radiochemistry, water chemistry control processes, water pretreatment, PWR water chemistry, BWR water chemistry, condenser circulating water chemistry.

  20. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  1. Fuzzy jets

    DOE PAGESBeta

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Here, collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet taggingmore » variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  2. Fuzzy jets

    NASA Astrophysics Data System (ADS)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; Stansbury, Conrad

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  3. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  4. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  5. Adjustment disorder

    MedlinePlus

    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, Va: American Psychiatric Publishing. 2013. Powell AD. Grief, bereavement, and adjustment disorders. In: Stern TA, Rosenbaum ...

  6. Cosmic jets

    SciTech Connect

    Blandford, R.D.; Begelman, M.C.; Rees, M.J.

    1982-05-01

    Observations with radio telescopes have revealed that the center of many galaxies is a place of violent activity. This activity is often manifested in the production of cosmic jets. Each jet is a narrow stream of plasma that appears to squirt out of the center of a galaxy emitting radiowaves as it does so. New techniques in radio astronomy have shown how common jets are in the universe. These jets take on many different forms. The discovery of radio jets has helped in the understanding of the double structure of the majority of extragalactic radio sources. The morphology of some jets and explanations of how jets are fueled are discussed. There are many difficulties plaguing the investigation of jets. Some of these difficulties are (1) it is not known how much power the jets are radiating, (2) it is hard to tell whether a jet delieated by radio emission is identical to the region where ionized gas is flowing, and (3) what makes them. (SC)

  7. Oxygen pumps

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Special considerations to be given to the design, fabrication, and use of centrifugal pumps for liquid O2 to avoid conditions that lead to system failure are given. Emphasis was placed on turbine pumps for flight applications.

  8. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  9. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  10. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  11. Water Jetting

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Hi-Tech Inc., a company which manufactures water jetting equipment, needed a high pressure rotating swivel, but found that available hardware for the system was unsatisfactory. They were assisted by Marshall, which had developed water jetting technology to clean the Space Shuttles. The result was a completely automatic water jetting system which cuts rock and granite and removes concrete. Labor costs have been reduced; dust is suppressed and production has been increased.

  12. Cosmic jets

    NASA Technical Reports Server (NTRS)

    Rees, M. J.

    1986-01-01

    The evidence that active galactic nuclei produce collimated plasma jets is summarised. The strongest radio galaxies are probably energised by relativistic plasma jets generated by spinning black holes interacting with magnetic fields attached to infalling matter. Such objects can produce e(+)-e(-) plasma, and may be relevant to the acceleration of the highest-energy cosmic ray primaries. Small-scale counterparts of the jet phenomenon within our own galaxy are briefly reviewed.

  13. Synthetic Jets in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Yao, C. S.; Chen, F. J.; Neuhart, D.; Harris, J.

    2007-01-01

    An oscillatory jet with zero net mass flow is generated by a cavity-pumping actuator. Among the three test cases selected for the Langley CFD validation workshop to assess the current CFD capabilities to predict unsteady flow fields, this basic oscillating jet flow field is the least complex and is selected as the first test case. Increasing in complexity, two more cases studied include jet in cross flow boundary layer and unsteady flow induced by suction and oscillatory blowing with separation control geometries. In this experiment, velocity measurements from three different techniques, hot-wire anemometry, Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV), documented the synthetic jet flow field. To provide boundary conditions for computations, the experiment also monitored the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature.

  14. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  15. Adjustable microforceps.

    PubMed

    Bao, J Y

    1991-04-01

    The commonly used microforceps have a much greater opening distance and spring resistance than needed. A piece of plastic ring or rubber band can be used to adjust the opening distance and reduce most of the spring resistance, making the user feel more comfortable and less fatigued. PMID:2051437

  16. Unconditional jetting.

    PubMed

    Gañán-Calvo, Alfonso M

    2008-08-01

    Capillary jetting of a fluid dispersed into another immiscible phase is usually limited by a critical capillary number, a function of the Reynolds number and the fluid property ratios. Critical conditions are set when the minimum spreading velocity of small perturbations v_{-};{*} along the jet (marginal stability velocity) is zero. Here we identify and describe parametric regions of high technological relevance, where v_{-};{*}>0 and the jet flow is always supercritical independently of the dispersed liquid flow rate; within these relatively broad regions, the jet does not undergo the usual dripping-jetting transition, so that either the jet can be made arbitrarily thin (yielding droplets of any imaginably small size), or the issuing flow rate can be made arbitrarily small. In this work, we provide illustrative analytical studies of asymptotic cases for both negligible and dominant inertia forces. In this latter case, requiring a nonzero jet surface velocity, axisymmetric perturbation waves "surf" downstream for all given wave numbers, while the liquid bulk can remain static. In the former case (implying small Reynolds flow) we found that the jet profile small slope is limited by a critical value; different published experiments support our predictions. PMID:18850933

  17. AEA Fluidic Pulse Jet Mixer. Innovative Technology Summary Report

    SciTech Connect

    1999-08-01

    AEA's Fluidic Pulse Jet Mixer was developed to mix and maintain the suspension of solids and to blend process liquids. The mixer can be used to combine a tank's available supernate with the sludge into a slurry that is suitable for pumping. The system uses jet nozzles in the tank coupled to a charge vessel. Then, a jet pump creates a partial vacuum in the charge vessel allowing it to be filled with waste. Next, air pressure is applied to the charge vessel, forcing sludge back into the tank and mixing it with the liquid waste. When the liquid waste contains 10% solids, a batch is pumped out of the tank.

  18. Shaft adjuster

    DOEpatents

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  19. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  20. Emerging jets

    NASA Astrophysics Data System (ADS)

    Schwaller, Pedro; Stolarski, Daniel; Weiler, Andreas

    2015-05-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  1. 32. VIEW LOOKING WEST SHOWING UNIT #3. VACUUM PUMP ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW LOOKING WEST SHOWING UNIT #3. VACUUM PUMP ON LEFT, CONDENSER TURBINE ON RIGHT, JET CONDENSER IN CENTER REAR - Georgetown Steam Plant, South Warsaw Street, King County Airport, Seattle, King County, WA

  2. 23. INTERIOR VIEW OF THE OLDEST SECTION OF PUMP HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. INTERIOR VIEW OF THE OLDEST SECTION OF PUMP HOUSE No. 1. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Auxiliary Buildings & Shops, Along Monongahela River, Homestead, Allegheny County, PA

  3. 24. INTERIOR VIEW OF SUBTERRANEAN LEVEL OF PUMP HOUSE. No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. INTERIOR VIEW OF SUBTERRANEAN LEVEL OF PUMP HOUSE. No. 1, FLOODED AT THE TIME OF THE SURVEY. Jet Lowe, Photographer, 1989. - U.S. Steel Homestead Works, Auxiliary Buildings & Shops, Along Monongahela River, Homestead, Allegheny County, PA

  4. Development of the sonic pump levitator

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1985-01-01

    The process and mechanism involved in producing glass microballoons (GMBs) of acceptable quality for laser triggered inertial fusion through use of glass jet levitation and manipulation are considered. The gas jet levitation device, called sonic pumps, provides positioning by timely and appropriate application of gas mementum from one or more of six sonic pumps which are arranged orthogonally in opposed pairs about the levitation region and are activated by an electrooptical, computer controlled, feedback system. The levitation device was fabricated and its associated control systems were assembled into a package and tested in reduced gravity flight regime of the NASA KC-135 aircraft.

  5. Lear jet telescope system

    NASA Technical Reports Server (NTRS)

    Erickson, E. F.; Goorvitch, D.; Dix, M. G.; Hitchman, M. J.

    1974-01-01

    The telescope system was designed as a multi-user facility for observations of celestial objects at infrared wavelengths, where ground-based observations are difficult or impossible due to the effects of telluric atmospheric absorption. The telescope is mounted in a Lear jet model 24B which typically permits 70 min. of observing per flight at altitudes in excess of 45,000 ft (13 km). Telescope system installation is discussed, along with appropriate setup and adjustment procedures. Operation of the guidance system is also explained, and checklists are provided which pertain to the recommended safe operating and in-flight trouble-shooting procedures for the equipment.

  6. The JENSA Gas Jet Target

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.

    2014-03-01

    With the construction of next-generation radioactive ion beam (RIB) facilities, the study of many rare and unstable isotopes previously unattainable will be made possible. In order to take full advantage of possible measurements with these new isotope beams, improvements in detectors and targets are necessary. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target is a new and cutting-edge target system, designed to provide a target of light gas, such as hydrogen or helium, that is localized, dense, and pure. In order to accomplish this, the JENSA system involves nearly two dozen vacuum pumps, differential pumping stages, a custom-built industrial compressor, and vacuum chambers designed to incorporate large arrays of both charged-particle and gamma-ray detectors. The JENSA gas jet target was originally constructed and characterized at ORNL, and has now moved to the ReA3 hall at the NSCL. Tests at ORNL show the JENSA system is capable of producing the most dense helium jet target for RIB studies in the world. JENSA will form the main target for the proposed SEparator for CApture Reactions (SECAR), and together the two comprise the equipment necessary to facilitate the studies which form the focus of the U.S. experimental nuclear astrophysics community. Work funded by US DOE Office of Science and the NSF.

  7. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  8. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  9. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  10. Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Milanovic, Ivana M.

    2003-01-01

    Current investigation of synthetic jets and synthetic jets in cross-flow examined the effects of orifice geometry and dimensions, momentum-flux ratio, cluster of orifices, pitch and yaw angles as well as streamwise development of the flow field. This comprehensive study provided much needed experimental information related to the various control strategies. The results of the current investigation on isolated and clustered synthetic jets with and without cross-flow will be further analyzed and documented in detail. Presentations at national conferences and publication of peer- reviewed journal articles are also expected. Projected publications will present both the mean and turbulent properties of the flow field, comparisons made with the data available in an open literature, as well as recommendations for the future work.

  11. Refrigerated hydrogen gas jet for the Fermilab antiproton accumulator

    SciTech Connect

    Allspach, D.H.; Kendziora, C.L.; Marinelli, M.

    1995-07-01

    A hydrogen gas jet has been built for use at Fermilab for the study of charmonium spectroscopy in proton-antiproton annihilations. The hydrogen gas jet is part of an upgrade to a previous experiment which ran in the Fermilab 1990-1991 fixed target program utilizing a jet cooled to 80 K with liquid nitrogen. The jet delivers a defined stream of hydrogen gas which travels through a series of vacuum chambers and then intersects the circulating antiproton beam. The goal of the upgrade is to provide a hydrogen gas stream at least twice as dense as used for the earlier experiment to increase the interaction rate and allow an improved study of rare processes. This is achieved by cooling the stream to below 30 K using a Gifford-McMahon refrigerator. The jet apparatus is designed to allow motion in the plane perpendicular to the gas stream as well as angular positioning at the jet nozzle to provide a means of optimizing the interaction rate. Two skimmers located in the vacuum chambers are used to define the gas stream dimensions. The jet target vacuum chambers require constant pumping with turbomolecular pumps. The vacuum space around the jet is designed to have a large system pumping speed so that the chamber pressure can be maintained below an absolute pressure of 1 Pa. The jet will operate in the next fixed target run at Fermilab. Details of the design and test results are discussed.

  12. 21. DREDGING POND USED TO TEST THE ADAPTABILITY OF JET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DREDGING POND USED TO TEST THE ADAPTABILITY OF JET PUMPS FOR PUMPING SAND, AND WEAR RATES OF DIFFERENT TYPES OF DREDGING PIPE. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  13. Magnetic heat pump flow director

    NASA Technical Reports Server (NTRS)

    Howard, Frank S. (Inventor)

    1995-01-01

    A fluid flow director is disclosed. The director comprises a handle body and combed-teeth extending from one side of the body. The body can be formed of a clear plastic such as acrylic. The director can be used with heat exchangers such as a magnetic heat pump and can minimize the undesired mixing of fluid flows. The types of heat exchangers can encompass both heat pumps and refrigerators. The director can adjust the fluid flow of liquid or gas along desired flow directions. A method of applying the flow director within a magnetic heat pump application is also disclosed where the comb-teeth portions of the director are inserted into the fluid flow paths of the heat pump.

  14. Pitfalls of Insulin Pump Clocks

    PubMed Central

    Reed, Amy J.

    2014-01-01

    The objective was to raise awareness about the importance of ensuring that insulin pumps internal clocks are set up correctly at all times. This is a very important safety issue because all commercially available insulin pumps are not GPS-enabled (though this is controversial), nor equipped with automatically adjusting internal clocks. Special attention is paid to how basal and bolus dose errors can be introduced by daylight savings time changes, travel across time zones, and am-pm clock errors. Correct setting of insulin pump internal clock is crucial for appropriate insulin delivery. A comprehensive literature review is provided, as are illustrative cases. Incorrect setting can potentially result in incorrect insulin delivery, with potential harmful consequences, if too much or too little insulin is delivered. Daylight saving time changes may not significantly affect basal insulin delivery, given the triviality of the time difference. However, bolus insulin doses can be dramatically affected. Such problems may occur when pump wearers have large variations in their insulin to carb ratio, especially if they forget to change their pump clock in the spring. More worrisome than daylight saving time change is the am-pm clock setting. If this setting is set up incorrectly, both basal rates and bolus doses will be affected. Appropriate insulin delivery through insulin pumps requires correct correlation between dose settings and internal clock time settings. Because insulin pumps are not GPS-enabled or automatically time-adjusting, extra caution should be practiced by patients to ensure correct time settings at all times. Clinicians and diabetes educators should verify the date/time of insulin pumps during patients’ visits, and should remind their patients to always verify these settings. PMID:25355713

  15. Insulin pumps.

    PubMed

    Pickup, J

    2011-02-01

    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (< 5%) in Spain, the UK, Finland and Portugal. There is much speculation on the factors responsible for this variation, and the possibilities include physician attitudes to CSII and knowledge about its benefits and indications for its use (and inappropriate beliefs about dangers), the availability of reimbursement from insurance companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing

  16. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  17. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  18. Computer modeling of jet mixing in INEL waste tanks

    SciTech Connect

    Meyer, P.A.

    1994-01-01

    The objective of this study is to examine the feasibility of using submerged jet mixing pumps to mobilize and suspend settled sludge materials in INEL High Level Radioactive Waste Tanks. Scenarios include removing the heel (a shallow liquid and sludge layer remaining after tank emptying processes) and mobilizing and suspending solids in full or partially full tanks. The approach used was to (1) briefly review jet mixing theory, (2) review erosion literature in order to identify and estimate important sludge characterization parameters (3) perform computer modeling of submerged liquid mixing jets in INEL tank geometries, (4) develop analytical models from which pump operating conditions and mixing times can be estimated, and (5) analyze model results to determine overall feasibility of using jet mixing pumps and make design recommendations.

  19. Synthetic Jet Flow Field Database for CFD Validation

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome

    2004-01-01

    An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.

  20. Jets in air-jet family

    NASA Technical Reports Server (NTRS)

    Navia, C. E.; Sawayanagi, K.

    1985-01-01

    The A-jet families on Chacaltaya emulsion chamber experiments were analyzed by the study of jets which are reconstructed by a grouping procedure. It is demonstrated that large-E sub J R sub J events are characterized by small number of jets and two-jet like asymmetric shape, binocular events and the other type. This type has a larger number of jets and more symmetrical shape in the P sub t plane.

  1. 46 CFR 167.45-5 - Steam fire pumps or their equivalent.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pumps connected to the fire main. Each pump shall be capable of delivering two powerful jets of water simultaneously from the highest outlets on the fire main at a Pitot tube pressure of approximately 50 pounds per... the pressure on the fire main. If the fire pumps operating under shut-off conditions are not...

  2. 46 CFR 167.45-5 - Steam fire pumps or their equivalent.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pumps connected to the fire main. Each pump shall be capable of delivering two powerful jets of water simultaneously from the highest outlets on the fire main at a Pitot tube pressure of approximately 50 pounds per... the pressure on the fire main. If the fire pumps operating under shut-off conditions are not...

  3. 46 CFR 167.45-5 - Steam fire pumps or their equivalent.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pumps connected to the fire main. Each pump shall be capable of delivering two powerful jets of water simultaneously from the highest outlets on the fire main at a Pitot tube pressure of approximately 50 pounds per... the pressure on the fire main. If the fire pumps operating under shut-off conditions are not...

  4. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    SciTech Connect

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  5. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  6. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  7. Second insulin pump safety meeting: summary report.

    PubMed

    Zhang, Yi; Jones, Paul L; Klonoff, David C

    2010-03-01

    Diabetes Technology Society facilitated a second meeting of insulin pump experts at Mills-Peninsula Health Services, San Mateo, California on November 4, 2009, at the request of the Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories. The first such meeting was held in Bethesda, Maryland, on November 12, 2008. The group of physicians, nurses, diabetes educators, and engineers from across the United States discussed safety issues in insulin pump therapy and recommended adjustments to current insulin pump design and use to enhance overall safety. The meeting discussed safety issues in the context of pump operation; software; hardware; physical structure; electrical, biological, and chemical considerations; use; and environment from engineering, medical, nursing, and pump/user perspectives. There was consensus among meeting participants that insulin pump designs have made great progress in improving the quality of life of people with diabetes, but much more remains to be done. PMID:20307411

  8. Multiwave Interactions in Turbulent Jets

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1989-01-01

    Nonlinear wave-wave interactions in turbulent jets were investigated based on the integrated energy of each scale of motion in a cross section of the jet. The analysis indicates that two frequency components in the axisymmetric mode can interact with other background frequencies in the axisymmetric mode, thereby amplifying an enormous number of other frequencies. Two frequency components in a single helical mode cannot, by themselves, amplify other frequency components. But combinations of frequency components of helical and axisymmetric modes can amplify other frequencies in other helical modes. The present computations produce several features consistent with experimental observations such as: (1) dependency of the interactions on the initial phase differences, (2) enhancement of the momentum thickness under multifrequency forcing, and (3) the increase in background turbulence under forcing. In a multifrequency-excited jet, mixing enhancement was found to be a result of the turbulence enhancement rather than simply the amplification of forced wave components. The excitation waves pump energy from the mean flow to the turbulence, thus enhancing the latter. The high frequency waves enhance the turbulence close to the jet exit, but, the low frequency waves are most effective further downstream.

  9. Variable delivery, fixed displacement pump

    SciTech Connect

    Sommars, Mark F.

    2001-01-01

    A variable delivery, fixed displacement pump comprises a plurality of pistons reciprocated within corresponding cylinders in a cylinder block. The pistons are reciprocated by rotation of a fixed angle swash plate connected to the pistons. The pistons and cylinders cooperate to define a plurality of fluid compression chambers each have a delivery outlet. A vent port is provided from each fluid compression chamber to vent fluid therefrom during at least a portion of the reciprocal stroke of the piston. Each piston and cylinder combination cooperates to close the associated vent port during another portion of the reciprocal stroke so that fluid is then pumped through the associated delivery outlet. The delivery rate of the pump is varied by adjusting the axial position of the swash plate relative to the cylinder block, which varies the duration of the piston stroke during which the vent port is closed.

  10. Inclusive Jets in PHP

    NASA Astrophysics Data System (ADS)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  11. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  12. Fluid delivery from infusion-pump syringes.

    PubMed

    Carl, J L; Erstad, B L; Murphy, J E; Slack, M K

    1995-07-01

    Fluid-delivery rates of five small-volume infusion-pump syringes were compared. The study consisted of a comparison of the infusion-pump syringes in their respective infusion pumps (1) set for continuous delivery at 1 mL/hr, (2) set for continuous delivery at 3 mL/hr, and (3) set to deliver 1-mL bolus volumes during continuous delivery at 4 mL/hr. The Life-care prefilled 30-mL syringe (Abbott), the DBL 30-mL syringe no. 770205 (DBL Inc.), and the Pump-Jet 30-mL syringe no. 1931 (International Medication Systems) were tested in the Lifecare PCA Plus II infusion pump no. 4100 (Abbott). The 30-mL Pump-Jet syringe no. 1911 (International Medication Systems) and the DBL 30-mL syringe no. 709700 (DBL Inc.) were tested in the Stratofuse PCA infusion pump (Baxter). The infusion pumps were set to deliver fluid continuously at 1 mL/hr for 30 hours, and the solutions were collected separately and weighed. The procedure was repeated with the infusion rate set at 3 mL/hr for 10 hours. For the third part of the study, each syringe was tested to deliver 1-mL boluses with 0, 5, 15, and 25 mL removed from the syringe. The solutions were collected and weighed before and after each bolus was delivered. The volume of solution collected was calculated by using the specific gravity of the solution. The syringes delivered significantly different volumes during the first hour of infusion at both the 1- and 3-mL/hr rates. Differences also existed across time for most of the syringes. Bolus volumes varied greatly after infusion of 0 or 5 mL of fluid but were acceptable for the remainder of the infusions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7671041

  13. Corporate Jet

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Gulfstream Aerospace Corporation, Savannah, GA, used a version of a NASA program called WIBCO to design a wing for the Gulfstream IV (G-IV) which will help to reduce transonic drag (created by shock waves that develop as an airplane approaches the speed of sound). The G-IV cruises at 88 percent of the speed of sound, and holds the international record in its class for round-the-world flight. They also used the STANS5 and Profile programs in the design. They will use the NASA program GASP to help determine the gross weight, range, speed, payload and optimum wing area of an intercontinental supersonic business jet being developed in cooperation with Sukhoi Design Bureau, a Soviet organization.

  14. Pulse Jet Mixing Tests With Noncohesive Solids

    SciTech Connect

    Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Fort, James A.; Wells, Beric E.; Sundaram, S. K.; Scott, Paul A.; Minette, Michael J.; Smith, Gary L.; Burns, Carolyn A.; Greenwood, Margaret S.; Morgen, Gerald P.; Baer, Ellen BK; Snyder, Sandra F.; White, Michael K.; Piepel, Gregory F.; Amidan, Brett G.; Heredia-Langner, Alejandro

    2012-02-17

    This report summarizes results from pulse jet mixing (PJM) tests with noncohesive solids in Newtonian liquid. The tests were conducted during FY 2007 and 2008 to support the design of mixing systems for the Hanford Waste Treatment and Immobilization Plant (WTP). Tests were conducted at three geometric scales using noncohesive simulants, and the test data were used to develop models predicting two measures of mixing performance for full-scale WTP vessels. The models predict the cloud height (the height to which solids will be lifted by the PJM action) and the critical suspension velocity (the minimum velocity needed to ensure all solids are suspended off the floor, though not fully mixed). From the cloud height, the concentration of solids at the pump inlet can be estimated. The predicted critical suspension velocity for lifting all solids is not precisely the same as the mixing requirement for 'disturbing' a sufficient volume of solids, but the values will be similar and closely related. These predictive models were successfully benchmarked against larger scale tests and compared well with results from computational fluid dynamics simulations. The application of the models to assess mixing in WTP vessels is illustrated in examples for 13 distinct designs and selected operational conditions. The values selected for these examples are not final; thus, the estimates of performance should not be interpreted as final conclusions of design adequacy or inadequacy. However, this work does reveal that several vessels may require adjustments to design, operating features, or waste feed properties to ensure confidence in operation. The models described in this report will prove to be valuable engineering tools to evaluate options as designs are finalized for the WTP. Revision 1 refines data sets used for model development and summarizes models developed since the completion of Revision 0.

  15. Jet inclusive cross sections

    SciTech Connect

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons.

  16. Supersonic gas jets

    NASA Astrophysics Data System (ADS)

    Dulov, V. G.

    The papers presented in this volume provide an overview of the current state of research in the gas dynamics of jet flows. In particular, attention is given to free supersonic jets and to the interaction of supersonic jets with one another and with obstacles under stationary and nonstationary flow conditions. Papers are presented on a method for calculating a weakly anisotropic supersonic turbulent jet in a subsonic slipstream; composite supersonic jets; the principal gas-dynamic characteristics of the processes occurring in gas-jet-driven shock-wave generators; and the construction of models for supersonic jet flows. For individual items see A84-16902 to A84-16918

  17. "Waveguidability" of idealized jets

    NASA Astrophysics Data System (ADS)

    Manola, Iris; Selten, Frank; Vries, Hylke; Hazeleger, Wilco

    2013-09-01

    It is known that strong zonal jets can act as waveguides for Rossby waves. In this study we use the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data to analyze the connection between jets and zonal waves at timescales beyond 10 days. Moreover, a barotropic model is used to systematically study the ability of idealized jets to trap Rossby wave energy ("waveguidability") as a function of jet strength, jet width, and jet location. In general, strongest waveguidability is found for narrow, fast jets. In addition, when the stationary wave number is integer, a resonant response is found through constructive interference. In Austral summer, the Southern Hemispheric jet is closest to the idealized jets considered and it is for this season that similar jet-zonal wave relationships are identified in the ECMWF reanalysis data.

  18. Double-shell tank annulus pumping alternative evaluation

    SciTech Connect

    RIESENWEBER, S.D.

    1999-06-23

    This engineering evaluation compares five alternative schemes for maintaining emergency annulus pumping equipment in a reliable condition. The five schemes are: (1) continue status quo; (2) periodic pump removal and run-in; (3) periodic in-place limited maintenance; (4) uninstalled ready spares; and (5) expanded mission of Single-Shell Tank Emergency Pumping Trailer. Each alternative is described, the pros and cons identified, and rough order of magnitude life-cycle costs computed. The alternatives are compared using weighted evaluation criteria. The evaluation concludes that staging adjustable length submersible pumps in the Single-Shell Tank Emergency Pumping Trailer has the best cost-benefit characteristics.

  19. Method for Implementing Optical Phase Adjustment

    NASA Technical Reports Server (NTRS)

    Hovde, David C.; Corsini, Eric

    2011-01-01

    A method has been developed to mechanically implement the optical phase shift by adjusting the polarization of the pump and probe beams in an NMOR (nonlinear magneto-optical rotation) magnetometer as the proper phase shift is necessary to induce self-oscillation. This innovation consists of mounting the pump beam on a ring that surrounds the atomic vapor sample. The propagation of the probe beam is perpendicular to that of the pump beam. The probe beam can be considered as defining the axis of a cylinder, while the pump beam is directed radially. The magnetic field to be measured defines a third vector, but it is also taken to lie along the cylinder axis. Both the pump and probe beams are polarized such that their electric field vectors are substantially perpendicular to the magnet field. By rotation of the ring supporting the pump beam, its direction can be varied relative to the plane defined by the probe electric field and the magnetic field to be measured.

  20. Circular and Elliptic Submerged Impinging Water Jets

    NASA Astrophysics Data System (ADS)

    Claudey, Eric; Benedicto, Olivier; Ravier, Emmanuel; Gutmark, Ephraim

    1999-11-01

    Experiments and CFD have been performed to study circular and elliptic jets in a submerged water jet facility. The tests included discharge coefficient measurement to evaluate pressure losses encountered in noncircular nozzles compared to circular ones. Three-dimensional pressure mappings on the impingement surface and PIV measurement of the jet mean and turbulent velocity have been performed at different compound impingement angles relative to the impingement surface and at different stand-off distances. The objective was to investigate the effect of the non-circular geometry on the flow field and on the impact region. The tests were performed in a close loop system in which the water was pumped through the nozzles into a clear Plexiglas tank. The Reynolds numbers were typically in the range of 250000. Discharge coefficients of the elliptic nozzle was somewhat lower than that of the circular jet but spreading rate and turbulence level were higher. Pressure mapping showed that the nozzle exit geometry had an effect on the pressure distribution in the impact region and that high-pressure zones were generated at specific impact points. PIV measurements showed that for a same total exit area, the elliptic jets affected a surface area that is 8the equivalent circular. The turbulence level in the elliptic jet tripled due to the nozzle design. Results of the CFD model were in good agreement with the experimental data.

  1. Mathematical Model of the Jet Engine Fuel System

    NASA Astrophysics Data System (ADS)

    Klimko, Marek

    2015-05-01

    The paper discusses the design of a simplified mathematical model of the jet (turbo-compressor) engine fuel system. The solution will be based on the regulation law, where the control parameter is a fuel mass flow rate and the regulated parameter is the rotational speed. A differential equation of the jet engine and also differential equations of other fuel system components (fuel pump, throttle valve, pressure regulator) will be described, with respect to advanced predetermined simplifications.

  2. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  3. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  4. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  5. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  6. Cleanup of a jet fuel spill

    NASA Astrophysics Data System (ADS)

    Fesko, Steve

    1996-11-01

    Eaton operates a corporate aircraft hanger facility in Battle Creek, Michigan. Tests showed that two underground storage tanks leaked. Investigation confirmed this release discharged several hundred gallons of Jet A kerosene into the soil and groundwater. The oil moved downward approximately 30 feet and spread laterally onto the water table. Test results showed kerosene in the adsorbed, free and dissolved states. Eaton researched and investigated three clean-up options. They included pump and treat, dig and haul and bioremediation. Jet fuel is composed of readily biodegradable hydrocarbon chains. This fact coupled with the depth to groundwater and geologic setting made bioremediation the low cost and most effective alternative. A recovery well was installed at the leading edge of the dissolved contamination. A pump moved water from this well into a nutrient addition system. Nutrients added included nitrogen, phosphorous and potassium. Additionally, air was sparged into the water. The water was discharged into an infiltration gallery installed when the underground storage tanks were removed. Water circulated between the pump and the infiltration basin in a closed loop fashion. This oxygenated, nutrient rich water actively and aggressively treated the soils between the bottom of the gallery and the top of the groundwater and the groundwater. The system began operating in August of 1993 and reduced jet fuel to below detection levels. In August of 1995 The State of Michigan issued a clean closure declaration to the site.

  7. Improved Stirling engine performance using jet impingement

    NASA Technical Reports Server (NTRS)

    Johnson, D. C.; Britt, E. J.; Thieme, L. G.

    1982-01-01

    Of the many factors influencing the performance of a Stirling engine, that of transferring the combustion gas heat into the working fluid is crucial. By utilizing the high heat transfer rates obtainable with a jet impingement heat transfer system, it is possible to reduce the flame temperature required for engine operation. Also, the required amount of heater tube surface area may be reduced, resulting in a decrease in the engine nonswept volume and a related increase in engine efficiency. A jet impingement heat transfer system was designed by Rasor Associates, Inc., and tested in the GPU-3 Stirling engine at the NASA Lewis Research Center. For a small penalty in pumping power (less than 0.5% of engine output) the jet impingement heat transfer system provided a higher combustion-gas-side heat transfer coefficient and a smoothing of heater temperature profiles resulting in lower combustion system temperatures and a 5 to 8% increase in engine power output and efficiency.

  8. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  9. Acceptance for Beneficial Use Pumping Instrumentation and Control Skid N

    SciTech Connect

    KOCH, M.R.

    2000-03-13

    This is a final Acceptance for Beneficial Use (ABU) for Pumping and Instrumentation Control (PIC) skid ''N''. PIC skid ''N'' is ready for pumping tank U-109. All the testing and documentation has been completed as required on the AE3U checklist. This AE3U covers only the readiness of the PIC skid ''N''. Other U-farm preparations including dilution tank fabrication, portable exhauster readiness, leak detection, valve pit preparation, and the Operation Control Station readiness are not part of this ABU. PIC skid ''N'' is a new skid fabricated and tested at Site Fabrication Services. The skid controls the jet pump and monitors various instruments associated with the pumping operation. This monitoring includes leak detection along the waste transfer route and flammable gases in the pump pit. This Acceptance for Beneficial Use documents that Pumping Instrumentation and Control (PIC) skid ''N'' is ready for field use. This document does not cover the field installation or operational testing.

  10. Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Kenny, Patrick

    2004-01-01

    The Acoustics Branch is responsible for reducing noise levels for jet and fan components on aircraft engines. To do this, data must be measured and calibrated accurately to ensure validity of test results. This noise reduction is accomplished by modifications to hardware such as jet nozzles, and by the use of other experimental hardware such as fluidic chevrons, elliptic cores, and fluidic shields. To insure validity of data calibration, a variety of software is used. This software adjusts the sound amplitude and frequency to be consistent with data taken on another day. Both the software and the hardware help make noise reduction possible. work properly. These software programs were designed to make corrections for atmosphere, shear, attenuation, electronic, and background noise. All data can be converted to a one-foot lossless condition, using the proper software corrections, making a reading independent of weather and distance. Also, data can be transformed from model scale to full scale for noise predictions of a real flight. Other programs included calculations of Over All Sound Pressure Level (OASPL), Effective Perceived Noise Level (EPNL). OASPL is the integration of sound with respect to frequency, and EPNL is weighted for a human s response to different sound frequencies and integrated with respect to time. With the proper software correction, data taken in the NATR are useful in determining ways to reduce noise. display any difference between two or more data files. Using this program and graphs of the data, the actual and predicted data can be compared. This software was tested on data collected at the Aero Acoustic Propulsion Laboratory (AAPL) using a variety of window types and overlaps. Similarly, short scripts were written to test each individual program in the software suite for verification. Each graph displays both the original points and the adjusted points connected with lines. During this summer, data points were taken during a live experiment

  11. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  12. Adjustable sutures in children.

    PubMed

    Engel, J Mark; Guyton, David L; Hunter, David G

    2014-06-01

    Although adjustable sutures are considered a standard technique in adult strabismus surgery, most surgeons are hesitant to attempt the technique in children, who are believed to be unlikely to cooperate for postoperative assessment and adjustment. Interest in using adjustable sutures in pediatric patients has increased with the development of surgical techniques specific to infants and children. This workshop briefly reviews the literature supporting the use of adjustable sutures in children and presents the approaches currently used by three experienced strabismus surgeons. PMID:24924284

  13. Miniature Scroll Pumps Fabricated by LIGA

    NASA Technical Reports Server (NTRS)

    Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam

    2009-01-01

    Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of <1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.

  14. Multiple pump housing

    DOEpatents

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  15. 29-fsec pulse generation from a linear-cavity synchronously pumped dye laser

    SciTech Connect

    Kubota, H.; Kurokawa, K.; Nakazawa, M.

    1988-09-01

    29-fsec optical pulses at a center wavelength of 615 nm have been generated from a linear-cavity synchronously pumped dye laser without using the colliding-pulse mode-locking technique. The laser consists of two dye jets (a gain jet and a saturable absorber jet) and a sequence of four Brewster-angled prisms. Kiton Red S is used as the laser dye instead of the conventional Rhodamine 6G.

  16. NASA Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2012-01-01

    The presentation highlights jet-noise research conducted in the Subsonic Fixed Wing, Supersonics, and Environmentally Responsible Aviation Projects in the Fundamental Aeronautics Program at NASA. The research efforts discussed include NASA's updated Aircraft NOise Prediction Program (ANOPP2), acoustic-analogy-based prediction tools, jet-surface-interaction studies, plasma-actuator investigations, N+2 Supersonics Validation studies, rectangular-jet experiments, twin-jet experiments, and Hybrid Wind Body (HWB) activities.

  17. Jets of incipient liquids

    NASA Astrophysics Data System (ADS)

    Reshetnikov, A. V.; Mazheiko, N. A.; Skripov, V. P.

    2000-05-01

    Jets of incipient water escaping into the atmosphere through a short channel are photographed. In some experiments. complete disintegration of the jet is observed. The relationship of this phenomenon with intense volume incipience is considered. The role of the Coanda effect upon complete opening of the jet is revealed. Measurement results of the recoil force R of the jets of incipient liquids are presented. Cases of negative thrust caused by the Coanda effect are noted. Generalization of experimental data is proposed.

  18. Recent JET results and future prospects

    SciTech Connect

    Rebut, P.H.

    1990-01-01

    The latest results of JET plasmas in transient and steady states are presented. Substantial improvements in plasma purity and corresponding reductions in plasma dilution have resulted from the use of beryllium as the first wall material facing the hot plasma. As a consequence, plasmas with a fusion triple product (n{sub D}(0){tau}{sub E}T{sub i}(0)) in the range 8--9 {times} 10{sup 20} m{sup {minus}3} skeV have been achieved (within a factor of 8 that required in a fusion reactor), albeit under transient conditions. The general JET performance has also improved, allowing the parameters of a reactor plasma to be individually achieved in JET. In view of their importance for reactors, the JET results are presented with particular emphasis on their significance for the formulation of a plasma model for the Next Step. However, impurity influxes limit the attainment of better parameters and prevent the realization of steady state conditions at high heating powers. To address these problems of impurity control, plasma fueling and helium ash exhaust, a New Phase is planned for JET. An axisymmetric pumped divertor configuration will allow operating conditions close to those of a reactor. The divertor configuration should demonstrate a concept of impurity control and determine the size and geometry needed to fulfill this concept in a reactor. It should identify appropriate materials for plasma facing components and define the operational domain for the Next Step.

  19. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  20. Feasibility Study on Using a Single Mixer Pump for Tank 241-AN-101 Waste Retrieval

    SciTech Connect

    Onishi, Yasuo; Wells, Beric E.; Yokuda, Satoru T.; Terrones, Guillermo

    2003-02-11

    The objective of this evaluation was to determine whether a single rotating pump located 20 ft off-center would adequately mix expected AN-101 waste. Three-dimensional, AN-101 pump jet mixing simulation results indicate that a single, 20-ft off-centered mixer pump would mobilize almost all solids even at the furthest tank wall for sludge yield strength up to 150 Pa or less. Because the yield strength of the AN-101 waste was estimated to be less than 150 Pa, the AN-101 pump mixing model results indicate that a single mixer pump would be suffice to mobilize bulk of the disturbed and diluted AN-101 solids.

  1. 1. Jet Lowe (JL) photographer, summer 1978, View showing top ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Jet Lowe (JL) photographer, summer 1978, View showing top floor of boiler house with continuous bucket conveyor belt which delivers coal into bins located immediately below, and for removal of ashes from boiler furnaces. - Division Avenue Pumping Station & Filtration Plant, West 45th Street and Division Avenue, Cleveland, Cuyahoga County, OH

  2. 20. BIRD'S EYE VIEW OF PUMP HOUSE No. 1 FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. BIRD'S EYE VIEW OF PUMP HOUSE No. 1 FROM THE TOP OF WATER TOWER. THE PITTSBURGH, & LAKE ERIE RAILROAD BRIDGE IS IN THE BACKGROUND. Jet Lowe. Photographer, 1989. - U.S. Steel Homestead Works, Auxiliary Buildings & Shops, Along Monongahela River, Homestead, Allegheny County, PA

  3. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  4. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  5. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  6. Gastrostomy feeding tube - pump - child

    MedlinePlus

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Gather supplies: Feeding pump (electronic or battery powered) Feeding set that matches the feeding pump (includes a feeding bag, drip chamber, roller clamp, ...

  7. Aeroacoustics of hot jets

    NASA Astrophysics Data System (ADS)

    Viswanathan, K.

    2004-10-01

    A systematic study has been undertaken to quantify the effect of jet temperature on the noise radiated by subsonic jets. Nozzles of different diameters were tested to uncover the effects of Reynolds number. All the tests were carried out at Boeing's Low Speed Aeroacoustic Facility, with simultaneous measurement of thrust and noise. It is concluded that the change in spectral shape at high jet temperatures, normally attributed to the contribution from dipoles, is due to Reynolds number effects and not dipoles. This effect has not been identified before. A critical value of the Reynolds number that would need to be maintained to avoid the effects associated with low Reynolds number has been estimated to be {˜}400 000. It is well-known that large-scale structures are the dominant generators of noise in the peak radiation direction for high-speed jets. Experimental evidence is presented that shows the spectral shape at angles close to the jet axis from unheated low subsonic jets to be the same as from heated supersonic jets. A possible mechanism for the observed trend is proposed. When a subsonic jet is heated with the Mach number held constant, there is a broadening of the angular sector in which peak radiation occurs. Furthermore, there is a broadening of the spectral peak. Similar trends have been observed at supersonic Mach numbers. The spectral shapes in the forward quadrant and in the near-normal angles from unheated and heated subsonic jets also conform to the universal shape obtained from supersonic jet data. Just as for unheated jets, the peak frequency at angles close to the jet axis is independent of jet velocity as long as the acoustic Mach number is less than unity. The extensive database generated in the current test programme is intended to provide test cases with high-quality data that could be used for the evaluation of theoretical/semi-theoretical jet noise prediction methodologies.

  8. Acceptance for Beneficial Use Pumping Instrumentation and Control Skid L

    SciTech Connect

    KOCH, M.R.

    1999-11-17

    This is a final Acceptance for Beneficial Use (ABU) for Pumping and Instrumentation Control (PIC) skid ''L''. PIC skid ''L'' is ready for pumping tank U-105. All the testing and documentation has been completed as required on the ABU checklist. This ABU covers only the readiness of the PIC skid ''L''. Other U-farm preparations including dilution tank fabrication, portable exhauster readiness, leak detection, valve pit preparation, and the Operation Control Station readiness are not part of this ABU. PIC skid ''L'' is a new skid fabricated and tested at Site Fabrication Services. The skid controls the jet pump and monitors various instruments associated with the pumping operation. This monitoring includes leak detection along the waste transfer route and flammable gases in the pump pit.

  9. Jets and Water Clouds on Jupiter

    NASA Astrophysics Data System (ADS)

    Lian, Yuan; Showman, A. P.

    2012-10-01

    Ground-based and spacecraft observations show that Jupiter exhibits multiple banded zonal jet structures. These banded jets correlate with dark and bright clouds, often called "belts" and "zones". The mechanisms that produce these banded zonal jets and clouds are poorly understood. Our previous studies showed that the latent heat released by condensation of water vapor could produce equatorial superrotation along with multiple zonal jets in the mid-to-high latitudes. However, that previous work assumed complete and instant removal of condensate and therefore could not predict the cloud formation. Here we present an improved 3D Jupiter model to investigate some effects of cloud microphysics on large-scale dynamics using a closed water cycle that includes condensation, three-dimensional advection of cloud material by the large-scale circulation, evaporation and sedimentation. We use a dry convective adjustment scheme to adjust the temperature towards a dry adiabat when atmospheric columns become convectively unstable, and the tracers are mixed within the unstable layers accordingly. Other physics parameterizations included in our model are the bottom drag and internal heat flux as well as the choices of either Newtonian heating scheme or gray radiative transfer. Given the poorly understood cloud microphysics, we perform case studies by treating the particle size and condensation/evaporation time scale as free parameters. We find that, in some cases, the active water cycle can produce multiple banded jets and clouds. However, the equatorial jet is generally very weak in all the cases because of insufficient supply of eastward eddy momentum fluxes. These differences may result from differences in the overall vertical stratification, baroclinicity, and moisture distribution in our new models relative to the older ones; we expect to elucidate the dynamical mechanisms in continuing work.

  10. TEST PLAN CHARACTERIZATION OF JET FORCES UPON WASTE TANK COMPONENTS

    SciTech Connect

    Bamberger, J. A.

    1992-01-01

    Westinghouse Hanford Company plans to install mixer pumps in double-shell waste tanks to mobilize and suspend settled sludge to allow eventual retrieval for treatment and permanent storage. The mixer pumps produce high momentum, horizontally directed jets that impact and mobilize the sludge and mix it into slurry for removal. There is concern that the force of the jet may damage tank internal components in its path. This test plan describes scaled experiments designed to characterize the velocity profiles of a near floor jet and to quantify the impact farces and drag coefficients of three tank components: radiation dry well, airlift circulator, and steam coil. The experiments will be conducted in water, at approximately 1/6-scale, using one stationary nozzle to simulate the jet. To measure and confirm the velocity profile of the free, submerged jet, the horizontal and vertical velocity profiles will be measured at several distances from the nozzle. The profile will also be measured after the jet impinges upon the tank floor to determine the·extent of the change in the profile caused by impingement. The jet forces upon the test articles will be measured at a maximum of four velocities and a variety of test article orientations. Each orientation will represent a unique position of the test article relative to the jet and the tank floor. In addition, the steam coil will be tested in three rotational orientations because it is not symmetric. The highest jet velocity will be selected so that the Reynolds number of the test article in the model will match that of the prototype when operating at design conditions. The forces measured upon the model components will be used to calculate the force on the prototype components using geometric scaling factors. In addition, the model force measurements will be used to calculate the component's drag coefficient as a function of the component Reynolds number.

  11. Theory of laminar viscous jets

    NASA Astrophysics Data System (ADS)

    Martynenko, O. G.; Korovkin, V. N.; Sokovishin, Iu. A.

    Results of recent theoretical studies of laminar jet flows of a viscous incompressible fluid are reviewed. In particular, attention is given to plane, fan-shaped, axisymmetric, and swirling jet flows; jet flows behind bodies; and slipstream jet flows. The discussion also covers dissipation of mechanical energy in jet flows, jet flows with a zero excess momentum, and asymptotic series expansions in the theory of jet flows.

  12. An experimental study of the noise generating mechanisms in supersonic jets

    NASA Technical Reports Server (NTRS)

    Mclaughlin, D. K.

    1979-01-01

    Flow fluctuation measurements with normal and X-wire hot-wire probes and acoustic measurements with a traversing condenser microphone were carried out in small air jets in the Mach number range from M = 0.9 to 2.5. One of the most successful studies involved a moderate Reynolds number M = 2.1 jet. The large scale turbulence properties in the jet, and the noise radiation were characterized. A parallel study involved similar measurements on a low Reynolds number M = 0.9 jet. These measurements show that there are important differences in the noise generation process of the M = 0.9 jet in comparison with low supersonic Mach number (M = 1.4) jets. Problems encounted while performing X-wire measurements in low Reynolds number jets of M = 2.1 and 2.5, and in installing a vacuum pump are discussed.

  13. Enhanced heat sink with geometry induced wall-jet

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Mahamudul; Tikadar, Amitav; Bari, Fazlul; Morshed, A. K. M. M.

    2016-07-01

    Mini-channels embedded in solid matrix have already proven to be a very efficient way of electronic cooling. Traditional mini-channel heat sinks consist of single layer of parallel channels. Although mini-channel heat sink can achieve very high heat flux, its pumping requirement for circulating liquid through the channel increase very sharply as the flow velocity increases. The pumping requirements of the heat sink can be reduced by increasing its performance. In this paper a novel approach to increase the thermal performance of the mini-channel heat sink is proposed through geometry induced wall jet which is a passive technique. Geometric irregularities along the channel length causes abrupt pressure change between the channels which causes cross flow through the interconnections thus one channel faces suction and other channel jet action. This suction and jet action disrupts boundary layer causing enhanced heat transfer performance. A CFD model has been developed using commercially available software package FLUENT to evaluate the technique. A parametric study of the velocities and the effect of the position of the wall-jets have been performed. Significant reduction in thermal resistance has been observed for wall-jets, it is also observed that this reduction in thermal resistance is dependent on the position and shape of the wall jet.

  14. Adjusting the Chain Gear

    NASA Astrophysics Data System (ADS)

    Koloc, Z.; Korf, J.; Kavan, P.

    The adjustment (modification) deals with gear chains intermediating (transmitting) motion transfer between the sprocket wheels on parallel shafts. The purpose of the adjustments of chain gear is to remove the unwanted effects by using the chain guide on the links (sliding guide rail) ensuring a smooth fit of the chain rollers into the wheel tooth gap.

  15. Adjustment to Recruit Training.

    ERIC Educational Resources Information Center

    Anderson, Betty S.

    The thesis examines problems of adjustment encountered by new recruits entering the military services. Factors affecting adjustment are discussed: the recruit training staff and environment, recruit background characteristics, the military's image, the changing values and motivations of today's youth, and the recruiting process. Sources of…

  16. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  17. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, John E.

    1984-01-01

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  18. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  19. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  20. Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment

    NASA Astrophysics Data System (ADS)

    Cao, Z.; Walsh, J. L.; Kong, M. G.

    2009-01-01

    This letter reports on electrical and optical characteristics of a ten-channel atmospheric pressure glow discharge jet array in parallel electric and gas flow fields. Challenged with complex three-dimensional substrates including surgical tissue forceps and sloped plastic plate of up to 15°, the jet array is shown to achieve excellent jet-to-jet uniformity both in time and in space. Its spatial uniformity is four times better than a comparable single jet when both are used to treat a 15° sloped substrate. These benefits are likely from an effective self-adjustment mechanism among individual jets facilitated by individualized ballast and spatial redistribution of surface charges.

  1. Jet Substructure Without Trees

    SciTech Connect

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  2. Latex Micro-balloon Pumping in Centrifugal Microfluidic Platforms

    PubMed Central

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Wadi harun, Sulaiman; Madou, Marc

    2014-01-01

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-stepped processes on a single microfluidics disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping designs have been developed to study the pump performance and capacity at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data shows that, the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792

  3. Latex micro-balloon pumping in centrifugal microfluidic platforms.

    PubMed

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Al-Faqheri, Wisam; Thio, Tzer Hwai Gilbert; Kazemzadeh, Amin; Madou, Marc

    2014-03-01

    Centrifugal microfluidic platforms have emerged as point-of-care diagnostic tools. However, the unidirectional nature of the centrifugal force limits the available space for multi-step processes on a single microfluidic disc. To overcome this limitation, a passive pneumatic pumping method actuated at high rotational speeds has been previously proposed to pump liquid against the centrifugal force. In this paper, a novel micro-balloon pumping method that relies on elastic energy stored in a latex membrane is introduced. It operates at low rotational speeds and pumps a larger volume of liquid towards the centre of the disc. Two different micro-balloon pumping mechanisms have been designed to study the pump performance at a range of rotational frequencies from 0 to 1500 rpm. The behaviour of the micro-balloon pump on the centrifugal microfluidic platforms has been theoretically analysed and compared with the experimental data. The experimental data show that the developed pumping method dramatically decreases the required rotational speed to pump liquid compared to the previously developed pneumatic pumping methods. It also shows that within a range of rotational speed, a desirable volume of liquid can be stored and pumped by adjusting the size of the micro-balloon. PMID:24441792

  4. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  5. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  6. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  7. Sizing pumps for slurries

    SciTech Connect

    Akhtar, S.Z.

    1996-11-01

    Slurry characteristics have a significant impact on centrifugal pump performance. For instance, as particle size increases or the percent solids concentration increases, pump head and efficiency decrease. Therefore, before a slurry pump is selected, it is important to define the slurry characteristics as accurately as possible. The effect of the slurry characteristics on the head and efficiency of the centrifugal pump will be emphasized (the effect on flowrate is less significant). The effect of slurry characteristics is more predominant in smaller pumps (with smaller diameter impellers) than in larger pumps. The data and relationship between the various slurry parameters have been developed from correlations and nomographs published by pump vendors from their field data and test results. The information helps to avoid specifying an undersized pump/motor assembly for slurry service.

  8. The cryogenic diffusion pump; An advanced design for fusion reactor primary pumping and fuel processing

    SciTech Connect

    Hemmerich, J.L. )

    1992-03-01

    This paper reports on a re-evaluation of the characteristics of the intermediate flow regime with simultaneous thermal accommodation has shown the full potential of the Cryogenic Diffusion Pump for Fusion Reactor applications. A device with a characteristic diameter of 1m will have a pumping speed of 150m{sup 3}s{sup {minus}1} for Deuterium at an inlet pressure of 2 {times} 10{sup 2}Pa (Reactor Burn phased) and 400m{sup 3} s{sup {minus}1} at an inlet pressure of 0.1 Pa (Reactor Dwell phase). Simultaneously, it separates impurities, Hydrogen isotopes and Helium and compresses the Helium. The Helium compression ratio (already proven to be {ge}25 for 3% Helium in D{sub 2}) can be further enhanced by additional D{sub 2} or He driven Diffusion Pump and Ejector stages. The latter feature will also simplify pumping requirements for the Helium Glow Discharge scenario: recirculation of Helium at 0.1 Pa (driven by D{sub 2} or He Ejector) and simultaneous removal of DT and impurities by cryocondensation requires no mechanical pump at all or only small turbomolecular-drag pump combinations of He jet drive. The design offers superior tritium compatibility: all metal, fully bakeable, it avoids use of absorbers and argon for helium pumping, thereby reducing overall tritium inventory both in the pump itself and by replacing major fuel clean-up facilities. The advantages of using the Cryogenic Diffusion Pump in a Fusion Reactor Vacuum System are discussed in detail.

  9. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  10. Experience and Operational Improvements, Mixer Pump Performance

    SciTech Connect

    Erian, Fadel F.; Mullen, O Dennis; Kellogg, Michael I.

    2002-03-20

    Millions of gallons of radioactive waste are stored in large underground tanks at DOE sites. The waste is made up of settled solids, in sludge form, at the bottom of the tank and a layer of supernatant liquid on top of it. It is necessary to mix the solids in the sludge layer with the supernatant liquid to facilitate their removal from the storage tanks for remediation. Our goal is to improve the mobilization of the settled solids by optimizing mixing with the supernatant liquid and preserving the mobility of the solids. This report investigates whether time-phase separation between pump head oscillations affects overall sludge mobilization. If a mixing jet from one pump happens to follow temporarily the path of the lead mixing jet, it may be possible to prevent or slow down the resettling of the heavy solid particles, maintaining them in suspension. If a retrieval pump were operating at the same time, it could facilitate removal of such particles. Preliminary experiments were carried out to observe whether time-phase separation has some influence on the overall mobilization. A brief account is presented of the successful mobilization and removal of most of the radioactive waste from Tank D8-2 at the West Valley Demonstration Project using time-phase separation techniques.

  11. Intravenous smart pumps.

    PubMed

    Harding, Andrew D

    2013-01-01

    Intravenous (IV) smart pumps provide substantial safety features during infusion. However, nurses need to understand the requisite education necessary to fully benefit from and improve IV smart pump use and clinical integration. Failure to use IV smart pumps places the nurse and patient at increased risk. PMID:23558918

  12. Multiwell pumping device

    SciTech Connect

    Dysarz, E.D.

    1987-06-30

    This patent describes a balanced pumping apparatus for pumping two laterally spaced wells comprising: a left conductor on a left well; a right conductor on a right the well; a left pump casing inside the well conductor; a right pump casing inside the right well conductor; a left sucker rod inside the left pump casing; a right sucker rod inside the right pump casing; flexible linkage means for attachment to the top ends of the right sucker rod and left sucker rod; a drive motor with a rotating shaft; a drive sprocket rotatably engaging the flexible linkage means; a separate pump casing flange attached to the upper section of each well conductors; a separate upper flange attached to the upper section of each pump casing and positioned at an axial location above the point attached to the pump casing; a separate transition piece attached to the top of each pump casing flange; a separate pump support attached to the top of each transition piece; a plate-like structural support means placed in a vertical plane above the well conductors and supporting the drive motor, the drive sprocket, the flexible linkage means, and the sucker rods; a structural load transfer means connecting the plate-like structural support means to the well conductors; a motor control unit for supporting itself and controlling the drive motor; and a separate shaft extending across each pump support.

  13. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  14. Green pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Brown, David C.

    2005-04-01

    Initial experiments with pulsed and CW pumping an alexandrite laser rod at 532 nm are presented. This pumping architecture holds promise for the production of scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  15. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  16. Types of Breast Pumps

    MedlinePlus

    ... uses batteries or a cord plugged into an electrical outlet to power a small motorized pump that creates suction to ... pumping. Because these breast pumps rely on a power source, women who use ... situations when electricity or extra batteries may not be available. If ...

  17. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  18. Jets from young stars

    NASA Astrophysics Data System (ADS)

    Bally, John

    2007-10-01

    Most stars produce spectacular jets during their formation. There are thousands of young stars within 500 pc of the Sun and many power jets. Thus protostellar jets may be the most common type of collimated astrophysical outflow. Shocks powered by outflows excite many emission lines, exhibit a rich variety of structure, and motions with velocities ranging from 50 to over 500 km s-1. Due to their relative proximity, proper motions and structural changes can be observed in less than a year. I review the general properties of protostellar jets, summarize some results from recent narrow-band imaging surveys of entire clouds, discuss irradiated jets, and end with some comments concerning outflows from high-mass young stellar objects. Protostellar outflows are ideal laboratories for the exploration of the jet physics.

  19. Relativistic Jets in Collapsars

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqun; Woosley, S. E.; MacFadyen, A. I.

    2003-04-01

    We examine the propagation of two-dimensional relativistic jets through the stellar progenitor in the collapsar model for gamma-ray bursts. In agreement with previous studies, we find that the jet is collimated by its passage. Moreover, interaction of the jet with the star causes mixing that sporadically decelerates the jet, leading to a highly variable Lorentz factor. The jet that finally emerges has a moderate Lorentz factor, but a very large internal energy loading. In a second series of calculations we follow the emergence of such enegy-loaded jets from the star. For the initial conditions chosen, conversion of the remaining internal energy gives a terminal Lorentz factor of approximately 150. Implications of our calculations for GRB light curves, the luminosity-variability relation, and the GRB-supernova association are discussed.

  20. What ignites optical jets?

    SciTech Connect

    Sebastian Jester

    2002-12-23

    The properties of radio galaxies and quasars with and without optical or X-ray jets are compared. The majority of jets from which high-frequency emission has been detected so far (13 with optical emission, 11 with X-rays, 13 with both) are associated with the most powerful radio sources at any given redshift. It is found that optical/X-ray jet sources are more strongly beamed than the average population of extragalactic radio sources. This suggests that the detection or non-detection of optical emission from jets has so far been dominated by surface brightness selection effects, not by jet physics. It implies that optical jets are much more common than is currently appreciated.

  1. A small centrifugal pump for circulating cryogenic helium

    SciTech Connect

    Swift, W.; Sixsmith, H.

    1982-01-01

    A small centrifugal pump is described which has been developed to circulate supercritical helium through a test loop for superconducting magnets. The pump has a fully enclosed warm and which contains the adjustable speed brushless DC drive motor and self-acting bearings operating in helium gas. The drive and bearing system is designed to minimize contaimination to the circulating supercritical helium in the test loop. The performance data which have been obtained show that the pump operates very close to its design specifications. Additional tests are planned to provide a more complete range of performance data for the pump. Subsequent record discussion concerned the pump shaft and the efficiency of the heat leak to the heat station. Efficiency of at least 65% is attainable with this pump, including all heat leak.

  2. SLIT ADJUSTMENT CLAMP

    DOEpatents

    McKenzie, K.R.

    1959-07-01

    An electrode support which permits accurate alignment and adjustment of the electrode in a plurality of planes and about a plurality of axes in a calutron is described. The support will align the slits in the electrode with the slits of an ionizing chamber so as to provide for the egress of ions. The support comprises an insulator, a leveling plate carried by the insulator and having diametrically opposed attaching screws screwed to the plate and the insulator and diametrically opposed adjusting screws for bearing against the insulator, and an electrode associated with the plate for adjustment therewith.

  3. CMS Frailty Adjustment Model

    PubMed Central

    Kautter, John; Pope, Gregory C.

    2004-01-01

    The authors document the development of the CMS frailty adjustment model, a Medicare payment approach that adjusts payments to a Medicare managed care organization (MCO) according to the functional impairment of its community-residing enrollees. Beginning in 2004, this approach is being applied to certain organizations, such as Program of All-Inclusive Care for the Elderly (PACE), that specialize in providing care to the community-residing frail elderly. In the future, frailty adjustment could be extended to more Medicare managed care organizations. PMID:25372243

  4. Horizontal penetration of inclined thermal buoyant water jets

    SciTech Connect

    Pantokratoras, A.

    1998-05-01

    Submerged buoyant jets occur in the discharge from thermal power plants and in the operation of pumped storage hydroelectric plants. Accurate prediction of the jet trajectory and temperature dilution are necessary if discharge structures are to be designed to meet the appropriate standards. A modified version of the integral Fan-Brooks model has been used to calculate the horizontal penetration of inclined thermal buoyant water jets. The classical densimetric Froude number F{sub 0} is substituted by a Froude number F{sub a} based on the thermal expansion coefficient of water. Using the above model, a new equation is derived which can predict the horizontal penetration of the thermal jet at a given Froude number F{sub a} and discharge angle.

  5. Properties of gluon jets

    SciTech Connect

    Sugano, K.

    1986-09-01

    The properties of gluon jets are reviewed from an experimental point of view. The measured characteristics are compared to theoretical expectations. Although neither data nor models for the gluon jets are in the mature stage, there are remarkable agreements and also intriguing disagreements between experiment and theory. Since much interesting data have begun to emerge from various experiments and the properties of gluon jets are deeply rooted in the basic structure of non-Abelian gauge theory, the study of gluon jets casts further light on our understanding of QCD. Finally, the future prospects are discussed.

  6. Perspectives on jet noise

    NASA Technical Reports Server (NTRS)

    Ribner, H. S.

    1981-01-01

    Jet noise is a byproduct of turbulence. Until recently turbulence was assumed to be known statistically, and jet noise was computed therefrom. As a result of new findings though on the behavior of vortices and instability waves, a more integrated view of the problem has been accepted lately. After presenting a simple view of jet noise, the paper attempts to resolve the apparent differences between Lighthill's and Lilley's interpretations of mean-flow shear, and examines a number of ad hoc approaches to jet noise suppression.

  7. Interpretation of extragalactic jets

    SciTech Connect

    Norman, M.L.

    1985-01-01

    The nature of extragalatic radio jets is modeled. The basic hypothesis of these models is that extragalatic jets are outflows of matter which can be described within the framework of fluid dynamics and that the outflows are essentially continuous. The discussion is limited to the interpretation of large-scale (i.e., kiloparsec-scale) jets. The central problem is to infer the physical parameters of the jets from observed distributions of total and polarized intensity and angle of polarization as a function of frequency. 60 refs., 6 figs.

  8. Functional design criteria for pumping and instrumentation control (PIC) skids

    SciTech Connect

    BOETTGER, J.S.

    1999-08-25

    Radioactive liquid and semisolid waste from operation of Hanford's nuclear fuel processing plants is stored in 177 underground storage tanks located in the 200 Areas of the Hanford site. 28 of these tanks are of double-shell construction. The remaining 149 tanks are of single-shell construction. Only the newer, double-shell tanks (DST) can meet current requirements for containment of dangerous waste. Therefore, the single-shell tanks (SST) are being ''interim stabilized,'' which is the process of removing liquid from the waste through the use of a jet pump installed in a saltwell which penetrates the waste. Lockheed Martin Hanford Company has decided to purchase additional Pumping and Instrumentation Control (PIC) skids to monitor and control the operation of saltwell jet pumps in SSTs. Similar PIC skids are already in use at several locations. The PIC skids will shut off all power to equipment/instruments if preset limits are exceeded for such conditions as flammable gas, leak detection, pressure and flow, as well as provide air and water necessary for saltwell pumping activities. This document outlines the functional design criteria for pumping and instrumentation control (PIC) skids to support the interim stabilization effort for saltwell pumping.

  9. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  10. Apparatus makes klystron operating frequency adjustable from remote point

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.

    1967-01-01

    Apparatus makes possible proper frequency adjustment in a receiver using a pump klystron for a traveling-wave master. It incorporates a tunable overcoupled cavity with irises of appropriate size to accomplish frequency spread over the desired range and to maintain the Q of the klystron circuit at the optimum value.

  11. Generation of tunable isolated attosecond pulses in multi-jet systems

    NASA Astrophysics Data System (ADS)

    Tosa, V.; Yakovlev, V. S.; Krausz, F.

    2008-02-01

    We theoretically investigate how the generation of attosecond pulses from high-order harmonics can be controlled by using a specially designed sequence of gas jets. We demonstrate that quasi-phase-matching provided by such a multi-jet system can be limited to a sub-femtosecond time window, while adjusting the multi-jet structure allows tuning of the central frequency of the generated isolated attosecond pulse.

  12. Weighted triangulation adjustment

    USGS Publications Warehouse

    Anderson, Walter L.

    1969-01-01

    The variation of coordinates method is employed to perform a weighted least squares adjustment of horizontal survey networks. Geodetic coordinates are required for each fixed and adjustable station. A preliminary inverse geodetic position computation is made for each observed line. Weights associated with each observed equation for direction, azimuth, and distance are applied in the formation of the normal equations in-the least squares adjustment. The number of normal equations that may be solved is twice the number of new stations and less than 150. When the normal equations are solved, shifts are produced at adjustable stations. Previously computed correction factors are applied to the shifts and a most probable geodetic position is found for each adjustable station. Pinal azimuths and distances are computed. These may be written onto magnetic tape for subsequent computation of state plane or grid coordinates. Input consists of punch cards containing project identification, program options, and position and observation information. Results listed include preliminary and final positions, residuals, observation equations, solution of the normal equations showing magnitudes of shifts, and a plot of each adjusted and fixed station. During processing, data sets containing irrecoverable errors are rejected and the type of error is listed. The computer resumes processing of additional data sets.. Other conditions cause warning-errors to be issued, and processing continues with the current data set.

  13. Influence of jet-cooking Prowashonupana barley flour on phenolic composition, antioxidant activities, and viscoelastic properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of jet-cooking Prowashonupana barley flour on total phenolic contents, antioxidant activities, water holding capacities, and viscoelastic properties was studied. Barley flour was jet-cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxi...

  14. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clif

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are t to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  15. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  16. Investigating the Dynamics of Canonical Flux Tubes in Jet Geometry

    NASA Astrophysics Data System (ADS)

    Lavine, Eric; You, Setthivoine

    2014-10-01

    Highly collimated plasma jets are frequently observed at galactic, stellar, and laboratory scales. Some models suppose these jets are magnetohydrodynamically-driven magnetic flux tubes filled with flowing plasma, but they do not agree on a collimation process. Some evidence supporting a universal MHD pumping mechanism has been obtained from planar electrode experiments with aspect ratios of ~10:1 however, these jets are subject to kink instabilities beyond a certain length and are unable to replicate the remarkable aspect ratios (10-1000:1) seen in astrophysical systems. Other models suppose these jets are flowing Z-pinch plasmas and experiments that use stabilizing shear flows have achieved aspect ratios of ~30:1, but are line tied at both ends. Can both collimation and stabilization mechanisms work together to produce long jets without kink instabilities and only one end tied to the central object? This question is evaluated from the point of view of canonical flux tubes and canonical helicity transport, indicating that jets can become long and collimated due to a combination of strong helical shear flows and conversion of magnetic helicity into kinetic helicity. The MOCHI LabJet experiment is designed to study this in the laboratory. Supported by US DoE Early Career Grant DE-SC0010340.

  17. Solids Mobilization and Suspension by Dual Opposed Mixing Pumps

    SciTech Connect

    Bamberger, Judith A.; Fort, James A.; Enderlin, Carl W.

    2012-01-01

    Experiments were performed to support understanding mixing of radioactive waste stored in Tank 241-SY-101 at the Hanford Site in Washington State. These experiments were conducted at 1/12 scale and modeled the tank and proposed mixing pump. The tests investigated solids mobilization and suspension for jets rotated in fixed increments about the tank centerline. Flow visualization tests showed that the supernatant layer was generally too cloudy for effective visualization. Observations of the settled solids interface during a start-up transient showed that the mixing action was always confined within the slurry layer. A 4.57-m/s (15-ft/s) jet velocity was not capable of clearing settled sludge off the tank floor all the way to the tank wall and produced a stratified flow field at steady state; 7.62-m/s (25-ft/s) and higher jet velocities always circulated solids to the tank surface. During the operating parameter tests with jets rotated at fixed increments, the slurry interface rose more slowly than for the fixed location jets. Solids suspension was more effective for the rotated jets than for the fixed location jets. Percent solids suspended with a 7.62-m/s (25-ft/s) jet was 66 to 72% in the high viscosity simulant and 59 to 67% in the low viscosity simulant. Percent solids suspended with a 15.2 m/s (50-ft/s) jet was 74 to 81% in the low viscosity simulant. A 7.62 m/s (25-ft/s) jet velocity was adequate to clear settled solids from the tank floor to the tank wall for both the low and high viscosity simulant.

  18. Dynamic measurements of beam-pump parameters

    SciTech Connect

    Lea, J.F.; Bowen, J.F. )

    1992-02-01

    Measurements of nine electrical and mechanical parameters were made on conventional and special-geometry units during operation of beam-pump/sucker rod systems in oil and natural gas wells. All quantities were measured simultaneously and computer-recorded for a variety of pumping conditions. In this paper, using this data, the authors compared measured dynamic gearbox torques with calculated values, illustrating how calculation techniques model dynamically measured data. Calculated efficiencies indicating losses through the units from polished rod to the gearbox are shown to be necessary for adjusting gearbox torque calculations to measured values. Also, torque/speed curves are shown at the motor sheave. These data are corrected for inertial effects and plotted vs. motor manufacturers' published curves. Possibilities for future work incorporating these measurement techniques while the unit is in operation were discussed. In general, the data show how dynamically measured beam-pump data compare with conventional calculation techniques.

  19. Jet Lag in Athletes

    PubMed Central

    Lee, Aaron; Galvez, Juan Carlos

    2012-01-01

    Context: Prolonged transmeridian air travel can impart a physical and emotional burden on athletes in jet lag and travel fatigue. Jet lag may negatively affect the performance of athletes. Study Type: Descriptive review. Evidence Acquisition: A Medline search for articles relating to jet lag was performed (1990-present), as was a search relating to jet lag and athletes (1983-January, 2012). The results were reviewed for relevance. Eighty-nine sources were included in this descriptive review. Results: Behavioral strategies are recommended over pharmacological strategies when traveling with athletes; pharmacological aides may be used on an individual basis. Strategic sleeping, timed exposure to bright light, and the use of melatonin are encouraged. Conclusions: There is strong evidence that mood and cognition are adversely affected by jet lag. Some measures of individual and team performance are adversely affected as well. PMID:23016089

  20. Description of Jet Breakup

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1996-01-01

    In this article we review recent results on the breakup of cylindrical jets of a Newtonian fluid. Capillary forces provide the main driving mechanism and our interest is in the description of the flow as the jet pinches to form drops. The approach is to describe such topological singularities by constructing local (in time and space) similarity solutions from the governing equations. This is described for breakup according to the Euler, Stokes or Navier-Stokes equations. It is found that slender jet theories can be applied when viscosity is present, but for inviscid jets the local shape of the jet at breakup is most likely of a non-slender geometry. Systems of one-dimensional models of the governing equations are solved numerically in order to illustrate these differences.

  1. Multiple jet study

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Kors, D. L.

    1973-01-01

    Test data is presented which allows determination of jet penetration and mixing of multiple cold air jets into a ducted subsonic heated mainstream flow. Jet-to-mainstream momentum flux ratios ranged from 6 to 60. Temperature profile data is presented at various duct locations up to 24 orifice diameters downstream of the plane of jet injection. Except for two configurations, all geometries investigated had a single row of constant diameter orifices located transverse to the main flow direction. Orifice size and spacing between orifices were varied. Both of these were found to have a significant effect on jet penetration and mixing. The best mixing of the hot and cold streams was achieved with duct height.

  2. Jet physics at CDF

    SciTech Connect

    Melese, P.

    1997-05-01

    We present high E{sub T} jet measurements from CDF at the Fermilab Tevatron Collider. The incfilusive jet cross section at {radical}s = 1800 GeV with {approximately} 5 times more data is compared to the published CDF results, preliminary D0 results, and next-to-leading order QCD predictions. The {summation}E{sub T} cross section is also compared to QCD predictions and the dijet angular distribution is used to place a limit on quark compositeness. The inclusive jet cross section at {radical}s = 630 GeV is compared with that at 1800 GeV to test the QCD predictions for the scaling of jet cross sections with {radical}s. Finally, we present momentum distributions of charged particles in jets and compare them to Modified Leading Log Approximation predictions.

  3. Partial covariate adjusted regression

    PubMed Central

    Şentürk, Damla; Nguyen, Danh V.

    2008-01-01

    Covariate adjusted regression (CAR) is a recently proposed adjustment method for regression analysis where both the response and predictors are not directly observed (Şentürk and Müller, 2005). The available data has been distorted by unknown functions of an observable confounding covariate. CAR provides consistent estimators for the coefficients of the regression between the variables of interest, adjusted for the confounder. We develop a broader class of partial covariate adjusted regression (PCAR) models to accommodate both distorted and undistorted (adjusted/unadjusted) predictors. The PCAR model allows for unadjusted predictors, such as age, gender and demographic variables, which are common in the analysis of biomedical and epidemiological data. The available estimation and inference procedures for CAR are shown to be invalid for the proposed PCAR model. We propose new estimators and develop new inference tools for the more general PCAR setting. In particular, we establish the asymptotic normality of the proposed estimators and propose consistent estimators of their asymptotic variances. Finite sample properties of the proposed estimators are investigated using simulation studies and the method is also illustrated with a Pima Indians diabetes data set. PMID:20126296

  4. Downhole pump with retrievable nozzle assembly

    SciTech Connect

    Roeder, G.K.

    1991-10-08

    This paper describes improvement in a system for producing fluid from a wellbore wherein a downhole jet pump has a main body with there being a passageway extending therethrough and the passageway having an upper end opposed to a lower end; there being power fluid inlet means at the upper end of the passageway for connecting the pump to a source of power fluid, formation fluid inlet means at the lower end of the passageway for connecting the pump to a source of formation fluid; and a produced fluid outlet through which spent power fluid admixed with formation fluid can flow. The improvement comprises: the pump includes a nozzle and a throat affixed together in spaced relationship respective to one another and forming a unitary assembly for producing formation fluid in response to power fluid flowing therethrough; a seating cavity formed between the upper end and the lower end of the passageway; the seating cavity is axially aligned with the upper end of the passageway; the seating cavity having an upper cylindrical part spaced from a lower cylindrical part with there being a formation fluid working chamber formed therebetween and connected to the formation fluid inlet.

  5. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  6. Resonant Interaction of a Linear Array of Supersonic Rectangular Jets: an Experimental Study

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Taghavi, Ray

    1994-01-01

    This paper examines a supersonic multi jet interaction problem that we believe is likely to be important for mixing enhancement and noise reduction in supersonic mixer-ejector nozzles. We demonstrate that it is possible to synchronize the screech instability of four rectangular jets by precisely adjusting the inter jet spacing. Our experimental data agrees with a theory that assumes that the phase-locking of adjacent jets occurs through a coupling at the jet lip. Although the synchronization does not change the frequency of the screech tone, its amplitude is augmented by 10 dB. The synchronized multi jets exhibit higher spreading than the unsynchronized jets, with the single jet spreading the least. We compare the nearfield noise of the four jets with synchronized screech to the noise of the sum of four jets operated individually. Our noise measurements reveal that the more rapid mixing of the synchronized multi jets causes the peak jet noise source to move up stream and to radiate noise at larger angles to the flow direction. Based on our results, we believe that screech synchronization is advantageous for noise reduction internal to a mixer-ejector nozzle, since the noise can now be suppressed by a shorter acoustically lined ejector.

  7. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  8. Electrokinetic pumps and actuators

    SciTech Connect

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  9. Pump isolation valve

    DOEpatents

    Kinney, Calvin L.; Wetherill, Todd M.

    1983-08-02

    The pump isolation valve provides a means by which the pump may be selectively isolated from the remainder of the coolant system while being compatible with the internal hydraulic arrangement of the pump during normal operation of the pump. The valve comprises a valve cylinder disposed around the pump and adjacent to the last pump diffuser with a turning vane attached to the lower end of the valve cylinder in a manner so as to hydraulically match with the discharge diffuser. The valve cylinder is connected to a drive means for sliding the valve cylinder relative to the diffuser support cylinder so as to block flow in either direction through the discharge diffuser when the valve is in the closed position and to aid in the flow of the coolant from the discharge diffuser by means of the turning vane when the valve is in the open position.

  10. A compact cryogenic pump

    NASA Astrophysics Data System (ADS)

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  11. Detection of pump degradation

    SciTech Connect

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  12. Fakir fuel pump

    NASA Technical Reports Server (NTRS)

    1922-01-01

    In designing the Fakir fuel pump, the fundamental idea was to obtain a simple and reliable method of conveying the fuel from a low tank to the carburetor, with the avoidance of the faults of all former methods and the simultaneous warming of the fuel by means of the heat of compression generated. The principle of the Fakir fuel pump rests on the well-known principle of the diaphragm pump, which must be suitably adapted to the present purpose.

  13. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  14. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  15. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  16. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  17. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  18. Jet Noise Suppression

    NASA Technical Reports Server (NTRS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-01-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  19. Pump jack system for oil well

    SciTech Connect

    Camren, V.

    1984-06-19

    A pump jack system is claimed for an oil well comprising a walking beam having one end connected to a vertical pump rod while being pivoted intermediate its ends for rocking movement by means of a single vertical connecting arm driven through an eccentric connection to a cushioned wheel, preferably a pneumatic tire. The latter is driven by a motor through pulley and sprocket members which provide speed reduction to a horizontal drive shaft that engages across the surface of the wheel to drive the same. The other end of the walking beam is provided with weights slidable along the beam into adjusted positions for counterbalancing the forces imposed on the beam through the pump rod. The wheel is also suitably weighted to counterbalance the weight of the connecting arm and its bearing on the wheel. To automatically deenergize the motor when the pump rod is jammed in the well, a limit switch assembly is mounted on the beam adjacent the end at which the pump rod is located. The motor and its drive train to the wheel, are mounted on the same support structure to permit easy removal and replacement as a unit.

  20. Rural to Urban Adjustment

    ERIC Educational Resources Information Center

    Abramson, Jane A.

    Personal interviews with 100 former farm operators living in Saskatoon, Saskatchewan, were conducted in an attempt to understand the nature of the adjustment process caused by migration from rural to urban surroundings. Requirements for inclusion in the study were that respondents had owned or operated a farm for at least 3 years, had left their…

  1. Self adjusting inclinometer

    DOEpatents

    Hunter, Steven L.

    2002-01-01

    An inclinometer utilizing synchronous demodulation for high resolution and electronic offset adjustment provides a wide dynamic range without any moving components. A device encompassing a tiltmeter and accompanying electronic circuitry provides quasi-leveled tilt sensors that detect highly resolved tilt change without signal saturation.

  2. Self Adjusting Sunglasses

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Corning Glass Works' Serengeti Driver sunglasses are unique in that their lenses self-adjust and filter light while suppressing glare. They eliminate more than 99% of the ultraviolet rays in sunlight. The frames are based on the NASA Anthropometric Source Book.

  3. Angular Scaling In Jets

    SciTech Connect

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  4. East Mesa geothermal pump test facility (EMPTF). Final report

    SciTech Connect

    Olander, R.G.; Roberts, G.K.

    1984-11-28

    The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  5. East Mesa geothermal pump test facility (EMPTF). Final report

    SciTech Connect

    Olander, R.G.; Roberts, G.K.

    1984-11-28

    Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

  6. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  7. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  8. Calculation of Personalized Argonne Anti-Jet-Lag Diet Plan

    1998-07-30

    The software lets a traveler or the traveler''s agent enter key information about a specific travel itinerary and then computes and displays an Argonne Anti-Jet-Lag Diet plan tailored to the individual itinerary. The Argonne Ant-Jet-Lag Diet helps people who travel across three or more time zones avoid or minimize jet lag by greatly speeding their adjustment to a new time zone. The software displays precise date and time information about when to start and endmore » the Argonne Anti-Jet-Lag Diet plan, when to eat meals, and what to eat. It also displays tips and answers common questions about the diet plan and how best to implement it.« less

  9. 98. VIEW OF PUMPS FROM NORTH. MILL SOLUTION PUMP No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. VIEW OF PUMPS FROM NORTH. MILL SOLUTION PUMP No. 2 IN FOREGROUND, ABANDONED BARREN SOLUTION PUMP BEYOND. AGITATOR No. 1 IN BACKGROUND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  10. 32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLANT AND LOCATION OF PROPOSED ADDITIONS, JULY 1898 SHEET NO. 1. Aperture card 4966-1 - Deer Island Pumping Station, Boston, Suffolk County, MA

  11. Looking south at boiler feedwater pumps (steam turbine pump on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at boiler feedwater pumps (steam turbine pump on left, electric motor pump on right). - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  12. 33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLAN AND LOCATION OF PROPOSED ADDITIONS, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JULY 1908. Aperture card 6417. - Deer Island Pumping Station, Boston, Suffolk County, MA

  13. Plasma gun with coaxial powder feed and adjustable cathode

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, Isidor (Inventor)

    1991-01-01

    An improved plasma gun coaxially injects particles of ceramic materials having high melting temperatures into the central portion of a plasma jet. This results in a more uniform and higher temperature and velocity distribution of the sprayed particles. The position of the cathode is adjustable to facilitate optimization of the performance of the gun wherein grains of the ceramic material are melted at lower power input levels.

  14. Experimental research on water-jet guided laser processing

    NASA Astrophysics Data System (ADS)

    Li, Ling; Wang, Yang; Yang, Lijun; Chu, Jiecheng

    2007-01-01

    The water-jet guided laser processing is a new compound micro-machining process in which the laser beam passes through the water-jet by full reflection onto the workpiece. In this paper, a new key component:the coupling unit was designed and which would form a long, slim, high-pressure and stable water-jet. The couple unit made the fluid field in the chamber symmetry; the coupling quality of the laser beam and the water-jet could be easily detected by CCD camera. For its excellent surface quality, the nozzle with a \\fgr 0.18mm hole got better machining effect than other nozzles. Aiming at finding optimum machining parameters, experiments were carried out. The results showed the attenuation of laser energy bore relation to water-jet stability. The energy intensity distributed over the water-jet cross section nearly homogeneous and the laser energy nearly did not decrease in long working distance. When water-jet pressure was high, efficient cooling of the workpiece prevented burrs, cracks and heat affected zone from forming. During cutting Si wafer process, nearly no cracking was found; Adjusting reasonable laser parameters grooving 65Mn, the machining accuracy would combine with the speed.

  15. Micromachined peristaltic pumps

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1999-01-01

    Micromachined pumps including a channel formed between a first membrane and a substrate or between first and second flexible membranes. A series of electrically conductive strips is applied to a surface of the substrate or one of the membranes. Application of a sequential voltage to the series of strips causes a region of closure to progress down the channel to achieve a pumping action.

  16. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  17. A Shocking New Pump

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Hydro Dynamics, Inc. received a technical helping hand from NASA that made their Hydrosonic Pump (HPump) a reality. Marshall engineers resolved a bearing problem in the rotor of the pump and recommended new bearings, housings and mounting hardware as a solution. The resulting HPump is able to heat liquids with greater energy efficiency using shock waves to generate heat.

  18. NEUTRONIC REACTOR FUEL PUMP

    DOEpatents

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  19. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  20. Pump apparatus including deconsolidator

    DOEpatents

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  1. Dilution jet mixing program

    NASA Technical Reports Server (NTRS)

    Srinivasan, R.; Coleman, E.; Johnson, K.

    1984-01-01

    Parametric tests were conducted to quantify the mixing of opposed rows of jets (two-sided injection) in a confined cross flow. Results show that jet penetrations for two sided injections are less than that for single-sided injections, but the jet spreading rates are faster for a given momentum ratio and orifice plate. Flow area convergence generally enhances mixing. Mixing characteristics with asymmetric and symmetric convergence are similar. For constant momentum ratio, the optimum S/H(0) with in-line injections is one half the optimum value for single sided injections. For staggered injections, the optimum S/H(0) is twice the optimum value for single-sided injection. The correlations developed predicted the temperature distributions within first order accuracy and provide a useful tool for predicting jet trajectory and temperature profiles in the dilution zone with two-sided injections.

  2. Jet lag prevention

    MedlinePlus

    ... your internal clock before you travel. While in flight: DO NOT sleep unless it matches the bedtime ... decrease jet lag. If you will be in flight during the bedtime of your destination, take some ...

  3. Counterflowing Jet Subsystem Design

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca; Daso, Endwell; Pritchett, Victor; Wang, Ten-See

    2010-01-01

    A counterflowing jet design (a spacecraft and trans-atmospheric subsystem) employs centrally located, supersonic cold gas jets on the face of the vehicle, ejecting into the oncoming free stream. Depending on the supersonic free-stream conditions and the ejected mass flow rate of the counterflowing jets, the bow shock of the vehicle is moved upstream, further away from the vehicle. This results in an increasing shock standoff distance of the bow shock with a progressively weaker shock. At a critical jet mass flow rate, the bow shock becomes so weak that it is transformed into a series of compression waves spread out in a much wider region, thus significantly modifying the flow that wets the outer surfaces, with an attendant reduction in wave and skin friction drag and aerothermal loads.

  4. A new electromagnetic circulation pump for aluminum reverberatory furnaces

    SciTech Connect

    Henderson, R.S.; Chandler, R.C.; Brown, W.

    1996-10-01

    The benefits of circulating molten metal in an aluminum reverberatory furnace are well documented, and include higher productivity, reduced fuel consumption, and excellent metallurgical and temperature homogeneity. Current methods to achieve circulation or metal movement include mechanical pumps, induction stirrers, porous plugs, jet pumps, and tow-motor/boom agitation. Each of these methods has limitations or drawbacks which can be overcome by the use of an electromagnetic pump of novel design. This new device was developed by Electromagnetic Pump Technologies (EMPT), a UK company, and is marketed in North America by Metaullics Systems. It combines high pumping rates with long-term reliability and realistic cost of purchase, installation and operation. In addition, it can be readily retrofitted to open-well or direct charge aluminum reverberatory furnaces. The EMPT pump has been installed in 6 furnaces in the UK and France over a 2-year period. The design and operation of the electromagnetic pumping system will be presented with performance data including melt rates, metal homogeneity and temperature profiles. In addition, a video will be shown of the system processing a variety of scrap feeds. Finally, procedures and costs for accomplishing a retrofit to an existing furnace will be outlined.

  5. Normetex Pump Alternatives Study

    SciTech Connect

    Clark, Elliot A.

    2013-04-25

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying

  6. Jets in hadronic reactions

    SciTech Connect

    Paige, F.E.

    1983-01-01

    Recent experimental data on the properties of jets in hadronic reactions are reviewed and compared with theoretical expectations. Jets are clearly established as the dominant process for high E/sub T/ events in hadronic reactions. The cross section and the other properties of these events are in qualitative and even semiquantitative agreement with expectations based on perturbative QCD. However, we can not yet make precise tests of QCD, primarily because there are substantial uncertainties in the theoretical calculations. 45 references. (WHK)

  7. Deep well solar pump

    SciTech Connect

    Vanek, J.

    1990-02-06

    This patent describes, in a pump having a source of gas under pressure, and a gas operated pump, a mechanism periodically injecting gas from the source of gas into the gas operated pump. It comprises: a long period pendulum turning towards a first position by gravity, an injection valve connected between the source of gas under pressure and the gas operated pump, a linkage between the pendulum and the injection valve. The linkage opening the injection valve when the pendulum is in the first position, an impulse tube connected between the injection valve and the gas operated pump, a member having a surface adjacent to the first position of the pendulum, and an elastic impulse bladder connected to the impulse tube adjacent to the surface so that inflation of the impulse bladder on the opening of the injection valve forces the impulse bladder against the pendulum urging the pendulum against the force of gravity toward a second position.

  8. Dual-Pump CARS Development and Application to Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Magnotti, Gaetano; Cutler, Andrew D.

    2012-01-01

    A dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS) instrument has been developed to obtain simultaneous measurements of temperature and absolute mole fractions of N2, O2 and H2 in supersonic combustion and generate databases for validation and development of CFD codes. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. Approximately one million dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  9. Radiation from Relativistic Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Mizuno, Y.; Hardee, P.; Sol, H.; Medvedev, M.; Zhang, B.; Nordlund, A.; Frederiksen, J. T.; Fishman, G. J.; Preece, R.

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electron-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the presence of relativistic jets, instabilities such as the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability create collisionless shocks, which are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons in small-scale magnetic fields has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation, a case of diffusive synchrotron radiation, may be important to understand the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  10. A review of selected pumping systems in nature and engineering--potential biomimetic concepts for improving displacement pumps and pulsation damping.

    PubMed

    Bach, D; Schmich, F; Masselter, T; Speck, T

    2015-10-01

    The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet

  11. Precision adjustable stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved mounting stage of the type used for the detection of laser beams is disclosed. A stage center block is mounted on each of two opposite sides by a pair of spaced ball bearing tracks which provide stability as well as simplicity. The use of the spaced ball bearing pairs in conjunction with an adjustment screw which also provides support eliminates extraneous stabilization components and permits maximization of the area of the center block laser transmission hole.

  12. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  13. Apparatus for Pumping a Fluid

    NASA Technical Reports Server (NTRS)

    Boeyen, Robert Van; Reeh, Jonathan

    2013-01-01

    A fluid pump has been developed for mechanically pumped fluid loops for spacecraft thermal control. Lynntech's technology utilizes a proprietary electrochemically driven pumping mechanism. Conventional rotodynamic and displacement pumps typically do not meet the stringent power and operational reliability requirements of space applications. Lynntech's developmental pump is a highly efficient solid-state pump with essentially no rotating or moving components (apart from metal bellows).

  14. An application of the Fourier Series in the analysis of waterhammer in pumped storage plant

    SciTech Connect

    Serpas, D.

    1995-12-31

    In a pumped storage scheme, water flows from the upper reservoir to the lower reservoir, and the turbo/machine acts as turbine. In the pumping mode, the water is pumped from the lower reservoir to the upper reservoir, and the turbo/machine acts as a pump. A method using Fourier Series for the approximation of the characteristics curves of the pump in four quadrants is applied for the analysis of waterhammer due the power failure. Others conditions may also be analyzed. A program adjusts the data of the four characteristic curves in CHAUDRHY, 1987 by Fourier Series. This adjustment should permit a closer representation of the pump actually used in the system that will result in a more economical design.

  15. Dual-Pump CARS Development and Application to Supersonic Combustion

    NASA Astrophysics Data System (ADS)

    Magnotti, Gaetano

    Successful design of hypersonic air-breathing engines requires new computational fluid dynamics (CFD) models for turbulence and turbulence-chemistry interaction in supersonic combustion. Unfortunately, not enough data are available to the modelers to develop and validate their codes, due to difficulties in taking measurements in such a harsh environment. Dual-pump coherent anti-Stokes Raman spectroscopy (CARS) is a non-intrusive, non-linear, laser-based technique that provides temporally and spatially resolved measurements of temperature and absolute mole fractions of N2, O2 and H2 in H2-air flames. A dual-pump CARS instrument has been developed to obtain measurements in supersonic combustion and generate databases for the CFD community. Issues that compromised previous attempts, such as beam steering and high irradiance perturbation effects, have been alleviated or avoided. Improvements in instrument precision and accuracy have been achieved. An axis-symmetric supersonic combusting coaxial jet facility has been developed to provide a simple, yet suitable flow to CFD modelers. The facility provides a central jet of hot "vitiated air" simulating the hot air entering the engine of a hypersonic vehicle flying at Mach numbers between 5 and 7. Three different silicon carbide nozzles, with exit Mach number 1, 1.6 and 2, are used to provide flows with the effects of varying compressibility. H2 co-flow is available in order to generate a supersonic combusting free jet. Dual-pump CARS measurements have been obtained for varying values of flight and exit Mach numbers at several locations. Approximately one million Dual-pump CARS single shots have been collected in the supersonic jet for varying values of flight and exit Mach numbers at several locations. Data have been acquired with a H2 co-flow (combustion case) or a N 2 co-flow (mixing case). Results are presented and the effects of the compressibility and of the heat release are discussed.

  16. Lubricity of military jet fuels

    SciTech Connect

    Liberio, P.D.; Garver, J.M.

    1995-06-01

    In 1954, a corrosion inhibitor additive was required in JP-4, a wide cut gasoline type aviation turbine fuel, to alleviate corrosion carry-over from ground fuel systems to aircraft. The additive was blamed for fuel filtration problems and removed from the JP-4 specification in 1965. Almost immediately, the U.S. Air Force started experiencing lubricity problems with fuel pumps and controllers. Fuel controller tests showed that when a corrosion inhibitor was added to the fuel, the lubricity problem was alleviated. The effectiveness of the corrosion inhibitor additives as lubricity improvers was then studied. A variety of test methods evolved for use in evaluating the effectiveness of a corrosion inhibitor as a lubricity improver. In 1989, the ball-on-cylinder lubricity evaluator (BOCLE) test was added to MIL-I-25017, a military specification for fuel soluble corrosion inhibitor/lubricity improver, to determine lubricity effectiveness of the corrosion inhibitor additives. Since the revision of this specification, all corrosion inhibitor/lubricity improver additives on the qualified products list, QPL-25017, have been tested using the BOCLE. Due to aircraft engine redesign, MIL-T-25524, a thermally stable turbine fuel, recently required the addition of a lubricity additive. Concerns were raised to the effect that corrosion inhibitor/lubricity improver would have on the thermal stability of thermally stable turbine fuel. Recent jet fuel thermal oxidation tester and BOCLE evaluation of the additives in thermally stable turbine fuel addressed these concerns. 16 refs., 1 fig., 4 tabs.

  17. Microfluidic reflow pumps.

    PubMed

    Haslam, Bryan; Tsai, Long-Fang; Anderson, Ryan R; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P

    2015-07-01

    A new microfluidic pump, termed a reflow pump, is designed to operate with a sub-μl sample volume and transport it back and forth between two pneumatically actuated reservoirs through a flow channel typically containing one or more sensor surfaces. The ultimate motivation is to efficiently use the small sample volume in conjunction with convection to maximize analyte flux to the sensor surface(s) in order to minimize sensor response time. In this paper, we focus on the operational properties of the pumps themselves (rather than the sensor surfaces), and demonstrate both two-layer and three-layer polydimethylsiloxane reflow pumps. For the three-layer pump, we examine the effects of reservoir actuation pressure and actuation period, and demonstrate average volumetric flow rates as high as 500 μl/min. We also show that the two-layer design can pump up to 93% of the sample volume during each half period and demonstrate integration of a reflow pump with a single-chip microcantilever array to measure maximum flow rate. PMID:26221199

  18. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  19. Pressure charged airlift pump

    SciTech Connect

    Campbell, G.K.

    1980-08-15

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum. A compressed air-driven pump is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  20. Pressure charged airlift pump

    SciTech Connect

    Campbell, G.K.

    1983-02-15

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum. A compressed air-driven pump is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  1. Performance of mosquito's pump

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kenji

    2005-11-01

    The flow of human blood in Mosquito's proboscis on Hagen-Poiseuille flow is investigated by using micro PIV system to apply mosquito's sucking system for micro-TAS devises. We want to know how high the power of Mosquito's pump is and how small the resistance in a proboscis is, a structure of Mosquito's sucking pump, and its characteristics as mechanical pump. We made the mosquito suck blood of our arm to obtain the average value, made many slices of a mosquito with 2μm thickness after fixed by wax. We anatomized the mosquito's head and picked up the sucking pump under the microscope to know its volume. Mosquito's pump shows high performance compared with the artificial pumps. The surfaces of proboscis were taken by using SEM, AFM because it is important factor for interaction between flow and its wall. Visualization of the blood flows near the tip of and inside proboscis are taken by micro PIV system to know the flow rate. We estimate the power of pump and the friction drag of proboscis by using these data.

  2. Microfluidic reflow pumps

    PubMed Central

    Haslam, Bryan; Tsai, Long-Fang; Anderson, Ryan R.; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P.

    2015-01-01

    A new microfluidic pump, termed a reflow pump, is designed to operate with a sub-μl sample volume and transport it back and forth between two pneumatically actuated reservoirs through a flow channel typically containing one or more sensor surfaces. The ultimate motivation is to efficiently use the small sample volume in conjunction with convection to maximize analyte flux to the sensor surface(s) in order to minimize sensor response time. In this paper, we focus on the operational properties of the pumps themselves (rather than the sensor surfaces), and demonstrate both two-layer and three-layer polydimethylsiloxane reflow pumps. For the three-layer pump, we examine the effects of reservoir actuation pressure and actuation period, and demonstrate average volumetric flow rates as high as 500 μl/min. We also show that the two-layer design can pump up to 93% of the sample volume during each half period and demonstrate integration of a reflow pump with a single-chip microcantilever array to measure maximum flow rate. PMID:26221199

  3. Distribution and regularity of injection from a multicylinder fuel-injection pump

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1936-01-01

    This report presents the results of performance test conducted on a six-cylinder commercial fuel-injection pump that was adjusted to give uniform fuel distribution among the cylinders at a throttle setting of 0.00038 pound per injection and a pump speed of 750 revolutions per minute. The throttle setting and pump speed were then varied through the operating range to determine the uniformity of distribution and regularity of injection.

  4. Pumping Insulin during Exercise: What Healthcare Providers and Diabetic Patients Need To Know.

    ERIC Educational Resources Information Center

    Colberg, Sheri R.; Walsh, John

    2002-01-01

    Exercise can decrease insulin resistance. Insulin pumps deliver precise insulin adjustments that improve fuel availability and provide glycemic control to help people with diabetes overcome obstacles to exercise. Physicians, patients, and healthcare providers should be familiar with the features and nuances of specific pump models and follow basic…

  5. RENEWABLE LIQUID GETTERING PUMP

    DOEpatents

    Batzer, T.H.

    1962-08-21

    A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

  6. Continuous-wave synchronously pumped femtosecond dye laser at 1. 3. mu. m

    SciTech Connect

    Choa, F.S.; Liu, Y.; Liu, P.

    1989-02-15

    We report a synchronously pumped, cw mode-locked, near-IR dye laser based on the Kodak Q-switch dye No. 5. Benzyl alcohol is used as the solvent to form a flowing dye jet. Synchronously pumped by 2-psec, 950-mW, compressed pulses of a Nd:YAG laser, the dye laser can be tuned from 1210 to 1340 nm with a maximum output of 5 mW and a pulse duration of 600 fsec.

  7. Anti-lash adjuster

    SciTech Connect

    Meneely, V.A.

    1987-04-07

    This patent describes a compression relief engine brake for internal-combustion engines, comprising: an engine having an engine oil pump, exhaust valves, and means for actuating the exhaust valves; a fluid cavity for accepting engine oil under engine oil pressure; means for supplying engine oil under normal pressure to the fluid cavity; a slave piston having a predetermined surface area exposed to the fluid cavity, mounted for reciprocating motion within the fluid cavity, wherein the slave piston has a retracted position defining a maximum clearance between one end of the slave piston and the exhaust valve actuating mechanism and an extended position for reducing the clearance between the end of the slave piston and the exhaust valve actuating mechanism; and means for biasing the slave piston to the retracted position under a predetermined retracting force sufficient to prevent extension of the slave piston upon application of the engine oil at normal pressures to the fluid cavity.

  8. Electromagnetic Pumps for Conductive-Propellant Feed Systems

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas E.; Polzin, Kurt A.; Dehoyos, Amado

    2005-01-01

    Prototype electromagnetic pumps for use with lithium and bismuth propellants were constructed and tested. Such pumps may be used to pressurize future electric propulsion liquid metal feed systems, with the primary advantages being the compactness and simplicity versus alternative pressurization technologies. Design details for two different pumps are described: the first was designed to withstand (highly corrosive) lithium propellant, and t he second was designed to tolerate the high temperature required to pump liquid bismuth. Both qualitative and quantitative test results are presented. Open-loop tests demonstrated the capability of each device to electromagnetically pump its design propellant (lithium or bismuth). A second set of tests accurately quantified the pump pressure developed as a function of current. These experiments, which utilized a more easily handled material (gallium), demonstrated continuously-adjustable pump pressure levels ranging from 0-100 Torr for corresponding input current levels of 0-75 A. While the analysis and testing in this study specifically targeted lithium and bismuth propellants, the underlying design principles should be useful in implementing liquid metal pumps in any conductive-propellant feed system.

  9. Impulsively started incompressible turbulent jet

    SciTech Connect

    Witze, P O

    1980-10-01

    Hot-film anemometer measurements are presented for the centerline velocity of a suddenly started jet of air. The tip penetration of the jet is shown to be proportional to the square-root of time. A theoretical model is developed that assumes the transient jet can be characterized as a spherical vortex interacting with a steady-state jet. The model demonstrates that the ratio of nozzle radius to jet velocity defines a time constant that uniquely characterizes the behavior and similarity of impulsively started incompressible turbulent jets.

  10. Ram-jet Performance

    NASA Technical Reports Server (NTRS)

    Cervenko, A. J.; Friedman, R.

    1956-01-01

    The ram jet is basically one of the most dimple types of aircraft engine. It consists only of an inlet diffuser, a combustion system, and an exit nozzle. A typical ram-jet configuration is shown in figure 128. The engine operates on the Brayton cycle, and ideal cycle efficiency depends only on the ratio of engine to ambient pressure. The increased, engine pressures are obtained by ram action alone, and for this reason the ram jet has zero thrust at zero speed. Therefore, ram-jet-powered aircraft must be boosted to flight speeds close to a Mach number of 1.0 before appreciable thrust is generated by the engine. Since pressure increases are obtained by ram action alone, combustor-inlet pressures and temperatures are controlled by the flight speed, the ambient atmospheric condition, and by the efficiency of the inlet diffuser. These pressures and temperatures, as functions of flight speed and altitude, are shown in figure 129 for the NACA standard atmosphere and for practical values of diffuser efficiency. It can be seen that very wide ranges of combustor-inlet temperatures and pressures may be encountered over the ranges of flight velocity and altitude at which ram jets may be operated. Combustor-inlet temperatures from 500 degrees to 1500 degrees R and inlet pressures from 5 to 100 pounds per square inch absolute represent the approximate ranges of interest in current combustor development work. Since the ram jet has no moving parts in the combustor outlet, higher exhaust-gas temperatures than those used in current turbojets are permissible. Therefore, fuel-air ratios equivalent to maximum rates of air specific impulse or heat release can be used, and, for hydrocarbon fuels, this weight ratio is about 0.070. Lower fuel-air ratios down to about 0.015 may also be required to permit efficient cruise operation. This fuel-air-ratio range of 0.015 to 0.070 used in ram jets can be compared with the fuel-air ratios up to 0.025 encountered in current turbojets. Ram-jet

  11. The Twin Jet Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    M2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue.

  12. Jet penetration in glass

    SciTech Connect

    Moran, B.; Glenn, L.A.; Kusubov, A.

    1991-05-01

    We describe a phenomenological model which accounts for the mechanical response of glass to intense impulsive loading. An important aspect of this response is the dilatancy accompanying fracture. We have also conducted a number of experiments with 38.1-mm diameter precision shaped charges to establish the performance against various targets and to allow evaluation of our model. At 3 charge diameters standoff, the data indicate that both virgin and damaged glass offer better (Bernoulli-scaled) resistance to penetration than either of 4340 steel, or 6061-T6 aluminum alloy. Time-resolved measurements indicate two distinct phases of jet penetration in glass: An initial hydrodynamic phase, and a second phase characterized by a slower penetration velocity. Our calculations show that at early time, a crater is formed around the jet and only the tip of the undisturbed jet interacts with the glass. At late time the glass has collapsed on the jet and degraded penetration continues via a disturbed and fragmented jet.

  13. Sweeping Jet Optimization Studies

    NASA Technical Reports Server (NTRS)

    Melton, LaTunia Pack; Koklu, Mehti; Andino, Marlyn; Lin, John C.; Edelman, Louis

    2016-01-01

    Progress on experimental efforts to optimize sweeping jet actuators for active flow control (AFC) applications with large adverse pressure gradients is reported. Three sweeping jet actuator configurations, with the same orifice size but di?erent internal geometries, were installed on the flap shoulder of an unswept, NACA 0015 semi-span wing to investigate how the output produced by a sweeping jet interacts with the separated flow and the mechanisms by which the flow separation is controlled. For this experiment, the flow separation was generated by deflecting the wing's 30% chord trailing edge flap to produce an adverse pressure gradient. Steady and unsteady pressure data, Particle Image Velocimetry data, and force and moment data were acquired to assess the performance of the three actuator configurations. The actuator with the largest jet deflection angle, at the pressure ratios investigated, was the most efficient at controlling flow separation on the flap of the model. Oil flow visualization studies revealed that the flow field controlled by the sweeping jets was more three-dimensional than expected. The results presented also show that the actuator spacing was appropriate for the pressure ratios examined.

  14. B-jets and z + b-jets at CDF

    SciTech Connect

    Jeans, Daniel; /Rome U.

    2006-06-01

    The authors present CDF cross-section measurements for the inclusive production of b jets and the production of b jets in association with a Z{sup 0} boson. Both measurements are in reasonable agreement with NLO QCD predictions.

  15. Keeping Hearts Pumping

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A collaboration between NASA, Dr. Michael DeBakey, Dr. George Noon, and MicroMed Technology, Inc., resulted in a life-saving heart pump for patients awaiting heart transplants. The MicroMed DeBakey VAD functions as a "bridge to heart transplant" by pumping blood throughout the body to keep critically ill patients alive until a donor heart is available. Weighing less than 4 ounces and measuring 1 inch by 3 inches, the pump is approximately one-tenth the size of other currently marketed pulsatile VADs. This makes it less invasive and ideal for smaller adults and children. Because of the pump's small size, less than 5 percent of the patients implanted developed device-related infections. It can operate up to 8 hours on batteries, giving patients the mobility to do normal, everyday activities.The MicroMed DeBakey VAD is a registered trademark of MicroMed Technology, Inc.

  16. Pressurized Vessel Slurry Pumping

    SciTech Connect

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  17. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  18. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  19. Tribology of hydraulic pumps

    SciTech Connect

    Yamaguchi, A.

    1997-12-31

    To obtain much higher performance than that of alternative power transmission systems, hydraulic systems have been continuously evolving to use high-pressure. Adoption of positive displacement pumps and motors is based on this reason. Therefore, tribology is a key terminology for hydraulic pumps and motors to obtain excellent performance and durability. In this paper the following topics are investigated: (1) the special feature of tribology of hydraulic pumps and motors; (2) indication of the important bearing/sealing parts in piston pumps and effects of the frictional force and leakage flow to performance; (3) the methods to break through the tribological limitation of hydraulic equipment; and (4) optimum design of the bearing/sealing parts used in the fluid to mixed lubrication regions.

  20. An artificial molecular pump.

    PubMed

    Cheng, Chuyang; McGonigal, Paul R; Schneebeli, Severin T; Li, Hao; Vermeulen, Nicolaas A; Ke, Chenfeng; Stoddart, J Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration. PMID:25984834

  1. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  2. Underground pumped hydroelectric storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  3. An artificial molecular pump

    NASA Astrophysics Data System (ADS)

    Cheng, Chuyang; McGonigal, Paul R.; Schneebeli, Severin T.; Li, Hao; Vermeulen, Nicolaas A.; Ke, Chenfeng; Stoddart, J. Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration.

  4. Advanced heat pump

    NASA Astrophysics Data System (ADS)

    Ashley, Joseph L.; Matthews, John D.

    1989-09-01

    This patent application discloses a heat pump which includes a first packed bed of liquid desiccant for removing moisture from outside air in the heating mode of operation, and a pump for transferring the moisture laden desiccant to a second packed bed which humidifies condenser heated inside air by adding water vapor to the air. The first packed bed, by removing moisture from the outside air before it passes through the heat pump's evaporator coils, prevents frost from forming on the coils. In the cooling mode of operation the second packed bed of liquid desiccant removes water vapor from the air inside of the building. The moisture laden desiccant is then transferred to the first packed bed by a second pump where condenser heat transfers the moisture from the desiccant to outside air.

  5. Using a Breast Pump

    MedlinePlus

    ... check the outside of the box for a customer service line you can call to request a ... your pump continues to leak, call the manufacturer’s customer service line for help. When you have finished ...

  6. Adiabatically driven Brownian pumps.

    PubMed

    Rozenbaum, Viktor M; Makhnovskii, Yurii A; Shapochkina, Irina V; Sheu, Sheh-Yi; Yang, Dah-Yen; Lin, Sheng Hsien

    2013-07-01

    We investigate a Brownian pump which, being powered by a flashing ratchet mechanism, produces net particle transport through a membrane. The extension of the Parrondo's approach developed for reversible Brownian motors [Parrondo, Phys. Rev. E 57, 7297 (1998)] to adiabatically driven pumps is given. We demonstrate that the pumping mechanism becomes especially efficient when the time variation of the potential occurs adiabatically fast or adiabatically slow, in perfect analogy with adiabatically driven Brownian motors which exhibit high efficiency [Rozenbaum et al., Phys. Rev. E 85, 041116 (2012)]. At the same time, the efficiency of the pumping mechanism is shown to be less than that of Brownian motors due to fluctuations of the number of particles in the membrane. PMID:23944411

  7. Absorption heat pump system

    DOEpatents

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  8. Aeroacoustic Experiments with Twin Jets

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.; Henderson, Brenda S.

    2012-01-01

    While the noise produced by a single jet is azimuthally symmetric, multiple jets produce azimuthally varying far-field noise. The ability of one jet to shield another reduces the noise radiated in the plane of the jets, while often increasing the noise radiated out of the plane containing the jets. The present study investigates the shielding potential of twin jet configurations over subsonic and over-expanded supersonic jet conditions with simulated forward flight. The experiments were conducted with 2 in. throat diameter nozzles at four jet spacings from 2.6d to 5.5d in center-to-center distance, where d is the nozzle throat diameter. The current study found a maximum of 3 dB reduction in overall sound pressure level relative to two incoherent jets in the peak jet noise direction in the plane containing the jets. However, an increase of 3 dB was found perpendicular to the plane containing the jets. In the sideline direction, shielding is observed for all jet spacings in this study.

  9. Pulsatile driving of the helical flow pump.

    PubMed

    Ishii, Kohei; Hosoda, Kyohei; Isoyama, Takashi; Saito, Itsuro; Ariyoshi, Koki; Inoue, Yusuke; Sato, Masami; Hara, Sintaro; Lee, Xinyang; Wu, Sheng-Yuan; Ono, Toshiya; Nakagawa, Hidemoto; Imachi, Kou; Abe, Yusuke

    2013-01-01

    The helical flow pump (HFP) is newly developed blood pomp for total artificial heart (TAH). HFP can work with lower rotational speed than axial and centrifugal blood pump. It can be seen reasonable feature to generate pulsatile flow because high response performance can be realized. In this article, pulsatility of HFP was evaluated using mock circulation loop. Pulsatile flow was generated by modulating the rotational speed in various amplitude and heart rate. In the experiment, relationship between Pump flow, pump head, rotational speed amplitude, heart rate and power consumption is evaluated. As the result, complete pulsatile flow with mean flow rate of 5 L/min and mean pressure head of 100 mmHg can be obtained at ± 500 rpm with mean rotational speed of 1378 to 1398 rpm in hart rate from 60 to 120. Flow profiles which are non-pulsatile, quasi-pulsatile or complete flow can be adjusted arbitrarily. Therefore, HFP has excellent pulsatility and control flexibility of flow profile. PMID:24110290

  10. Non-adiabatic effect on quantum pumping

    NASA Astrophysics Data System (ADS)

    Uchiyama, Chikako

    2014-03-01

    We study quantum pumping for an anharmonic junction model which interacts with two kinds of bosonic environments. We provide an expression for the quantum pumping under a piecewise modulation of environmental temperatures with including non-adiabatic effect under Markovian approximation. The obtained formula is an extension of the one expressed with the geometrical phase(Phys. Rev. Lett. 104,170601 (2010)). This extension shows that the quantum pumping depends on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequencies of spectral density other than the conditions of modulation. We clarify that the pumping current including non-adiabatic effect can be larger than that under the adiabatic condition. This means that we can find the optimal condition of the current by adjusting these parameters. (The article has been submitted as http://arxiv.org/submit/848201 and will be appeared soon.) This work is supported by a Grant-in-Aid for Scientific Research (B) (KAKENHI 25287098).

  11. Lunar Base Heat Pump

    NASA Technical Reports Server (NTRS)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  12. Continuously adjustable Pulfrich spectacles

    NASA Astrophysics Data System (ADS)

    Jacobs, Ken; Karpf, Ron

    2011-03-01

    A number of Pulfrich 3-D movies and TV shows have been produced, but the standard implementation has inherent drawbacks. The movie and TV industries have correctly concluded that the standard Pulfrich 3-D implementation is not a useful 3-D technique. Continuously Adjustable Pulfrich Spectacles (CAPS) is a new implementation of the Pulfrich effect that allows any scene containing movement in a standard 2-D movie, which are most scenes, to be optionally viewed in 3-D using inexpensive viewing specs. Recent scientific results in the fields of human perception, optoelectronics, video compression and video format conversion are translated into a new implementation of Pulfrich 3- D. CAPS uses these results to continuously adjust to the movie so that the viewing spectacles always conform to the optical density that optimizes the Pulfrich stereoscopic illusion. CAPS instantly provides 3-D immersion to any moving scene in any 2-D movie. Without the glasses, the movie will appear as a normal 2-D image. CAPS work on any viewing device, and with any distribution medium. CAPS is appropriate for viewing Internet streamed movies in 3-D.

  13. Subsea adjustable choke valves

    SciTech Connect

    Cyvas, M.K. )

    1989-08-01

    With emphasis on deepwater wells and marginal offshore fields growing, the search for reliable subsea production systems has become a high priority. A reliable subsea adjustable choke is essential to the realization of such a system, and recent advances are producing the degree of reliability required. Technological developments have been primarily in (1) trim material (including polycrystalline diamond), (2) trim configuration, (3) computer programs for trim sizing, (4) component materials, and (5) diver/remote-operated-vehicle (ROV) interfaces. These five facets are overviewed and progress to date is reported. A 15- to 20-year service life for adjustable subsea chokes is now a reality. Another factor vital to efficient use of these technological developments is to involve the choke manufacturer and ROV/diver personnel in initial system conceptualization. In this manner, maximum benefit can be derived from the latest technology. Major areas of development still required and under way are listed, and the paper closes with a tabulation of successful subsea choke installations in recent years.

  14. JPL tests of a LaJet concentrator facet

    NASA Technical Reports Server (NTRS)

    Dennison, E. W.; Argoud, M. J.

    1983-01-01

    A LaJet Energy Company (LEC) concentrator facet, 60 in. in diameter, was tested for imaging quality. The following two methods were used: (1) autofocus tests with a point source of light at the facet's radius of curvature; and (2) tests with the Sun close to the horizon as a distant source. The tests of the LaJet facet indicate that all of the solar image reflected by an LEC 460 solar concentrator made of like facets should fall within a 9-in. aperture if the outer facets are carefully adjusted. Such a concentrator would have acceptable performance, but complete evaluation must be made with an assembled concentrator.

  15. Renewable jet fuel.

    PubMed

    Kallio, Pauli; Pásztor, András; Akhtar, M Kalim; Jones, Patrik R

    2014-04-01

    Novel strategies for sustainable replacement of finite fossil fuels are intensely pursued in fundamental research, applied science and industry. In the case of jet fuels used in gas-turbine engine aircrafts, the production and use of synthetic bio-derived kerosenes are advancing rapidly. Microbial biotechnology could potentially also be used to complement the renewable production of jet fuel, as demonstrated by the production of bioethanol and biodiesel for piston engine vehicles. Engineered microbial biosynthesis of medium chain length alkanes, which constitute the major fraction of petroleum-based jet fuels, was recently demonstrated. Although efficiencies currently are far from that needed for commercial application, this discovery has spurred research towards future production platforms using both fermentative and direct photobiological routes. PMID:24679258

  16. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)

    1999-01-01

    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  17. Lunar base heat pump

    NASA Technical Reports Server (NTRS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-01-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  18. Lunar base heat pump

    NASA Astrophysics Data System (ADS)

    Goldman, Jeffrey H.; Tetreault, R.; Fischbach, D.; Walker, D.

    1994-10-01

    A heat pump is a device which elevates the temperature of a heat flow by a means of an energy input. By doing this, the heat pump can cause heat to transfer faster from a warm region to a cool region, or it can cause heat to flow from a cool region to a warmer region. The second case is the one which finds vast commercial applications such as air conditioning, heating, and refrigeration. Aerospace applications of heat pumps include both cases. The NASA Johnson Space Center is currently developing a Life Support Systems Integration Facility (LSSIF, previously SIRF) to provide system-level integration, operational test experience, and performance data that will enable NASA to develop flight-certified hardware for future planetary missions. A high lift heat pump is a significant part of the TCS hardware development associated with the LSSIF. The high lift heat pump program discussed here is being performed in three phases. In Phase 1, the objective is to develop heat pump concepts for a lunar base, a lunar lander, and for a ground development unit for the SIRF. In Phase 2, the design of the SIRF ground test unit is being performed, including identification and evaluation of safety and reliability issues. In Phase 3, the SIRF unit will be manufactured, tested, and delivered to the NASA Johnson Space Center.

  19. Satellite Propellant Pump Research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Veres, Joseph P.; Hah, Chunill; Nerone, Anthony L.; Cunningham, Cameron C.; Kraft, Thomas G.; Tavernelli, Paul F.; Fraser, Bryan

    2005-01-01

    NASA Glenn initiated a satellite propellant pump technology demonstration program. The goal was to demonstrate the technologies for a 60 percent efficient pump at 1 gpm flow rate and 500 psia pressure rise. The pump design and analysis used the in-house developed computer codes named PUMPA and HPUMP3D. The requirements lead to a 4-stage impeller type pump design with a tip diameter of 0.54 inches and a rotational speed of 57,000 rpm. Analyses indicated that flow cavitation was not a problem in the design. Since the flow was incompressible, the stages were identical. Only the 2-stage pump was designed, fabricated, assembled, and tested for demonstration. Water was selected as the surrogate fluid for hydrazine in this program. Complete mechanical design including stress and dynamic analyses were conducted. The pump was driven by an electric motor directly coupled to the impellers. Runs up to 57,000 rpm were conducted, where a pressure rise of 200 psia at a flow rate of 0.8 gpm was measured to validate the design effort.

  20. The Evolution of Ion Pumps.

    ERIC Educational Resources Information Center

    Maloney, Peter C.; Wilson, T. Hastings

    1985-01-01

    Constructs an evolutionary sequence to account for the diversity of ion pumps found today. Explanations include primary ion pumps in bacteria, features and distribution of ATP-driven pumps, preference for cation transport, and proton pump reversal. The integrated evolutionary hypothesis should encourage new experimental approaches. (DH)

  1. Axial pumps for propulsion systems

    NASA Technical Reports Server (NTRS)

    Huppert, M. C.; Rothe, K.

    1974-01-01

    The development of axial flow hydrogen pumps is examined. The design features and the performance data obtained during the course of the development programs are discussed. The problems created by the pump characteristics are analyzed. Graphs of four stage pump performance for various turbine blade configurations are developed. The characteristics and performance of a variety of pumps are included.

  2. Evaluation of four blood pump geometries: the optical tracer technique.

    PubMed

    Rose, M L; Mackay, T G; Martin, W; Wheatley, D J

    2000-01-01

    Artificial blood pump assistance of the failing human heart can allow it to recover. Analysis of blood pump fluid flow is a useful tool for design development and thrombosis minimization. The aim of this study was to investigate fluid flow, particularly ventricular clearance rate and stagnation areas, in four different blood pump geometries and to determine the best design. The blood pumps consisted of a polyurethane ventricle, and combinations of inlet/outlet pipe angles and compression plate shapes. A video camera recorded the motion of fluid labelled with an optical tracer (Methyl Blue histological dye). A novel processing method was developed to produce colour maps of tracer concentration, experimentally calibrated. An overall picture of fluid flow in each pump geometry was generated by considering clearance curves, tracer concentration maps and inflow jet animations. Overall and local mixing coefficients are calculated for each pump. The best geometry featured straight inlet/outlet pipes and a domed compression plate. This optical tracer technique has proven convenient, economical, sensitive to low concentrations of tracer and provides instantaneous pictures of tracer distribution in a ventricle. PMID:10997058

  3. JetStar

    NASA Technical Reports Server (NTRS)

    1982-01-01

    In this photo of the C-140 JetStar on the Dryden Ramp, a subscale propeller has been fitted to the upper fuselage of the aircraft. NASA's Dryden Flight Research Facility, in co-operation with the Lewis Research Center, investigated the acoustic characteristics of a series of subscale advanced design propellors in the early eighties. These propellors were designed to rotate at a tip speed faster than the speed of sound. They are, in effect, a 'swept back wing' version of a propellor. The tests were conducted on Dryden's C-140 Jetstar, seen here on the ramp at Dryden in Edwards, California. The JetStar was modified with the installation of an air turbine drive system. The drive motor, with a 24 inch test propellor, was mounted in a pylon atop the JetStar. The JetStar was equipped with an array of 28 microphones flush-mounted in the fuselage of the aircraft beneath the propellor. Microphones mounted on the wings and on accompanying chase aircraft provided far-field acoustic data. In the 1960s, the same JetStar was equipped with an electronic variable stability flight control system. Called then a General Purpose Airborne Simulator (GPAS), the aircraft could duplicate the flight characteristics of a wide variety of advanced aircraft and was used for supersonic transport and general aviation research and as a training and support system for Space Shuttle Approach and Landing Tests at Dryden in 1977. In 1985, the JetStar's wings were modified with suction and spray devices in a laminar (smooth) air flow program to study ways of improving the flow of air over the wings of airliners. The program also studied ways of reducing the collection of ice and insects on airliner wings.

  4. Thermodynamic Efficiency of Pumped Heat Electricity Storage

    NASA Astrophysics Data System (ADS)

    Thess, André

    2013-09-01

    Pumped heat electricity storage (PHES) has been recently suggested as a potential solution to the large-scale energy storage problem. PHES requires neither underground caverns as compressed air energy storage (CAES) nor kilometer-sized water reservoirs like pumped hydrostorage and can therefore be constructed anywhere in the world. However, since no large PHES system exists yet, and theoretical predictions are scarce, the efficiency of such systems is unknown. Here we formulate a simple thermodynamic model that predicts the efficiency of PHES as a function of the temperature of the thermal energy storage at maximum output power. The resulting equation is free of adjustable parameters and nearly as simple as the well-known Carnot formula. Our theory predicts that for storage temperatures above 400°C PHES has a higher efficiency than existing CAES and that PHES can even compete with the efficiencies predicted for advanced-adiabatic CAES.

  5. Thermodynamic efficiency of pumped heat electricity storage.

    PubMed

    Thess, André

    2013-09-13

    Pumped heat electricity storage (PHES) has been recently suggested as a potential solution to the large-scale energy storage problem. PHES requires neither underground caverns as compressed air energy storage (CAES) nor kilometer-sized water reservoirs like pumped hydrostorage and can therefore be constructed anywhere in the world. However, since no large PHES system exists yet, and theoretical predictions are scarce, the efficiency of such systems is unknown. Here we formulate a simple thermodynamic model that predicts the efficiency of PHES as a function of the temperature of the thermal energy storage at maximum output power. The resulting equation is free of adjustable parameters and nearly as simple as the well-known Carnot formula. Our theory predicts that for storage temperatures above 400 °C PHES has a higher efficiency than existing CAES and that PHES can even compete with the efficiencies predicted for advanced-adiabatic CAES. PMID:24074066

  6. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  7. Impact of a viscoelastic jet

    NASA Astrophysics Data System (ADS)

    Lhuissier, Henri; Néel, Baptiste; Limat, Laurent

    2014-11-01

    A jet of a Newtonian liquid impacting onto a wall at right angle spreads as a thin liquid sheet which preserves the radial symmetry of the jet. We observe that for a viscoelastic jet (solution of polyethylene glycol in water) this symmetry can break: close to the wall, the jet cross-section is faceted and radial steady liquid films (membranes) form, which connect the cross-section vertices to the sheet. The number of membranes increases with increasing viscoelastic relaxation time of the solution, but also with increasing jet velocity and decreasing distance from the jet nozzle to the wall. A mechanism for this surprising destabilization of the jet, which develops perpendicularly to the direction expected for a buckling mechanism, is presented that explains these dependences. The large-scale consequences of the jet destabilization on the sheet spreading and fragmentation, which show through the faceting of hydraulic jumps and suspended (Savart) sheets, will also be discussed.

  8. Jet Shockwaves Produce Gamma Rays

    NASA Video Gallery

    Theorists believe that GRB jets produce gamma rays by two processes involving shock waves. Shells of material within the jet move at different speeds and collide, generating internal shock waves th...

  9. Astrophysical jet experiments

    NASA Astrophysics Data System (ADS)

    Gregory, C. D.; Loupias, B.; Waugh, J.; Barroso, P.; Bouquet, S.; Brambrink, E.; Dono, S.; Falize, E.; Howe, J.; Kuramitsu, Y.; Kodama, R.; Koenig, M.; Michaut, C.; Myers, S.; Nazarov, W.; Notley, M. M.; Oya, A.; Pikuz, S.; Rabec le Gloahec, M.; Sakawa, Y.; Spindloe, C.; Streeter, M.; Wilson, L. A.; Woolsey, N. C.

    2008-12-01

    In this paper, three different experimental configurations designed to study jet propagation physics are presented. Each configuration uses a different target design: conical dimples in solid surfaces, hollow cones filled with foam and angled thin foils. When irradiated with a laser, these targets result in the launching of a plasma jet, the properties of which can be controlled by judicious choices of the target and laser parameters. Experimental results from these targets are shown, and the physics which may be studied with each of these targets is briefly discussed.

  10. Remote mud pump control apparatus

    SciTech Connect

    Thompson, S.R.; Harbour, W.D. Jr.

    1986-06-17

    An apparatus is described for controlling the circulation of fluid in a subterranean well consisting of: a pump; a choke communicable with the pump; pump monitoring means for regulating the pump speed to vary the flow rate of the circulating fluid; choke monitoring means located at the surface of the well remote from the pump monitoring means and including choke regulating means for varying the fluid flow area through the choke to control the pressure of the circulating fluid as the flow rate is changed by variations in the pump speed; the improvement comprising: a second pump control means incorporated in the choke monitoring means and communicable with the pump through the pump monitoring means for regulating the pump speed.

  11. 77 FR 40387 - Price Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... Price Adjustment AGENCY: Postal Regulatory Commission. ACTION: Notice. SUMMARY: The Commission is noticing a recently filed Postal Service request to adjust prices for several market dominant products... announcing its intent to adjust prices for several market dominant products within First-Class Mail...

  12. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  13. On magnetohydrodynamic solitons in jets

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1987-01-01

    Nonlinear solitary wave propagation in a compressible magnetic beam model of an extragalactic radio jet is examined and shown to lead to solitons of the Benjamin-Ono type. A number of similarities between such magnetic beam models of jets and models of solar photospheric flux tubes are pointed out and exploited. A single soliton has the appearance of a symmetric bulge on the jet which propagates faster than the jet's flow.

  14. Assessment of aortic valve opening during rotary blood pump support using pump signals.

    PubMed

    Granegger, Marcus; Schima, Heinrich; Zimpfer, Daniel; Moscato, Francesco

    2014-04-01

    During left ventricular support by rotary blood pumps (RBPs), the biomechanics of the aortic valve (AV) are altered, potentially leading to adverse events like commissural fusion, valve insufficiency, or thrombus formation. To avoid these events, assessment of AV opening and consequent adaptation of pump speed seem important. Additionally, this information provides insight into the heart-pump interaction. The aim of this study was to develop a method to assess AV opening from the pump flow signal. Data from a numerical model of the cardiovascular system and animal experiments with an RBP were employed to detect the AV opening from the flow waveform under different hemodynamic conditions. Three features calculated from the pump flow waveform were used to classify the state of the AV: skewness, kurtosis, and crest factor. Three different classification algorithms were applied to determine the state of the AV based on these features. In the model data, the best classifier resulted in a percentage of correctly identified beats with a closed AV (specificity) of 99.9%. The percentage of correctly identified beats with an open AV (sensitivity) was 99.5%. In the animal experiments, specificity was 86.8% and sensitivity reached 96.5%. In conclusion, a method to detect AV opening independently from preload, afterload, heart rate, contractility, and degree of support was developed. This algorithm makes the evaluation of the state of the AV possible from pump data only, allowing pump speed adjustment for a frequent opening of the AV and providing information about the interaction of the native heart with the RBP. PMID:24102321

  15. Russian Pulsating Mixer Pump Deployment in the Gunite and Associated Tanks at ORNL

    SciTech Connect

    Hatchell, Brian K.; Lewis, Ben; Johnson, Marshall A.; Randolph, J. G.

    2001-03-01

    In FY 1998, Pulsating Mixer Pump (PMP) technology, consisting of a jet mixer powered by a reciprocating air supply, was selected for deployment in one of the Gunite and Associated Tanks at Oak Ridge National Laboratory (ORNL) to mobilize settled solids. The pulsating mixer pump technology was identified during FY 1996 and FY 1997 technical exchanges between the U.S. Department of Energy (DOE) Tanks Focus Area Retrieval and Closure program, the DOE Environmental Management International Programs, and delegates from Russia as a promising technology that could be implemented in the DOE complex. During FY 1997, the pulsating mixer pump technology, provided by the Russian Integrated Mining Chemical Company, was tested at Pacific Northwest National Laboratory (PNNL) to observe its ability to suspend settled solids. Based on the results of this demonstration, ORNL and DOE staff determined that a modified pulsating mixer pump would meet project needs for remote sludge mobilization of Gunite tank sludge and reduce the cost of operation and maintenance of more expensive mixing systems. The functions and requirements of the system were developed by combining the results and recommendations from the pulsating mixer pump demonstration at PNNL with the requirements identified by staff at ORNL involved with the remediation of the Gunite and Associated Tanks. The PMP is comprised of a pump chamber, check valve, a working gas supply pipe, a discharge manifold, and four jet nozzles. The pump uses two distinct cycles, fill and discharge, to perform its mixing action. During the fill cycle, vacuum is applied to the pump chamber by an eductor, which draws liquid into the pump. When the liquid level inside the chamber reaches a certain level, the chamber is pressurized with compressed air to discharge the liquid through the jet nozzles and back into the tank to mobilize sludge and settled solids.

  16. Ejector device for direct injection fuel jet

    DOEpatents

    Upatnieks, Ansis

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  17. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  18. New slurry pumps in China

    SciTech Connect

    Li, Z.; Wang, W.; Shi, Z.

    1998-07-01

    Wet parts of centrifugal slurry pumps are naturally subjected to wear, but local wear in pumps could be avoided, at least partly. Through studying the wear phenomenon of slurry pumps in industrial applications, a series of much more advanced slurry pumps was developed in China. Laboratory tests and industrial applications show that the new pumps are high in efficiency when transporting slurries, and uniform wear can be expected from them.

  19. New slurry pumps in China

    SciTech Connect

    Zhengwang Li; Wenlie Wang; Zhongyin Shi

    1998-04-01

    Wet parts of centrifugal slurry pumps are naturally subjected to wear, but local wear in pumps could be avoided, at least partly. Through studying the wear phenomenon of slurry pumps in industrial applications, a series of much more advanced slurry pumps was developed in China. Laboratory tests and industrial applications show that the new pumps are high in efficiency when transporting slurries, and uniform wear can be expected from them.

  20. Air admixture to exhaust jets

    NASA Technical Reports Server (NTRS)

    Sanger, Eugen

    1953-01-01

    The problem of thrust increase by air admixture to exhaust jets of rockets, turbojet, ram- and pulse-jet engines is investigated theoretically. The optimum ratio of mixing chamber pressure to ambient pressure and speed range for thrust increase due to air admixture is determined for each type of jet engine.

  1. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  2. Directional transport of impinging capillary jet on wettability engineered surfaces

    NASA Astrophysics Data System (ADS)

    Ghosh, Aritra; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Impingement of capillary jet on a surface is important for applications like heat transfer, or for liquid manipulation in bio-microfluidic devices. Using wettability engineered surfaces, we demonstrate pump-less and directional transport of capillary jet on a flat surface. Spatial contrast of surface energy and a wedge-shape geometry of the wettability confined track on the substrate facilitate formation of instantaneous spherical bulges upon jet impingement; these bulges are further transported along the superhydrophilic tracks due to Laplace pressure gradient. Critical condition warranted for formation of liquid bulge along the varying width of the superhydrophilic track is calculated analytically and verified experimentally. The work throws light on novel fluid phenomena of unidirectional jet impingement on wettability confined surfaces and provides a platform for innovative liquid manipulation technique for further application. By varying the geometry and wettability contrast on the surface, one can achieve volume flow rates of ~ O(100 μL/sec) and directionally guided transport of the jet liquid, pumplessly at speeds of ~ O(10cm/sec).

  3. On the dust jet model of SS 433

    NASA Technical Reports Server (NTRS)

    Helfer, H. L.; Savedoff, M. P.

    1986-01-01

    The dust jet model for production of narrow gamma-ray lines from SS 433 is examined and shown to be implausible. Sputtering rates at disk temperatures are high, and self-absorption rates in the disk and jet are important; both imply that dust particles would easily be destroyed. The energy deposited in the dust jet particles by collisions with the ambient protons should be radiated in the optical and infrared in amounts greatly exceeding that observed. The dust momentum pumps ambient gas out of the beam at rates which imply that for the steady state, the ambient gas has to have an initial temperature exceeding one million K. The ambient medium is also required to have densities exceeding those postulated for the H-alpha-emitting gas jet, and the interaction within the gas jet material would result in appreciable broadening of the H-alpha emission lines. At present, there is no viable model for the steady state production of the gamma-ray line radiation.

  4. The time lag and interval of discharge with a spring actuated fuel injection pump

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson; Gardiner, A W

    1923-01-01

    Discussed here is research on a spring activated fuel pump for solid or airless injection with small, high speed internal combustion engines. The pump characteristics under investigation were the interval of fuel injection in terms of degrees of crank travel and in absolute time, the lag between the time the injection pump plunger begins its stroke and the appearance of the jet at the orifice, and the manner in which the fuel spray builds up to a maximum when the fuel valve is opened, and then diminishes.

  5. In Vitro Testing of a Novel Blood Pump Designed for Temporary Extracorporeal Support

    PubMed Central

    Spurlock, DJ; Ranney, DN; Fracz, E; Mazur, DE; Bartlett, RH; Haft, JW

    2012-01-01

    Extracorporeal blood pumps are used as temporary ventricular assist devices or for extracorporeal membrane oxygenation. The ideal pump would be intrinsically self-regulating, carry no risk of cavitation or excessive inlet suction, be afterload insensitive, and valveless thus reducing thrombogenicity. Currently used technology, including roller, centrifugal, and pneumatic pulsatile pumps, does not meet these requirements. We studied a non-occlusive peristaltic pump (M-Pump) in two mock circulatory loops, and compared the performance to a frequently used centrifugal pump and a modified prototype of the M-Pump (the BioVAD). The simple resistance loop consisted of the investigated pump, a fixed height reservoir at 150 mmHg, and a variable inflow reservoir. The pulsatile circulation utilized a mock patient simulator with adjustable resistance elements connected to a pneumatic pulsatile pump. The M-Pump intrinsically regulated flow with changing preload, was afterload insensitive, and did not cavitate, unlike the centrifugal pump. The BioVAD also demonstrated these features, and could augment output with use of vacuum assistance. A non-occlusive peristaltic pump may be superior for short term extracorporeal circulatory assist by mitigating risks of excessive inlet suction, afterload sensitivity, and thrombosis. PMID:22236624

  6. In vitro testing of a novel blood pump designed for temporary extracorporeal support.

    PubMed

    Spurlock, David J; Ranney, David N; Fracz, Emilia M; Mazur, Daniel E; Bartlet, R H; Haft, Jonathan W

    2012-01-01

    Extracorporeal blood pumps are used as temporary ventricular assist devices or for extracorporeal membrane oxygenation. The ideal pump would be intrinsically self-regulating, carry no risk of cavitation or excessive inlet suction, be afterload insensitive, and valveless thus reducing thrombogenicity. Currently used technology, including roller, centrifugal, and pneumatic pulsatile pumps, does not meet these requirements. We studied a nonocclusive peristaltic pump (M-Pump) in two mock circulatory loops and compared the performance to a frequently used centrifugal pump and a modified prototype of the M-Pump (the BioVAD). The simple resistance loop consisted of the investigated pump, a fixed height reservoir at 150 mm Hg, and a variable inflow reservoir. The pulsatile circulation used a mock patient simulator with adjustable resistance elements connected to a pneumatic pulsatile pump. The M-Pump intrinsically regulated flow with changing preload, was afterload insensitive, and did not cavitate, unlike the centrifugal pump. The BioVAD also demonstrated these features and could augment output with the use of vacuum assistance. A nonocclusive peristaltic pump may be superior for short-term extracorporeal circulatory assist by mitigating risks of excessive inlet suction, afterload sensitivity, and thrombosis. PMID:22236624

  7. The physics of jets

    SciTech Connect

    Hofmann, W.

    1987-09-01

    Recent data on the fragmentation of quarks and gluons is discussed in the context of phenomenological models of parton fragmentation. Emphasis is placed on the experimental evidence for parton showers as compared to a fixed order QCD treatment, on new data on inclusive hadron production and on detailed studies of baryon production in jets.

  8. Particle Acceleration in Jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, Ken-Ichi

    2005-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma ray burst (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments.

  9. Jet Screech Noise Computation

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Hultgren, Lennart S.

    2003-01-01

    The near-field screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle is simulated numerically. The self-sustained feedback loop is automatically established in the simulation. The computed shock-cell structure, acoustic wave length, screech tone frequencies, and sound pressure levels in the near field are in good agreement with existing experimental results.

  10. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  11. Spectroscopy with Supersonic Jets.

    ERIC Educational Resources Information Center

    Skinner, Anne R.; Chandler, Dean W.

    1980-01-01

    Discusses a new technique that enables spectroscopists to study gas phase molecules at temperatures below 1 K, without traditional cryogenic apparatus. This technique uses supersonic jets as samples for gas molecular spectroscopy. Highlighted are points in the theory of supersonic flow which are important for applications in molecular…

  12. The Jet Travel Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2007-01-01

    Airplane travelers are dismayed by the long lines and seemingly chaotic activities that precede boarding a full airplane. Surely, the one who can solve this problem is going to make many travelers happy. This article describes the Jet Travel Challenge, an activity that challenges students to create some alternatives to this now frustrating…

  13. Underground pumped hydroelectric storage

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  14. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  15. 20. Station Unwatering Pumps and Sump Pump, view to the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Station Unwatering Pumps and Sump Pump, view to the north. The station unwatering pumps are the two large units in the center and right foreground of photograph and are marked with the numbers 1 and 2. The sump pump is the smaller unit in left foreground of photograph. These pumps are used for unwatering the draft chests for maintenance. Note the draft tube unwatering valve visible in background between the two unwatering pumps. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  16. Pump tank divider plate for sump suction sodium pumps

    DOEpatents

    George, John A.; Nixon, Donald R.

    1977-01-01

    A circular plate extends across the diameter of "sump suction" pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level.

  17. Dynamics of relativistic jets

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, Hélène; Mutel, Robert L.

    1998-12-01

    We discuss the structure and relativistic kinematics that develop in three spatial dimensions when a moderately hot, supersonic jet propagates into a denser background medium and encounters resistance from an oblique magnetic field. Our simulations incorporate relativistic MHD in a four-dimensional spacetime and clearly show that (a) relatively weak, oblique fields (at 1/16 of the equipartition value) have only a negligible influence on the propagating jet and they are passively pushed away by the relativistically moving head; (b) oblique fields in equipartition with the ambient plasma provide more resistance and cause bending at the jet head, but the magnitude of this deflection and the associated backflow are small compared to those identified by previous studies. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently during the simulations. The effect is analogous to pushing Japanese "noren" or vertical Venetian blinds out of the way while the slats are allowed to bend and twist in 3-D space. Applied to relativistic extragalactic jets from blazars, the new results are encouraging since superluminal outflows exhibit bending near their sources and their environments are profoundly magnetized - but observations do not provide support for irregular kinematics such as large-scale vortical motions and pronounced reverse flows near the points of origin.

  18. Evaluation of Failed Crane Chempumps Used During Salt Well Pumping

    SciTech Connect

    ELSEN, J.J.

    2000-09-18

    The Interim Stabilization Project is responsible for removing pumpable interstitial liquid from remaining single shelled tanks and transferring the waste to safer double-shelled tanks. This waste transfer is conducted by installing a saltwell pumping system within the designated single shell tank, and transferring the waste to double shelled tank using approved transfer lines. The saltwell pumping system is placed within a saltwell screen installed into the tank waste, the screen is designed to allow gravity flow of liquid into the screen and prevent solids from entering the pumping system. A foot valve consisting of a venturi jet and nozzle creates a suction, picking up waste at an equal rate as the out flow transfer rate of the saltwell system. A centrifugal pump is used to create the motive force across the eductor and drive the waste through the associated system piping and transfer lines leading to the double shelled tanks. The centrifugal pump that has typically been used in the saltwell pumping system installations is the Crane Chempump, model GA-1 1/2 K with 4 3/4 inch impeller. The following evaluation is not intended to be an all inclusive analysis of the operation of a saltwell system and associated pump. This evaluation will detail some of the noted failures in specific saltwell systems and document those findings. Due to the large number of saltwell systems installed over the duration of the Stabilization Project, only those saltwell systems installed over the last two years within S, SX, U, A and AX tank farms, shall be included in this evaluation. After identification of the pump failures mechanism, recommendations shall be identified to address potential means of improving overall operational efficiency and reducing overall equipment failures.

  19. Pumping of helium and hydrogen by sputter-ion pumps. II. Hydrogen pumping

    SciTech Connect

    Welch, K.M.; Pate, D.J.; Todd, R.J. )

    1994-05-01

    The pumping of helium by various forms of sputter-ion pumps (i.e., SIPs) is given in part I [K. M. Welch, D. J. Pate, and R. J. Todd, J. Vac. Sci. Technol. A [bold 11], 1607 (1993)]. The pumping of hydrogen in diode and triode SIPs is herein discussed. The type of cathode material used in these pumps is shown to have a significant impact on the effectiveness with which hydrogen is pumped. Examples of this include data for pumps with aluminum, titanium, and titanium-alloy cathodes. Diode pumps with aluminum cathodes are shown to be no more effective in the pumping of hydrogen than in the pumping of helium. The use of titanium anodes and titanium [ital shielding] of a pump body is also shown to impact measurably the speed of a pump at very low pressures. This stems from the fact that hydrogen is [times]10[sup 6] more soluble in titanium than in stainless steel. Hydrogen becomes resident in the anodes because of fast neutral burial. Ions and fast neutrals of hydrogen are also buried in the walls of pump bodies. Outgassing of this hydrogen from the anodes and pump bodies results in a gradual increase in pump base pressure and consequential decrease in hydrogen pump speed at very low base pressures.

  20. Miniature Lightweight Ion Pump

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.

    2010-01-01

    This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are

  1. Fluid pumping apparatus

    DOEpatents

    West, Phillip B.

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  2. Jet propagation through energetic materials

    SciTech Connect

    Pincosy, P; Poulsen, P

    2004-01-08

    In applications where jets propagate through energetic materials, they have been observed to become sufficiently perturbed to reduce their ability to effectively penetrate subsequent material. Analytical calculations of the jet Bernoulli flow provides an estimate of the onset and extent of such perturbations. Although two-dimensional calculations show the back-flow interaction pressure pulses, the symmetry dictates that the flow remains axial. In three dimensions the same pressure impulses can be asymmetrical if the jet is asymmetrical. The 3D calculations thus show parts of the jet having a significant component of radial velocity. On the average the downstream effects of this radial flow can be estimated and calculated by a 2D code by applying a symmetrical radial component to the jet at the appropriate position as the jet propagates through the energetic material. We have calculated the 3D propagation of a radio graphed TOW2 jet with measured variations in straightness and diameter. The resultant three-dimensional perturbations on the jet result in radial flow, which eventually tears apart the coherent jet flow. This calculated jet is compared with jet radiographs after passage through the energetic material for various material thickness and plate thicknesses. We noted that confinement due to a bounding metal plate on the energetic material extends the pressure duration and extent of the perturbation.

  3. Acoustic characteristics of twin jets.

    PubMed

    He, F; Zhang, X W

    2002-09-01

    Experiments were conducted to investigate the acoustic characteristics of underexpanded supersonic twin jets in different azimuthal measurement planes. Compared with two independent jets, the twin jets produced additional noise due to the enhanced mixing and entrainment. The larger pressure ratio for switching from the axisymmetric mode to the helical mode led to lower noise levels at 90 degrees than for two independent jets. For pressure ratios greater than 5.00, the noise reduction was due to cessation of screeching of the twin jets while screeching of a single jet was still detected. The apparent shielding phenomenon was measured for the screech helical mode. The screech tone intensities were attenuated largely due to the shielding effects. The noise reductions due to shielding were obtained over a wide range of pressure ratios relative to the sum of two independent jets. PMID:12243185

  4. Pileup subtraction for jet shapes.

    PubMed

    Soyez, Gregory; Salam, Gavin P; Kim, Ji-Hun; Dutta, Souvik; Cacciari, Matteo

    2013-04-19

    Jets in high energy hadronic collisions often contain the fingerprints of the particles that produced them. Those fingerprints, and thus the nature of the particles that produced the jets, can be read off with the help of quantities known as jet shapes. Jet shapes are, however, severely affected by pileup, the accumulation in the detector of the residues of the many simultaneous collisions taking place in the Large Hadron Collider (LHC). We introduce a method to correct for pileup effects in jet shapes. Relative to earlier, limited approaches, the key advance resides in its full generality, achieved through a numerical determination, for each jet, of a given shape's susceptibility to pileup. The method rescues the possibility of using jet shapes in the high pileup environment of current and future LHC running, as we show with examples of quark-gluon discrimination and top tagging. PMID:23679594

  5. Flow cytometer jet monitor system

    DOEpatents

    Van den Engh, Ger

    1997-01-01

    A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

  6. Delay Adjusted Incidence Infographic

    Cancer.gov

    This Infographic shows the National Cancer Institute SEER Incidence Trends. The graphs show the Average Annual Percent Change (AAPC) 2002-2011. For Men, Thyroid: 5.3*,Liver & IBD: 3.6*, Melanoma: 2.3*, Kidney: 2.0*, Myeloma: 1.9*, Pancreas: 1.2*, Leukemia: 0.9*, Oral Cavity: 0.5, Non-Hodgkin Lymphoma: 0.3*, Esophagus: -0.1, Brain & ONS: -0.2*, Bladder: -0.6*, All Sites: -1.1*, Stomach: -1.7*, Larynx: -1.9*, Prostate: -2.1*, Lung & Bronchus: -2.4*, and Colon & Rectum: -3/0*. For Women, Thyroid: 5.8*, Liver & IBD: 2.9*, Myeloma: 1.8*, Kidney: 1.6*, Melanoma: 1.5, Corpus & Uterus: 1.3*, Pancreas: 1.1*, Leukemia: 0.6*, Brain & ONS: 0, Non-Hodgkin Lymphoma: -0.1, All Sites: -0.1, Breast: -0.3, Stomach: -0.7*, Oral Cavity: -0.7*, Bladder: -0.9*, Ovary: -0.9*, Lung & Bronchus: -1.0*, Cervix: -2.4*, and Colon & Rectum: -2.7*. * AAPC is significantly different from zero (p<.05). Rates were adjusted for reporting delay in the registry. www.cancer.gov Source: Special section of the Annual Report to the Nation on the Status of Cancer, 1975-2011.

  7. A model for eastward and westward jets in laboratory experiments and planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Marcus, P. S.; Lee, C.

    1998-06-01

    Flows in a rotating annular tank [J. Sommeria, S. D. Meyers, and H. L. Swinney, Nonlinear Topics in Ocean Physics, edited by A. Osborne (North Holland, Amsterdam, 1991); Nature (London) 337, 58 (1989); T. H. Solomon, W. J. Holloway, and H. L. Swinney, Phys. Fluids A 5, 1971 (1993); J. Sommeria, S. D. Meyers, and H. L. Swinney, Nature (London) 331, 689 (1989)] with a sloping bottom (that simulates a barotropic atmosphere's Coriolis force with a topographic β-effect [J. Pedlosky, Geophysical Fluid Dynamics, 2nd ed. (Springer, Berlin, 1986)]) produce eastward and westward jets, i.e., azimuthal flows moving in the same or opposite direction as the annulus' rotation. Flows are forced by pumping fluid in and out of two concentric slits in the bottom boundary, and the direction of the jets depends on the direction of the pumping. The eastward and westward jets differ, with the former narrow, strong, and wavy. The jets of Jupiter and Saturn have the same east-west asymmetry [P. S. Marcus, Ann. Rev. Astron. Astro. 431, 523 (1993)]. Numerical simulations show that the azimuthally-averaged flow differs substantially from the non-averaged flow which has sharp gradients in the potential vorticity q. They also show that the maxima of the eastward jets and Rossby waves are located where the gradients of q are large, and the maxima of the westward jets and vortex chains are located where they are weak. As the forcing is increased the drift velocities of the two chains of vortices of the eastward jet lock together; whereas the two chains of the westward jet do not. Inspired by a previously published, [P. S. Marcus, Ann. Rev. Astron. Astro. 431, 523 (1993)] piece-wise constant-q model of the Jovian jets and based on numerical simulations, a new model of the experimental flow that is characterized by regions of undisturbed flow and bands of nearly uniform q separated by sharp gradients is presented. It explains the asymmetry of the laboratory jets and quantitatively describes all of

  8. Regenerative adsorbent heat pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  9. Measuring axial pump thrust

    DOEpatents

    Suchoza, B.P.; Becse, I.

    1988-11-08

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices. 1 fig.

  10. Measuring axial pump thrust

    DOEpatents

    Suchoza, Bernard P.; Becse, Imre

    1988-01-01

    An apparatus for measuring the hydraulic axial thrust of a pump under operation conditions is disclosed. The axial thrust is determined by forcing the rotating impeller off of an associated thrust bearing by use of an elongate rod extending coaxially with the pump shaft. The elongate rod contacts an impeller retainer bolt where a bearing is provided. Suitable measuring devices measure when the rod moves to force the impeller off of the associated thrust bearing and the axial force exerted on the rod at that time. The elongate rod is preferably provided in a housing with a heat dissipation mechanism whereby the hot fluid does not affect the measuring devices.

  11. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L.

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  12. High pressure reciprocating pump

    SciTech Connect

    Besic, D.

    1990-05-01

    This patent describes an improvement in a reciprocating pump having a plunger and a pumping chamber. It comprises: the plunger having a bore communicating with an intersection opening and wherein the plunger incudes a central axis; a suction valve and a discharge valve, each having an axis of actuation parallel to a central axis of the plunger; the suction valve comprising a cylindrical core having a central passageway, and the core is slidably received by a seating member and resiliently biased to the seating member.

  13. Reactor coolant pump flywheel

    SciTech Connect

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  14. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  15. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  16. Paramagnetic spin pumping.

    PubMed

    Shiomi, Y; Saitoh, E

    2014-12-31

    We have demonstrated spin pumping from a paramagnetic state of an insulator La2NiMnO6 into a Pt film. Single-crystalline films of La2NiMnO6 which exhibit a ferromagnetic order at TC≈270  K were grown by pulsed laser deposition. The inverse spin Hall voltage induced by spin-current injection has been observed in the Pt layer not only in the ferromagnetic phase of La2NiMnO6, but also in a wide temperature range above TC. The efficient spin pumping in the paramagnetic phase is ascribable to ferromagnetic correlation, not to ferromagnetic order. PMID:25615367

  17. Pulsed differential pumping system

    SciTech Connect

    Antipov, G.N.; Bagautdinov, F.A.; Rybalov, S.V.

    1985-06-01

    A pulsed differential pumping system is described for extracting an electron beam from a shaping region at a pressure of 10/sup -5/ torr into a volume with a pressure of 10-100 torr. A fast valve is used with appropriate geometrical parameters to reduce the length of the outlet channel considerable while increasing its diameter. Test results are given. The pumping system has two sections which communicate one with the other and with the volume at the elevated pressure which is produced by gasdynamic nozzles.

  18. Plant proton pumps.

    PubMed

    Gaxiola, Roberto A; Palmgren, Michael G; Schumacher, Karin

    2007-05-25

    Chemiosmotic circuits of plant cells are driven by proton (H(+)) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react to their constantly changing environments and at the same time maintain optimal metabolic conditions, the expression, activity and interplay of the pumps generating these H(+) gradients have to be tightly regulated. In this review, we will highlight results on the regulation, localization and physiological roles of these H(+)- pumps, namely the plasma membrane H(+)-ATPase, the vacuolar H(+)-ATPase and the vacuolar H(+)-PPase. PMID:17412324

  19. Velocity pump reaction turbine

    DOEpatents

    House, P.A.

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  20. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1984-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  1. Velocity pump reaction turbine

    DOEpatents

    House, Palmer A.

    1982-01-01

    An expanding hydraulic/two-phase velocity pump reaction turbine including a dual concentric rotor configuration with an inter-rotor annular flow channel in which the inner rotor is mechanically driven by the outer rotor. In another embodiment, the inner rotor is immobilized and provided with gas recovery ports on its outer surface by means of which gas in solution may be recovered. This velocity pump reaction turbine configuration is capable of potential energy conversion efficiencies of up to 70%, and is particularly suited for geothermal applications.

  2. Air-Operated Sump Pump

    NASA Technical Reports Server (NTRS)

    Nolt, Gary D.

    1988-01-01

    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  3. Plasma confinement at JET

    NASA Astrophysics Data System (ADS)

    Nunes, I.; JET Contributors

    2016-01-01

    Operation with a Be/W wall at JET (JET-ILW) has an impact on scenario development and energy confinement with respect to the carbon wall (JET-C). The main differences observed were (1) strong accumulation of W in the plasma core and (2) the need to mitigate the divertor target temperature to avoid W sputtering by Be and other low Z impurities and (3) a decrease of plasma energy confinement. A major difference is observed on the pedestal pressure, namely a reduction of the pedestal temperature which, due to profile stiffness the plasma core temperature is also reduced leading to a degradation of the global confinement. This effect is more pronounced in low β N scenarios. At high β N, the impact of the wall on the plasma energy confinement is mitigated by the weaker plasma energy degradation with power relative to the IPB98(y, 2) scaling calculated empirically for a CFC first wall. The smaller tolerable impurity concentration for tungsten (<10-5) compared to that of carbon requires the use of electron heating methods to prevent W accumulation in the plasma core region as well as gas puffing to avoid W entering the plasma core by ELM flushing and reduction of the W source by decreasing the target temperature. W source and the target temperature can also be controlled by impurity seeding. Nitrogen and Neon have been used and with both gases the reduction of the W source and the target temperature is observed. Whilst more experiments with Neon are necessary to assess its impact on energy confinement, a partial increase of plasma energy confinement is observed with Nitrogen, through the increase of edge temperature. The challenge for scenario development at JET is to extend the pulse length curtailed by its transient behavior (W accumulation or MHD), but more importantly by the divertor target temperature limits. Re-optimisation of the scenarios to mitigate the effect of the change of wall materials maintaining high global energy confinement similar to JET-C is

  4. JetStar

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Dryden C-140 JetStar during testing of advanced propfan designs. Dryden conducted flight research in 1981-1982 on several designs. The technology was developed under the direction of the Lewis Research Center (today the Glenn Research Center, Cleveland, OH) under the Advanced Turboprop Program. Under that program, Langley Research Center in Virginia oversaw work on accoustics and noise reduction. These efforts were intended to develop a high-speed and fuel-efficient turboprop system. NASA's Dryden Flight Research Facility (later the Dryden Flight Research Center, Edwards, CA), in co-operation with the Lewis Research Center, investigated the acoustic characteristics of a series of subscale advanced design propellors in the early eighties. These propellors were designed to rotate at a tip speed faster than the speed of sound. They are, in effect, a 'swept back wing' version of a propellor. The tests were conducted on Dryden's C-140 Jetstar, seen here on a research flight over the Mojave desert. The JetStar was modified with the installation of an air turbine drive system. The drive motor, with a 24 inch test propellor, was mounted in a pylon atop the JetStar. The JetStar was equipped with an array of 28 microphones flush-mounted in the fuselage of the aircraft beneath the propellor. Microphones mounted on the wings and on accompanying chase aircraft provided far-field acoustic data. In the 1960s, the same JetStar was equipped with an electronic variable stability flight control system. Called the General Purpose Airborne Simulator (GPAS), the aircraft could duplicate the flight characteristics of a wide variety of advanced aircraft and was used for supersonic transport and general aviation research and as a training and support system for Space Shuttle Approach and Landing Tests at Dryden in 1977. In 1985, the JetStar's wings were modified with suction and spray devices in a laminar (smooth) air flow program to study ways of improving the flow of air over the

  5. 12. Sewage Ejector Pumps, view to the southwest. These pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Sewage Ejector Pumps, view to the southwest. These pumps are connected to sewage treatment tanks. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  6. 3. Interior view of centrifugal pump house showing pumps and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Interior view of centrifugal pump house showing pumps and engines, looking W. - Laurel Valley Sugar Plantation, Drainage Plant, 2 Miles South of Thibodaux on State Route 308, Thibodaux, Lafourche Parish, LA

  7. Investigating Using Oscillating Jets for Fluid Mixing

    SciTech Connect

    Bamberger, Judith A; Meyer, Perry A

    2009-07-29

    Scaled mixing experiments were conducted to evaluate maintaining mobilized particles in a uniform suspension (the condition of concentration uniformity) using jet pumps to mix the suspension. The study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0. The revised matrix included a full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation of curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size (dp), and the jet nozzle exit velocity (U0). Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform (< ±10% variation about mean) or nonuniform (> ±10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless groups.

  8. BIPOLAR JETS LAUNCHED FROM ACCRETION DISKS. II. THE FORMATION OF ASYMMETRIC JETS AND COUNTER JETS

    SciTech Connect

    Fendt, Christian; Sheikhnezami, Somayeh E-mail: nezami@mpia.de

    2013-09-01

    We investigate the jet launching from accretion disks, in particular the formation of intrinsically asymmetric jet/counter jet systems. We perform axisymmetric MHD simulations of the disk-jet structure on a bipolar computational domain covering both hemispheres. We apply various models such as asymmetric disks with (initially) different scale heights in each hemisphere, symmetric disks into which a local disturbance is injected, and jets launched into an asymmetric disk corona. We consider both a standard global magnetic diffusivity distribution and a novel local diffusivity model. Typical disk evolution first shows substantial disk warping and then results in asymmetric outflows with a 10%-30% mass flux difference. We find that the magnetic diffusivity profile is essential for establishing a long-term outflow asymmetry. We conclude that bipolar asymmetry in protostellar and extragalactic jets can indeed be generated intrinsically and maintained over a long time by disk asymmetries and the standard jet launching mechanism.

  9. Portable engine-pump assembly

    SciTech Connect

    Eberhardt, H.A.

    1987-02-17

    This patent describes a portable engine-pump assembly that is compact and light in weight comprising: an internal combustion engine mounted with its crankshaft extending vertically, a centrifugal pump having an impeller mounted for rotation on a pump shaft within a volute chamber, means mounting the pump on and immediately beneath the engine with the pump shaft extending vertically in accurate alignment and concentricity with the engine crankshaft, means coupling the engine crankshaft and the pump shaft together so that the engine crankshaft drives the pump shaft, the pump comprising a pump body defining the volute chamber and providing a pump inlet passage and a pump discharge passage oriented in generally horizontal directions, the pump body defining an inlet chamber providing passages for the flow of liquid from the pump inlet passage into the impeller from both above and below same and including an upper body portion and a lower body portion, and an exhaust system for the engine including an exhaust passage contained in the upper body portion, a muffler having an inlet, and means providing flow communication between the exhaust passage and the inlet of the muffler.

  10. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    SciTech Connect

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.; Enderlin, Carl W.; Minette, Michael J.; Holton, Langdon K.

    2015-12-07

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs may be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids

  11. Experiments in axisymmetric supersonic jets

    NASA Astrophysics Data System (ADS)

    Moore, Cyrille Dennis

    An experimental study of the effects of exit Mach number and density ratio on the development of axisymmetric jets is described in this thesis. Jet exit Mach numbers of 1.41, 2.0, and 3.0, were studied for jets of helium, argon, and nitrogen. The jets exit into a gas at rest (velocity ratio = 0), in order to better isolate the effects of compressibility and density ratio. Density ratios vary from 0.23 to 5.5.In order to generate shock free-jets, unique nozzles were designed and constructed for each gas and Mach number combination. A plating method for the construction of the nozzles was developed to ensure high-accuracy and a good surface finish at a cost significantly less than direct-machining techniques.The spreading rate of the jet for several downstream locations is measured with a pitot probe. Centerline data are used to characterise the length of the potential core of the jet, which correlates well with the relative spreading rates. Limited frequency data is obtained through the use of piezo-resistive pressure probes. This method is promising for flows that are not conducive to hot-wire probes.Spark shadography is used to visualize both the mean and instantaneous flow, with the minimum spark time being 20 nanoseconds. The convection velocity of large-scale disturbances is estimated from the visible Mach-type acoustic waves emanating from the jet.For a wide range of jet Mach and Reynolds numbers, the convection velocity of the large scale disturbances in the potential core region of the jet is approximately 0.8 times the jet velocity, the approximate velocity of the first helical instability mode of the jet.The main objectives of the present work were to investigate the effects of compressibility and density on the initial development of the axisymmetric jet. Although the data are not sufficient to determine if the convective Mach number concept used in 2-d shear layer research will work in the case of an axisymmetric jet, it is clear that the axisymmetric

  12. 39. THREECYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. THREE-CYLINDER HYDRAULIC OIL PUMP (MANUFACTURED BY WORTHINGTON: PUMP AND MACHINERY COMPANY, HOLYOKE MASSACHUSETTS) IN MACHINERY CHAMBER FOR SLUICE GATE WORKS ON GALLERY 1. NOTE OIL TANK ABOVE PUMP MOTOR. VIEW TO NORTHWEST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  13. 24. Pump Room interiordewatering pump motor on upper level. Note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Pump Room interior-dewatering pump motor on upper level. Note the removable roof hatch (steel frame) directly above motor. Dewatering pumps motor control center at left - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA

  14. PUMP SETS NO. 5 AND NO. 4. Each pump set ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PUMP SETS NO. 5 AND NO. 4. Each pump set consists of a Worthington Pump and a General Electric motor - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Flame Deflector Water System, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  15. 29. WORTHINGTON FIRE PUMP WITH TURBINE HIDDEN BEHIND. PUMP HOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. WORTHINGTON FIRE PUMP WITH TURBINE HIDDEN BEHIND. PUMP HOUSE IS LOCATED AT HEAD OF OLD TRASH GATES. PUMP ENTERS WATER ON EXTERIOR OF WALL IN FAR SIDE OF PHOTO. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  16. Overview of Pump Room, showing pumps at right and power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Pump Room, showing pumps at right and power distribution cabinets for valve motors along north wall at left. View to east - Wellton-Mohawk Irrigation System, Pumping Plant No. 1, Bounded by Gila River & Union Pacific Railroad, Wellton, Yuma County, AZ

  17. Indexes of pumps for oil field pumping units

    SciTech Connect

    Ibragimov, E.S.

    1995-07-01

    As reported previously, a series of oil field pumping units has been developed with power outputs of 125, 250, 500, and 1000 kW, designed for injecting working fluids in cementing operations in oil and gas wells, hydraulic fracturing of formations, washing out sand plugs, and other production operations. The units are designed for the use of three-plunger pumps with individual power outputs of 125 or 500 kW. In the 250- and 1000-kW units, two such pumps are used. The 1000-kW pumping unit serves mainly for deep-penetration hydraulic fracturing of formations, and also for fracturing deep formations. The hydraulic fracturing process does not require the use of units with two pumps; this has been demonstrated by experience, both here and in other countries. All units intended for use in hydraulic fracturing are built with a single pump, transmission, and drive. Pumping units for well cementing must have two pumps that will give a high delivery rate. At the start of the operation, a single pump can be used to feed water into the cement mixer, with the second pump used to transfer the cement slurry to the well. Then both pumps are connected to the slurry injection line. The operation of these pumps is described.

  18. SparkJet Efficiency

    NASA Technical Reports Server (NTRS)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  19. Plasma jet takes off.

    PubMed Central

    Frazer, L

    1999-01-01

    Thanks to a series of joint research projects by Los Alamos National Laboratory, Beta Squared of Allen, Texas, and the University of California at Los Angeles, there is now a more environmentally sound method for cleaning semiconductor chips that may also be effective in cleaning up chemical, bacterial, and nuclear contaminants. The Atmospheric Pressure Plasma Jet uses a type of ionized gas called plasma to clean up contaminants by binding to them and lifting them away. In contrast to the corrosive acids and chemical solvents traditionally used to clean semiconductor chips, the jet oxidizes contaminants, producing only benign gaseous by-products such as oxygen and carbon dioxide. The new technology is also easy to transport, cleans thoroughly and quickly, and presents no hazards to its operators. PMID:10417375

  20. Piezohydraulic Pump Development

    NASA Technical Reports Server (NTRS)

    Lynch, Christopher S.

    2005-01-01

    Reciprocating piston piezohydraulic pumps were developed originally under the Smart Wing Phase II program (Lynch) and later under the CHAP program (CSA, Kinetic Ceramics). These pumps focused on 10 cm scale stack actuators operating below resonance and, more recently, at resonance. A survey of commercially available linear actuators indicates that obtaining power density and specific power greater than electromagnetic linear actuators requires driving the stacks at frequencies greater than 1 KHz at high fields. In the case of 10 cm scale actuators the power supply signal conditioning becomes large and heavy and the soft PZT stack actuators generate a lot of heat due to internal losses. Reciprocation frequencies can be increased and material losses significantly decreased through use of millimeter scale single crystal stack actuators. We are presently targeting the design of pumps that utilize stacks at the 1-10 mm length scale and run at reciprocating frequencies of 20kHz or greater. This offers significant advantages over current approaches including eliminating audible noise and significantly increasing the power density and specific power of the system (including electronics). The pump currently under development will comprise an LC resonant drive of a resonant crystal and head mass operating against a resonant fluid column. Each of these resonant systems are high Q and together should produce a single high Q second order system.

  1. Pump Flow Analysis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Ingersoll-Rand Research, Inc.'s use of COSMIC's computer program MERIDL permits designers to evaluate performance and efficiency characteristics to be expected from the pump's impeller. It also provides information that enables a trained hydraulic engineer to make design improvements. Company was able to avoid the cost of developing new software and to improve some product design features.

  2. Magnetic-flux pump

    NASA Technical Reports Server (NTRS)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  3. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S.; Michelotti, Roy A.

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  4. Linear induction pump

    DOEpatents

    Meisner, John W.; Moore, Robert M.; Bienvenue, Louis L.

    1985-03-19

    Electromagnetic linear induction pump for liquid metal which includes a unitary pump duct. The duct comprises two substantially flat parallel spaced-apart wall members, one being located above the other and two parallel opposing side members interconnecting the wall members. Located within the duct are a plurality of web members interconnecting the wall members and extending parallel to the side members whereby the wall members, side members and web members define a plurality of fluid passageways, each of the fluid passageways having substantially the same cross-sectional flow area. Attached to an outer surface of each side member is an electrically conductive end bar for the passage of an induced current therethrough. A multi-phase, electrical stator is located adjacent each of the wall members. The duct, stators, and end bars are enclosed in a housing which is provided with an inlet and outlet in fluid communication with opposite ends of the fluid passageways in the pump duct. In accordance with a preferred embodiment, the inlet and outlet includes a transition means which provides for a transition from a round cross-sectional flow path to a substantially rectangular cross-sectional flow path defined by the pump duct.

  5. Progressive cavity pump

    SciTech Connect

    Mueller, J.W.

    1989-04-04

    A progressive cavity pump is described, comprising: a first housing portion defining an inlet; a second housing portion attachable to the first housing portion and defining an outlet; a substantially elastomeric stator comprising an outer portion removably attached to the first and second housing portions, having a first end and a second end spaced from the first end, an inner portion defining a pumping chamber and spaced an annular end portion interconnecting the first ends of the outer and inner portions; a rotor disposed in the inner portion of the stator and extending through the pumping chamber for pumping fluid from the inlet to the outlet in response to rotation of the rotor; and an elongated member disposed in the housing portions and generally annularly between the inner and outer portions of the stator and longitudinally between the annular end portion of the stator and a portion of the second housing portion, the member being removable from the housing portions and separable from the stator.

  6. Shrouded inducer pump

    DOEpatents

    Meng, Sen Y.

    1989-01-01

    An improvement in a pump including a shrouded inducer, the improvement comprising first and second sealing means 32,36 which cooperate with a first vortex cell 38 and a series of secondary vortex cells 40 to remove any tangential velocity components from the recirculation flow.

  7. Solar pumped laser

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  8. Explosively pumped laser light

    SciTech Connect

    Piltch, M.S.; Michelott, R.A.

    1991-09-24

    This patent describes a single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  9. The Osmotic Pump

    ERIC Educational Resources Information Center

    Levenspiel, Octave; de Nevers, Noel

    1974-01-01

    Describes the principle involved in an osmotic pump used to extract fresh water from the oceans and in an osmotic power plant used to generate electricity. Although shown to be thermodynamically feasible, the osmotic principle is not likely to be used commerically for these purposes in the near future. (JR)

  10. Random Vortex-Street Model for a Self-Similar Plane Turbulent Jet

    NASA Astrophysics Data System (ADS)

    L'Vov, Victor S.; Pomyalov, Anna; Procaccia, Itamar; Govindarajan, Rama

    2008-08-01

    We ask what determines the (small) angle of turbulent jets. To answer this question we first construct a deterministic vortex-street model representing the large-scale structure in a self-similar plane turbulent jet. Without adjustable parameters the model reproduces the mean velocity profiles and the transverse positions of the large-scale structures, including their mean sweeping velocities, in a quantitative agreement with experiments. Nevertheless, the exact self-similar arrangement of the vortices (or any other deterministic model) necessarily leads to a collapse of the jet angle. The observed (small) angle results from a competition between vortex sweeping tending to strongly collapse the jet and randomness in the vortex structure, with the latter resulting in a weak spreading of the jet.

  11. Jet decorrelation and jet shapes at the Tevatron

    SciTech Connect

    Heuring, T.C.

    1996-07-01

    We present results on measurements of jet shapes and jet azimuthal decorrelation from {bar p}P collisions at {radical}s = 1.8 TeV using data collected during the 1992-1993 run of the Fermilab Tevatron. Jets are seen to narrow both with increasing Awe {sub TTY} and increasing rapidity. While HERWIG, a puritan shower Monte Carlo, predicts slightly narrower jets, it describes the trend of the data well; NO CD described qualitative features of the data but is sensitive to both renormalization scale and jet definitions. Jet azimuthal decorrelation has been measured out to five units of pseudorapidity. While next-to-leading order CD and a leading-log approximation based on BFKL resummation fail to reproduce the effect, HERWIG describes the data well.

  12. Far Noise Field of Air Jets and Jet Engines

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Coles, Willard D

    1957-01-01

    An experimental investigation was conducted to study and compare the acoustic radiation of air jets and jet engines. A number of different nozzle-exit shapes were studied with air jets to determine the effect of exit shape on noise generation. Circular, square, rectangular, and elliptical convergent nozzles and convergent-divergent and plug nozzles were investigated. The spectral distributions of the sound power for the engine and the air jet were in good agreement for the case where the engine data were not greatly affected by reflection or jet interference effects. Such power spectra for a subsonic or slightly choked engine or air jet show that the peaks of the spectra occur at a Strouhal number of 0.3.

  13. Micromachined chemical jet dispenser

    SciTech Connect

    Swierkowski, S.; Ciarlo, D.

    1996-05-13

    Goal is to develop a multi-channel micromachined chemical fluid jet dispenser that is applicable to prototype tests with biological samples that demonstrate its utility for molecular biology experiments. Objective is to demonstrate a new device capable of ultrasonically ejecting droplets from 10-200 {mu}m diameter capillaries that are arranged in an array that is linear or focused. The device is based on several common fabrication procedures used in MEMS (micro electro mechanical systems) technology: piezoelectric actuators, silicon, etc.

  14. Alternative jet aircraft fuels

    NASA Technical Reports Server (NTRS)

    Grobman, J.

    1979-01-01

    Potential changes in jet aircraft fuel specifications due to shifts in supply and quality of refinery feedstocks are discussed with emphasis on the effects these changes would have on the performance and durability of aircraft engines and fuel systems. Combustion characteristics, fuel thermal stability, and fuel pumpability at low temperature are among the factors considered. Combustor and fuel system technology needs for broad specification fuels are reviewed including prevention of fuel system fouling and fuel system technology for fuels with higher freezing points.

  15. Vortex diode jet

    SciTech Connect

    Houck, E.D.

    1994-05-17

    A fluid transfer system is described that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other. 10 figures.

  16. Gastrostomy feeding tube - pump - child

    MedlinePlus

    ... supplies: Feeding pump (electronic or battery powered) Feeding set that matches the feeding pump (includes a feeding ... drip chamber, roller clamp, and long tube) Extension set, for a Bard Button or MIC-KEY (this ...

  17. Fuel pumping system and method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  18. Fuel Pumping System And Method

    DOEpatents

    Shafer, Scott F.; Wang, Lifeng

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  19. Vacuum system pump down analysis

    SciTech Connect

    Rohrdanz, D.R.

    1990-08-01

    My assignment on the SP-100 Vacuum Vessel Vacuum System Team was to perform a transient pump down analysis for the vacuum vessel that will house the SP-100 reactor during testing. Pump down time was calculated for air and helium. For all cases the proposed vacuum system will be able to pump down the vessel within the required time. The use of a larger rotary piston pump (DUO250) improves the pump down time by 35 minutes and therefore should be considered. The 6-inch duct for the roughing line is optimal, however, because all cases are well below the 24 hour time frame, the 4-inch duct is sufficient. The use of the single turbomolecular pump during pump down is sufficient. A pump down with helium in the vessel and a helium inleakage delays the time to achieve the base pressure marginally and is acceptable.

  20. Installing and maintaining gear pumps

    SciTech Connect

    Whitmire, K.

    1996-03-01

    While not as common as centrifugal pumps in the CPI, gear pumps play important roles in handling many of today`s more difficult-to-pump fluids. Because they operate at lower speeds -- generally, 900 rpm or less -- their seals and bearings tend to last longer than those of centrifugal models. In addition, unlike centrifugal pumps, gear pumps` flows are independent of their systems` pressure curves, and they can handle a wider range of viscosities. Although high-flow, low-head applications remain the domain of centrifugal pumps, the use of gear pumps is increasing in the chemical process industries (CPI). While some application boundaries between gears and centrifugals are blurring, there are some crucial differences between the way the two are operated and maintained -- for example, where pressure relief is concerned. This article provides a general summary of gear pump characteristics and applications, highlighting critical aspects of installation, operation and maintenance.

  1. Arc jet diagnostics tests

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1989-01-01

    Two objectives were addressed during a 10 week 1988 NASA/ASEE summer faculty fellowship at the Johnson Space Center Atmospheric Reentry Materials Structures Evaluation Facility (ARMSEF). These objectives were the evaluation of mass spectrometry for the measurement of atomic and molecular species in an arc jet environment, and the determination of atomic recombination coefficients for reaction cured glass (RCG) coated high temperature surface insulation (HRSI) materials subjected to simulated reentry conditions. Evaluation of mass spectrometry for the measurement of atomic and molecular species provided some of the first measurements of point compositions in arc jet tunnel environments. A major objective of this project centered around the sampling residence time. A three staged vacuum sampling system pulled the molecules and atoms from the arc jet to a quadrupole ionization mass spectrometer in 400 milliseconds. Conditions investigated included a composition survey across the nozzle exit at 3 cm z-distance from the nozzle exit for 3 different currents. Also, a point composition survey was taken around a shock created by the presence of a blunt body.

  2. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  3. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  4. Shoring pumping station excavation

    SciTech Connect

    Glover, J.B.; Reardon, D.J. )

    1991-11-01

    The city of San Mateo, Calif., operates three 12- to 50-year old wastewater pumping stations on a 24-m (80-ft) wide lot located in a residential area near San Francisco Bay. Because the aging stations have difficulty pumping peak 2.19-m{sup 3}/s (50-mgd) wet-weather flows and have structural and maintenance problems, a new 2.62-m{sup 3}/s (60-mgd) station was proposed - the Dale Avenue Pumping Station - to replace the existing ones. To prevent potential damage to adjacent homes, the new station was originally conceived as a circular caisson type; however, a geotechnical investigation recommended against this type of structure because the stiff soils could make sinking the structure difficult. This prompted an investigation of possible shoring methods for the proposed structure. Several shoring systems were investigated, including steel sheeting, soldier beams and lagging, tieback systems, open excavation, and others; however, each had disadvantages that prevented its use. Because these conventional techniques were unacceptable, attention was turned to using deep soil mixing (DSM) to create a diaphragm wall around the area to be excavated before constructing the pumping station. Although this method has been used extensively in Japan since 1983, the Dale Avenue Pumping Station would be the technology's first US application. The technology's anticipated advantages were its impermeability, its fast and efficient installation that did not require tiebacks under existing homes, its adaptability to subsurface conditions ranging from soft ground to stiff clay to gravels, and its lack of pile-driving requirements that would cause high vibration levels during installation.

  5. Absorption heat pumps

    NASA Astrophysics Data System (ADS)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  6. Inert gas jets for growth control in electron beam induced deposition

    SciTech Connect

    Henry, M. R.; Kim, S.; Rykaczewski, K.; Fedorov, A. G.

    2011-06-27

    An inert, precursor free, argon jet is used to control the growth rate of electron beam induced deposition. Adjustment of the jet kinetic energy/inlet temperature can selectively increase surface diffusion to greatly enhance the deposition rate or deplete the surface precursor due to impact-stimulated desorption to minimize the deposition or completely clean the surface. Physical mechanisms for this process are described. While the electron beam is also observed to generate plasma upon interaction with an argon jet, our results indicate that plasma does not substantially contribute to the enhanced deposition rate.

  7. Noncavitating Pump For Liquid Helium

    NASA Technical Reports Server (NTRS)

    Hasenbein, Robert; Izenson, Michael; Swift, Walter; Sixsmith, Herbert

    1996-01-01

    Immersion pump features high efficiency in cryogenic service. Simple and reliable centrifugal pump transfers liquid helium with mass-transfer efficiency of 99 percent. Liquid helium drawn into pump by helical inducer, which pressurizes helium slightly to prevent cavitation when liquid enters impeller. Impeller then pressurizes liquid. Purpose of pump to transfer liquid helium from supply to receiver vessel, or to provide liquid helium flow for testing and experimentation.

  8. Gas-heat-pump development

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    Incentives for the development of gas heat pumps are discussed. Technical progress made on several promising technologies was reviewed. The status of development of gas-engine-driven heat pumps, the absorption cycle for the near- and long-term gas heat pump systems, the Stirling engine, the small Rankine-cycle engines, and gas-turbine-driven heat pump systems were briefly reviewed. Progress in the US, Japan, and Europe is noted.

  9. Synthetic Jets in Cross-flow. Part 1; Round Jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Milanovic, Ivana M.

    2003-01-01

    Results of an experimental investigation on synthetic jets from round orifices with and without cross-flow are presented. Jet Reynolds number up to 46,000 with a fully turbulent approach boundary layer, and Stokes number up to 400. are covered. The threshold of stroke length for synthetic jet formation. in the absence of the cross-flow, is found to be Lo /D approximately 0.5. Above Lo /D is approximately 10, the profiles of normalized centerline mean velocity appear to become invariant. It is reasoned that the latter threshold may be related to the phenomenon of saturation of impulsively generated vortices. In the presence of the cross-flow, the penetration height of a synthetic jet is found to depend on the momentum- flux ratio . When this ratio is defined in terms of the maximum jet velocity and the cross-flow velocity. not only all data collapse but also the jet trajectory is predicted well by correlation equation available for steady jets-in-cross-flow. Distributions of mean velocity, streamwise vorticity as well as turbulence intensity for a synthetic jet in cross-flow are found to be similar to those of a steady jet-in-cross-flow. A pair of counter-rotating streamwise vortices, corresponding to the bound vortex pair of the steady case, is clearly observed. Mean velocity distribution exhibits a dome of low momentum fluid pulled up from the boundary layer, and the entire domain is characterized by high turbulence.

  10. Large Eddy Simulation of Multiple Turbulent Round Jets

    NASA Astrophysics Data System (ADS)

    Balajee, G. K.; Panchapakesan, Nagangudy

    2015-11-01

    Turbulent round jet flow was simulated as a large eddy simulation with OpenFoam software package for a jet Reynolds number of 11000. The intensity of the fluctuating motion in the incoming nozzle flow was adjusted so that the initial shear layer development compares well with available experimental data. The far field development of averages of higher order moments up to fourth order were compared with experiments. The agreement is good indicating that the large eddy motions were being computed satisfactorily by the simulation. Turbulent kinetic energy budget as well as the quality of the LES simulations were also evaluated. These conditions were then used to perform a multiple turbulent round jets simulation with the same initial momentum flux. The far field of the flow was compared with the single jet simulation and experiments to test approach to self similarity. The evolution of the higher order moments in the development region where the multiple jets interact were studied. We will also present FTLE fields computed from the simulation to educe structures and compare it with those educed by other scalar measures. Support of AR&DB CIFAAR, and VIRGO cluster at IIT Madras is gratefully acknowledged.

  11. Research on jet mixing of settled sludges in nuclear waste tanks at Hanford and other DOE sites: A historical perspective

    SciTech Connect

    Powell, M.R.; Onishi, Y.; Shekarriz, R.

    1997-09-01

    Jet mixer pumps will be used in the Hanford Site double-shell tanks to mobilize and mix the settled solids layer (sludge) with the tank supernatant liquid. Predicting the performance of the jet mixer pumps has been the subject of analysis and testing at Hanford and other U.S. Department of Energy (DOE) waste sites. One important aspect of mixer pump performance is sludge mobilization. The research that correlates mixer pump design and operation with the extent of sludge mobilization is the subject of this report. Sludge mobilization tests have been conducted in tanks ranging from 1/25-scale (3 ft-diameter) to full scale have been conducted at Hanford and other DOE sites over the past 20 years. These tests are described in Sections 3.0 and 4.0 of this report. The computational modeling of sludge mobilization and mixing that has been performed at Hanford is discussed in Section 5.0.

  12. 5. Station Unwatering Pumps and Sump Pump for Units 1 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Station Unwatering Pumps and Sump Pump for Units 1 and 2, view to the west. The unwatering pumps are the two larger items toward the right side of the photograph (one in foreground and one in background. The smaller item toward the left of the photograph is the sump pump. These pumps are used for draining water from the draft chest for maintenance. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  13. Guide to Geothermal Heat Pumps

    SciTech Connect

    2011-02-01

    Geothermal heat pumps, also known as ground source heat pumps, geoexchange, water-source, earth-coupled, and earth energy heat pumps, take advantage of this resource and represent one of the most efficient and durable options on the market to heat and cool your home.

  14. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  15. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...

  16. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...

  17. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...

  18. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  19. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  20. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  1. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...

  2. 30 CFR 57.7801 - Jet drills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 57.7801 Section 57.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7801 Jet drills. Jet piercing drills shall be provided with: (a)...

  3. 30 CFR 56.7801 - Jet drills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system...

  4. 78 FR 62712 - Rate Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Rate Adjustment AGENCY: Postal Regulatory Commission. ACTION: Notice. SUMMARY: The Commission is noticing a recent Postal Service filing seeking postal rate adjustments based on exigent circumstances... On September 26, 2013, the Postal Service filed an exigent rate request with the Commission...

  5. Adjustable holder for transducer mounting

    NASA Technical Reports Server (NTRS)

    Deotsch, R. C.

    1980-01-01

    Positioning of acoustic sensor, strain gage, or similar transducer is facilitated by adjustable holder. Developed for installation on Space Shuttle, it includes springs for maintaining uniform load on transducer with adjustable threaded cap for precisely controlling position of sensor with respect to surrounding structure.

  6. Spousal Adjustment to Myocardial Infarction.

    ERIC Educational Resources Information Center

    Ziglar, Elisa J.

    This paper reviews the literature on the stresses and coping strategies of spouses of patients with myocardial infarction (MI). It attempts to identify specific problem areas of adjustment for the spouse and to explore the effects of spousal adjustment on patient recovery. Chapter one provides an overview of the importance in examining the…

  7. Mood Adjustment via Mass Communication.

    ERIC Educational Resources Information Center

    Knobloch, Silvia

    2003-01-01

    Proposes and experimentally tests mood adjustment approach, complementing mood management theory. Discusses how results regarding self-exposure across time show that patterns of popular music listening among a group of undergraduate students differ with initial mood and anticipation, lending support to mood adjustment hypotheses. Describes how…

  8. Advanced high-temperature electromagnetic pump

    NASA Technical Reports Server (NTRS)

    Gahan, J. W.; Powell, A. H.

    1972-01-01

    Three phase helical, electromagnetic induction pump for use as boiler feed pump in potassium Rankine-cycle power system is described. Techniques for fabricating components of pump are discussed. Specifications of pump are analyzed.

  9. Improving pumping system efficiency at coal plants

    SciTech Connect

    Livoti, W.C.; McCandless, S.; Poltorak, R.

    2009-03-15

    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  10. Portrait characteristics of QCD jets

    SciTech Connect

    Dokshitser, Y.L.; Troyan, S.I.; Khoze, V.A.

    1988-01-01

    In the framework of the perturbation-theory approach to the description of multihadron production in hard processes we analyze the portrait characteristics of jets (the energy and the multiplicity distribution in an isolated jet) and their influence on each other (drag effects, the azimuthal asymmetry of the jet in an aggregate). In contrast to the common but theoretically unjustified procedure of analyzing multijet events, we develop a consistent approach based on inclusive and calorimetric characteristics.

  11. Impeller for Water Jet Propulsion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Marshall Space Flight Center engineers helped North American Marine Jet (NAMJ), Inc. improve the proposed design of a new impeller for jet propulsion system. With a three-dimensional computer model of the new marine jet engine blades, engineers were able to quickly create a solid ploycarbonate model of it. The rapid prototyping allowed the company to avoid many time-consuming and costly steps in creating the impeller.

  12. Flow structure, performance and scaling of acoustic jets

    NASA Astrophysics Data System (ADS)

    Muller, Michael Oliver

    Acoustic jets are studied, with an emphasis on their flow structure, performance, and scaling. The ultimate goal is the development of a micromachined acoustic jet for propulsion of a micromachined airborne platform, as well as integrated cooling and pumping applications. Scaling suggests an increase in performance with decreasing size, motivating the use of micro-technology. Experimental studies are conducted at three different orders of magnitude in size, each closely following analytic expectations. The jet creates a periodic vortical structure, the details of which are a function of amplitude. At small actuation amplitude, but still well above the linear acoustic regime, the flow structure consists of individual vortex rings, propagating away from the nozzle, formed during the outstroke of the acoustic cavity. At large amplitude, a trail of vorticity forms between the periodic vortex rings. Approximately corresponding to these two flow regions are two performance regimes. At low amplitude, the jet thrust increases with the fourth power of the amplitude; and at large amplitude, the thrust equals the momentum flux ejected during the output stroke, and increases as the square of the amplitude. Resonance of the cavity, at Reynolds numbers greater than approximately 10, enhances the jet performance beyond the incompressible behavior. Gains of an order of magnitude in the jet velocity occur at Reynolds numbers of approximately 100, and the data suggest further gains with increasing Reynolds number. The smallest geometries tested are micromachined acoustic jets, manufactured using MEMS technology. The throat dimensions are 50 by 200 mum, and the overall device size is approximately 1 mm 2, with eight throats per device. Several jets are manufactured in an array, to suit any given application. The performance is very dependent on frequency, with a sharp peak at the system resonance, occurring at approximately 70 kHz (inaudible). The mean jet velocity of these devices

  13. Details of the Construction and Production of Fuel Pumps and Fuel Nozzles for the Airplane Diesel Engine

    NASA Technical Reports Server (NTRS)

    Lubenetsky, W S

    1936-01-01

    This report presents investigations into the design and construction of fuel pumps for diesel engines. The results of the pump tests on the engines showed that, with a good cut-off, accurate injection, assured by the proper adjustment of the pump elements, there is a decrease in the consumption of fuel and hence an increase in the rated power of the engine. Some of the aspects investigated include: cam profile, coefficient of discharge, and characteristics of the injection system.

  14. Emergence of extreme events in fiber-based parametric processes driven by a partially incoherent pump wave.

    PubMed

    Hammani, Kamal; Finot, Christophe; Millot, Guy

    2009-04-15

    We present experimental and theoretical results showing efficient emergence of rogue wavelike extreme intensity spikes during the fiber-based induced-modulational instability process driven by a partially incoherent pump. In particular, we show that the rogue event probability can be easily controlled by adjusting the pump-signal detuning. PMID:19370096

  15. Jet Physics at the Tevatron

    SciTech Connect

    Bhatti, Anwar; Lincoln, Don

    2010-02-01

    Jets have been used to verify the theory of quantum chromodynamics (QCD), measure the structure of the proton and to search for the physics beyond the Standard Model. In this article, we review the current status of jet physics at the Tevatron, a {radical}s = 1.96 TeV p{bar p} collider at the Fermi National Accelerator Laboratory. We report on recent measurements of the inclusive jet production cross section and the results of searches for physics beyond the Standard Model using jets. Dijet production measurements are also reported.

  16. Photon + jets at D0

    SciTech Connect

    Sonnenschein, Lars; /RWTH Aachen U.

    2009-06-01

    Photon plus jet production has been studied by the D0 experiment in Run II of the Fermilab Tevatron Collider at a centre of mass energy of {radical}s = 1.96 TeV. Measurements of the inclusive photon, inclusive photon plus jet, photon plus heavy flavour jet cross sections and double parton interactions in photon plus three jet events are presented. They are based on integrated luminosities between 0.4 fb{sup -1} and 1.0 fb{sup -1}. The results are compared to perturbative QCD calculations in various approximations.

  17. Jet penetration of high explosive

    SciTech Connect

    Poulsen, P

    1999-08-11

    It is found that a transition between two flow patterns takes place in thick HE targets. In this case, the jet will initially propagate into the HE at the same rate as into an inert material of the same density. The part of the jet that has stagnated and is flowing nearly co-axially with the incoming jet (but at a much lower speed) is being forced toward the surface of the incoming jet by the pressure of the reaction products but has not as yet made contact. After it makes contact, both axial and perpendicular momentum transfer takes place between the two jet components. After this transition, a new steady state will develop for the propagating jet, with the unperturbed front of the jet propagating at a slower rate than previously. The perturbed front of the jet is still propagating at or near the original rate, having had relatively little axial momentum exchange. However, it has acquired radial momentum and is spreading out as it is propagating; it is therefore becoming less capable of penetrating downstream targets. It is the unperturbed part of the jet that is capable of penetrating downstream targets. A calculational method for predicting this case is presented in this report.

  18. Electromagnetic Models of Extragalactic Jets

    SciTech Connect

    Lisanti, M.; Blandford, R.; /KIPAC, Menlo Park

    2007-10-22

    Relativistic jets may be confined by large-scale, anisotropic electromagnetic stresses that balance isotropic particle pressure and disordered magnetic field. A class of axisymmetric equilibrium jet models will be described and their radiative properties outlined under simple assumptions. The partition of the jet power between electromagnetic and mechanical forms and the comoving energy density between particles and magnetic field will be discussed. Current carrying jets may be recognized by their polarization patterns. Progress and prospects for measuring this using VLBI and GLAST observations will be summarized.

  19. Dissipationless decay of Jovian jets

    NASA Astrophysics Data System (ADS)

    Pirraglia, J. A.

    1989-05-01

    IRIS data have been taken as the bases of windshear calculations whose results imply a decrease of the Jovian planet's zonal jets with altitude. The simplified dynamical model developed to furnish a mechanism accounting for the decay involves a highly truncated set of dissipationless equations simulating the upper-tropospheric and stratospheric flow. While the model's lower boundary is constrained as a latitudinally periodic set of alternating jets, the upper boundary constraint maintains a constant potential temperature. The small perturbations to which the imposed zonal jets are unstable grow and interact nonlinearly, generating a zonal flow that opposes the imposed one and thereby leading to the apparent decrease of the jets with altitude.

  20. Representing pump-capacity relations in groundwater simulation models.

    PubMed

    Konikow, L F

    2010-01-01

    The yield (or discharge) of constant-speed pumps varies with the total dynamic head (or lift) against which the pump is discharging. The variation in yield over the operating range of the pump may be substantial. In groundwater simulations that are used for management evaluations or other purposes, where predictive accuracy depends on the reliability of future discharge estimates, model reliability may be enhanced by including the effects of head-capacity (or pump-capacity) relations on the discharge from the well. A relatively simple algorithm has been incorporated into the widely used MODFLOW groundwater flow model that allows a model user to specify head-capacity curves. The algorithm causes the model to automatically adjust the pumping rate each time step to account for the effect of drawdown in the cell and changing lift, and will shut the pump off if lift exceeds a critical value. The algorithm is available as part of a new multinode well package (MNW2) for MODFLOW. PMID:19732161

  1. The numerical simulation based on CFD of hydraulic turbine pump

    NASA Astrophysics Data System (ADS)

    Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.

  2. SHINE Vacuum Pump Test Verification

    SciTech Connect

    Morgan, Gregg A; Peters, Brent

    2013-09-30

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this

  3. Mitigation of tank 241-SY-101 by pump mixing: Results of full-scale testing

    SciTech Connect

    Stewart, C.W.; Hudson, J.D.; Friley, J.R.; Panisko, F.E.; Antoniak, Z.I.; Irwin, J.J.; Fadeff, J.G.; Efferding, L.F.; Michener, T.E.; Kirch, N.W.

    1994-06-01

    The Full-Scale Mixer Pump Test Program was performed in Hanford Tank 241-SY-101 from February 4 to April 13, 1994, to confirm the long-term operational strategy for flammable gas mitigation and to demonstrate that mixing can control the gas release and waste level. Since its installation on July 3, 1993, the current pump, operating only a few hours per week, has proved capable of mixing the waste sufficiently to release gas continuously instead of in large episodic events. The results of Full-Scale Testing demonstrated that the pump can control gas release and waste level for long-term mitigation, and the four test sequences formed the basis for the long-term operating schedule. The last test sequence, jet penetration tests, showed that the current pump jet creates flow near the tank wall and that it can excavate portions of the bottom sludge layer if run at maximum power. Pump mixing has altered the {open_quote}normal{close_quote} configuration of the waste; most of the original nonconvective sludge has been mixed with the supernatant liquid into a mobile convective slurry that has since been maintained by gentle pump operation and does not readily return to sludge.

  4. Save by absorption heat pumping

    SciTech Connect

    Davidson, W.F.; Campagne, W.V.L.

    1987-12-01

    The author compares absorption heat pumping (AHP) to mechanical vapor compressor (MVC) heat pumping. The moving part of the AHP is a pump easy to maintain and inexpensive to spare. The mechanical component of the MVC is a vapor compressor which requires more maintenance and is cost-prohibitive to spare. Also, in the MVC system, a purified product stream is heat pumped in an open compressor, thus risking product contamination. In the AHP system, the cold and hot utilities are heat pumped. Therefore, product integrity with an AHP system is well protected as in a conventional fractionation column.

  5. Bearing for liquid metal pump

    DOEpatents

    Dickinson, Robert J.; Wasko, John; Pennell, William E.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance.

  6. LeRC NATR Free-Jet Development

    NASA Technical Reports Server (NTRS)

    Long-Davis, M.; Cooper, B. A.

    1999-01-01

    The Nozzle Acoustic Test Rig (NATR) was developed to provide additional test capabilities at Lewis needed to meet HSR program goals. The NATR is a large f ree-jet facility (free-jet diameter = 53 in.) with a design Mach number of 0.3. It is located inside a geodesic dome, adjacent to the existing Powered Lift Facility (PLF). The NATR allows nozzle concepts to be acoustically assessed for far-field (approximately 50 feet) noise characteristics under conditions simulating forward flight. An ejector concept was identified as a means of supplying the required airflow for this free-jet facility. The primary stream is supplied through a circular array of choked nozzles and the resulting low pressure in the constant, annular- area mixing section causes a "pumping" action that entrains the secondary stream. The mixed flow expands through an annular diffuser and into a plenum chamber. Once inside the plenum, the flow passes over a honeycomb/screen combination intended to remove large disturbances and provide uniform flow. The flow accelerates through an elliptical contraction section where it achieves a free-jet Mach number of up to 0.3.

  7. Isotope exchange by Ion Cyclotron Wall Conditioning on JET

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Douai, D.; Kogut, D.; Lyssoivan, A.; Brezinsek, S.; Belonohy, E.; Blackman, T.; Bobkov, V.; Crombé, K.; Drenik, A.; Graham, M.; Joffrin, E.; Lerche, E.; Loarer, T.; Lomas, P. L.; Mayoral, M.-L.; Monakhov, I.; Oberkofler, M.; Philipps, V.; Plyusnin, V.; Sergienko, G.; Van Eester, D.

    2015-08-01

    The isotopic exchange efficiencies of JET Ion Cyclotron Wall Conditioning (ICWC) discharges produced at ITER half and full field conditions are compared for JET carbon (C) and ITER like wall (ILW). Besides an improved isotope exchange rate on the ILW providing cleaner plasma faster, the main advantage compared to C-wall is a reduction of the ratio of retained discharge gas to removed fuel. Complementing experimental data with discharge modeling shows that long pulses with high (∼240 kW coupled) ICRF power maximizes the wall isotope removal per ICWC pulse. In the pressure range 1-7.5 × 10-3 Pa, this removal reduces with increasing discharge pressure. As most of the wall-released isotopes are evacuated by vacuum pumps in the post discharge phase, duty cycle optimization studies for ICWC on JET-ILW need further consideration. The accessible reservoir by H2-ICWC at ITER half field conditions on the JET-ILW preloaded by D2 tokamak operation is estimated to be 7.3 × 1022 hydrogenic atoms, and may be exchanged within 400 s of cumulated ICWC discharge time.

  8. Field of Flow About a Jet and Effect of Jets on Stability of Jet-Propelled Airplanes

    NASA Technical Reports Server (NTRS)

    Ribner, Herbert S.

    1946-01-01

    A theoretical investigation was conducted on jet-induced flow deviation. Analysis is given of flow inclination induced outside cold and hot jets and jet deflection caused by angle of attack. Applications to computation of effects of jet on longitudinal stability and trim are explained. Effect of jet temperature on flow inclination was found small when thrust coefficient is used as criterion for similitude. The average jet-induced downwash over tail plane was obtained geometrically.

  9. 46 CFR 182.520 - Bilge pumps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (incorporated by reference; see 46 CFR 175.600); (2) The pump is used to dewater not more than one watertight... passengers Length of vessel Bilge pumps required Min. capacity required per pump ltrs/min (gal/min) Any... capacity, a power bilge pump may also serve as a fire pump. (d) Where two fixed power bilge pumps...

  10. 21 CFR 880.5725 - Infusion pump.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  11. CARS Temperature Measurements in a Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Tedder, S. A.; Danehy, P. M.; Magnotti, G.; Cutler, A. D.

    2009-01-01

    Measurements were made in a combustion-heated supersonic axi-symmetric free jet from a nozzle with a diameter of 6.35 cm using dual-pump Coherent Anti-Stokes Raman Spectroscopy (CARS). The resulting mean and standard deviation temperature maps are presented. The temperature results show that the gas temperature on the centerline remains constant for approximately 5 nozzle diameters. As the heated gas mixes with the ambient air further downstream the mean temperature decreases. The standard deviation map shows evidence of the increase of turbulence in the shear layer as the jet proceeds downstream and mixes with the ambient air. The challenges of collecting data in a harsh environment are discussed along with influences to the data. The yield of the data collected is presented and possible improvements to the yield is presented are discussed.

  12. Vacuum pump aids ejectors

    SciTech Connect

    Nelson, R.E.

    1982-12-01

    The steam ejector/vacuum pump hybrid system has been operating satisfactorily since the summer of 1981. This system has essentially been as troublefree as the all-ejector system and, of course, has provided a substantial cost savings. Construction is currently under way to convert the vacuum system of another crude still which is equipped with steam ejectors and barometric condensers to the hybrid system of steam ejectors, surface condensers, and vacuum pumps. This current project is even more financially attractive because it allows a dirty water cooling tower which serves the barometric condensers to be shut down. Providing a vacuum for crude distillation vacuum towers with this hybrid system is by no means the only application of this technique. Any vacuum system consisting of all steam ejectors would be a candidate for this hybrid system and the resulting savings in energy.

  13. Multiple source heat pump

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  14. Water displacement mercury pump

    DOEpatents

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  15. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  16. Micromachined peristaltic pump

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1998-01-01

    A micromachined pump including a channel formed in a semiconductor substrate by conventional processes such as chemical etching. A number of insulating barriers are established in the substrate parallel to one another and transverse to the channel. The barriers separate a series of electrically conductive strips. An overlying flexible conductive membrane is applied over the channel and conductive strips with an insulating layer separating the conductive strips from the conductive membrane. Application of a sequential voltage to the series of strips pulls the membrane into the channel portion of each successive strip to achieve a pumping action. A particularly desirable arrangement employs a micromachined push-pull dual channel cavity employing two substrates with a single membrane sandwiched between them.

  17. Water displacement mercury pump

    DOEpatents

    Nielsen, Marshall G.

    1985-01-01

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  18. Solar-powered pump

    NASA Technical Reports Server (NTRS)

    Kirsten, C. C. (Inventor)

    1976-01-01

    A solar powered pump particularly suited for intermittently delivering a stream of water is reported. The pump is characterized by a housing adapted to be seated in a source of water having a water discharge port disposed above the water line of the source, a sump including a valved inlet port through which water is introduced to the sump, disposed beneath the water line, a displacer supported for vertical reciprocation in said housing, an air passageway extended between the vertically spaced faces of the displacer, and a tipple disposed adjacent to the water discharge port adapted to be filled in response to a discharge of water from the housing. Air above a displacer is expanded in response to solar energy impinging on the housing and transferred into pressurizing relation with the sump for forcing water from the sump.

  19. Molecular water pumps.

    PubMed

    Zeuthen, T

    2000-01-01

    There is good evidence that cotransporters of the symport type behave as molecular water pumps, in which a water flux is coupled to the substrate fluxes. The free energy stored in the substrate gradients is utilized, by a mechanism within the protein, for the transport of water. Accordingly, the water flux is secondary active and can proceed uphill against the water chemical potential difference. The effect has been recognized in all symports studied so far (Table 1). It has been studied in details for the K+/Cl- cotransporter in the choroid plexus epithelium, the H+/lactate cotransporter in the retinal pigment epithelium, the intestinal Na+/glucose cotransporter (SGLT1) and the renal Na+/dicarboxylate cotransporter both expressed in Xenopus oocytes. The generality of the phenomenon among symports with widely different primary structures suggests that the property of molecular water pumps derives from a pattern of conformational changes common for this type of membrane proteins. Most of the data on molecular water pumps are derived from fluxes initiated by rapid changes in the composition of the external solution. There was no experimental evidence for unstirred layers in such experiments, in accordance with theoretical evaluations. Even the experimental introduction of unstirred layers did not lead to any measurable water fluxes. The majority of the experimental data supports a molecular model where water is cotransported: A well defined number of water molecules act as a substrate on equal footing with the non-aqueous substrates. The ratio of any two of the fluxes is constant, given by the properties of the protein, and is independent of the driving forces or other external parameters. The detailed mechanism behind the molecular water pumps is as yet unknown. It is, however, possible to combine well established phenomena for enzymes into a working model. For example, uptake and release of water is associated with conformational changes during enzymatic action; a

  20. Magnetic heat pumps

    SciTech Connect

    Hull, J.R.; Uherka, K.L.

    1988-01-01

    Magnetic heat pumps and refrigerators are potential replacements for vapor-compression devices that use chlorofluorocarbon refrigerants. Several room-temperature designs, using low-temperature superconducting magnets, have reached the experimental device stage. High-temperature superconducting materials may significantly increase the viability of the technology, both by enhancing existing design concepts and by enabling new major design types such as field switching of the superconducting magnets.