Adjustable speed drive study, part 1
NASA Astrophysics Data System (ADS)
Wallace, A.
1989-08-01
Advances in speed control for motors in recent years, notably those in power electronics, have widened the range of application for several adjustable speed drive (ASD) types to include the smaller horsepower sizes. The dc motor drive, formerly in almost universal use for speed control, is being challenged by the high efficiency induction motor/pulse width modulation (PWM) drive; and for special small horsepower size applications, by the permanent magnet motor/PWM inverter drive or by the switched reluctance motor drive. The main characteristics of the several ASD types suitable for small horsepower size applications are discussed, as well as their unwanted side effects: poor power factor, harmonic distortion of the supply, acoustic noise, and electromagnetic interference. A procedure is recommended for determining which, if any, ASD to use.
Adjustable speed drive study, June 1985 to September 1988. Part 2: Appendices
NASA Astrophysics Data System (ADS)
Wallace, Alan
1989-08-01
Advances in speed control for motors in recent years, notably those in power electronics, have widened the range of application for several adjustable speed drive (ASD) types to include the smaller horsepower sizes. The dc motor drive, formerly in almost universal use for speed control, is being challenged by the high efficiency induction motor/pulse width modulation (PWM) drive; and for special small horsepower size applications, by the permanent magnet motor/PWM inverter drive or by the switched reluctance motor drive. The main characteristics of the several ASD types suitable for small horsepower size applications are discussed, as well as their unwanted side effects: poor power factor, harmonic distortion of the supply, acoustic noise, and electromagnetic interference. A procedure is recommended for determining which, if any, ASD to use.
Schneidereit, Tina; Petzoldt, Tibor; Keinath, Andreas; Krems, Josef F
2017-09-01
The engagement in secondary tasks while driving has been found to result in considerable impairments of driving performance. Texting has especially been suspected to be associated with an increased crash risk. At the same time, there is evidence that drivers use various self-regulating strategies to compensate for the increased demands caused by secondary task engagement. One of the findings reported from multiple studies is a reduction in driving speed. However, most of these studies are of experimental nature and do not let the drivers decide for themselves to (not) engage in the secondary task, and therefore, eliminate other strategies of self-regulation (e.g., postponing the task). The goal of the present analysis was to investigate if secondary task engagement results in speed adjustment also under naturalistic conditions. Our analysis relied on data of the SHRP 2 naturalistic driving study. To minimize the influence of potentially confounding factors on drivers' speed choice, we focused on episodes of free flow driving on interstates/highways. Driving speed was analyzed before, during, and after texting, smoking, eating, and adjusting/monitoring radio or climate control; in a total of 403 episodes. Data show some indication for speed adjustment for texting, especially when driving with high speed. However, the effect sizes were small and behavioral patterns varied considerably between drivers. The engagement in the other tasks did not influence drivers' speed behavior significantly. While drivers might indeed reduce speed slightly to accommodate for secondary task engagement, other forms of adaptation (e.g., strategic decisions) might play a more important role in a natural driving environment. The use of naturalistic driving data to study drivers' self-regulatory behavior at an operational level has proven to be promising. Still, in order to obtain a comprehensive understanding about drivers' self-regulatory behavior, a mixed-method approach is required. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romberger, Jeff
An adjustable-speed drive (ASD) includes all devices that vary the speed of a rotating load, including those that vary the motor speed and linkage devices that allow constant motor speed while varying the load speed. The Variable Frequency Drive Evaluation Protocol presented here addresses evaluation issues for variable-frequency drives (VFDs) installed on commercial and industrial motor-driven centrifugal fans and pumps for which torque varies with speed. Constant torque load applications, such as those for positive displacement pumps, are not covered by this protocol.
Adjustable Speed Drive Project for Teaching a Servo Systems Course Laboratory
ERIC Educational Resources Information Center
Rodriguez-Resendiz, J.; Herrera-Ruiz, G.; Rivas-Araiza, E. A.
2011-01-01
This paper describes an adjustable speed drive for a three-phase motor, which has been implemented as a design for a servo system laboratory course in an engineering curriculum. The platform is controlled and analyzed in a LabVIEW environment and run on a PC. Theory is introduced in order to show the sensorless algorithms. These are computed by…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-08-01
The objective of this report is to develop a generalized methodology for examining water distribution systems for adjustable speed drive (ASD) applications and to provide an example (the City of Chicago 68th Street Water Pumping Station) using the methodology. The City of Chicago water system was chosen as the candidate for analysis because it has a large service area distribution network with no storage provisions after the distribution pumps. Many industrial motors operate at only one speed or a few speeds. By speeding up or slowing down, ASDs achieve gentle startups and gradual shutdowns thereby providing plant equipment a longermore » life with fewer breakdowns while minimizing the energy requirements. The test program substantiated that ASDs enhance product quality and increase productivity in many industrial operations, including extended equipment life. 35 figs.« less
NASA Astrophysics Data System (ADS)
Yamamoto, Shu; Ara, Takahiro
Recently, induction motors (IMs) and permanent-magnet synchronous motors (PMSMs) have been used in various industrial drive systems. The features of the hardware device used for controlling the adjustable-speed drive in these motors are almost identical. Despite this, different techniques are generally used for parameter measurement and speed-sensorless control of these motors. If the same technique can be used for parameter measurement and sensorless control, a highly versatile adjustable-speed-drive system can be realized. In this paper, the authors describe a new universal sensorless control technique for both IMs and PMSMs (including salient pole and nonsalient pole machines). A mathematical model applicable for IMs and PMSMs is discussed. Using this model, the authors derive the proposed universal sensorless vector control algorithm on the basis of estimation of the stator flux linkage vector. All the electrical motor parameters are determined by a unified test procedure. The proposed method is implemented on three test machines. The actual driving test results demonstrate the validity of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, R.G.; Finney, D.; Davidson, D.F.
1988-07-01
The construction, testing, and installation of a 6500 r/min 15 000-hp adjustable-speed electric drive for a centrifugal gas compressor is presented. A power electronic converter is applied to control the speed of a 5-kV motor. The motor is directly coupled to a 6500 r/min compressor and replaced a steam turbine. Dual converters are used in a twelve-pulse arrangement at both the utility and the motor. The motor is of solid rotor construction, with dual 30/sup 0/ displaced stator windings. Finite-element analysis is used to optimize the motor designs for use with a variable-frequency static converter. Full-power tests are completed whichmore » confirm theoretical predictions on losses, performance, and operation. The electrical drive takes up considerably less space and is much more efficient than the steam turbine it replaced.« less
NASA Technical Reports Server (NTRS)
Sydnor, George H.; Bhatia, Ram; Krattiger, Hansueli; Mylius, Justus; Schafer, D.
2012-01-01
In September 1995, a project was initiated to replace the existing drive line at NASA's most unique transonic wind tunnel, the National Transonic Facility (NTF), with a single 101 MW synchronous motor driven by a Load Commutated Inverter (LCI). This Adjustable Speed Drive (ASD) system also included a custom four-winding transformer, harmonic filter, exciter, switch gear, control system, and feeder cable. The complete system requirements and design details have previously been presented and published [1], as well as the commissioning and acceptance test results [2]. The NTF was returned to service in December 1997 with the new drive system powering the fan. Today, this installation still represents the world s largest horizontal single motor/drive combination. This paper describes some significant events that occurred with the drive system during the first 15 years of service. These noteworthy issues are analyzed and root causes presented. Improvements that have substantially increased the long term viability of the system are given.
Circuit Regulates Speed Of dc Motor
NASA Technical Reports Server (NTRS)
Weaver, Charles; Padden, Robin; Brown, Floyd A., Jr.
1990-01-01
Driving circuit regulates speed of small dc permanent-magnet motor in tape recorder. Two nested feedback loops maintain speed within 1 percent of constant value. Inner loop provides coarse regulation, while outer loop removes most of variation in speed that remains in the presence of regulation by the inner loop. Compares speed of motor with commanded speed and adjusts current supplied to motor accordingly.
Variable-speed, portable routing skate
NASA Technical Reports Server (NTRS)
Pesch, W. A.
1967-01-01
Lightweight, portable, variable-speed routing skate is used on heavy metal subassemblies which are impractical to move to a stationary machine. The assembly, consisting of the housing with rollers, router, and driving mechanism with transmission, weighs about forty pounds. Both speed and depth of cut are adjustable.
System simulation of direct-current speed regulation based on Simulink
NASA Astrophysics Data System (ADS)
Yang, Meiying
2018-06-01
Many production machines require the smooth adjustment of speed in a certain range In the process of modern industrial production, and require good steady-state and dynamic performance. Direct-current speed regulation system with wide speed regulation range, small relative speed variation, good stability, large overload capacity, can bear the frequent impact load, can realize stepless rapid starting-braking and inversion of frequency and other good dynamic performances, can meet the different kinds of special operation requirements in production process of automation system. The direct-current power drive system is almost always used in the field of drive technology of high performance for a long time.
Extended cage adjustable speed electric motors and drive packages
Hsu, John S.
1999-01-01
The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced.
Pool power control in remelting systems
Williamson, Rodney L [Albuquerque, NM; Melgaard, David K [Albuquerque, NM; Beaman, Joseph J [Austin, TX
2011-12-13
An apparatus for and method of controlling a remelting furnace comprising adjusting current supplied to an electrode based upon a predetermined pool power reference value and adjusting the electrode drive speed based upon the predetermined pool power reference value.
Extended cage adjustable speed electric motors and drive packages
Hsu, J.S.
1999-03-23
The rotor cage of a motor is extended, a second stator is coupled to this extended rotor cage, and the windings have the same number of poles. The motor torque and speed can be controlled by either injecting energy into or extracting energy out from the rotor cage. The motor produces less harmonics than existing doubly-fed motors. Consequently, a new type of low cost, high efficiency drive is produced. 12 figs.
Driving on urban roads: How we come to expect the 'correct' speed.
Charlton, Samuel G; Starkey, Nicola J
2017-11-01
The subjective categories that drivers use to distinguish between different road types have been shown to influence the speeds they choose to drive but as yet we do not understand the road features that drivers use to make their discriminations. To better understand how drivers describe and categorise the roads they drive, 55 participants were recruited to drive a video of familiar urban roads in a driving simulator at the speed they would drive these roads in their own cars (using the accelerator and brake pedal in the driving simulator to adjust their speed). The participants were then asked to sort photos of the roads they had just driven into piles so that their driving would be the same on all roads in one pile but different to the other piles. Finally, they answered a series of questions about each road to indicate what speed they would drive, the safe speed for the road, their speed limit belief as well as providing ratings of comfort, difficulty and familiarity. Overall, drivers' categorisation of roads was informed by a number of factors including speed limit belief, road features and markings (including medians), road width, and presence of houses, driveways and footpaths. The participants' categories were congruent with what they thought the speed limits were, but not necessarily the actual speed limits. Mismatches between actual speed limits and speed limit beliefs appeared to result from category-level expectations about speed limits that took precedence over recent experience in the simulator. Roads that historically had a 50km/h speed limit but had been reduced to 40km/h were still regarded as 50km/h roads by the participants, underscoring the point that simply posting a sign with a lower speed limit is not enough to overcome drivers' expectations and habits associated with the visual appearance of a road. The findings provided insights into how drivers view and categorise roads, and identify specific areas that could be used to improve speed limit credibility. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tivesten, Emma; Dozza, Marco
2015-06-01
Visual-manual (VM) phone tasks (i.e., texting, dialing, reading) are associated with an increased crash/near-crash risk. This study investigated how the driving context influences drivers' decisions to engage in VM phone tasks in naturalistic driving. Video-recordings of 1,432 car trips were viewed to identify VM phone tasks and passenger presence. Video, vehicle signals, and map data were used to classify driving context (i.e., curvature, other vehicles) before and during the VM phone tasks (N=374). Vehicle signals (i.e., speed, yaw rate, forward radar) were available for all driving. VM phone tasks were more likely to be initiated while standing still, and less likely while driving at high speeds, or when a passenger was present. Lead vehicle presence did not influence how likely it was that a VM phone task was initiated, but the drivers adjusted their task timing to situations when the lead vehicle was increasing speed, resulting in increasing time headway. The drivers adjusted task timing until after making sharp turns and lane change maneuvers. In contrast to previous driving simulator studies, there was no evidence of drivers reducing speed as a consequence of VM phone task engagement. The results show that experienced drivers use information about current and upcoming driving context to decide when to engage in VM phone tasks. However, drivers may fail to sufficiently increase safety margins to allow time to respond to possible unpredictable events (e.g., lead vehicle braking). Advanced driver assistance systems should facilitate and possibly boost drivers' self-regulating behavior. For instance, they might recognize when appropriate adaptive behavior is missing and advise or alert accordingly. The results from this study could also inspire training programs for novice drivers, or locally classify roads in terms of the risk associated with secondary task engagement while driving. Copyright © 2015. Published by Elsevier Ltd.
PV Array Driven Adjustable Speed Drive for a Lunar Base Heat Pump
NASA Technical Reports Server (NTRS)
Domijan, Alexander, Jr.; Buchh, Tariq Aslam
1995-01-01
A study of various aspects of Adjustable Speed Drives (ASD) is presented. A summary of the relative merits of different ASD systems presently in vogue is discussed. The advantages of using microcomputer based ASDs is now widely understood and accepted. Of the three most popular drive systems, namely the Induction Motor Drive, Switched Reluctance Motor Drive and Brushless DC Motor Drive, any one may be chosen. The choice would depend on the nature of the application and its requirements. The suitability of the above mentioned drive systems for a photovoltaic array driven ASD for an aerospace application are discussed. The discussion is based on the experience of the authors, various researchers and industry. In chapter 2 a PV array power supply scheme has been proposed, this scheme will have an enhanced reliability in addition to the other known advantages of the case where a stand alone PV array is feeding the heat pump. In chapter 3 the results of computer simulation of PV array driven induction motor drive system have been included. A discussion on these preliminary simulation results have also been included in this chapter. Chapter 4 includes a brief discussion on various control techniques for three phase induction motors. A discussion on different power devices and their various performance characteristics is given in Chapter 5.
A Senior Project-Based Multiphase Motor Drive System Development
ERIC Educational Resources Information Center
Abdel-Khalik, Ayman S.; Massoud, Ahmed M.; Ahmed, Shehab
2016-01-01
Adjustable-speed drives based on multiphase motors are of significant interest for safety-critical applications that necessitate wide fault-tolerant capabilities and high system reliability. Although multiphase machines are based on the same conceptual theory as three-phase machines, most undergraduate electrical machines and electric drives…
Four quadrant control of induction motors
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1991-01-01
Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.
Alternating-Current Motor Drive for Electric Vehicles
NASA Technical Reports Server (NTRS)
Krauthamer, S.; Rippel, W. E.
1982-01-01
New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.
Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox
NASA Astrophysics Data System (ADS)
Li, R. N.; Liu, X.; Liu, S. J.
2013-12-01
In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.
40 CFR 86.535-90 - Dynamometer procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... run consists of two tests, a “cold” start test and a “hot” start test following the “cold” start by 10... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided... the proper speed-time relationship, or to permit sampling system adjustments. (e) The drive wheel...
Effects of upper-limb immobilisation on driving safety.
Gregory, J J; Stephens, A N; Steele, N A; Groeger, J A
2009-03-01
Doctors are frequently asked by patients whether it is safe to drive with an upper limb immobilised in a cast. In the literature there are no objective measurements of the effects of upper-limb immobilisation upon driving performance. Eight healthy volunteers performed four 20-min driving circuits in a driving simulator (STISIM 400W), circuits 1 and 4 without immobilisation and circuits 2 and 3 with immobilisation. Immobilisation involved a lightweight below-elbow cast with the thumb left free. Volunteers were randomised to right or left immobilisation for circuit 2, and the contralateral wrist was immobilised for circuit 3. Circuits included urban and rural environments and specific hazards (pedestrians crossing, vehicles emerging from a concealed entrance, traffic lights changing suddenly, avoidance of an oncoming vehicle in the driver's carriageway). Limb immobilisation led to more cautious rural and urban driving, with less adjustment of speed and lateral road position than when unrestricted. However when responding to hazards immobilisation caused less safe driving, with higher speeds, a greater proximity to the hazard before action was taken and less steering adjustment. The effects of restriction upon performance were more prevalent and severe with right-arm immobilisation. Upper-limb immobilisation appears to have little effect on the ability to drive a car unchallenged, but to adversely affect responses to routine hazards. Advice on ability to drive safely should be cautious, as the impact of immobilisation appears to be more subtle and wide ranging than previously thought.
Liquid crystal modulator with ultra-wide dynamic range and adjustable driving voltage.
Wang, Xing-jun; Huang, Zhang-di; Feng, Jing; Chen, Xiang-fei; Liang, Xiao; Lu, Yan-qing
2008-08-18
We demonstrated a reflective-type liquid crystal (LC) intensity modulator in 1550 nm telecomm band. An effective way to compensate the residual phase of a LC cell is proposed. With the adjustment of a true zero-order quarter wave plate and enhanced by total internal reflection induced birefringence, over 53 dB dynamic range was achieved, which is much desired for some high-end optical communication, infrared scene projection applications. In addition, the driving voltages were decreased and adjustable. Mechanical and spectral tolerance measurements show that our LC modulator is quite stable. Further applications of our experimental setup were discussed including bio-sensors and high speed modulators.
Engine speed control apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, M.; Miyazaki, M.; Nakamura, N.
1986-11-04
This patent describes an engine speed control apparatus. The system comprises an actuator for adjusting an engine speed, a first unit for computing a desired engine speed, a second unit for detecting the actual engine speed, and a third unit for detecting the difference between the outputs of the first and second units. The system also includes a fourth unit for computing a control pulse width for the actuator in accordance with the output of the third unit, a fifth unit for generating a control signal, a sixth unit for driving the actuator in response to the output of themore » fifth unit, and a seventh unit for computing an optimal halt time to interrupt the driving of the actuator. The actuator is driven intermittently in conformity in the control pulse width and the halt time.« less
Permanent magnet DC motor control by using arduino and motor drive module BTS7960
NASA Astrophysics Data System (ADS)
Syukriyadin, S.; Syahrizal, S.; Mansur, G.; Ramadhan, H. P.
2018-05-01
This study proposes a control system for permanent magnet DC (PMDC) motor. PMDC drive control system has two critical parameters: control and monitoring. Control system includes rotation speed control and direction of rotation of motor using motor drive module BTS7960. The PWM signal has a fixed frequency of waves with varying duty cycles (between 0% and 100%), so the motor rotation can be regulated gradually using a potentiometer already programmed on the Arduino Uno board. The motor rotation direction setting uses the H-bridge circuit method using a 3-way switch to set the direction of forward-reverse rotation of the motor. The monitoring system includes measurements of rotational speed, current, and voltage. Motor rotation speed can be adjusted from the armature voltage settings through the duty cycle PWM setting so that the motor speed can be increased or decreased by the desired duty cycle. From the unload PMDC motor test results it has also been shown that the torque of the motor is relatively constant when there is a change in speed from low rpm to high rpm or vice versa.
Application of drive circuit based on L298N in direct current motor speed control system
NASA Astrophysics Data System (ADS)
Yin, Liuliu; Wang, Fang; Han, Sen; Li, Yuchen; Sun, Hao; Lu, Qingjie; Yang, Cheng; Wang, Quanzhao
2016-10-01
In the experiment of researching the nanometer laser interferometer, our design of laser interferometer circuit system is up to the wireless communication technique of the 802.15.4 IEEE standard, and we use the RF TI provided by Basic to receive the data on speed control system software. The system's hardware is connected with control module and the DC motor. However, in the experiment, we found that single chip microcomputer control module is very difficult to drive the DC motor directly. The reason is that the DC motor's starting and braking current is larger than the causing current of the single chip microcomputer control module. In order to solve this problem, we add a driving module that control board can transmit PWM wave signal through I/O port to drive the DC motor, the driving circuit board can come true the function of the DC motor's positive and reversal rotation and speed adjustment. In many various driving module, the L298N module's integrated level is higher compared with other driver module. The L298N model is easy to control, it not only can control the DC motor, but also achieve motor speed control by modulating PWM wave that the control panel output. It also has the over-current protection function, when the motor lock, the L298N model can protect circuit and motor. So we use the driver module based on L298N to drive the DC motor. It is concluded that the L298N driver circuit module plays a very important role in the process of driving the DC motor in the DC motor speed control system.
An extended continuum model accounting for the driver's timid and aggressive attributions
NASA Astrophysics Data System (ADS)
Cheng, Rongjun; Ge, Hongxia; Wang, Jufeng
2017-04-01
Considering the driver's timid and aggressive behaviors simultaneously, a new continuum model is put forwarded in this paper. By applying the linear stability theory, we presented the analysis of new model's linear stability. Through nonlinear analysis, the KdV-Burgers equation is derived to describe density wave near the neutral stability line. Numerical results verify that aggressive driving is better than timid act because the aggressive driver will adjust his speed timely according to the leading car's speed. The key improvement of this new model is that the timid driving deteriorates traffic stability while the aggressive driving will enhance traffic stability. The relationship of energy consumption between the aggressive and timid driving is also studied. Numerical results show that aggressive driver behavior can not only suppress the traffic congestion but also reduce the energy consumption.
The neural substrates of driving at a safe distance: a functional MRI study.
Uchiyama, Yuji; Ebe, Kazutoshi; Kozato, Akio; Okada, Tomohisa; Sadato, Norihiro
2003-12-11
An important driving skill is the ability to maintain a safe distance from a preceding car. To determine the neural substrates of this skill we performed functional magnetic resonance imaging of simulated driving in 21 subjects. Subjects used a joystick to adjust their own driving speed in order to maintain a constant distance from a preceding car traveling at varying speeds. The task activated multiple brain regions. Activation of the cerebellum may reflect visual feedback during smooth tracking of the preceding car. Co-activation of the basal ganglia, thalamus and premotor cortex is related to movement selection. Activation of a premotor-parietal network is related to visuo-motor co-ordination. Task performance was negatively correlated with anterior cingulate activity, consistent with the role of this region in error detection and response selection.
NASA Astrophysics Data System (ADS)
Pachauri, Rupendra Kumar; Chauhan, Yogesh K.
2017-02-01
This paper is a novel attempt to combine two important aspects of fuel cell (FC). First, it presents investigations on FC technology and its applications. A description of FC operating principles is followed by the comparative analysis of the present FC technologies together with the issues concerning various fuels. Second, this paper also proposes a model for the simulation and performances evaluation of a proton exchange membrane fuel cell (PEMFC) generation system. Furthermore, a MATLAB/Simulink-based dynamic model of PEMFC is developed and parameters of FC are so adjusted to emulate a commercially available PEMFC. The system results are obtained for the PEMFC-driven adjusted speed induction motor drive (ASIMD) system, normally used in electric vehicles and analysis is carried out for different operating conditions of FC and ASIMD system. The obtained results prove the validation of system concept and modelling.
Hotta, Ryo; Makizako, Hyuma; Doi, Takehiko; Tsutsumimoto, Kota; Nakakubo, Sho; Makino, Keitaro; Shimada, Hiroyuki
2018-02-19
To examine the relationship between cognitive function and unsafe driving acts among community-dwelling older adults with cognitive impairments. Participants (n = 160) were older residents of Obu, Japan, aged ≥65 years with cognitive impairments. They regularly drove and were assessed for the number of unsafe driving acts without adequate verification during an on-road test. We also evaluated cognitive function (attention, executive function and processing speed). Other examined variables included demographics, driving characteristics and visual condition. Participants were classified into two groups according to the number of unsafe driving acts as follows: high group (≥4 unsafe driving acts) and low group (≤3 unsafe driving acts). The high group participants were older in age (P < 0.001) and obtained a lower score on the symbol digit substitution task (P = 0.002) than the low group. The number of unsafe driving acts showed modest significant positive correlations with age (r = 0.396, P < 0.001). The symbol digit substitution task score was significantly associated with the number of unsafe driving acts (β = -0.196, P < 0.05) after adjusting for age group. Processing speed was associated with unsafe driving acts that became worse with increasing age. Future study will be required to longitudinally examine the influence of processing speed on traffic accidents for those with cognitive impairments. Geriatr Gerontol Int 2018; ••: ••-••. © 2018 Japan Geriatrics Society.
Life analysis of multiroller planetary traction drive
NASA Technical Reports Server (NTRS)
Coy, J. J.; Rohn, D. A.; Loewenthal, S. H.
1981-01-01
A contact fatigue life analysis was performed for a constant ratio, Nasvytis Multiroller Traction Drive. The analysis was based on the Lundberg-Palmgren method for rolling element bearing life prediction. Life adjustment factors for materials, processing, lubrication and traction were included. The 14.7 to 1 ratio drive consisted of a single stage planetary configuration with two rows of stepped planet rollers of five rollers per row, having a roller cluster diameter of approximately 0.21 m, a width of 0.06 m and a weight of 9 kg. Drive system 10 percent life ranged from 18,800 hours at 16.6 kW (22.2 hp) and 25,000 rpm sun roller speed, to 305 hours at maximum operating conditions of 149 kw (200 hp) and 75,000 rpm sun roller speed. The effect of roller diameter and roller center location on life were determined. It was found that an optimum life geometry exists.
An Improved Power Quality Based Sheppard-Taylor Converter Fed BLDC Motor Drive
NASA Astrophysics Data System (ADS)
Singh, Bhim; Bist, Vashist
2015-12-01
This paper deals with the design and analysis of a power factor correction based Sheppard-Taylor converter fed brushless dc motor (BLDCM) drive. The speed of the BLDCM is controlled by adjusting the dc link voltage of the voltage source inverter (VSI) feeding BLDCM. Moreover, a low frequency switching of the VSI is used for electronically commutating the BLDCM for reduced switching losses. The Sheppard-Taylor converter is designed to operate in continuous conduction mode to achieve an improved power quality at the ac mains for a wide range of speed control and supply voltage variation. The BLDCM drive is designed and its performance is simulated in a MATLAB/Simulink environment to achieve the power quality indices within the limits of the international power quality standard IEC-61000-3-2.
Fuzzy efficiency optimization of AC induction motors
NASA Technical Reports Server (NTRS)
Jani, Yashvant; Sousa, Gilberto; Turner, Wayne; Spiegel, Ron; Chappell, Jeff
1993-01-01
This paper describes the early states of work to implement a fuzzy logic controller to optimize the efficiency of AC induction motor/adjustable speed drive (ASD) systems running at less than optimal speed and torque conditions. In this paper, the process by which the membership functions of the controller were tuned is discussed and a controller which operates on frequency as well as voltage is proposed. The membership functions for this dual-variable controller are sketched. Additional topics include an approach for fuzzy logic to motor current control which can be used with vector-controlled drives. Incorporation of a fuzzy controller as an application-specific integrated circuit (ASIC) microchip is planned.
NASA Astrophysics Data System (ADS)
Kondo, Ryota; Akagi, Hirofumi
This paper presents a transformerless hybrid active filter that is integrated into medium-voltage adjustable-speed motor drives for fans, pumps, and compressors without regenerative braking. The authors have designed and constructed a three-phase experimental system rated at 400V and 15kW, which is a downscaled model from a feasible 6.6-kV 1-MW motor drive system. This system consists of the hybrid filter connecting a passive filter tuned to the 7th harmonic filter in series with an active filter that is based on a three-level diode-clamped PWM converter, as well as an adjustable-speed motor drive in which a diode rectifier is used as the front end. The hybrid filter is installed on the ac side of the diode rectifier with no line-frequency transformer. The downscaled system has been exclusively tested so as to confirm the overall compensating performance of the hybrid filter and the filtering performance of a switching-ripple filter for mitigating switching-ripple voltages produced by the active filter. Experimental results verify that the hybrid filter achieves harmonic compensation of the source current in all the operating regions from no-load to the rated-load conditions, and that the switching-ripple filter reduces the switching-ripple voltages as expected.
The contribution of cognition and spasticity to driving performance in multiple sclerosis.
Marcotte, Thomas D; Rosenthal, Theodore J; Roberts, Erica; Lampinen, Sara; Scott, J Cobb; Allen, R Wade; Corey-Bloom, Jody
2008-09-01
To examine the independent and combined impact of cognitive dysfunction and spasticity on driving tasks involving high cognitive workload and lower-limb mobility in persons with multiple sclerosis (MS). Single-visit cohort study. Clinical research center. Participants included 17 drivers with MS and 14 referent controls. The group with MS exhibited a broad range of cognitive functioning and disability. Of the 17 patients with MS, 8 had significant spasticity in the knee used to manipulate the accelerator and brake pedals (based on the Modified Ashworth Scale). Not applicable. A brief neuropsychologic test battery and 2 driving simulations. Simulation 1 required participants to maintain a constant speed and lane position while attending to a secondary task. Simulation 2 required participants to adjust their speed to accelerations and decelerations of a lead car in front of them. Patients with MS showed greater variability in lane position (effect size, g=1.30), greater difficulty in maintaining a constant speed (g=1.25), and less ability to respond to lead car speed changes (g=1.85) compared with controls. Within the MS group, in a multivariate model that included neuropsychologic and spasticity measures, cognitive functioning was the strongest predictor of difficulty in maintaining lane position during the divided attention task and poor response time to lead car speed changes, whereas spasticity was associated with reductions in accuracy of tracking the lead car movements and speed maintenance. In this preliminary study, cognitive and physical impairments associated with MS were related to deficits in specific components of simulated driving. Assessment of these factors may help guide the clinician regarding the types of driving behaviors that would put patients with MS at an increased risk for an automobile crash.
The Contribution of Cognition and Spasticity to Driving Performance in Multiple Sclerosis
Marcotte, Thomas D.; Rosenthal, Theodore J.; Roberts, Erica; Lampinen, Sara; Scott, J. Cobb; Allen, R. Wade; Corey-Bloom, Jody
2014-01-01
Objective To examine the independent and combined impact of cognitive dysfunction and spasticity on driving tasks involving high cognitive workload and lower-limb mobility in individuals with multiple sclerosis (MS). Design Single-visit cohort study. Setting Clinical research center. Participants Seventeen drivers with MS and 14 normal controls. The MS group exhibited a broad range of cognitive functioning and disability. Eight MS patients had significant spasticity in the knee proximal to the pedals (based on the Modified Ashworth Scale). Interventions Not applicable. Main Outcome Measures A brief neuropsychologic test battery and 2 driving simulations. Simulation 1 required participants to maintain a constant speed and lane position while attending to a secondary task. Simulation 2 required participants to adjust their speed to accelerations and decelerations of a lead car in front of them. Results MS patients demonstrated greater variability in lane position (effect size g=1.30), greater difficulty in maintaining a constant speed (g=1.25), and less ability to respond to lead car speed changes (g=1.85) compared with controls. Within the MS group, in a multivariate model that included neuropsychologic and spasticity measures, cognitive functioning was the strongest predictor of difficulty in maintaining lane position during the divided attention task and poor response time to lead car speed changes, whereas spasticity was associated with reductions in accuracy of tracking the lead car movements and speed maintenance. Conclusions In this preliminary study, cognitive and physical impairments associated with MS were related to deficits in specific components of simulated driving, and assessment of these factors may help guide the clinician regarding the types of driving behaviors that would put MS patients at increased risk for a crash. PMID:18760160
Huisingh, Carrie; McGwin, Gerald; Owsley, Cynthia
2017-01-01
Background Many studies on vision and driving cessation have relied on measures of sensory function, which are insensitive to the higher order cognitive aspects of visual processing. The purpose of this study was to examine the association between traditional measures of visual sensory function and higher order visual processing skills with incident driving cessation in a population-based sample of older drivers. Methods Two thousand licensed drivers aged ≥70 were enrolled and followed-up for three years. Tests for central vision and visual processing were administered at baseline and included visual acuity, contrast sensitivity, sensitivity in the driving visual field, visual processing speed (Useful Field of View (UFOV) Subtest 2 and Trails B), and spatial ability measured by the Visual Closure Subtest of the Motor-free Visual Perception Test. Participants self-reported the month and year of driving cessation and provided a reason for cessation. Cox proportional hazards models were used to generate crude and adjusted hazard ratios with 95% confidence intervals between visual functioning characteristics and risk of driving cessation over a three-year period. Results During the study period, 164 participants stopped driving which corresponds to a cumulative incidence of 8.5%. Impaired contrast sensitivity, visual fields, visual processing speed (UFOVand Trails B), and spatial ability were significant risk factors for subsequent driving cessation after adjusting for age, gender, marital status, number of medical conditions, and miles driven. Visual acuity impairment was not associated with driving cessation. Medical problems (63%), specifically musculoskeletal and neurological problems, as well as vision problems (17%) were cited most frequently as the reason for driving cessation. Conclusion Assessment of cognitive and visual functioning can provide useful information about subsequent risk of driving cessation among older drivers. In addition, a variety of factors, not just vision, influenced the decision to stop driving and may be amenable to intervention. PMID:27353969
Risky driving behaviors in Tehran, Iran.
Shams, Mohsen; Rahimi-Movaghar, Vafa
2009-03-01
Iran has one of the highest fatality rates due to road traffic crashes (RTC) in the world. The disability adjusted life years (DALYs) for RTC in Iran is more than 1,300,000 years, which is more than that for any other disease such as cardiovascular or cancer. We evaluated risky driving behaviors in Tehran, the capital of Iran. A retrospective analysis was conducted based on the data obtained from the Tehran Police Safety Driving Department. Offenses and crashes were studied in different municipal districts in Tehran from March 2006 to March 2007. The inclusion criteria were risky driving behaviors fined by the police. Nonbehavioral offences were excluded. There were 3,821,798 offenses in Tehran. Not wearing a seat belt was the most common (59%) example of risky driving behavior, followed by tailgating, not wearing motorcycle helmets, talking on the cell phone while driving, overtaking from the wrong side, speeding, not driving between the lanes, weaving in and out of traffic, left deviation, and changing lanes without signals. The most common causes of RTC in Tehran are speeding, overtaking from the wrong side, and the rapid changing of driving lanes. The study factors effective in preventing risky driving behaviors in Tehran is recommended. The consideration of specific characteristics of the municipal districts is necessary to reduce risky driving behaviors.
Huisingh, Carrie; Levitan, Emily B.; Irvin, Marguerite R.; MacLennan, Paul; Wadley, Virginia; Owsley, Cynthia
2017-01-01
Purpose An innovative methodology using naturalistic driving data was used to examine the association between visual sensory and visual-cognitive function and rates of future crash or near-crash involvement among older drivers. Methods The Strategic Highway Research Program (SHRP2) Naturalistic Driving Study was used for this prospective analysis. The sample consisted of N = 659 drivers aged ≥70 years and study participation lasted 1 or 2 years for most participants. Distance and near visual acuity, contrast sensitivity, peripheral vision, visual processing speed, and visuospatial skills were assessed at baseline. Crash and near-crash involvement were based on video recordings and vehicle sensors. Poisson regression models were used to generate crude and adjusted rate ratios (RRs) and 95% confidence intervals, while accounting for person-miles of travel. Results After adjustment, severe impairment of the useful field of view (RR = 1.33) was associated with an increased rate of near-crash involvement. Crash, severe crash, and at-fault crash involvement were associated with impaired contrast sensitivity in the worse eye (RRs = 1.38, 1.54, and 1.44, respectively) and far peripheral field loss in both eyes (RRs = 1.74, 2.32, and 1.73, respectively). Conclusions Naturalistic driving data suggest that contrast sensitivity in the worse eye and far peripheral field loss in both eyes elevate the rates of crash involvement, and impaired visual processing speed elevates rates of near-crash involvement among older drivers. Naturalistic driving data may ultimately be critical for understanding the relationship between vision and driving safety. PMID:28605807
Chiles, J A; Severinghaus, A E
1938-06-30
1. An ultracentrifuge is described in which the rotor is driven by a compressed air turbine, and is spun in an evacuated chamber to minimize friction and heating. The rotating parts are supported by a cushion of air in an air bearing. 2. The centrifuge rotor holds 10 test tubes inclined at 45 degrees to the axis, and has a capacity of 55 cc. It is operated at a maximum speed of 51,000 R.P.M., which develops at the top of the fluid column in the test tubes a centrifugal field of over 100,000 times gravity, and at the bottom of the fluid column a field of over 200,000 times gravity. 3. By means of a reverse turbine, the rotor can be brought to a stop from full speed in a relatively short time. 4. A precession damping device is described, which effectively damps the precession and wobbling of the rotor that usually occurs at certain speeds in machines of this type. 5. A relatively long section of shaft is used between the centrifuge rotor and lower bearings. This prevents vibrations from being appreciably transmitted through the shaft to the lower bearings and driving mechanism, and results in a negligible wear on the bearings. 6. The driving mechanism is designed so that the positions of its parts are adjustable, and so that the driving mechanism may be dismantled without disturbing these adjustments.
Adapting ISA system warnings to enhance user acceptance.
Jiménez, Felipe; Liang, Yingzhen; Aparicio, Francisco
2012-09-01
Inappropriate speed is a major cause of traffic accidents. Different measures have been considered to control traffic speed, and intelligent speed adaptation (ISA) systems are one of the alternatives. These systems know the speed limits and try to improve compliance with them. This paper deals with an informative ISA system that provides the driver with an advance warning before reaching a road section with singular characteristics that require a lower safe speed than the current speed. In spite of the extensive tests performed using ISA systems, few works show how warnings can be adapted to the driver. This paper describes a method to adapt warning parameters (safe speed on curves, zone of influence of a singular stretch, deceleration process and reaction time) to normal driving behavior. The method is based on a set of tests with and without the ISA system. This adjustment, as well as the analysis of driver acceptance before and after the adaptation and changes in driver behavior (changes in speed and path) resulting from the tested ISA regarding a driver's normal driving style, is shown in this paper. The main conclusion is that acceptance by drivers increased significantly after redefining the warning parameters, but the effect of speed homogenization was not reduced. Copyright © 2010 Elsevier Ltd. All rights reserved.
Driving and off-road impairments underlying failure on road testing in Parkinson's disease.
Devos, Hannes; Vandenberghe, Wim; Tant, Mark; Akinwuntan, Abiodun E; De Weerdt, Willy; Nieuwboer, Alice; Uc, Ergun Y
2013-12-01
Parkinson's disease (PD) affects driving ability. We aimed to determine the most critical impairments in specific road skills and in clinical characteristics leading to failure on a road test in PD. In this cross-sectional study, certified driving assessment experts evaluated specific driving skills in 104 active, licensed drivers with PD using a standardized, on-road checklist and issued a global decision of pass/fail. Participants also completed an off-road evaluation assessing demographic features, disease characteristics, motor function, vision, and cognition. The most important driving skills and off-road predictors of the pass/fail outcome were identified using multivariate stepwise regression analyses. Eighty-six (65%) passed and 36 (35%) failed the on-road driving evaluation. Persons who failed performed worse on all on-road items. When adjusted for age and gender, poor performances on lateral positioning at low speed, speed adaptations at high speed, and left turning maneuvers yielded the best model that determined the pass/fail decision (R(2) = 0.56). The fail group performed poorer on all motor, visual, and cognitive tests. Measures of visual scanning, motor severity, PD subtype, visual acuity, executive functions, and divided attention were independent predictors of pass/fail decisions in the multivariate model (R(2) = 0.60). Our study demonstrated that failure on a road test in PD is determined by impairments in specific driving skills and associated with deficits in motor, visual, executive, and visuospatial functions. These findings point to specific driving and off-road impairments that can be targeted in multimodal rehabilitation programs for drivers with PD. © 2013 Movement Disorder Society.
Real time PI-backstepping induction machine drive with efficiency optimization.
Farhani, Fethi; Ben Regaya, Chiheb; Zaafouri, Abderrahmen; Chaari, Abdelkader
2017-09-01
This paper describes a robust and efficient speed control of a three phase induction machine (IM) subjected to load disturbances. First, a Multiple-Input Multiple-Output (MIMO) PI-Backstepping controller is proposed for a robust and highly accurate tracking of the mechanical speed and rotor flux. Asymptotic stability of the control scheme is proven by Lyapunov Stability Theory. Second, an active online optimization algorithm is used to optimize the efficiency of the drive system. The efficiency improvement approach consists of adjusting the rotor flux with respect to the load torque in order to minimize total losses in the IM. A dSPACE DS1104 R&D board is used to implement the proposed solution. The experimental results released on 3kW squirrel cage IM, show that the reference speed as well as the rotor flux are rapidly achieved with a fast transient response and without overshoot. A good load disturbances rejection response and IM parameters variation are fairly handled. The improvement of drive system efficiency reaches up to 180% at light load. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tamaoki, Toshifumi; Takanezawa, Makoto; Kimoto, Masanori; Morita, Noboru; Hoshino, Takeo; Hashizume, Kenji
The torsional vibration between metal rolling rolls and a rolling mill motor, may occur in recent days, as a result of higher speed response adjustment for variable speed rolling mill motor drive system. Issues in this paper are focused on excess acceleration value, in tangential direction of the mill motor rotor, which is caused by the motor shaft torsional resonance at the white noise signal superposition to the speed reference signal of the motor drive system for the online transfer function analysis. As a result of the acceleration analysis, the acceleration values in “G” (Relative acceleration value on the basis of Gravity) can be plotted on “Bode-Diagram”, which is namely frequency response for the speed signal amplitude transmission ratio. In addition, relation between the white noise amplitude reduction and the transfer function analysis accuracy deterioration is also examined, in this paper. As the amplitude of the white noise decreases, the analysis error increases because of the reduction in the resolution when the amplitude of the white noise signal is small.
Huang, Yizhe; Sun, Daniel Jian; Zhang, Li-Hui
2018-08-01
Inappropriate cruising speed, such as speeding, is one of the major contributors to the road safety, which increases both the quantitative number and severity of traffic accidents. Previous studies have indicated that traffic congestion is one of the primary causes of drivers' frustration and aggression, which may lead to inappropriate speed choice. In this study, the large taxi floating car data (FCD) was used to empirically evaluate how traffic congestion-related negative moods, defined as state aggressiveness, affected drivers' speed choice. The indirect effect of traffic delay on the cruising speed adjustment through the state aggressiveness was assessed through the mediation analysis. Furthermore, the moderated mediation analysis was performed to explore the effect of driver type, value of time, and working duration on the mediation role of state aggressiveness. The results proved that the state aggressiveness was the mediator of the relationship between travel delays and driving speed adjustment, and the mediation role was different across various driver types. As compared to the aggressive drivers, the normal drivers and the steady drivers tended to behave more aggressively after experiencing non-recurrent congestion during the early stage of the trips. When the value of time was high, steady drivers were more likely to adjust their speed choice although the effect was not statistically significant for other driver types. The validation results indicated that the speed model incorporating state aggressiveness could better predict the travel time than the traditional speed model that only considering the specific expected speed distribution. The prediction results for the manifest indicators of state aggressiveness, such as the maximum speed and the speed deviation, also demonstrated a reasonable reflection of the field data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonder, J.; Earleywine, M.; Sparks, W.
2012-06-01
Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behaviormore » influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.« less
Ouyang, Wen; Tchida, Colin
2017-05-02
Static torque, no load, constant speed, and sinusoidal oscillation test data for a 10hp, 300rpm magnetically-geared generator prototype using either an adjustable load bank for a fixed resistance or an output power converter.
Zorgani, Youssef Agrebi; Koubaa, Yassine; Boussak, Mohamed
2016-03-01
This paper presents a novel method for estimating the load torque of a sensorless indirect stator flux oriented controlled (ISFOC) induction motor drive based on the model reference adaptive system (MRAS) scheme. As a matter of fact, this method is meant to inter-connect a speed estimator with the load torque observer. For this purpose, a MRAS has been applied to estimate the rotor speed with tuned load torque in order to obtain a high performance ISFOC induction motor drive. The reference and adjustable models, developed in the stationary stator reference frame, are used in the MRAS scheme in an attempt to estimate the speed of the measured terminal voltages and currents. The load torque is estimated by means of a Luenberger observer defined throughout the mechanical equation. Every observer state matrix depends on the mechanical characteristics of the machine taking into account the vicious friction coefficient and inertia moment. Accordingly, some simulation results are presented to validate the proposed method and to highlight the influence of the variation of the inertia moment and the friction coefficient on the speed and the estimated load torque. The experimental results, concerning to the sensorless speed with a load torque estimation, are elaborated in order to validate the effectiveness of the proposed method. The complete sensorless ISFOC with load torque estimation is successfully implemented in real time using a digital signal processor board DSpace DS1104 for a laboratory 3 kW induction motor. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Electrode immersion depth determination and control in electroslag remelting furnace
Melgaard, David K [Albuquerque, NM; Beaman, Joseph J [Austin, TX; Shelmidine, Gregory J [Tijeras, NM
2007-02-20
An apparatus and method for controlling an electroslag remelting furnace comprising adjusting electrode drive speed by an amount proportional to a difference between a metric of electrode immersion and a set point, monitoring impedance or voltage, and calculating the metric of electrode immersion depth based upon a predetermined characterization of electrode immersion depth as a function of impedance or voltage.
Simulation of parameters of hydraulic drive with volumetric type controller
NASA Astrophysics Data System (ADS)
Mulyukin, V. L.; Boldyrev, A. V.; Karelin, D. L.; Belousov, A. M.
2017-09-01
The article presents a mathematical model of volumetric type hydraulic drive controller that allows to calculate the parameters of forward and reverse motion. According to the results of simulation static characteristics of rod’s speed and the force of the hydraulic cylinder rod were built and the influence of the angle of swash plate of the controller at the characteristics profile is shown. The results analysis showed that the proposed controller allows steplessly adjust the speed□ц of hydraulic cylinder’s rod motion and the force developed on the rod without the use of flow throttling.
Basic principles of variable speed drives
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1973-01-01
An understanding of the principles which govern variable speed drive operation is discussed for successful drive application. The fundamental factors of torque, speed ratio, and power as they relate to drive selection are discussed. The basic types of variable speed drives, their operating characteristics and their applications are also presented.
Risk and type of crash among young drivers by rurality of residence: findings from the DRIVE Study.
Chen, H Y; Ivers, R Q; Martiniuk, A L C; Boufous, S; Senserrick, T; Woodward, M; Stevenson, M; Williamson, A; Norton, R
2009-07-01
Most previous literature on urban/rural differences in road crashes has a primary focus on severe injuries or deaths, which may be largely explained by variations of medical resources. Little has been reported on police-reported crashes by geographical location, or crash type and severity, especially among young drivers. DRIVE is a prospective cohort study of 20,822 drivers aged 17-24 in NSW, Australia. Information on risk factors was collected via online questionnaire and subsequently linked to police-reported crashes. Poisson regression was used to analyse risk of various crash types by three levels of rurality of residence: urban, regional (country towns and surrounds) and rural. Compared to urban drivers, risk of crash decreased with increasing rurality (regional adjusted RR: 0.7, 95% CI 0.6-0.9; rural adjusted RR: 0.5, 95% CI 0.3-0.7). Among those who crashed, risk of injurious crash did not differ by geographic location; however, regional and rural drivers had significantly higher risk of a single versus multiple vehicle crash (regional adjusted RR 1.8, 95% CI 1.3-2.5; rural adjusted RR: 2.0, 95% CI 1.1-3.6), which was explained by speeding involvement and road alignment at the time or site of crash. Although young urban drivers have a higher crash risk overall, rural and regional residents have increased risk of a single vehicle crash. Interventions to reduce single vehicle crashes should aim to address key issues affecting such crashes, including speeding and specific aspects of road geometry.
Using trip diaries to mitigate route risk and risky driving behavior among older drivers.
Payyanadan, Rashmi P; Maus, Adam; Sanchez, Fabrizzio A; Lee, John D; Miossi, Lillian; Abera, Amsale; Melvin, Jacob; Wang, Xufan
2017-09-01
To reduce exposure to risky and challenging driving situations and prolong mobility and independence, older drivers self-regulate their driving behavior. But self-regulation can be challenging because it depends on drivers' ability to assess their limitations. Studies using self-reports, survey data, and hazard and risk perception tests have shown that driving behavior feedback can help older drivers assess their limitations and adjust their driving behavior. But only limited work has been conducted in developing feedback technology interventions tailored to meet the information needs of older drivers, and the impact these interventions have in helping older drivers self-monitor their driving behavior and risk outcomes. The vehicles of 33 drivers 65 years and older were instrumented with OBD2 devices. Older drivers were provided access to customized web-based Trip Diaries that delivered post-trip feedback of the routes driven, low-risk route alternatives, and frequency of their risky driving behaviors. Data were recorded over four months, with baseline driving behavior collected for one month. Generalized linear mixed effects regression models assessed the effects of post-trip feedback on the route risk and driving behaviors of older drivers. Results showed that post-trip feedback reduced the estimated route risk of older drivers by 2.9% per week, and reduced their speeding frequency on average by 0.9% per week. Overall, the Trip Diary feedback reduced the expected crash rate from 1 in 6172 trips to 1 in 7173 trips, and the expected speeding frequency from 46% to 39%. Thus providing older drivers with tailored feedback of their driving behavior and crash risk could help them appropriately self-regulate their driving behavior, and improve their crash risk outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design and simulation of MEMS-actuated adjustable optical wedge for laser beam scanners
NASA Astrophysics Data System (ADS)
Bahgat, Ahmed S.; Zaki, Ahmed H.; Abdo Mohamed, Mohamed; El Sherif, Ashraf Fathy
2018-01-01
This paper introduces both optical and mechanical design and simulation of large static deflection MOEMS actuator. The designed device is in the form of an adjustable optical wedge (AOW) laser scanner. The AOW is formed of 1.5-mm-diameter plano-convex lens separated by air gap from plano-concave fixed lens. The convex lens is actuated by staggered vertical comb drive and suspended by rectangular cross-section torsion beam. An optical analysis and simulation of air separated AOW as well as detailed design, analysis, and static simulation of comb -drive are introduced. The dynamic step response of the full system is also introduced. The analytical solution showed a good agreement with the simulation results. A general global minimum optimization algorithm is applied to the comb-drive design to minimize driving voltage. A maximum comb-drive mechanical deflection angle of 12 deg in each direction was obtained under DC actuation voltage of 32 V with a settling time of 90 ms, leading to 1-mm one-dimensional (1-D) steering of laser beam with continuous optical scan angle of 5 deg in each direction. This optimization process provided a design of larger deflection actuator with smaller driving voltage compared with other conventional devices. This enhancement could lead to better performance of MOEMS-based laser beam scanners for imaging and low-speed applications.
Dynamic Speed Adaptation for Path Tracking Based on Curvature Information and Speed Limits.
Gámez Serna, Citlalli; Ruichek, Yassine
2017-06-14
A critical concern of autonomous vehicles is safety. Different approaches have tried to enhance driving safety to reduce the number of fatal crashes and severe injuries. As an example, Intelligent Speed Adaptation (ISA) systems warn the driver when the vehicle exceeds the recommended speed limit. However, these systems only take into account fixed speed limits without considering factors like road geometry. In this paper, we consider road curvature with speed limits to automatically adjust vehicle's speed with the ideal one through our proposed Dynamic Speed Adaptation (DSA) method. Furthermore, 'curve analysis extraction' and 'speed limits database creation' are also part of our contribution. An algorithm that analyzes GPS information off-line identifies high curvature segments and estimates the speed for each curve. The speed limit database contains information about the different speed limit zones for each traveled path. Our DSA senses speed limits and curves of the road using GPS information and ensures smooth speed transitions between current and ideal speeds. Through experimental simulations with different control algorithms on real and simulated datasets, we prove that our method is able to significantly reduce lateral errors on sharp curves, to respect speed limits and consequently increase safety and comfort for the passenger.
Handling performance control for hybrid 8-wheel-drive vehicle and simulation verification
NASA Astrophysics Data System (ADS)
Ni, Jun; Hu, Jibin
2016-08-01
In order to improve handling performance of a hybrid 8-Wheel-Drive vehicle, the handling performance control strategy was proposed. For armoured vehicle, besides handling stability in high speed, the minimum steer radius in low speed is also a key tactical and technical index. Based on that, the proposed handling performance control strategy includes 'Handling Stability' and 'Radius Minimization' control modes. In 'Handling Stability' control mode, 'Neutralsteer Radio' is defined to adjust the steering characteristics to satisfy different demand in different speed range. In 'Radius Minimization' control mode, the independent motors are controlled to provide an additional yaw moment to decrease the minimum steer radius. In order to verify the strategy, a simulation platform was built including engine and continuously variable transmission systems, generator and battery systems, independent motors and controllers systems, vehicle dynamic and tyre mechanical systems. The simulation results show that the handling performance of the vehicle can be enhanced significantly, and the minimum steer radius can be decreased by 20% which is significant improvement compared to the common level of main battle armoured vehicle around the world.
Takasaki, Hiroshi; Treleaven, Julia; Johnston, Venerina; Jull, Gwendolen
2013-08-15
Cross-sectional. To conduct a preliminary analysis of the physical, cognitive, and psychological domains contributing to self-reported driving difficulty after adjusting for neck pain, dizziness, and relevant demographics in chronic whiplash-associated disorders (WAD) using hierarchical regression modeling. Pain is a risk factor for car crashes, and dizziness may affect fitness to drive. Both symptoms are common in chronic WAD and difficulty driving is a common complaint in this group. Chronic WAD is often accompanied by physical, cognitive, and psychological impairments. These impairments may contribute to self-reported driving difficulty beyond neck pain, dizziness, and relevant demographics. Forty individuals with chronic WAD participated. Dependent variables were the magnitude of self-reported driving difficulty assessed in the strategic, tactical, and operational levels of the Neck Pain Driving Index. Three models were developed to assess the contributions of independent variables (physical, cognitive, and psychological domains) to each of the 3 dependent variables after adjusting for neck pain intensity, dizziness, and driving demographics. The measures included were: physical domain-range and maximum speed of head rotation, performances during gaze stability, eye-head coordination, and visual dependency tests; cognitive domain-self-reported cognitive symptoms including fatigue and the trail making tests; and psychological domain-general stress, traumatic stress, depression, and fear of neck movements and driving. Symptom duration was relevant to driving difficulty in the strategic and tactical levels. The cognitive domain increased statistical power to estimate the strategic and operational levels (P < 0.1) beyond other contributors. The physical domain increased statistical power to estimate the tactical level (P < 0.1) beyond other contributors. Physical and cognitive impairments independently contributed to self-reported driving difficulty in chronic WAD beyond neck pain, dizziness, and symptom duration. 3.
Does the Tempo of Music Impact Human Behavior Behind the Wheel?
Navarro, Jordan; Osiurak, François; Reynaud, Emanuelle
2018-06-01
Assess the influence of background music tempo on driving performance. Music with a fast tempo is known to increase the level of arousal, whereas the reverse is observed for slow music. The relationship between driving performance and level of arousal was expected to take the form of an inverted U-curve. Three experiments were undertaken to manipulate the musical background during driving. In Experiment 1, the driver's preferred music track played at its original and modified (plus or minus 30%) tempo were used together with the simple ticking of a metronome. In Experiment 2, music tracks of different tempos were played during driving. In Experiment 3, music tracks were categorized as arousing or relaxing based on the associated perceived level of arousal. Listening to music tended to influence drivers' performances in a car-following task by improving coherence and gain adjustments relative to the followed vehicle but simultaneously shortened the intervehicular time. Although the tempo of the music per se did not directly affect driving behavior, arousing music tracks improved drivers' adjustments to the followed vehicle (Experiment 3). The tempo of the music listened to behind the wheel was not found to influence driving behaviors. However, arousing music improved drivers' responsiveness to changes in the speed of the followed vehicle. However, this benefit was canceled out by a reduction in the drivers' intervehicle safety margin. Listening to arousing music while driving cannot be considered to improve road safety, at least in a car-following task without attentional impairments.
Improving homogeneity by dynamic speed limit systems.
van Nes, Nicole; Brandenburg, Stefan; Twisk, Divera
2010-05-01
Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12 road sections in a driving simulator. The speed limit system (static-dynamic), the sophistication of the dynamic speed limit system (basic roadside, advanced roadside, and advanced in-car) and the situational condition (dangerous-non-dangerous) were varied. The homogeneity of driving speed, the rated credibility of the posted speed limit and the acceptance of the different dynamic speed limit systems were assessed. The results show that the homogeneity of individual speeds, defined as the variation in driving speed for an individual subject along a particular road section, was higher with the dynamic speed limit system than with the static speed limit system. The more sophisticated dynamic speed limit system tested within this study led to higher homogeneity than the less sophisticated systems. The acceptance of the dynamic speed limit systems used in this study was positive, they were perceived as quite useful and rather satisfactory. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Melman, T; de Winter, J C F; Abbink, D A
2017-01-01
An important issue in road traffic safety is that drivers show adverse behavioral adaptation (BA) to driver assistance systems. Haptic steering guidance is an upcoming assistance system which facilitates lane-keeping performance while keeping drivers in the loop, and which may be particularly prone to BA. Thus far, experiments on haptic steering guidance have measured driver performance while the vehicle speed was kept constant. The aim of the present driving simulator study was to examine whether haptic steering guidance causes BA in the form of speeding, and to evaluate two types of haptic steering guidance designed not to suffer from BA. Twenty-four participants drove a 1.8m wide car for 13.9km on a curved road, with cones demarcating a single 2.2m narrow lane. Participants completed four conditions in a counterbalanced design: no guidance (Manual), continuous haptic guidance (Cont), continuous guidance that linearly reduced feedback gains from full guidance at 125km/h towards manual control at 130km/h and above (ContRF), and haptic guidance provided only when the predicted lateral position was outside a lateral bandwidth (Band). Participants were familiarized with each condition prior to the experimental runs and were instructed to drive as they normally would while minimizing the number of cone hits. Compared to Manual, the Cont condition yielded a significantly higher driving speed (on average by 7km/h), whereas ContRF and Band did not. All three guidance conditions yielded better lane-keeping performance than Manual, whereas Cont and ContRF yielded lower self-reported workload than Manual. In conclusion, continuous steering guidance entices drivers to increase their speed, thereby diminishing its potential safety benefits. It is possible to prevent BA while retaining safety benefits by making a design adjustment either in lateral (Band) or in longitudinal (ContRF) direction. Copyright © 2016. Published by Elsevier Ltd.
Optimal Predictive Control for Path Following of a Full Drive-by-Wire Vehicle at Varying Speeds
NASA Astrophysics Data System (ADS)
SONG, Pan; GAO, Bolin; XIE, Shugang; FANG, Rui
2017-05-01
The current research of the global chassis control problem for the full drive-by-wire vehicle focuses on the control allocation (CA) of the four-wheel-distributed traction/braking/steering systems. However, the path following performance and the handling stability of the vehicle can be enhanced a step further by automatically adjusting the vehicle speed to the optimal value. The optimal solution for the combined longitudinal and lateral motion control (MC) problem is given. First, a new variable step-size spatial transformation method is proposed and utilized in the prediction model to derive the dynamics of the vehicle with respect to the road, such that the tracking errors can be explicitly obtained over the prediction horizon at varying speeds. Second, a nonlinear model predictive control (NMPC) algorithm is introduced to handle the nonlinear coupling between any two directions of the vehicular planar motion and computes the sequence of the optimal motion states for following the desired path. Third, a hierarchical control structure is proposed to separate the motion controller into a NMPC based path planner and a terminal sliding mode control (TSMC) based path follower. As revealed through off-line simulations, the hierarchical methodology brings nearly 1700% improvement in computational efficiency without loss of control performance. Finally, the control algorithm is verified through a hardware in-the-loop simulation system. Double-lane-change (DLC) test results show that by using the optimal predictive controller, the root-mean-square (RMS) values of the lateral deviations and the orientation errors can be reduced by 41% and 30%, respectively, comparing to those by the optimal preview acceleration (OPA) driver model with the non-preview speed-tracking method. Additionally, the average vehicle speed is increased by 0.26 km/h with the peak sideslip angle suppressed to 1.9°. This research proposes a novel motion controller, which provides the full drive-by-wire vehicle with better lane-keeping and collision-avoidance capabilities during autonomous driving.
Demonstration of variable speed permanent magnet generator at small, low-head hydro site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown Kinloch, David
Small hydro developers face a limited set of bad choices when choosing a generator for a small low-head hydro site. Direct drive synchronous generators are expensive and technically complex to install. Simpler induction generators are higher speed, requiring a speed increaser, which results in inefficiencies and maintenance problems. In addition, both induction and synchronous generators turn at a fixed speed, causing the turbine to run off its peak efficiency curve whenever the available head is different than the designed optimum head.The solution to these problems is the variable speed Permanent Magnet Generators (PMG). At the Weisenberger Mill in Midway, KY,more » a variable speed Permanent Magnet Generator has been installed and demonstrated. This new PMG system replaced an existing induction generator that had a HTD belt drive speed increaser system. Data was taken from the old generator before it was removed and compared to data collected after the PMG system was installed. The new variable speed PMG system is calculated to produce over 96% more energy than the old induction generator system during an average year. This significant increase was primarily due to the PMG generator operating at the correct speed at the maximum head, and the ability for the PMG generator to reduce its speed to lower optimum speeds as the stream flow increased and the net head decreased.This demonstration showed the importance of being able to adjust the speed of fixed blade turbines. All fixed blade turbines with varying net heads could achieve higher efficiencies if the speed can be matched to the optimum speed as the head changes. In addition, this demonstration showed that there are many potential efficiencies that could be realized with variable speed technology at hydro sites where mismatched turbine and generator speeds result in lower power output, even at maximum head. Funding for this project came from the US Dept. of Energy, through Award Number DE-EE0005429.« less
The Design of Artificial Intelligence Robot Based on Fuzzy Logic Controller Algorithm
NASA Astrophysics Data System (ADS)
Zuhrie, M. S.; Munoto; Hariadi, E.; Muslim, S.
2018-04-01
Artificial Intelligence Robot is a wheeled robot driven by a DC motor that moves along the wall using an ultrasonic sensor as a detector of obstacles. This study uses ultrasonic sensors HC-SR04 to measure the distance between the robot with the wall based ultrasonic wave. This robot uses Fuzzy Logic Controller to adjust the speed of DC motor. When the ultrasonic sensor detects a certain distance, sensor data is processed on ATmega8 then the data goes to ATmega16. From ATmega16, sensor data is calculated based on Fuzzy rules to drive DC motor speed. The program used to adjust the speed of a DC motor is CVAVR program (Code Vision AVR). The readable distance of ultrasonic sensor is 3 cm to 250 cm with response time 0.5 s. Testing of robots on walls with a setpoint value of 9 cm to 10 cm produce an average error value of -12% on the wall of L, -8% on T walls, -8% on U wall, and -1% in square wall.
Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P
2015-07-01
Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Driver dependent factors and the risk of causing a collision for two wheeled motor vehicles
Lardelli-Claret, P; Jimenez-Moleon, J; de Dios, Luna-del-... J; Garcia-Martin, M; Bueno-Cavanillas, A; Galvez-Vargas, R
2005-01-01
Objective: To assess the effect of driver dependent factors on the risk of causing a collision for two wheeled motor vehicles (TWMVs). Design: Case control study. Setting: Spain, from 1993 to 2002. Subjects: All drivers of TWMVs involved in the 181 551 collisions between two vehicles recorded in the Spanish registry which did not involve pedestrians, and in which at least one of the vehicles was a TWMV and only one driver had committed a driving infraction. The infractor and non-infractor drivers constituted the case and control groups, respectively. Main outcome measures: Logistic regression analyses were used to obtain crude and adjusted odds ratio estimates for each of the driver related factors recorded in the registry (age, sex, nationality, psychophysical factors, and speeding infractions, among others). Results: Inappropriate speed was the variable with the greatest influence on the risk of causing a collision, followed by excessive speed and driving under the influence of alcohol. Younger and older drivers, foreign drivers, and driving without a valid license were also associated with a higher risk of causing a collision. In contrast, helmet use, female sex, and longer time in possession of a driving license were associated with a lower risk. Conclusions: Although the main driver dependent factors related to the risk of causing a collision for a TWMV were similar to those documented for four wheeled vehicles, several differences in the pattern of associations support the need to study moped and motorcycle crashes separately from crashes involving other types of vehicles. PMID:16081752
Driving characteristics of teens with attention deficit hyperactivity and autism spectrum disorder.
Classen, Sherrilene; Monahan, Miriam; Wang, Yanning
2013-01-01
Vehicle crashes are a leading cause of death among teens. Teens with attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), or both (ADHD-ASD) may have a greater crash risk. We examined the between-groups demographic, clinical, and predriving performance differences of 22 teens with ADHD-ASD (mean age = 15.05, standard deviation [SD] = 0.95) and 22 healthy control (HC) teens (mean age = 14.32, SD = 0.72). Compared with HC teens, the teens with ADHD-ASD performed more poorly on right-eye visual acuity, selective attention, visual-motor integration, cognition, and motor performance and made more errors on the driving simulator pertaining to visual scanning, speed regulation, lane maintenance, adjustment to stimuli, and total number of driving errors. Teens with ADHD-ASD, compared with HC teens, may have more predriving deficits and as such require the skills of a certified driving rehabilitation specialist to assess readiness to drive. Copyright © 2013 by the American Occupational Therapy Association, Inc.
Dynamic Speed Adaptation for Path Tracking Based on Curvature Information and Speed Limits †
Gámez Serna, Citlalli; Ruichek, Yassine
2017-01-01
A critical concern of autonomous vehicles is safety. Different approaches have tried to enhance driving safety to reduce the number of fatal crashes and severe injuries. As an example, Intelligent Speed Adaptation (ISA) systems warn the driver when the vehicle exceeds the recommended speed limit. However, these systems only take into account fixed speed limits without considering factors like road geometry. In this paper, we consider road curvature with speed limits to automatically adjust vehicle’s speed with the ideal one through our proposed Dynamic Speed Adaptation (DSA) method. Furthermore, ‘curve analysis extraction’ and ‘speed limits database creation’ are also part of our contribution. An algorithm that analyzes GPS information off-line identifies high curvature segments and estimates the speed for each curve. The speed limit database contains information about the different speed limit zones for each traveled path. Our DSA senses speed limits and curves of the road using GPS information and ensures smooth speed transitions between current and ideal speeds. Through experimental simulations with different control algorithms on real and simulated datasets, we prove that our method is able to significantly reduce lateral errors on sharp curves, to respect speed limits and consequently increase safety and comfort for the passenger. PMID:28613251
Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine
NASA Technical Reports Server (NTRS)
Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.
1982-01-01
Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.
Analysis and topology optimization design of high-speed driving spindle
NASA Astrophysics Data System (ADS)
Wang, Zhilin; Yang, Hai
2018-04-01
The three-dimensional model of high-speed driving spindle is established by using SOLIDWORKS. The model is imported through the interface of ABAQUS, A finite element analysis model of high-speed driving spindle was established by using spring element to simulate bearing boundary condition. High-speed driving spindle for the static analysis, the spindle of the stress, strain and displacement nephogram, and on the basis of the results of the analysis on spindle for topology optimization, completed the lightweight design of high-speed driving spindle. The design scheme provides guidance for the design of axial parts of similar structures.
32 CFR 636.22 - Speed regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
...). (d) The following special speed limits apply: (1) When passing troop formations, 10 miles per hour... vehicles and will obey the following off-road driving speeds: Day Driving: Trails, 16 MPH Cross County, 6 MPH Night Driving: Trails, 5 MPH (with headlights) Cross Country, 5 MPH Night Driving: Trails, 4 MPH...
32 CFR 636.22 - Speed regulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) of this section). (d) The following special speed limits apply: (1) When passing troop formations, 10... tactical vehicles and will obey the following off-road driving speeds: Day Driving: Trails, 16 MPH Cross County, 6 MPH Night Driving: Trails, 5 MPH (with headlights) Cross Country, 5 MPH Night Driving: Trails...
32 CFR 636.22 - Speed regulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
...). (d) The following special speed limits apply: (1) When passing troop formations, 10 miles per hour... vehicles and will obey the following off-road driving speeds: Day Driving: Trails, 16 MPH Cross County, 6 MPH Night Driving: Trails, 5 MPH (with headlights) Cross Country, 5 MPH Night Driving: Trails, 4 MPH...
NASA Astrophysics Data System (ADS)
Sun, Fengxin; Wang, Jufeng; Cheng, Rongjun; Ge, Hongxia
2018-02-01
The optimal driving speeds of the different vehicles may be different for the same headway. In the optimal velocity function of the optimal velocity (OV) model, the maximum speed vmax is an important parameter determining the optimal driving speed. A vehicle with higher maximum speed is more willing to drive faster than that with lower maximum speed in similar situation. By incorporating the anticipation driving behavior of relative velocity and mixed maximum speeds of different percentages into optimal velocity function, an extended heterogeneous car-following model is presented in this paper. The analytical linear stable condition for this extended heterogeneous traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulted from the cooperation between anticipation driving behavior and heterogeneous maximum speeds in the optimal velocity function. The analytical and numerical results all demonstrate that strengthening driver's anticipation effect can improve the stability of heterogeneous traffic flow, and increasing the lowest value in the mixed maximum speeds will result in more instability, but increasing the value or proportion of the part already having higher maximum speed will cause different stabilities at high or low traffic densities.
Verster, Joris C; Roth, Thomas
2014-01-01
The on-the-road driving test in normal traffic is used to examine the impact of drugs on driving performance. This paper compares the sensitivity of standard deviation of lateral position (SDLP) and SD speed in detecting driving impairment. A literature search was conducted to identify studies applying the on-the-road driving test, examining the effects of anxiolytics, antidepressants, antihistamines, and hypnotics. The proportion of comparisons (treatment versus placebo) where a significant impairment was detected with SDLP and SD speed was compared. About 40% of 53 relevant papers did not report data on SD speed and/or SDLP. After placebo administration, the correlation between SDLP and SD speed was significant but did not explain much variance (r = 0.253, p = 0.0001). A significant correlation was found between ΔSDLP and ΔSD speed (treatment-placebo), explaining 48% of variance. When using SDLP as outcome measure, 67 significant treatment-placebo comparisons were found. Only 17 (25.4%) were significant when SD speed was used as outcome measure. Alternatively, for five treatment-placebo comparisons, a significant difference was found for SD speed but not for SDLP. Standard deviation of lateral position is a more sensitive outcome measure to detect driving impairment than speed variability.
Oviedo-Trespalacios, Oscar; Haque, Md Mazharul; King, Mark; Washington, Simon
2017-04-01
The use of mobile phones while driving remains a major human factors issue in the transport system. A significant safety concern is that driving while distracted by a mobile phone potentially modifies the driving speed leading to conflicts with other road users and consequently increases crash risk. However, the lack of systematic knowledge of the mechanisms involved in speed adaptation of distracted drivers constrains the explanation and modelling of the extent of this phenomenon. The objective of this study was to investigate speed adaptation of distracted drivers under varying road infrastructure and traffic complexity conditions. The CARRS-Q Advanced Driving Simulator was used to test participants on a simulated road with different traffic conditions, such as free flow traffic along straight roads, driving in urbanized areas, and driving in heavy traffic along suburban roads. Thirty-two licensed young drivers drove the simulator under three phone conditions: baseline (no phone conversation), hands-free and handheld phone conversations. To understand the relationships between distraction, road infrastructure and traffic complexity, speed adaptation calculated as the deviation of driving speed from the posted speed limit was modelled using a decision tree. The identified groups of road infrastructure and traffic characteristics from the decision tree were then modelled with a Generalized Linear Mixed Model (GLMM) with repeated measures to develop inferences about speed adaptation behaviour of distracted drivers. The GLMM also included driver characteristics and secondary task demands as predictors of speed adaptation. Results indicated that complex road environments like urbanization, car-following situations along suburban roads, and curved road alignment significantly influenced speed adaptation behaviour. Distracted drivers selected a lower speed while driving along a curved road or during car-following situations, but speed adaptation was negligible in the presence of high visual cutter, indicating the prioritization of the driving task over the secondary task. Additionally, drivers who scored high on self-reported safe attitudes towards mobile phone usage, and who reported prior involvement in a road traffic crash, selected a lower driving speed in the distracted condition than in the baseline. The results aid in understanding how driving task demands influence speed adaptation of distracted drivers under various road infrastructure and traffic complexity conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simmons, Sarah M; Caird, Jeff K; Steel, Piers
2017-09-01
Driver distraction is a growing and pervasive issue that requires multiple solutions. Voice-recognition (V-R) systems may decrease the visual-manual (V-M) demands of a wide range of in-vehicle system and smartphone interactions. However, the degree that V-R systems integrated into vehicles or available in mobile phone applications affect driver distraction is incompletely understood. A comprehensive meta-analysis of experimental studies was conducted to address this knowledge gap. To meet study inclusion criteria, drivers had to interact with a V-R system while driving and doing everyday V-R tasks such as dialing, initiating a call, texting, emailing, destination entry or music selection. Coded dependent variables included detection, reaction time, lateral position, speed and headway. Comparisons of V-R systems with baseline driving and/or a V-M condition were also coded. Of 817 identified citations, 43 studies involving 2000 drivers and 183 effect sizes (r) were analyzed in the meta-analysis. Compared to baseline, driving while interacting with a V-R system is associated with increases in reaction time and lane positioning, and decreases in detection. When V-M systems were compared to V-R systems, drivers had slightly better performance with the latter system on reaction time, lane positioning and headway. Although V-R systems have some driving performance advantages over V-M systems, they have a distraction cost relative to driving without any system at all. The pattern of results indicates that V-R systems impose moderate distraction costs on driving. In addition, drivers minimally engage in compensatory performance adjustments such as reducing speed and increasing headway while using V-R systems. Implications of the results for theory, design guidelines and future research are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lokriti, Abdesslam; Salhi, Issam; Doubabi, Said; Zidani, Youssef
2013-05-01
An IP-self-tuning controller tuned by a fuzzy adjustor, is proposed to improve induction machine speed control. The interest of such controller is the possibility to adjust only one gain, instead of two gains for the case of the PI-self-tuning controllers commonly used in the literature. This paper presents simulation and experimental results. These latter were obtained by practical implementation on a DSPace 1104 board of three different speed controllers (the classical IP, the fuzzy-like-PI and the IP-self-tuning), for a 1.5KW induction machine. The paper presents different tests used to compare the performances of the proposed controller to the two others in terms of computation time, tracking performances and disturbances rejection. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Data-driven fuel consumption estimation: A multivariate adaptive regression spline approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuche; Zhu, Lei; Gonder, Jeffrey
Providing guidance and information to drivers to help them make fuel-efficient route choices remains an important and effective strategy in the near term to reduce fuel consumption from the transportation sector. One key component in implementing this strategy is a fuel-consumption estimation model. In this paper, we developed a mesoscopic fuel consumption estimation model that can be implemented into an eco-routing system. Our proposed model presents a framework that utilizes large-scale, real-world driving data, clusters road links by free-flow speed and fits one statistical model for each of cluster. This model includes predicting variables that were rarely or never consideredmore » before, such as free-flow speed and number of lanes. We applied the model to a real-world driving data set based on a global positioning system travel survey in the Philadelphia-Camden-Trenton metropolitan area. Results from the statistical analyses indicate that the independent variables we chose influence the fuel consumption rates of vehicles. But the magnitude and direction of the influences are dependent on the type of road links, specifically free-flow speeds of links. Here, a statistical diagnostic is conducted to ensure the validity of the models and results. Although the real-world driving data we used to develop statistical relationships are specific to one region, the framework we developed can be easily adjusted and used to explore the fuel consumption relationship in other regions.« less
Data-driven fuel consumption estimation: A multivariate adaptive regression spline approach
Chen, Yuche; Zhu, Lei; Gonder, Jeffrey; ...
2017-08-12
Providing guidance and information to drivers to help them make fuel-efficient route choices remains an important and effective strategy in the near term to reduce fuel consumption from the transportation sector. One key component in implementing this strategy is a fuel-consumption estimation model. In this paper, we developed a mesoscopic fuel consumption estimation model that can be implemented into an eco-routing system. Our proposed model presents a framework that utilizes large-scale, real-world driving data, clusters road links by free-flow speed and fits one statistical model for each of cluster. This model includes predicting variables that were rarely or never consideredmore » before, such as free-flow speed and number of lanes. We applied the model to a real-world driving data set based on a global positioning system travel survey in the Philadelphia-Camden-Trenton metropolitan area. Results from the statistical analyses indicate that the independent variables we chose influence the fuel consumption rates of vehicles. But the magnitude and direction of the influences are dependent on the type of road links, specifically free-flow speeds of links. Here, a statistical diagnostic is conducted to ensure the validity of the models and results. Although the real-world driving data we used to develop statistical relationships are specific to one region, the framework we developed can be easily adjusted and used to explore the fuel consumption relationship in other regions.« less
Study on Stability of High Speed Traction Drive CVT for Aircraft Generator
NASA Astrophysics Data System (ADS)
Goi, Tatsuhiko; Tanaka, Hirohisa; Nakashima, Kenichi; Watanabe, Koji
A half-toroidal traction drive CVT has a feature of small spin at traction pitch in whole speed ratio range of 1:4, which suits to transmit high rotational speed with minimum temperature increase of traction surface. Research activity on traction drive CVT has commenced in 1996 for applying it to an aircraft 24,000rpm constant-speed generator instead of a hydro-static transmission. This paper shows fundamental design of 90kW traction drive integrated drive generator, ``T-IDG", and stability analysis on a sensor-less electro-hydraulic speed control servo-mechanism by bond graphs. The performance test of T-IDG mounted on a test bench and an actual jet engine proved that the control system using sensor-less servomechanism can keep the generator speed within MIL-STD-704E allowable limit against steep changes of speed and load.
Brown, Susan J; Nevill, Alan M; Monk, Stuart A; Otto, Steve R; Selbie, W Scott; Wallace, Eric S
2011-11-01
Previous studies on the kinematics of the golf swing have mainly focused on group analysis of male golfers of a wide ability range. In the present study, we investigated gross body kinematics using a novel method of analysis for golf research for a group of low handicap female golfers to provide an understanding of their swing mechanics in relation to performance. Data were collected for the drive swings of 16 golfers using a 12-camera three-dimensional motion capture system and a stereoscopic launch monitor. Analysis of covariance identified three covariates (increased pelvis-thorax differential at the top of the backswing, increased pelvis translation during the backswing, and a decrease in absolute backswing time) as determinants of the variance in clubhead speed (adjusted r (2) = 0.965, P < 0.05). A significant correlation was found between left-hand grip strength and clubhead speed (r = 0.54, P < 0.05) and between handicap and clubhead speed (r = -0.612, P < 0.05). Flexibility measures showed some correlation with clubhead speed; both sitting flexibility tests gave positive correlations (clockwise: r = 0.522, P < 0.05; counterclockwise: r = 0.711, P < 0.01). The results suggest that there is no common driver swing technique for optimal performance in low handicap female golfers, and therefore consideration should be given to individual swing characteristics in future studies.
Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot
NASA Astrophysics Data System (ADS)
Jacob, John S.; Gunderson, Robert W.; Fullmer, R. R.
1998-08-01
A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle.
Effectiveness and acceptance of the intelligent speeding prediction system (ISPS).
Zhao, Guozhen; Wu, Changxu
2013-03-01
The intelligent speeding prediction system (ISPS) is an in-vehicle speed assistance system developed to provide quantitative predictions of speeding. Although the ISPS's prediction of speeding has been validated, whether the ISPS can regulate a driver's speed behavior or whether a driver accepts the ISPS needs further investigation. Additionally, compared to the existing intelligent speed adaptation (ISA) system, whether the ISPS performs better in terms of reducing excessive speeds and improving driving safety needs more direct evidence. An experiment was conducted to assess and compare the effectiveness and acceptance of the ISPS and the ISA. We conducted a driving simulator study with 40 participants. System type served as a between-subjects variable with four levels: no speed assistance system, pre-warning system developed based on the ISPS, post-warning system ISA, and combined pre-warning and ISA system. Speeding criterion served as a within-subjects variable with two levels: lower (posted speed limit plus 1 mph) and higher (posted speed limit plus 5 mph) speed threshold. Several aspects of the participants' driving speed, speeding measures, lead vehicle response, and subjective measures were collected. Both pre-warning and combined systems led to greater minimum time-to-collision. The combined system resulted in slower driving speed, fewer speeding exceedances, shorter speeding duration, and smaller speeding magnitude. The results indicate that both pre-warning and combined systems have the potential to improve driving safety and performance. Copyright © 2012 Elsevier Ltd. All rights reserved.
Glendon, A Ian; Walker, Britta L
2013-08-01
The study investigated the effects of anti-speeding messages based on protection motivation theory (PMT) components: severity, vulnerability, rewards, self-efficacy, response efficacy, and response cost, on reported speeding intentions. Eighty-three participants aged 18-25 years holding a current Australian driver's license completed a questionnaire measuring their reported typical and recent speeding behaviors. Comparisons were made between 18 anti-speeding messages used on Australian roads and 18 new anti-speeding messages developed from the PMT model. Participants reported their reactions to the 36 messages on the perceived effectiveness of the message for themselves and for the general population of drivers, and also the likelihood of themselves and other drivers driving within the speed limit after viewing each message. Overall the PMT model-derived anti-speeding messages were better than jurisdiction-use anti-speeding messages in influencing participants' reported intention to drive within the speed limit. Severity and vulnerability were the most effective PMT components for developing anti-speeding messages. Male participants reported significantly lower intention to drive within the speed limit than did female participants. However, males reported significantly higher intention to drive within the speed limit for PMT-derived messages compared with jurisdiction-based messages. Third-person effects were that males reported anti-speeding messages to be more effective for the general driving population than for themselves. Females reported the opposite effect - that all messages would be more effective for themselves than for the general driving population. Findings provided support for using a sound conceptual basis as an effective foundation for anti-speeding message development as well as for evaluating proposed anti-speeding messages on the target driver population. Copyright © 2013 Elsevier Ltd. All rights reserved.
The effects of anti-speeding advertisements on the simulated driving behaviour of young drivers.
Plant, Bernice R C; Irwin, Julia D; Chekaluk, Eugene
2017-03-01
Recent examinations of road safety communications, including anti-speeding advertisements, have considered the differential effects of positive and negative emotional appeals on driver behaviour. However, empirical evaluations of anti-speeding messages have largely relied on measures of viewers' reported intentions to comply with speed limits and the self-reported driving behaviour of viewers post-exposure, which might not be indicative of the direct effects that these messages have on real-world driving behaviour. The current research constitutes a first empirical evaluation of different real-world anti-speeding advertisements, as measured by their effects on young drivers' speeding behaviour, using a driving simulator. Licensed drivers (N=116) aged 17-25 years completed driving measures prior to, immediately following, and 7-10days after viewing one of four social marketing advertisements. Results indicated that young drivers' average driving speeds were modestly reduced immediately after they viewed an anti-speeding advertisement that depicted social consequences for speeding and employed a positive emotional appeal when compared to an emotion-matched control advertisement; however, this effect was not found for the anti-speeding advertisement depicting a crash. Interestingly, the results based on reported intentions to reduce speeding predicted the opposite pattern of results. However, there was no evidence that the immediate changes to speeding were maintained 7-10days later, and prompts during Phase 2 did not appear to have an effect. The implications of these findings for road safety advertisements targeting young drivers are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jägerbrand, Annika K; Antonson, Hans
2016-01-01
In a driving simulator study, driving behaviour responses (speed and deceleration) to encountering a moose, automatic speed camera, wildlife warning sign and radio message, with or without a wildlife fence and in dense forest or open landscape, were analysed. The study consisted of a factorial experiment that examined responses to factors singly and in combination over 9-km road stretches driven eight times by 25 participants (10 men, 15 women). The aims were to: determine the most effective animal-vehicle collision (AVC) countermeasures in reducing vehicle speed and test whether these are more effective in combination for reducing vehicle speed; identify the most effective countermeasures on encountering moose; and determine whether the driving responses to AVC countermeasures are affected by the presence of wildlife fences and landscape characteristics. The AVC countermeasures that proved most effective in reducing vehicle speed were a wildlife warning sign and radio message, while automatic speed cameras had a speed-increasing effect. There were no statistically significant interactions between different countermeasures and moose encounters. However, there was a tendency for a stronger speed-reducing effect from the radio message warning and from a combination of a radio message and wildlife warning sign in velocity profiles covering longer driving distances than the statistical tests. Encountering a moose during the drive had the overall strongest speed-reducing effect and gave the strongest deceleration, indicating that moose decoys or moose artwork might be useful as speed-reducing countermeasures. Furthermore, drivers reduced speed earlier on encountering a moose in open landscape and had lower velocity when driving past it. The presence of a wildlife fence on encountering the moose resulted in smaller deceleration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Saghafinia, Ali; Ping, Hew Wooi; Uddin, Mohammad Nasir
2013-01-01
Physical sensors have a key role in implementation of real-time vector control for an induction motor (IM) drive. This paper presents a novel boundary layer fuzzy controller (NBLFC) based on the boundary layer approach for speed control of an indirect field-oriented control (IFOC) of an induction motor (IM) drive using physical sensors. The boundary layer approach leads to a trade-off between control performances and chattering elimination. For the NBLFC, a fuzzy system is used to adjust the boundary layer thickness to improve the tracking performance and eliminate the chattering problem under small uncertainties. Also, to eliminate the chattering under the possibility of large uncertainties, the integral filter is proposed inside the variable boundary layer. In addition, the stability of the system is analyzed through the Lyapunov stability theorem. The proposed NBLFC based IM drive is implemented in real-time using digital signal processor (DSP) board TI TMS320F28335. The experimental and simulation results show the effectiveness of the proposed NBLFC based IM drive at different operating conditions.
A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet.
Liu, Yingxiang; Liu, Junkao; Chen, Weishan; Shi, Shengjun
2012-05-01
A U-shaped linear ultrasonic motor using longitudinal vibration transducers with double feet was proposed in this paper. The proposed motor contains a horizontal transducer and two vertical transducers. The horizontal transducer includes two exponential shape horns located at the leading ends, and each vertical transducer contains one exponential shape horn. The horns of the horizontal transducer and the vertical transducer intersect at the tip ends where the driving feet are located. Longitudinal vibrations are superimposed in the motor and generate elliptical motions at the driving feet. The two vibration modes of the motor are discussed, and the motion trajectories of driving feet are deduced. By adjusting the structural parameters, the resonance frequencies of two vibration modes were degenerated. A prototype motor was fabricated and measured. Typical output of the prototype is no-load speed of 854 mm/s and maximum thrust force of 40 N at a voltage of 200 V(rms).
Estimated time of arrival and debiasing the time saving bias.
Eriksson, Gabriella; Patten, Christopher J D; Svenson, Ola; Eriksson, Lars
2015-01-01
The time saving bias predicts that the time saved when increasing speed from a high speed is overestimated, and underestimated when increasing speed from a slow speed. In a questionnaire, time saving judgements were investigated when information of estimated time to arrival was provided. In an active driving task, an alternative meter indicating the inverted speed was used to debias judgements. The simulated task was to first drive a distance at a given speed, and then drive the same distance again at the speed the driver judged was required to gain exactly 3 min in travel time compared with the first drive. A control group performed the same task with a speedometer and saved less than the targeted 3 min when increasing speed from a high speed, and more than 3 min when increasing from a low speed. Participants in the alternative meter condition were closer to the target. The two studies corroborate a time saving bias and show that biased intuitive judgements can be debiased by displaying the inverted speed. Practitioner Summary: Previous studies have shown a cognitive bias in judgements of the time saved by increasing speed. This simulator study aims to improve driver judgements by introducing a speedometer indicating the inverted speed in active driving. The results show that the bias can be reduced by presenting the inverted speed and this finding can be used when designing in-car information systems.
Scott-Parker, Bridie; Watson, Barry; King, Mark J; Hyde, Melissa K
2014-09-01
Volitional risky driving behaviours such as drink- and drug-driving (i.e. substance-impaired driving) and speeding contribute to the overrepresentation of young novice drivers in road crash fatalities, and crash risk is greatest during the first year of independent driving in particular. To explore the: (1) self-reported compliance of drivers with road rules regarding substance-impaired driving and other risky driving behaviours (e.g., speeding, driving while tired), one year after progression from a Learner to a Provisional (intermediate) licence; and (2) interrelationships between substance-impaired driving and other risky driving behaviours (e.g., crashes, offences, and Police avoidance). Drivers (n=1076; 319 males) aged 18-20 years were surveyed regarding their sociodemographics (age, gender) and self-reported driving behaviours including crashes, offences, Police avoidance, and driving intentions. A relatively small proportion of participants reported driving after taking drugs (6.3% of males, 1.3% of females) and drinking alcohol (18.5% of males, 11.8% of females). In comparison, a considerable proportion of participants reported at least occasionally exceeding speed limits (86.7% of novices), and risky behaviours like driving when tired (83.6% of novices). Substance-impaired driving was associated with avoiding Police, speeding, risky driving intentions, and self-reported crashes and offences. Forty-three percent of respondents who drove after taking drugs also reported alcohol-impaired driving. Behaviours of concern include drink driving, speeding, novice driving errors such as misjudging the speed of oncoming vehicles, violations of graduated driver licensing passenger restrictions, driving tired, driving faster if in a bad mood, and active punishment avoidance. Given the interrelationships between the risky driving behaviours, a deeper understanding of influential factors is required to inform targeted and general countermeasure implementation and evaluation during this critical driving period. Notwithstanding this, a combination of enforcement, education, and engineering efforts appear necessary to improve the road safety of the young novice driver, and for the drink-driving young novice driver in particular. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Robuck, Mark; Wilkerson, Joseph; Maciolek, Robert; Vonderwell, Dan
2012-01-01
A multi-year study was conducted under NASA NNA06BC41C Task Order 10 and NASA NNA09DA56C task orders 2, 4, and 5 to identify the most promising propulsion system concepts that enable rotor cruise tip speeds down to 54% of the hover tip speed for a civil tiltrotor aircraft. Combinations of engine RPM reduction and 2-speed drive systems were evaluated. Three levels of engine and the drive system advanced technology were assessed; 2015, 2025 and 2035. Propulsion and drive system configurations that resulted in minimum vehicle gross weight were identified. Design variables included engine speed reduction, drive system speed reduction, technology, and rotor cruise propulsion efficiency. The NASA Large Civil Tiltrotor, LCTR, aircraft served as the base vehicle concept for this study and was resized for over thirty combinations of operating cruise RPM and technology level, quantifying LCTR2 Gross Weight, size, and mission fuel. Additional studies show design sensitivity to other mission ranges and design airspeeds, with corresponding relative estimated operational cost. The lightest vehicle gross weight solution consistently came from rotor cruise tip speeds between 422 fps and 500 fps. Nearly equivalent results were achieved with operating at reduced engine RPM with a single-speed drive system or with a two-speed drive system and 100% engine RPM. Projected performance for a 2025 engine technology provided improved fuel flow over a wide range of operating speeds relative to the 2015 technology, but increased engine weight nullified the improved fuel flow resulting in increased aircraft gross weights. The 2035 engine technology provided further fuel flow reduction and 25% lower engine weight, and the 2035 drive system technology provided a 12% reduction in drive system weight. In combination, the 2035 technologies reduced aircraft takeoff gross weight by 14% relative to the 2015 technologies.
Single-Stage Step up/down Driver for Permanent-Magnet Synchronous Machines
NASA Astrophysics Data System (ADS)
Chen, T. R.; Juan, Y. L.; Huang, C. Y.; Kuo, C. T.
2017-11-01
The two-stage circuit composed of a step up/down dc converter and a three-phase voltage source inverter is usually adopted as the electric vehicle’s motor driver. The conventional topology is more complicated. Additional power loss resulted from twice power conversion would also cause lower efficiency. A single-stage step up/down Permanent-Magnet Synchronous Motor driver for Brushless DC (BLDC) Motor is proposed in this study. The number components and circuit complexity are reduced. The low frequency six-step square-wave control is used to reduce the switching losses. In the proposed topology, only one active switch is gated with a high frequency PWM signal for adjusting the rotation speed. The rotor position signals are fed back to calculate the motor speed for digital close-loop control in a MCU. A 600W prototype circuit is constructed to drive a BLDC motor with rated speed 3000 rpm, and can control the speed of six sections.
[Design and validation of a questionnaire exploring risky-driving patterns in young drivers].
Jiménez Mejías, Eladio; Luna del Castillo, Juan de Dios; Amezcua Prieto, Carmen; Olvera Porcel, María Carmen; Lardelli Claret, Pablo; Jiménez Moleón, José Juan
2012-01-01
Traffic Injuries are a major public health problem, especially among young people. However, we have not found any useful questionnaire designed in our country for the epidemiological research in this field. The objective of this study was to design and validate an easy and quickly-to-fill questionnaire aimed to collect information on how frequently university car drivers report to be involved in driving circumstances theoretically related to traffic crashes. Between 2007 and 2010, a total of 1597 young undergraduate students at the University of Granada answered a self-administered questionnaire collecting information about exposure, accidents and involvement in 28 different driving circumstances. For designing this questionnaire, an extensive literature review was carried out and the opinions of five experts in a panel were also taken into account. By applying the tetracoric correlation coefficient, we conducted a factor analysis. Internal consistency was assessed using Cronbach's alpha coefficient. Finally, we evaluated the crude and adjusted association of each identified factor with the odds for having suffered an accident. After excluding 8 circumstances, the remaining ones were grouped into three factors: the first one included ten high-prevalence circumstances and explained 31.9% of the total variability. Meanwhile, the other two factors included five circumstances each one which respectively explained 15.2% and 12.5% of the variability. Cronbach's alpha coefficients ranged between 0.816 and 0.553. When adjustments according age, sex, years in possession of the driving license and intensity of exposure were made, the first factor obtained the score more strongly associated with the accident rate (OR = 1.51; CI95%: 1.25-1.85). The final version (20 circumstances) identified three factors related to higher accident rates among the young drivers. The first one integrated, among other circumstances, the excessive speed and driving while sleepy or tired and it was the most closely associated with the accident rate in the adjusted analysis. The second factor included, among others, the commission of driving offences, and the third one included driving under the influence of alcohol, not always wearing the seat belt and distractions.
Traffic violations in Guangdong Province of China: speeding and drunk driving.
Zhang, Guangnan; Yau, Kelvin K W; Gong, Xiangpu
2014-03-01
The number of speeding- and drunk driving-related injuries in China surged in the years immediately preceding 2004 and then began to decline. However, the percent decrease in the number of speeding and drunk driving incidents (decrease by 22%) is not proportional to the corresponding percent decrease in number of automobile accident-related injuries (decrease by 47%) from the year 2004 to 2010 (Traffic Management Bureau, Ministry of Public Security, Annual Statistical Reports on Road Traffic Accidents). Earlier studies have established traffic violations as one of the major risks threatening road safety. In this study, we examine in greater detail two important types of traffic violation events, speeding and drunk driving, and attempt to identify significant risk factors associated with these types of traffic violations. Risk factors in several different dimensions, including driver, vehicle, road and environmental factors, are considered. We analyze the speeding (N=11,055) and drunk driving (N=10,035) data for the period 2006-2010 in Guangdong Province, China. These data, obtained from the Guangdong Provincial Security Department, are extracted from the Traffic Management Sector-Specific Incident Case Data Report and are the only comprehensive and official source of traffic accident data in China. Significant risk factors associating with speeding and drunk driving are identified. We find that several factors are associated with a significantly higher probability of both speeding and drunk driving, particularly male drivers, private vehicles, the lack of street lighting at night and poor visibility. The impact of other specific and unique risk factors for either speeding or drunk driving, such as hukou, road type/grades, commercial vehicles, compulsory third party insurance and vehicle safety status, also require particular attention. Legislative or regulatory measures targeting different vehicle types and/or driver groups with respect to the various driver, vehicle, road and environmental risk factors can subsequently be devised to reduce the speeding and drunk driving rates. As the country with the highest number of traffic accident fatalities in the world, applying these findings in workable legislation and enforcement to reduce speeding and drunk driving rates will save tens of thousands of lives. Copyright © 2013 Elsevier Ltd. All rights reserved.
The prevalence and correlates of risky driving behavior among National Guard soldiers.
Hoggatt, Katherine J; Prescott, Marta R; Goldmann, Emily; Tamburrino, Marijo; Calabrese, Joseph R; Liberzon, Israel; Galea, Sandro
2015-01-01
Previous studies have reported that risky driving is associated with deployment and combat exposure in military populations, but there is limited research on risky driving among soldiers in the National Guard and Reserves, a group increasingly deployed to active international conflicts. The goal of this analysis was to assess the prevalence of risky driving and its demographic, mental health, and deployment-related correlates among members of the Ohio Army National Guard (OHARNG). The study group comprised 2,616 eligible OHARNG soldiers enlisted as of June 2008, or who enlisted between June 2008 and February 2009. The main outcome of interest was the prevalence of risky driving behavior assessed using six questions: "How often do you use seat belts when you drive or ride in a car?"; "In the past 30 days, how many times have you driven when you've had perhaps too much to drink?"; "In the past year, have you ever become impatient with a slow driver in the fast lane and passed them on the right?"; "In the past year have you crossed an intersection knowing that the traffic lights have already changed from yellow to red?"; "In the past year have you disregarded speed limits late at night or early in the morning?"; and "In the past year have you underestimated the speed of an oncoming vehicle when attempting to pass a vehicle in your own lane?" We fit multiple logistic regression models and derived the adjusted prevalence of risky driving behavior for soldiers with mental health conditions, deployment experience, exposure to combat or trauma, and psychosocial stressors or supports. The prevalence of risky driving was higher in soldiers with a history of mental health conditions, deployment to a conflict area, deployment-related traumatic events, and combat or post-combat stressors. In contrast, the prevalence of risky driving was lower for soldiers who reported high levels of psychosocial support. Efforts to mitigate risky driving in military populations may be more effective if they incorporate both targeted messages to remediate dangerous learned driving behaviors and psychosocial interventions to build resilience and address underlying stressors and mental health symptoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dressel, M.O.
1979-10-30
A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfacesmore » of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the different gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft. 11 claims.« less
Dressel, Michael O.
1979-01-01
A drill drive mechanism is especially adapted to provide both rotational drive and axial feed for a drill of substantial diameter such as may be used for drilling holes for roof bolts in mine shafts. The drill shaft is made with a helical pattern of scroll-like projections on its surface for removal of cuttings. The drill drive mechanism includes a plurality of sprockets carrying two chains of drive links which are arranged to interlock around the drill shaft with each drive link having depressions which mate with the scroll-like projections. As the chain links move upwardly or downwardly the surfaces of the depressions in the links mate with the scroll projections to move the shaft axially. Tangs on the drive links mate with notch surfaces between scroll projections to provide a means for rotating the shaft. Projections on the drive links mate together at the center to hold the drive links tightly around the drill shaft. The entire chain drive mechanism is rotated around the drill shaft axis by means of a hydraulic motor and gear drive to cause rotation of the drill shaft. This gear drive also connects with a differential gearset which is interconnected with a second gear. A second motor is connected to the spider shaft of the differential gearset to produce differential movement (speeds) at the output gears of the differential gearset. This differential in speed is utilized to drive said second gear at a speed different from the speed of said gear drive, this speed differential being utilized to drive said sprockets for axial movement of said drill shaft.
Yıldırım-Yenier, Zümrüt; Vingilis, Evelyn; Wiesenthal, David L; Mann, Robert E; Seeley, Jane
2016-01-01
Motor racing includes high speed driving and risky maneuvers and can result in negative outcomes for both spectators and drivers. Interest in motorsports is also associated with risky driving attitudes and behaviors on public roads as well as with individual difference variables, such as sensation seeking. However, whether the links between motorsports involvement and risky driving tendencies differ for spectators and drivers has remained mainly unexamined. The aim of this study was to investigate the relationships between thrill seeking, attitudes toward speeding, and self-reported driving violations among a sample of motorsports spectators and drivers. A web-based survey was conducted and sampled 408 members and visitors of car club and racing websites in Ontario, Canada. The questionnaire included measures of (i) motorsports involvement, (ii) thrill seeking (Driver Thrill Seeking Scale), (iii) attitudes (Attitudes toward Speed Limits on Roadways and Competitive Attitudes toward Driving Scale); (iv) self-reported driving violations (adapted from Driver Behaviour Questionnaire), and (v) background variables. Path analysis was performed to test the relationships among the variables. For both spectators and drivers, thrill seeking directly predicted driving violations; competitive attitudes toward driving further mediated this relationship. Attitudes toward speed limits, however, mediated the relationship between thrill seeking and violations only for drivers. We observed significant relationships among individual difference measures, motorsports involvement, speeding attitudes and violations that may inform road safety interventions, including differences in the relationships among thrill seeking, speeding attitudes, and violations for motorsports spectators and drivers. Copyright © 2015 Elsevier Ltd. All rights reserved.
2010-08-19
highlight the benefits of regenerative braking . Parameters within the drive cycle may include vehicle speed, elevation/grade changes, road surface...assist to downsize the engine due to infinite maximum speed requirements • Drive cycle less suited to regenerative braking improvement compared to...will be cycle dependent. A high speed drive cycle may for example drive a focus on aerodynamic improvements, while high frequency of braking will
16,000-rpm Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, J.S.; Burress, T.A.; Lee, S.T.
2007-10-31
The reluctance interior permanent magnet (RIPM) motor is currently used by many leading auto manufacturers for hybrid vehicles. The power density for this type of motor is high compared with that of induction motors and switched reluctance motors. The primary drawback of the RIPM motor is the permanent magnet (PM) because during high-speed operation, the fixed PM produces a huge back electromotive force (emf) that must be reduced before the current will pass through the stator windings. This reduction in back-emf is accomplished with a significant direct-axis (d-axis) demagnetization current, which opposes the PM's flux to reduce the flux seenmore » by the stator wires. This may lower the power factor and efficiency of the motor and raise the requirement on the alternate current (ac) power supply; consequently, bigger inverter switching components, thicker motor winding conductors, and heavier cables are required. The direct current (dc) link capacitor is also affected when it must accommodate heavier harmonic currents. It is commonly agreed that, for synchronous machines, the power factor can be optimized by varying the field excitation to minimize the current. The field produced by the PM is fixed and cannot be adjusted. What can be adjusted is reactive current to the d-axis of the stator winding, which consumes reactive power but does not always help to improve the power factor. The objective of this project is to avoid the primary drawbacks of the RIPM motor by introducing brushless field excitation (BFE). This offers both high torque per ampere (A) per core length at low speed by using flux, which is enhanced by increasing current to a fixed excitation coil, and flux, which is weakened at high speed by reducing current to the excitation coil. If field weakening is used, the dc/dc boost converter used in a conventional RIPM motor may be eliminated to reduce system costs. However, BFE supports a drive system with a dc/dc boost converter, because it can further extend the constant power speed range of the drive system and adjust the field for power factor and efficiency gains. Lower core losses at low torque regions, especially at high speeds, are attained by reducing the field excitation. Safety and reliability are increased by weakening the field when a winding short-circuit fault occurs, preventing damage to the motor. For a high-speed motor operating at 16,000-revolutions per minute (rpm), mechanical stress is a challenge. Bridges that link the rotor punching segments together must be thickened for mechanical integrity; consequently, increased rotor flux leakage significantly lowers motor performance. This barrier can be overcome by BFE to ensure sufficient rotor flux when needed.« less
Modeling and predicting low-speed vehicle emissions as a function of driving kinematics.
Hao, Lijun; Chen, Wei; Li, Lei; Tan, Jianwei; Wang, Xin; Yin, Hang; Ding, Yan; Ge, Yunshan
2017-05-01
An instantaneous emission model was developed to model and predict the real driving emissions of the low-speed vehicles. The emission database used in the model was measured by using portable emission measurement system (PEMS) under actual traffic conditions in the rural area, and the characteristics of the emission data were determined in relation to the driving kinematics (speed and acceleration) of the low-speed vehicle. The input of the emission model is driving cycle, and the model requires instantaneous vehicle speed and acceleration levels as input variables and uses them to interpolate the pollutant emission rate maps to calculate the transient pollutant emission rates, which will be accumulated to calculate the total emissions released during the whole driving cycle. And the vehicle fuel consumption was determined through the carbon balance method. The model predicted the emissions and fuel consumption of an in-use low-speed vehicle type model, which agreed well with the measured data. Copyright © 2016. Published by Elsevier B.V.
The research of automatic speed control algorithm based on Green CBTC
NASA Astrophysics Data System (ADS)
Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi
2017-06-01
Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.
Park, Hyung-Soon; Yoon, Jung Won; Kim, Jonghyun; Iseki, Kazumi; Hallett, Mark
2013-01-01
Freezing of gait (FOG) is a commonly observed phenomenon in Parkinson’s disease, but its causes and mechanisms are not fully understood. This paper presents the development of a virtual reality (VR)-based body-weight supported treadmill interface (BWSTI) designed and applied to investigate FOG. The BWSTI provides a safe and controlled walking platform which allows investigators to assess gait impairments under various conditions that simulate real life. In order to be able to evoke FOG, our BWSTI employed a novel speed adaptation controller, which allows patients to drive the treadmill speed. Our interface responsively follows the subject’s intention of changing walking speed by the combined use of feedback and feedforward controllers. To provide realistic visual stimuli, a three dimensional VR system is interfaced with the speed adaptation controller and synchronously displays realistic visual cues. The VR-based BWSTI was tested with three patients with PD who are known to have FOG. Visual stimuli that might cause FOG were shown to them while the speed adaptation controller adjusted treadmill speed to follow the subjects’ intention. Two of the three subjects showed FOG during the treadmill walking. PMID:22275661
Passive wide spectrum harmonic filter for adjustable speed drives in oil and gas industry
NASA Astrophysics Data System (ADS)
Al Jaafari, Khaled Ali
Non-linear loads such as variable speed drives constitute the bulky load of oil and gas industry power systems. They are widely used in driving induction and permanent magnet motors for variable speed applications. That is because variable speed drives provide high static and dynamic performance. Moreover, they are known of their high energy efficiency and high motion quality, and high starting torque. However, these non-linear loads are main sources of current and voltage harmonics and lower the quality of electric power system. In fact, it is the six-pulse and twelve-pulse diode and thyristor rectifiers that spoil the AC power line with the dominant harmonics (5th, 7th, 11th). They provide DC voltage to the inverter of the variable speed drives. Typical problems that arise from these harmonics are Harmonic resonances', harmonic losses, interference with electronic equipment, and line voltage distortion at the Point of Common Coupling (PCC). Thus, it is necessary to find efficient, reliable, and economical harmonic filters. The passive filters have definite advantage over active filters in terms of components count, cost and reliability. Reliability and maintenance is a serious issue in drilling rigs which are located in offshore and onshore with extreme operating conditions. Passive filters are tuned to eliminate a certain frequency and therefore there is a need to equip the system with more than one passive filter to eliminate all unwanted frequencies. An alternative solution is Wide Spectrum Harmonic passive filter. The wide spectrum harmonic filters are becoming increasingly popular in these applications and found to overcome some of the limitations of conventional tuned passive filter. The most important feature of wide spectrum harmonic passive filters is that only one capacitor is required to filter a wide range of harmonics. Wide spectrum filter is essentially a low-pass filter for the harmonic at fundamental frequency. It can also be considered as a single-stage passive filter plus input and output inductors. The work proposed gives a complete analysis of wide spectrum harmonic passive filters, the methodology to choose its parameters according to the operational condition, effect of load and source inductance on its characteristics. Also, comparison of the performance of the wide band passive filter with tuned filter is given. The analyses are supported with the simulation results and were verified experimentally. The analysis given in this thesis will be useful for the selection of proper wide spectrum harmonic filters for harmonic mitigation applications in oil and gas industry.
Effect of different breath alcohol concentrations on driving performance in horizontal curves.
Zhang, Xingjian; Zhao, Xiaohua; Du, Hongji; Ma, Jianming; Rong, Jian
2014-11-01
Driving under the influence of alcohol on curved roadway segments has a higher risk than driving on straight segments. To explore the effect of different breath alcohol concentration (BrAC) levels on driving performance in roadway curves, a driving simulation experiment was designed to collect 25 participants' driving performance parameters (i.e., speed and lane position) under the influence of 4 BrAC levels (0.00%, 0.03%, 0.06% and 0.09%) on 6 types of roadway curves (3 radii×2 turning directions). Driving performance data for 22 participants were collected successfully. Then the average and standard deviation of the two parameters were analyzed, considering the entire curve and different sections of the curve, respectively. The results show that the speed throughout curves is higher when drinking and driving than during sober driving. The significant interaction between alcohol and radius exists in the middle and tangent segments after a curve exit, indicating that a small radius can reduce speed at high BrAC levels. The significant impairment of alcohol on the stability of speed occurs mainly in the curve section between the point of curve (PC) and point of tangent (PT), with no impairment noted in tangent sections. The stability of speed is significantly worsened at higher BrAC levels. Alcohol and radius have interactive effects on the standard deviation of speed in the entry segment of curves, indicating that the small radius amplifies the instability of speed at high BrAC levels. For lateral movement, drivers tend to travel on the right side of the lane when drinking and driving, mainly in the approach and middle segments of curves. Higher BrAC levels worsen the stability of lateral movement in every segment of the curve, regardless of its radius and turning direction. The results are expected to provide reference for detecting the drinking and driving state. Copyright © 2014 Elsevier Ltd. All rights reserved.
Driver perceptions of the safety implications of quiet electric vehicles.
Cocron, Peter; Krems, Josef F
2013-09-01
Previous research on the safety implications of quiet electric vehicles (EVs) has mostly focused on pedestrians' acoustic perception of EVs, and suggests that EVs are more difficult for pedestrians to hear and, therefore, compromise traffic safety. The two German field studies presented here examine the experiences of 70 drivers with low noise emissions of EVs and the drivers' long-term evaluation of the issue. Participants were surveyed via interviews and questionnaires before driving an EV for the first time, after 3 months of driving, and in the first study, again after 6 months. Based on participants' reports, a catalogue of safety-relevant incidents was composed in Study 1. The catalogue revealed that low noise-related critical incidents only rarely occur, and mostly take place in low-speed environments. The degree of hazard related to these incidents was rated as low to medium. In Study 1, driver concern for vulnerable road users as a result of low noise diminished with increasing driving experience, while perceived comfort due to this feature increased. These results were replicated in Study 2. In the second study, it was additionally examined, if drivers adjust their perceived risk of harming other road users over time. Results show that the affective assessment of risk also decreased with increased driving experience. Based on individual experience, drivers adjust their evaluation of noise-related hazards, suggesting that dangers associated with low noise emissions might be less significant than previously expected. Copyright © 2013 Elsevier Ltd. All rights reserved.
The effect of social marketing communication on safe driving.
Yang, Dong-Jenn; Lin, Wan-Chen; Lo, Jyue-Yu
2011-12-01
Processing of cognition, affect, and intention was investigated in viewers of advertisements to prevent speeding while driving. Results indicated that anchoring-point messages had greater effects on viewers' cognition, attitude, and behavioral intention than did messages without anchoring points. Further, the changes in message anchoring points altered participants' perceptions of acceptable and unacceptable judgments: a higher anchoring point in the form of speeding mortality was more persuasive in promoting the idea of reducing driving speed. Implications for creation of effective safe driving communications are discussed.
New robotic telescopes by Halfmann-Teleskoptechnik GmbH and Tuparev Technologies Inc.
NASA Astrophysics Data System (ADS)
Bischoff, Karsten; Hessman, Frederic V.; Tuparev, Georg; Atanasova, Ekatarina; Pessev, Peter
2008-07-01
We will present aspects of the installation, commissioning, software development, and early operation of several new robotic telescopes: 1) the 1.2-m MONET/South telescope at Sutherland/ZA, the second Halfmann telescope for the MONET telescope network (the other telescope has been in operation at McDonald Observatory in Texas since early 2006); 2) a siderostat for a 0.5-m vacuum tower telescope for the new physics building of the Georg-August-Universitat Göttingen and 3) new developments for smaller (down to 0.5m) aperture telescopes. Special emphasis will be given to drive technology: using torque motors we adjust maximum slewing speeds of 10°/sec as standard. Although sufficient for most projects we are investigating even faster slewing speeds.
Two speed drive system. [mechanical device for changing speed on rotating vehicle wheel
NASA Technical Reports Server (NTRS)
Burch, J. L. (Inventor)
1972-01-01
A two speed drive system for a wheel of a vehicle by which shifting from one speed to the other is accomplished by the inherent mechanism of the wheel is described. A description of the speed shifting operation is provided and diagrams of the mechanism are included. Possible application to lunar roving vehicles is proposed.
DOT National Transportation Integrated Search
1981-02-01
The report develops a set of operational definitions for three unsafe driving actions (UDAs): speeding, following too closely, and driving left of center. The definitions flow from a methodological development and from an analysis of the literature a...
DOT National Transportation Integrated Search
1998-04-01
The effect on driving performance of using a speed, steering, and gap control system (SSGCS) and a collision warning system (CWS) was assessed in an experiment conducted in the Iowa Driving Simulator. Driving performance data were obtained from 52 dr...
Anxiety, Sedation, and Simulated Driving in Binge Drinkers
Aston, Elizabeth R.; Shannon, Erin E.; Liguori, Anthony
2014-01-01
The current study evaluated the relationships among trait anxiety, subjective response to alcohol, and simulated driving following a simulated alcohol binge. Sixty drinkers with a binge history completed the State Trait Anxiety Inventory (STAI), the Alcohol Use Questionnaire, and subsequently completed a driving simulation. Participants were then administered 0.2 g/kg ethanol at 30 minute intervals (cumulative dose 0.8 g/kg). Following alcohol consumption, the Biphasic Alcohol Effects Scale (BAES) and visual analog scales of subjective impairment and driving confidence were administered, after which simulated driving was re-assessed. Due to the emphasis on simulated driving after drinking in the current study, subjective response to alcohol (i.e., self-reported sedation, stimulation, impairment, and confidence in driving ability) was assessed once following alcohol consumption, as this is the time when drinkers tend to make decisions regarding legal driving ability. Alcohol increased driving speed, speeding tickets, and collisions. Sedation following alcohol predicted increased subjective impairment and decreased driving confidence. Subjective impairment was not predicted by sensitivity to stimulation or trait anxiety. High trait anxiety predicted low driving confidence after drinking and this relationship was mediated by sedation. Increased speed after alcohol was predicted by sedation, but not by trait anxiety or stimulation. Anxiety, combined with the sedating effects of alcohol, may indicate when consumption should cease. However, once driving is initiated, sensitivity to sedation following alcohol consumption is positively related to simulated driving speed. PMID:24955664
Simulation of load traffic and steeped speed control of conveyor
NASA Astrophysics Data System (ADS)
Reutov, A. A.
2017-10-01
The article examines the possibilities of the step control simulation of conveyor speed within Mathcad, Simulink, Stateflow software. To check the efficiency of the control algorithms and to more accurately determine the characteristics of the control system, it is necessary to simulate the process of speed control with real values of traffic for a work shift or for a day. For evaluating the belt workload and absence of spillage it is necessary to use empirical values of load flow in a shorter period of time. The analytical formulas for optimal speed step values were received using empirical values of load. The simulation checks acceptability of an algorithm, determines optimal parameters of regulation corresponding to load flow characteristics. The average speed and the number of speed switching during simulation are admitted as criteria of regulation efficiency. The simulation example within Mathcad software is implemented. The average conveyor speed decreases essentially by two-step and three-step control. A further increase in the number of regulatory steps decreases average speed insignificantly but considerably increases the intensity of the speed switching. Incremental algorithm of speed regulation uses different number of stages for growing and reducing load traffic. This algorithm allows smooth control of the conveyor speed changes with monotonic variation of the load flow. The load flow oscillation leads to an unjustified increase or decrease of speed. Work results can be applied at the design of belt conveyors with adjustable drives.
Exceeding the speed limit: prevalence and determinants in Iran.
Moradi, Ali; Motevalian, Seyed Abbas; Mirkoohi, Maryam; McKay, Mary Pat; Rahimi-Movaghar, Vafa
2013-01-01
Speeding is one of the most common risk behaviours associated with crashes causing signficant injury. The objective of this study is to explore the prevalence and determinants of speeding on a road between Tehran and Hamadan, Iran. In a cross-sectional study in 2009, stretches of the road were studied including three groups of posted speed limits: < 50 km/h, 50-100 km/h and > 100 km/h. Each stretch was evaluated both in daylight and dark. Randomly identified driver's speed was checked by a handheld speed camera and then the driver was invited to participate in a survey. Statistical analysis was performed using Chi-Square, crude and adjusted odds ratio, 95% confidence interval and multiple logistic regression models. Overall, 52.8% of the drivers were travelling more than 10 km/h above the posted limit. Where limits were < 50 km/h, 74.6% of drivers were speeding. This declined to 46.9% for sections with limits between 50 and 100 km/h and to 36.9% for sections posted more than 100 km/h. Finally, more than half the drivers were observed to be speeding. Driving more than the posted limit was far more likely on the areas with the lowest posted speed limits, personal passenger vehicles, modern vehicles not using seat belts, and male drivers.
Yan, Xuedong; Wang, Jiali; Wu, Jiawei
2016-01-01
Speeding is a major contributing factor to traffic crashes and frequently happens in areas where there is a mutation in speed limits, such as the transition zones that connect urban areas from rural areas. The purpose of this study is to investigate the effects of an in-vehicle audio warning system and lit speed limit sign on preventing drivers’ speeding behavior in transition zones. A high-fidelity driving simulator was used to establish a roadway network with the transition zone. A total of 41 participants were recruited for this experiment, and the driving speed performance data were collected from the simulator. The experimental results display that the implementation of the audio warning system could significantly reduce drivers’ operating speed before they entered the urban area, while the lit speed limit sign had a minimal effect on improving the drivers’ speed control performance. Without consideration of different types of speed limit signs, it is found that male drivers generally had a higher operating speed both upstream and in the transition zones and have a larger maximum deceleration for speed reduction than female drivers. Moreover, the drivers who had medium-level driving experience had the higher operating speed and were more likely to have speeding behaviors in the transition zones than those who had low-level and high-level driving experience in the transition zones. PMID:27347990
Dionisio, Valdeci C; Brown, David A
2016-06-16
Collaborative robots are used in rehabilitation and are designed to interact with the client so as to provide the ability to assist walking therapeutically. One such device is the KineAssist which was designed to interact, either in a self-driven mode (SDM) or in an assist mode (AM), with neurologically-impaired individuals while they are walking on a treadmill surface. To understand the level of transparency (i.e., interference with movement due to the mechanical interface) between human and robot, and to estimate and account for changes in the kinetics and kinematics of the gait pattern, we tested the KineAssist under conditions of self-drive and horizontal push assistance. The aims of this study were to compare the joint kinematics, forces and moments during walking at a fixed constant treadmill belt speed and constrained walking cadence, with and without the robotic device (OUT) and to compare the biomechanics of assistive and self-drive modes in the device. Twenty non-neurologically impaired adults participated in this study. We evaluated biomechanical parameters of walking at a fixed constant treadmill belt speed (1.0 m/s), with and without the robotic device in assistive mode. We also tested the self-drive condition, which enables the user to drive the speed and direction of a treadmill belt. Hip, knee and ankle angular displacements, ground reaction forces, hip, knee and ankle moments, and center of mass displacement were compared "in" vs "out" of the device. A repeated measures ANOVA test was applied with the three level factor of condition (OUT, AM, and SDM), and each participant was used as its own comparison. When comparing "in" and "out" of the device, we did not observe any interruptions and/or reversals of direction of the basic gait pattern trajectory, but there was increased ankle and hip angular excursions, vertical ground reaction force and hip moments and reduced center of mass displacement during the "in device" condition. Comparing assistive vs self-drive mode in device, participants had greater flexed posture and accentuated hip moments and propulsive force, but reduced braking force. Although the magnitudes and/or range of certain gait pattern components were altered by the device, we did not observe any interruption from the mechanical interface upon the advancement of the trajectories nor reversals in direction of movement which suggests that the KineAssist permits relative transparency (i.e.. lack of interference of movement by the device mechanism) to the individual's gait pattern. However, there are interactive forces to take into account, which appear to be overcome by kinematic and kinetic adjustments.
Young drivers' perception of adult and child pedestrians in potential street-crossing situations.
Ābele, Līva; Haustein, Sonja; Møller, Mette
2018-04-03
Despite overall improvements in road traffic safety, pedestrian accidents continue to be a serious public health problem. Due to lack of experience, limited cognitive and motoric skills, and smaller size, children have a higher injury risk as pedestrians than adults. To what extent drivers adjust their driving behaviour to children's higher vulnerability is largely unknown. To determine whether young male drivers' behaviour and scanning pattern differs when approaching a child and an adult pedestrian in a potential street-crossing situation, sixty-five young (18-24) male drivers' speed, lateral position and eye movements were recorded in a driving simulator. Results showed that fewer drivers responded by slowing down and that drivers had a higher driving speed when approaching a child pedestrian, although the time of the first fixation on both types of pedestrians was the same. However, drivers drove farther away from a child than an adult pedestrian. Additionally, fewer drivers who did not slow down fixated on the speedometer while approaching the child pedestrian. The results show that young drivers behave differently when approaching a child and an adult pedestrian, though not in a way that appropriately accounts for the limitations of a child pedestrian. A better understanding of how drivers respond to different types of pedestrians and why could contribute to the development of pedestrian detection and emergency braking systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lardelli-Claret, Pablo; Luna-Del-Castillo, Juan de Dios; Jiménez-Moleón, José Juan; Rueda-Domínguez, Trinidad; García-Martín, Miguel; Femia-Marzo, Pedro; Bueno-Cavanillas, Aurora
2003-08-01
To assess the strength of association of main driver-dependent risk factors with the risk of causing a collision between vehicles in Spain, from 1990 to 1999. The data for this paired-by-collision, case-control study were obtained from the Spanish Dirección General de Tráfico traffic crash database. The study included all 220284 collisions involving two or more vehicles with four or more wheels, in which only one of the drivers involved committed an infraction. Infractor drivers comprised the case group; noninfractor drivers involved in the same collision were their corresponding paired controls. All driver-dependent factors were associated with the risk of causing a collision. The highest adjusted odds ratio estimates were obtained for sleepiness (64.35; CI, 45.12-91.79), inappropriate speed (28.33; CI, 26.37-30.44), and driving under the influence of alcohol with a positive breath test (22.32; CI, 19.64-25.37). An increase in the number of years in possession of a driving license showed a protective effect, albeit the strength of the effect decreased as age increased. Our results emphasize the urgent need to implement strategies aimed mainly at controlling speeding, sleepiness, and alcohol consumption before driving-the main driver-dependent risk factors for causing a vehicle collision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munk, Jeffrey D; Odukomaiya, Adewale O; Gehl, Anthony C
2014-01-01
With the recent advancements in the application of variable-speed (VS) compressors to residential HVAC systems, opportunities are now available to size heat pumps (HPs) to more effectively meet heating and cooling loads in many of the climate zones in the US with limited use of inefficient resistance heat. This is in contrast to sizing guidance for traditional single-speed HPs that limits the ability to oversize with regard to cooling loads, because of risks of poor dehumidification during the cooling season and increased cycling losses. VS-drive HPs can often run at 30-40% of their rated cooling capacity to reduce cycling losses,more » and can adjust fan speed to provide better indoor humidity control. Detailed air-side performance data was collected on two VS-drive heat pumps installed in a single unoccupied research house in Knoxville, TN, a mixed-humid climate. One system provided space conditioning for the upstairs, while the other unit provided space conditioning for the downstairs. Occupancy was simulated by operating the lights, shower, appliances, other plug loads, etc. to simulate the sensible and latent loads imposed on the building space by internal electric loads and human occupants according to the Building America Research Benchmark (2008). The seasonal efficiency and energy use of the units are calculated. Annual energy use is compared to that of the single speed minimum efficiency HPs tested in the same house previously. Sizing of the units relative to the measured building load and manual J design load calculations is examined. The impact of the unit sizing with regards to indoor comfort is also evaluated.« less
15 CFR 265.12 - Speeding or reckless driving.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of traffic, weather, and road surface and having regard to the actual and potential hazards existing...) of this section, the speed limit on the site is 25 m.p.h., unless another speed limit has been duly posted, and no person shall drive a motor vehicle on the site in excess of the speed limit. ...
15 CFR 265.12 - Speeding or reckless driving.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of traffic, weather, and road surface and having regard to the actual and potential hazards existing...) of this section, the speed limit on the site is 25 m.p.h., unless another speed limit has been duly posted, and no person shall drive a motor vehicle on the site in excess of the speed limit. ...
15 CFR 265.12 - Speeding or reckless driving.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of traffic, weather, and road surface and having regard to the actual and potential hazards existing...) of this section, the speed limit on the site is 25 m.p.h., unless another speed limit has been duly posted, and no person shall drive a motor vehicle on the site in excess of the speed limit. ...
15 CFR 265.12 - Speeding or reckless driving.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of traffic, weather, and road surface and having regard to the actual and potential hazards existing...) of this section, the speed limit on the site is 25 m.p.h., unless another speed limit has been duly posted, and no person shall drive a motor vehicle on the site in excess of the speed limit. ...
NASA Technical Reports Server (NTRS)
Wong, Robert Y.; Monroe, Daniel E.
1959-01-01
The design and experimental investigation of a 4.5-inch-mean-diameter two-stage turbine are presented herein and used to study the effect of size on the efficiency of turbines in the auxiliary power drive class. The results of the experimental investigation indicated that design specific work was obtained at design speed at a total-to-static efficiency of 0.639. At design pressure ratio, design static-pressure distribution through the turbine was obtained with an equivalent specific work output of 33.2 Btu per pound and an efficiency of 0.656. It was found that, in the design of turbines in the auxiliary power drive class, Reynolds number plays an important part in the selection of the design efficiency. Comparison with theoretical efficiencies based on a loss coefficient and velocity diagrams are presented. Close agreement was obtained between theory and experiment when the loss coefficient was adjusted for changes in Reynolds number to the -1/5 power.
Improved Speed Control System for the 87,000 HP Wind Tunnel Drive
NASA Technical Reports Server (NTRS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
Improved speed control system for the 87,000 HP wind tunnel drive
NASA Astrophysics Data System (ADS)
Becks, Edward A.; Bencic, Timothy J.; Blumenthal, Philip Z.
1995-01-01
This paper describes the design, installation, and integrated systems tests for a new drive motor speed control system which was part of a recent rehab project for the NASA Lewis 8x6 Supersonic Wind Tunnel. The tunnel drive consists of three mechanically-coupled 29,000 HP wound rotor induction motors driving an axial flow compressor. Liquid rheostats are used to vary the impedance of the rotor circuits, thus varying the speed of the drive system. The new design utilizes a distributed digital control system with a dual touch screen CRT operator console to provide alarm monitoring, logging, and trending. The liquid rheostats are driven by brushtype servomotor systems with magnetostrictive linear displacement transducers used for position feedback. The new system achieved all goals for speed variations with load, motor load balance, and control of total power.
Narad, Megan; Garner, Annie A; Brassell, Anne A; Saxby, Dyani; Antonini, Tanya N; O'Brien, Kathleen M; Tamm, Leanne; Matthews, Gerald; Epstein, Jeffery N
2013-10-01
This study extends the literature regarding attention-deficit/hyperactivity disorder (ADHD)-related driving impairments to a newly licensed, adolescent population. To investigate the combined risks of adolescence, ADHD, and distracted driving (cell phone conversation and text messaging) on driving performance. Adolescents aged 16 to 17 years with (n = 28) and without (n = 33) ADHD engaged in a simulated drive under 3 conditions (no distraction, cell phone conversation, and texting). During each condition, one unexpected event (eg, another car suddenly merging into driver's lane) was introduced. Cell phone conversation, texting, and no distraction while driving. Self-report of driving history, average speed, standard deviation of speed, standard deviation of lateral position, and braking reaction time during driving simulation. Adolescents with ADHD reported fewer months of driving experience and a higher proportion of driving violations than control subjects. After controlling for months of driving history, adolescents with ADHD demonstrated more variability in speed and lane position than control subjects. There were no group differences for braking reaction time. Furthermore, texting negatively impacted the driving performance of all participants as evidenced by increased variability in speed and lane position. To our knowledge, this study is one of the first to investigate distracted driving in adolescents with ADHD and adds to a growing body of literature documenting that individuals with ADHD are at increased risk for negative driving outcomes. Furthermore, texting significantly impairs the driving performance of all adolescents and increases existing driving-related impairment in adolescents with ADHD, highlighting the need for education and enforcement of regulations against texting for this age group.
75 FR 16227 - Reports, Forms, and Record Keeping Requirements
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
... following proposed collection of information: Title: Motivations for Speeding. Type of Request: New... participants to examine driving speed patterns with the goals of understanding motivations for speeding. Based... data relevant to descriptions of key motivations, attitudes, normative commitment to law, driving...
32 CFR 263.6 - Speeding or reckless driving.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., weather, and road surface and having regard to the actual and potential hazards existing. (b) Except when a special hazard exists that requires lower speed, the speed limit on the site is 15 m.p.h., unless another speed limit has been duly posted, and no person shall drive a motor vehicle on the site in excess...
32 CFR 263.6 - Speeding or reckless driving.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., weather, and road surface and having regard to the actual and potential hazards existing. (b) Except when a special hazard exists that requires lower speed, the speed limit on the site is 15 m.p.h., unless another speed limit has been duly posted, and no person shall drive a motor vehicle on the site in excess...
32 CFR 263.6 - Speeding or reckless driving.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., weather, and road surface and having regard to the actual and potential hazards existing. (b) Except when a special hazard exists that requires lower speed, the speed limit on the site is 15 m.p.h., unless another speed limit has been duly posted, and no person shall drive a motor vehicle on the site in excess...
32 CFR 263.6 - Speeding or reckless driving.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., weather, and road surface and having regard to the actual and potential hazards existing. (b) Except when a special hazard exists that requires lower speed, the speed limit on the site is 15 m.p.h., unless another speed limit has been duly posted, and no person shall drive a motor vehicle on the site in excess...
32 CFR 263.6 - Speeding or reckless driving.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., weather, and road surface and having regard to the actual and potential hazards existing. (b) Except when a special hazard exists that requires lower speed, the speed limit on the site is 15 m.p.h., unless another speed limit has been duly posted, and no person shall drive a motor vehicle on the site in excess...
Dynamic analysis and vibration testing of CFRP drive-line system used in heavy-duty machine tool
NASA Astrophysics Data System (ADS)
Yang, Mo; Gui, Lin; Hu, Yefa; Ding, Guoping; Song, Chunsheng
2018-03-01
Low critical rotary speed and large vibration in the metal drive-line system of heavy-duty machine tool affect the machining precision seriously. Replacing metal drive-line with the CFRP drive-line can effectively solve this problem. Based on the composite laminated theory and the transfer matrix method (TMM), this paper puts forward a modified TMM to analyze dynamic characteristics of CFRP drive-line system. With this modified TMM, the CFRP drive-line of a heavy vertical miller is analyzed. And the finite element modal analysis model of the shafting is established. The results of the modified TMM and finite element analysis (FEA) show that the modified TMM can effectively predict the critical rotary speed of CFRP drive-line. And the critical rotary speed of CFRP drive-line is 20% higher than that of the original metal drive-line. Then, the vibration of the CFRP and the metal drive-line were tested. The test results show that application of the CFRP drive shaft in the drive-line can effectively reduce the vibration of the heavy-duty machine tool.
Voltage oriented control of self-excited induction generator for wind energy system with MPPT
NASA Astrophysics Data System (ADS)
Amieur, Toufik; Taibi, Djamel; Amieur, Oualid
2018-05-01
This paper presents the study and simulation of the self-excited induction generator in the wind power production in isolated sites. With this intention, a model of the wind turbine was established. Extremum-seeking control algorithm method by using Maximum Power Point Tracking (MPPT) is proposed control solution aims at driving the average position of the operating point near to optimality. The reference of turbine rotor speed is adjusted such that the turbine operates around maximum power for the current wind speed value. After a brief review of the concepts of converting wind energy into electrical energy. The proposed modeling tools were developed to study the performance of standalone induction generators connected to capacitor bank. The purpose of this technique is to maintain a constant voltage at the output of the rectifier whatever the loads and speeds. The system studied in this work is developed and tested in MATLAB/Simulink environment. Simulation results validate the performance and effectiveness of the proposed control methods.
Flextensional ultrasonic piezoelectric micro-motor.
Leinvuo, Joni T; Wilson, Stephen A; Whatmore, Roger W; Cain, Markys G
2006-12-01
This paper presents the experimental design, construction, and operational characteristics of a new type of standing wave piezoelectric ultrasonic micro-motor. The motor uses a composite stator, consisting of a metallic flex-tensional mode converter, or "cymbal", bonded to a 2-mm-square piezoelectric plate. The cymbal converts contour-mode vibrations of the plate into oscillations in the cymbal, perpendicular to the stator plane. These are further converted into rotational movement in a rotor pressed against the cymbal by means of an elastic-fin friction drive to produce the required rotary actuation. The motor operates on a single-phase electrical supply, and direct control of the output speed and torque can be achieved by adjusting the amplitude and frequency of the supply voltage. Noncontact optical techniques were used to assess the performance of the developed micro-motor. The operational characteristics were developed from the acceleration and deceleration characteristics. No-load output speed (11 rev s(-1)) and stall torque (27 nNm) were derived using high-speed imaging and image analysis. Maximum efficiency was 0.6%.
Zhao, Xiaohua; Li, Jiahui; Ma, Jianming; Rong, Jian
2016-01-01
Traffic control devices are one of the most significant factors affecting driving behavior. In China, there is a lack of installation guidelines or standards for traffic control devices in school zones. In addition, little research has been done to examine the effects of traffic control devices on driving behavior. Few guidelines have been established for implementing traffic control devices in school zones in China. This research conducted a driving simulator experiment to assess the effects of school zone signs and markings for two different types of schools. The efficiency of these traffic control devices was evaluated using four variables derived from the driving simulation, including average speed, relative speed difference, standard deviation of acceleration, and 85th percentile speed. Results showed that traffic control devices such as the Flashing Beacon and School Crossing Ahead Warning Assembly, the Reduce Speed and School Crossing Warning Assembly, and the School Crossing Ahead Pavement Markings were recommended for school zones adjacent to a major multilane roadway, which is characterized by a median strip, high traffic volume, high-speed traffic and the presence of pedestrian crossing signals. The School Crossing Ahead Pavement Markings were recommended for school zones on a minor two-lane roadway, which is characterized by low traffic volume, low speed, and no pedestrian crossing signals.
Driving Comparisons Between Young Adults with Autism Spectrum Disorder and Typical Development.
Patrick, Kristina E; Hurewitz, Felicia; McCurdy, Mark D; Agate, Frederic Taylor; Daly, Brian P; Tarazi, Reem A; Chute, Douglas L; Schultheis, Maria T
2018-05-18
Many individuals with autism spectrum disorder (ASD) are reluctant to pursue driving because of concerns about their ability to drive safely. This study aimed to assess differences in simulated driving performance in young adults with ASD and typical development, examining relationships between driving performance and the level of experience (none, driver's permit, licensed) across increasingly difficult driving environments. Participants included 50 English-speaking young adults (16-26 years old) with ASD matched for sex, age, and licensure with 50 typically-developing (TD) peers. Participants completed a structured driving assessment using a virtual-reality simulator that included increasingly complex environmental demands. Differences in mean speed and speed and lane variability by diagnostic group and driving experience were analyzed using multilevel linear modeling. Young adults with ASD demonstrated increased variability in speed and lane positioning compared with controls, even during low demand tasks. When driving demands became more complex, group differences were moderated by driving experience such that licensed drivers with ASD drove similarly to TD licensed drivers for most tasks, whereas unlicensed drivers with ASD had more difficulty with speed and lane management than TD drivers. Findings suggest that young adults with ASD may have more difficulty with basic driving skills than peers, particularly in the early stages of driver training. Increased difficulty compared with peers increases as driving demands become more complex, suggesting that individuals with ASD may benefit from a slow and gradual approach to driver training. Future studies should evaluate predictors of driving performance, on-road driving, and ASD-specific driving interventions.
2014-01-01
Background This study hopes to establish the timeframe for a safe return to driving under different speed conditions for patients after minimally invasive total knee arthroplasty and further explores how well various kinds of functional tests on knee performance can predict the patients’ braking ability. Methods 14 patients with right knee osteoarthritis were included in the present study and instructed to perform three simulated driving tasks at preoperative, 2 weeks postoperative and 4 weeks postoperative. Results The results showed that the total braking time at 4 week postoperative has attained the preoperative level at the driving speed 50 and 70 km/hr but not at the driving speed 90 km/hr. It had significantly improving in knee reaction time and maximum isometric force at 4 weeks postoperative. Besides, there was a moderate to high correlation between the scores of the step counts and the total braking time. Conclusions Summary, it is recommended that driving may be resumed 4 weeks after a right knee replacement but had to drive at low or moderate speed and the best predictor of safety driving is step counts. PMID:24913312
The use of a driving simulator to determine how time pressures impact driver aggressiveness.
DOT National Transportation Integrated Search
2017-06-01
Speeding greatly contributes to traffic safety with approximately a third of fatal crashes in the United States being speeding-related. Previous research has identified being late as a primary cause of speeding. In this driving simulator study, a vir...
Importance of CME Radial Expansion on the Ability of Slow CMEs to Drive Shocks
NASA Astrophysics Data System (ADS)
Lugaz, N.; Farrugia, C. J.; Winslow, R. M.; Small, C. R.; Manion, T.; Savani, N.
2017-12-01
Coronal mass ejections (CMEs) may disturb the solar wind either by overtaking it, or by expanding into it, or both. CMEs whose front moves faster in the solar wind frame than the fast magnetosonic speed, drive shocks. In general, near 1 AU, CMEs with speed greater than about 500 km s-1 drive shocks, whereas slower CMEs do not. However, CMEs as slow as 350 km s-1 may sometimes, although rarely, drive shocks. Here, we study these slow CMEs with shocks and investigate the importance of CME expansion in contributing to their ability to drive shocks and in enhancing shock strength. Our focus is on CMEs with average speeds under 375 km s-1. From Wind measurements from 1996 to 2016, we find 22 cases of such shock-driving slow CMEs, and, for about half of them, the existence of the shock appears to be strongly related to CME expansion. We also investigate the proportion of all CMEs with speeds under 500 km s-1 with and without shocks in solar cycles 23 and 24, depending on their speed. We find no systematic difference, as might have been expected on the basis of the lower solar wind and Alfven speeds reported for solar cycle 24 vs. 23. The slower expansion speed of CMEs in solar cycle 24 is a reasonable explanation for this lack of increased frequency of shocks, but further studies are required.
Prospect balancing theory: Bounded rationality of drivers' speed choice.
Schmidt-Daffy, Martin
2014-02-01
This paper introduces a new approach to model the psychological determinants of drivers' speed choice: prospect-balancing theory. The theory transfers psychological insight into the bounded rationality of human decision-making to the field of driving behaviour. Speed choice is conceptualized as a trade-off between two options for action: the option to drive slower and the option to drive faster. Each option is weighted according to a subjective value and a subjectively weighted probability attributed to the achievement of the associated action goal; e.g. to avoid an accident by driving more slowly. The theory proposes that the subjective values and weightings of probability differ systematically from the objective conditions and thereby usually favour a cautious speed choice. A driving simulation study with 24 male participants supports this assumption. In a conflict between a monetary gain in case of fast arrival and a monetary loss in case of a collision with a deer, participants chose a velocity lower than that which would maximize their pay-out. Participants' subjective certainty of arriving in time and of avoiding a deer collision assessed at different driving speeds diverged from the respective objective probabilities in accordance with the observed bias in choice of speed. Results suggest that the bounded rationality of drivers' speed choice might be used to support attempts to improve road safety. Thus, understanding the motivational and perceptual determinants of this intuitive mode of decision-making might be a worthwhile focus of future research. Copyright © 2013 Elsevier Ltd. All rights reserved.
The use of a driving simulator to determine how time pressures impact driver aggressiveness.
Fitzpatrick, Cole D; Samuel, Siby; Knodler, Michael A
2017-11-01
Speeding greatly attributes to traffic safety with approximately a third of fatal crashes in the United States being speeding-related. Previous research has identified being late as a primary cause of speeding. In this driving simulator study, a virtual drive was constructed to evaluate how time pressures, or hurried driving, affected driver speed choice and driver behavior. In particular, acceleration profiles, gap acceptance, willingness to pass, and dilemma zone behavior were used, in addition to speed, as measures to evaluate whether being late increased risky and aggressive driving behaviors. Thirty-six drivers were recruited with an equal male/female split and a broad distribution of ages. Financial incentives and completion time goals calibrated from a control group were used to generate a Hurried and Very Hurried experimental group. As compared to the control group, Very Hurried drivers selected higher speeds, accelerated faster after red lights, accepted smaller gaps on left turns, were more likely to pass a slow vehicle, and were more likely to run a yellow light in a dilemma zone situation. These trends were statistically significant and were also evident with the Hurried group but a larger sample would be needed to show statistical significance. The findings from this study provide evidence that hurried drivers select higher speeds and exhibit riskier driving behaviors. These conclusive results have possible implications in areas such as transportation funding and commercial motor vehicle safety. Published by Elsevier Ltd.
The impact of personality on driving safety among Chinese high-speed railway drivers.
Guo, Ming; Wei, Wei; Liao, Ganli; Chu, Fulei
2016-07-01
This study explored the impact of personality traits on driving safety in high-speed railway drivers. A sample of high-speed railway drivers in Beijing (N=214) completed a questionnaire, including information on personality traits and background variables. The NEO Five Factor Inventory (NEO-FFI) was administered to characterize participants based on five personality traits: Neuroticism, Extraversion, Agreeableness, Openness to Experience, and Conscientiousness. The survey data were combined with naturalistic data of accident involvement and risky driving behavior in China. Poisson regression results show that drivers with high Conscientiousness and Extraversion caused fewer accidents. Higher Conscientiousness and lower Agreeableness were related to less frequent risky driving behavior. Education level and age negatively moderated the relation between certain personality traits and driving safety. The findings suggest that personality traits should be considered when selecting and training high-speed railway drivers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Narad, Megan; Garner, Annie A.; Brassell, Anne A.; Saxby, Dyani; Antonini, Tanya N.; O'Brien, Kathleen M.; Tamm, Leanne; Matthews, Gerald; Epstein, Jeffery N.
2013-01-01
Importance This study extends the literature regarding Attention-Deficit/Hyperactivity Disorder (ADHD) related driving impairments to a newly-licensed, adolescent population. Objective To investigate the combined risks of adolescence, ADHD, and distracted driving (cell phone conversation and text messaging) on driving performance. Design Adolescents with and without ADHD engaged in a simulated drive under three conditions (no distraction, cell phone conversation, texting). During each condition, one unexpected event (e.g., car suddenly merging into driver's lane) was introduced. Setting Driving simulator. Participants Adolescents aged 16–17 with ADHD (n=28) and controls (n=33). Interventions/Main Exposures Cell phone conversation, texting, and no distraction while driving. Outcome Measures Self-report of driving history; Average speed, standard deviation of speed, standard deviation of lateral position, braking reaction time during driving simulation. Results Adolescents with ADHD reported fewer months of driving experience and a higher proportion of driving violations than controls. After controlling for months of driving history, adolescents with ADHD demonstrated more variability in speed and lane position than controls. There were no group differences for braking reaction time. Further, texting negatively impacted the driving performance of all participants as evidenced by increased variability in speed and lane position. Conclusions This study, one of the first to investigate distracted driving in adolescents with ADHD, adds to a growing body of literature documenting that individuals with ADHD are at increased risk for negative driving outcomes. Furthermore, texting significantly impairs the driving performance of all adolescents and increases existing driving-related impairment in adolescents with ADHD, highlighting the need for education and enforcement of regulations against texting for this age group. PMID:23939758
Rapid Drinking is Associated with Increases in Driving-Related Risk-Taking
Bernosky-Smith, Kimberly A.; Aston, Elizabeth R.; Liguori, Anthony
2014-01-01
Objective The rate of alcohol drinking has been shown to predict impairment on cognitive and behavioral tasks. The current study assessed the influence of speed of alcohol consumption within a laboratory-administered binge on self-reported attitudes toward driving and simulated driving ability. Method Forty moderate drinkers (20 female, 20 male) were recruited from the local community via advertisements for individuals who drank alcohol at least once per month. The equivalent of four standard alcohol drinks was consumed at the participant’s desired pace within a two-hour session. Results Correlation analyses revealed that, after alcohol drinking, mean simulated driving speed, time in excess of speed limit, collisions, and reported confidence in driving were all associated with rapid alcohol drinking. Conclusion Fast drinking may coincide with increased driving confidence due to the extended latency between the conclusion of drinking and the commencement of driving. However, this latency did not reduce alcohol-related driving impairment, as fast drinking was also associated with risky driving. PMID:23027650
Rapid drinking is associated with increases in driving-related risk-taking.
Bernosky-Smith, Kimberly A; Aston, Elizabeth R; Liguori, Anthony
2012-11-01
The rate of alcohol drinking has been shown to predict impairment on cognitive and behavioral tasks. The current study assessed the influence of speed of alcohol consumption within a laboratory-administered binge on self-reported attitudes toward driving and simulated driving ability. Forty moderate drinkers (20 female, 20 male) were recruited from the local community via advertisements for individuals who drank alcohol at least once per month. The equivalent of four standard alcohol drinks was consumed at the participant's desired pace within 2-h session. Correlation analyses revealed that, after alcohol drinking, mean simulated driving speed, time in excess of speed limit, collisions, and reported confidence in driving were all associated with rapid alcohol drinking. Fast drinking may coincide with increased driving confidence because of the extended latency between the conclusion of drinking and the commencement of driving. However, this latency did not reduce alcohol-related driving impairment, as fast drinking was also associated with risky driving. Copyright © 2012 John Wiley & Sons, Ltd.
[Attention to speed and guide traffic signs with eye movements].
Conchillo Jiménez, Ángela; Pérez-Moreno, Elisa; Recarte Goldaracena, Miguel Ángel
2010-11-01
The goal of this research is to describe the visual search patterns for diverse traffic signs. Twelve drivers of both genders and different driving experience levels took part in real driving research with an instrumented car provided with an eye-tracking system. Looking at signs has a weak relation with speed reduction in cases where actual driving speed was higher. Nevertheless, among the people who looked at the sign, the percentage of those who reduce the speed below the limit is greater than of those who do not look at the sign. Guide traffic signs, particularly those mounted over the road, are more frequently glanced at than speed limit signs, with a glance duration of more than one second, in sequences of more than two consecutive fixations. Implications for driving and the possibilities and limitations of eye movement analysis for traffic sign research are discussed.
NASA Astrophysics Data System (ADS)
Yoneda, Makoto; Dohmeki, Hideo
The position control system with the advantage large torque, low vibration, and high resolution can be obtained by the constant current micro step drive applied to hybrid stepping motor. However loss is large, in order not to be concerned with load torque but to control current uniformly. As the one technique of a position control system in which high efficiency is realizable, the same sensorless control as a permanent magnet motor is effective. But, it was the purpose that the control method proposed until now controls speed. Then, this paper proposed changing the drive method of micro step drive and sensorless drive. The change of the drive method was verified from the simulation and the experiment. On no load, it was checked not producing change of a large speed at the time of a change by making electrical angle and carrying out zero reset of the integrator. On load, it was checked that a large speed change arose. The proposed system could change drive method by setting up the initial value of an integrator using the estimated result, without producing speed change. With this technique, the low loss position control system, which employed the advantage of the hybrid stepping motor, has been built.
Personality, risk aversion and speeding: an empirical investigation.
Greaves, Stephen P; Ellison, Adrian B
2011-09-01
Evidence suggests that in addition to demographics, there are strong relationships between facets of drivers' personality (e.g., aggression, thrill-seeking, altruism), aversion to risk and driving behaviour, particularly speeding. However, evidence is muted by the reliance on self-reported driving behaviour, which is thought to not accurately reflect actual driving behaviour. This paper reports on a study of 133 drivers in Sydney, who were asked to complete a short survey to develop their personality and risk aversion profiles and self-reported speeding behaviour. A Global Positioning System (GPS) device was then installed in their vehicle for several weeks as part of a major investigation of driving behaviour from which empirical measures of speeding are derived. Among the most pertinent findings are: (1) the tendency for drivers to both under and over-estimate their propensity to speed, (2) significant heterogeneity in speeding with a small, but notable number of drivers exceeding the limit for more than 20 percent of the distance driven, (3) weak relationships between the personality/risk-aversion measures and actual speeding, and (4) the suggestion that different personality traits appear to influence behaviour in different situations both from self-reported and actual speeding behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yonai, J.; Arai, T.; Hayashida, T.; Ohtake, H.; Namiki, J.; Yoshida, T.; Etoh, T. Goji
2012-03-01
We have developed an ultrahigh-speed CCD camera that can capture instantaneous phenomena not visible to the human eye and impossible to capture with a regular video camera. The ultrahigh-speed CCD was specially constructed so that the CCD memory between the photodiode and the vertical transfer path of each pixel can store 144 frames each. For every one-frame shot, the electric charges generated from the photodiodes are transferred in one step to the memory of all the parallel pixels, making ultrahigh-speed shooting possible. Earlier, we experimentally manufactured a 1M-fps ultrahigh-speed camera and tested it for broadcasting applications. Through those tests, we learned that there are cases that require shooting speeds (frame rate) of more than 1M fps; hence we aimed to develop a new ultrahigh-speed camera that will enable much faster shooting speeds than what is currently possible. Since shooting at speeds of more than 200,000 fps results in decreased image quality and abrupt heating of the image sensor and drive circuit board, faster speeds cannot be achieved merely by increasing the drive frequency. We therefore had to improve the image sensor wiring layout and the driving method to develop a new 2M-fps, 300k-pixel ultrahigh-speed single-chip color camera for broadcasting purposes.
Automated feedback to foster safe driving in young drivers: phase 2 : traffic tech.
DOT National Transportation Integrated Search
2015-12-01
Intelligent Speed Adaptation (ISA) provides a promising approach to reduce speeding. A core principle of ISA is real-time feedback that lets drivers know when they are driving over the speed limit. The overall goal of the study was to provide insight...
Driver speed limit compliance in school zones : assessing the impact of sign saturation.
DOT National Transportation Integrated Search
2013-10-01
School zones are often viewed as an effective way to reduce driving speeds and thereby improve : safety near our nations schools. The effect of school zones on reducing driving speeds, however, is : minimal at best. Studies have shown that over 90...
A novel robust speed controller scheme for PMBLDC motor.
Thirusakthimurugan, P; Dananjayan, P
2007-10-01
The design of speed and position controllers for permanent magnet brushless DC motor (PMBLDC) drive remains as an open problem in the field of motor drives. A precise speed control of PMBLDC motor is complex due to nonlinear coupling between winding currents and rotor speed. In addition, the nonlinearity present in the developed torque due to magnetic saturation of the rotor further complicates this issue. This paper presents a novel control scheme to the conventional PMBLDC motor drive, which aims at improving the robustness by complete decoupling of the design besides minimizing the mutual influence among the speed and current control loops. The interesting feature of this robust control scheme is its suitability for both static and dynamic aspects. The effectiveness of the proposed robust speed control scheme is verified through simulations.
Traction drive automatic transmission for gas turbine engine driveline
Carriere, Donald L.
1984-01-01
A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.
Speed maintenance under cognitive load - Implications for theories of driver behaviour.
Lewis-Evans, Ben; de Waard, Dick; Brookhuis, Karel A
2011-07-01
No theory of driver behaviour has yet managed to achieve widespread acceptance and use in the field of Traffic Psychology, partly due to the difficulty in testing many of the theories. However, one class of theories, the motivational theories, can be usefully split into two groups and the differences between them can then be examined. One group posits the constant monitoring and targeting of a certain subjective variable, often risk, as the controlling factor in driving. The other group however states that subjective variables such as risk are only relevant once a certain threshold has been passed. In this study we aimed to examine this difference by manipulating both speed of travel and the amount of cognitive load participants were under. Participants were asked to initially drive at their preferred speed for 1min in a driving simulator. Participant's speed was then automatically increased or decreased by 10, 20 30km/h or left unchanged. Participants were then required to maintain the new speed for 1min. After this 1min the speed was again automatically changed and had to be maintained for one more minute, but this time participants also carried out a secondary mental arithmetic task. Finally participants were asked to again drive for another 1min at their preferred speed. This procedure was repeated seven times, once for each speed manipulation; -30, -20, -10, +0, +10, +20 and +30km/h. After each 1min interval verbal ratings of task difficulty, effort, feeling of risk and the typicality of the speed were collected. The results show a threshold effect in ratings of task difficulty, effort and feeling of risk, with no significant difference given between the ratings during the baseline period and the experimentally decreased speed periods until after participant's preferred speed of travel had been exceeded. Furthermore, even when under cognitive load the threshold relationship was still apparent, if diminished. Finally it appears that when under cognitive load drivers have difficulty maintaining a travelling speed which is lower than the speed at which they would prefer to drive. However, driving at a speed in excess of their preferred speed appears to be easier to maintain, at least in the short term. Copyright © 2011 Elsevier Ltd. All rights reserved.
Axial force and efficiency tests of fixed center variable speed belt drive
NASA Technical Reports Server (NTRS)
Bents, D. J.
1981-01-01
An investigation of how the axial force varies with the centerline force at different speed ratios, speeds, and loads, and how the drive's transmission efficiency is affected by these related forces is described. The tests, intended to provide a preliminary performance and controls characterization for a variable speed belt drive continuously variable transmission (CVT), consisted of the design and construction of an experimental test rig geometrically similar to the CVT, and operation of that rig at selected speed ratios and power levels. Data are presented which show: how axial forces exerted on the driver and driven sheaves vary with the centerline force at constant values of speed ratio, speed, and output power; how the transmission efficiency varies with centerline force and how it is also a function of the V belt coefficient; and the axial forces on both sheaves as normalized functions of the traction coefficient.
Leung, Sumie; Croft, Rodney J; Jackson, Melinda L; Howard, Mark E; McKenzie, Raymond J
2012-01-01
The present study compared the effects of a variety of mobile phone usage conditions to different levels of alcohol intoxication on simulated driving performance and psychomotor vigilance. Twelve healthy volunteers participated in a crossover design in which each participant completed a simulated driving task on 2 days, separated by a 1-week washout period. On the mobile phone day, participants performed the simulated driving task under each of 4 conditions: no phone usage, a hands-free naturalistic conversation, a hands-free cognitively demanding conversation, and texting. On the alcohol day, participants performed the simulated driving task at four different blood alcohol concentration (BAC) levels: 0.00, 0.04, 0.07, and 0.10. Driving performance was assessed by variables including time within target speed range, time spent speeding, braking reaction time, speed deviation, and lateral lane position deviation. In the BAC 0.07 and 0.10 alcohol conditions, participants spent less time in the target speed range and more time speeding and took longer to brake in the BAC 0.04, 0.07, and 0.10 than in the BAC 0.00 condition. In the mobile phone condition, participants took longer to brake in the natural hands-free conversation, cognitively demanding hands-free conversation and texting conditions and spent less time in the target speed range and more time speeding in the cognitively demanding, hands-free conversation, and texting conditions. When comparing the 2 conditions, the naturalistic conversation was comparable to the legally permissible BAC level (0.04), and the cognitively demanding and texting conversations were similar to the BAC 0.07 to 0.10 results. The findings of the current laboratory study suggest that very simple conversations on a mobile phone may not represent a significant driving risk (compared to legally permissible BAC levels), whereas cognitively demanding, hands-free conversation, and particularly texting represent significant risks to driving.
Forming of AHSS using Servo-Presses
NASA Astrophysics Data System (ADS)
Groseclose, Adam Richard
Stamping of Advanced High Strength Steel (AHSS) alloys poses several challenges due to the material's higher strength and low formability compared to conventional steels and other problems such as (a) inconsistency of incoming material properties, (b) ductile fracture during forming, (c) higher contact pressure and temperature rise during forming, (d) higher die wear leading to reduced tool life, (e) higher forming load/press capacity, and (f) large springback leading to dimensional inaccuracy in the formed part. [Palaniswamy et. al., 2007]. The use of AHSS has been increasing steadily in automotive stamping. New AHSS alloys (TRIP, TWIP) may replace some of the Hot Stamping applications. Stamping of AHSS alloys, especially higher strength materials, 780 MPa and higher, present new challenges in obtaining good part definition (corner and fillet radii), formability (fracture and resulting scrap) and in reducing springback. Servo-drive presses, having the capability to have infinitely variable and adjustable ram speed and dwell at BDC, offer a potential improvement in quality, part definition, and springback reduction especially when the infinitely adjustable slide motion is used in combination with a CNC hydraulic cushion. Thus, it is desirable to establish a scientific/engineering basis for improving the stamping conditions in forming AHSS using a servo-drive press.
Safe driving and executive functions in healthy middle-aged drivers.
León-Domínguez, Umberto; Solís-Marcos, Ignacio; Barrio-Álvarez, Elena; Barroso Y Martín, Juan Manuel; León-Carrión, José
2017-01-01
The introduction of the point system driver's license in several European countries could offer a valid framework for evaluating driving skills. This is the first study to use this framework to assess the functional integrity of executive functions in middle-aged drivers with full points, partial points or no points on their driver's license (N = 270). The purpose of this study is to find differences in executive functions that could be determinants in safe driving. Cognitive tests were used to assess attention processes, processing speed, planning, cognitive flexibility, and inhibitory control. Analyses for covariance (ANCOVAS) were used for group comparisons while adjusting for education level. The Bonferroni method was used for correcting for multiple comparisons. Overall, drivers with the full points on their license showed better scores than the other two groups. In particular, significant differences were found in reaction times on Simple and Conditioned Attention tasks (both p-values < 0.001) and in number of type-III errors on the Tower of Hanoi task (p = 0.026). Differences in reaction time on attention tasks could serve as neuropsychological markers for safe driving. Further analysis should be conducted in order to determine the behavioral impact of impaired executive functioning on driving ability.
Marijuana use and car crash injury.
Blows, Stephanie; Ivers, Rebecca Q; Connor, Jennie; Ameratunga, Shanthi; Woodward, Mark; Norton, Robyn
2005-05-01
To investigate the relationship between marijuana use prior to driving, habitual marijuana use and car crash injury. Population based case-control study in Auckland, New Zealand. Case vehicles were all cars involved in crashes in which at least one occupant was hospitalized or killed anywhere in the Auckland region, and control vehicles were a random sample of cars driving on Auckland roads. The drivers of 571 case and 588 control vehicles completed a structured interview. Self reported marijuana use in the 3 hours prior to the crash/survey and habitual marijuana use over the previous 12 months were recorded, along with a range of other variables potentially related to crash risk. The main outcome measure was hospitalization or death of a vehicle occupant due to car crash injury. Acute marijuana use was significantly associated with car crash injury, after controlling for the confounders age, gender, ethnicity, education level, passenger carriage, driving exposure and time of day (OR 3.9, 95% CI 1.2-12.9). However, after adjustment for these confounders plus other risky driving at the time of the crash (blood alcohol concentration, seat-belt use, travelling speed and sleepiness score), the effect of acute marijuana intake was no longer significant (OR 0.8, 95% CI 0.2-3.3). There was a strong significant association between habitual use and car crash injury after adjustment for all the above confounders plus acute use prior to driving (OR 9.5, 95% CI 2.8-32.3). This population-based case-control study indicates that habitual use of marijuana is strongly associated with car crash injury. The nature of the relationship between marijuana use and risk-taking is unclear and needs further research. The prevalence of marijuana use in this driving population was low, and acute use was associated with habitual marijuana use, suggesting that intervention strategies may be more effective if they are targeted towards high use groups.
Response characteristic of high-speed on/off valve with double voltage driving circuit
NASA Astrophysics Data System (ADS)
Li, P. X.; Su, M.; Zhang, D. B.
2017-07-01
High-speed on/off valve, an important part of turbocharging system, its quick response has a direct impact on the turbocharger pressure cycle. The methods of improving the response characteristic of high speed on/off valve include increasing the magnetic force of armature and the voltage, decreasing the mass and current of coil. The less coil number of turns, the solenoid force is smaller. The special armature structure and the magnetic material will raise cost. In this paper a new scheme of double voltage driving circuit is investigated, in which the original driving circuit of high-speed on/off valve is replaced by double voltage driving circuit. The detailed theoretical analysis and simulations were carried out on the double voltage driving circuit, it showed that the switching time and delay time of the valve respectively are 3.3ms, 5.3ms, 1.9ms and 1.8ms. When it is driven by the double voltage driving circuit, the switching time and delay time of this valve are reduced, optimizing its response characteristic. By the comparison related factors (such as duty cycle or working frequency) about influences on response characteristic, the superior of double voltage driving circuit has been further confirmed.
Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles
NASA Astrophysics Data System (ADS)
Fahimi, Farbod
2013-03-01
Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.
Zhang, Yu; Kaber, David B
2013-01-01
Motivation models in driving behaviour postulate that driver motives and emotional states dictate risk tolerance under various traffic conditions. The present study used time and driver performance-based payment systems to manipulate motivation and risk-taking behaviour. Ten participants drove to a predefined location in a simulated driving environment. Traffic patterns (density and velocity) were manipulated to cause driver behaviour adjustments due to the need to conform with the social norms of the roadway. The driving environment complexity was investigated as a mediating factor in risk tolerance. Results revealed the performance-based payment system to closely relate to risk-taking behaviour as compared with the time-based payment system. Drivers conformed with social norms associated with specific traffic patterns. Higher roadway complexity led to a more conservative safety margins and speeds. This research contributes to the further development of motivational models of driver behaviour. This study provides empirical justification for two motivation factors in driver risk-taking decisions, including compliance with social norm and emotions triggered by incentives. Environment complexity was identified as a mediating factor in motivational behaviour model. This study also recommended safety margin measures sensitive to changes in driver risk tolerance.
Optimal design of a main driving mechanism for servo punch press based on performance atlases
NASA Astrophysics Data System (ADS)
Zhou, Yanhua; Xie, Fugui; Liu, Xinjun
2013-09-01
The servomotor drive turret punch press is attracting more attentions and being developed more intensively due to the advantages of high speed, high accuracy, high flexibility, high productivity, low noise, cleaning and energy saving. To effectively improve the performance and lower the cost, it is necessary to develop new mechanisms and establish corresponding optimal design method with uniform performance indices. A new patented main driving mechanism and a new optimal design method are proposed. In the optimal design, the performance indices, i.e., the local motion/force transmission indices ITI, OTI, good transmission workspace good transmission workspace(GTW) and the global transmission indices GTIs are defined. The non-dimensional normalization method is used to get all feasible solutions in dimensional synthesis. Thereafter, the performance atlases, which can present all possible design solutions, are depicted. As a result, the feasible solution of the mechanism with good motion/force transmission performance is obtained. And the solution can be flexibly adjusted by designer according to the practical design requirements. The proposed mechanism is original, and the presented design method provides a feasible solution to the optimal design of the main driving mechanism for servo punch press.
The effects of driver identity on driving safety in a retrospective feedback system.
Zhao, Guozhen; Wu, Changxu
2012-03-01
Retrospective feedback that provides detailed information on a driver's performance in critical driving situations at the end of a trip enhances his/her driving behaviors and safe driving habits. Although this has been demonstrated by a previous study, retrospective feedback can be further improved and applied to non-critical driving situations, which is needed for transportation safety. To propose a new retrospective feedback system that uses driver identity (i.e., a driver's name) and to experimentally study its effects on measures of driving performance and safety in a driving simulator. We conducted a behavioral experimental study with 30 participants. "Feedback type" was a between-subject variable with three conditions: no feedback (control group), feedback without driver identity, and feedback with driver identity. We measured multiple aspects of participants' driving behavior. To control for potential confounds, factors that were significantly correlated with driving behavior (e.g., age and driving experience) were all entered as covariates into a multivariate analysis of variance. To examine the effects of speeding on collision severity in driving simulation studies, we also developed a new index - momentum of potential collision - with a set of equations. Subjects who used a feedback system with driver identity had the fewest speeding violations and central-line crossings, spent the least amount of time speeding and crossing the central line, had the lowest speeding and central-line crossing magnitude, ran the fewest red lights, and had the smallest momentum of potential collision compared to the groups with feedback without driver identity and without feedback (control group). The new retrospective feedback system with driver identity has the potential to enhance a person's driving safety (e.g., speeding, central-line crossing, momentum of potential collision), which is an indication of the valence of one's name in a feedback system design. Copyright © 2011 Elsevier Ltd. All rights reserved.
Road characteristics and driver fatigue: a simulator study.
Oron-Gilad, Tal; Ronen, Adi
2007-09-01
Two experiments examined the influence of road characteristics on driver fatigue in a prolonged simulator drive. In experiment one, ten military truck drivers drove a mixed route, with straight, winding, and straight highway segments. In experiment two, 16 additional drivers drove either a straight, a winding, or a mixed route. Fatigue symptoms were assessed using performance, subjective, and psychophysiological measures (HRV). We hypothesized that drivers adopt different fatigue-coping strategies relative to the demands of the drive. Thus, on straight roads drivers are more likely to loosen their driving demands by either increasing their driving speed and/or not maintaining the lane position, as the road is tolerant to both strategies, whereas on winding roads, drivers are more likely to increase their speed but not their lane positioning. Our results confirm that decremental changes in driving performance varied among road types. In the straight road components, we found decrements in the quality of lane maintaining (experiment one) and steering quality (experiments one and two) and longitudinal speed (experiment two). In the winding road, we found that drivers increased their driving speed over time (experiments one and two).
Software and hardware complex for research and management of the separation process
NASA Astrophysics Data System (ADS)
Borisov, A. P.
2018-01-01
The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.
Preece, Carissa; Watson, Angela; Kaye, Sherrie-Anne; Fleiter, Judy
2018-08-01
This study applied the Prototype Willingness Model (PWM) to investigate the factors that may predict young drivers' (non-intentional) willingness to text while driving, text while stopped, and engage in high and low levels of speeding. In addition, the study sought to assess whether general optimism bias would predict young drivers' willingness to text and speed over and above the PWM. Licenced drivers (N = 183) aged 17-25 years (M = 19.84, SD = 2.30) in Queensland, Australia completed an online survey. Hierarchical multiple regressions revealed that the PWM was effective in explaining the variance in willingness to perform all four illegal driving behaviours. Particularly, young drivers who possessed favourable attitudes and a positive prototype perception towards these behaviours were more willing to engage in texting and speeding. In contrast to the study's predictions, optimistically biased beliefs decreased young drivers' willingness to text while stopped and engage in high and low levels of speeding. The findings of the study may help inform policy and educational campaigns to better target risky driving behaviours by considering the influence of attitudes, prototypes and the non-intentional pathway that may lead to engagement in texting while driving and stopped and engagement in high and low levels of speeding. Copyright © 2018 Elsevier Ltd. All rights reserved.
Speed Sensorless Induction Motor Drives for Electrical Actuators: Schemes, Trends and Tradeoffs
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.; Kankam, M. David
1997-01-01
For a decade, induction motor drive-based electrical actuators have been under investigation as potential replacement for the conventional hydraulic and pneumatic actuators in aircraft. Advantages of electric actuator include lower weight and size, reduced maintenance and operating costs, improved safety due to the elimination of hazardous fluids and high pressure hydraulic and pneumatic actuators, and increased efficiency. Recently, the emphasis of research on induction motor drives has been on sensorless vector control which eliminates flux and speed sensors mounted on the motor. Also, the development of effective speed and flux estimators has allowed good rotor flux-oriented (RFO) performance at all speeds except those close to zero. Sensorless control has improved the motor performance, compared to the Volts/Hertz (or constant flux) controls. This report evaluates documented schemes for speed sensorless drives, and discusses the trends and tradeoffs involved in selecting a particular scheme. These schemes combine the attributes of the direct and indirect field-oriented control (FOC) or use model adaptive reference systems (MRAS) with a speed-dependent current model for flux estimation which tracks the voltage model-based flux estimator. Many factors are important in comparing the effectiveness of a speed sensorless scheme. Among them are the wide speed range capability, motor parameter insensitivity and noise reduction. Although a number of schemes have been proposed for solving the speed estimation, zero-speed FOC with robustness against parameter variations still remains an area of research for speed sensorless control.
78 FR 12809 - Buy America Waiver Notification
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... steel products in (1) Auxiliary two speed motor, (2) Auxiliary back up drive clutch, (3) Main span and... appropriate to use some non-domestic iron and steel products in (1) Auxiliary two speed motor, (2) Auxiliary... steel products in (1) Auxiliary two speed motor, (2) Auxiliary back up drive clutch, (3) Main span and...
Sarma, Kiran M; Carey, Rachel N; Kervick, Aoife A; Bimpeh, Yaw
2013-01-01
This paper presents the results of a national survey of drivers in the Republic of Ireland that sought to examine psychological predictors of specific driving behaviours. 1638 respondents attending National Car Testing (NCT) centres nationwide completed a questionnaire battery that included personality, attitudinal, locus of control and social influence measures. The driving behaviours examined were drawn from a Driving Behaviour Scale (Iversen, 2004) and included Speeding and Rule Violation, Reckless Driving, Wearing of Seat Belts, Cautious Driving and Drink Driving. Cross-group comparisons suggested that males engaged in more risky and less cautious driving behaviours than females, and participants under the age of 25 were more risky and less cautious than those 25 years or older. Statistically significant models of each driving outcome emerged. The best model fit was for speeding and rule violation, which was predicted by a model including positive attitudes towards speeding, greater normative influences of friends and higher perceived behavioural control, extraversion and driving anger. These findings offer important insights into the correlates of different driving behaviours and can help inform the work of road safety practitioners. Copyright © 2012 Elsevier Ltd. All rights reserved.
Inertial drives for micro- and nanorobots: two novel mechanisms
NASA Astrophysics Data System (ADS)
Zesch, Wolfgang; Buechi, Roland; Codourey, Alain; Siegwart, Roland Y.
1995-12-01
In micro or nanorobotics, high precision movement in two or more degrees of freedom is one of the main problems. Firstly, the positional precision has to be increased (< 10 nm) as the object sizes decrease. On the other hand, the workspace has to have macroscopic dimensions (1 cm3) to give high maneuverability to the system and to allow suitable handling at the micro/macro-world interface. As basic driving mechanisms for the ETHZ Nanorobot Project, two new piezoelectric devices have been developed. `Abalone' is a 3-dof system that relies on the impact drive principle. The 38 mm X 33 mm X 9 mm slider can be moved to each position and orientation in a horizontal plane within a theoretically infinite workspace. In the stepping mode it achieves a speed of 1 mm/s in translation and 7 deg/s in rotation. Within the actuator's local range of 6 micrometers fine positioning is possible with a resolution better than 10 nm. `NanoCrab' is a bearingless rotational micromotor relying on the stick-slip effect. This 10 mm X 7 mm X 7 mm motor has the advantage of a relatively high torque at low rotational speed and an excellent runout. While the maximum velocity is 60 rpm, it reaches its highest torque of 0.3 mNm at 2 rpm. Another benefit is the powerless holding torque of 0.9 mNm. With a typical step of 0.1 mrad and a local resolution 3 orders of magnitude better than the step angle, NanoCrab can be very precisely adjusted. Design and measurements of the characteristics of these two mechanisms will be presented and compared with the theoretical analysis of inertial drives presented in a companion paper. Finally their integration into the Nanorobot system will be discussed.
News, music videos and action movie exposure and adolescents' intentions to take risks in traffic.
Beullens, Kathleen; Van den Bulck, Jan
2008-01-01
This study explored the relationship between adolescents' viewing of specific television genres (action movies, news and music videos) and the intention to take risks in traffic. Participants were 2194 adolescent boys and girls who completed a questionnaire on television viewing, risk perception and the intention to speed and drive after consuming alcohol. As hypothesized, more news viewing was associated with a higher perceived risk of drunk driving and speeding. More music video viewing, on the other hand, was negatively associated with the assessment of the dangers of speeding and driving under the influence of alcohol. Girls regarded speeding and drunk driving as more dangerous than boys did. Contrary to our hypotheses, action movie viewing did not make a significant contribution to our models. Both news and music video viewing were indirectly, via risk perception, related to the intention to drive risky. The more dangerous a particular behavior was perceived to be, the less likely respondents intended to exhibit this behavior in the future.
The Effect of Differences in Day and Night Lighting Distributions on Drivers' Speed Perception.
Kim, Jonathan D; Perrone, John A; Isler, Robert B
2017-06-01
Previous research has shown that changes to contrast levels in the visual environment caused by fog can affect drivers' perceptions of speed. It is not easy, however, to extrapolate these results to other driving scenarios in which contrast is affected, such as during nighttime driving, because the measure of contrast is more complex when considering factors such as the illumination provided by headlights. Therefore, we investigated the differences in lighting distribution patterns between day- and nighttime driving on speed perception using prerendered 3D scenarios representing driving on a rural road. A two-alternative forced-choice design based on the method of constant stimuli was utilised, with 32 participants viewing a series of pairs of scenarios (day vs. night driving) from a driver's perspective while indicating for each pair whether the second scenario was faster or slower than the first scenario. Our results indicated that speed discrimination accuracy was minimally affected by changes in lighting distribution patterns between day and night.
NASA Astrophysics Data System (ADS)
Hirata, Masafumi; Yamamoto, Tatsuo; Yasui, Toshiaki; Hayashi, Mayu; Takebe, Atsuji; Funahashi, Masashi
In the construction site, the light oil that the construction vehicle such as dump trucks uses accounts for 70 percent of the amount of the energy use. Therefore, the eco-driving education of the construction vehicle is effective in the fuel cost improvement and the CO2 reduction. The eco-driving education can be executed cheap and easily, and a high effect can be expected. However, it is necessary to evaluate the eco-driving situation of the construction vehicle exactly to maintain the educative effect for a long term. In this paper, the method for evaluating the effect of the fuel cost improvement was examined by using the vehicle speed and the engine rotational speed of the dump truck. In this method, "Ideal eco-driving model" that considers the difference between the vehicle model and the running condition (traffic jam etc.) is made. As a result, it is possible to evaluate the fuel consumption improvement effect of a dump truck by the same index.
NASA Astrophysics Data System (ADS)
Na, Yongyi
2017-03-01
The design of simple intelligent car, using AT89S52 single chip microcomputer as the car detection and control core; The metal sensor TL - Q5MC induction to iron, to detect the way to send feedback to the signal of single chip microcomputer, make SCM according to the scheduled work mode to control the car in the area according to the predetermined speed, and the operation mode of the microcontroller choose different also can control the car driving along s-shaped iron; Use A44E hall element to detect the car speeds; Adopts 1602 LCD display time of car driving, driving the car to stop, take turns to show the car driving time, distance, average speed and the speed of time. This design has simple structure and is easy to implement, but are highly intelligent, humane, to a certain extent reflects the intelligence.
Fault tolerant operation of switched reluctance machine
NASA Astrophysics Data System (ADS)
Wang, Wei
The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and experiments. With the proposed optimal waveform, torque production is greatly improved under the same Root Mean Square (RMS) current constraint. Additionally, position sensorless operation methods under phase faults are investigated to account for the combination of physical position sensor and phase winding faults. A comprehensive solution for position sensorless operation under single and multiple phases fault are proposed and validated through experiments. Continuous position sensorless operation with seamless transition between various numbers of phase fault is achieved.
Kujala, Tuomo; Mäkelä, Jakke; Kotilainen, Ilkka; Tokkonen, Timo
2016-02-01
We studied the utility of occlusion distance as a function of task-relevant event density in realistic traffic scenarios with self-controlled speed. The visual occlusion technique is an established method for assessing visual demands of driving. However, occlusion time is not a highly informative measure of environmental task-relevant event density in self-paced driving scenarios because it partials out the effects of changes in driving speed. Self-determined occlusion times and distances of 97 drivers with varying backgrounds were analyzed in driving scenarios simulating real Finnish suburban and highway traffic environments with self-determined vehicle speed. Occlusion distances varied systematically with the expected environmental demands of the manipulated driving scenarios whereas the distributions of occlusion times remained more static across the scenarios. Systematic individual differences in the preferred occlusion distances were observed. More experienced drivers achieved better lane-keeping accuracy than inexperienced drivers with similar occlusion distances; however, driving experience was unexpectedly not a major factor for the preferred occlusion distances. Occlusion distance seems to be an informative measure for assessing task-relevant event density in realistic traffic scenarios with self-controlled speed. Occlusion time measures the visual demand of driving as the task-relevant event rate in time intervals, whereas occlusion distance measures the experienced task-relevant event density in distance intervals. The findings can be utilized in context-aware distraction mitigation systems, human-automated vehicle interaction, road speed prediction and design, as well as in the testing of visual in-vehicle tasks for inappropriate in-vehicle glancing behaviors in any dynamic traffic scenario for which appropriate individual occlusion distances can be defined. © 2015, Human Factors and Ergonomics Society.
Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model
Patricia L. Andrews
2012-01-01
Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...
Grid-Integrated Electric Drive Analysis for The Ohio State University |
thermal management analysis and simulations on a high-performance, high-speed drive-developed by The Ohio as a pilot study for the future generation of energy efficient, high power density, high-speed integrated medium/high-voltage drive systems. If successful, the proposed project will significantly advance
Chinese carless young drivers' self-reported driving behavior and simulated driving performance.
Zhang, Qian; Jiang, Zuhua; Zheng, Dongpeng; Man, Dong; Xu, Xunnan
2013-01-01
Carless young drivers refers to those drivers aged between 18 and 25 years who have a driver's license but seldom have opportunities to practice their driving skills because they do not have their own cars. Due to China's lower private car ownership, many young drivers become carless young drivers after licensure, and the safety issue associated with them has raised great concern in China. This study aims to provide initial insight into the self-reported driving behaviors and simulated driving performance of Chinese carless young drivers. Thirty-three carless young drivers and 32 young drivers with their own cars (as a comparison group) participated in this study. A modified Driver Behavior Questionnaire (DBQ) with a 4-factor structure (errors, violations, attention lapses, and memory lapses) was used to study carless young drivers' self-reported driving behaviors. A simulated driving experiment using a low-cost, fixed-base driving simulator was conducted to measure their simulated driving performance (errors, violations, attention lapses, driving maintenance, reaction time, and accidents). Self-reported DBQ outcomes showed that carless young drivers reported similar errors, more attention lapses, fewer memory lapses, and significantly fewer violation behaviors relative to young drivers with their own cars, whereas simulated driving results revealed that they committed significantly more errors, attention lapses, and violation behaviors than the comparison group. Carless young drivers had a lower ability to maintain the stability of speed and lane position, drove more cautiously approaching and passing through red traffic lights, and committed more accidents during simulated driving. A tendency to speed was not found among carless young drivers; their average speed and speeding frequency were all much lower than that of the comparison group. Lifetime mileage was the only significant predictor of carless young drivers' self-reported violations, simulated violations, speed, and reaction time, whereas no significant predictor was found for young drivers with their own cars. Carless young drivers had poorer driving performance and were more overconfident of their self-reported driving skills compared to those young drivers with greater access to vehicles. Given that the lifetime mileage positively predicted the simulated violations measure of carless young drivers, immediate interventions are needed to help them increase driving exposure and gain driving experience gradually before moving to more challenging on-road driving tasks. Supplemental materials are available for this article.
Dynamic Simulation Research on Chain Drive Mechanism of Corn Seeder Based on ADAMS
NASA Astrophysics Data System (ADS)
Wang, Y. B.; Jia, H. P.
2017-12-01
In order to reduce the damage to the chain and improve the seeding quality of the seeding machine, the corn seeder has the characteristics of the seeding quality and some technical indexes in the work of the corn seeding machine. The dynamic analysis of the chain drive mechanism is carried out by using the dynamic virtual prototype. In this paper, the speed of the corn planter is 5km/h, and the speed of the simulated knuckle is 0.1~0.9s. The velocity is 0.12m/s, which is equal to the chain speed when the seeder is running normally. Of the dynamic simulation of the movement and the actual situation is basically consistent with the apparent speed of the drive wheel has changed the acceleration and additional dynamic load, the chain drive has a very serious damage, and the maximum load value of 47.28N, in order to reduce the damage to the chain, As far as possible so that the sowing machine in the work to maintain a reasonable uniform speed, to avoid a greater acceleration, the corn sowing machine drive the design of a certain reference.
Rowe, Richard; Andrews, Elizabeth; Harris, Peter R; Armitage, Christopher J; McKenna, Frank P; Norman, Paul
2016-04-01
Novice motorists are at high crash risk during the first few months of driving. Risky behaviours such as speeding and driving while distracted are well-documented contributors to crash risk during this period. To reduce this public health burden, effective road safety interventions need to target the pre-driving period. We use the Theory of Planned Behaviour (TPB) to identify the pre-driver beliefs underlying intentions to drive over the speed limit (N=77), and while over the legal alcohol limit (N=72), talking on a hand-held mobile phone (N=77) and feeling very tired (N=68). The TPB explained between 41% and 69% of the variance in intentions to perform these behaviours. Attitudes were strong predictors of intentions for all behaviours. Subjective norms and perceived behavioural control were significant, though weaker, independent predictors of speeding and mobile phone use. Behavioural beliefs underlying these attitudes could be separated into those reflecting perceived disadvantages (e.g., speeding increases my risk of crash) and advantages (e.g., speeding gives me a thrill). Interventions that can make these beliefs safer in pre-drivers may reduce crash risk once independent driving has begun. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yang, Qiang; Overton, Ryan; Han, Lee D; Yan, Xuedong; Richards, Stephen H
2013-01-01
The speed limit of 55mph (88km/h) is typically used on rural highways in the U.S. For locations where curbs are installed along these roadways, some transportation agencies have suggested the use of a lower 45mph (72km/h) speed limit because, according to AASHTO, running into curbs at high speeds may cause significant vehicular damage and even severe injuries. However, it has also been argued that lowering the speed limit after the installation of curbs may cause confusion in drivers, who do not perceive the risk associated with the newly installed curbs and tend to operate their vehicles at the same speed as before. To better understand driver behavior on rural highways before and after curb installation, and with different speed limits, researchers at the University of Tennessee conducted a series of experiments in two-lane and four-lane highways on a high-fidelity driving simulator. This paper mainly presents the findings from the four-lane study, and compares the results from the previous two-lane study. The scenario matrix consists of several dimensions including posted speed limit (45 and 55mph, or 72 and 88km/h), curb installation, lateral clearance between the edge of travel lane and the curb (2ft, 6ft, and no-curb, or 0.6m, 1.8m, and no-curb), weather (clear and fog), traffic conditions in the next lane (1400veh/h and 400veh/h), etc. For each subject under different experimental scenarios, detailed driving parameters, such as driving speed and vehicle position in the travel lane, were recorded and analyzed subsequently. Results of the study suggest that driver behaviors are influenced by the various factors in a complex and interrelated manner. It is likely that drivers do not perceive the risk from the curb in determining their speed on four-lane rural highways. However, it is found that curbs may provide certain guidance to drivers, especially in selecting lane position. Compared to the previous research in two-lane conditions, it is found that drivers are more likely to choose driving speeds according to posted speed limits, rather than lane configurations. It is also found that the relative speed between driver's vehicle and ambient traffic or curbs is an important factor determining drivers' perception of risk and thus their driving behavior. The influence of subjective effects of these factors to their driving behavior is also observed in the study. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
de Oliveira, Rita F.; Wann, John P.
2011-01-01
In two experiments, we used an automatic car simulator to examine the steering control, speed regulation and response to hazards of young adults with developmental coordination disorder (DCD) and limited driving experience. In Experiment 1 participants either used the accelerator pedal to regulate their speed, or used the brake pedal when they…
The Longitudinal Impact of Cognitive Speed of Processing Training on Driving Mobility
ERIC Educational Resources Information Center
Edwards, Jerri D.; Myers, Charlsie; Ross, Lesley A.; Roenker, Daniel L.; Cissell, Gayla M.; McLaughlin, Alexis M.; Ball, Karlene K.
2009-01-01
Purpose: To examine how cognitive speed of processing training affects driving mobility across a 3-year period among older drivers. Design and Methods: Older drivers with poor Useful Field of View (UFOV) test performance (indicating greater risk for subsequent at-fault crashes and mobility declines) were randomly assigned to either a speed of…
Importance of CME Radial Expansion on the Ability of Slow CMEs to Drive Shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lugaz, Noé; Farrugia, Charles J.; Winslow, Reka M.
Coronal mass ejections (CMEs) may disturb the solar wind by overtaking it or expanding into it, or both. CMEs whose front moves faster in the solar wind frame than the fast magnetosonic speed drive shocks. Such shocks are important contributors to space weather, by triggering substorms, compressing the magnetosphere, and accelerating particles. In general, near 1 au, CMEs with speed greater than about 500 km s{sup −1} drive shocks, whereas slower CMEs do not. However, CMEs as slow as 350 km s{sup −1} may sometimes, although rarely, drive shocks. Here we study these slow CMEs with shocks and investigate themore » importance of CME expansion in contributing to their ability to drive shocks and in enhancing shock strength. Our focus is on CMEs with average speeds under 375 km s{sup −1}. From Wind measurements from 1996 to 2016, we find 22 cases of such shock-driving slow CMEs, and for about half of them (11 out of the 22), the existence of the shock appears to be strongly related to CME expansion. We also investigate the proportion of all CMEs with speeds under 500 km s{sup −1} with and without shocks in solar cycles 23 and 24, depending on their speed. We find no systematic difference, as might have been expected on the basis of the lower solar wind and Alfvén speeds reported for solar cycle 24 versus 23. The slower expansion speed of CMEs in solar cycle 24 might be an explanation for this lack of increased frequency of shocks, but further studies are required.« less
Variable speed induction motor operation from a 20-kHz power bus
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1989-01-01
Induction motors are recognized for their simple rugged construction. To date, however, their application to variable speed or servo drives was hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation of frequency and voltage allows independent control of rotor and stator flux, full four quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.
Variable speed induction motor operation from a 20-kHz power bus
NASA Technical Reports Server (NTRS)
Hansen, Irving G.
1989-01-01
Induction motors are recognized for their simple rugged construction to date, however, their application to variable speed or servo drives has been hampered by limitations on their control. Induction motor drives tend to be complex and to display troublesome low speed characteristics due in part to nonsinusoidal driving voltages. A technique was developed which involves direct synthesis of sinusoidal driving voltages from a high frequency power bus and independent control of frequency and voltages. Separation offrequency and voltage allows independent control of rotor and stator flux, full four-quadrant operation, and instantaneous torque control. Recent test results, current status of the technology, and proposed aerospace applications will be discussed.
Review of Engine/Airframe/Drive Train Dynamic Interface Development Problems
1978-06-01
dynamic interface problems associated with the Cd-54, S-61, CH-53, SH-3, S-58, SH-34, S-64, BLACK HAOK, and the ABC . The ultimate benefit will be the...drive systems of the CH-3C, CH-53A, and CH-54A helicopters. Prior to the shaft failure incident, the input drive shaft sytems had accumulated in...capability of the ABC aircraft. This aircraft has a large range in forward speed, zero to 280 knots. At high aircraft speeds, the rotor speed must be reduced
Design study of toroidal traction CVT for electric vehicles
NASA Technical Reports Server (NTRS)
Raynard, A. E.; Kraus, J.; Bell, D. D.
1980-01-01
The development, evaluation, and optimization of a preliminary design concept for a continuously variable transmission (CVT) to couple the high-speed output shaft of an energy storage flywheel to the drive train of an electric vehicle is discussed. An existing computer simulation program was modified and used to compare the performance of five CVT design configurations. Based on this analysis, a dual-cavity full-toroidal drive with regenerative gearing is selected for the CVT design configuration. Three areas are identified that will require some technological development: the ratio control system, the traction fluid properities, and evaluation of the traction contact performance. Finally, the suitability of the selected CVT design concept for alternate electric and hybrid vehicle applications and alternate vehicle sizes and maximum output torques is determined. In all cases the toroidal traction drive design concept is applicable to the vehicle system. The regenerative gearing could be eliminated in the electric powered vehicle because of the reduced ratio range requirements. In other cases the CVT with regenerative gearing would meet the design requirements after appropriate adjustments in size and reduction gearing ratio.
Programmable micrometer-sized motor array based on live cells.
Xie, Shuangxi; Wang, Xiaodong; Jiao, Niandong; Tung, Steve; Liu, Lianqing
2017-06-13
Trapping and transporting microorganisms with intrinsic motility are important tasks for biological, physical, and biomedical applications. However, fast swimming speed makes the manipulation of these organisms an inherently challenging task. In this study, we demonstrated that an optoelectrical technique, namely, optically induced dielectrophoresis (ODEP), could effectively trap and manipulate Chlamydomonas reinhardtii (C. reinhardtii) cells swimming at velocities faster than 100 μm s -1 . Furthermore, live C. reinhardtii cells trapped by ODEP can form a micrometer-sized motor array. The rotating frequency of the cells ranges from 50 to 120 rpm, which can be reversibly adjusted with a fast response speed by varying the optical intensity. Functional flagella have been demonstrated to play a decisive role in the rotation. The programmable cell array with a rotating motion can be used as a bio-micropump to drive the liquid flow in microfludic chips and may shed new light on bio-actuation.
Driving behaviour in adults with attention deficit/hyperactivity disorder.
Groom, Madeleine J; van Loon, Editha; Daley, David; Chapman, Peter; Hollis, Chris
2015-07-28
Little is known about the impact of cognitive impairments on driving in adults with ADHD. The present study compared the performance of adults with and without ADHD in a driving simulator on two different routes: an urban route which we hypothesised would exacerbate weak impulse control in ADHD and a motorway route, to challenge deficits in sustained attention. Adults with (n = 22, 16 males) and without (n = 21, 18 males) ADHD completed a simulated driving session while eye movement data were recorded simultaneously. Participants also completed the Manchester Driving Behaviour Questionnaire (DBQ) and the Conners Adult ADHD Rating Scale (CAARS). Measures of driving performance included average speed, proportion distance travelled over speed limit (speeding) and lane deviation. These variables and the eye movement measures (spread of fixations, mean fixation duration) were compared between groups and routes. Also, driving behaviours, including responses to programmed events, were categorised and the frequencies within categories were compared between groups. Finally, speech analysis was performed to compare emotional verbal expressions during driving between groups. ADHD participants reported significantly more Violations and Lapses on the DBQ than control participants and significantly more accidents. Average speed and speeding were also higher but did not interact with route type. ADHD participants showed poorer vehicle control, greater levels of frustration with other road users (including greater frequencies of negative comments) and a trend for less safe driving when changing lanes/overtaking on the motorway. These effects were predicted by hyperactive/impulsive CAARS scores. They were also more likely to cause a crash/near miss when an event occurred on the urban route. The results suggest that difficulty regulating and controlling impulsive behavior, reflected in speeding, frustration with other road users, less safety when changing lanes on the motorway and a greater likelihood of an accident following an unexpected event, underlie impaired driving in ADHD. Hyperactivity/impulsivity symptoms correlated with these indices. Deficits in sustained attention seemed to play a lesser role in this particular study, although further research is needed to determine whether effects on attention emerge over longer periods of time and/or are influenced by the novelty of the simulator environment.
The Longitudinal Impact of Cognitive Speed of Processing Training on Driving Mobility
Edwards, Jerri D.; Myers, Charlsie; Ross, Lesley A.; Roenker, Daniel L.; Cissell, Gayla M.; McLaughlin, Alexis M.; Ball, Karlene K.
2009-01-01
Purpose: To examine how cognitive speed of processing training affects driving mobility across a 3-year period among older drivers. Design and Methods: Older drivers with poor Useful Field of View (UFOV) test performance (indicating greater risk for subsequent at-fault crashes and mobility declines) were randomly assigned to either a speed of processing training or a social and computer contact control group. Driving mobility of these 2 groups was compared with a group of older adults who did not score poorly on the UFOV test (reference group) across a 3-year period. Results: Older drivers with poor UFOV test scores who did not receive training experienced greater mobility declines as evidenced by decreased driving exposure and space and increased driving difficulty at 3 years. Those at risk for mobility decline who received training did not differ across the 3-year period from older adults in the reference group with regard to driving exposure, space, and most aspects of driving difficulty. Implications: Cognitive speed of processing training can not only improve cognitive performance but also protect against mobility declines among older drivers. Scientifically proven cognitive training regimens have the potential to enhance the everyday lives of older adults. PMID:19491362
Transistorized PWM inverter-induction motor drive system
NASA Technical Reports Server (NTRS)
Peak, S. C.; Plunkett, A. B.
1982-01-01
This paper describes the development of a transistorized PWM inverter-induction motor traction drive system. A vehicle performance analysis was performed to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of inverter and motor specifications. The inverter was a transistorized three-phase bridge using General Electric power Darlington transistors. The description of the design and development of this inverter is the principal object of this paper. The high-speed induction motor is a design which is optimized for use with an inverter power source. The primary feedback control is a torque angle control with voltage and torque outer loop controls. A current-controlled PWM technique is used to control the motor voltage. The drive has a constant torque output with PWM operation to base motor speed and a constant horsepower output with square wave operation to maximum speed. The drive system was dynamometer tested and the results are presented.
Perils of using speed zone data to assess real-world compliance to speed limits.
Chevalier, Anna; Clarke, Elizabeth; Chevalier, Aran John; Brown, Julie; Coxon, Kristy; Ivers, Rebecca; Keay, Lisa
2017-11-17
Real-world driving studies, including those involving speeding alert devices and autonomous vehicles, can gauge an individual vehicle's speeding behavior by comparing measured speed with mapped speed zone data. However, there are complexities with developing and maintaining a database of mapped speed zones over a large geographic area that may lead to inaccuracies within the data set. When this approach is applied to large-scale real-world driving data or speeding alert device data to determine speeding behavior, these inaccuracies may result in invalid identification of speeding. We investigated speeding events based on service provider speed zone data. We compared service provider speed zone data (Speed Alert by Smart Car Technologies Pty Ltd., Ultimo, NSW, Australia) against a second set of speed zone data (Google Maps Application Programming Interface [API] mapped speed zones). We found a systematic error in the zones where speed limits of 50-60 km/h, typical of local roads, were allocated to high-speed motorways, which produced false speed limits in the speed zone database. The result was detection of false-positive high-range speeding. Through comparison of the service provider speed zone data against a second set of speed zone data, we were able to identify and eliminate data most affected by this systematic error, thereby establishing a data set of speeding events with a high level of sensitivity (a true positive rate of 92% or 6,412/6,960). Mapped speed zones can be a source of error in real-world driving when examining vehicle speed. We explored the types of inaccuracies found within speed zone data and recommend that a second set of speed zone data be utilized when investigating speeding behavior or developing mapped speed zone data to minimize inaccuracy in estimates of speeding.
Electric vehicle drive train with direct coupling transmission
Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.
1995-04-04
An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.
Electric vehicle drive train with direct coupling transmission
Tankersley, Jerome B.; Boothe, Richard W.; Konrad, Charles E.
1995-01-01
An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.
NASA Technical Reports Server (NTRS)
Ellis, R. C.; Fink, R. A.; Moore, E. A.
1987-01-01
The Common Drive Unit (CDU) is a high reliability rotary actuator with many versatile applications in mechanism designs. The CDU incorporates a set of redundant motor-brake assemblies driving a single output shaft through differential. Tachometers provide speed information in the AC version. Operation of both motors, as compared to the operation of one motor, will yield the same output torque with twice the output speed.
Continuously-Variable Positive-Mesh Power Transmission
NASA Technical Reports Server (NTRS)
Johnson, J. L.
1982-01-01
Proposed transmission with continuously-variable speed ratio couples two mechanical trigonometric-function generators. Transmission is expected to handle higher loads than conventional variable-pulley drives; and, unlike variable pulley, positive traction through entire drive train with no reliance on friction to transmit power. Able to vary speed continuously through zero and into reverse. Possible applications in instrumentation where drive-train slippage cannot be tolerated.
Fu, Mingliang; Ge, Yunshan; Wang, Xin; Tan, Jianwei; Yu, Linxiao; Liang, Bin
2013-05-01
NOx and particulate matter (PM) emissions from heavy-duty diesel vehicles (HDVs) have become the most important sources of pollutants affecting urban air quality in China. In recent years, a series of emission control strategies and diesel engine polices have been introduced that require advanced emission control technology. China and Europe mostly have used Selective Catalytic Reduction (SCR) with urea to meet the Euro IV diesel engine emission standard. In this study, two Euro IV busses with SCR were tested by using potable emission measurement system (PEMS) to assess NOx emissions associated with urban, suburban and freeway driving patterns. The results indicated that with the SCR system, the urea injection time for the entire driving period increased with higher vehicle speed. For freeway driving, the urea injection time covered 71%-83% of the driving period; the NOx emission factors from freeway driving were lower than those associated with urban and suburban driving. Unfortunately, the NOx emission factors were 2.6-2.8-, 2.3-2.7- and 2.2-2.3-fold higher than the Euro IV standard limits for urban, suburban and freeway driving, respectively; NOx emission factors (in g/km and g/(kW·h)) from the original vehicles (without SCR) were higher than their corresponding vehicles with SCR for suburban and freeway driving. Compared with the IVE model results, the measured NOx emission factors were 1.60-1.16-, 1.77-1.27-, 2.49-2.44-fold higher than the NOx predicted by the IVE model for urban and suburban driving, respectively. Thus, an adjustment of emission factors is needed to improve the estimation of Euro IV vehicle emissions in China. Copyright © 2013 Elsevier B.V. All rights reserved.
Hu, Jiangbi; Wang, Ronghua
2018-02-17
Guaranteeing a safe and comfortable driving workload can contribute to reducing traffic injuries. In order to provide safe and comfortable threshold values, this study attempted to classify driving workload from the aspects of human factors mainly affected by highway geometric conditions and to determine the thresholds of different workload classifications. This article stated a hypothesis that the values of driver workload change within a certain range. Driving workload scales were stated based on a comprehensive literature review. Through comparative analysis of different psychophysiological measures, heart rate variability (HRV) was chosen as the representative measure for quantifying driving workload by field experiments. Seventy-two participants (36 car drivers and 36 large truck drivers) and 6 highways with different geometric designs were selected to conduct field experiments. A wearable wireless dynamic multiparameter physiological detector (KF-2) was employed to detect physiological data that were simultaneously correlated to the speed changes recorded by a Global Positioning System (GPS) (testing time, driving speeds, running track, and distance). Through performing statistical analyses, including the distribution of HRV during the flat, straight segments and P-P plots of modified HRV, a driving workload calculation model was proposed. Integrating driving workload scales with values, the threshold of each scale of driving workload was determined by classification and regression tree (CART) algorithms. The driving workload calculation model was suitable for driving speeds in the range of 40 to 120 km/h. The experimental data of 72 participants revealed that driving workload had a significant effect on modified HRV, revealing a change in driving speed. When the driving speed was between 100 and 120 km/h, drivers showed an apparent increase in the corresponding modified HRV. The threshold value of the normal driving workload K was between -0.0011 and 0.056 for a car driver and between -0.00086 and 0.067 for a truck driver. Heart rate variability was a direct and effective index for measuring driving workload despite being affected by multiple highway alignment elements. The driving workload model and the thresholds of driving workload classifications can be used to evaluate the quality of highway geometric design. A higher quality of highway geometric design could keep driving workload within a safer and more comfortable range. This study provided insight into reducing traffic injuries from the perspective of disciplinary integration of highway engineering and human factor engineering.
A driving simulator study of driver performance on deceleration lanes.
Calvi, A; Benedetto, A; De Blasiis, M R
2012-03-01
Deceleration lanes are important because they help drivers transition from high-speed lanes to low-speed ramps. Although they are designed to allow vehicles to depart the freeway safely and efficiently, many studies report high accident rates on exit ramps with the highest percentage of crashes taking place in deceleration lanes. This paper describes the results of a driving simulator study that focused on driving performance while approaching a divergence area and decelerating during the exiting maneuver. Three different traffic scenarios were simulated to analyze the influence of traffic volume on driving performance. Thirty drivers drove in the simulator in these scenarios while data on their lateral position, speed and deceleration were collected. Our results indicate there are considerable differences between the main assumptions of models generally used to design deceleration lanes and actual driving performance. In particular, diverging drivers begin to decelerate before arriving at the deceleration lane, causing interference with the main flow. Moreover, speeds recorded at the end of the deceleration lane exceed those for which the ramp's curves are designed; this creates risky driving conditions that could explain the high crash rates found in studies of exit ramps. Finally, statistical analyses demonstrate significant influences of traffic volume on some aspects of exiting drivers' performance: lower traffic volume results in elevated exiting speed and deceleration, and diverging drivers begin to decelerate earlier along the main lane when traffic volume is low. However, speeds at the end of the deceleration lane and the site of lane changing are not significantly influenced by traffic volume. Copyright © 2011 Elsevier Ltd. All rights reserved.
Examining Distracted Drivers' Underestimation of Time and Overestimation of Speed
DOT National Transportation Integrated Search
2017-09-01
Thirty-four drivers participated in a driving simulator experiment that investigated time and speed perception as it related to cognitive workload resulting from secondary tasks. Each participant drove the virtual drive twice, once with either an aud...
National survey of speeding and other unsafe driving actions. Volume 3, Countermeasures
DOT National Transportation Integrated Search
1998-09-15
The National Highway Traffic Safety Administration (NHTSA) commissioned the research firm of Schulman, Ronca & Bucuvalas, Inc. (SRBI) to conduct the Nationwide Survey Regarding Speeding and Other Unsafe Driving Actions. Between February 20 and April ...
Simulation of an Electromechanical Spin Motor System of a Control Moment Gyroscope
NASA Technical Reports Server (NTRS)
Inampudi, Ravi; Gordeuk, John
2016-01-01
A two-phase brushless DC motor (BDCM) with pulse-width modulated (PWM) voltage drive is simulated to control the flywheel speed of a control moment gyroscope (CMG). An overview of a double-gimballed control moment gyroscope (DGCMG) assembly is presented along with the CMG torque effects on the spacecraft. The operating principles of a two-phase brushless DC motor are presented and the system's electro-mechanical equations of motion are developed for the root-mean-square (RMS) currents and wheel speed. It is shown that the system is an extremely "stiff" set of first-order equations for which an implicit Euler integrator is required for a stable solution. An adaptive proportional voltage controller is presented which adjusts the PWM voltages depending on several control modes for speed, current, and torque. The simulation results illustrate the interaction between the electrical system and the load dynamics and how these influence the overall performance of the system. As will be shown, the CMG spin motor model can directly provide electrical power use and thermal power output to spacecraft subsystems for effective (average) calculations of CMG power consumption.
Ebnali, Mahdi; Ahmadnezhad, Pedram; Shateri, Alireza; Mazloumi, Adel; Ebnali Heidari, Majid; Nazeri, Ahmad Reza
2016-09-01
Using in-vehicle audio technologies such as audio systems and voice messages is regarded as a common secondary task. Such tasks, known as the sources of non-visual distraction, affect the driving performance. Given the elderly drivers' cognitive limitations, driving can be even more challenging to drivers. The current study examined how listening to economic news, as a cognitively demanding secondary task, affects elderly subjects' driving performance and whether their comprehension accuracy is associated with these effects. Participants of the study (N=22) drove in a real condition with and without listening to economic news. Measurements included driving performance (speed control, forward crash risk, and lateral lane position) and task performance (comprehension accuracy). The mean driving speed, duration of driving in unsafe zones and numbers of overtaking decreased significantly when drivers were engaged in the dual-task condition. Moreover, the cognitive secondary task led to a higher speed variability. Our results demonstrate that there was not a significant relationship between the lane changes and the activity of listening to economic news. However, a meaningful difference was observed between general comprehension and deep comprehension on the one hand and driving performance on the other. Another aspect of our study concerning the drivers' ages and their comprehension revealed a significant relationship between age above 75 and comprehension level. Drivers aging 75 and older showed a lower level of deep comprehension. Our study demonstrates that elderly drivers compensated driving performance with safety margin adoption while they were cognitively engaged. In this condition, however, maintaining speed proved more demanding for drivers aging 75 and older. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Yizhe; Sun, Daniel Jian; Tang, Juanyu
2018-04-03
The 3 objectives of this study are to (1) identify the driving style characteristics of taxi drivers in Shanghai and New York City (NYC) using taxi Global Positioning System (GPS) data and make a comparative analysis; (2) explore the influence of different driving style characteristics on the frequency of speeding (who and how?) and (3) explore the influence of driving style characteristics, road attributes, and environmental factors on the speeding rate (when, where, and how?) Methods: This study proposes a driver-road-environment identification (DREI) method to investigate the determinant factors of taxi speeding violations. Driving style characteristics, together with road and environment variables, were obtained based on the GPS data and auxiliary spatiotemporal data in Shanghai and NYC. The daily working hours of taxi drivers in Shanghai (18.6 h) was far more than in NYC (8.5 h). The average occupancy speed of taxi drivers in Shanghai (21.3 km/h) was similar to that of NYC (20.3 km/h). Speeders in both cities had shorter working hours and longer daily driving distance than other taxi drivers, though their daily income was similar. Speeding drivers routinely took long-distance trips (>10 km) and preferred relatively faster routes. Length of segments (1.0-1.5 km) and good traffic condition were associated with high speeding rates, whereas central business district area and secondary road were associated with low speeding rates. Moreover, many speeding violations were identified between 4:00 a.m. and 7:00 a.m. in both Shanghai and NYC and the worst period was between 5:00 a.m. and 6:00 a.m. in both cities. Characteristics of drivers, road attributes, and environment variables should be considered together when studying driver speeding behavior. Findings of this study may assist in stipulating relevant laws and regulations such as stricter offense monitoring in the early morning, long segment supervision, shift rule regulation, and working hour restriction to mitigate the risk of potential crashes.
Design Study of Propulsion and Drive Systems for the Large Civil TiltRotor (LCTR2) Rotorcraft
NASA Technical Reports Server (NTRS)
Robuck, Mark; Wilkerson, Joseph; Zhang, Yiyi; Snyder, Christopher A.; Vonderwell, Daniel
2013-01-01
Boeing, Rolls Royce, and NASA have worked together to complete a parametric sizing study for NASA's Large Civil Tilt Rotor (LCTR2) concept 2nd iteration. Vehicle gross weight and fuel usage were evaluated as propulsion and drive system characteristics were varied to maximize the benefit of reduced rotor tip speed during cruise conditions. The study examined different combinations of engine and gearbox variability to achieve rotor cruise tip speed reductions down to 54% of the hover tip speed. Previous NASA studies identified that a 54% rotor speed reduction in cruise minimizes vehicle gross weight and fuel burn. The LCTR2 was the study baseline for initial sizing. This study included rotor tip speed ratios (cruise to hover) of 100%, 77% and 54% at different combinations of engine RPM and gearbox speed reductions, which were analyzed to achieve the lightest overall vehicle gross weight (GW) at the chosen rotor tip speed ratio. Different engine and gearbox technology levels are applied ranging from commercial off-the-shelf (COTS) engines and gearbox technology to entry-in-service (EIS) dates of 2025 and 2035 to assess the benefits of advanced technology on vehicle gross weight and fuel burn. Interim results were previously reported1. This technical paper extends that work and summarizes the final study results including additional engine and drive system study accomplishments. New vehicle sizing data is presented for engine performance at a single operating speed with a multispeed drive system. Modeling details for LCTR2 vehicle sizing and subject engine and drive sub-systems are presented as well. This study was conducted in support of NASA's Fundamental Aeronautics Program, Subsonic Rotary Wing Project.
NASA Astrophysics Data System (ADS)
Zhang, Bo; Xin, Zhaowei; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng
2017-11-01
In order to overcome the difficulty in imaging detection of high-speed moving targets under complex environments, and to get more comprehensive image information of the target, there is a urgent need to develop new high-performance optical imaging components. Compared to traditional lenses which have fixed shapes and immutable focal length, liquid-crystal microlens (LCMs) can not only adjust the focal length without changing the external shape, but also realize many practical functions such as swinging focus, spectral selection, depth of field adjustment, etc. The physical properties of spatial electric fields constructed between electrode plates of the LCMs are directly related to the light-field adjusting performances of LCMs, such as the polarity of electric field, the frequency and amplitude of applied voltage signal. In other words, the optical behaviors of LCMs will be affected remarkably by the parameters of driving voltage signal mentioned above. To implement these important functions flexibly and effectively, the driving voltage signal must be powerful and flexible. It had better to have multiple channels to control the direction of swinging focus, with relatively wide variance range to spread spectrum selection range, and with high precision to ensure accurately controlling LCMs. In addition, special waveforms may be required to support special functions of LCMs. Therefore a digital control device, which meet the requirements mentioned above, is designed, and then LCMs with it can realize imaging detection of targets in complex environment.
Design of electric control system for automatic vegetable bundling machine
NASA Astrophysics Data System (ADS)
Bao, Yan
2017-06-01
A design can meet the requirements of automatic bale food structure and has the advantages of simple circuit, and the volume is easy to enhance the electric control system of machine carrying bunch of dishes and low cost. The bundle of vegetable machine should meet the sensor to detect and control, in order to meet the control requirements; binding force can be adjusted by the button to achieve; strapping speed also can be adjusted, by the keys to set; sensors and mechanical line connection, convenient operation; can be directly connected with the plug, the 220V power supply can be connected to a power source; if, can work, by the transmission signal sensor, MCU to control the motor, drive and control procedures for small motor. The working principle of LED control circuit and temperature control circuit is described. The design of electric control system of automatic dish machine.
A High-Resolution Integrated Model of the National Ignition Campaign Cryogenic Layered Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, O. S.; Callahan, D. A.; Cerjan, C. J.
A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60.more » Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-40% of the calculated yields.« less
A High-Resolution Integrated Model of the National Ignition Campaign Cryogenic Layered Experiments
Jones, O. S.; Callahan, D. A.; Cerjan, C. J.; ...
2012-05-29
A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60.more » Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-40% of the calculated yields.« less
Towards an Integrated Model of the NIC Layered Implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, O S; Callahan, D A; Cerjan, C J
A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60.more » Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-45% of the calculated yields.« less
Powertrain system for a hybrid electric vehicle
Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.
Powertrain system for a hybrid electric vehicle
Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.
1999-08-31
A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.
DOT National Transportation Integrated Search
1998-09-15
The National Highway Traffic Safety Administration (NHTSA) commissioned the research firm of Schulman, Ronca & Bucuvalas, Inc. (SRBI) to conduct the Nationwide Survey Regarding Speeding and Other Unsafe Driving Actions. Between February 20 and April ...
National survey of speeding and other unsafe driving actions. Volume 1, Methodology
DOT National Transportation Integrated Search
1998-09-15
The National Highway Traffic Safety Administration (NHTSA) commissioned the research firm of Schulman, Ronca & Bucuvalas, Inc. (SRBI) to conduct the National Survey of Speeding and Other Unsafe Driving Actions. Between February 20 and April 11, 1997,...
Yu, Bo; Chen, Yuren; Wang, Ruiyun; Dong, Yongjie
2016-10-01
Turning right has a significant impact on urban road traffic safety. Driving into the curve inappropriately or with improper turning speed often leads to a series of potential accidents and hidden dangers. For a long time, the design speed at intersections has been used to determine the physical radius of curbs and channelization, and drivers are expected to drive in accordance with the design speed. However, a large number of real vehicle tests show that for the road without an exclusive right-turn lane, there is not a good correlation between the physical radius of curbs and the turning right speeds. In this paper, shape parameters of the driver's visual lane model are put forward and they have relatively high correlations with right-turn speeds. Hence, an evaluation method about safety reliability of turning right from urban major roads onto minor ones based on driver's visual perception is proposed. For existing roads, the evaluation object could be real driving videos; for those under construction roads, the evaluation object could be visual scenes obtained from a driving simulation device. Findings in this research will make a contribution to the optimization of right-turn design at intersections and lead to the development of auxiliary driving technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Premium Efficiency Motor Selection and Application Guide – A Handbook for Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert A. McCoy and John G. Douglass
2014-02-01
This handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial sector, including the development of motor efficiency standards, currently available and emerging advanced efficiency motor technologies, and guidance on how to evaluate motor efficiency opportunities. It also several tips on getting the most out of industrial motors, such as how to avoid adverse motor interactions with electronic adjustable speed drives and how to ensure efficiency gains are not lost to undervoltage operation or excessive voltagemore » unbalance.« less
Older drivers: On-road and off-road test results.
Selander, Helena; Lee, Hoe C; Johansson, Kurt; Falkmer, Torbjörn
2011-07-01
Eighty-five volunteer drivers, 65-85 years old, without cognitive impairments impacting on their driving were examined, in order to investigate driving errors characteristic for older drivers. In addition, any relationships between cognitive off-road and on-road tests results, the latter being the gold standard, were identified. Performance measurements included Trail Making Test (TMT), Nordic Stroke Driver Screening Assessment (NorSDSA), Useful Field of View (UFOV), self-rating driving performance and the two on-road protocols P-Drive and ROA. Some of the older drivers displayed questionable driving behaviour. In total, 21% of the participants failed the on-road assessment. Some of the specific errors were more serious than others. The most common driving errors embraced speed; exceeding the speed limit or not controlling the speed. Correlations with the P-Drive protocol were established for NorSDSA total score (weak), UFOV subtest 2 (weak), and UFOV subtest 3 (moderate). Correlations with the ROA protocol were established for UFOV subtest 2 (weak) and UFOV subtest 3 (weak). P-Drive and self ratings correlated weakly, whereas no correlation between self ratings and the ROA protocol was found. The results suggest that specific problems or errors seen in an older person's driving can actually be "normal driving behaviours". Copyright © 2011 Elsevier Ltd. All rights reserved.
Effects of major-road vehicle speed and driver age and gender on left-turn gap acceptance.
Yan, Xuedong; Radwan, Essam; Guo, Dahai
2007-07-01
Because the driver's gap-acceptance maneuver is a complex and risky driving behavior, it is a highly concerned topic for traffic safety and operation. Previous studies have mainly focused on the driver's gap acceptance decision itself but did not pay attention to the maneuver process and driving behaviors. Using a driving simulator experiment for left-turn gap acceptance at a stop-controlled intersection, this study evaluated the effects of major traffic speed and driver age and gender on gap acceptance behaviors. The experiment results illustrate relationships among drivers' left-turn gap decision, driver's acceleration rate, steering action, and the influence of the gap-acceptance maneuver on the vehicles in the major traffic stream. The experiment results identified an association between high crash risk and high traffic speed at stop-controlled intersections. The older drivers, especially older female drivers, displayed a conservative driving attitude as a compensation for reduced driving ability, but also showed to be the most vulnerable group for the relatively complex driving maneuvers.
Use patterns among early adopters of adaptive cruise control.
Xiong, Huimin; Boyle, Linda Ng; Moeckli, Jane; Dow, Benjamin R; Brown, Timothy L
2012-10-01
The objective of this study was to investigate use patterns among early adopters of adaptive cruise control (ACC). Extended use ofACC may influence a driver's behavior in the long-term, which can have unintended safety consequences. The authors examined the use of a motion-based simulator by 24 participants (15 males and 9 females). Cluster analysis was performed on drivers' use of ACC and was based on their gap settings, speed settings, number of warnings issued, and ACC disengaged. The data were then examined on the basis of driving performance measures and drivers' subjective responses to trust in ACC, understanding of system operations, and driving styles. Driving performance measures included minimum time headway, adjusted minimum time to collision, and drivers' reaction time to critical events. Three groups of drivers were observed on the basis of risky behavior, moderately risky behavior, and conservative behavior. Drivers in the conservative group stayed farther behind the lead vehicle than did drivers in the other two groups. Risky drivers responded later to critical events and had more ACC warnings issued. Safety consequences with ACC may be more prevalent in some driver groups than others. The findings suggest that these safety implications are related to trust in automation, driving styles, understanding of system operations, and personalities. Potential applications of this research include enhanced design for next-generation ACC systems and countermeasures to improve safe driving with ACC.
Get a license, buckle up, and slow down: risky driving patterns among saudis.
El Bcheraoui, Charbel; Basulaiman, Mohammed; Tuffaha, Marwa; Daoud, Farah; Robinson, Margaret; Jaber, Sara; Mikhitarian, Sarah; Wilson, Shelley; Memish, Ziad A; Al Saeedi, Mohammad; Almazroa, Mohammad A; Mokdad, Ali H
2015-01-01
Road traffic injuries are the largest cause of loss of disability-adjusted life years for men and women of all ages in the Kingdom of Saudi Arabia, but data on driving habits there are lacking. To inform policymakers on drivers' abilities and driving habits, we analyzed data from the Saudi Health Interview Survey 2013. We surveyed a representative sample of 5,235 Saudi males aged 15 years or older on wearing seat belts, exceeding speed limits, and using a handheld cell phone while driving. Male and female respondents were surveyed on wearing seat belts as passengers. Among Saudi males, 71.7% reported having had a driver's license, but more than 43% of unlicensed males drove a vehicle. Among drivers, 86.1% engaged in at least one risky behavior while driving. Older and unlicensed drivers were more likely to take risks while driving. This risk decreased among the more educated, current smokers, and those who are physically active. Up to 94.9% and 98.5% of respondents reported not wearing a seat belt in the front and the back passenger seats, respectively. The high burden of road traffic injuries in the Kingdom is not surprising given our findings. Our study calls for aggressive monitoring and enforcement of traffic laws. Awareness and proper education for drivers and their families should be developed jointly by the Ministries of Health, Interior Affairs, and Education and provided through their channels.
National survey of speeding and unsafe driving attitudes and behaviors : 2002. Volume 2, Findings
DOT National Transportation Integrated Search
2004-05-01
This report represents findings from a survey on speeding and unsafe driving attitudes and behaviors. The data come from a pair of studies undertaken by the National Highway Traffic Safety Administration (NHTSA) to better understand drivers' behavior...
The development and clinical trial of a Driving Simulator for the handicapped.
Ku, Jeonghun; Jang, Dongpyo; Ahn, Heebum; Lee, Jaemin; Kim, Jeong A; Lee, Bumseok; Kim, In Y; Kim, Sun I
2002-01-01
We developed a Virtual Reality Driving Simulator in order to safely evaluate and improve the driving ability of the handicapped. The Virtual Environment consists of 18 sections (e.g. a speed limited road, a strait road, a curved road, a left turn course, etc) and each section is linked naturally. For the interface of our driving simulator, an actual car was adapted for realism and then connected to a computer. We also equipped it with hand control driving devices especially adapted for the handicapped. A beam projector was used so that the subjects could see the virtual scene on a large screen which was set in front of them. The subjects selected for this trial were 10 normal drivers with valid driving licenses and 15 patients with thoracicor lumber cord injuries who had prior driving experience. For evaluation, 5 driving skills were measured including average speed, steering stability, centerline violations, traffic signal violations, and driving time in various road conditions such as strait and curved roads. The normal subjects manipulated the gas pedal and the brake with their feet while the patients manipulated a hand control with their hands. After they finished driving the whole course, the participants answered the questions such as "How realistic did the Virtual Reality Driving Simulator seeme to you?" and "How much was your fear reduced". The five driving skills measured between the two groups (normal vs. handicapped) did not show any significant differences (p > 0.05). And in the three kinds of road conditions (a speed limited road and roads with a sharp curve and left-hand turn), the average speed of the handicapped group was 45.6 Km, less than 61.2 Km (p<0.05) of the normal group. In all, 11 patients (73%) reported that their fear of driving was reduced. Furthermore, their average score on the degree of realism question was 51.5%.
Kaye, Sherrie-Anne; Lewis, Ioni; Algie, Jennifer; White, Melanie J
2016-05-18
Self-report measures are typically used to assess the effectiveness of road safety advertisements. However, psychophysiological measures of persuasive processing (i.e., skin conductance response [SCR]) and objective driving measures of persuasive outcomes (i.e., in-vehicle Global Positioning System [GPS] devices) may provide further insights into the effectiveness of these advertisements. This study aimed to explore the persuasive processing and outcomes of 2 anti-speeding advertisements by incorporating both self-report and objective measures of speeding behavior. In addition, this study aimed to compare the findings derived from these different measurement approaches. Young drivers (N = 20, M age = 21.01 years) viewed either a positive or negative emotion-based anti-speeding television advertisement. While viewing the advertisement, SCR activity was measured to assess ad-evoked arousal responses. The RoadScout GPS device was then installed in participants' vehicles for 1 week to measure on-road speed-related driving behavior. Self-report measures assessed persuasive processing (emotional and arousal responses) and actual driving behavior. There was general correspondence between the self-report measures of arousal and the SCR and between the self-report measure of actual driving behavior and the objective driving data (as assessed via the GPS devices). This study provides insights into how psychophysiological and GPS devices could be used as objective measures in conjunction with self-report measures to further understand the persuasive processes and outcomes of emotion-based anti-speeding advertisements.
Chi, Wen-Chun; Cheng, Ming-Yang
2014-03-01
Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Chaotic operation and chaos control of travelling wave ultrasonic motor.
Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie
2013-08-01
The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
Traffic ticket fixing and driving behaviours in a large French working population.
Lagarde, E; Chiron, M; Lafont, S
2004-07-01
The use of connections who have the authority to cancel penalties related to traffic violations seems to be very frequent in France. This study aimed at describing risk taking driving behaviours associated in France with using connections to have traffic tickets cancelled (ticket fixing). Retrospective study on driving behaviour and road safety conducted between March and December 2001 within a cohort of French employees. France. Employees of the French national utility company who have been followed up since 1989. The sample comprises 10 594 men aged 53-63 years and 3258 women aged 48-63 in 2001. One third of the men and one fifth of the women reported that they had had a ticket fixed at some time. Those who reported having tickets fixed were more likely than the others to report high driving speeds (adjusted odds ratios (aOR) were 1.24, 1.52, and 1.66 in built up areas, on rural roads, and on motorways respectively), to report driving while under the influence (aOR = 1.39), and to report risky use of cellular phone while driving (aOR = 1.83). In addition, participants who reported having tickets fixed were more likely to have had at least one serious road traffic accident in the past 11 years (aOR = 1.21). Indulgence and the use of connections are common practices in France. These results suggest that it is to confer a feeling of impunity that jeopardises efforts to combat unsafe driving. Abolition of these traditions is essential to ensure the credibility of preventive and repressive measures.
Wang, Junhua; Sun, Shuaiyi; Fang, Shouen; Fu, Ting; Stipancic, Joshua
2017-02-01
This paper aims to both identify the factors affecting driver drowsiness and to develop a real-time drowsy driving probability model based on virtual Location-Based Services (LBS) data obtained using a driving simulator. A driving simulation experiment was designed and conducted using 32 participant drivers. Collected data included the continuous driving time before detection of drowsiness and virtual LBS data related to temperature, time of day, lane width, average travel speed, driving time in heavy traffic, and driving time on different roadway types. Demographic information, such as nap habit, age, gender, and driving experience was also collected through questionnaires distributed to the participants. An Accelerated Failure Time (AFT) model was developed to estimate the driving time before detection of drowsiness. The results of the AFT model showed driving time before drowsiness was longer during the day than at night, and was longer at lower temperatures. Additionally, drivers who identified as having a nap habit were more vulnerable to drowsiness. Generally, higher average travel speeds were correlated to a higher risk of drowsy driving, as were longer periods of low-speed driving in traffic jam conditions. Considering different road types, drivers felt drowsy more quickly on freeways compared to other facilities. The proposed model provides a better understanding of how driver drowsiness is influenced by different environmental and demographic factors. The model can be used to provide real-time data for the LBS-based drowsy driving warning system, improving past methods based only on a fixed driving. Copyright © 2016 Elsevier Ltd. All rights reserved.
Active control system for high speed windmills
Avery, D.E.
1988-01-12
A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed. 4 figs.
Active control system for high speed windmills
Avery, Don E.
1988-01-01
A pump stroke is matched to the operating speed of a high speed windmill. The windmill drives a hydraulic pump for a control. Changes in speed of a wind driven shaft open supply and exhaust valves to opposite ends of a hydraulic actuator to lengthen and shorten an oscillating arm thereby lengthening and shortening the stroke of an output pump. Diminishing wind to a stall speed causes the valves to operate the hydraulic cylinder to shorten the oscillating arm to zero. A pressure accumulator in the hydraulic system provides the force necessary to supply the hydraulic fluid under pressure to drive the actuator into and out of the zero position in response to the windmill shaft speed approaching and exceeding windmill stall speed.
Concepts for Variable/Multi-Speed Rotorcraft Drive System
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.
2008-01-01
In several recent studies and on-going developments for advanced rotorcraft, the need for variable or multi-speed capable rotors has been raised. A speed change of up to 50 percent has been proposed for future rotorcraft to improve overall vehicle performance. Accomplishing rotor speed changes during operation requires both a rotor that can perform effectively over the operation speed/load range, and a propulsion system that can enable these speed changes. A study has been completed to investigate possible drive system arrangements that can accommodate up to the 50 percent speed change. Several concepts will be presented and evaluated. The most promising configurations will be identified and developed for future testing in a sub-scaled test facility to validate operational capability.
Electronic differential control of 2WD electric vehicle considering steering stability
NASA Astrophysics Data System (ADS)
Hua, Yiding; Jiang, Haobin; Geng, Guoqing
2017-03-01
Aiming at the steering wheel differential steering control technology of rear wheel independent driving electric wheel, considering the assisting effect of electronic differential control on vehicle steering, based on the high speed steering characteristic of electric wheel car, the electronic differential speed of auxiliary wheel steering is also studied. A yaw moment control strategy is applied to the vehicle at high speed. Based on the vehicle stability reference value, yaw rate is used to design the fuzzy controller to distribute the driving wheel torque. The simulation results show that the basic electronic differential speed function is realized based on the yaw moment control strategy, while the vehicle stability control is improved and the driving safety is enhanced. On the other hand, the torque control strategy can also assist steering of vehicle.
Solar-Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2001-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Solar-Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2002-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Solar Powered Refrigeration System
NASA Technical Reports Server (NTRS)
Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)
2002-01-01
A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.
Older drivers and rapid deceleration events: Salisbury Eye Evaluation Driving Study.
Keay, Lisa; Munoz, Beatriz; Duncan, Donald D; Hahn, Daniel; Baldwin, Kevin; Turano, Kathleen A; Munro, Cynthia A; Bandeen-Roche, Karen; West, Sheila K
2013-09-01
Drivers who rapidly change speed while driving may be more at risk for a crash. We sought to determine the relationship of demographic, vision, and cognitive variables with episodes of rapid decelerations during five days of normal driving in a cohort of older drivers. In the Salisbury Eye Evaluation Driving Study, 1425 older drivers aged 67-87 were recruited from the Maryland Motor Vehicle Administration's rolls for licensees in Salisbury, Maryland. Participants had several measures of vision tested: visual acuity, contrast sensitivity, visual fields, and the attentional visual field. Participants were also tested for various domains of cognitive function including executive function, attention, psychomotor speed, and visual search. A custom created driving monitoring system (DMS) was used to capture rapid deceleration events (RDEs), defined as at least 350 milli-g deceleration, during a five day period of monitoring. The rate of RDE per mile driven was modeled using a negative binomial regression model with an offset of the logarithm of the number of miles driven. We found that 30% of older drivers had one or more RDE during a five day period, and of those, about 1/3 had four or more. The rate of RDE per mile driven was highest for those drivers driving<59 miles during the 5-day period of monitoring. However, older drivers with RDE's were more likely to have better scores in cognitive tests of psychomotor speed and visual search, and have faster brake reaction time. Further, greater average speed and maximum speed per driving segment was protective against RDE events. In conclusion, contrary to our hypothesis, older drivers who perform rapid decelerations tend to be more "fit", with better measures of vision and cognition compared to those who do not have events of rapid deceleration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Demonte, A; Guanti, M B; Liberati, S; Biffi, A; Fernando, F; Fainello, M; Pepe, P
2018-02-01
Bilastine is a highly selective, non-sedating antihistamine, indicated for the symptomatic treatment of allergic rhinoconjunctivitis and urticaria. Available data suggest that bilastine interferes neither with driving ability nor with flying-related performance. However, no data are available on the effect of bilastine on the driving ability in extreme conditions. Here we analyzed the effect of 7 days treatment with 20 mg bilastine in patients with allergic rhinitis and/or chronic urticaria, on psychophysical performance assessed by the Formula One (F1) high-speed simulator-driving test. This study is a phase IV, interventional, prospective, mono-centric, single arm, open-label trial. Eighteen outpatients affected by allergic rhinitis and/or chronic urticaria, able to perform a preliminary driving test on F1 simulator were considered (V-1). First, the patients had a screening visit to assess their eligibility (V0). Visit 1 (V1), at the end of placebo before bilastine treatment and Visit 2 (V2), at the end of bilastine treatment. The primary variable parameter was the ability to maintain the vehicle in a central position at different speeds (50, 150, and 250 km/h). Bilastine had a good safety profile and was well tolerated in terms of adverse events, laboratory parameters and vital signs. Bilastine did not have any negative effect on the ability to maintain the requested path, a constant speed as well as on attention and reactivity levels, even in extreme driving conditions. This study is the first done in patients with allergic rhinitis and/or chronic urticaria using a F1-high speed simulator-driving test evaluating subjects' performance under bilastine treatment.
Older Drivers and Rapid Deceleration Events: Salisbury Eye Evaluation Driving Study
Keay, Lisa; Munoz, Beatriz; Duncan, Donald D; Hahn, Daniel; Baldwin, Kevin; Turano, Kathleen A; Munro, Cynthia A; Bandeen-Roche, Karen; West, Sheila K
2012-01-01
Drivers who rapidly change speed while driving may be more at risk for a crash. We sought to determine the relationship of demographic, vision, and cognitive variables with episodes of rapid decelerations during five days of normal driving in a cohort of older drivers. In the Salisbury Eye Evaluation Driving Study, 1425 older drivers ages 67 to 87 were recruited from the Maryland Motor Vehicle Administration’s rolls for licensees in Salisbury, Maryland. Participants had several measures of vision tested: visual acuity, contrast sensitivity, visual fields, and the attentional visual field. Participants were also tested for various domains of cognitive function including executive function, attention, psychomotor speed, and visual search. A custom created Driving Monitor System (DMS) was used to capture rapid deceleration events (RDE), defined as at least 350 milli-g deceleration, during a five day period of monitoring. The rate of RDE per mile driven was modeled using a negative binomial regression model with an offset of the logarithm of the number of miles driven. We found that 30% of older drivers had one or more RDE during a five day period, and of those, about 1/3 had four or more. The rate of RDE per mile driven was highest for those drivers driving <59 miles during the 5-day period of monitoring. However, older drivers with RDE’s were more likely to have better scores in cognitive tests of psychomotor speed and visual search, and have faster brake reaction time. Further, greater average speed and maximum speed per driving segment was protective against RDE events. In conclusion, contrary to our hypothesis, older drivers who perform rapid decelerations tend to be more “fit”, with better measures of vision and cognition compared to those who do not have events of rapid deceleration. PMID:22742775
Divided attention and driving: a pilot study using virtual reality technology.
Lengenfelder, Jean; Schultheis, Maria T; Al-Shihabi, Talal; Mourant, Ronald; DeLuca, John
2002-02-01
Virtual reality (VR) was used to investigate the influence of divided attention (simple versus complex) on driving performance (speed control). Three individuals with traumatic brain injury (TBI) and three healthy controls (HC), matched for age, education, and gender, were examined. Preliminary results revealed no differences on driving speed between TBI and HC. In contrast, TBI subjects demonstrated a greater number of errors on a secondary task performed while driving. The findings suggest that VR may provide an innovative medium for direct evaluation of basic cognitive functions (ie, divided attention) and its impact on everyday tasks (ie, driving) not previously available through traditional neuropsychological measures.
Parametric tests of a traction drive retrofitted to an automotive gas turbine
NASA Technical Reports Server (NTRS)
Rohn, D. A.; Lowenthal, S. H.; Anderson, N. E.
1980-01-01
The results of a test program to retrofit a high performance fixed ratio Nasvytis Multiroller Traction Drive in place of a helical gear set to a gas turbine engine are presented. Parametric tests up to a maximum engine power turbine speed of 45,500 rpm and to a power level of 11 kW were conducted. Comparisons were made to similar drives that were parametrically tested on a back-to-back test stand. The drive showed good compatibility with the gas turbine engine. Specific fuel consumption of the engine with the traction drive speed reducer installed was comparable to the original helical gearset equipped engine.
Does a threat appeal moderate reckless driving? A terror management theory perspective.
Ben-Ari, O T; Florian, V; Mikulincer, M
2000-01-01
A series of two studies examined the effects of threat appeals on reckless driving from a terror management theory perspective. In both studies, all the participants (N = 109) reported on the relevance of driving to their self-esteem, and, then, half of them were exposed to a road trauma film and the remaining to a neutral film. In Study 1, the dependent variable was the self-report of intentions to drive recklessly in hypothetical scenarios. In Study 2, the dependent variable was actual behavior (driving speed) in a driving simulator. Findings indicated that a road trauma film led to less reported intentions of reckless driving, but to higher driving speed than a neutral film. These effects were only found among participants who perceived driving as relevant to their self-esteem. The discussion emphasized the self-enhancing mechanisms proposed by the terror management theory.
15 CFR 265.12 - Speeding or reckless driving.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Speeding or reckless driving. 265.12 Section 265.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE REGULATIONS GOVERNING TRAFFIC AND CONDUCT...
Skipping on uneven ground: trailing leg adjustments simplify control and enhance robustness.
Müller, Roy; Andrada, Emanuel
2018-01-01
It is known that humans intentionally choose skipping in special situations, e.g. when descending stairs or when moving in environments with lower gravity than on Earth. Although those situations involve uneven locomotion, the dynamics of human skipping on uneven ground have not yet been addressed. To find the reasons that may motivate this gait, we combined experimental data on humans with numerical simulations on a bipedal spring-loaded inverted pendulum model (BSLIP). To drive the model, the following parameters were estimated from nine subjects skipping across a single drop in ground level: leg lengths at touchdown, leg stiffness of both legs, aperture angle between legs, trailing leg angle at touchdown (leg landing first after flight phase), and trailing leg retraction speed. We found that leg adjustments in humans occur mostly in the trailing leg (low to moderate leg retraction during swing phase, reduced trailing leg stiffness, and flatter trailing leg angle at lowered touchdown). When transferring these leg adjustments to the BSLIP model, the capacity of the model to cope with sudden-drop perturbations increased.
Roidl, Ernst; Frehse, Berit; Höger, Rainer
2014-09-01
Maladjusted driving, such as aggressive driving and delayed reactions, is seen as one cause of traffic accidents. Such behavioural patterns could be influenced by strong emotions in the driver. The causes of emotions in traffic are divided into two distinct classes: personal factors and properties of the specific driving situation. In traffic situations, various appraisal factors are responsible for the nature and intensity of experienced emotions. These include whether another driver was accountable, whether goals were blocked and whether progress and safety were affected. In a simulator study, seventy-nine participants took part in four traffic situations which each elicited a different emotion. Each situation had critical elements (e.g. slow car, obstacle on the street) based on combinations of the appraisal factors. Driving parameters such as velocity, acceleration, and speeding, together with the experienced emotions, were recorded. Results indicate that anger leads to stronger acceleration and higher speeds even for 2 km beyond the emotion-eliciting event. Anxiety and contempt yielded similar but weaker effects, yet showed the same negative and dangerous driving pattern as anger. Fright correlated with stronger braking momentum and lower speeds directly after the critical event. Copyright © 2014. Published by Elsevier Ltd.
Rogé, Joceline; Pébayle, Thierry; Lambilliotte, Elina; Spitzenstetter, Florence; Giselbrecht, Danièle; Muzet, Alain
2004-10-01
Recent research has shown that the useful visual field deteriorates in simulated car driving when the latter can induce a decrease in the level of activation. The first aim of this study was to verify if the same phenomenon occurs when driving is performed in a simulated road traffic situation. The second aim was to discover if this field also deteriorates as a function of the driver's age and of the vehicle's speed. Nine young drivers (from 22 to 34 years) and nine older drivers (from 46 to 59 years) followed a vehicle in road traffic during two two-hour sessions. The car-following task involved driving at 90 km.h(-1) (speed limit on road in France) in one session and at 130 km.h(-1) (speed limit on motorway in France) in the other session. While following the vehicle, the driver had to detect the changes in colour of a luminous signal located in the central part of his/her visual field and a visual signal that appeared at different eccentricities on the rear lights of the vehicles in the traffic. The analysis of the data indicates that the useful visual field deteriorates with the prolongation of the monotonous simulated driving task, with the driver's age and with the vehicle's speed. The results are discussed in terms of general interference and tunnel vision.
NASA Technical Reports Server (NTRS)
Handschuh, R.; Kilmain, D.; Ehinger, R.; Sinusas, E.
2013-01-01
The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction/torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 F) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.
NASA Technical Reports Server (NTRS)
Handschuh, R.; Kilmain, C.; Ehinger, R.; Sinusas, E.
2013-01-01
The performance of high-speed helical gear trains is of particular importance for tiltrotor aircraft drive systems. These drive systems are used to provide speed reduction / torque multiplication from the gas turbine output shaft and provide the necessary offset between these parallel shafts in the aircraft. Four different design configurations have been tested in the NASA Glenn Research Center, High Speed Helical Gear Train Test Facility. The design configurations included the current aircraft design, current design with isotropic superfinished gear surfaces, double helical design (inward and outward pumping), increased pitch (finer teeth), and an increased helix angle. All designs were tested at multiple input shaft speeds (up to 15,000 rpm) and applied power (up to 5,000 hp). Also two lubrication, system-related, variables were tested: oil inlet temperature (160 to 250 degF) and lubricating jet pressure (60 to 80 psig). Experimental data recorded from these tests included power loss of the helical system under study, the temperature increase of the lubricant from inlet to outlet of the drive system and fling off temperatures (radially and axially). Also, all gear systems were tested with and without shrouds around the gears. The empirical data resulting from this study will be useful to the design of future helical gear train systems anticipated for next generation rotorcraft drive systems.
Fleiter, Judy J; Watson, Barry
2016-10-01
As China continues to motorise rapidly, solutions are needed to reduce the burden of road trauma that is spread inequitably across the community. Little is currently known about how new drivers are trained to deal with on-road challenges, and little is also known about the perceptions, behaviours and attitudes of road users in China. This paper reports on a pilot study conducted in a driver retraining facility in one Chinese city where people who have had their licence suspended for accrual of 12 demerit points in a one year period must attend compulsory retraining in order to regain their licence. A sample of 239 suspended drivers responded to an anonymous questionnaire that sought information about preferred driving speeds and perceptions of safe driving speeds across two speed zones. Responses indicated that speeds higher than the posted limits were commonly reported, and that there was incongruence between preferred and safe speeds, such that a greater proportion of drivers reported preferred speeds that were substantially faster than what were reported as safe speeds. Participants with more driving experience reported significantly fewer crashes than newly licensed drivers (less than 2 years licensed) but no differences were found in offences when compared across groups with different levels of driving experience. Perceptions of risky behaviours were assessed by asking participants to describe what they considered to be the most dangerous on-road behaviours. Speeding and drink driving were the most commonly reported by far, followed by issues such as fatigue, ignoring traffic rules, not obeying traffic rules, phone use while driving, and non-use of seatbelts, which attracted an extremely low response which seems consistent with previously reported low belt wearing rates, unfavourable attitudes towards seatbelt use, and low levels of enforcement. Finally, observations about culturally specific considerations are made from previous research conducted by the authors and others. Specifically, issues of saving face and the importance and pervasiveness of social networks and social influence are discussed with particular regard to how any future countermeasures need to be informed by a thorough understanding of Chinese customs and culture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Variable/Multispeed Rotorcraft Drive System Concepts
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.
2009-01-01
Several recent studies for advanced rotorcraft have identified the need for variable, or multispeed-capable rotors. A speed change of up to 50 percent has been proposed for future rotorcraft to improve vehicle performance. Varying rotor speed during flight not only requires a rotor capable of performing effectively over the extended operation speed and load range, but also requires an advanced propulsion system to provide the required speed changes. A study has been completed, which investigated possible drive system arrangements to accommodate up to the 50 percent speed change. These concepts are presented. The most promising configurations are identified and will be developed for future validation testing.
Generalized speed and cost rate in transitionless quantum driving
NASA Astrophysics Data System (ADS)
Xu, Zhen-Yu; You, Wen-Long; Dong, Yu-Li; Zhang, Chengjie; Yang, W. L.
2018-03-01
Transitionless quantum driving, also known as counterdiabatic driving, is a unique shortcut technique to adiabaticity, enabling a fast-forward evolution to the same target quantum states as those in the adiabatic case. However, as nothing is free, the fast evolution is obtained at the cost of stronger driving fields. Here, given the system initially gets prepared in equilibrium states, we construct relations between the dynamical evolution speed and the cost rate of transitionless quantum driving in two scenarios: one that preserves the transitionless evolution for a single energy eigenstate (individual driving), and the other that maintains all energy eigenstates evolving transitionlessly (collective driving). Remarkably, we find that individual driving may cost as much as collective driving, in contrast to the common belief that individual driving is more economical than collective driving in multilevel systems. We then present a potentially practical proposal to demonstrate the above phenomena in a three-level Landau-Zener model using the electronic spin system of a single nitrogen-vacancy center in diamond.
Relay protection features of frequency-adjustable electric drive
NASA Astrophysics Data System (ADS)
Kuprienko, V. V.
2018-03-01
The features of relay protection of high-voltage electric motors in composition of the frequency-adjustable electric drive are considered in the article. The influence of frequency converters on the stability of the operation of various types of relay protection used on electric motors is noted. Variants of circuits for connecting relay protection devices are suggested. The need to develop special relay protection devices for a frequency-adjustable electric drive is substantiated.
Carkeet, Andrew; Wood, Joanne M; McNeill, Kylie M; McNeill, Hamish J; James, Joanna A; Holder, Leigh S
The Enright phenomenon describes the distortion in speed perception experienced by an observer looking sideways from a moving vehicle when viewing with interocular differences in retinal image brightness, usually induced by neutral density filters. We investigated whether the Enright phenomenon could be induced with monocular pupil dilation using tropicamide. We tested 17 visually normal young adults on a closed road driving circuit. Participants were asked to travel at Goal Speeds of 40km/h and 60km/h while looking sideways from the vehicle with: (i) both eyes with undilated pupils; (ii) both eyes with dilated pupils; (iii) with the leading eye only dilated; and (iv) the trailing eye only dilated. For each condition we recorded actual driving speed. With the pupil of the leading eye dilated participants drove significantly faster (by an average of 3.8km/h) than with both eyes dilated (p=0.02); with the trailing eye dilated participants drove significantly slower (by an average of 3.2km/h) than with both eyes dilated (p<0.001). The speed, with the leading eye dilated, was faster by an average of 7km/h than with the trailing eye dilated (p<0.001). There was no significant difference between driving speeds when viewing with both eyes either dilated or undilated (p=0.322). Our results are the first to show a measurable change in driving behaviour following monocular pupil dilation and support predictions based on the Enright phenomenon. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.
Development of a KT driving cycle for UMT PHEV powertrain
NASA Astrophysics Data System (ADS)
Atiq, W. H.; Haezah, M. N.; Norbakyah, J. S.; Salisa, A. R.
2015-12-01
Driving cycles were identified as one of the core sources that contribute to develop the powertrain for vehicle. Plug-in hybrid electric vehicles (PHEVs) are the future transport for next generation. Compared to conventional internal combustion engine vehicle, hybrid and electric vehicle can improve fuel economy and reduce green house gases. This paper describes a development of Kuala Terengganu driving cycle for Universiti Malaysia Terengganu PHEV. Car speed-time data along the two selected fixed route is obtained by using on-board technique which is Global Positioning System, GPS. The developed driving cycle contains a 1050s speed time series, with a distance of 2.17 km, and an average and a maximum speed of 20.67 km/h and 61.47 km/h, respectively. The results obtained from this analysis are within reasonable range and satisfactory.
Noise exposure in convertible automobiles.
Mikulec, A A; Lukens, S B; Jackson, L E; Deyoung, M N
2011-02-01
To quantify the noise exposure received while driving a convertible automobile with the top open, compared with the top closed. Five different convertible automobiles were driven, with the top both closed and open, and noise levels measured. The cars were tested at speeds of 88.5, 104.6 and 120.7 km/h. When driving with the convertible top open, the mean noise exposure ranged from 85.3 dB at 88.5 km/h to 89.9 dB at 120.7 km/h. At the tested speeds, noise exposure increased by an average of 12.4-14.6 dB after opening the convertible top. Driving convertible automobiles at speeds exceeding 88.5 km/h, with the top open, may result in noise exposure levels exceeding recommended limits, especially when driving with the convertible top open for prolonged periods.
Controlled Speed Accessory Drive demonstration program
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1981-01-01
A Controlled Speed Accessory Drive System was examined in an effort to improve the fuel economy of passenger cars. Concept feasibility and the performance of a typical system during actual road driving conditions were demonstrated. The CSAD system is described as a mechanical device which limits engine accessory speeds, thereby reducing parasitic horsepower losses and improving overall vehicle fuel economy. Fuel consumption data were compiled for fleets of GSA vehicles. Various motor pool locations were selected, each representing different climatic conditions. On the basis of a total accumulated fleet usage of nearly three million miles, an overall fuel economy improvement of 6 percent to 7 percent was demonstrated. Coincident chassis dynamometer tests were accomplished on selected vehicles to establish the effect of different accessory drive systems on exhaust emissions, and to evaluate the magnitude of the mileage benefits which could be derived.
Upflow bioreactor having a septum and an auger and drive assembly
Hansen, Carl S.; Hansen, Conly L.
2007-11-06
An upflow bioreactor includes a vessel having an inlet and an outlet configured for upflow operation. A septum is positioned within the vessel and defines a lower chamber and an upper chamber. The septum includes an aperture that provides fluid communication between the upper chamber and lower chamber. The bioreactor also includes an auger positioned in the aperture of the septum. The vessel includes an opening in the top for receiving the auger. The auger extends from a drive housing, which is position over the opening and provides a seal around the opening. The drive housing is adjustable relative to the vessel. The position of the auger in the aperture can be adjusted by adjusting the drive housing relative to the vessel. The auger adjustment mechanism allows the auger to be accurately positioned within the aperture. The drive housing can also include a fluid to provide an additional seal around the shaft of the auger.
Remote driving with reduced bandwidth communication
NASA Technical Reports Server (NTRS)
Depiero, Frederick W.; Noell, Timothy E.; Gee, Timothy F.
1993-01-01
Oak Ridge National Laboratory has developed a real-time video transmission system for low bandwidth remote operations. The system supports both continuous transmission of video for remote driving and progressive transmission of still images. Inherent in the system design is a spatiotemporal limitation to the effects of channel errors. The average data rate of the system is 64,000 bits/s, a compression of approximately 1000:1 for the black and white National Television Standard Code video. The image quality of the transmissions is maintained at a level that supports teleoperation of a high mobility multipurpose wheeled vehicle at speeds up to 15 mph on a moguled dirt track. Video compression is achieved by using Laplacian image pyramids and a combination of classical techniques. Certain subbands of the image pyramid are transmitted by using interframe differencing with a periodic refresh to aid in bandwidth reduction. Images are also foveated to concentrate image detail in a steerable region. The system supports dynamic video quality adjustments between frame rate, image detail, and foveation rate. A typical configuration for the system used during driving has a frame rate of 4 Hz, a compression per frame of 125:1, and a resulting latency of less than 1s.
Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations
NASA Astrophysics Data System (ADS)
Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.
2014-02-01
Ultrafast charge transport in strongly biased semiconductors is at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense light pulses in the terahertz spectral range have opened fascinating vistas. Because terahertz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for terahertz amplitudes, reaching atomic field strengths. We exploit controlled (multi-)terahertz waveforms with peak fields of 72 MV cm-1 to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire terahertz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent terahertz-rate electronics.
Prevalence of drink driving and speeding in China: a time series analysis from two cities.
Li, Q; He, H; Duan, L; Wang, Y; Bishai, D M; Hyder, A A
2017-03-01
To confront the public health challenge imposed by road traffic injuries in China. A consortium of international partners designed and implemented targeted interventions, such as social media campaigns, advocacy for legislative change and law enforcement training, to reduce the percentage of drink driving and speeding in two Chinese cities, Dalian and Suzhou, from 2010 to 2014. Time series models were developed to detect changes in the prevalence of drink driving and speeding using data collected through four years of observational studies. This analysis, based on 15 rounds of data, shows that from May 2011 to November 2014, the percentage of vehicles driving above the speed limit decreased from 31.8% (95% confidence interval [CI]: 29.2-34.5) to 7.4% (95% CI: 7.0-7.9) in Dalian and from 13.5% (95% CI: 11.7-15.5) to 6.9% (95% CI: 6.4-7.4) in Suzhou. Drink driving decreased from 1.7% (95% CI: 1.1-2.4) in January 2011 to 0.5% (95% CI: 0.2-0.9) in November 2014 in Dalian and from 6.4% (95% CI: 5.4-7.4) to 0.5% (95% CI: 0.1-2.4) in Suzhou during approximately the same period. Time series models confirmed declining trends in both risk factors in both cities (P-value: 0.06 for speeding prevalence in Suzhou; all other P-values are below 0.05). Disaggregated by vehicle type, saloon cars and SUVs were more likely to exceed the posted speed limit than other types of vehicles in both cities. The speeding rate was higher where the posted speed limit is lower. In Dalian, more drivers were driving above the posted speed limit on weekdays than on weekends (11.4% vs 6.8%); Suzhou had a similar pattern, but the difference was smaller (14.0% vs 12.2%). Despite the challenge in accurately attributing the observed changes to one programme, the substantial reduction in the prevalence of the two risk factors suggests that through coordinated actions, internationally recognized best practices in road safety may be effective in improving road traffic safety in China. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Traffic safety facts 1994 : speed
DOT National Transportation Integrated Search
1995-01-01
Speeding - exceeding the posted speed limit or driving too fast for conditions - is one of the most prevalent factors contributing to traffic crashes. In 1994, speed was a factor in 30 percent of all fatal crashes, and 12,480 lives were lost in speed...
Effects of weather conditions, light conditions, and road lighting on vehicle speed.
Jägerbrand, Annika K; Sjöbergh, Jonas
2016-01-01
Light conditions are known to affect the number of vehicle accidents and fatalities but the relationship between light conditions and vehicle speed is not fully understood. This study examined whether vehicle speed on roads is higher in daylight and under road lighting than in darkness, and determined the combined effects of light conditions, posted speed limit and weather conditions on driving speed. The vehicle speed of passenger cars in different light conditions (daylight, twilight, darkness, artificial light) and different weather conditions (clear weather, rain, snow) was determined using traffic and weather data collected on an hourly basis for approximately 2 years (1 September 2012-31 May 2014) at 25 locations in Sweden (17 with road lighting and eight without). In total, the data included almost 60 million vehicle passes. The data were cleaned by removing June, July, and August, which have different traffic patterns than the rest of the year. Only data from the periods 10:00 A.M.-04:00 P.M. and 06:00 P.M.-10:00 P.M. were used, to remove traffic during rush hour and at night. Multivariate adaptive regression splines was used to evaluate the overall influence of independent variables on vehicle speed and nonparametric statistical testing was applied to test for speed differences between dark-daylight, dark-twilight, and twilight-daylight, on roads with and without road lighting. The results show that vehicle speed in general depends on several independent variables. Analyses of vehicle speed and speed differences between daylight, twilight and darkness, with and without road lighting, did not reveal any differences attributable to light conditions. However, vehicle speed decreased due to rain or snow and the decrease was higher on roads without road lighting than on roads with lighting. These results suggest that the strong association between traffic accidents and darkness or low light conditions could be explained by drivers failing to adjust their speed to the reduced visibility in dark conditions.
NASA Technical Reports Server (NTRS)
2005-01-01
An operational change made recently in the drive motor system for the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT)/9- by 15-Foot Low-Speed Wind Tunnel (9x15 LSWT) complex resulted in dramatic power savings and expanded operating range. The 8x6 SWT/9x15 LSWT complex offers a unique combination of wind tunnel conditions for both high- and low-speed testing. Prior to the work discussed in this article, the 8- by 6-ft test section offered airflows ranging from Mach 0.36 to 2.0. Subsonic testing was done in the 9-ft high, 15-ft wide test area in the return leg of the facility. The air speed in this test section can range from 0 to 175 mph (Mach 0.23). In the past, we varied the air speed by using a combination of the compressor speed and the position of the tunnel flow-control doors. When very slow speeds were required in the 9x15 LSWT, these large tunnel flow control doors might be very nearly full open, bleeding off large quantities of air, even with the drive system operating at its previous minimum speed of about 510 rpm. Power drawn during this mode of operation varied between 15 and 18 MW/hr, but clearly much of this power was not being used to provide air that would be used for testing in the test section. The air exiting these large doors represented wasted power. Early this year, the facility's tunnel drive system was run on one motor instead of three to see if lower drive speeds could be achieved that would, in turn, result in large power savings because unnecessary air would not be blown out of the flow-control doors unnecessarily. In addition, if the drive could be run slower, then slower speeds would also be possible in the 8x6 SWT test section as an added benefit. Results of the first tests performed early last year showed that in fact the drive, when operating on only one motor, actually reached a steady-state speed of only 337 rpm and drew an amazingly small 6 MW/hr of electrical power. During daytime operation of the drive, this meant that it would be possible to save as much as 10 MW/hr, or nearly $600 per hour of operation, for many of the 9x15 LSWT's testing regimes. An added benefit of this power-saving venture was that since the 8x6 SWT and 9x15 LSWT are indeed on a common loop, if the compressor is slowed down to benefit the 9x15 LSWT, then the air moving through the 8x6 SWT is also moving slower than ever before. In fact, testing has proven that the 8x6 SWT can now achieve Mach 0.25, whereas its previous lower limit was Mach 0.36. This added benefit has attracted additional customers
Edwards, Jerri D.; O’Connor, Melissa L.; Ball, Karlene K.; Wadley, Virginia G.; Vance, David E.
2016-01-01
Objectives. Multilevel models assessed the effects of cognitive speed of processing training (SPT) on older adults’ self-reported driving using intention-to-treat (ITT, randomization to training or control conditions) and dosage (treatment-received via number of training sessions) analyses across 5 years. Method. Participants randomized to SPT (n = 598) were compared with those randomized to either the no-contact control (n = 598) or memory training, which served as an active control (n = 610). Driving mobility (frequency, exposure, and space) was assessed over time. Results. No significant effects were found within the ITT analyses. However, number of SPT sessions did affect driving mobility outcomes. In the full sample (N = 1,806), higher SPT doses were associated with maintained driving frequency as compared with both control groups, but no effects were found for driving exposure or space. Subsample analyses (n = 315) revealed that persons at-risk for mobility declines (i.e., poor initial processing speed) who received additional booster SPT sessions reported greater maintenance of both driving frequency and exposure over time as compared with the no-contact and active control groups. Discussion. These results and prior research indicate that cognitive SPT transfers to prolonged driving mobility among older adults. Future research should investigate the mechanisms behind transfer effects to real-world activities, such as driving. PMID:25878053
Traffic safety facts 1998 : speeding
DOT National Transportation Integrated Search
1998-01-01
Speeding exceeding the posted speed limit or driving too fast for : The economic cost : of speeding-related : crashes is estimated : to be $27.7 billion : each year. : conditions is one of the most prevalent factors contributing to traf...
Global Versus Reactive Navigation for Joint UAV-UGV Missions in a Cluttered Environment
2012-06-01
spaces. The vehicle uses a two- wheel 5 differential drive system with a third omnidirectional caster for balance. This uncomplicated system saves... wheels , two differential drive wheels and one omni- directional caster wheel . The vehicle changes the direction of its movement by altering the speed of...Virtual Speed Versus Time..........64 Figure 23: Heading and Yaw Rate Versus Time................64 Figure 24: Individual Wheel Speeds Versus Time
2004-05-19
KENNEDY SPACE CENTER, FLA. -- Johnson Controls operator Kenny Allen makes adjustments on one of the recently acquired Contraves-Goerz Kineto Tracking Mounts (KTM). There are 10 KTMs certified for use on the Eastern Range. The KTM, which is trailer-mounted with a center console/seat and electric drive tracking mount, includes a two-camera, camera control unit that will be used during launches. The KTM is designed for remotely controlled operations and offers a combination of film, shuttered and high-speed digital video, and FLIR cameras configured with 20-inch to 150-inch focal length lenses. The KTMs are generally placed in the field and checked out the day before a launch and manned 3 hours prior to liftoff.
Minimal Traffic Model with Safe Driving Conditions
NASA Astrophysics Data System (ADS)
Terborg, Heinrich; Pérez, Luis A.
We have developed a new computational traffic model in which security aspects are fundamental. In this paper we show that this model reproduces many known empirical aspects of vehicular traffic such as the three states of traffic flow and the backward speed of the downstream front of a traffic jam (C), without the aid of adjustable parameters. The model is studied for both open and closed single lane traffic systems. Also, we were able to analytically compute the value of C as 15.37 km/h from a relation that only includes the human reaction time, the mean vehicle length and the effective friction coefficient during the braking process of a vehicle as its main components.
Can enforced behaviour change attitudes: exploring the influence of Intelligent Speed Adaptation.
Chorlton, Kathryn; Conner, Mark
2012-09-01
The Theory of Planned Behaviour model (Ajzen, 1985) was used to determine whether long-term experience with Intelligent Speed Adaption (ISA) prompts a change in speed related cognitions. The study examines data collected as part of a project examining driver behaviour with an intervening but overridable ISA system. Data was collected in four six-month field trials. The trials followed an A-B-A design (28 days driving with no ISA, 112 days driving with ISA, 28 days driving without ISA) to monitor changes in speeding behaviour as a result of the ISA system and any carry-over effect of the system. Findings suggested that following experience with the system, drivers' intention to speed significantly weakened, beyond the removal of ISA support. Drivers were also less likely to believe that exceeding the speed would 'get them to their destination more quickly' and less likely to believe that 'being in a hurry' would facilitate speeding. However, the positive change in intentions and beliefs failed to translate into behaviour. Experience with the ISA system significantly reduced the percentage of distance travelled whilst exceeding the speed limit but this effect was not evident when the ISA support was removed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Period prevalence and factors associated with road traffic crashes among young adults in Kuwait.
Aldhafeeri, Eisa; Alshammari, Farah; Jafar, Hana; Malhas, Haya; Botras, Marina; Alnasrallah, Noor; Akhtar, Saeed
2018-05-01
This cross-sectional study assessed one-year period prevalence of road traffic crashes (RTCs) and examined the factors associated with RTCs among young adults in Kuwait. During December 2016, 1500 students enrolled in 15 colleges of Kuwait University were invited to participate in the study. Students 18 years old or older and who drive by themselves were eligible. Data were collected using a structured self-administered questionnaire. One-year period prevalence of RTCs (≥1 vs. none) was computed. Multivariable log-binomial regression model was used to identify the risk factors associated with one-year period prevalence of RTCs. Of 1500 invited individuals, 1465 (97.7%) participated, of which 71.4% (1046/1465) were female, 56.4% (804/1426) were aged between 21 and 25 years, and 67.1% (980/1460) were Kuwaitis. One-year period prevalence of RTC was 38.9%. The final multivariable log-binomial regression model showed that after adjusting for the influences of other variables in the model, participants were more likely to have had at least one RTC during the past year, if they habitually sped over limit (adjusted PR = 1.19; 95% confidence interval (CI): 1.04-1.36), crossed a red light (adjusted PR = 1.33; 95% CI: 1.16-1.52), or if they have had three or more speeding tickets (adjusted PR = 1.40; 95% CI: 1.13-1.73) compared to those who reportedly had no RTC during the same period. One-year period prevalence of RTCs among university students in Kuwait, though relatively lower than the reported figures in similar populations elsewhere in the region, is yet high enough to warrant diligent attention. Habitual speeding, having had three or more speeding tickets, and the practice of crossing a red light were significantly and independently associated with at least one RTC during the past year. Targeted education and enforcement of existing traffic laws may reduce the RTCs frequency in this relatively young population. Future studies may look at impact of such interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Unni, Anirudh; Ihme, Klas; Jipp, Meike; Rieger, Jochem W.
2017-01-01
Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver’s cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back) forcing the participants to continuously update, memorize, and recall the previous ‘n’ speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS) and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE) 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04), indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1). Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload-related processing. PMID:28424602
Unni, Anirudh; Ihme, Klas; Jipp, Meike; Rieger, Jochem W
2017-01-01
Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver's cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back) forcing the participants to continuously update, memorize, and recall the previous 'n' speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS) and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE) 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04), indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1). Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload-related processing.
Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M.; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A.; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto
2013-01-01
Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple. PMID:23519345
40 CFR 86.515-78 - EPA urban dynamometer driving schedule.
Code of Federal Regulations, 2010 CFR
2010-07-01
... I(b) (b) The speed tolerance at any given time on the dynamometer driving schedule prescribed in... than the tolerances (such as may occur during gear changes) are acceptable provided they occur for less... requirements of § 86.532 the speed tolerance shall be as specified above, except that the upper and lower...
Modeling Human Steering Behavior During Path Following in Teleoperation of Unmanned Ground Vehicles.
Mirinejad, Hossein; Jayakumar, Paramsothy; Ersal, Tulga
2018-04-01
This paper presents a behavioral model representing the human steering performance in teleoperated unmanned ground vehicles (UGVs). Human steering performance in teleoperation is considerably different from the performance in regular onboard driving situations due to significant communication delays in teleoperation systems and limited information human teleoperators receive from the vehicle sensory system. Mathematical models capturing the teleoperation performance are a key to making the development and evaluation of teleoperated UGV technologies fully simulation based and thus more rapid and cost-effective. However, driver models developed for the typical onboard driving case do not readily address this need. To fill the gap, this paper adopts a cognitive model that was originally developed for a typical highway driving scenario and develops a tuning strategy that adjusts the model parameters in the absence of human data to reflect the effect of various latencies and UGV speeds on driver performance in a teleoperated path-following task. Based on data collected from a human subject test study, it is shown that the tuned model can predict both the trend of changes in driver performance for different driving conditions and the best steering performance of human subjects in all driving conditions considered. The proposed model with the tuning strategy has a satisfactory performance in predicting human steering behavior in the task of teleoperated path following of UGVs. The established model is a suited candidate to be used in place of human drivers for simulation-based studies of UGV mobility in teleoperation systems.
Kalns, Ilmars
1981-01-01
Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.
Peer influence predicts speeding prevalence among teenage drivers.
Simons-Morton, Bruce G; Ouimet, Marie Claude; Chen, Rusan; Klauer, Sheila G; Lee, Suzanne E; Wang, Jing; Dingus, Thomas A
2012-12-01
Preventing speed-related crashes could reduce costs and improve efficiency in the transportation industry. This research examined the psychosocial and personality predictors of observed speeding among young drivers. Survey and driving data were collected from 42 newly-licensed teenage drivers during the first 18months of licensure. Speeding (i.e., driving 10mph over the speed limit; about 16km/h) was assessed by comparing speed data collected with recording systems installed in participants' vehicles with posted speed limits. Speeding was correlated with elevated g-force event rates (r=0.335, pb0.05), increased over time, and predicted by day vs. night trips, higher sensation seeking, substance use, tolerance of deviance, susceptibility to peer pressure, and number of risky friends. Perceived risk was a significant mediator of the association between speeding and risky friends. The findings support the contention that social norms may influence teenage speeding behavior and this relationship may operate through perceived risk. Copyright © 2012 National Safety Council and Elsevier Ltd. All rights reserved.
Hoffenson, Steven; Frischknecht, Bart D; Papalambros, Panos Y
2013-01-01
Active safety features and adjustments to the New Car Assessment Program (NCAP) consumer-information crash tests have the potential to decrease the number of serious traffic injuries each year, according to previous studies. However, literature suggests that risk reductions, particularly in the automotive market, are often accompanied by adjusted consumer risk tolerance, and so these potential safety benefits may not be fully realized due to changes in consumer purchasing or driving behavior. This article approaches safety in the new vehicle market, particularly in the Sport Utility Vehicle and Crossover Utility Vehicle segments, from a market systems perspective. Crash statistics and simulations are used to predict the effects of design and policy changes on occupant crash safety, and discrete choice experiments are conducted to estimate the values consumers place on vehicle attributes. These models are combined in a market simulation that forecasts how consumers respond to the available vehicle alternatives, resulting in predictions of the market share of each vehicle and how the change in fleet mixture influences societal outcomes including injuries, fuel consumption, and firm profits. The model is tested for a scenario where active safety features are implemented across the new vehicle fleet and a scenario where the U.S. frontal NCAP test speed is modified. While results exhibit evidence of consumer risk adjustment, they support adding active safety features and lowering the NCAP frontal test speed, as these changes are predicted to improve the welfare of both firms and society. Copyright © 2012 Elsevier Ltd. All rights reserved.
Bakhtiyari, Mahmood; Mehmandar, Mohammad Reza; Mirbagheri, Babak; Hariri, Gholam Reza; Delpisheh, Ali; Soori, Hamid
2014-01-01
Risk factors of human-related traffic crashes are the most important and preventable challenges for community health due to their noteworthy burden in developing countries in particular. The present study aims to investigate the role of human risk factors of road traffic crashes in Iran. Through a cross-sectional study using the COM 114 data collection forms, the police records of almost 600,000 crashes occurred in 2010 are investigated. The binary logistic regression and proportional odds regression models are used. The odds ratio for each risk factor is calculated. These models are adjusted for known confounding factors including age, sex and driving time. The traffic crash reports of 537,688 men (90.8%) and 54,480 women (9.2%) are analysed. The mean age is 34.1 ± 14 years. Not maintaining eyes on the road (53.7%) and losing control of the vehicle (21.4%) are the main causes of drivers' deaths in traffic crashes within cities. Not maintaining eyes on the road is also the most frequent human risk factor for road traffic crashes out of cities. Sudden lane excursion (OR = 9.9, 95% CI: 8.2-11.9) and seat belt non-compliance (OR = 8.7, CI: 6.7-10.1), exceeding authorised speed (OR = 17.9, CI: 12.7-25.1) and exceeding safe speed (OR = 9.7, CI: 7.2-13.2) are the most significant human risk factors for traffic crashes in Iran. The high mortality rate of 39 people for every 100,000 population emphasises on the importance of traffic crashes in Iran. Considering the important role of human risk factors in traffic crashes, struggling efforts are required to control dangerous driving behaviours such as exceeding speed, illegal overtaking and not maintaining eyes on the road.
Traffic safety facts 1995 : speeding
DOT National Transportation Integrated Search
1996-01-01
Speeding - exceeding the posted speed limit or driving too fast for conditions - is one of the most prevalent factors contributing to traffic crashes. In 1995, speeding was a contributing factor in 31 percent of all fatal crashes, and 13,256 lives we...
Traffic safety facts 1996 : speeding
DOT National Transportation Integrated Search
1997-01-01
Speeding - exceeding the posted speed limit or driving too fast for conditions - is one of the most prevalent factors contributing to traffic crashes. In 1996, speeding was a contributing factor in 30 percent of all fatal crashes, and 12,998 lives we...
Traffic safety facts 1999 : speeding
DOT National Transportation Integrated Search
2000-01-01
Speeding -- exceeding the posted speed limit or driving too fast for conditions -- is one of the most prevalent factors contributing to traffic crashes. In 1999, speeding was a contributing factor in 30% of all fatal crashes, and 12,628 lives were lo...
A novel dual motor drive system for three wheel electric vehicles
NASA Astrophysics Data System (ADS)
Panmuang, Piyapat; Thongsan, Taweesak; Suwapaet, Nuchida; Laohavanich, Juckamass; Photong, Chonlatee
2018-03-01
This paper presents a novel dual motor drive system used for three wheel electric vehicles that have one free wheel at the front and two wheels with a drive system at the end of the vehicles. A novel dual motor drive system consists of two identical DC motors that are independently controlled by its speed-torque controller. Under light load conditions, only one of the DC motors will operate around it rated whilst under hard load conditions both of the DC motors will operate. With this drive system, the motors will operate only at its high performance at rated or else no operate to retain longer lifetime. The simulated results for the Skylab three wheel electric vehicle prototype with 8kW at full load (high torque, low speed) and around 4kW at light/normal operating loads (regular speed-torque) showed that the proposed system provides better dynamic responses with faster overshoot current/voltage recovery time, has lower investment costs, has longer lifetime of the motors and allows the motors to always operate at their high performance and thus achieve more cost effective system compared to a single motor drive system with 8kW DC motors.
Modelling and control algorithms of the cross conveyors line with multiengine variable speed drives
NASA Astrophysics Data System (ADS)
Cheremushkina, M. S.; Baburin, S. V.
2017-02-01
The paper deals with the actual problem of developing the control algorithm that meets the technical requirements of the mine belt conveyors, and enables energy and resource savings taking into account a random sort of traffic. The most effective method of solution of these tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. The authors designed the mathematical model of the system ‘variable speed multiengine drive - conveyor - control system of conveyors’ that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows one to reduce the dynamic overload in the belt to 15-20%.
Ross, Lesley A; Edwards, Jerri D; O'Connor, Melissa L; Ball, Karlene K; Wadley, Virginia G; Vance, David E
2016-01-01
Multilevel models assessed the effects of cognitive speed of processing training (SPT) on older adults' self-reported driving using intention-to-treat (ITT, randomization to training or control conditions) and dosage (treatment-received via number of training sessions) analyses across 5 years. Participants randomized to SPT (n = 598) were compared with those randomized to either the no-contact control (n = 598) or memory training, which served as an active control (n = 610). Driving mobility (frequency, exposure, and space) was assessed over time. No significant effects were found within the ITT analyses. However, number of SPT sessions did affect driving mobility outcomes. In the full sample (N = 1,806), higher SPT doses were associated with maintained driving frequency as compared with both control groups, but no effects were found for driving exposure or space. Subsample analyses (n = 315) revealed that persons at-risk for mobility declines (i.e., poor initial processing speed) who received additional booster SPT sessions reported greater maintenance of both driving frequency and exposure over time as compared with the no-contact and active control groups. These results and prior research indicate that cognitive SPT transfers to prolonged driving mobility among older adults. Future research should investigate the mechanisms behind transfer effects to real-world activities, such as driving. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Examination of drivers' cell phone use behavior at intersections by using naturalistic driving data.
Xiong, Huimin; Bao, Shan; Sayer, James; Kato, Kazuma
2015-09-01
Many driving simulator studies have shown that cell phone use while driving greatly degraded driving performance. In terms of safety analysis, many factors including drivers, vehicles, and driving situations need to be considered. Controlled or simulated studies cannot always account for the full effects of these factors, especially situational factors such as road condition, traffic density, and weather and lighting conditions. Naturalistic driving by its nature provides a natural and realistic way to examine drivers' behaviors and associated factors for cell phone use while driving. In this study, driving speed while using a cell phone (conversation or visual/manual tasks) was compared to two baselines (baseline 1: normal driving condition, which only excludes driving while using a cell phone, baseline 2: driving-only condition, which excludes all types of secondary tasks) when traversing an intersection. The outcomes showed that drivers drove slower when using a cell for both conversation and visual/manual (VM) tasks compared to baseline conditions. With regard to cell phone conversations, drivers were more likely to drive faster during the day time compared to night time driving and drive slower under moderate traffic compared to under sparse traffic situations. With regard to VM tasks, there was a significant interaction between traffic and cell phone use conditions. The maximum speed with VM tasks was significantly lower than that with baseline conditions under sparse traffic conditions. In contrast, the maximum speed with VM tasks was slightly higher than that with baseline driving under dense traffic situations. This suggests that drivers might self-regulate their behavior based on the driving situations and demand for secondary tasks, which could provide insights on driver distraction guidelines. With the rapid development of in-vehicle technology, the findings in this research could lead the improvement of human-machine interface (HMI) design as well. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
Effects of Flexibility and Balance on Driving Distance and Club Head Speed in Collegiate Golfers.
Marshall, Kelsey J; Llewellyn, Tamra L
2017-01-01
Good balance, flexibility, and strength are all required to maintain a steady stance during the kinematic chain to produce successful golf shots. When the body can produce more power, more club head speed is generated. This formation of power translates into greater distance and accuracy. Athletes today are seeking exercise programs to enhance these qualities of their golf swing. The purpose of this study is to investigate the correlations between flexibility and balance with club head speed and driving distance in the golf swing of male and female collegiate golfers. Five male and five female collegiate golfers participated in the study. They completed multiple range of motion tests, the Balance Error System Test, and multiple flexibility tests. Subjects then participated in a short hitting session. Ten shots were hit with the subject's own driver. The Optishot simulator measured distance and club head speed generated. There was a significant negative correlation between the BESS test score and average distance for male subjects (r=-0.850, p=0.034). There were also a few trends between the balance, flexibility, and club head speed findings of both male and female subjects. This data shows there is a significant relationship between better balance and driving the ball farther. Other trends show better balance and flexibility will result in greater driving distance and club head speed. Balance and flexibility exercises should be incorporated into a golfer's practice or workout regiment.
Self-monitoring of driving speed.
Etzioni, Shelly; Erev, Ido; Ishaq, Robert; Elias, Wafa; Shiftan, Yoram
2017-09-01
In-vehicle data recorders (IVDR) have been found to facilitate safe driving and are highly valuable in accident analysis. Nevertheless, it is not easy to convince drivers to use them. Part of the difficulty is related to the "Big Brother" concern: installing IVDR impairs the drivers' privacy. The "Big Brother" concern can be mitigated by adding a turn-off switch to the IVDR. However, this addition comes at the expense of increasing speed variability between drivers, which is known to impair safety. The current experimental study examines the significance of this negative effect of a turn-off switch under two experimental settings representing different incentive structures: small and large fines for speeding. 199 students were asked to participate in a computerized speeding dilemma task, where they could control the speed of their "car" using "brake" and "speed" buttons, corresponding to automatic car foot pedals. The participants in two experimental conditions had IVDR installed in their "cars", and were told that they could turn it off at any time. Driving with active IVDR implied some probability of "fines" for speeding, and the two experimental groups differed with respect to the fine's magnitude, small or large. The results indicate that the option to use IVDR reduced speeding and speed variance. In addition, the results indicate that the reduction of speed variability was maximal in the small fine group. These results suggest that using IVDR with gentle fines and with a turn-off option maintains the positive effect of IVDR, addresses the "Big Brother" concern, and does not increase speed variance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Batu Pahat Driving Cycle for Light Duty Gasoline Engine
NASA Astrophysics Data System (ADS)
Zainul Abidin, Zainul Ameerul Ikhsan B.; Faisal Hushim, Mohd; Ahmad, Osman Bin
2017-08-01
Driving cycle is a series of data points that represents the vehicle speed versus time. Transient driving cycles involve many changes such as frequent speed changes during typical on-road driving condition [2]. Model driving cycles involve protracted periods at constant speeds. The Batu Pahat Driving Cycle (BPDC) developed to represent the driving pattern of people in a district of Batu Pahat. Based on this driving cycle, it will be a reference to other researchers to study about the gases emission release and fuel consumption by the vehicle on the dynamometer or automotive simulation based on this driving cycle. Existing driving cycles used such as the New European Driving Cycle (NEDC), the Federal Test Procedure (FTP-72/75, and Japan 10-15 Mode Cycle is not appropriate for Batu Pahat district because of different road conditions, driving habits and environmental of developed driving cycle countries are not same [2][14]. Batu Pahat drive cycle was developed for low-capacity gasoline engine under 150 cc and operating on urban roads, rural roads and road around Universiti Tun Hussein Onn. The importance of these driving cycle as the reference for other research to measure and do automotive simulation regarding fuel consumption and gas emission release from the motorcycle for these three type of driving cycle area. Another use for driving cycles is in vehicle simulations [3]. More specifically, they are used in propulsion system simulations to predict the performance of internal combustion engines, transmissions, electric drive systems, batteries, fuel cell systems, and similar components [18]. Data collection methods used in this study is the use of Global Positioning System (GPS). The results obtained are not similar to each other due to differences in congestion on data taken. From the driving cycle graph obtained, such as the average velocity, maximum velocity, the duration and Positive Acceleration Kinetic Energy (PKE) can be determined. In addition, the best driving cycle sample can be determined from the sum of error calculated. The least sum of error means the best driving cycle
Alcohol consumption for simulated driving performance: A systematic review.
Rezaee-Zavareh, Mohammad Saeid; Salamati, Payman; Ramezani-Binabaj, Mahdi; Saeidnejad, Mina; Rousta, Mansoureh; Shokraneh, Farhad; Rahimi-Movaghar, Vafa
2017-06-01
Alcohol consumption can lead to risky driving and increase the frequency of traffic accidents, injuries and mortalities. The main purpose of our study was to compare simulated driving performance between two groups of drivers, one consumed alcohol and the other not consumed, using a systematic review. In this systematic review, electronic resources and databases including Medline via Ovid SP, EMBASE via Ovid SP, PsycINFO via Ovid SP, PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature (CINHAL) via EBSCOhost were comprehensively and systematically searched. The randomized controlled clinical trials that compared simulated driving performance between two groups of drivers, one consumed alcohol and the other not consumed, were included. Lane position standard deviation (LPSD), mean of lane position deviation (MLPD), speed, mean of speed deviation (MSD), standard deviation of speed deviation (SDSD), number of accidents (NA) and line crossing (LC) were considered as the main parameters evaluating outcomes. After title and abstract screening, the articles were enrolled for data extraction and they were evaluated for risk of biases. Thirteen papers were included in our qualitative synthesis. All included papers were classified as high risk of biases. Alcohol consumption mostly deteriorated the following performance outcomes in descending order: SDSD, LPSD, speed, MLPD, LC and NA. Our systematic review had troublesome heterogeneity. Alcohol consumption may decrease simulated driving performance in alcohol consumed people compared with non-alcohol consumed people via changes in SDSD, LPSD, speed, MLPD, LC and NA. More well-designed randomized controlled clinical trials are recommended. Copyright © 2017. Production and hosting by Elsevier B.V.
REAL-TIME MODEL-BASED ELECTRICAL POWERED WHEELCHAIR CONTROL
Wang, Hongwu; Salatin, Benjamin; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.
2009-01-01
The purpose of this study was to evaluate the effects of three different control methods on driving speed variation and wheel-slip of an electric-powered wheelchair (EPW). A kinematic model as well as 3-D dynamic model was developed to control the velocity and traction of the wheelchair. A smart wheelchair platform was designed and built with a computerized controller and encoders to record wheel speeds and to detect the slip. A model based, a proportional-integral-derivative (PID) and an open-loop controller were applied with the EPW driving on four different surfaces at three specified speeds. The speed errors, variation, rise time, settling time and slip coefficient were calculated and compared for a speed step-response input. Experimental results showed that model based control performed best on all surfaces across the speeds. PMID:19733494
Ramesh, Tejavathu; Kumar Panda, Anup; Shiva Kumar, S
2015-07-01
In this research study, a model reference adaptive system (MRAS) speed estimator for speed sensorless direct torque and flux control (DTFC) of an induction motor drive (IMD) using two adaptation mechanism schemes are proposed to replace the conventional proportional integral controller (PIC). The first adaptation mechanism scheme is based on Type-1 fuzzy logic controller (T1FLC), which is used to achieve high performance sensorless drive in both transient as well as steady state conditions. However, the Type-1 fuzzy sets are certain and unable to work effectively when higher degree of uncertainties presents in the system which can be caused by sudden change in speed or different load disturbances, process noise etc. Therefore, a new Type-2 fuzzy logic controller (T2FLC) based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties and improves the performance and also robust to various load torque and sudden change in speed conditions, respectively. The detailed performances of various adaptation mechanism schemes are carried out in a MATLAB/Simulink environment with a speed sensor and speed sensorless modes of operation when an IMD is operating under different operating conditions, such as, no-load, load and sudden change in speed, respectively. To validate the different control approaches, the system also implemented on real-time system and adequate results are reported for its validation. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Are Students Aware of the Speed Limits on a University Campus?
ERIC Educational Resources Information Center
Brooks, Johnell; Raines, Stephanie; Klein, Nathan; Crisler, Matt; Wills, Rebekkah; Mossey, Mary; Koon, Beatrice; McKibben, Eric; Ogle, Jennifer; Robinson, Geary
2010-01-01
Driving speed is an important traffic safety issue. The lack of adherence to posted speed limits is a safety concern, especially on university campuses where the populations of drivers are at increased risk for crashes involving speeding due to their young age. Thus, driver speed and knowledge of speed limits on university campuses is an important…
Overt vs. covert speed cameras in combination with delayed vs. immediate feedback to the offender.
Marciano, Hadas; Setter, Pe'erly; Norman, Joel
2015-06-01
Speeding is a major problem in road safety because it increases both the probability of accidents and the severity of injuries if an accident occurs. Speed cameras are one of the most common speed enforcement tools. Most of the speed cameras around the world are overt, but there is evidence that this can cause a "kangaroo effect" in driving patterns. One suggested alternative to prevent this kangaroo effect is the use of covert cameras. Another issue relevant to the effect of enforcement countermeasures on speeding is the timing of the fine. There is general agreement on the importance of the immediacy of the punishment, however, in the context of speed limit enforcement, implementing such immediate punishment is difficult. An immediate feedback that mediates the delay between the speed violation and getting a ticket is one possible solution. This study examines combinations of concealment and the timing of the fine in operating speed cameras in order to evaluate the most effective one in terms of enforcing speed limits. Using a driving simulator, the driving performance of the following four experimental groups was tested: (1) overt cameras with delayed feedback, (2) overt cameras with immediate feedback, (3) covert cameras with delayed feedback, and (4) covert cameras with immediate feedback. Each of the 58 participants drove in the same scenario on three different days. The results showed that both median speed and speed variance were higher with overt than with covert cameras. Moreover, implementing a covert camera system along with immediate feedback was more conducive to drivers maintaining steady speeds at the permitted levels from the very beginning. Finally, both 'overt cameras' groups exhibit a kangaroo effect throughout the entire experiment. It can be concluded that an implementation strategy consisting of covert speed cameras combined with immediate feedback to the offender is potentially an optimal way to motivate drivers to maintain speeds at the speed limit. Copyright © 2015 Elsevier Ltd. All rights reserved.
Expressing Anger Is More Dangerous than Feeling Angry when Driving
Qu, Weina; Dai, Mengnuo; Zhao, Wenguo; Zhang, Kan
2016-01-01
Anger is an emotion that drivers often feel and express while driving, and it is believed by researchers to be an important cause of dangerous driving behavior. In this study, the relationships between driving trait anger, driving anger expression, and dangerous driving behaviors were analyzed. The Driving Anger Scale (DAS) was used to measure driving trait anger, whereas the Driving Anger Expression (DAX) Inventory was used to measure expressions of driving anger. A sample of 38 drivers completed the DAS, DAX, and a driving simulation session on a simulator where their driving behaviors were recorded. Correlation analysis showed that the higher scores on the DAS were associated with longer durations of speeding in the simulator. The more participants expressed their anger in verbal and physical ways, the more likely they were to crash the virtual vehicle during the simulation. Regression analyses illustrated the same pattern. The findings suggest that, although trait anger is related to speeding, the passive expression of anger is the real factor underling traffic accidents. This study extends findings about the predictive effects of self-report scales of driving behaviors to behaviors recorded on a simulator. Thus, if in traffic safety propaganda, guiding drivers to use positive ways to cope with driving anger is recommended by our findings. PMID:27258144
Expressing Anger Is More Dangerous than Feeling Angry when Driving.
Qu, Weina; Dai, Mengnuo; Zhao, Wenguo; Zhang, Kan; Ge, Yan
2016-01-01
Anger is an emotion that drivers often feel and express while driving, and it is believed by researchers to be an important cause of dangerous driving behavior. In this study, the relationships between driving trait anger, driving anger expression, and dangerous driving behaviors were analyzed. The Driving Anger Scale (DAS) was used to measure driving trait anger, whereas the Driving Anger Expression (DAX) Inventory was used to measure expressions of driving anger. A sample of 38 drivers completed the DAS, DAX, and a driving simulation session on a simulator where their driving behaviors were recorded. Correlation analysis showed that the higher scores on the DAS were associated with longer durations of speeding in the simulator. The more participants expressed their anger in verbal and physical ways, the more likely they were to crash the virtual vehicle during the simulation. Regression analyses illustrated the same pattern. The findings suggest that, although trait anger is related to speeding, the passive expression of anger is the real factor underling traffic accidents. This study extends findings about the predictive effects of self-report scales of driving behaviors to behaviors recorded on a simulator. Thus, if in traffic safety propaganda, guiding drivers to use positive ways to cope with driving anger is recommended by our findings.
Adaptive wall technology for minimization of wall interferences in transonic wind tunnels
NASA Technical Reports Server (NTRS)
Wolf, Stephen W. D.
1988-01-01
Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned.
Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving
NASA Astrophysics Data System (ADS)
Feng, Zhi-Bo; Lu, Xiao-Jing; Li, M.; Yan, Run-Ying; Zhou, Yun-Qing
2017-12-01
We propose a theoretical scheme to speed up adiabatic population transfer in a Josephson artificial qutrit by transitionless quantum driving. At a magic working point, an effective three-level subsystem can be chosen to constitute our qutrit. With Stokes and pump driving, adiabatic population transfer can be achieved in the qutrit by means of stimulated Raman adiabatic passage. Assisted by a counter-diabatic driving, the adiabatic population transfer can be sped up drastically with accessible parameters. Moreover, the accelerated operation is flexibly reversible and highly robust against decoherence effects. Thanks to these distinctive advantages, the present protocol could offer a promising avenue for optimal coherent operations in Josephson quantum circuits.
Social and Behavioral Characteristics of Young Adult Drink/Drivers Adjusted for Level of Alcohol Use
Bingham, C. Raymond; Elliott, Michael R.; Shope, Jean T.
2007-01-01
Background Alcohol consumption and drink/driving are positively correlated and many predictors of alcohol use also predict drink/driving. Past research has not fully distinguished the contributions of personal risk factors from the level of alcohol use in the prediction of drink/driving. As a result, the extent to which predictors are specific to drink/driving, versus due to a mutual association to alcohol use, is unclear. Methods This study examined the unique and shared risk factors for drink/driving and alcohol use, and examined the attributable risk (AR) associated with predictors of drink/driving while adjusting for alcohol use. Study data were from a telephone survey of 3,480 Michigan-licensed young adults who were drinkers. Four groups of drink/drivers were formed based on the prior 12-month maximum severity of drink/driving: (1) never drink/driving; (2) driving at least once within an hour of 1 or 2 drinks; (3) driving within an hour of 3 or more drinks or while feeling the effects of alcohol; and (4) drinking while driving. Results Lower perceived risk of drink/driving, greater social support for drinking and drink/driving, greater aggression and delinquency, more cigarette smoking, and more risky driving behaviors uniquely predicted drink/driving severity in models adjusted for alcohol use. The largest ARs were associated with social support for drinking and drink/driving and perceived risk of drink/driving. Conclusions These results confirm that alcohol use and drink/driving share risk factors, but also indicate that part of the variation in these factors is specific to drink/driving. Implications for interventions to reduce drink/driving are discussed. PMID:17374045
Idling speed control system of an internal combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, M.; Ishii, M.; Kako, H.
1986-09-16
This patent describes an idling speed control system of an internal combustion engine comprising: a valve device which controls the amount of intake air for the engine; an actuator which includes an electric motor for variably controlling the opening of the value device; rotation speed detector means for detecting the rotation speed of the engine; idling condition detector means for detecting the idling condition of the engine; feedback control means responsive to the detected output of the idling condition detector means for generating feedback control pulses to intermittently drive the electric motor so that the detected rotation speed of themore » engine under the idling condition may converge into a target idling rotation speed; and control means responsive to the output of detector means that detects an abnormally low rotation speed of the engine detected by the rotation speed detector means for generating control pulses that do not overlap the feedback control pulses to drive the electric motor in a predetermined direction.« less
Ding, Han; Zhao, Xiaohua; Rong, Jian; Ma, Jianming
2015-02-01
The objective of this paper is to test the effectiveness and adaptability of speed reduction markings (SRMs) in downhill sections on urban roads with distinct roadway grades. Empirical data including vehicle speed and acceleration were collected in a driving simulator. Subjective questionnaires were conducted, and two indexes - the relative speed difference and standard deviation of acceleration - were developed to evaluate the effectiveness and adaptability of SRMs. Meanwhile, the effectiveness of driving simulator related to different road alignments and types of SRMs has been validated through a field test. Results of subjective questionnaires showed that the majority of subjects had no feelings of nervousness, but they were affected by SRMs while driving through downhill sections in all four scenarios (i.e., downhill sections with vertical grades of 3, 2, 1.5 and 1%). In terms of vehicle speed and acceleration, the results of the analysis of variance (ANOVA) and the contrast analysis (S-N-K method) indicated that SRMs were significantly effective when roadway grades of downgrade sections were 1.5, 2 and 3%, while transverse speed reduction markings (TSRMs) had significantly worse adaptability (P<0.05). Therefore, this research recommends that TSRMs could be placed in downhill sections with roadway grades of 1.5 or 2%; longitudinal speed reduction markings (LSRMs) could be placed in downhill sections with a roadway grade of 3%. Whether SRMs are placed in downhill sections with a roadway grade of 1% would depend on other factors such as financial issues and crash records, which are not considered in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluating driving performance of outpatients with Alzheimer disease.
Cox, D J; Quillian, W C; Thorndike, F P; Kovatchev, B P; Hanna, G
1998-01-01
Alzheimer disease (AD) is a progressive disease, with multiple physiologic, psychologic, and social implications. A critical issue in its management is when to recommend restrictions on autonomous functioning, such as driving an automobile. This study evaluates driving performance of patients with AD and its relation to patient scores on the Mini-Mental State Exam (MMSE). This study compared 29 outpatients with probable AD with 21 age-matched control participants on an interactive driving simulator to determine how the two groups differed and how such differences related to mental status. Patients with AD (1) were less likely to comprehend and operate the simulator cognitively, (2) drove off the road more often, (3) spent more time driving considerably slower than the posted speed limit, (4) spent less time driving faster than the speed limit, (5) applied less brake pressure in stop zones, (6) spent more time negotiating left turns, and (7) drove more poorly overall. There were no observed differences between AD patients and the control group in terms of crossing the midline and driving speed variability. Among the AD patients, those who could not drive the simulator because of confusion and disorientation (n = 10) had lower MMSE scores and drove fewer miles annually. Those AD patients who had stopped driving also scored lower on their MMSE but did not perform more poorly on the driving simulator. Factor analysis revealed five driving factors associated with AD, explaining 93 percent of the variance. These five factors correctly classified 27 (85 percent) of 32 AD patients compared with the control group. Of the 15 percent who were improperly classified, there were three false positives (control participants misclassified as AD patients) and two false negatives (AD patients misclassified as control participants). The computed total driving score correlated significantly with MMSE scores (r = -.403, P = 0.011). Driving simulators can provide an objective means of assessing driving safety.
An implicit non-self-report measure of attitudes to speeding: development and validation.
Hatfield, Julie; Fernandes, Ralston; Faunce, Gavin; Job, R F Soames
2008-03-01
Speeding is a major contributor to road trauma and attitudes toward speeding are hypothesised to be a key determinant of the behaviour. Attitudinal research is limited by reliance on self-report measures and the attendant possibility of reporting biases. The Implicit Association Test (IAT) aims to measure attitudes without reliance on self-report, by assessing the association between a target-concept and an evaluation, in terms of reaction time for compatible versus non-compatible pairings. The present research aimed to develop and evaluate an IAT to measure attitudes to speeding. Forty-five licensed drivers completed the speed-related IAT, and drove a driving simulator. Participants also completed a questionnaire that assessed self-reported attitudes to speeding, and several variables theoretically related to attitudes, including speeding behaviour. Observed IAT results suggested that attitudes toward speeding are negative, and were generally consistent with results derived from the simulated driving and self-reported behaviours, beliefs, and attitudes. Thus, the speed-related IAT appears to be a valid measure of attitudes toward speeding, which might be used to measure attitudes in road safety research without reliance on self-report.
Self-reported and observed risky driving behaviors among frequent and infrequent cell phone users.
Zhao, Nan; Reimer, Bryan; Mehler, Bruce; D'Ambrosio, Lisa A; Coughlin, Joseph F
2013-12-01
The apparently higher crash risk among individuals who use cell phones while driving may be due both to the direct interference of cell phone use with the driving task and tendencies to engage in risky driving behaviors independent of cell phone use. Measurements of actual highway driving performance, self-reported aberrant driving behaviors as measured by the Manchester Driver Behavior Questionnaire (DBQ), and attitudes toward speeding, passing behaviors and relative concern about being involved in a crash were assessed. Individuals who reported frequently using cell phones while driving were found to drive faster, change lanes more frequently, spend more time in the left lane, and engage in more instances of hard braking and high acceleration events. They also scored higher in self-reported driving violations on the DBQ and reported more positive attitudes toward speeding and passing than drivers who did not report using a cell phone regularly while driving. These results indicate that a greater reported frequency of cell phone use while driving is associated with a broader pattern of behaviors that are likely to increase the overall risk of crash involvement. Copyright © 2012 Elsevier Ltd. All rights reserved.
Anstey, Kaarin J; Horswill, Mark S; Wood, Joanne M; Hatherly, Christopher
2012-03-01
The current study evaluated part of the Multifactorial Model of Driving Safety to elucidate the relative importance of cognitive function and a limited range of standard measures of visual function in relation to the Capacity to Drive Safely. Capacity to Drive Safely was operationalized using three validated screening measures for older drivers. These included an adaptation of the well validated Useful Field of View (UFOV) and two newer measures, namely a Hazard Perception Test (HPT), and a Hazard Change Detection Task (HCDT). Community dwelling drivers (n=297) aged 65-96 were assessed using a battery of measures of cognitive and visual function. Factor analysis of these predictor variables yielded factors including Executive/Speed, Vision (measured by visual acuity and contrast sensitivity), Spatial, Visual Closure, and Working Memory. Cognitive and Vision factors explained 83-95% of age-related variance in the Capacity to Drive Safely. Spatial and Working Memory were associated with UFOV, HPT and HCDT, Executive/Speed was associated with UFOV and HCDT and Vision was associated with HPT. The Capacity to Drive Safely declines with chronological age, and this decline is associated with age-related declines in several higher order cognitive abilities involving manipulation and storage of visuospatial information under speeded conditions. There are also age-independent effects of cognitive function and vision that determine driving safety. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Yingxiang; Chen, Weishan; Liu, Junkao; Shi, Shengjun
2013-04-01
To make full use of the vibrational energy of a longitudinal transducer, a rectangle-type linear ultrasonic motor with four driving feet is proposed in this paper. This new motor consists of four longitudinal vibration transducers which are arranged in a rectangle and form an enclosed construction. Lead zirconate titanate ceramics are embedded into the middle of the transducer and fastened by a wedge-caulking mechanism. Each transducer includes an exponentially shaped horn located on each end. The horns of the vertical transducers intersect at the base of the horizontal transducers' horns; the tip ends of the horizontal transducers' horns are used as the driving feet. Longitudinal vibrations are superimposed in the motor and generate elliptical movements at the tip ends of the horns. The working principle of the proposed motor is analyzed. The resonance frequencies of two working modes are tuned to be close to each other by adjusting the structural parameters. Transient analysis is developed to gain the vibration characteristics of the motor. A prototype motor is fabricated and measured. The vibration test results verify the feasibility of the proposed design. Typical output of the prototype is a no-load speed of 928 mm/s and maximum thrust force of 60 N at a voltage of 200 Vrms.
NASA Technical Reports Server (NTRS)
Robuck, Mark; Wilkerson, Joseph; Snyder, Christopher A.; Zhang, Yiyi; Maciolek, Bob
2013-01-01
In a series of study tasks conducted as a part of NASA's Fundamental Aeronautics Program, Rotary Wing Project, Boeing and Rolls-Royce explored propulsion, drive, and rotor system options for the NASA Large Civil Tilt Rotor (LCTR2) concept vehicle. The original objective of this study was to identify engine and drive system configurations to reduce rotor tip speed during cruise conditions and quantify the associated benefits. Previous NASA studies concluded that reducing rotor speed (from 650 fps hover tip speed) during cruise would reduce vehicle gross weight and fuel burn. Initially, rotor cruise speed ratios of 54% of the hover tip speed were of most interest during operation at cruise air speed of 310 ktas. Interim results were previously reported1 for cruise tip speed ratios of 100%, 77%, and 54% of the hover tip speed using engine and/or gearbox features to achieve the reduction. Technology levels from commercial off-the-shelf (COTS), through entry-in-service (EIS) dates of 2025 and 2035 were considered to assess the benefits of advanced technology on vehicle gross weight and fuel burn. This technical paper presents the final study results in terms of vehicle sizing and fuel burn as well as Operational and Support (O&S) costs. New vehicle sizing at rotor tip speed reduced to 65% of hover is presented for engine performance with an EIS 2035 fixed geometry variable speed power turbine. LCTR2 is also evaluated for missions range cases of 400, 600, 800, 1000, and 1200 nautical miles and cruise air speeds of 310, 350 and 375 ktas.
The Effects of Leg Kick on Swimming Speed and Arm-Stroke Efficiency in the Front Crawl.
Silveira, Ricardo Peterson; de Souza Castro, Flávio Antônio; Figueiredo, Pedro; Vilas-Boas, João Paulo; Zamparo, Paola
2017-07-01
To analyze the effects of swimming pace on the relative contribution of leg kick to swimming speed and to compare arm-stroke efficiency (ηF) assessed when swimming with the arms only (SAO) and while swimming front crawl (FCS) using individual and fixed adjustments to arm-stroke and leg-kick contribution to forward speed. Twenty-nine master swimmers (21 men, 8 women) performed SAO and FCS at 6 self-selected speeds from very slow to maximal. The average swimming speed (v), stroke frequency (SF), and stroke length (SL) were assessed in the central 10 m of the swimming pool. Then, a 2nd-order polynomial regression was used to obtain values of v at paired SF. The percentage difference in v between FCS and SAO, for each paired SF, was used to calculate the relative contributions of the arm stroke (AC) and leg kick (LC) to FCS. Then ηF was calculated using the indirect "paddle-wheel" approach in 3 different ways: using general, individual, and no adjustments to AC. The LC increased with SF (and speed) from -1% ± 4% to 11% ± 1% (P < .05). At the lower FCS speeds, ηF calculated using general adjustments was lower than ηF calculated using individual adjustments (P < .05), but differences disappear at the fastest speeds. Finally, ηF calculated using individual adjustments to LC in the FCS condition did not differ with ηF assessed in the SAO condition at all the investigated speeds. The relative contributions of the arm stroke and leg kick should be individually estimated to reduce errors when calculating arm-stroke efficiency at different speeds and in different swimmers.
Evaluating the safety impact of adaptive cruise control in traffic oscillations on freeways.
Li, Ye; Li, Zhibin; Wang, Hao; Wang, Wei; Xing, Lu
2017-07-01
Adaptive cruise control (ACC) has been considered one of the critical components of automated driving. ACC adjusts vehicle speeds automatically by measuring the status of the ego-vehicle and leading vehicle. Current commercial ACCs are designed to be comfortable and convenient driving systems. Little attention is paid to the safety impacts of ACC, especially in traffic oscillations when crash risks are the highest. The primary objective of this study was to evaluate the impacts of ACC parameter settings on rear-end collisions on freeways. First, the occurrence of a rear-end collision in a stop-and-go wave was analyzed. A car-following model in an integrated ACC was developed for a simulation analysis. The time-to-collision based factors were calculated as surrogate safety measures of the collision risk. We also evaluated different market penetration rates considering that the application of ACC will be a gradual process. The results showed that the safety impacts of ACC were largely affected by the parameters. Smaller time delays and larger time gaps improved safety performance, but inappropriate parameter settings increased the collision risks and caused traffic disturbances. A higher reduction of the collision risk was achieved as the ACC vehicle penetration rate increased, especially in the initial stage with penetration rates of less than 30%. This study also showed that in the initial stage, the combination of ACC and a variable speed limit achieved better safety improvements on congested freeways than each single technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Foggy perception slows us down.
Pretto, Paolo; Bresciani, Jean-Pierre; Rainer, Gregor; Bülthoff, Heinrich H
2012-10-30
Visual speed is believed to be underestimated at low contrast, which has been proposed as an explanation of excessive driving speed in fog. Combining psychophysics measurements and driving simulation, we confirm that speed is underestimated when contrast is reduced uniformly for all objects of the visual scene independently of their distance from the viewer. However, we show that when contrast is reduced more for distant objects, as is the case in real fog, visual speed is actually overestimated, prompting drivers to decelerate. Using an artificial anti-fog-that is, fog characterized by better visibility for distant than for close objects, we demonstrate for the first time that perceived speed depends on the spatial distribution of contrast over the visual scene rather than the global level of contrast per se. Our results cast new light on how reduced visibility conditions affect perceived speed, providing important insight into the human visual system.DOI:http://dx.doi.org/10.7554/eLife.00031.001.
The Impact of Feedback on Self-Rated Driving Ability and Driving Self-Regulation among Older Adults
ERIC Educational Resources Information Center
Ackerman, Michelle L.; Crowe, Michael; Vance, David E.; Wadley, Virginia G.; Owsley, Cynthia; Ball, Karlene K.
2011-01-01
In 129 community-dwelling older adults, feedback regarding qualification for an insurance discount (based on a visual speed of processing test; Useful Field of View) was examined as a prospective predictor of change in self-reported driving ability, driving avoidance, and driving exposure over 3 months, along with physical, visual, health, and…
Grey Wolf based control for speed ripple reduction at low speed operation of PMSM drives.
Djerioui, Ali; Houari, Azeddine; Ait-Ahmed, Mourad; Benkhoris, Mohamed-Fouad; Chouder, Aissa; Machmoum, Mohamed
2018-03-01
Speed ripple at low speed-high torque operation of Permanent Magnet Synchronous Machine (PMSM) drives is considered as one of the major issues to be treated. The presented work proposes an efficient PMSM speed controller based on Grey Wolf (GW) algorithm to ensure a high-performance control for speed ripple reduction at low speed operation. The main idea of the proposed control algorithm is to propose a specific objective function in order to incorporate the advantage of fast optimization process of the GW optimizer. The role of GW optimizer is to find the optimal input controls that satisfy the speed tracking requirements. The synthesis methodology of the proposed control algorithm is detailed and the feasibility and performances of the proposed speed controller is confirmed by simulation and experimental results. The GW algorithm is a model-free controller and the parameters of its objective function are easy to be tuned. The GW controller is compared to PI one on real test bench. Then, the superiority of the first algorithm is highlighted. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
A Study on the Effects of Alternatives to Speed Humps Using a Driving Simulator
NASA Astrophysics Data System (ADS)
Kim, Jong-Min; Noh, Kwan-Sub
A road alignment which has a long straight section followed by sharp curve is dangerous, because drivers have the habit to accelerate on the long straight section and then accidents occur on the short curve as the result of speeding. This study evaluated the alternatives to speed humps in order to reduce speed safely and comfortably on roads with this incorrect road alignment. There are several speed control facilities to reduce speed on roads with wrong road alignment. The speed hump is dangerous at high speeds because drivers must reduce speed rapidly and because of the physical impact. The image hump provides less effect for drivers who already know of its presence. So, to resolve these matters, we propose a new type of speed control facility. An image hump with transverse grooving will be effective in reducing speed because the transverse grooving gives vibration and noise to drivers who are already aware of the presence of the image hump, but it does not give the hard physical impact to vehicles. The study on the effect of the alternatives to speed humps was carried out using the K-ROADS (KICT-Road Analysis Driving Simulator) which has been developed to analyze and evaluate road safety at the project HuRoSAS (Human & Road Safety Analysis System) since 2003. K-ROADS has two distinct functions. One is the visual system which has a 360 degree F. O. V. to reduce dead angles on black spots such as at-grade intersections. The other is the motion system which has high frequency vibration to reproduce vibrations made in irregular road surfaces. This study found out that the image hump with transverse grooving is a safe speed control facility in order to reduce driving speed safely and comfortably on a straight section followed by a sharp curve, even if drivers are known the existence of image hump.
NASA Astrophysics Data System (ADS)
Sakai, Kazuto; Takahashi, Norio; Shimomura, Eiji; Arata, Masanobu; Nakazawa, Yousuke; Tajima, Toshinobu
Regarding environmental and energy issues, increasing importance has been placed on energy saving in various systems. To save energy, it would be desirable if the total efficiency of various types of equipment were increased.Recently, a hybrid electric vehicle (HEV) and an electric vehicle (EV) have been developed. The use of new technologies will eventually lead to the realization of the new- generation vehicle with high efficiency. One new technology is the variable-speed drive over a wide range of speeds. The motor driving systems of the EV or the HEV must operate in the variable-speed range of up to 1:5. This has created the need for a high-efficiency motor that is capable of operation over a wide speed range. In this paper, we describe the concept of a novel permanent magnet reluctance motor (PRM) and discuss its characteristics. We developed the PRM, which has the capability of operating over a wide speed range with high efficiency. The PRM has a rotor with a salient pole, which generates magnetic anisotropy. In addition, the permanent magnets embedded in the rotor core counter the q-axis flux by the armature reaction. Then, the power density and the power factor increase. The PRM produces reluctance torque and torque by permanent magnet (PM) flux. The reluctance torque is 1 to 2 times larger than the PM torque. When the PRM operates over a constant-power speed range, the field component of the current will be regulated to maintain a constant voltage. The output power of the developed PRM is 8 to 250kW. It is clarified that the PRM operates at a wide variable-speed range (1:5) with high efficiency (92-97%). It is concluded that the PRM has high performance over a wide constant-power speed range. In addition, the PRM is constructed using a small PM, so that we can solve the problem of cost. Thus, the PRM is a superior machine that is suited for variable-speed drive applications.
Development of a drive system for a sequential space camera
NASA Technical Reports Server (NTRS)
Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.
1976-01-01
Breadboard models of single and dual motor drives for the shutter, claw and magazine of a space camera system were designed and tested. The single motor technique utilizes a single electronically commutated motor to drive the claw and shutter without resorting to a solenoid actuated clutch for pulse operation. Shutter speed is established by a combination of the cinemode speed and the opening of the conventional DAC two piece shutter. Pulse mode operation is obtained by applying power at a fixed clock rate and removing power at an appropriate point in the mechanical cycle such that the motor comes to rest by system friction. The dual motor approach utilizes a stepper motor to drive the shutter and an electronically commutated dc motor to drive the claw and magazine functions. The motors are synchronized electronically.
Development of a drive system for a sequential space camera
NASA Technical Reports Server (NTRS)
Sharpsteen, J. T.; Solheim, C. D.; Stoap, L. J.
1976-01-01
An electronically commutated dc motor is reported for driving the camera claw and magazine, and a stepper motor is described for driving the shutter with the two motors synchronized electrically. Subsequent tests on the breadboard positively proved the concept, but further development beyond this study should be done. The breadboard testing also established that the electronically commutated motor can control speed over a wide dynamic range, and has a high torque capability for accelerating loads. This performance suggested the possibility of eliminating the clutch from the system while retaining all of the other mechanical features of the DAC, if the requirement for independent shutter speeds and frame rates can be removed. Therefore, as a final step in the study, the breadboard shutter and shutter drive were returned to the original DAC configuration, while retaining the brushless dc motor drive.
A speed guidance strategy for multiple signalized intersections based on car-following model
NASA Astrophysics Data System (ADS)
Tang, Tie-Qiao; Yi, Zhi-Yan; Zhang, Jian; Wang, Tao; Leng, Jun-Qiang
2018-04-01
Signalized intersection has great roles in urban traffic system. The signal infrastructure and the driving behavior near the intersection are paramount factors that have significant impacts on traffic flow and energy consumption. In this paper, a speed guidance strategy is introduced into a car-following model to study the driving behavior and the fuel consumption in a single-lane road with multiple signalized intersections. The numerical results indicate that the proposed model can reduce the fuel consumption and the average stop times. The findings provide insightful guidance for the eco-driving strategies near the signalized intersections.
Fleet analysis of headway distance for autonomous driving.
Ivanco, Andrej
2017-12-01
Modern automobiles are going through a paradigm shift, where the driver may no longer be needed to drive the vehicle. As the self-driving vehicles are making their way to public roads the automakers have to ensure the naturalistic driving feel to gain drivers' confidence and accelerate adoption rates. This paper filters and analyzes a subset of radar data collected from SHRP2 with focus on characterizing the naturalistic headway distance with respect to the vehicle speed. The paper identifies naturalistic headway distance and compares it with the previous findings from the literature. A clear relation between time headway and speed was confirmed and quantified. A significant difference exists among individual drivers which supports a need to further refine the analysis. By understanding the relationship between human driving and their surroundings, the naturalistic driving behavior can be quantified and used to increase the adoption rates of autonomous driving. Dangerous and safety-compromising driving can be identified as well in order to avoid its replication in the control algorithms. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Using Cellular Automata for Parking Recommendations in Smart Environments
Horng, Gwo-Jiun
2014-01-01
In this work, we propose an innovative adaptive recommendation mechanism for smart parking. The cognitive RF module will transmit the vehicle location information and the parking space requirements to the parking congestion computing center (PCCC) when the driver must find a parking space. Moreover, for the parking spaces, we use a cellular automata (CA) model mechanism that can adjust to full and not full parking lot situations. Here, the PCCC can compute the nearest parking lot, the parking lot status and the current or opposite driving direction with the vehicle location information. By considering the driving direction, we can determine when the vehicles must turn around and thus reduce road congestion and speed up finding a parking space. The recommendation will be sent to the drivers through a wireless communication cognitive radio (CR) model after the computation and analysis by the PCCC. The current study evaluates the performance of this approach by conducting computer simulations. The simulation results show the strengths of the proposed smart parking mechanism in terms of avoiding increased congestion and decreasing the time to find a parking space. PMID:25153671
Development of a speeding-related crash typology
DOT National Transportation Integrated Search
2010-04-01
Speeding, the driver behavior of exceeding the posted speed limit or driving too fast for conditions, has consistently been estimated to be a contributing factor to a significant percentage of fatal and nonfatal crashes. The U.S. Department of Transp...
Motivations for speeding : additional data analysis : traffic tech : technology transfer series.
DOT National Transportation Integrated Search
2016-03-01
NHTSAs naturalistic driving study, Motivations for Speeding (Richard et al., 2013), examined motivations and situations conducive to speeding behavior. The study collected data from 88 drivers in Seattle, Washington, and 76 drivers in College Stat...
Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation
NASA Technical Reports Server (NTRS)
Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.
2010-01-01
Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.
Trade-off between speed and cost in shortcuts to adiabaticity
NASA Astrophysics Data System (ADS)
Campbell, Steve
Recent years have witnessed a surge of interest in the study of thermal nano-machines that are capable of converting disordered forms of energy into useful work. It has been shown for both classical and quantum systems that external drivings can allow a system to evolve adiabatically even when driven in finite time, a technique commonly known as shortcuts to adiabaticity. It was suggested to use such external drivings to render the unitary processes of a thermodynamic cycle quantum adiabatic, while being performed in finite time. However, implementing an additional external driving requires resources that should be accounted for. Furthermore, and in line with natural intuition, these transformations should not be achievable in arbitrarily short times. First, we will present a computable measure of the cost of a shortcut to adiabaticity. Using this, we then examine the speed with which a quantum system can be driven. As a main result, we will establish a rigorous link between this speed, the quantum speed limit, and the (energetic) cost of implementing such a shortcut to adiabaticity. Interestingly, this link elucidates a trade-off between speed and cost, namely that instantaneous manipulation is impossible as it requires an infinite cost.
Two-motor direct drive control for elevation axis of telescope
NASA Astrophysics Data System (ADS)
Tang, T.; Tan, Y.; Ren, G.
2014-07-01
Two-motor application has become a very attractive filed in important field which high performance is permitted to achieve of position, speed, and acceleration. In the elevation axis of telescope control system, two-motor direct drive is proposed to enhance the high performance of tracking control system. Although there are several dominant strengths such as low size of motors and high torsional structural dynamics, the synchronization control of two motors is a very difficult and important. In this paper, a multi-loop control technique base master-slave current control is used to synchronize two motors, including current control loop, speed control loop and position control loop. First, the direct drive function of two motors is modeled. Compared of single motor direct control system, the resonance frequency of two motor control systems is same; while the anti-resonance frequency of two motors control system is 1.414 times than those of sing motor system. Because of rigid coupling for direct drive, the speed of two motor of the system is same, and the synchronization of torque for motors is critical. The current master-slave control technique is effective to synchronize the torque, which the current loop of the master motors is tracked the other slave motor. The speed feedback into the input of current loop of the master motors. The experiments test the performance of the two motors drive system. The random tracking error is 0.0119" for the line trajectory of 0.01°/s.
Speed behaviour in work zone crossovers. A driving simulator study.
Domenichini, Lorenzo; La Torre, Francesca; Branzi, Valentina; Nocentini, Alessandro
2017-01-01
Reductions in speed and, more critically, in speed variability between vehicles are considered an important factor to reduce crash risk in work zones. This study was designed to evaluate in a virtual environment the drivers' behaviour in response to nine different configurations of a motorway crossover work zone. Specifically, the speed behaviour through a typical crossover layout, designed in accordance with the Italian Ministerial Decree 10 July 2002, was compared with that of eight alternative configurations which differ in some characteristics such as the sequence of speed limits, the median opening width and the lane width. The influence of variable message signs, of channelizing devices and of perceptual treatments based on Human Factor principles were also tested. Forty-two participants drove in driving simulator scenarios while data on their speeds and decelerations were collected. The results indicated that drivers' speeds are always higher than the temporary posted speed limits for all configurations and that speeds decreases significantly only within the by-passes. However the implementation of higher speed limits, together with a wider median opening and taller channelization devices led to a greater homogeneity of the speeds adopted by the drivers. The presence of perceptual measures generally induced both the greatest homogenization of speeds and the largest reductions in mean speed values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Peer Influence Predicts Speeding Prevalence Among Teenage Drivers
Ouimet, Marie Claude; Chen, Rusan; Klauer, Sheila G.; Lee, Suzanne E.; Wang, Jing; Dingus, Thomas A.
2012-01-01
Objective This research examined the psychosocial and personality predictors of observed speeding among young drivers. Method. Survey and driving data were collected from 42 newly-licensed teenage drivers during the first 18 months of licensure. Speeding (i.e., driving 10 mph over the speed limit; about 16 km/h) was assessed by comparing speed data collected with recording systems installed in participants’ vehicles with posted speed limits. Questionnaire data collected at baseline were used to predict speeding rates using random effects regression analyses. For mediation analysis, data collected at baseline and at 6, 12, and 18 months after licensure were used. Results. Speeding was correlated with elevated g-force event rates, including hard braking and turning (r = 0.335, p < 0.05), but not with crashes and near crashes (r = 0.227; ns). Speeding prevalence increased over time. In univariate analyses speeding was predicted by day vs. night trips, higher sensation seeking, substance use, tolerance of deviance, susceptibility to peer pressure, and number of risky friends. In multivariate analyses the number of risky friends was the only significant predictor of speeding. Perceived risk was a significant mediator of the association between speeding and risky friends. Conclusion. The findings support the contention that social norms may influence teenage speeding behavior and this relationship may operate through perceived risk. PMID:23206513
Validity of chase car data used in developing emissions cycles
DOT National Transportation Integrated Search
2000-09-01
Air quality policies, driving cycles and profiles of average driving behavior have been constructed to characterize the driving behavior of the overall fleet in an effort to ensure vehicle compliance. Chase car data and speed-time profiles of in-use ...
Homogenization of Tianjin monthly near-surface wind speed using RHtestsV4 for 1951-2014
NASA Astrophysics Data System (ADS)
Si, Peng; Luo, Chuanjun; Liang, Dongpo
2018-05-01
Historical Chinese surface meteorological records provided by the special fund for basic meteorological data from the National Meteorological Information Center (NMIC) were processed to produce accurate wind speed data. Monthly 2-min near-surface wind speeds from 13 observation stations in Tianjin covering 1951-2014 were homogenized using RHtestV4 combined with their metadata. Results indicate that 10 stations had significant breakpoints—77% of the Tianjin stations—suggesting that inhomogeneity was common in the Tianjin wind speed series. Instrument change accounted for most changes, based on the metadata, including changes in type and height, especially for the instrument type. Average positive quantile matching (QM) adjustments were more than negative adjustments at 10 stations; positive biases with a probability density of 0.2 or more were mainly concentrates in the range 0.2 m s-1 to 1.2 m s-1, while the corresponding negative biases were mainly in the range -0.1 to -1.2 m s-1. Here, changes in variances and trends in the monthly mean surface wind speed series at 10 stations before and after adjustment were compared. Climate characteristics of wind speed in Tianjin were more reasonably reflected by the adjusted data; inhomogeneity in wind speed series was largely corrected. Moreover, error analysis reveals that there was a high consistency between the two datasets here and that from the NMIC, with the latter as the reference. The adjusted monthly near-surface wind speed series shows a certain reliability for the period 1951-2014 in Tianjin.
Heel and toe driving on fuel cell vehicle
Choi, Tayoung; Chen, Dongmei
2012-12-11
A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.
Electric vehicle drive train with rollback detection and compensation
Konrad, C.E.
1994-12-27
An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.
Electric vehicle drive train with rollback detection and compensation
Konrad, Charles E.
1994-01-01
An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.
Huang, Helai; Peng, Yunying; Wang, Jie; Luo, Qizhang; Li, Xiang
2018-02-01
Traffic safety of freeways has attracted major concerns, especially for a mountainous freeway affected by adverse terrain conditions, constrained roadway geometry and complicated driving environments. On the basis of a comprehensive dataset collected from a mountainous freeway with a length of 61km but gathering 12 tunnels, this study seeks to examining the interactive effect of mountainous freeway alignment, driving behaviors, vehicle characteristics and environmental factors on crash severity. A classification and regression tree (CART) model is employed as it can deal with high-order interactions between explanatory variables. Results show that the driving behavior is the most important determinant for injury severity of mountainous freeway crashes, followed by the crash time, grade, curve radius and vehicle type. These variables, interacted with the factors of season and crash location, may largely account for the likelihood of high risk events which may result in severe crashes. Events associated with a notably higher probability of severe crashes include coach drivers involved in improper lane changing and other improper actions, drivers involved in speeding during afternoon or evening, drivers involved in speeding along large curve and straight segment during morning, noon or night, and drivers involved in fatigue while passing along the downgrade. Safety interventions to prevent severe crashes at the mountainous freeway include hierarchical supervision in terms of hazardous driving events, enhanced enforcement for speeding and fatigue driving, deployment of advanced driving assistance systems for fatigue driving warning, and cumulative driving time monitoring for long-distance-travel freight vehicles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of a speeding-related crash typology : [summary report].
DOT National Transportation Integrated Search
2010-01-01
Speeding, the driver behavior of exceeding the posted speed limit or driving too fast : for conditions, has consistently been shown to be a contributing factor to a signifcant percentage of fatal and nonfatal crashes. Between 1990 and 2006, the frequ...
2011 national survey of speeding attitudes and behaviors.
DOT National Transportation Integrated Search
2013-12-01
The 2011 National Survey of Speeding Attitudes and Behavior (NSSAB) is the third in a series of surveys on speeding that have provided data to help further the understanding of driving behavior and to contribute to the development of countermeasures ...
Gómez-Espinosa, Alfonso; Hernández-Guzmán, Víctor M; Bandala-Sánchez, Manuel; Jiménez-Hernández, Hugo; Rivas-Araiza, Edgar A; Rodríguez-Reséndiz, Juvenal; Herrera-Ruíz, Gilberto
2013-03-19
A New Adaptive Self-Tuning Fourier Coefficients Algorithm for Periodic Torque Ripple Minimization in Permanent Magnet Synchronous Motors (PMSM) Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due to the non-sinusoidal flux density distribution around the air-gap and variable magnetic reluctance of the air-gap due to the stator slots distribution. These torque ripples change periodically with rotor position and are apparent as speed variations, which degrade the PMSM drive performance, particularly at low speeds, because of low inertial filtering. In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother operation. This algorithm adjusts the controller parameters based on the component's harmonic distortion in time domain of the compensation signal. Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with the Fourier series expansion scheme, in reducing the torque ripple.
Control Code for Bearingless Switched-Reluctance Motor
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.
2007-01-01
A computer program has been devised for controlling a machine that is an integral combination of magnetic bearings and a switched-reluctance motor. The motor contains an eight-pole stator and a hybrid rotor, which has both (1) a circular lamination stack for levitation and (2) a six-pole lamination stack for rotation. The program computes drive and levitation currents for the stator windings with real-time feedback control. During normal operation, two of the four pairs of opposing stator poles (each pair at right angles to the other pair) levitate the rotor. The remaining two pairs of stator poles exert torque on the six-pole rotor lamination stack to produce rotation. This version is executable in a control-loop time of 40 s on a Pentium (or equivalent) processor that operates at a clock speed of 400 MHz. The program can be expanded, by addition of logic blocks, to enable control of position along additional axes. The code enables adjustment of operational parameters (e.g., motor speed and stiffness, and damping parameters of magnetic bearings) through computer keyboard key presses.
van de Loo, Aurora J A E; Bervoets, Adriana C; Mooren, Loes; Bouwmeester, Noor H; Garssen, Johan; Zuiker, Rob; van Amerongen, Guido; van Gerven, Joop; Singh, Jaskaran; der Ark, Peter Van; Fedgchin, Maggie; Morrison, Randall; Wajs, Ewa; Verster, Joris C
2017-11-01
The purpose of this study is to evaluate the single dose effect of intranasal esketamine (84 mg) compared to placebo on on-road driving performance. Mirtazapine (oral, 30 mg) was used as a positive control, as this antidepressant drug is known to negatively affect driving performance. Twenty-six healthy volunteers aged 21 to 60 years were enrolled in this study. In the evening, 8 h after treatment administration, participants conducted the standardized 100-km on-road driving test. Primary outcome measure was the standard deviation of lateral position (SDLP), i.e., the weaving of the car. Mean lateral position, mean speed, and standard deviation of speed were secondary outcome measures. For SDLP, non-inferiority analyses were conducted, using +2.4 cm (relative to placebo) as a predefined non-inferiority margin for clinical relevant impairment. Twenty-four participants completed the study. No significant SDLP difference was found between esketamine and placebo (p = 0.7638), whereas the SDLP after mirtazapine was significantly higher when compared to placebo (p = 0.0001). The upper limit of the two-sided 95% confidence interval (CI) of the mean difference between esketamine and placebo was +0.86 cm, i.e., <+2.4 cm, thus demonstrating that esketamine was non-inferior to placebo. Non-inferiority could not be concluded for mirtazapine (+3.15 cm SDLP relative to placebo). No significant differences in mean speed, standard deviation of speed, and mean lateral position were observed between the active treatments and placebo. No significant difference in driving performance was observed 8 h after administering intranasal esketamine (84 mg) or placebo. In contrast, oral mirtazapine (30 mg) significantly impaired on road driving performance.
49 CFR 392.6 - Schedules to conform with speed limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Schedules to conform with speed limits. 392.6... DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.6 Schedules to conform with speed limits. No motor... points in such period of time as would necessitate the commercial motor vehicle being operated at speeds...
49 CFR 392.6 - Schedules to conform with speed limits.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Schedules to conform with speed limits. 392.6... DRIVING OF COMMERCIAL MOTOR VEHICLES General § 392.6 Schedules to conform with speed limits. No motor... points in such period of time as would necessitate the commercial motor vehicle being operated at speeds...
Ameid, Tarek; Menacer, Arezki; Talhaoui, Hicham; Azzoug, Youness
2018-05-03
This paper presents a methodology for the broken rotor bars fault detection is considered when the rotor speed varies continuously and the induction machine is controlled by Field-Oriented Control (FOC). The rotor fault detection is obtained by analyzing a several mechanical and electrical quantities (i.e., rotor speed, stator phase current and output signal of the speed regulator) by the Discrete Wavelet Transform (DWT) in variable speed drives. The severity of the fault is obtained by stored energy calculation for active power signal. Hence, it can be a useful solution as fault indicator. The FOC is implemented in order to preserve a good performance speed control; to compensate the broken rotor bars effect in the mechanical speed and to ensure the operation continuity and to investigate the fault effect in the variable speed. The effectiveness of the technique is evaluated in simulation and in a real-time implementation by using Matlab/Simulink with the real-time interface (RTI) based on dSpace 1104 board. Copyright © 2018. Published by Elsevier Ltd.
Can variable frequency drives reduce irrigation costs for rice producers?
USDA-ARS?s Scientific Manuscript database
Variable Frequency Drives (VFD's) allow for variable speed operation of electrical motor drive irrigation pumps and are an emerging technology for agricultural irrigation, primarily for pressurized irrigation systems. They are considered an energy savings device, but less is known about their app...
Biomechanical investigation of prolonged driving in an ergonomically designed truck seat prototype.
Cardoso, Michelle; McKinnon, Colin; Viggiani, Dan; Johnson, Michel J; Callaghan, Jack P; Albert, Wayne J
2018-03-01
A postural evaluation during a prolonged driving task was conducted to determine the ergonomic validity of a new freely adjustable truck seat prototype. Twenty participants were recruited to perform two 2-h simulated driving sessions. Postures were assessed using motion capture, accelerometers and pressure pads. Subjective discomfort was also monitored in 15-min increments using ratings of perceived discomfort (RPD) and the Automotive Seating Discomfort Questionnaire. Participants had a more neutral spine posture during the first hour of the drive and reported lower RPDs while sitting in the prototype. Pairing the gluteal backrest panel with the adjustable seat pan helped reduce the average sitting pressure. The industry-standard truck seat may lead to the development of poor whole body posture, and the proposed ergonomic redesign of a new truck seat helped improve sitting posture and reduce perceived discomfort. Practitioner Summary: A new freely adjustable truck seat prototype was compared to an Industry standard seat to assess hypothesised improvements to sitting posture and discomfort for long haul driving. It was found that the adjustable panels in the prototype helped promote spine posture, reduce sitting pressure and improved discomfort ratings.
A one year pay-as-you-speed trial with economic incentives for not speeding.
Stigson, Helena; Hagberg, Jan; Kullgren, Anders; Krafft, Maria
2014-01-01
The objective was to identify whether it was possible to change driver behavior by economic incentives and thereby reduce crash risk. Furthermore, the objective was to evaluate the participants' attitudes toward the pay-as-you-speed (PAYS) concept. A one-year PAYS trial with economic incentives for keeping speed limits using intelligent speed assistance (ISA) was conducted in Sweden during 2011-2012. The full incentive was a 30 percent discount off the insurance premium. The participants were private insurance customers and were randomized into a test group (initial n = 152, final n = 128) and a control group (initial n = 98, final n = 68). When driving, the drivers in the test group were informed and warned visually when the speed limit was exceeded. They could also follow their driving results on a personal website. The control group was not given any feedback at all. To reflect the impact of the PAYS concept the proportion of distance driven above the speed limit was compared between the 2 groups. The introduction of a PAYS concept shows that the test group significantly reduced the proportion of distance driven above the speed limit. The proportion of driving at a speed exceeding 5 km/h over the speed limit was 6 percent for the test group and 14 percent for the control group. It also showed that the effect was higher the higher the violation of speed. The result remained constant over time. It was shown that a PAYS concept is an effective way to reduce speed violations. Hence, it has the possibility to reduce crash severity and thereby to save lives. This could be an important step toward a safer road transport system. The majority of the participants were in favor of the concept, which indicates the potential of a new insurance product in the future.
2011 national survey of speeding attitudes and behaviors : traffic tech.
DOT National Transportation Integrated Search
2013-12-01
The 2011 National Survey of Speeding Attitudes and Behavior : (NSSAB) is the third in a series of surveys on speeding that have : provided data to help further the understanding of driving : behavior and to contribute to the development of countermea...
Ivers, Rebecca; Senserrick, Teresa; Boufous, Soufiane; Stevenson, Mark; Chen, Huei-Yang; Woodward, Mark; Norton, Robyn
2009-09-01
We explored the risky driving behaviors and risk perceptions of a cohort of young novice drivers and sought to determine their associations with crash risk. Provisional drivers aged 17 to 24 (n = 20 822) completed a detailed questionnaire that included measures of risk perception and behaviors; 2 years following recruitment, survey data were linked to licensing and police-reported crash data. Poisson regression models that adjusted for multiple confounders were created to explore crash risk. High scores on questionnaire items for risky driving were associated with a 50% increased crash risk (adjusted relative risk = 1.51; 95% confidence interval = 1.25, 1.81). High scores for risk perception (poorer perceptions of safety) were also associated with increased crash risk in univariate and multivariate models; however, significance was not sustained after adjustment for risky driving. The overrepresentation of youths in crashes involving casualties is a significant public health issue. Risky driving behavior is strongly linked to crash risk among young drivers and overrides the importance of risk perceptions. Systemwide intervention, including licensing reform, is warranted.
A cycle timer for testing electric vehicles
NASA Technical Reports Server (NTRS)
Soltis, R. F.
1978-01-01
A cycle timer was developed to assist the driver of an electric vehicle in more accurately following and repeating SAE driving schedules. These schedules require operating an electric vehicle in a selected stop-and-go driving cycle and repeating this cycle pattern until the vehicle ceases to meet the requirements of the cycle. The heart of the system is a programmable read-only memory (PROM) that has the required test profiles permanently recorded on plug-in cards, one card for each different driving schedule. The PROM generates a direct current analog signal that drives a speedometer displayed on one scale of a dual movement meter. The second scale of the dual movement meter displays the actual speed of the vehicle as recorded by the fifth wheel. The vehicle operator controls vehicle speed to match the desired profile speed. The PROM controls the recycle start time as well as the buzzer activation. The cycle programmer is powered by the test vehicle's 12-volt accessory battery, through a 5-volt regulator and a 12-volt dc-to-dc converter.
The effects of binge drinking and socio-economic status on sober driving behavior.
Zhao, Guozhen; Wu, Changxu; Houston, Rebecca J; Creager, Whitney
2010-08-01
Drinking and driving is a primary cause of traffic fatalities and it has been suggested that binge drinkers comprise a major portion of those drivers involved in drinking and driving accidents. Although several experimental studies have investigated the driving behavior of binge drinkers (particularly college students and/or young adults) under the influence of alcohol, few studies have focused on a comparison of sober driving behavior of the general population between binge and non-binge drinkers with a consideration of drivers' income levels. In addition, these studies have not taken other potentially influential factors into account such as socio economic status. A driving simulator study was conducted with a 2 x 2 factorial design (binge vs. non-binge drinker; low vs. high income). Sixty-two participants who were not under the influence of alcohol or drugs were asked to operate a driving simulator following traffic rules. Multiple aspects of participants' driving behaviors were measured in a sober driving situation. To control the potential effects of confounding factors, factors (e.g., age, gender, etc.) that were significantly correlated to the driving behavior were all entered into the multivariate analysis of variance (MANOVA) as covariates. Significant interaction effects were found between effects of binge drinking and income levels. Analyses indicated that binge drinkers-independent of their income levels-exhibited more speeding exceedances and longer speeding duration than those of non-binge drinkers with a high income. Individuals characterized as non-binge drinkers with a low income also exhibited more speeding behaviors. Cognitive deficits and problems in vehicle control resulting from chronic alcohol consumption may impact binge drinkers' abilities to perform adequately, even in a sober driving situation. In addition, non-binge drinkers with a low income were more prone to make unsafe choices compared to non-binge drinkers with a high income. Further implications of the results in transportation safety and alcohol addiction were also discussed.
Choudhary, Pushpa; Velaga, Nagendra R
2017-09-01
This study analysed and modelled the effects of conversation and texting (each with two difficulty levels) on driving performance of Indian drivers in terms of their mean speed and accident avoiding abilities; and further explored the relationship between speed reduction strategy of the drivers and their corresponding accident frequency. 100 drivers of three different age groups (young, mid-age and old-age) participated in the simulator study. Two sudden events of Indian context: unexpected crossing of pedestrians and joining of parked vehicles from road side, were simulated for estimating the accident probabilities. Generalized linear mixed models approach was used for developing linear regression models for mean speed and binary logistic regression models for accident probability. The results of the models showed that the drivers significantly compensated the increased workload by reducing their mean speed by 2.62m/s and 5.29m/s in the presence of conversation and texting tasks respectively. The logistic models for accident probabilities showed that the accident probabilities increased by 3 and 4 times respectively when the drivers were conversing or texting on a phone during driving. Further, the relationship between the speed reduction patterns and their corresponding accident frequencies showed that all the drivers compensated differently; but, among all the drivers, only few drivers, who compensated by reducing the speed by 30% or more, were able to fully offset the increased accident risk associated with the phone use. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
An inverter topology and control scheme has been developed that can drive low-inductance, surface-mounted permanent magnet motors over the wide constant power speed range required in electric vehicle applications. This new controller is called the dual-mode inverter control (DMIC) [1]. The DMIC can drive either the Permanent Magnet Synchronous Machine (PMSM) with sinusoidal back emf, or the brushless dc machine (BDCM) with trapezoidal emf in the motoring and regenerative braking modes. In this paper we concentrate on the BDCM under high-speed motoring conditions. Simulation results show that if all motor and inverter loss mechanisms are neglected, the constant power speedmore » range of the DMIC is infinite. The simulation results are supported by closed form expressions for peak and rms motor current and average power derived from analytical solution to the differential equations governing the DMIC/BDCM drive for the lossless case. The analytical solution shows that the range of motor inductance that can be accommodated by the DMIC is more than an order of magnitude such that the DMIC is compatible with both low- and high-inductance BDCMs. Finally, method is given for integrating the classical hysteresis band current control, used for motor control below base speed, with the phase advance of DMIC that is applied above base speed. The power versus speed performance of the DMIC is then simulated across the entire speed range.« less
Creating pedestrian crash scenarios in a driving simulator environment.
Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W
2015-01-01
In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to adjust time to arrival triggers for the pedestrian actions. This article discusses the rationale behind creating the simulator scenarios and some of the procedural considerations for conducting this type of research. Crash analyses can be used to construct test scenarios for driver behavior evaluations using driving simulators. By considering trajectories, roadway, and environmental conditions of real-world crashes, representative virtual scenarios can serve as safe test beds for advanced driver assistance systems. The results of such research can be used to inform pedestrian crash avoidance/mitigation systems by identifying driver error, driver response time, and driver response choice (i.e., steering vs. braking).
Electric drive motors for industrial robots
NASA Astrophysics Data System (ADS)
Fichtner, K.
1985-04-01
In robotized industrial plants it is possible to use electric motors in the technological process and also for control, assembly, transport, testing, and measurements. Particularly suitable for these applications are permanent-magnet d.c. motors. A new special series was developed for industrial robots with hinge joints in kinematic pairs. The complete drive includes thyristors or transistor controls with regulators and, if necessary, a line transformer as well as a servomotor with tachometer and odometer for speed, current, and position control. The drive is coupled to a robot tong through mechanical torque and force converters. In addition to a 0 to 4000 rpm speed regulation, without wobble at low speeds, and a high torque-to-weight ratio for repetitive short-time heavy duty, these low-inertia motors develop high starting and accelerating torques over the entire speed range. They operate from a 1 to O 220 V a.c. line through a rectifier. The motors are totally enclosed, or of open construction for better ventilation. Their windings have class F insulation for operation at ambient temperatures up to 40 C.
MULTIPLE DIFFERENTIAL ROTARY MECHANICAL DRIVE
Smits, R.G.
1964-01-28
This patent relates to a mechanism suitable for such applications as driving two spaced-apart spools which carry a roll film strip under conditions where the film movement must be rapidly started, stopped, and reversed while maintaining a constant tension on the film. The basic drive is provided by a variable speed, reversible rnotor coupled to both spools through a first differential mechanism and driving both spools in the same direction. A second motor, providing a constant torque, is connected to the two spools through a second differential mechanism and is coupled to impart torque to one spool in a first direction anid to the other spool in the reverse direction thus applying a constant tension to the film passing over the two spools irrespective of the speed or direction of rotation thereof. (AEC)
Imhoff, Sarah; Lavallière, Martin; Germain-Robitaille, Mathieu; Teasdale, Normand; Fait, Philippe
2017-01-01
Traumatic brain injury (TBI) causes functional deficits that may significantly interfere with numerous activities of daily living such as driving. We report the case of a 20-year-old woman having lost her driver's license after sustaining a moderate TBI. We aimed to evaluate the effectiveness of an in-simulator training program with automated feedback on driving performance in a TBI individual. The participant underwent an initial and a final in-simulator driving assessment and 11 in-simulator training sessions with driving-specific automated feedbacks. Driving performance (simulation duration, speed regulation and lateral positioning) was measured in the driving simulator. Speeding duration decreased during training sessions from 1.50 ± 0.80 min (4.16 ± 2.22%) to 0.45 ± 0.15 min (0.44 ± 0.42%) but returned to initial duration after removal of feedbacks for the final assessment. Proper lateral positioning improved with training and was maintained at the final assessment. Time spent in an incorrect lateral position decreased from 18.85 min (53.61%) in the initial assessment to 1.51 min (4.64%) on the final assessment. Driving simulators represent an interesting therapeutic avenue. Considerable research efforts are needed to confirm the effectiveness of this method for driving rehabilitation of individuals who have sustained a TBI.
Considerations when using variable frequency drive technology for pond aquculture
USDA-ARS?s Scientific Manuscript database
Some farmers have decided to use variable frequency drives (VFDs) to control pump speed and water flow rate to reduce operational cost and costs associated with repairs and maintenance. Mixed performance issues with VFDs and electric motors have been reported. Examples include frequent drive failure...
Concepts for Multi-Speed Rotorcraft Drive System - Status of Design and Testing at NASA GRC
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Lewicki, David G.; Handschuh, Robert F.
2015-01-01
In several studies and on-going developments for advanced rotorcraft, the need for variable multi-speed capable rotors has been raised. Speed changes of up to 50 have been proposed for future rotorcraft to improve vehicle performance. A rotor speed change during operation not only requires a rotor that can perform effectively over the operating speedload range, but also requires a propulsion system possessing these same capabilities. A study was completed investigating possible drive system arrangements that can accommodate up to a 50 speed change. Key drivers were identified from which simplicity and weight were judged as central. This paper presents the current status of two gear train concepts coupled with the first of two clutch types developed and tested thus far with focus on design lessons learned and areas requiring development. Also, a third concept is presented, a dual input planetary differential as leveraged from a simple planetary with fixed carrier.
Growth of and defect reduction in nanoscale materials
Jensen, Kenneth J [Berkeley, CA; Mickelson, William E [San Francisco, CA; Zettl, Alex K [Kensington, CA
2011-01-04
Methods by which the growth of a nanostructure may be precisely controlled by an electrical current are described here. In one embodiment, an interior nanostructure is grown to a predetermined geometry inside another nanostructure, which serves as a reaction chamber. The growth is effected by a catalytic agent loaded with feedstock for the interior nanostructure. Another embodiment allows a preexisting marginal quality nanostructure to be zone refined into a higher-quality nanostructure by driving a catalytic agent down a controlled length of the nanostructure with an electric current. In both embodiments, the speed of nanostructure formation is adjustable, and the growth may be stopped and restarted at will. The catalytic agent may be doped or undoped to produce semiconductor effects, and the bead may be removed via acid etching.
New control strategies for longwall armored face conveyors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broadfoot, A.R.; Betz, R.E.
1998-03-01
This paper investigates a new control approach for longwall armored face conveyors (AFC`s) using variable-speed drives (VSD`s). Traditionally, AFC`s have used fixed-speed or two-speed motors, with various mechanical solutions employed to try to solve the problems that this causes. The VSD approach to the control problem promises to solve all the significant problems associated with the control of AFC`s. This paper will present the control algorithms developed for a VSD-based AFC drive system and demonstrate potential performance via computer simulation. A full discussion of the problems involved with the control of AFC`s can be found in the companion paper.
A Low-Wear Driving Method of Ultrasonic Motors
NASA Astrophysics Data System (ADS)
Ishii, Takaaki; Takahashi, Hisanori; KentaroNakamura, KentaroNakamura; Ueha, Sadayuki
1999-05-01
The life of ultrasonic motors is limited by the wear of friction materials used for the contact surfaces. In order to reduce the wear of the friction material, we have to reduce the sliding speed between the sliding surfaces of the motor. In this report, we propose a new driving method to reduce the sliding speed of the motor by shaping the vibration speed waveform. The sliding loss was calculated and wear reduction effect was confirmed. A wear test was carried out under no-load condition. This method prolongs the life of an ultrasonic motor by about 3.4-fold. The results and wear reduction effects are also described.
Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission
NASA Astrophysics Data System (ADS)
Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang
2016-11-01
This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.
Automated feedback to foster safe driving in young drivers : Phase 2.
DOT National Transportation Integrated Search
2015-12-01
Intelligent Speed Adaptation (ISA) represents a promising approach to reduce speeding. A core principle for ISA systems is that they provide real-time feedback to drivers, prompting them to reduce speed when some threshold at or above the limit is re...
Trail, Frances; Gaffoor, Iffa; Vogel, Steven
2005-06-01
Since wind speed drops to zero at a surface, forced ejection should facilitate spore dispersal. But for tiny spores, with low mass relative to surface area, high ejection speed yields only a short range trajectory, so pernicious is their drag. Thus, achieving high speeds requires prodigious accelerations. In the ascomycete Gibberella zeae, we determined the launch speed and kinetic energy of ascospores shot from perithecia, and the source and magnitude of the pressure driving the launch. We asked whether the pressure inside the ascus suffices to account for launch speed and energy. Launch speed was 34.5 ms-1, requiring a pressure of 1.54 MPa and an acceleration of 870,000 g--the highest acceleration reported in a biological system. This analysis allows us to discount the major sugar component of the epiplasmic fluid, mannitol, as having a key role in driving discharge, and supports the role of potassium ion flux in the mechanism.
NASA Astrophysics Data System (ADS)
CheshmehBeigi, Hassan Moradi
2018-05-01
In this paper, a novel speed control method for Homopolar Brushless DC (HBLDC) motor based on the adaptive nonlinear internal-model control (ANIMC) is presented. Rotor position information is obtained online by the Hall-Effect sensors placed on the motor's shaft, and is used to calculate the accurate model and accurate inverse model of the HBLDC motor. The online inverse model of the motor is used in the controller structure. To suppress the reference ? error, the negative feedback of difference between the motor speed and its model output ? is applied in the proposed controller. An appropriate signal is the output of the controller, which drives the power switches to converge the motor speed to the constant desired speed. Simulations and experiments are carried out on a ? three-phase HBLDC motor. The proposed drive system operates well in the speed response and has good robustness with respect to the disturbances. To validate the theoretical analysis, several experimental results are discussed in this paper.
Concepts for Multi-Speed Rotorcraft Drive System - Status of Design and Testing at NASA GRC
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Lewicki, David G.; Handschuh, Robert F.
2015-01-01
In several studies and on-going developments for advanced rotorcraft, the need for variable/multi-speed capable rotors has been raised. Speed changes of up to 50 percent have been proposed for future rotorcraft to improve vehicle performance. A rotor speed change during operation not only requires a rotor that can perform effectively over the operating speed/load range, but also requires a propulsion system possessing these same capabilities. A study was completed investigating possible drive system arrangements that can accommodate up to a 50 percent speed change. Key drivers were identified from which simplicity and weight were judged as central. This paper presents the current status of two gear train concepts coupled with the first of two clutch types developed and tested thus far with focus on design lessons learned and areas requiring development. Also, a third concept is presented, a dual input planetary differential as leveraged from a simple planetary with fixed carrier.
Foggy perception slows us down
Pretto, Paolo; Bresciani, Jean-Pierre; Rainer, Gregor; Bülthoff, Heinrich H
2012-01-01
Visual speed is believed to be underestimated at low contrast, which has been proposed as an explanation of excessive driving speed in fog. Combining psychophysics measurements and driving simulation, we confirm that speed is underestimated when contrast is reduced uniformly for all objects of the visual scene independently of their distance from the viewer. However, we show that when contrast is reduced more for distant objects, as is the case in real fog, visual speed is actually overestimated, prompting drivers to decelerate. Using an artificial anti-fog—that is, fog characterized by better visibility for distant than for close objects, we demonstrate for the first time that perceived speed depends on the spatial distribution of contrast over the visual scene rather than the global level of contrast per se. Our results cast new light on how reduced visibility conditions affect perceived speed, providing important insight into the human visual system. DOI: http://dx.doi.org/10.7554/eLife.00031.001 PMID:23110253
Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds
NASA Astrophysics Data System (ADS)
Rajauria, Sukumar; Canchi, Sripathi V.; Schreck, Erhard; Marchon, Bruno
2015-02-01
The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5-10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.
... these crashes is one part of motor vehicle safety. Here are some things you can do to ... speed or drive aggressively Don't drive impaired Safety also involves being aware of others. Share the ...
Reticles, write time, and the need for speed
NASA Astrophysics Data System (ADS)
Ackmann, Paul W.; Litt, Lloyd C.; Ning, Guo Xiang
2014-10-01
Historical data indicates reticle write times are increasing node-to-node. The cost of mask sets is increasing driven by the tighter requirements and more levels. The regular introduction of new generations of mask patterning tools with improved performance is unable to fully compensate for the increased data and complexity required. Write time is a primary metric that drives mask fabrication speed. Design (Raw data) is only the first step in the process and many interactions between mask and wafer technology such as OPC used, OPC efficiency for writers, fracture engines, and actual field size used drive total write time. Yield, technology, and inspection rules drive the remaining raw cycle time. Yield can be even more critical for speed of delivery as it drives re-writes and wasted time. While intrinsic process yield is important, repair capability is the reason mask delivery is still able to deliver 100% good reticles to the fab. Advanced nodes utilizing several layers of multiple patterning may require mask writer tool dedication to meet image placement specifications. This will increase the effective mask cycle time for a layer mask set and drive the need for additional mask write capability in order to deliver masks at the rate required by the wafer fab production schedules.
Simons-Morton, Bruce G; Hartos, Jessica L; Beck, Kenneth H
2004-06-01
The purpose of this study was to determine whether exposure to a brief intervention administered at the Motor Vehicle Administration (MVA) increases parental limits on teen driving. A total of 658 parents and their 16-year-old adolescents were recruited from a local MVA site as adolescents successfully tested for provisional licenses. At the MVA, participating parents completed written surveys about expected teen driving during the 1st month of provisional licensure. One month later, 579 parent-teen dyads completed follow-up telephone interviews about teen driving within the past month. On weeks assigned as intervention, parents were exposed to a video and given the video and a driving agreement to take home. In multivariate linear regression analyses, the results indicated that when controlling for selected demographic and baseline psychosocial variables, intervention parents reported more driving rules, restricted driving, limits for high-speed roads, weekend night restrictions, and overall driving limits than did parents in the control group. When compared to control teens, intervention teens reported more limits on passengers, high-speed roads, and night driving, and on overall driving limits, but there were no differences for overall driving or driving under high-risk conditions. In addition, intervention parents were about 3 times, and intervention teens were about 5 times, more likely than controls to report using a parent-teen driving agreement. These results indicate that brief exposure to intervention at an MVA office may help increase parental limits on teen driving.
CONTROL ROD DRIVE MECHANISM FOR A NUCLEAR REACTOR
Hawke, B.C.; Liederbach, F.J.; Lones, W.
1963-05-14
A lead-screw-type control rod drive featuring an electric motor and a fluid motor arranged to provide a selectably alternative driving means is described. The electric motor serves to drive the control rod slowly during normal operation, while the fluid motor, assisted by an automatic declutching of the electric motor, affords high-speed rod insertion during a scram. (AEC)
ERIC Educational Resources Information Center
Brooks, Johnell O.; Mossey, Mary E.; Tyler, Peg; Collins, James C.
2014-01-01
Research examining driver training for young adults with intellectual disabilities has been limited since the 1970s. The current pilot and exploratory study investigated teaching pre-driving skills (i.e. lane keeping and speed maintenance) to young adults with intellectual disabilities using an interactive driving simulator to provide dynamic and…
The limits of modifying migration speed to adjust to climate change
NASA Astrophysics Data System (ADS)
Schmaljohann, Heiko; Both, Christiaan
2017-08-01
Predicting the range of variation over which organisms can adjust to environmental change is a major challenge in ecology. This is exemplified in migratory birds which experience changes in different habitats throughout the annual cycle. Earlier studies showed European population trends declining strongest in migrant species with least adjustment in spring arrival time. Thus, the increasing mismatches with other trophic levels in seasonal breeding areas probably contribute to their large-scale decline. Here we quantify the potential range of adjusting spring arrival dates through modifying migration speeds by reviewing 49 tracking studies. Among-individual variation in migration speed was mainly determined by the relatively short stop-over duration. Assuming this population response reflects individual phenotypic plasticity, we calculated the potential for phenotypic plasticity to speed-up migration by reducing stop-over duration. Even a 50% reduction would lead to a mere two-day advance in arrival, considering adjustments on the final 2,000 km of the spring journey. Hence, in contrast to previous studies, flexibility in the major determinant of migration duration seems insufficient to adjust to ongoing climate change, and is unlikely to explain some of the observed arrival advancements in long-distance migrants.
9 CFR 313.2 - Handling of livestock.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.2 Handling of livestock. (a) Driving of livestock from the... normal walking speed. (b) Electric prods, canvas slappers, or other implements employed to drive animals..., would cause injury or unnecessary pain to the animal shall not be used to drive livestock. (d) Disabled...
9 CFR 313.2 - Handling of livestock.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.2 Handling of livestock. (a) Driving of livestock from the... normal walking speed. (b) Electric prods, canvas slappers, or other implements employed to drive animals..., would cause injury or unnecessary pain to the animal shall not be used to drive livestock. (d) Disabled...
9 CFR 313.2 - Handling of livestock.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CERTIFICATION HUMANE SLAUGHTER OF LIVESTOCK § 313.2 Handling of livestock. (a) Driving of livestock from the... normal walking speed. (b) Electric prods, canvas slappers, or other implements employed to drive animals..., would cause injury or unnecessary pain to the animal shall not be used to drive livestock. (d) Disabled...
Dynamic performance of high speed solenoid valve with parallel coils
NASA Astrophysics Data System (ADS)
Kong, Xiaowu; Li, Shizhen
2014-07-01
The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.
A meta-analysis of the effects of texting on driving.
Caird, Jeff K; Johnston, Kate A; Willness, Chelsea R; Asbridge, Mark; Steel, Piers
2014-10-01
Text messaging while driving is considered dangerous and known to produce injuries and fatalities. However, the effects of text messaging on driving performance have not been synthesized or summarily estimated. All available experimental studies that measured the effects of text messaging on driving were identified through database searches using variants of "driving" and "texting" without restriction on year of publication through March 2014. Of the 1476 abstracts reviewed, 82 met general inclusion criteria. Of these, 28 studies were found to sufficiently compare reading or typing text messages while driving with a control or baseline condition. Independent variables (text-messaging tasks) were coded as typing, reading, or a combination of both. Dependent variables included eye movements, stimulus detection, reaction time, collisions, lane positioning, speed and headway. Statistics were extracted from studies to compute effect sizes (rc). A total sample of 977 participants from 28 experimental studies yielded 234 effect size estimates of the relationships among independent and dependent variables. Typing and reading text messages while driving adversely affected eye movements, stimulus detection, reaction time, collisions, lane positioning, speed and headway. Typing text messages alone produced similar decrements as typing and reading, whereas reading alone had smaller decrements over fewer dependent variables. Typing and reading text messages affects drivers' capability to adequately direct attention to the roadway, respond to important traffic events, control a vehicle within a lane and maintain speed and headway. This meta-analysis provides convergent evidence that texting compromises the safety of the driver, passengers and other road users. Combined efforts, including legislation, enforcement, blocking technologies, parent modeling, social media, social norms and education, will be required to prevent continued deaths and injuries from texting and driving. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade
NASA Astrophysics Data System (ADS)
Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.
2016-08-01
To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.
NASA Technical Reports Server (NTRS)
Page, V. R.; Eckert, W. T.; Mort, K. W.
1977-01-01
An experimental, aerodynamic investigation was made of two 1.83 m diameter fan systems which are being considered for the repowered drive section of the 40- by 80-foot wind tunnel at NASA Ames Research Center. One system was low speed, the other was high speed. The low speed fan was tested at various stagger angles from 32.9 deg to 62.9 deg. At a fan blade stagger angle of 40.8 deg and operating at a tip speed of 1155 m/sec, the low speed fan developed 207.3 m of head. The high speed fan had a design blade stagger angle of 56.2 deg and was tested at this stagger angle only. The high speed fan operating at 191.5 m/sec developed 207.3 m of head. Radial distributions of static pressure coefficients, total pressure coefficients, and angles of swirl are presented. Radial surveys were conducted at four azimuth locations in front of the fan, and repeated downstream of the fan. Data were taken for various flow control devices and for two inlet contraction lengths.
Klarborg, Brith; Lahrmann, Harry; NielsAgerholm; Tradisauskas, Nerius; Harms, Lisbeth
2012-09-01
Intelligent speed adaptation (ISA) was tested as an assistive device for drivers with an acquired brain injury (ABI). The study was part of the "Pay as You Speed" project (PAYS) and used the same equipment and technology as the main study (Lahrmann et al., in press-a, in press-b). Two drivers with ABI were recruited as subjects and had ISA equipment installed in their private vehicle. Their speed was logged with ISA equipment for a total of 30 weeks of which 12 weeks were with an active ISA user interface (6 weeks=Baseline 1; 12 weeks=ISA period; 12 weeks=Baseline 2). The subjects participated in two semi-structured interviews concerning their strategies for driving with ABI and for driving with ISA. Furthermore, they gave consent to have data from their clinical journals and be a part of the study. The two subjects did not report any instances of being distracted or confused by ISA, and in general they described driving with ISA as relaxed. ISA reduced the percentage of the total distance that was driven with a speed above the speed limit (PDA), but the subjects relapsed to their previous PDA level in Baseline 2. This suggests that ISA is more suited as a permanent assistive device (i.e. cognitive prosthesis) than as a temporary training device. As ABI is associated with a multitude of cognitive deficits, we developed a conceptual framework, which focused on the cognitive parameters that have been shown to relate to speeding behaviour, namely "intention to speed" and "inattention to speeding". The subjects' combined status on the two independent parameters made up their "speeding profile". A comparison of the speeding profiles and the speed logs indicated that ISA in the present study was more efficient in reducing inattention to speeding than affecting intention to speed. This finding suggests that ISA might be more suited for some neuropsychological profiles than for others, and that customisation of ISA for different neuropsychological profiles may be required. However, further studies with more subjects are needed in order to be conclusive on these issues. Copyright © 2011 Elsevier Ltd. All rights reserved.
Electric propulsion system for wheeled vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, J.A.
1981-11-03
An electric propulsion system for a wheeled vehicle has a generator and motor connected to a drive shaft and an electrical system for charging a battery during all conditions of power transfer from the wheels of the vehicle to the generator to minimize energy required for propulsion. A variable speed power coupling unit connecting the motor to the drive shaft has sprockets revolving about a belt connected sun sprocket with speed control effected by varying the rate of satellite sprocket rotation.
High-speed reference-beam-angle control technique for holographic memory drive
NASA Astrophysics Data System (ADS)
Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi
2016-09-01
We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.
Chung, Yi-Shih
2015-09-01
An increasing amount of evidence suggests that aberrant driving behaviors are not entirely rational. On the basis of the dual-process theory, this study postulates that drivers may learn to perform irrational aberrant driving behaviors, and these behaviors could be derived either from a deliberate or an intuitive decision-making approach. Accordingly, a seemingly irrational driving behavior model is proposed; in this model, the theory of planned behavior (TPB) was adopted to represent the deliberate decision-making mechanism, and habit strength was incorporated to reflect the intuitive decision process. A multiple trivariate mediation structure was designed to reflect the process through which driving behaviors are learned. Anticipated affective reactions (AARs) were further included to examine the effect of affect on aberrant driving behaviors. Considering the example of speeding behaviors, this study developed scales and conducted a two-wave survey of students in two departments at a university in Northern Taiwan. The analysis results show that habit strength consists of multiple aspects, and frequency of past behavior cannot be a complete repository for accumulating habit strength. Habit strength appeared to be a crucial mediator between intention antecedents (e.g., attitude) and the intention itself. Including habit strength in the TPB model enhanced the explained variance of speeding intention by 26.7%. In addition, AARs were different from attitudes; particularly, young drivers tended to perform speeding behaviors to reduce negative feelings such as regret. The proposed model provides an effective alternative approach for investigating aberrant driving behaviors; corresponding countermeasures are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impact of mobile phone use on car-following behaviour of young drivers.
Saifuzzaman, Mohammad; Haque, Md Mazharul; Zheng, Zuduo; Washington, Simon
2015-09-01
Multitasking, such as the concurrent use of a mobile phone and operating a motor vehicle, is a significant distraction that impairs driving performance and is becoming a leading cause of motor vehicle crashes. This study investigates the impact of mobile phone conversations on car-following behaviour. The CARRS-Q Advanced Driving Simulator was used to test a group of young Australian drivers aged 18-26 years on a car-following task in three randomised phone conditions: baseline (no phone conversation), hands-free and handheld. Repeated measure ANOVA was applied to examine the effect of mobile phone distraction on selected car-following variables such as driving speed, spacing, and time headway. Overall, drivers tended to select slower driving speeds, larger vehicle spacings, and longer time headways when they were engaged in either hands-free or handheld phone conversations, suggesting possible risk compensatory behaviour. In addition, phone conversations while driving influenced car-following behaviour such that variability was increased in driving speeds, vehicle spacings, and acceleration and decelerations. To further investigate car-following behaviour of distracted drivers, driver time headways were modelled using Generalized Estimation Equation (GEE). After controlling for various exogenous factors, the model predicts an increase of 0.33s in time headway when a driver is engaged in hands-free phone conversation and a 0.75s increase for handheld phone conversation. The findings will improve the collective understanding of distraction on driving performance, in particular car following behaviour which is most critical in the determination of rear-end crashes. Copyright © 2015 Elsevier Ltd. All rights reserved.
High-Risk Driving Behaviors among Adolescent Binge-Drinkers
Marcotte, Thomas D.; Bekman, Nicole M.; Meyer, Rachel A.; Brown, Sandra A.
2013-01-01
Background Binge drinking is common among adolescents. Alcohol use, and binge-drinking in particular, has been associated with neurocognitive deficits as well as risk-taking behaviors, which may contribute to negative driving outcomes among adolescents even while sober. Objectives To examine differences in self-reported driving behaviors between adolescent binge-drinkers and a matched sample of controls, including (a) compliance with graduated licensing laws, (b) high risk driving behaviors, and (c) driving outcomes (crashes, traffic tickets). Methods The present study examined driving behaviors and outcomes in adolescent recent binge drinkers (n=21) and demographically and driving history matched controls (n=17), ages 16-18. Results Binge drinkers more frequently violated graduated licensing laws (e.g., driving late at night), and engaged in more “high risk” driving behaviors, such as speeding and using a cell-phone while driving. Binge drinkers had more traffic tickets, crashes and “near crashes” than the control group. In a multivariate analysis, binge drinker status and speeding were the most robust predictors of a crash. Conclusion Binge drinking teens consistently engage in more dangerous driving behaviors and experience more frequent crashes and traffic tickets. They are also less compliant with preventative restrictions placed on youth while they are learning critical safe driving skills. Scientific Significance These findings highlight a need to examine the contribution of underlying traits (such as sensation seeking) and binge-related cognitive changes to these high-risk driving behaviors, which may assist researchers in establishing alternative prevention and policy efforts targeting this population. PMID:22324748
Pedestrian crossing situations: quantification of comfort boundaries to guide intervention timing.
Lubbe, Nils; Rosén, Erik
2014-10-01
Technical systems that warn or brake for vehicle-pedestrian encounters reduce injuries more effectively the earlier an intervention is initiated. However, premature intervention can irritate drivers, leading to system deactivation and, consequently, no injury reduction whatsoever. It has been proposed that no intervention should be initiated as long as attentive drivers are within their comfort zones. This study aims at quantifying driver comfort boundaries for pedestrian crossing situations to offer guidance for the appropriate timing of interventions. Sixty two volunteers drove through an intersection on a test track at 30 and 50km/h. A pedestrian dummy was launched from behind an obstruction towards the driving path of the approaching car. Brake onset indicated discomfort. Time to collision (TTC), longitudinal and lateral distance were measured at brake onset. TTC was independent of driving speed ranging from 2.1 to 4.3s with a median of 3.2s. Longitudinal distance ranged from 19 to 48 meters with an apparent difference between driving speeds. Lateral distances differed slightly, but significantly between driving speeds. The median was 3.1m (3.2m for 30km/h and 2.9m for 50km/h) and values ranged from 1.9 to 4.1m. Lateral distance in seconds ranged from 1.9 to 4.3s with a median value of 3.1s (3.2s for 30km/h and 3.0s for 50km/h). TTC was independent of driving speed, trial order and volunteer age. It might be considered suitable to intervene in situations where, for example, 90% of drivers have exceeded their comfort boundary, i.e. when drivers have already initiated braking. This percentile value translates to intervention at a TTC of 2.5s (95% confidence 2.4-2.7s). The study was limited to Swedish nationals, fully aware drivers, and two driving speeds, but did not investigate behavioural changes due to system interaction. This study showed that TTC at brake onset was a suitable measure for the quantification of driver comfort boundaries in pedestrian crossing situations. All drivers applied their brakes prior to 2.1s TTC. Copyright © 2014 Elsevier Ltd. All rights reserved.
Elzinga, Michael J; van Breugel, Floris; Dickinson, Michael H
2014-06-01
The ability to regulate forward speed is an essential requirement for flying animals. Here, we use a dynamically-scaled robot to study how flapping insects adjust their wing kinematics to regulate and stabilize forward flight. The results suggest that the steady-state lift and thrust requirements at different speeds may be accomplished with quite subtle changes in hovering kinematics, and that these adjustments act primarily by altering the pitch moment. This finding is consistent with prior hypotheses regarding the relationship between body pitch and flight speed in fruit flies. Adjusting the mean stroke position of the wings is a likely mechanism for trimming the pitch moment at all speeds, whereas changes in the mean angle of attack may be required at higher speeds. To ensure stability, the flapping system requires additional pitch damping that increases in magnitude with flight speed. A compensatory reflex driven by fast feedback of pitch rate from the halteres could provide such damping, and would automatically exhibit gain scheduling with flight speed if pitch torque was regulated via changes in stroke deviation. Such a control scheme would provide an elegant solution for stabilization across a wide range of forward flight speeds.
Positive effects of Red Bull® Energy Drink on driving performance during prolonged driving.
Mets, Monique A J; Ketzer, Sander; Blom, Camilla; van Gerven, Maartje H; van Willigenburg, Gitta M; Olivier, Berend; Verster, Joris C
2011-04-01
The purpose of this study was to examine if Red Bull® Energy Drink can counteract sleepiness and driving impairment during prolonged driving. Twenty-four healthy volunteers participated in this double-blind placebo-controlled crossover study. After 2 h of highway driving in the STISIM driving simulator, subjects had a 15-min break and consumed Red Bull® Energy Drink (250 ml) or placebo (Red Bull® Energy Drink without the functional ingredients: caffeine, taurine, glucuronolactone, B vitamins (niacin, pantothenic acid, B6, B12), and inositol) before driving for two additional hours. A third condition comprised 4 h of uninterrupted driving. Primary parameter was the standard deviation of lateral position (SDLP), i.e., the weaving of the car. Secondary parameters included SD speed, subjective driving quality, sleepiness, and mental effort to perform the test. No significant differences were observed during the first 2 h of driving. Red Bull® Energy Drink significantly improved driving relative to placebo: SDLP was significantly reduced during the 3rd (p < 0.046) and 4th hour of driving (p < 0.011). Red Bull® Energy Drink significantly reduced the standard deviation of speed (p < 0.004), improved subjective driving quality (p < 0.0001), and reduced mental effort to perform the test (p < 0.024) during the 3rd hour of driving. Subjective sleepiness was significantly decreased during both the 3rd and 4th hour of driving after Red Bull® Energy Drink (p < 0.001 and p < 0.009, respectively). Relative to uninterrupted driving, Red Bull® Energy Drink significantly improved each parameter. Red Bull® Energy Drink significantly improves driving performance and reduces driver sleepiness during prolonged highway driving.
George, C F P
2004-09-01
Driving is a complex task involving distinct cognitive, perceptual, motor, and decision making skills. After placing the vehicle on the road, the driver must constantly survey the ever changing roadway environment to keep the vehicle in the lane and moving at an appropriate safe speed. This surveillance involves two distinct visual tasks: estimating and responding to the oncoming curvature and controlling lane position. Driving is therefore a divided attention task involving speed and lane control as well as monitoring. To do this in a safe manner requires careful attention and alertness which can be problematic for patients with obstructive sleep apnoea/hypopnoea syndrome (OSAHS) or other sleep disorders.
Dual motor drive vehicle speed synchronization and coordination control strategy
NASA Astrophysics Data System (ADS)
Huang, Hao; Tu, Qunzhang; Jiang, Chenming; Ma, Limin; Li, Pei; Zhang, Hongxing
2018-04-01
Multi-motor driven systems are more and more widely used in the field of electric engineering vehicles, as a result of the road conditions and the variable load of engineering vehicles, makes multi-motors synchronization coordinated control system as a key point of the development of the electric vehicle drive system. This paper based on electrical machinery transmission speed in the process of engineering vehicles headed for coordinated control problem, summarized control strategies at home and abroad in recent years, made analysis and comparison of the characteristics, finally discussed the trend of development of the multi-motor coordination control, provided a reference for synchronized control system research of electric drive engineering vehicles.
Smart sensorless prediction diagnosis of electric drives
NASA Astrophysics Data System (ADS)
Kruglova, TN; Glebov, NA; Shoshiashvili, ME
2017-10-01
In this paper, the discuss diagnostic method and prediction of the technical condition of an electrical motor using artificial intelligent method, based on the combination of fuzzy logic and neural networks, are discussed. The fuzzy sub-model determines the degree of development of each fault. The neural network determines the state of the object as a whole and the number of serviceable work periods for motors actuator. The combination of advanced techniques reduces the learning time and increases the forecasting accuracy. The experimental implementation of the method for electric drive diagnosis and associated equipment is carried out at different speeds. As a result, it was found that this method allows troubleshooting the drive at any given speed.
Simplified fatigue life analysis for traction drive contacts
NASA Technical Reports Server (NTRS)
Rohn, D. A.; Loewenthal, S. H.; Coy, J. J.
1980-01-01
A simplified fatigue life analysis for traction drive contacts of arbitrary geometry is presented. The analysis is based on the Lundberg-Palmgren theory used for rolling-element bearings. The effects of torque, element size, speed, contact ellipse ratio, and the influence of traction coefficient are shown. The analysis shows that within the limits of the available traction coefficient, traction contacts exhibit longest life at high speeds. Multiple, load-sharing roller arrangements have an advantageous effect on system life, torque capacity, power-to-weight ratio and size.
Bringing MapReduce Closer To Data With Active Drives
NASA Astrophysics Data System (ADS)
Golpayegani, N.; Prathapan, S.; Warmka, R.; Wyatt, B.; Halem, M.; Trantham, J. D.; Markey, C. A.
2017-12-01
Moving computation closer to the data location has been a much theorized improvement to computation for decades. The increase in processor performance, the decrease in processor size and power requirement combined with the increase in data intensive computing has created a push to move computation as close to data as possible. We will show the next logical step in this evolution in computing: moving computation directly to storage. Hypothetical systems, known as Active Drives, have been proposed as early as 1998. These Active Drives would have a general-purpose CPU on each disk allowing for computations to be performed on them without the need to transfer the data to the computer over the system bus or via a network. We will utilize Seagate's Active Drives to perform general purpose parallel computing using the MapReduce programming model directly on each drive. We will detail how the MapReduce programming model can be adapted to the Active Drive compute model to perform general purpose computing with comparable results to traditional MapReduce computations performed via Hadoop. We will show how an Active Drive based approach significantly reduces the amount of data leaving the drive when performing several common algorithms: subsetting and gridding. We will show that an Active Drive based design significantly improves data transfer speeds into and out of drives compared to Hadoop's HDFS while at the same time keeping comparable compute speeds as Hadoop.
Imhoff, Sarah; Lavallière, Martin; Germain-Robitaille, Mathieu; Teasdale, Normand; Fait, Philippe
2017-01-01
Background Traumatic brain injury (TBI) causes functional deficits that may significantly interfere with numerous activities of daily living such as driving. We report the case of a 20-year-old woman having lost her driver’s license after sustaining a moderate TBI. Objective We aimed to evaluate the effectiveness of an in-simulator training program with automated feedback on driving performance in a TBI individual. Methods The participant underwent an initial and a final in-simulator driving assessment and 11 in-simulator training sessions with driving-specific automated feedbacks. Driving performance (simulation duration, speed regulation and lateral positioning) was measured in the driving simulator. Results Speeding duration decreased during training sessions from 1.50 ± 0.80 min (4.16 ± 2.22%) to 0.45 ± 0.15 min (0.44 ± 0.42%) but returned to initial duration after removal of feedbacks for the final assessment. Proper lateral positioning improved with training and was maintained at the final assessment. Time spent in an incorrect lateral position decreased from 18.85 min (53.61%) in the initial assessment to 1.51 min (4.64%) on the final assessment. Conclusion Driving simulators represent an interesting therapeutic avenue. Considerable research efforts are needed to confirm the effectiveness of this method for driving rehabilitation of individuals who have sustained a TBI. PMID:28243152
Effects of fatigue on driving performance under different roadway geometries: a simulator study.
Du, Hongji; Zhao, Xiaohua; Zhang, Xingjian; Zhang, Yunlong; Rong, Jian
2015-01-01
This article examines the effects of fatigue on driving performance under different roadway geometries using a driving simulator. Twenty-four participants each completed a driving scenario twice: while alert and while experiencing fatigue. The driving scenario was composed of straight road segments and curves; there were 6 curves with 3 radius values (i.e., 200, 500, and 800 m) and 2 turning directions (i.e., left and right). Analysis was conducted on driving performance measures such as longitudinal speed, steering wheel movements, and lateral position. RESULTS confirmed that decremental changes in driving performance due to fatigue varied among road conditions. On straight segments, drivers' abilities to steer and maintain lane position were impaired, whereas on curves we found decremental changes in the quality of longitudinal speed as well as steering control and keeping the vehicle in the lane. Moreover, the effects of fatigue on driving performance were relative to the radius and direction of the curve. Fatigue impaired drivers' abilities to control the steering wheel, and the impairment proved more obvious on curves. The degree varied significantly as the curve radius changed. Drivers tended to drive closer to the right side due to fatigue, and the impairment in maintaining lane position became more obvious as the right-turn curve radius decreased. Driver fatigue has detrimental effects on driving performance, and the effects differ under different roadway geometries.
Influence of wheelchair front caster wheel on reverse directional stability.
Guo, Songfeng; Cooper, Rory A; Corfman, Tom; Ding, Dan; Grindle, Garrett
2003-01-01
The purpose of this research was to study directional stability during reversing of rear-wheel drive, electric powered wheelchairs (EPW) under different initial front caster orientations. Specifically, the weight distribution differences caused by certain initial caster orientations were examined as a possible mechanism for causing directional instability that could lead to accidents. Directional stability was quantified by measuring the drive direction error of the EPW by a motion analysis system. The ground reaction forces were collected to determine the load on the front casters, as well as back-emf data to attain the speed of the motors. The drive direction error was found to be different for various initial caster orientations. Drive direction error was greatest when both casters were oriented 90 degrees to the left or right, and least when both casters were oriented forward. The results show that drive direction error corresponds to the loading difference on the casters. The data indicates that loading differences may cause asymmetric drag on the casters, which in turn causes unbalanced torque load on the motors. This leads to a difference in motor speed and drive direction error.
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices
Zhang, Zheyu; Dix, Jeffery; Wang, Fei Fred; ...
2017-01-19
This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiCmore » MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.« less
NASA Astrophysics Data System (ADS)
Uma Maheswari, R.; Umamaheswari, R.
2017-02-01
Condition Monitoring System (CMS) substantiates potential economic benefits and enables prognostic maintenance in wind turbine-generator failure prevention. Vibration Monitoring and Analysis is a powerful tool in drive train CMS, which enables the early detection of impending failure/damage. In variable speed drives such as wind turbine-generator drive trains, the vibration signal acquired is of non-stationary and non-linear. The traditional stationary signal processing techniques are inefficient to diagnose the machine faults in time varying conditions. The current research trend in CMS for drive-train focuses on developing/improving non-linear, non-stationary feature extraction and fault classification algorithms to improve fault detection/prediction sensitivity and selectivity and thereby reducing the misdetection and false alarm rates. In literature, review of stationary signal processing algorithms employed in vibration analysis is done at great extent. In this paper, an attempt is made to review the recent research advances in non-linear non-stationary signal processing algorithms particularly suited for variable speed wind turbines.
Design and experimental study of a novel giant magnetostrictive actuator
NASA Astrophysics Data System (ADS)
Xue, Guangming; Zhang, Peilin; He, Zhongbo; Li, Dongwei; Huang, Yingjie; Xie, Wenqiang
2016-12-01
Giant magnetostrictive actuator has been widely used in precise driving occasions for its excellent performance. However, in driving a switching valve, especially the ball-valve in an electronic controlled injector, the actuator can't exhibit its good performance for limits in output displacement and responding speed. A novel giant magnetostrictive actuator, which can reach its maximum displacement for being exerted with no bias magnetic field, is designed in this paper. Simultaneously, elongating of the giant magetostrictive material is converted to shortening of the actuator's axial dimension with the help of an output rod in "T" type. Furthermore, to save responding time, the driving voltage with high opening voltage while low holding voltage is designed. Responding time and output displacement are studied experimentally with the help of a measuring system. From measured results, designed driving voltage can improve the responding speed of actuator displacement quite effectively. And, giant magnetostrictive actuator can output various steady-state displacements to reach more driving effects.
Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor
NASA Astrophysics Data System (ADS)
Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa
2012-04-01
The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.
Marmeleira, José F; Godinho, Mário B; Fernandes, Orlando M
2009-01-01
The purpose of this study was to investigate the effects of participation in an exercise program on several abilities associated with driving performance in older adults. Thirty-two subjects were randomly assigned to either an exercise group (60-81 years, n=16) or a control group (60-82 years, n=16). The exercise program was planned to stress perceptive, cognitive, and physical abilities. It lasted 12 weeks with a periodicity of three sessions of 60 min per week. Assessments were conducted before and after the intervention on behavioral speed (in single- and dual-task conditions), visual attention, psychomotor performance, speed perception (time-to-contact), and executive functioning. Significant positive effects were found at 12-week follow-up resulting from participation in the exercise program. Behavioral speed improvements were found in reaction time, movement time, and response time (both in single- and dual-task conditions); visual attention improvements took place in speed processing and divided attention; psychomotor performance improvements occurred in lower limb mobility. These results showed that exercise is capable of enhancing several abilities relevant for driving performance and safety in older adults and, therefore, should be promoted.
NASA Technical Reports Server (NTRS)
Nagorny, Aleksandr S.; Jansen, Ralph H.; Kankam, M. David
2007-01-01
This paper presents the results of an experimental performance characterization study of a high speed, permanent magnet motor/generator (M/G) and drive applied to a flywheel module. Unlike the conventional electric machine the flywheel M/G is not a separated unit; its stator and rotor are integrated into a flywheel assembly. The M/G rotor is mounted on a flywheel rotor, which is magnetically levitated and sealed within a vacuum chamber during the operation. Thus, it is not possible to test the M/G using direct load measurements with a dynamometer and torque transducer. Accordingly, a new in-situ testing method had to be developed. The paper describes a new flywheel M/G and drive performance evaluation technique, which allows the estimation of the losses, efficiency and power quality of the flywheel high speed permanent magnet M/G, while working in vacuum, over wide frequency and torque ranges. This method does not require any hardware modification nor any special addition to the test rig. This new measurement technique is useful for high-speed applications, when applying an external load is technically difficult.
Influence of tire dynamics on slip ratio estimation of independent driving wheel system
NASA Astrophysics Data System (ADS)
Li, Jianqiu; Song, Ziyou; Wei, Yintao; Ouyang, Minggao
2014-11-01
The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn't equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.
Jäncke, Lutz; Brunner, Béatrice; Esslen, Michaela
2008-07-16
Little is currently known about the neural underpinnings of the cognitive control of driving behavior in realistic situations and of the driver's speeding behavior in particular. In this study, participants drove in realistic scenarios presented in a high-end driving simulator. Scalp-recorded EEG oscillations in the alpha-band (8-13 Hz) with a 30-electrode montage were recorded while the participants drove under different conditions: (i) excessively fast (Fast), (ii) in a controlled manner at a safe speed (Correct), and (iii) impatiently in the context of testing traffic conditions (Impatient). Intracerebral sources of alpha-band activation were estimated using low resolution electrical tomography. Given that previous studies have shown a strong negative correlation between the Bold response in the frontal cortex and the alpha-band power, we used alpha-band-related activity as an estimation of frontal activation. Statistical analysis revealed more alpha-band-related activity (i.e. less neuronal activation) in the right lateral prefrontal cortex, including the dorsolateral prefrontal cortex, during fast driving. Those participants who speeded most and exhibited greater risk-taking behavior demonstrated stronger alpha-related activity (i.e. less neuronal activation) in the left anterior lateral prefrontal cortex. These findings are discussed in the context of current theories about the role of the lateral prefrontal cortex in controlling risk-taking behavior, task switching, and multitasking.
NASA Technical Reports Server (NTRS)
DeSmidt, Hans A.; Smith, Edward C.; Bill, Robert C.; Wang, Kon-Well
2013-01-01
This project develops comprehensive modeling and simulation tools for analysis of variable rotor speed helicopter propulsion system dynamics. The Comprehensive Variable-Speed Rotorcraft Propulsion Modeling (CVSRPM) tool developed in this research is used to investigate coupled rotor/engine/fuel control/gearbox/shaft/clutch/flight control system dynamic interactions for several variable rotor speed mission scenarios. In this investigation, a prototypical two-speed Dual-Clutch Transmission (DCT) is proposed and designed to achieve 50 percent rotor speed variation. The comprehensive modeling tool developed in this study is utilized to analyze the two-speed shift response of both a conventional single rotor helicopter and a tiltrotor drive system. In the tiltrotor system, both a Parallel Shift Control (PSC) strategy and a Sequential Shift Control (SSC) strategy for constant and variable forward speed mission profiles are analyzed. Under the PSC strategy, selecting clutch shift-rate results in a design tradeoff between transient engine surge margins and clutch frictional power dissipation. In the case of SSC, clutch power dissipation is drastically reduced in exchange for the necessity to disengage one engine at a time which requires a multi-DCT drive system topology. In addition to comprehensive simulations, several sections are dedicated to detailed analysis of driveline subsystem components under variable speed operation. In particular an aeroelastic simulation of a stiff in-plane rotor using nonlinear quasi-steady blade element theory was conducted to investigate variable speed rotor dynamics. It was found that 2/rev and 4/rev flap and lag vibrations were significant during resonance crossings with 4/rev lagwise loads being directly transferred into drive-system torque disturbances. To capture the clutch engagement dynamics, a nonlinear stick-slip clutch torque model is developed. Also, a transient gas-turbine engine model based on first principles mean-line compressor and turbine approximations is developed. Finally an analysis of high frequency gear dynamics including the effect of tooth mesh stiffness variation under variable speed operation is conducted including experimental validation. Through exploring the interactions between the various subsystems, this investigation provides important insights into the continuing development of variable-speed rotorcraft propulsion systems.
Orshansky, Jr. deceased, Elias; Weseloh, William E.
1978-01-01
A power transmission having three planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the three sun gears, all of which are connected together. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft also drives the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the third planetary assembly drives the ring gear of the second planetary assembly, and a first clutching means connects the second carrier with the output in a second range, the brake for grounding the first carrier then being released. A second clutching means enables the third ring gear to drive the output shaft in a third range.
NASA Technical Reports Server (NTRS)
Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.
2010-01-01
The Offset Compound Gear Drive is an in-line, discrete, two-speed device utilizing a special offset compound gear that has both an internal tooth configuration on the input end and external tooth configuration on the output end, thus allowing it to mesh in series, simultaneously, with both a smaller external tooth input gear and a larger internal tooth output gear. This unique geometry and offset axis permits the compound gear to mesh with the smaller diameter input gear and the larger diameter output gear, both of which are on the same central, or primary, centerline. This configuration results in a compact in-line reduction gear set consisting of fewer gears and bearings than a conventional planetary gear train. Switching between the two output ratios is accomplished through a main control clutch and sprag. Power flow to the above is transmitted through concentric power paths. Low-speed operation is accomplished in two meshes. For the purpose of illustrating the low-speed output operation, the following example pitch diameters are given. A 5.0 pitch diameter (PD) input gear to 7.50 PD (internal tooth) intermediate gear (0.667 reduction mesh), and a 7.50 PD (external tooth) intermediate gear to a 10.00 PD output gear (0.750 reduction mesh). Note that it is not required that the intermediate gears on the offset axis be of the same diameter. For this example, the resultant low-speed ratio is 2:1 (output speed = 0.500; product of stage one 0.667 reduction and stage two 0.750 stage reduction). The design is not restricted to the example pitch diameters, or output ratio. From the output gear, power is transmitted through a hollow drive shaft, which, in turn, drives a sprag during which time the main clutch is disengaged.
Hydraulic system for a ratio change transmission
Kalns, Ilmars
1981-01-01
Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.
MOD-0A 200 kW wind turbine generator design and analysis report
NASA Astrophysics Data System (ADS)
Anderson, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-08-01
The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented.
MOD-0A 200 kW wind turbine generator design and analysis report
NASA Technical Reports Server (NTRS)
Anderson, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-01-01
The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented.
Housing assembly for electric vehicle transaxle
Kalns, Ilmars
1981-01-01
Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.
Yannis, George; Laiou, Alexandra; Papantoniou, Panagiotis; Christoforou, Charalambos
2014-06-01
This research aims to investigate the impact of texting on the behavior and safety of young drivers on urban and rural roads. A driving simulator experiment was carried out in which 34 young participants drove in different driving scenarios; specifically, driving in good weather, in raining conditions, in daylight and in night were examined. Lognormal regression methods were used to investigate the influence of texting as well as various other parameters on the mean speed and mean reaction time. Binary logistic methods were used to investigate the influence of texting use as well as various other parameters in the probability of an accident. It appears that texting leads to statistically significant decrease of the mean speed and increase of the mean reaction time in urban and rural road environment. Simultaneously, it leads to an increased accident probability due to driver distraction and delayed reaction at the moment of the incident. It appeared that drivers using mobile phones with a touch screen present different driving behavior with respect to their speed, however, they had an even higher probability of being involved in an accident. The analysis of the distracted driving performance of drivers who are texting while driving may allow for the identification of measures for the improvement of driving performance (e.g., restrictive measures, training and licensing, information campaigns). The identification of some of the parameters that have an impact on the behavior and safety of young drivers concerning texting and the consequent results can be exploited by policy decision makers in future efforts for the improvement of road safety. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effectiveness of electronic stability control on single-vehicle accidents.
Lyckegaard, Allan; Hels, Tove; Bernhoft, Inger Marie
2015-01-01
This study aims at evaluating the effectiveness of electronic stability control (ESC) on single-vehicle injury accidents while controlling for a number of confounders influencing the accident risk. Using police-registered injury accidents from 2004 to 2011 in Denmark with cars manufactured in the period 1998 to 2011 and the principle of induced exposure, 2 measures of the effectiveness of ESC were calculated: The crude odds ratio and the adjusted odds ratio, the latter by means of logistic regression. The logistic regression controlled for a number of confounding factors, of which the following were significant. For the driver: Age, gender, driving experience, valid driving license, and seat belt use. For the vehicle: Year of registration, weight, and ESC. For the accident surroundings: Visibility, light, and location. Finally, for the road: Speed limit, surface, and section characteristics. The present study calculated the crude odds ratio for ESC-equipped cars of getting in a single-vehicle injury accident as 0.40 (95% confidence interval [CI], 0.34-0.47) and the adjusted odds ratio as 0.69 (95% CI, 0.54-0.88). No difference was found in the effectiveness of ESC across the injury severity categories (slight, severe, and fatal). In line with previous results, this study concludes that ESC reduces the risk for single-vehicle injury accidents by 31% when controlling for various confounding factors related to the driver, the car, and the accident surroundings. Furthermore, it is concluded that it is important to control for human factors (at a minimum age and gender) in analyses where evaluations of this type are performed.
Daniels, Stijn; Vanrie, Jan; Dreesen, An; Brijs, Tom
2010-05-01
Although speed limits are indicated by road signs, road users are not always aware, while driving, of the actual speed limit on a given road segment. The Roads and Traffic Agency developed additional road markings in order to support driver decisions on speed on 70 km/h roads in Flanders-Belgium. In this paper the results are presented of two evaluation studies, both a field study and a simulator study, on the effects of the additional road markings on speed behaviour. The results of the field study showed no substantial effect of the markings on speed behaviour. Neither did the simulator study, with slightly different stimuli. Nevertheless an effect on lateral position was noticed in the simulator study, showing at least some effect of the markings. The role of conspicuity of design elements and expectations towards traffic environments is discussed. Both studies illustrate well some strengths and weaknesses of observational field studies compared to experimental simulator studies. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Constant Switching Frequency DTC for Matrix Converter Fed Speed Sensorless Induction Motor Drive
NASA Astrophysics Data System (ADS)
Mir, Tabish Nazir; Singh, Bhim; Bhat, Abdul Hamid
2018-05-01
The paper presents a constant switching frequency scheme for speed sensorless Direct Torque Control (DTC) of Matrix Converter fed Induction Motor Drive. The use of matrix converter facilitates improved power quality on input as well as motor side, along with Input Power Factor control, besides eliminating the need for heavy passive elements. Moreover, DTC through Space Vector Modulation helps in achieving a fast control over the torque and flux of the motor, with added benefit of constant switching frequency. A constant switching frequency aids in maintaining desired power quality of AC mains current even at low motor speeds, and simplifies input filter design of the matrix converter, as compared to conventional hysteresis based DTC. Further, stator voltage estimation from sensed input voltage, and subsequent stator (and rotor) flux estimation is done. For speed sensorless operation, a Model Reference Adaptive System is used, which emulates the speed dependent rotor flux equations of the induction motor. The error between conventionally estimated rotor flux (reference model) and the rotor flux estimated through the adaptive observer is processed through PI controller to generate the rotor speed estimate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajauria, Sukumar, E-mail: sukumar.rajauria@hgst.com; Canchi, Sripathi V., E-mail: sripathi.canchi@hgst.com; Schreck, Erhard
The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein the head and the disk are less than 10 nm apart and move at sliding speeds of 5–10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head andmore » the disk leads to friction, wear, and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface is extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.« less
Zhao, Xiaohua; Wu, Yiping; Rong, Jian; Ma, Jianming
2015-02-01
To develop a practicable and clear guideline for implementing Chevrons on China's highways, it is necessary to understand the effect of Chevrons on driving performance in different roadway geometries. Using a driving simulator, this study tests the effect of China's Chevrons on vehicle speed and lane position on two-lane rural highway horizontal curves with different roadway geometries. The results showed a significant effect of Chevrons on speed reduction, and this function was not significantly affected by curve radius but was statistically affected by curve direction. The speed reduction caused by Chevrons was also significant at the approach of curve, middle of curve and point of tangent. The 85th percentile speed was also markedly lower when Chevrons were present. We also found a significant effect of Chevrons in encouraging participants to drive the vehicle with a more proper lane position at the first half of curves; and this function was slightly affected by curve radius. Meanwhile, the effect of Chevrons on keeping drivers staying in a more stable lane position was also statistically significant at the second half of curves. In sharp curves, the function of Chevrons to make drivers keep a stable lane position was lost. Besides, the impact of curve direction on the function of Chevrons on lane position was always present, and drivers would drive slightly away from Chevrons. Regardless of the curve radius, China's Chevrons at horizontal curves provide an advance warning, speed control and lane position guide for traffic on the nearside of Chevrons. Besides, combing with the function of Chevrons on preventing excessive speed and the benefit to make drivers keep a more proper lane position, China's Chevrons appear to be of great benefit to reduce crashes (e.g., run-off-road) in curves. Copyright © 2014 Elsevier Ltd. All rights reserved.
Underage driving as an indicator of risky behavior in children and adolescents.
Huber, J Charles; Carozza, Susan E; Gorman, Dennis M
2006-05-01
Driving among children and adolescents below the legal driving age in Texas was examined. There were 4170 accidents between 1995 and 2000 (66.5% involved injury/fatality). Drivers were more often male, and underage driving was greatest during the late afternoon/early evening. Risk of severe injury or death was inversely related to speed and nighttime driving, and was greater in rural areas, in accidents involving passengers and among black children and youth compared with white.
On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.
Kear, Tom; Niemeier, D A
2006-12-15
This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englebretson, Steven; Ouyang, Wen; Tschida, Colin
This report summarizes the activities conducted under the DOE-EERE funded project DE-EE0006400, where ABB Inc. (ABB), in collaboration with Texas A&M’s Advanced Electric Machines & Power Electronics (EMPE) Lab and Resolute Marine Energy (RME) designed, derisked, developed, and demonstrated a novel magnetically geared electrical generator for direct-drive, low-speed, high torque MHK applications The project objective was to investigate a novel and compact direct-drive electric generator and its system aspects that would enable elimination of hydraulic components in the Power Take-Off (PTO) of a Marine and Hydrokinetic (MHK) system with an oscillating wave surge converter (OWSC), thereby improving the availability ofmore » the MHK system. The scope of this project was limited to the development and dry lab demonstration of a low speed generator to enable future direct drive MHK systems.« less
The effects of alcohol on driver performance in a decision making situation
NASA Technical Reports Server (NTRS)
Allen, R. W.; Schwartz, S. H.; Stein, A. C.; Hogge, J. R.
1978-01-01
The results are reviewed of driving simulator and in-vehicle field test experiments of alcohol effects on driver risk taking. The objective was to investigate changes in risk taking under alcoholic intoxication and relate these changes to effects on traffic safety. The experiments involved complex 15 minute driving scenarios requiring decision making and steering and speed control throughout a series of typical driving situations. Monetary rewards and penalties were employed to simulate the real-world motivations inherent in driving. A full placebo experimental design was employed, and measures related to traffic safety, driver/vehicle performance and driver behavior were obtained. Alcohol impairment was found to increase the rate of accidents and speeding tickets. Behavioral measures showed these traffic safety effects to be due to impaired psychomotor performance and perceptual distortions. Subjective estimates of risk failed to show any change in the driver's willingness to take risks when intoxicated.
Houtenbos, M; de Winter, J C F; Hale, A R; Wieringa, P A; Hagenzieker, M P
2017-04-01
A large portion of road traffic crashes occur at intersections for the reason that drivers lack necessary visual information. This research examined the effects of an audio-visual display that provides real-time sonification and visualization of the speed and direction of another car approaching the crossroads on an intersecting road. The location of red blinking lights (left vs. right on the speedometer) and the lateral input direction of beeps (left vs. right ear in headphones) corresponded to the direction from where the other car approached, and the blink and beep rates were a function of the approaching car's speed. Two driving simulators were linked so that the participant and the experimenter drove in the same virtual world. Participants (N = 25) completed four sessions (two with the audio-visual display on, two with the audio-visual display off), each session consisting of 22 intersections at which the experimenter approached from the left or right and either maintained speed or slowed down. Compared to driving with the display off, the audio-visual display resulted in enhanced traffic efficiency (i.e., greater mean speed, less coasting) while not compromising safety (i.e., the time gap between the two vehicles was equivalent). A post-experiment questionnaire showed that the beeps were regarded as more useful than the lights. It is argued that the audio-visual display is a promising means of supporting drivers until fully automated driving is technically feasible. Copyright © 2016. Published by Elsevier Ltd.
Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.
Chen, Rong; Kusano, Kristofer D; Gabler, Hampton C
2015-01-01
Lane changes with the intention to overtake the vehicle in front are especially challenging scenarios for forward collision warning (FCW) designs. These overtaking maneuvers can occur at high relative vehicle speeds and often involve no brake and/or turn signal application. Therefore, overtaking presents the potential of erroneously triggering the FCW. A better understanding of driver behavior during lane change events can improve designs of this human-machine interface and increase driver acceptance of FCW. The objective of this study was to aid FCW design by characterizing driver behavior during lane change events using naturalistic driving study data. The analysis was based on data from the 100-Car Naturalistic Driving Study, collected by the Virginia Tech Transportation Institute. The 100-Car study contains approximately 1.2 million vehicle miles of driving and 43,000 h of data collected from 108 primary drivers. In order to identify overtaking maneuvers from a large sample of driving data, an algorithm to automatically identify overtaking events was developed. The lead vehicle and minimum time to collision (TTC) at the start of lane change events was identified using radar processing techniques developed in a previous study. The lane change identification algorithm was validated against video analysis, which manually identified 1,425 lane change events from approximately 126 full trips. Forty-five drivers with valid time series data were selected from the 100-Car study. From the sample of drivers, our algorithm identified 326,238 lane change events. A total of 90,639 lane change events were found to involve a closing lead vehicle. Lane change events were evenly distributed between left side and right side lane changes. The characterization of lane change frequency and minimum TTC was divided into 10 mph speed bins for vehicle travel speeds between 10 and 90 mph. For all lane change events with a closing lead vehicle, the results showed that drivers change lanes most frequently in the 40-50 mph speed range. Minimum TTC was found to increase with travel speed. The variability in minimum TTC between drivers also increased with travel speed. This study developed and validated an algorithm to detect lane change events in the 100-Car Naturalistic Driving Study and characterized lane change events in the database. The characterization of driver behavior in lane change events showed that driver lane change frequency and minimum TTC vary with travel speed. The characterization of overtaking maneuvers from this study will aid in improving the overall effectiveness of FCW systems by providing active safety system designers with further understanding of driver action in overtaking maneuvers, thereby increasing system warning accuracy, reducing erroneous warnings, and improving driver acceptance.
Validating a driving simulator using surrogate safety measures.
Yan, Xuedong; Abdel-Aty, Mohamed; Radwan, Essam; Wang, Xuesong; Chilakapati, Praveen
2008-01-01
Traffic crash statistics and previous research have shown an increased risk of traffic crashes at signalized intersections. How to diagnose safety problems and develop effective countermeasures to reduce crash rate at intersections is a key task for traffic engineers and researchers. This study aims at investigating whether the driving simulator can be used as a valid tool to assess traffic safety at signalized intersections. In support of the research objective, this simulator validity study was conducted from two perspectives, a traffic parameter (speed) and a safety parameter (crash history). A signalized intersection with as many important features (including roadway geometries, traffic control devices, intersection surroundings, and buildings) was replicated into a high-fidelity driving simulator. A driving simulator experiment with eight scenarios at the intersection were conducted to determine if the subjects' speed behavior and traffic risk patterns in the driving simulator were similar to what were found at the real intersection. The experiment results showed that speed data observed from the field and in the simulator experiment both follow normal distributions and have equal means for each intersection approach, which validated the driving simulator in absolute terms. Furthermore, this study used an innovative approach of using surrogate safety measures from the simulator to contrast with the crash analysis for the field data. The simulator experiment results indicated that compared to the right-turn lane with the low rear-end crash history record (2 crashes), subjects showed a series of more risky behaviors at the right-turn lane with the high rear-end crash history record (16 crashes), including higher deceleration rate (1.80+/-1.20 m/s(2) versus 0.80+/-0.65 m/s(2)), higher non-stop right-turn rate on red (81.67% versus 57.63%), higher right-turn speed as stop line (18.38+/-8.90 km/h versus 14.68+/-6.04 km/h), shorter following distance (30.19+/-13.43 m versus 35.58+/-13.41 m), and higher rear-end probability (9/59=0.153 versus 2/60=0.033). Therefore, the relative validity of driving simulator was well established for the traffic safety studies at signalized intersections.
Design of motion adjusting system for space camera based on ultrasonic motor
NASA Astrophysics Data System (ADS)
Xu, Kai; Jin, Guang; Gu, Song; Yan, Yong; Sun, Zhiyuan
2011-08-01
Drift angle is a transverse intersection angle of vector of image motion of the space camera. Adjusting the angle could reduce the influence on image quality. Ultrasonic motor (USM) is a new type of actuator using ultrasonic wave stimulated by piezoelectric ceramics. They have many advantages in comparison with conventional electromagnetic motors. In this paper, some improvement was designed for control system of drift adjusting mechanism. Based on ultrasonic motor T-60 was designed the drift adjusting system, which is composed of the drift adjusting mechanical frame, the ultrasonic motor, the driver of Ultrasonic Motor, the photoelectric encoder and the drift adjusting controller. The TMS320F28335 DSP was adopted as the calculation and control processor, photoelectric encoder was used as sensor of position closed loop system and the voltage driving circuit designed as generator of ultrasonic wave. It was built the mathematic model of drive circuit of the ultrasonic motor T-60 using matlab modules. In order to verify the validity of the drift adjusting system, was introduced the source of the disturbance, and made simulation analysis. It designed the control systems of motor drive for drift adjusting system with the improved PID control. The drift angle adjusting system has such advantages as the small space, simple configuration, high position control precision, fine repeatability, self locking property and low powers. It showed that the system could accomplish the mission of drift angle adjusting excellent.
Wheel speed management control system for spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.
Predictors of older drivers' involvement in high-range speeding behavior.
Chevalier, Anna; Coxon, Kristy; Rogers, Kris; Chevalier, Aran John; Wall, John; Brown, Julie; Clarke, Elizabeth; Ivers, Rebecca; Keay, Lisa
2017-02-17
Even small increases in vehicle speed raise crash risk and resulting injury severity. Older drivers are at increased risk of involvement in casualty crashes and injury compared to younger drivers. However, there is little objective evidence about older drivers' speeding. This study investigates the nature and predictors of high-range speeding among drivers aged 75-94 years. Speed per second was estimated using Global Positioning System devices installed in participants' vehicles. High-range speeding events were defined as traveling an average 10+km/h above the speed limit over 30 seconds. Descriptive analysis examined speeding events by participant characteristics and mileage driven. Regression analyses were used to examine the association between involvement in high-range speeding events and possible predictive factors. Most (96%, 182/190) participants agreed to have their vehicle instrumented, and speeding events were accurately recorded for 97% (177/182) of participants. While 77% (136/177) of participants were involved in one or more high-range events, 42% (75/177) were involved in greater than five events during 12-months of data collection. Participants involved in high-range events drove approximately twice as many kilometres as those not involved. High-range events tended to be infrequent (median = 6 per 10,000 km; IQR = 2-18). The rate of high-range speeding was associated with better cognitive function and attention to the driving environment. This suggests those older drivers with poorer cognition and visual attention may drive more cautiously, thereby reducing their high-range speeding behavior.
Linking mind wandering tendency to risky driving in young male drivers.
Albert, Derek A; Ouimet, Marie Claude; Jarret, Julien; Cloutier, Marie-Soleil; Paquette, Martin; Badeau, Nancy; Brown, Thomas G
2018-02-01
Risky driving is a significant contributor to road traffic crashes, especially in young drivers. Transient mind wandering states, an internal form of distraction, are associated with faster driving, reduced headway distance, slower response times, reduced driver vigilance, and increased crash risk. It is unclear whether a trait tendency to mind wander predicts risky driving, however. Mind wandering is also associated with poor executive control, but whether this capacity moderates the putative link between mind wandering tendency and risky driving is uncertain. The present study tested whether mind wandering tendency predicts risky driving behaviour in young male drivers aged 18-21 (N=30) and whether this relationship is mediated by driver vigilance and moderated by executive control capacity. Mind wandering was measured with the Sustained Attention to Response Task (SART) and the Daydreaming Frequency Scale (DDFS). Risky driving was assessed by mean speed in a driving simulator and driver vigilance was quantified by horizontal eye movements measured with eye tracking. Results showed that greater mind wandering tendency based on SART performance significantly predicts faster mean speed, confirming the main hypothesis. Neither driver vigilance mediated nor executive control capacity moderated this relationship as hypothesized. These findings speak to the complexity of individual differences in mind wandering. Overall, mind wandering tendency is a significant marker of risky driving in young drivers, which could guide the development of targeted interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Starkey, Nicola J; Charlton, Samuel G
2014-07-01
Alcohol has an adverse effect on driving performance; however, the effects of moderate doses on different aspects of the driving task are inconsistent and differ across the intoxication curve. This research aimed to investigate driving and cognitive performance asymmetries (acute tolerance and acute protracted error) accompanying the onset and recovery from moderate alcohol consumption. Sixty-one participants received a placebo, medium (target blood alcohol concentration [BAC] 0.05 mg/ml) or high (target BAC 0.08 mg/ml) dose of alcohol. Participants completed a simulated drive, cognitive tests and subjective rating scales five times over a 3.5 h period. When ascending and descending BACs (0.05 and 0.09 mg/ml) were compared participants' self-ratings of intoxication and willingness to drive showed acute tolerance. Acute protracted errors were observed for response speed, maze learning errors, time exceeding the speed limit and exaggerated steering responses to hazards. Participants' estimates of their level of intoxication were poorly related to their actual BAC levels (and hence degree of impairment), and various aspects of driving and cognitive performance worsened during descending BACs. This indicates that drivers are not good at judging their fitness to drive after drinking only moderate amounts of alcohol and suggests an important focus for public education regarding alcohol and driving. Copyright © 2014 John Wiley & Sons, Ltd.
Morrow, Sarah A; Classen, Sherrilene; Monahan, Miriam; Danter, Tim; Taylor, Robert; Krasniuk, Sarah; Rosehart, Heather; He, Wenqing
2017-08-01
Cognitive impairment is common in multiple sclerosis (MS). In other populations, cognitive impairment is known to affect fitness-to-drive. Few studies have focused on fitness-to-drive in MS and no studies have solely focused on the influence of cognitive impairment. To assess fitness-to-drive in persons with MS with cognitive impairment and low physical disability. Persons with MS, aged 18-59 years with EDSS ⩽ 4.0, impaired processing speed, and impairment on at least one measure of memory or executive function, were recruited. Cognition was assessed using the Minimal Assessment of Cognitive Function battery. A formal on-road driving assessment was conducted. Chi-square analysis examined the association between the fitness-to-drive (pass/fail) and the neuropsychological test results (normal/impaired). Bayesian statistics predicting failure of the on-road assessment were calculated. Of 36 subjects, eight (22.2%) were unfit to drive. Only the BVMTR-IR, measuring visual-spatial memory, predicted on-road driving assessment failure ( X 2 ( df = 1, N = 36) = 3.956; p = 0.047) with a sensitivity of 100%, but low specificity (35.7%) due to false positives (18/25). In persons with MS and impaired processing speed, impairment on the BVMTR-IR should lead clinicians to address fitness-to-drive.
Driver's behavioral adaptation to adaptive cruise control (ACC): the case of speed and time headway.
Bianchi Piccinini, Giulio Francesco; Rodrigues, Carlos Manuel; Leitão, Miguel; Simões, Anabela
2014-06-01
The Adaptive Cruise Control is an Advanced Driver Assistance System (ADAS) that allows maintaining given headway and speed, according to settings pre-defined by the users. Despite the potential benefits associated to the utilization of ACC, previous studies warned against negative behavioral adaptations that might occur while driving with the system activated. Unfortunately, up to now, there are no unanimous results about the effects induced by the usage of ACC on speed and time headway to the vehicle in front. Also, few studies were performed including actual users of ACC among the subjects. This research aimed to investigate the effect of the experience gained with ACC on speed and time headway for a group of users of the system. In addition, it explored the impact of ACC usage on speed and time headway for ACC users and regular drivers. A matched sample driving simulator study was planned as a two-way (2×2) repeated measures mixed design, with the experience with ACC as between-subjects factor and the driving condition (with ACC and manually) as within-subjects factor. The results show that the usage of ACC brought a small but not significant reduction of speed and, especially, the maintenance of safer time headways, being the latter result greater for ACC users, probably as a consequence of their experience in using the system. The usage of ACC did not cause any negative behavioral adaptations to the system regarding speed and time headway. Based on this research work, the Adaptive Cruise Control showed the potential to improve road safety for what concerns the speed and the time headway maintained by the drivers. The speed of the surrounding traffic and the minimum time headway settable through the ACC seem to have an important effect on the road safety improvement achievable with the system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Measurements on Compressor-Blade Lattices
NASA Technical Reports Server (NTRS)
Weinig, F.
1948-01-01
At the end & 1940 an investigation of a guide-vane lattice for the compressor of a TL unit [NACA comment: Turbojet] was requested. The greatest possible Mach number had to be attained. The investigation was conducted with an annular lattice subjected to axial flow. A direct-current shunt motor with a useful output of 235 horsepower at en engine speed of 1800 qm was available for driving the necessary blower. In designing the blower the speed was set at 10,000 rpm. A gear box fran an armored car was used as gearing in which supplementary fresh oil lubrication was installed. The gear box was used to step up from low to high speeds. The blower that was designed is two stage. The hub-tip ratios are 0.79 to 0.82; the design pressure coefficient for each stage is 0.6 and the design flow coefficient is 0.4. The rotor dosimeter D sub a is 0.39 meters and the resulting peripheral speed is u sub a = 204 meters per second [NACA comment: Value corrected from the German]. The blower was entirely satisfactory. The construction of the test stand is shown in figure 1. The air flows in through an annular Inlet, which is used in the measurement of the quantity of air, and is deflected into an inward-pointing radial slot. A spiral motion is imparted to the air by a guide-vane installation manually adjustable as desired, which enables injection of the air, after it has been deflected from the radial direction to the axial direction, into the lattice being investigated at any desired angle.
Small passenger car transmission test-Chevrolet 200 transmission
NASA Technical Reports Server (NTRS)
Bujold, M. P.
1980-01-01
The small passenger car transmission was tested to supply electric vehicle manufacturers with technical information regarding the performance of commerically available transmissions which would enable them to design a more energy efficient vehicle. With this information the manufacturers could estimate vehicle driving range as well as speed and torque requirements for specific road load performance characteristics. A 1979 Chevrolet Model 200 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. The transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. Torque, speed and efficiency curves map the complete performance characteristics for Chevrolet Model 200 transmission.
Permanent split capacitor single phase electric motor system
Kirschbaum, Herbert S.
1984-01-01
A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation.
Fitzpatrick, Cole D; Rakasi, Saritha; Knodler, Michael A
2017-01-01
Speed is one of the most important factors in traffic safety as higher speeds are linked to increased crash risk and higher injury severities. Nearly a third of fatal crashes in the United States are designated as "speeding-related", which is defined as either "the driver behavior of exceeding the posted speed limit or driving too fast for conditions." While many studies have utilized the speeding-related designation in safety analyses, no studies have examined the underlying accuracy of this designation. Herein, we investigate the speeding-related crash designation through the development of a series of logistic regression models that were derived from the established speeding-related crash typologies and validated using a blind review, by multiple researchers, of 604 crash narratives. The developed logistic regression model accurately identified crashes which were not originally designated as speeding-related but had crash narratives that suggested speeding as a causative factor. Only 53.4% of crashes designated as speeding-related contained narratives which described speeding as a causative factor. Further investigation of these crashes revealed that the driver contributing code (DCC) of "driving too fast for conditions" was being used in three separate situations. Additionally, this DCC was also incorrectly used when "exceeding the posted speed limit" would likely have been a more appropriate designation. Finally, it was determined that the responding officer only utilized one DCC in 82% of crashes not designated as speeding-related but contained a narrative indicating speed as a contributing causal factor. The use of logistic regression models based upon speeding-related crash typologies offers a promising method by which all possible speeding-related crashes could be identified. Published by Elsevier Ltd.
McLean, David L; Fetcho, Joseph R
2009-10-28
Studies of neuronal networks have revealed few general principles that link patterns of development with later functional roles. While investigating the neural control of movements, we recently discovered a topographic map in the spinal cord of larval zebrafish that relates the position of motoneurons and interneurons to their order of recruitment during swimming. Here, we show that the map reflects an orderly pattern of differentiation of neurons driving different movements. First, we use high-speed filming to show that large-amplitude swimming movements with bending along much of the body appear first, with smaller, regional swimming movements emerging later. Next, using whole-cell patch recordings, we demonstrate that the excitatory circuits that drive large-amplitude, fast swimming movements at larval stages are present and functional early on in embryos. Finally, we systematically assess the orderly emergence of spinal circuits according to swimming speed using transgenic fish expressing the photoconvertible protein Kaede to track neuronal differentiation in vivo. We conclude that a simple principle governs the development of spinal networks in which the neurons driving the fastest, most powerful swimming in larvae develop first with ones that drive increasingly weaker and slower larval movements layered on over time. Because the neurons are arranged by time of differentiation in the spinal cord, the result is a topographic map that represents the speed/strength of movements at which neurons are recruited and the temporal emergence of networks. This pattern may represent a general feature of neuronal network development throughout the brain and spinal cord.
Bhalla, Kavi; Li, Qingfeng; Duan, Leilen; Wang, Yuan; Bishai, David; Hyder, Adnan A
2013-12-01
Road traffic crashes in China kill in excess of 250,000 people annually, more than any other country in the world. They are the fourth leading cause of premature death in the country and are responsible for 2.4% of the burden of non-fatal health loss in the country. Interventions to curb speeding and drunk driving are being implemented in the cities of Suzhou and Dalian since late 2010. We evaluated the ongoing effect of these activities through five roadside surveys, seven rounds of observational studies, and analysis of crash statistics in the two cities. We find that thus far, the prevalence of speeding has not reduced in either city with the notable exception of one site in Dalian, where the percentage of speeding vehicles declined from nearly 70% to below 10% after an interval-based speed enforcement system was installed. The broader deployment of such speed control technologies across China and other countries should be explored. Roadside alcohol testing suggests that prevalence of drunk driving (i.e. BAC >20 mg%) declined from 6.4% to 0.5% in Suzhou and from 1.7% to 0.7% in Dalian during the monitored time period. However, the measured prevalence rates are very low and should be validated against estimates based on hospital studies. Roadside interviews suggest that the population of both cities is already highly sensitized to the risks associated with drunk driving and speeding. Crash statistics from the two cities do not show appreciable declines in injuries and fatalities as yet. However, the possibility of substantial underreporting in crash statistics sourced from traffic police poses a severe threat to monitoring progress towards road safety in Suzhou, Dalian and across China. There is an urgent need for China to invest in a reliable road traffic injury surveillance system that can provide information for describing key risk factors, evaluating the impact of safety policies, and benchmarking achievements. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fractional order PID controller for improvement of PMSM speed control in aerospace applications
NASA Astrophysics Data System (ADS)
Saraji, Ali Motalebi; Ghanbari, Mahmood
2014-12-01
Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.
Dannenmayer, K; Mazouffre, S
2012-12-01
A compact high-speed reciprocating probe system has been developed in order to perform measurements of the plasma parameters by means of electrostatic probes in the discharge and the plume of a Hall thruster. The system is based on a piezoelectric linear drive that can achieve a speed of up to 350 mm/s over a travel range of 90 mm. Due to the high velocity of the linear drive the probe can be rapidly moved in and out the measurement region in order to minimize perturbation of the thruster discharge due to sputtering of probe material. To demonstrate the impact of the new system, a heated emissive probe, installed on the high-speed translation stage, was used to measure the plasma potential and the electron temperature in the near-field plume of a low power Hall thruster.
A model predictive speed tracking control approach for autonomous ground vehicles
NASA Astrophysics Data System (ADS)
Zhu, Min; Chen, Huiyan; Xiong, Guangming
2017-03-01
This paper presents a novel speed tracking control approach based on a model predictive control (MPC) framework for autonomous ground vehicles. A switching algorithm without calibration is proposed to determine the drive or brake control. Combined with a simple inverse longitudinal vehicle model and adaptive regulation of MPC, this algorithm can make use of the engine brake torque for various driving conditions and avoid high frequency oscillations automatically. A simplified quadratic program (QP) solving algorithm is used to reduce the computational time, and the approach has been applied in a 16-bit microcontroller. The performance of the proposed approach is evaluated via simulations and vehicle tests, which were carried out in a range of speed-profile tracking tasks. With a well-designed system structure, high-precision speed control is achieved. The system can robustly model uncertainty and external disturbances, and yields a faster response with less overshoot than a PI controller.
Precision increase in electric drive speed loop of robotic complexes and process lines
NASA Astrophysics Data System (ADS)
Tulegenov, E.; Imanova, A. A.; Platonov, V. V.
2018-05-01
The article presents the principles of synthesis of control structures for highprecision electric drives of robotic complexes and manipulators. It has been theoretically shown and experimentally confirmed that improved characteristics of speed maintenance in the zone of significant overloads are achieved in systems of series excitation. They are achieved due to the redistribution of control signals both in the zone of setting the armature current and in the excitation currents. At the same time, the characteristic of the electromagnetic torque becomes linear because the demagnetizing effect of the armature response is compensated by the setting of the excitation current. It is recommended in those cases when it is necessary to extend the range of speed control with a significant reduction in load to apply structures with two-zone speed control. The regulation of the weakening of the excitation flow is more convenient as a function of the voltage in the armature windings.
Design of PID temperature control system based on STM32
NASA Astrophysics Data System (ADS)
Zhang, Jianxin; Li, Hailin; Ma, Kai; Xue, Liang; Han, Bianhua; Dong, Yuemeng; Tan, Yue; Gu, Chengru
2018-03-01
A rapid and high-accuracy temperature control system was designed using proportional-integral-derivative (PID) control algorithm with STM32 as micro-controller unit (MCU). The temperature control system can be applied in the fields which have high requirements on the response speed and accuracy of temperature control. The temperature acquisition circuit in system adopted Pt1000 resistance thermometer as temperature sensor. Through this acquisition circuit, the monitoring actual temperature signal could be converted into voltage signal and transmitted into MCU. A TLP521-1 photoelectric coupler was matched with BD237 power transistor to drive the thermoelectric cooler (TEC) in FTA951 module. The effective electric power of TEC was controlled by the pulse width modulation (PWM) signals which generated by MCU. The PWM signal parameters could be adjusted timely by PID algorithm according to the difference between monitoring actual temperature and set temperature. The upper computer was used to input the set temperature and monitor the system running state via serial port. The application experiment results show that the temperature control system is featured by simple structure, rapid response speed, good stability and high temperature control accuracy with the error less than ±0.5°C.
Roidl, Ernst; Siebert, Felix Wilhelm; Oehl, Michael; Höger, Rainer
2013-12-01
Maladaptive driving is an important source of self-inflicted accidents and this driving style could include high speeds, speeding violations, and poor lateral control of the vehicle. The literature suggests that certain groups of drivers, such as novice drivers, males, highly motivated drivers, and those who frequently experience anger in traffic, tend to exhibit more maladaptive driving patterns compared to other drivers. Remarkably, no coherent framework is currently available to describe the relationships and distinct influences of these factors. We conducted two studies with the aim of creating a multivariate model that combines the aforementioned factors, describes their relationships, and predicts driving performance more precisely. The studies employed different techniques to elicit emotion and different tracks designed to explore the driving behaviors of participants in potentially anger-provoking situations. Study 1 induced emotions with short film clips. Study 2 confronted the participants with potentially anger-inducing traffic situations during the simulated drive. In both studies, participants who experienced high levels of anger drove faster and exhibited greater longitudinal and lateral acceleration. Furthermore, multiple linear regressions and path-models revealed that highly motivated male drivers displayed the same behavior independent of their emotional state. The results indicate that anger and specific risk characteristics lead to maladaptive changes in important driving parameters and that drivers with these specific risk factors are prone to experience more anger while driving, which further worsens their driving performance. Driver trainings and anger management courses will profit from these findings because they help to improve the validity of assessments of anger related driving behavior. © 2013.
Know Before You Do: Anticipating Maneuvers via Learning Temporal Driving Models
2015-04-01
features/index.htm. Accessed: 2014-09-30. [3] Google self driving car . http://en.wikipedia.org/wiki/ Google driverless car . Accessed: 2014-10-11. [4...and outside the car , GPS, and speed information, with lane and driving maneuver annotations. II. RELATED WORK Assistive features for vehicles . Recent...made driving safer over the last decade. They prepare vehicles for unsafe road conditions and alert drivers if they perform a dangerous maneuver
An ultra-low-cost moving-base driving simulator
DOT National Transportation Integrated Search
2001-11-04
A novel approach to driving simulation is described, one that potentially overcomes the limitations of both motion fidelity and cost. It has become feasible only because of recent advances in computer-based image generation speed and fidelity and in ...
The effect of pavement markings on driving behaviour in curves: a simulator study.
Ariën, Caroline; Brijs, Kris; Vanroelen, Giovanni; Ceulemans, Wesley; Jongen, Ellen M M; Daniels, Stijn; Brijs, Tom; Wets, Geert
2017-05-01
This study investigates the effect of two pavement markings (transverse rumble strips (TRS) and a backward pointing herringbone pattern (HP)) on speed and lateral control in and nearby curves. Two real-world curves with strong indications of a safety problem were replicated as realistic as possible in the simulator. Results show that both speed and lateral control differ between the curves. These behavioural differences are probably due to curve-related dissimilarities with respect to geometric alignment, cross-sectional design and speed limit. TRS and HP both influenced mean speed and mean acceleration/deceleration but not lateral control. TRS generated an earlier and more stable speed reduction than HP which induced significant speed reductions along the curve. The TRS gives drivers more time to generate the right expectations about the upcoming curve. When accidents occur primarily near the curve entry, TRS is recommended. The HP has the potential to reduce accidents at the curve end. Practitioner Summary: Two pavement markings (transversal rumble strips and HP) nearby dangerous curves were investigated in the driving simulator. TRS generated an earlier and more stable speed reduction than HP which induced speed reductions along the curve. The TRS gives drivers more time to generate right expectations about the upcoming curve.
Implementation of Temperature Sequential Controller on Variable Speed Drive
NASA Astrophysics Data System (ADS)
Cheong, Z. X.; Barsoum, N. N.
2008-10-01
There are many pump and motor installations with quite extensive speed variation, such as Sago conveyor, heating, ventilation and air conditioning (HVAC) and water pumping system. A common solution for these applications is to run several fixed speed motors in parallel, with flow control accomplish by turning the motors on and off. This type of control method causes high in-rush current, and adds a risk of damage caused by pressure transients. This paper explains the design and implementation of a temperature speed control system for use in industrial and commercial sectors. Advanced temperature speed control can be achieved by using ABB ACS800 variable speed drive-direct torque sequential control macro, programmable logic controller and temperature transmitter. The principle of direct torque sequential control macro (DTC-SC) is based on the control of torque and flux utilizing the stator flux field orientation over seven preset constant speed. As a result of continuous comparison of ambient temperature to the references temperatures; electromagnetic torque response is particularly fast to the motor state and it is able maintain constant speeds. Experimental tests have been carried out by using ABB ACS800-U1-0003-2, to validate the effectiveness and dynamic respond of ABB ACS800 against temperature variation, loads, and mechanical shocks.
Elliott, Mark A; Lee, Emme; Robertson, Jamie S; Innes, Rhona
2015-01-01
According to the MODE model of attitude-to-behavior processes, attitude accessibility augments attitude-behavior correspondence, reflecting an automatic influence of attitudes on behavior. We therefore tested whether attitude accessibility moderates the attitude-behavior relationship in a context that is governed by characteristically automatic behavior, namely driving. In study 1 (correlational design), participants (N=130) completed online questionnaire measures of the valences and accessibilities of their attitudes towards speeding. Two weeks later, online questionnaire measures of subsequent speeding behavior were obtained. Attitude valence was a significantly better predictor of behavior at high (mean+1SD) versus low (mean-1SD) levels of attitude accessibility. In study 2 (experimental design), attitude accessibility was manipulated with a repeated attitude expression task. Immediately after the manipulation, participants (N=122) completed online questionnaire measures of attitude valence and accessibility, and two weeks later, subsequent speeding behavior. Increased attitude accessibility in the experimental (versus control) condition generated an increase in attitude-behavior correspondence. The findings are consistent with the MODE model's proposition that attitudes can exert an automatic influence on behavior. Interventions to reduce speeding could usefully increase the accessibility of anti-speeding attitudes and reduce the accessibility of pro-speeding attitudes. Copyright © 2014 Elsevier Ltd. All rights reserved.
The MOD-OA 200 kilowatt wind turbine generator design and analysis report
NASA Astrophysics Data System (ADS)
Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-08-01
The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.
The MOD-OA 200 kilowatt wind turbine generator design and analysis report
NASA Technical Reports Server (NTRS)
Andersen, T. S.; Bodenschatz, C. A.; Eggers, A. G.; Hughes, P. S.; Lampe, R. F.; Lipner, M. H.; Schornhorst, J. R.
1980-01-01
The project requirements, approach, system description, design requirements, design, analysis, system tests, installation safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the MOD-OA 200 kw wind turbine generator are discussed. The components, the rotor, driven train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electrical system, and control systems are presented. The rotor includes the blades, hub and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control and Dynamic loads and fatigue are analyzed.
NASA Technical Reports Server (NTRS)
Gallagher, Edward J. (Inventor); Rogers, Thomas H. (Inventor)
2017-01-01
A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be driven at a at a design speed by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool. Rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades includes an airfoil body. The leading edge of the airfoil body has a swept profile such that, at the design speed, a component of a relative velocity vector of a working gas that is normal to the leading edge is subsonic along the entire radial span.
The design of mobile robot control system for the aged and the disabled
NASA Astrophysics Data System (ADS)
Qiang, Wang; Lei, Shi; Xiang, Gao; Jin, Zhang
2017-01-01
This paper designs a control system of mobile robot for the aged and the disabled, which consists of two main parts: human-computer interaction and drive control module. The data of the two parts is transferred via universal asynchronous receiver/transmitter. In the former part, the speed and direction information of the mobile robot is obtained by hall joystick. In the latter part, the electronic differential algorithm is developed to implement the robot mobile function by driving two-wheel motors. In order to improve the comfort of the robot when speed or direction is changed, the least squares algorithm is used to optimize the speed characteristic curves of the two motors. Experimental results have verified the effectiveness of the designed system.
Chen, H Y; Ivers, R Q; Martiniuk, A L C; Boufous, S; Senserrick, T; Woodward, M; Stevenson, M; Norton, R
2010-11-01
Previous studies that found increased crash risks for young drivers of low socioeconomic status (SES) have failed to adjust for factors such as driving exposure and rural residence. This aim of this study is to examine the independent effect of SES on crash risk, adjusting for such factors, and to examine the relationship between injury severity following a crash and SES. Information on risk factors for crash collected from 20,822 newly licenced drivers aged 17-24 years in New South Wales, Australia, as part of the DRIVE Study was prospectively linked to hospitalisation data. SES was classified as high, moderate or low based on the Australia 2001 Socio-Economic Index for Areas. Poisson regression was used to model risk of crash-related hospitalisation by SES, adjusting for confounders. Two measures of injury severity--urgency of treatment and length of hospital stay--were examined by SES. Results of multivariable analysis showed that drivers from low SES areas had increased relative risk (RR 1.8, 95% CI 1.1 to 3.1) of crash-related hospitalisation compared to drivers from high SES areas. This increased risk remained when adjusting for confounders including driving exposure and rurality (RR 1.9, 95% CI 1.1 to 3.2). No significant association was found between injury severity and SES. The higher risk of crash-related hospitalisation for young drivers from low SES areas is independent of driving exposure and rural-urban differences. This finding may help improve and better target interventions for youth of low SES.
Performance testing of EVs in the EPRI/TVA EV program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Driggans, R.L.
1983-01-01
Performance testing has been completed on four electric vehicles: the Grumman-Olson Kubvan, SCT Electric (VW) Pickup, Jet Industries Electrica, and VW Electrotransporter Bus. The tests performed included vehicle dc energy consumption and driving range at constant speeds and on the SAE J227a C cycle, on-road driving range, hill climbing, maximum acceleration, top speed, and braking performance. Descriptions of the vehicles tested and comparisons of major performance parameters on all four vehicles are presented. This testing was performed at the TVA Electric Vehicle Test Facility.
M113 Electric Land Drive Demonstration Project. Volume 1: Vehicle Systems Design and Integration
1992-08-01
pickup for L-final drive output speed MP-5 Magnetic pickup for engine speed Pressure Switches PS-I Pressure switch for gearbox pressure (5 lb/in2 ) PS...2 Pressure switch for ac generator pressure (5 lb/in 2 ) PS-3 Pressure switch for dc generator pressure (5 lb/in2 ) PS-4 Pressure switch for ac...generator-i scavenge pressure (5 lb/in 2 ) PS-5 Pressure switch for ac generator-2 scavenge pressure (5 lb/in2 ) PS-6 Pressure switch for engine
NASA Technical Reports Server (NTRS)
Gallo, C.; Kasuba, R.; Pintz, A.; Spring, J.
1986-01-01
The dynamic analysis of a horizontal axis fixed pitch wind turbine generator (WTG) rated at 56 kW is discussed. A mechanical Continuously Variable Transmission (CVT) was incorporated in the drive train to provide variable speed operation capability. One goal of the dynamic analysis was to determine if variable speed operation, by means of a mechanical CVT, is capable of capturing the transient power in the WTG/wind environment. Another goal was to determine the extent of power regulation possible with CVT operation.
Safety evaluation of curve warning speed signs.
DOT National Transportation Integrated Search
2011-06-01
This report presents a review of a research effort to evaluate the safety implications of advisory speeds at horizontal curve locations on Oregon rural two-lane highways. The primary goals of this research effort were to characterize driving operatio...
Permanent split capacitor single phase electric motor system
Kirschbaum, H.S.
1984-08-14
A permanent split capacitor single phase electric motor achieves balanced operation at more than one operating point by adjusting the voltage supplied to the main and auxiliary windings and adjusting the capacitance in the auxiliary winding circuit. An intermediate voltage tap on an autotransformer supplies voltage to the main winding for low speed operation while a capacitive voltage divider is used to adjust the voltage supplied to the auxiliary winding for low speed operation. 4 figs.
Virtual reality technology prevents accidents in extreme situations
NASA Astrophysics Data System (ADS)
Badihi, Y.; Reiff, M. N.; Beychok, S.
2012-03-01
This research is aimed at examining the added value of using Virtual Reality (VR) in a driving simulator to prevent road accidents, specifically by improving drivers' skills when confronted with extreme situations. In an experiment, subjects completed a driving scenario using two platforms: A 3-D Virtual Reality display system using an HMD (Head-Mounted Display), and a standard computerized display system based on a standard computer monitor. The results show that the average rate of errors (deviating from the driving path) in a VR environment is significantly lower than in the standard one. In addition, there was no compensation between speed and accuracy in completing the driving mission. On the contrary: The average speed was even slightly faster in the VR simulation than in the standard environment. Thus, generally, despite the lower rate of deviation in VR setting, it is not achieved by driving slower. When the subjects were asked about their personal experiences from the training session, most of the subjects responded that among other things, the VR session caused them to feel a higher sense of commitment to the task and their performance. Some of them even stated that the VR session gave them a real sensation of driving.
DOT National Transportation Integrated Search
1981-02-01
A series of general risk-management countermeasures for speed Unsafe Driving Actions (UDAs) are described. First, countermeasure elements in three functional areas, detection, information, and action, are identified. Three comprehensive countermeasur...
Circuit increases capability of hysteresis synchronous motor
NASA Technical Reports Server (NTRS)
Markowitz, I. N.
1967-01-01
Frequency and phase detector circuit enables a hysteresis synchronous motor to drive a load of given torque value at a precise speed determined by a stable reference. This technique permits driving larger torque loads with smaller motors and lower power drain.
Transmission with a first-stage hydrostatic mode and two hydromechanical stages
Orshansky, Jr., deceased, Elias; Weseloh, William E.
1979-01-01
A power transmission having two planetary assemblies, each having at least one carrier with planet gears, at least one sun gear, and at least one ring gear. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gear or gears of the first planetary assembly. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gear. The input shaft is also connectable by a first clutch to a carrier of the first planetary assembly and by a second clutch to a sun gear of the second planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through a ring gear of the first planetary assembly in a hydrostatic mode. The carrier of the second planetary assembly being connected in driving relationship to that ring gear, and in all ranges these two elements transmit the drive to the output shaft.
Verster, Joris C; Volkerts, Edmund R; Verbaten, Marinus N
2002-08-01
Alprazolam is prescribed for the treatment of anxiety and panic disorder. Most users are presumably involved in daily activities such as driving. However, the effects of alprazolam on driving ability have never been investigated. This study was conducted to determine the effects of alprazolam (1 mg) on driving ability, memory and psychomotor performance. Twenty healthy volunteers participated in a randomized, double-blind, placebo-controlled crossover study. One hour after oral administration, subjects performed a standardized driving test on a primary highway during normal traffic. They were instructed to drive with a constant speed (90 km/h) while maintaining a steady lateral position within the right traffic lane. Primary performance measures were the Standard Deviation of Lateral Position (SDLP) and the Standard Deviation of Speed (SDS). After the driving test, subjective driving quality, mental effort, and mental activation during driving were assessed. A laboratory test battery was performed 2.5 h after treatment administration, comprising the Sternberg Memory Scanning Test, a Continuous Tracking Test, and a Divided Attention Test. Relative to placebo, alprazolam caused serious driving impairment, as expressed by a significantly increased SDLP (F(1,19) = 97.3, p <.0001) and SDS (F(1,19) = 30.4, p <.0001). This was confirmed by subjective assessments showing significantly impaired driving quality (F(1,19) = 16.4, p <.001), decreased alertness (F(1,19) = 43.4, p <.0001), decreased mental activation (F(1,19) = 5.7, p <.03) and increased mental effort during driving (F(1,19) = 26.4, p <.0001). Furthermore, alprazolam significantly impaired performance on the laboratory tests. In conclusion, alprazolam users must be warned not to drive an automobile or operate potentially dangerous machinery.
Lew, Henry L; Poole, John H; Lee, Eun Ha; Jaffe, David L; Huang, Hsiu-Chen; Brodd, Edward
2005-03-01
To evaluate whether driving simulator and road test evaluations can predict long-term driving performance, we conducted a prospective study on 11 patients with moderate to severe traumatic brain injury. Sixteen healthy subjects were also tested to provide normative values on the simulator at baseline. At their initial evaluation (time-1), subjects' driving skills were measured during a 30-minute simulator trial using an automated 12-measure Simulator Performance Index (SPI), while a trained observer also rated their performance using a Driving Performance Inventory (DPI). In addition, patients were evaluated on the road by a certified driving evaluator. Ten months later (time-2), family members observed patients driving for at least 3 hours over 4 weeks and rated their driving performance using the DPI. At time-1, patients were significantly impaired on automated SPI measures of driving skill, including: speed and steering control, accidents, and vigilance to a divided-attention task. These simulator indices significantly predicted the following aspects of observed driving performance at time-2: handling of automobile controls, regulation of vehicle speed and direction, higher-order judgment and self-control, as well as a trend-level association with car accidents. Automated measures of simulator skill (SPI) were more sensitive and accurate than observational measures of simulator skill (DPI) in predicting actual driving performance. To our surprise, the road test results at time-1 showed no significant relation to driving performance at time-2. Simulator-based assessment of patients with brain injuries can provide ecologically valid measures that, in some cases, may be more sensitive than a traditional road test as predictors of long-term driving performance in the community.
A simulation study of the effects of alcohol on driving performance in a Chinese population.
Li, Y C; Sze, N N; Wong, S C; Yan, Wei; Tsui, K L; So, F L
2016-10-01
Driving under the influence of alcohol (DUIA) is a significant factor contributing to road traffic crashes, injuries, and fatalities. Although the effects of alcohol on driving performance are widely acknowledged, studies of the effects of alcohol impairment on driving performance and particularly on the control system of Chinese adults are rare. This study attempts to evaluate the effects of alcohol on the driving performance of Chinese adults using a driving simulator. A double-blind experimental study was conducted to evaluate the effects of alcohol impairment on the driving performance of 52 Chinese participants using a driving simulator. A series of simulated driving tests covering two driving modules, including emergency braking (EB) and following braking (FB), at 50km/h and 80km/h were performed. Linear mixed models were established to evaluate driving performance in terms of braking reaction time (BRT), the standard deviation of lateral position (SD-LANE), and the standard deviation of speed (SD-SPEED). Driving performance in terms of BRT and SD-LANE was highly correlated with the level of alcohol consumption, with a one-unit increase in breath alcohol concentration (BrAC) degrading BRT and SD-LANE by 0.3% and 0.2%, respectively. Frequent drinkers generally reacted faster in their BRT than less-frequent drinkers and non-drinkers by 10.2% and 30.6%, respectively. Moreover, alcohol impairment had varying effects on certain aspects of the human control system, and automatic action was less likely to be affected than voluntary action from a psychological viewpoint. The findings should be useful for planning and developing effective measures to combat drink driving in Chinese communities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Altitude Wind Tunnel Drive Motor Installation
1943-07-21
Construction workers install the drive motor for the Altitude Wind Tunnel (AWT) in the Exhauster Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory. The AWT was capable of operating full-scale engines in air density, speed, and temperature similar to that found at high altitudes. The tunnel could produce wind speeds up to 500 miles per hour through a 20-foot-diameter test section at the standard operating altitude of 30,000 feet. The airflow was created by a large wooden fan near the tunnel’s southeast corner. This photograph shows the installation of the 18,000-horsepower drive motor inside the adjoining Exhauster Building in July 1943. The General Electric motor, whose support frame is seen in this photograph, connected to a drive shaft that extended from the building, through the tunnel shell, and into a 12-bladed, 31-foot-diameter spruce wood fan. Flexible couplings on the shaft allowed for the movement of the shell. The corner of the Exhauster Building was built around the motor after its installation. The General Electric induction motor could produce 10 to 410 revolutions per minute and create wind speeds up to 500 miles per hour, or Mach 0.63, at 30,000 feet. The AWT became operational in January 1944 and tested piston, turbojet and ramjet engines for nearly 20 years.
An investigation of driver distraction near the tipping point of traffic flow stability.
Cooper, Joel M; Vladisavljevic, Ivana; Medeiros-Ward, Nathan; Martin, Peter T; Strayer, David L
2009-04-01
The purpose of this study was to explore the interrelationship between driver distraction and characteristics of driver behavior associated with reduced highway traffic efficiency. Research on the three-phase traffic theory and on behavioral driving suggests that a number of characteristics associated with efficient traffic flow may be affected by driver distraction. Previous studies have been limited, however, by the fact that researchers typically do not allow participants to change lanes, nor do they account for the impact of varying traffic states on driving performance. Participants drove in three simulated environments with differing traffic congestion while both using and not using a cell phone. Instructed only to obey the speed limit, participants were allowed to vary driving behaviors, such as those involving forward following distance, speed, and lane-changing frequency. Both driver distraction and traffic congestion were found to significantly affect lane change frequency, mean speed, and the likelihood of remaining behind a slower-moving lead vehicle. This research suggests that the behavioral profile of "cell phone drivers," which is often described as compensatory, may have far-reaching and unexpected consequences for traffic efficiency. By considering the dynamic interplay between characteristics of traffic flow and driver behavior, this research may inform both public policy regarding in-vehicle cell phone use and future investigations of driving behavior.
Exercise tricycle for paraplegics.
Gföhler, M; Loicht, M; Lugner, P
1998-01-01
The work describes a tricycle that can be used by paraplegics without assistance. Paraplegics can get on and off the tricycle independently, using hydraulic adjustment of the saddle height. The two rear wheels can be swivelled with adjustable hydraulic damping, which avoids the stability problems of a standard tricycle when riding around bends. The principal driving power is assumed to be provided by functional electrical stimulation of the femoral muscles. A hub motor is integrated in the front wheel to increase the radius of action, as additional drive for cycling up gradients and in case muscle force is not sufficient. The desired drive power is adjusted by a throttle grip on the handlebar. The percentage of motor power can also be adjusted. The force applied to the pedal, the absolute angular position of the crank, and the angular velocity of the front wheel are continuously measured by a force measurement pedal and a goniometer. Based on this information, the motor and the functional electrical stimulation of the legs are controlled.
Exploring the safety implications of young drivers' behavior, attitudes and perceptions.
Hassan, Hany M; Abdel-Aty, Mohamed A
2013-01-01
The present study aims at identifying and quantifying significant factors (i.e., demographic, aberrant driving behavior) associated with young drivers' involvement in at-fault crashes or traffic citations at the ages of 16-17 (while having the Operational License) and 18-24 years old (while having the Full License). A second objective was to investigate the main reason(s) for involvement in risky driving behavior by young drivers. The data used for the analyses were obtained from a self-reported questionnaire survey carried out among 680 young drivers in Central Florida. To achieve these goals, the structural equation modeling approach was adopted. The results revealed that aggressive violations, in-vehicle distractions and demographic characteristics were the significant factors affecting young drivers' involvement in at-fault crashes or traffic violations at the age of 16-17. However, in-vehicle distractions, attitudes toward speeding and demographic characteristics were the significant factors affecting young drivers' crash risk at 18-24. Additionally, the majority of participants reported that "running late" is the main reason for taking risk while driving (i.e., speeding, accept short gaps, or drive so close to the car in front) followed by "racing other cars". Additionally, "exceed speed limits" was the main reason for receiving traffic citations at 16-17 and 18-24 age groups. Practical suggestions on how to reduce crash risk and promote safe driving among young drivers are also discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Zhiguo; Lei, Dan; Chen, Jiayi; Li, Hangyu
2018-05-01
When the four-wheel-drive hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT) is in the mode transition process from pure electrical rear wheel drive to front wheel drive with engine or hybrid drive, the problem of vehicle longitudinal jerk is prominent. A mode transition robust control algorithm which resists external disturbance and model parameter fluctuation has been developed, by taking full advantage of fast and accurate torque (or speed) response of three electrical power sources and getting the clutch of DCT fully involved in the mode transition process. Firstly, models of key components of driveline system have been established, and the model of five-degrees-of-freedom vehicle longitudinal dynamics has been built by using a Uni-Tire model. Next, a multistage optimal control method has been produced to realize the decision of engine torque and clutch-transmitted torque. The sliding-mode control strategy for measurable disturbance has been proposed at the stage of engine speed dragged up. Meanwhile, the double tracking control architecture that integrates the model calculating feedforward control with H∞ robust feedback control has been presented at the stage of speed synchronization. Finally, the results from Matlab/Simulink software and hardware-in-the-loop test both demonstrate that the proposed control strategy for mode transition can not only coordinate the torque among different power sources and clutch while minimizing vehicle longitudinal jerk, but also provide strong robustness to model uncertainties and external disturbance.
European birds adjust their flight initiation distance to road speed limits.
Legagneux, Pierre; Ducatez, Simon
2013-10-23
Behavioural responses can help species persist in habitats modified by humans. Roads and traffic greatly affect animals' mortality not only through habitat structure modifications but also through direct mortality owing to collisions. Although species are known to differ in their sensitivity to the risk of collision, whether individuals can change their behaviour in response to this is still unknown. Here, we tested whether common European birds changed their flight initiation distances (FIDs) in response to vehicles according to road speed limit (a known factor affecting killing rates on roads) and vehicle speed. We found that FID increased with speed limit, although vehicle speed had no effect. This suggests that birds adjust their flight distance to speed limit, which may reduce collision risks and decrease mortality maximizing the time allocated to foraging behaviours. Mobility and territory size are likely to affect an individuals' ability to respond adaptively to local speed limits.
Changes in self-reported driving intentions and attitudes while learning to drive in Great Britain.
Helman, S; Kinnear, N A D; McKenna, F P; Allsop, R E; Horswill, M S
2013-10-01
Novice drivers are overrepresented in traffic collisions, especially in their first year of solo driving. It is widely accepted that some driving behaviours (such as speeding and thrill-seeking) increase risk in this group. Increasingly research is suggesting that attitudes and behavioural intentions held in the pre-driver and learning stage are important in determining later driver behaviour in solo driving. In this study we examine changes in several self-reported attitudes and behavioural intentions across the learning stage in a sample of learner drivers in Great Britain. A sample of 204 learner drivers completed a self-report questionnaire near the beginning of their learning, and then again shortly after they passed their practical driving test. Results showed that self-reported intentions regarding speed choice, perceptions regarding skill level, and intentions regarding thrill-seeking (through driving) became less safe over this time period, while self-reported intentions regarding following distance and overtaking tendency became safer. The results are discussed with reference to models of driver behaviour that focus on task difficulty; it is suggested that the manner in which behind-the-wheel experience relates to the risk measures of interest may be the key determining factor in how these change over the course of learning to drive. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Drinking and driving behavior at stop signs and red lights.
Wan, Jingyan; Wu, Changxu; Zhang, Yiqi; Houston, Rebecca J; Chen, Chang Wen; Chanawangsa, Panya
2017-07-01
Alcohol is one of the principal risk factors for motor vehicle crashes. One factor that contributes to vehicle crashes is noncompliance with stop signs and red lights. The present experiment investigated the effects of alcohol and drinking patterns on driving behavior at stop signs and red lights. 28 participants participated in drinking and simulated driving sessions during which they received a moderate dose of alcohol (0.08% BAC) or a placebo. Simulated driving tasks measured participants' driving performance at stop signs and red lights in response to each dose. Results suggested that alcohol impaired the driver control of speed and direction and prolonged their simple and complex reaction time, which were exhibited by impaired speed and lateral control, longer reaction time when the lights turned yellow, and lower deceleration towards stop signs and red lights. Visual degradation may also occur under alcohol intake. It was also suggested that alcohol impaired non-binge drinkers more severely. To be specific, higher acceleration was observed in impaired non-binge drinkers. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Improved Power Quality BIBRED Converter-Based VSI-Fed BLDC Motor Drive
NASA Astrophysics Data System (ADS)
Singh, Bhim; Bist, Vashist
2014-01-01
This paper presents an IHQRR (integrated high-quality rectifier regulator) BIBRED (boost integrated buck rectifier energy storage DC-DC) converter-based VSI (voltage source inverter)-fed BLDC (brushless DC) motor drive. The speed control of BLDC motor is achieved by controlling the DC link voltage of the VSI using a single voltage sensor. This allows VSI to operate in fundamental frequency switching mode for electronic commutation of BLDC motor which reduces the switching losses due to high-frequency switching used in conventional approach of PWM (pulse width modulation)-based VSI-fed BLDC motor drive. A BIBRED converter is operated in a dual-DCM (discontinuous conduction mode) thus using a voltage follower approach for PFC (power factor correction) and DC link voltage control. The performance of the proposed drive is evaluated for improved power quality over a wide range of speed control and supply voltage variation for demonstrating the behavior of proposed drive. The power quality indices thus obtained are within the recommended limits by international PQ (power quality) standards such as IEC 61000-3-2.
Evolutionary algorithm for vehicle driving cycle generation.
Perhinschi, Mario G; Marlowe, Christopher; Tamayo, Sergio; Tu, Jun; Wayne, W Scott
2011-09-01
Modeling transit bus emissions and fuel economy requires a large amount of experimental data over wide ranges of operational conditions. Chassis dynamometer tests are typically performed using representative driving cycles defined based on vehicle instantaneous speed as sequences of "microtrips", which are intervals between consecutive vehicle stops. Overall significant parameters of the driving cycle, such as average speed, stops per mile, kinetic intensity, and others, are used as independent variables in the modeling process. Performing tests at all the necessary combinations of parameters is expensive and time consuming. In this paper, a methodology is proposed for building driving cycles at prescribed independent variable values using experimental data through the concatenation of "microtrips" isolated from a limited number of standard chassis dynamometer test cycles. The selection of the adequate "microtrips" is achieved through a customized evolutionary algorithm. The genetic representation uses microtrip definitions as genes. Specific mutation, crossover, and karyotype alteration operators have been defined. The Roulette-Wheel selection technique with elitist strategy drives the optimization process, which consists of minimizing the errors to desired overall cycle parameters. This utility is part of the Integrated Bus Information System developed at West Virginia University.
Blow molding electric drives of Mechanical Engineering
NASA Astrophysics Data System (ADS)
Bukhanov, S. S.; Ramazanov, M. A.; Tsirkunenko, A. T.
2018-03-01
The article considers the questions about the analysis of new possibilities, which gives the use of adjustable electric drives for blowing mechanisms of plastic production. Thus, the use of new semiconductor converters makes it possible not only to compensate the instability of the supply network by using special dynamic voltage regulators, but to improve (correct) the power factor. The calculation of economic efficiency in controlled electric drives of blowing mechanisms is given. On the basis of statistical analysis, the calculation of the reliability parameters of the regulated electric drives’ elements under consideration is given. It is shown that an increase in the reliability of adjustable electric drives is possible both due to overestimation of the electric drive’s installed power, and in simpler schemes with pulse-vector control.
Scott-Parker, Bridie; Hyde, Melissa K; Watson, Barry; King, Mark J
2013-01-01
Young novice drivers continue to be overrepresented in fatalities and injuries arising from crashes even with the introduction of countermeasures such as graduated driver licensing (GDL). Enhancing countermeasures requires a better understanding of the variables influencing risky driving. One of the most common risky behaviours performed by drivers of all ages is speeding, which is particularly risky for young novice drivers who, due to their driving inexperience, have difficulty in identifying and responding appropriately to road hazards. Psychosocial theory can improve our understanding of contributors to speeding, thereby informing countermeasure development and evaluation. This paper reports an application of Akers' social learning theory (SLT), augmented by Gerrard and Gibbons' prototype/willingness model (PWM), in addition to personal characteristics of age, gender, car ownership, and psychological traits/states of anxiety, depression, sensation seeking propensity and reward sensitivity, to examine the influences on self-reported speeding of young novice drivers with a Provisional (intermediate) licence in Queensland, Australia. Young drivers (n=378) recruited in 2010 for longitudinal research completed two surveys containing the Behaviour of Young Novice Drivers Scale, and reported their attitudes and behaviours as pre-Licence/Learner (Survey 1) and Provisional (Survey 2) drivers and their sociodemographic characteristics. An Akers' measurement model was created. Hierarchical multiple regressions revealed that (1) personal characteristics (PC) explained 20.3%; (2) the combination of PC and SLT explained 41.1%; (3) the combination of PC, SLT and PWM explained 53.7% of variance in self-reported speeding. Whilst there appeared to be considerable shared variance, the significant predictors in the final model included gender, car ownership, reward sensitivity, depression, personal attitudes, and Learner speeding. These results highlight the capacity for psychosocial theory to improve our understanding of speeding by young novice drivers, revealing relationships between previous behaviour, attitudes, psychosocial characteristics and speeding. The findings suggest multi-faceted countermeasures should target the risky behaviour of Learners, and Learner supervisors should be encouraged to monitor their Learners' driving speed. Novice drivers should be discouraged from developing risky attitudes towards speeding. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Complete Procedure for Predicting and Improving the Performance of HAWT's
NASA Astrophysics Data System (ADS)
Al-Abadi, Ali; Ertunç, Özgür; Sittig, Florian; Delgado, Antonio
2014-06-01
A complete procedure for predicting and improving the performance of the horizontal axis wind turbine (HAWT) has been developed. The first process is predicting the power extracted by the turbine and the derived rotor torque, which should be identical to that of the drive unit. The BEM method and a developed post-stall treatment for resolving stall-regulated HAWT is incorporated in the prediction. For that, a modified stall-regulated prediction model, which can predict the HAWT performance over the operating range of oncoming wind velocity, is derived from existing models. The model involves radius and chord, which has made it more general in applications for predicting the performance of different scales and rotor shapes of HAWTs. The second process is modifying the rotor shape by an optimization process, which can be applied to any existing HAWT, to improve its performance. A gradient- based optimization is used for adjusting the chord and twist angle distribution of the rotor blade to increase the extraction of the power while keeping the drive torque constant, thus the same drive unit can be kept. The final process is testing the modified turbine to predict its enhanced performance. The procedure is applied to NREL phase-VI 10kW as a baseline turbine. The study has proven the applicability of the developed model in predicting the performance of the baseline as well as the optimized turbine. In addition, the optimization method has shown that the power coefficient can be increased while keeping same design rotational speed.
An impact rotary motor based on a fiber torsional piezoelectric actuator
NASA Astrophysics Data System (ADS)
Han, W. X.; Zhang, Q.; Ma, Y. T.; Pan, C. L.; Feng, Z. H.
2009-01-01
A prototype small impact rotary motor has been fabricated based on a newly developed torsional actuator which is 15.0 mm long and 1.0 mm in diameter. The motor can rotate when it is powered with a saw-shaped voltage. The experimental results show that its angular speed is proportional to both the driving voltage's amplitude and the frequency under 1 kHz. The large nonlinearity occurs at higher driving frequency due to the resonance of the partial mechanical structure of the motor. The motor can rotate at a speed of 90 rpm with a saw-shaped driving voltage of 600Vp.-p. at 8 kHz, and produce a stall torque of 80 μN m with 1000Vp.-p. at 3 kHz.
Traction Drives for Zero Stick-Slip Robots, and Reaction Free, Momentum Balanced Systems
NASA Technical Reports Server (NTRS)
Anderson, William J.; Shipitalo, William; Newman, Wyatt
1995-01-01
Two differential (dual input, single output) drives (a roller-gear and a pure roller), and a momentum balanced (single input, dual output) drive (pure roller ) were designed, fabricated, and tested. The differential drives are each rated at 295 rad/sec (2800 rpm) input speed, 450 N-m (4,000 in-lbf) output torque. The momentum balanced drive is rated at 302 rad/sec (2880 rpm) input speed, and dual output torques of 434N-m (3840 in-lbf). The Dual Input Differential Roller-Gear Drive (DC-700) has a planetary roller-gear system with a reduction ratio (one input driving the output with the second input fixed) of 29.23: 1. The Dual Input Differential Roller Drive (DC-500) has a planetary roller system with a reduction ratio of approximately 24:1. Each of the differential drives features dual roller-gear or roller arrangements consisting of a sun, four first row planets, four second row planets, and a ring. The Momentum Balanced (Grounded Ring) Drive (DC-400) has a planetary roller system with a reduction ratio of 24:1 with both outputs counterrotating at equal speed. Its single roller cluster consists of a sun, five first and five second row planets, a roller cage or spider and a ring. Outputs are taken from both the roller cage and the ring which counterrotate. Test results reported for all three drives include angular and torque ripple (linearity and cogging), viscous and Coulomb friction, and forward and reverse power efficiency. Of the two differential drives, the Differential Roller Drive had better linearity and less cogging than did the Differential Roller-Gear Drive, but it had higher friction and lower efficiency (particularly at low power throughput levels). Use of full preloading rather than a variable preload system in the Differential Roller Drive assessed a heavy penalty in part load efficiency. Maximum measured efficiency (ratio of power out to power in) was 95% for the Differential Roller-Gear Drive and 86% for the Differential Roller Drive. The Momentum Balanced (Grounded Ring) Drive performed as expected kinematically. Reduction r-atios to the two counterrotating outputs (design nominal=24:1) were measured to be 23.98:1 and 24.12:1 at zero load.. At 25ONm (2200 in-lbf) output torque the ratio changed 2% due to roller creep. This drive was the smoothest of all three as determined from linearity and cogging tests, and maximum measured efficiency (ratio of power out to power in) was 95%. The disadvantages of full preloading as comvared to variable preload were apparent in this drive as in the Differential Roller Drive. Efficiencies at part load were low, but improved dramatically with increases in torque. These were consistent with friction measurements which indicated losses primarily from Coulomb friction. The initial preload level setting was low so roller slip was encountered at higher torques during testing.
Anticipatory postural adjustments for altering direction during walking.
Xu, Dali; Carlton, Les G; Rosengren, Karl S
2004-09-01
The authors examined how individuals adapt their gait and regulate their body configuration before altering direction during walking. Eight young adults were asked to change direction during walking with different turning angles (0 degree, 45 degree, 90 degree), pivot foot (left, right), and walking speeds (normal and fast). The authors used video and force platform systems to determine participants' whole-body center of mass and the center of pressure during the step before they changed direction. The results showed that anticipatory postural adjustments occurred during the prior step and occurred earlier for the fast walking speed. Anticipatory postural adjustments were affected by all 3 variables (turn angle, pivot foot, and speed). Participants leaned backward and sideward on the prior step in anticipation of the turn. Those findings indicate that the motor system uses central control mechanisms to predict the required anticipatory adjustments and organizes the body configuration on the basis of the movement goal.
Low speed hybrid generalized predictive control of a gasoline-propelled car.
Romero, M; de Madrid, A P; Mañoso, C; Milanés, V
2015-07-01
Low-speed driving in traffic jams causes significant pollution and wasted time for commuters. Additionally, from the passengers׳ standpoint, this is an uncomfortable, stressful and tedious scene that is suitable to be automated. The highly nonlinear dynamics of car engines at low-speed turn its automation in a complex problem that still remains as unsolved. Considering the hybrid nature of the vehicle longitudinal control at low-speed, constantly switching between throttle and brake pedal actions, hybrid control is a good candidate to solve this problem. This work presents the analytical formulation of a hybrid predictive controller for automated low-speed driving. It takes advantage of valuable characteristics supplied by predictive control strategies both for compensating un-modeled dynamics and for keeping passengers security and comfort analytically by means of the treatment of constraints. The proposed controller was implemented in a gas-propelled vehicle to experimentally validate the adopted solution. To this end, different scenarios were analyzed varying road layouts and vehicle speeds within a private test track. The production vehicle is a commercial Citroën C3 Pluriel which has been modified to automatically act over its throttle and brake pedals. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Mathematical model of simple spalling formation during coal cutting with extracting machine
NASA Astrophysics Data System (ADS)
Gabov, V. V.; Zadkov, D. A.
2018-05-01
A single-mass model of a rotor shearer is analyzed. It is shown that rotor mining machines has large inertia moments and load dynamics. An extraction module model with selective movement of the cutting tool is represented. The peculiar feature of such extracting machines is fluid power drive cutter mechanism. They can steadily operate at large shear thickness, and locking modes are not an emergency for them. Comparing with shearers they have less inertional mass, but slower average cutting speed, and its momentary values depend on load. Basing on the equation of hydraulic fuel consumption balance the work of fluid power drive of extracting module cutter mechanism together with hydro pneumatic accumulator is analyzed. Spalling formation model during coal cutting with fluid power drive cutter mechanism and potential energy stores are suggested. Matching cutter speed with the speed of main crack expansion and amount of potential energy consumption, cutter load is determined only by ultimate stress at crack pole and friction. Tests of an extracting module cutter in real size model proved the stated theory.
Improved transistorized AC motor controller for battery powered urban electric passenger vehicles
NASA Technical Reports Server (NTRS)
Peak, S. C.
1982-01-01
An ac motor controller for an induction motor electric vehicle drive system was designed, fabricated, tested, evaluated, and cost analyzed. A vehicle performance analysis was done to establish the vehicle tractive effort-speed requirements. These requirements were then converted into a set of ac motor and ac controller requirements. The power inverter is a three-phase bridge using power Darlington transistors. The induction motor was optimized for use with an inverter power source. The drive system has a constant torque output to base motor speed and a constant horsepower output to maximum speed. A gear shifting transmission is not required. The ac controller was scaled from the base 20 hp (41 hp peak) at 108 volts dec to an expanded horsepower and battery voltage range. Motor reversal was accomplished by electronic reversal of the inverter phase sequence. The ac controller can also be used as a boost chopper battery charger. The drive system was tested on a dynamometer and results are presented. The current-controlled pulse width modulation control scheme yielded improved motor current waveforms. The ac controller favors a higher system voltage.
Linking In-Vehicle Ultrafine Particle Exposures to On-Road Concentrations
Hudda, Neelakshi; Eckel, Sandrah P.; Knibbs, Luke D.; Sioutas, Constantinos; Delfino, Ralph J.; Fruin, Scott A.
2013-01-01
For traffic-related pollutants like ultrafine particles (UFP, Dp < 100 nm), a significant fraction of overall exposure occurs within or close to the transit microenvironment. Therefore, understanding exposure to these pollutants in such microenvironments is crucial to accurately assessing overall UFP exposure. The aim of this study was to develop models for predicting in-cabin UFP concentrations if roadway concentrations are known, taking into account vehicle characteristics, ventilation settings, driving conditions and air exchange rates (AER). Particle concentrations and AER were measured in 43 and 73 vehicles, respectively, under various ventilation settings and driving speeds. Multiple linear regression (MLR) and generalized estimating equation (GEE) regression models were used to identify and quantify the factors that determine inside-to-outside (I/O) UFP ratios and AERs across a full range of vehicle types and ages. AER was the most significant determinant of UFP I/O ratios, and was strongly influenced by ventilation setting (recirculation or outside air intake). Inclusion of ventilation fan speed, vehicle age or mileage, and driving speed explained greater than 79% of the variability in measured UFP I/O ratios. PMID:23888122
Research of Amoxicillin Microcapsules Preparation Playing Micro-Jetting Technology
Sun, Huaiyuan; Gu, Qingqing; Liao, Yuehua; Sun, Chenjie
2015-01-01
With polylactic-co-glycolic acid(PLGA) as shell material of microcapsule, amoxicillin as the model, poly(vinyl alcohol) and twain as surfactant, amoxicillin-PLGA microcapsules were manufactured using digital micro-jetting technology and a glass nozzle of 40μm diameter. The influences of the parameters of micro-jetting system on the mean grain size and size distribution of amoxicillin-PLGA microcapsules were studied with single factor analysis and orthogonal experiment method, namely, PLGA solution concentration, driving voltage, jetting frequency, stirrer speed, etc. The optimal result was obtained; the form representation of microcapsule was analyzed as well. The results show that, under certain conditions of experimental drug prescription, driving voltage was proportional to the particle size; jetting frequency and stirrer speed were inversely proportional. When the PLGA concentration for 3%, driving voltage for 80V, the jetting frequency for 10000Hz and the stirrer speed for 750rpm, the particles were in an ideal state with the mean grain size of 60.246μm, the encapsulation efficiency reached 62.39% and 2.1% for drug loading. PMID:25937851
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
Previous theoretical work has shown that when all loss mechanisms are neglected the constant power speed range (CPSR) of a brushless dc motor (BDCM) is infinite when the motor is driven by the dual-mode inverter control (DMIC) [1,2]. In a physical drive, losses, particularly speed-sensitive losses, will limit the CPSR to a finite value. In this paper we report the results of laboratory testing of a low-inductance, 7.5-hp BDCM driven by the DMIC. The speed rating of the test motor rotor limited the upper speed of the testing, and the results show that the CPSR of the test machine ismore » greater than 6:1 when driven by the DMIC. Current wave shape, peak, and rms values remained controlled and within rating over the entire speed range. The laboratory measurements allowed the speed-sensitive losses to be quantified and incorporated into computer simulation models, which then accurately reproduce the results of lab testing. The simulator shows that the limiting CPSR of the test motor is 8:1. These results confirm that the DMIC is capable of driving low-inductance BDCMs over the wide CPSR that would be required in electric vehicle applications.« less
DOT National Transportation Integrated Search
2009-12-01
Appropriate self-regulation of driving; that is, adjusting ones driving patterns by driving less or avoiding specific situations in which one feels unsafe or uncomfortable, shows considerable promise as a strategy for compensating for functional d...
DOT National Transportation Integrated Search
2010-12-01
Appropriate self-regulation of driving; that is, adjusting ones driving patterns by driving less or avoiding specific : situations in which one feels unsafe or uncomfortable, shows considerable promise as a strategy for compensating for : function...
NASA Technical Reports Server (NTRS)
Marte, J. E.; Bryant, J. A.; Livingston, R.
1983-01-01
Dynamometer performance of a South Coast Technology electric conversion of a Volkswagen (VW) Rabbit designated SCT-8 was tested. The SCT-8 vehicle was fitted with a transistorized chopper in the motor armature circuit to supplement the standard motor speed control via field weakening. The armature chopper allowed speed control below the motor base speed. This low speed control was intended to reduce energy loss at idle during stop-and-go traffic; to eliminate the need for using the clutch below base motor speed; and to improve the drivability. Test results indicate an improvement of about 3.5% in battery energy economy for the SAE J227a-D driving cycle and 6% for the C-cycle with only a minor reduction in acceleration performance. A further reduction of about 6% would be possible if provision were made for shutting down field power during the idle phases of the driving cycles. Drivability of the vehicle equipped with the armature chopper was significantly improved compared with the standard SCT Electric Rabbit.
Qiao, Wenjun; Tang, Xiaoqi; Zheng, Shiqi; Xie, Yuanlong; Song, Bao
2016-09-01
In this paper, an adaptive two-degree-of-freedom (2Dof) proportional-integral (PI) controller is proposed for the speed control of permanent magnet synchronous motor (PMSM). Firstly, an enhanced just-in-time learning technique consisting of two novel searching engines is presented to identify the model of the speed control system in a real-time manner. Secondly, a general formula is given to predict the future speed reference which is unavailable at the interval of two bus-communication cycles. Thirdly, the fractional order generalized predictive control (FOGPC) is introduced to improve the control performance of the servo drive system. Based on the identified model parameters and predicted speed reference, the optimal control law of FOGPC is derived. Finally, the designed 2Dof PI controller is auto-tuned by matching with the optimal control law. Simulations and real-time experimental results on the servo drive system of PMSM are provided to illustrate the effectiveness of the proposed strategy. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Computer controlled synchronous shifting of an automatic transmission
Davis, Roy I.; Patil, Prabhakar B.
1989-01-01
A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the torque at the output of the transmission or drive wheels, the speed of the power source, and the hydraulic pressure applied to a clutch and brake. A control algorithm produces input data representing a commanded upshift, a commanded downshift, a commanded transmission output torque, and commanded power source speed. A microprocessor processes the inputs and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake at a rate that satisfies the requirements for a short gear ratio change and smooth torque transfer between the friction elements.
Development of Traction Drive Motors for the Toyota Hybrid System
NASA Astrophysics Data System (ADS)
Kamiya, Munehiro
Toyota Motor Corporation developed in 2005 a new hybrid system for a large SUV. This system included the new development of a high-speed traction drive motor achieving a significant increase in power weight ratio. This paper provides an overview of the hybrid system, discusses the characteristics required of a traction drive motor, and presents the technologies employed in the developed motor.
Nowosielski, Robert J; Trick, Lana M; Toxopeus, Ryan
2018-02-01
Distracted driving (driving while performing a secondary task) causes many collisions. Most research on distracted driving has focused on operating a cell-phone, but distracted driving can include eating while driving, conversing with passengers or listening to music or audiobooks. Although the research has focused on the deleterious effects of distraction, there may be situations where distraction improves driving performance. Fatigue and boredom are also associated with collision risk and it is possible that secondary tasks can help alleviate the effects of fatigue and boredom. Furthermore, it has been found that individuals with high levels of executive functioning as measured by the OSPAN (Operation Span) task show better driving while multitasking. In this study, licensed drivers were tested in a driving simulator (a car body surrounded by screens) that simulated simple or complex roads. Road complexity was manipulated by increasing traffic, scenery, and the number of curves in the drive. Participants either drove, or drove while listening to an audiobook. Driving performance was measured in terms of braking response time to hazards (HRT): the time required to brake in response to pedestrians or vehicles that suddenly emerged from the periphery into the path of the vehicle, speed, standard deviation of speed, standard deviation of lateral position (SDLP). Overall, braking times to hazards were higher on the complex drive than the simple one, though the effects of secondary tasks such as audiobooks were especially deleterious on the complex drive. In contrast, on the simple drive, driving while listening to an audiobook lead to faster HRT. We found evidence that individuals with high OSPAN scores had faster HRTs when listening to an audiobook. These results suggest that there are environmental and individual factors behind difference in the allocation of attention while listening to audiobooks while driving. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lyu, Nengchao; Xie, Lian; Wu, Chaozhong; Fu, Qiang; Deng, Chao
2017-01-01
Complex traffic situations and high driving workload are the leading contributing factors to traffic crashes. There is a strong correlation between driving performance and driving workload, such as visual workload from traffic signs on highway off-ramps. This study aimed to evaluate traffic safety by analyzing drivers’ behavior and performance under the cognitive workload in complex environment areas. First, the driving workload of drivers was tested based on traffic signs with different quantities of information. Forty-four drivers were recruited to conduct a traffic sign cognition experiment under static controlled environment conditions. Different complex traffic signs were used for applying the cognitive workload. The static experiment results reveal that workload is highly related to the amount of information on traffic signs and reaction time increases with the information grade, while driving experience and gender effect are not significant. This shows that the cognitive workload of subsequent driving experiments can be controlled by the amount of information on traffic signs; Second, driving characteristics and driving performance were analyzed under different secondary task driving workload levels using a driving simulator. Drivers were required to drive at the required speed on a designed highway off-ramp scene. The cognitive workload was controlled by reading traffic signs with different information, which were divided into four levels. Drivers had to make choices by pushing buttons after reading traffic signs. Meanwhile, the driving performance information was recorded. Questionnaires on objective workload were collected right after each driving task. The results show that speed maintenance and lane deviations are significantly different under different levels of cognitive workload, and the effects of driving experience and gender groups are significant. The research results can be used to analyze traffic safety in highway environments, while considering more drivers’ cognitive and driving performance. PMID:28218696