Science.gov

Sample records for adjustable x-ray optics

  1. Development Roadmap for an Adjustable X-Ray Optics Observatory

    NASA Technical Reports Server (NTRS)

    Schwartz, Dan; Brissenden, R.; Bookbinder, J.; Davis, W.; Forman, W.; Freeman, M.; O'Dell, S.; Ramsey, B.; Reid, P.; Romaine, S.; Tananbaum, H.; Trolier-McKinstry, S.; Wilke, R.; Vikhlinin, A.

    2011-01-01

    We are developing adjustable X-ray optics to use on a mission such as SMART-X (see posters 38.02, 38.03 and Presentation 30.03). To satisfy the science problems expected to be posed by the next decadal survey, we anticipate requiring effective area greater than 1 square meter and Chandra-like angular resolution: approximately equal to 0.5 inches. To achieve such precise resolution we are developing adjustable mirror technology for X-ray astronomy application. This uses a thin film of piezoelectric material deposited on the back surface of the mirror to correct for figure distortions, including manufacturing errors and deflections due to gravity and thermal effects. We present here a plan to raise this technology from its current Level 2, to Level 6, by 2018.

  2. Recent progress in adjustable X-ray optics for astronomy

    NASA Astrophysics Data System (ADS)

    Reid, Paul B.; Allured, R.; Cotroneo, V.; McMuldroch, S.; Marquez, V.; Schwartz, D. A.; Vikhlinin, A.; O'Dell, S. L.; Ramsey, B.; Trolier-McKinstry, S.; Johnson-Wilke, R.; Wilke, R. H.

    2014-01-01

    Two adjustable X-ray optics approaches are being developed for thin grazing incidence optics for astronomy. The first approach employs thin film piezoelectric material sputter deposited as a continuous layer on the back of thin, lightweight Wolter-I mirror segments. The piezoelectric material is used to correct mirror figure errors from fabrication, mounting/alignment, and any ground to orbit changes. The goal of this technology is to produce Wolter mirror segment pairs corrected to 0.5 arc sec image resolution. With the combination of high angular resolution and lightweight, this mirror technology is suitable for the Square Meter Arc Second Resolution Telescope for X-rays (SMART-X) mission concept.. The second approach makes use of electrostrictive adjusters and full shell nickel/cobalt electroplated replication mirrors. An array of radial adjusters is used to deform the full shells to correct the lowest order axial and azimuthal errors, improving imaging performance from the 10 - 15 arc sec level to ~ 5 arc sec. We report on recent developments in both technologies. In particular, we discuss the use of in-situ strain gauges on the thin piezo film mirrors for use as feedback on piezoelectric adjuster functionality, including their use for on-orbit figure correction. We also report on the first tests of full shell nickel/cobalt mirror correction with radial adjusters.

  3. Recent Progress in Adjustable X-ray Optics for Astronomy

    NASA Technical Reports Server (NTRS)

    Reid, Paul B.; Allured, Ryan; Cotroneo, Vincenzo; McMuldroch, Stuart; Marquez, Vanessa; Schwartz, Daniel A.; Vikhlinin, Alexey; ODell, Stephen L.; Ramsey, Brian; Trolier-McKinstry, Susan; Johnson-Wilke, Raegan; Wilke, Rudeger H.

    2014-01-01

    Two adjustable X-ray optics approaches are being developed for thin grazing incidence optics for astronomy. The first approach employs thin film piezoelectric material sputter deposited as a continuous layer on the back of thin, lightweight Wolter-I mirror segments. The piezoelectric material is used to correct mirror figure errors from fabrication, mounting/alignment, and any ground to orbit changes. The goal of this technology is to produce Wolter mirror segment pairs corrected to 0.5 arc sec image resolution. With the combination of high angular resolution and lightweight, this mirror technology is suitable for the Square Meter Arc Second Resolution Telescope for X-rays (SMART-X) mission concept.. The second approach makes use of electrostrictive adjusters and full shell nickel/cobalt electroplated replication mirrors. An array of radial adjusters is used to deform the full shells to correct the lowest order axial and azimuthal errors, improving imaging performance from the 10 - 15 arc sec level to 5 arc sec. We report on recent developments in both technologies. In particular, we discuss the use of insitu strain gauges on the thin piezo film mirrors for use as feedback on piezoelectric adjuster functionality, including their use for on-orbit figure correction. We also report on the first tests of full shell nickel/cobalt mirror correction with radial adjusters.

  4. Adjustable grazing incidence x-ray optics based on thin PZT films

    NASA Astrophysics Data System (ADS)

    Cotroneo, Vincenzo; Davis, William N.; Marquez, Vanessa; Reid, Paul B.; Schwartz, Daniel A.; Johnson-Wilke, Raegan L.; Trolier-McKinstry, Susan E.; Wilke, Rudeger H. T.

    2012-10-01

    The direct deposition of piezoelectric thin films on thin substrates offers an appealing technology for the realization of lightweight adjustable mirrors capable of sub-arcsecond resolution. This solution will make it possible to realize X-ray telescopes with both large effective area and exceptional angular resolution and, in particular, it will enable the realization of the adjustable optics for the proposed mission Square Meter Arcsecond Resolution X-ray Telescope (SMART-X). In the past years we demonstrated for the first time the possibility of depositing a working piezoelectric thin film (1-5 um) made of lead-zirconate-titanate (PZT) on glass. Here we review the recent progress in film deposition and influence function characterization and comparison with finite element models. The suitability of the deposited films is analyzed and some constrains on the piezoelectric film performances are derived. The future steps in the development of the technology are described.

  5. Technology development of adjustable grazing incidence x-ray optics for sub-arc second imaging

    NASA Astrophysics Data System (ADS)

    Reid, P. B.; Aldcroft, T. L.; Cotroneo, V.; Davis, W.; Johnson-Wilke, R. L.; McMuldroch, S.; Ramsey, B. D.; Schwartz, D. A.; Trolier-McKinstry, S.; Vikhlinin, A.; Wilke, R. H. T.

    2012-09-01

    We report on technical progress made over the past year developing thin film piezoelectric adjustable grazing incidence optics. We believe such mirror technology represents a solution to the problem of developing lightweight, sub-arc second imaging resolution X-ray optics. Such optics will be critical to the development next decade of astronomical X-ray observatories such as SMART-X, the Square Meter Arc Second Resolution X-ray Telescope. SMART-X is the logical heir to Chandra, with 30 times the collecting area and Chandra-like imaging resolution, and will greatly expand the discovery space opened by Chandra’s exquisite imaging resolution. In this paper we discuss deposition of thin film piezoelectric material on flat glass mirrors. For the first time, we measured the local figure change produced by energizing a piezo cell - the influence function, and showed it is in good agreement with finite element modeled predictions. We determined that at least one mirror substrate material is suitably resistant to piezoelectric deposition processing temperatures, meaning the amplitude of the deformations introduced is significantly smaller than the adjuster correction dynamic range. Also, using modeled influence functions and IXO-based mirror figure errors, the residual figure error was predicted post-correction. The impact of the residual figure error on imaging performance, including any mid-frequency ripple introduced by the corrections, was modeled. These, and other, results are discussed, as well as future technology development plans.

  6. Development Status of Adjustable Grazing Incidence Optics for 0.5 Arcsecond X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Reid, Paul B.; Aldcroft, Thomas L.; Allured, Ryan; Cotroneo, Vincenzo; Johnson-Wilke, Raegan L.; Marquez, Vanessa; McMuldroch, Stuart; O'Dell, Stephen L.; Ramsey, Brian D.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Vikhlinin, Alexey; Wilke, Rudeger H. T.; Zhao, Rui

    2014-01-01

    We describe progress in the development of adjustable grazing incidence X-ray optics for 0.5 arcsec resolution cosmic X-ray imaging. To date, no optics technology is available to blend high resolution imaging like the Chandra X-ray Observatory, with square meter collecting area. Our approach to achieve these goals simultaneously is to directly deposit thin film piezoelectric actuators on the back surface of thin, lightweight Wolter-I or Wolter- Schwarschild mirror segments. The actuators are used to correct mirror figure errors due to fabrication, mounting and alignment, using calibration and a one-time figure adjustment on the ground. If necessary, it will also be possible to correct for residual gravity release and thermal effects on-orbit. In this paper we discuss our most recent results measuring influence functions of the piezoelectric actuators using a Shack-Hartmann wavefront sensor. We describe accelerated and real-time lifetime testing of the piezoelectric material, and we also discuss changes to, and recent results of, our simulations of mirror correction.

  7. Sputter deposition of PZT piezoelectric films on thin glass substrates for adjustable x-ray optics.

    PubMed

    Wilke, Rudeger H T; Johnson-Wilke, Raegan L; Cotroneo, Vincenzo; Davis, William N; Reid, Paul B; Schwartz, Daniel A; Trolier-McKinstry, Susan

    2013-05-10

    Piezoelectric PbZr(0.52)Ti(0.48)O(3) (PZT) thin films deposited on thin glass substrates have been proposed for adjustable optics in future x-ray telescopes. The light weight of these x-ray optics enables large collecting areas, while the capability to correct mirror figure errors with the PZT thin film will allow much higher imaging resolution than possible with conventional lightweight optics. However, the low strain temperature and flexible nature of the thin glass complicate the use of chemical-solution deposition due to warping of the substrate at typical crystallization temperatures for the PZT. RF magnetron sputtering enabled preparation of PZT films with thicknesses up to 3 μm on Schott D263 glass substrates with much less deformation. X-ray diffraction analysis indicated that the films crystallized with the perovskite phase and showed no indication of secondary phases. Films with 1 cm(2) electrodes exhibited relative permittivity values near 1100 and loss tangents below 0.05. In addition, the remanent polarization was 26 μC/cm(2) with coercive fields of 33 kV/cm. The transverse piezoelectric coefficient was as high as -6.1±0.6 C/m(2). To assess influence functions for the x-ray optics application, the piezoelectrically induced deflection of individual cells was measured and compared with finite-element-analysis calculations. The good agreement between the results suggests that actuation of PZT thin films can control mirror figure errors to a precision of about 5 nm, allowing sub-arcsecond imaging. PMID:23669858

  8. Generation-X mirror technology development plan and the development of adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Reid, Paul B.; Davis, William; O'Dell, Stephen; Schwartz, Daniel A.; Tolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhang, William

    2009-08-01

    Generation-X is being studied as an extremely high resolution, very large area grazing incidence x-ray telescope. Under a NASA Advanced Mission Concepts Study, we have developed a technology plan designed to lead to the 0.1 arcsec (HPD) resolution adjustable optics with 50 square meters of effective area necessary to meet Generation-X requirements. We describe our plan in detail. In addition, we report on our development activities of adjustable grazing incidence optics via the fabrication of bimorph mirrors. We have successfully deposited thin-film piezo-electric material on the back surface of thin glass mirrors. We report on the electrical and mechanical properties of the bimorph mirrors. We also report on initial finite element modeling of adjustable grazing incidence mirrors; in particular, we examine the impact of how the mirrors are supported - the boundary conditions - on the deformations which can be achieved.

  9. Development Status of Adjustable X-Ray Optics with 0.5 Arcsecond Resolution

    NASA Technical Reports Server (NTRS)

    Reid, P. B.; ODell, Stephen; Elsner, Ron; Ramsey, Brian; Gubarev, Misha; Aldcroft, T.; Allured, R.; Cotroneo, V.; Johnson-Wilke, R. L.; McMuldroch, S.; Swartz, D. A.; Trolier-McKinstry, S.; Vikhlinin, A.; Wilke, R.

    2014-01-01

    We report on the continuing development of adjustable, grazing incidence X-ray optics for 0.5 arcsec telescopes. Adjustable X-ray optics offer the potential for achieving sub-arcsecond imaging resolution while sufficiently thin and light-weight to constitute a mirror assembly with several square meters collecting area. The adjustable mirror concept employs a continuous thin film of piezoelectric material deposited on the back of the paraboloid and hyperboloid mirror segments. Individually addressable electrodes on the piezoelectric layer allow the introduction of deformations in localized "cells" which are used to correct mirror figure errors resulting from fabrication, mounting and aligning the thin mirrors, residual gravity release and temperature changes. We describe recent results of this development. These include improving cell yield to approx. 100 per cent, measurements of hysteresis and stability, comparisons of modeled and measured behavior, simulations of mirror performance, and the development and testing of conical Wolter- I mirror segments. We also present our plans going forward toward the eventual goal of achieving TRL 6 prior to the 2020 Decadal Review.

  10. Adjustable grazing incidence x-ray optics: measurement of actuator influence functions and comparison with modeling

    NASA Astrophysics Data System (ADS)

    Cotroneo, Vincenzo; Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan; Wilke, Rudeger H. T.

    2011-09-01

    The present generation of X-ray telescopes emphasizes either high image quality (e.g. Chandra with sub-arc second resolution) or large effective area (e.g. XMM-Newton), while future observatories under consideration (e.g. Athena, AXSIO) aim to greatly enhance the effective area, while maintaining moderate (~10 arc-seconds) image quality. To go beyond the limits of present and planned missions, the use of thin adjustable optics for the control of low-order figure error is needed to obtain the high image quality of precisely figured mirrors along with the large effective area of thin mirrors. The adjustable mirror prototypes under study at Smithsonian Astrophysical Observatory are based on two different principles and designs: 1) thin film lead-zirconate-titanate (PZT) piezoelectric actuators directly deposited on the mirror back surface, with the strain direction parallel to the glass surface (for sub-arc-second angular resolution and large effective area), and 2) conventional leadmagnesium- niobate (PMN) electrostrictive actuators with their strain direction perpendicular to the mirror surface (for 3-5 arc second resolution and moderate effective area). We have built and operated flat test mirrors of these adjustable optics. We present the comparison between theoretical influence functions as obtained by finite element analysis and the measured influence functions obtained from the two test configurations.

  11. Adjustable Grazing Incidence X-ray Optics with 0.5 Arc Second Resolution

    NASA Astrophysics Data System (ADS)

    Reid, Paul

    We seek to develop adjustable grazing incidence optics for x-ray astronomy. The goal of this development is thin, lightweight mirrors with angular resolution of 0.5 arc seconds, comparable to the Chandra X-ray Observatory. The new mirror design consists of thin segments of a Wolter-I grazing incidence mirror, with piezo-electric material deposited directly on the back surface of the mirror. Depositing a pattern of independently addressable electrodes on top of the piezoelectric material produces an array of independent piezo cells. Energizing a particular cell introduces a localized deformation in the mirror without the need for a reaction structure. By applying the appropriate voltage to the piezo cells, it is possible to correct mirror figure errors that result from mirror fabrication, gravity release, mounting, and thermal effects. Because the thin mirrors segments are lightweight, they can be densely nested to produce collecting area thirty times that of Chandra, on an affordably priced mission. This Supporting Technology program is a follow-on to an existing APRA program. In the existing program we demonstrated the first successful deposition of piezoelectric material on thermally formed glass substrates. We showed that the localized deformations produced by the piezo cells match finite element predictions, and the piezo cell adjustment range meets requirements necessary to achieve the desired figure correction. We have also shown through simulation that representative mirror figure errors can be corrected via modeled influence functions to achieve 0.5 arc sec imaging performance. This provides a firm foundation on which to develop further the technology. We will continue to optimize the deposition of thin piezoelectric films onto thermally formed glass and electroplated metal mirror segments to improve yield and manufacturability. We will deposit piezoelectric material onto conical mirror segments and demonstrate figure correction in agreement with prediction

  12. Development Status of Adjustable X-ray Optics with 0.5 Arcsec Imaging for the X-ray Surveyor Mission Concept

    NASA Astrophysics Data System (ADS)

    Reid, Paul B.; Allured, Ryan; ben-Ami, Sagi; Cotroneo, Vincenzo; Schwartz, Daniel A.; Tananbaum, Harvey; Vikhlinin, Alexey; Trolier-McKinstry, Susan; Wallace, Margeaux L.; Jackson, Tom

    2016-04-01

    The X-ray Surveyor mission concept is designed as a successor to the Chandra X-ray Observatory. As currently envisioned, it will have as much as 30-50 times the collecting area of Chandra with the same 0.5 arcsec imaging resolution. This combination of telescope area and imaging resolution, along with a detector suite for imaging and dispersive and non-dispersive imaging spectroscopy, will enable a wide range of astrophysical observations. These observations will include studies of the growth of large scale structure, early black holes and the growth of SMBHs, and high resolution spectroscopy with arcsec resolution, among many others. We describe the development of adjustable grazing incidence X-ray optics, a potential technology for the high resolution, thin, lightweight mirrors. We discuss recent advancements including the demonstration of deterministic figure correction via the use of the adjusters, the successful demonstration of integrating control electronics directly on the actuator cells to enable row-column addressing, and discuss the feasibility of on-orbit piezoelectric performance and figure monitoring via integrated semiconductor strain gauges. We also present the telescope point design and progress in determining the telescope thermal sensitivities and achieving alignment and mounting requirements.

  13. Simulating correction of adjustable optics for an x-ray telescope

    NASA Astrophysics Data System (ADS)

    Aldcroft, Thomas L.; Schwartz, Daniel A.; Reid, Paul B.; Cotroneo, Vincenzo; Davis, William N.

    2012-10-01

    The next generation of large X-ray telescopes with sub-arcsecond resolution will require very thin, highly nested grazing incidence optics. To correct the low order figure errors resulting from initial manufacture, the mounting process, and the effects of going from 1 g during ground alignment to zero g on-orbit, we plan to adjust the shapes via piezoelectric "cells" deposited on the backs of the reflecting surfaces. This presentation investigates how well the corrections might be made. We take a benchmark conical glass element, 410×205 mm, with a 20×20 array of piezoelectric cells 19×9 mm in size. We use finite element analysis to calculate the influence function of each cell. We then simulate the correction via pseudo matrix inversion to calculate the stress to be applied by each cell, considering distortion due to gravity as calculated by finite element analysis, and by putative low order manufacturing distortions described by Legendre polynomials. We describe our algorithm and its performance, and the implications for the sensitivity of the resulting slope errors to the optimization strategy.

  14. High Resolution, High Throughput X-Ray Observatory with Adjustable Optics

    NASA Astrophysics Data System (ADS)

    Vikhlinin, Alexey; Brissenden, R.; Bookbinder, J.; Cotroneo, J.; Davis, W.; Forman, W. R.; Freeman, M.; Murray, S. S.; O'Dell, S.; Ramsey, B.; Romaine, S.; Schwartz, D.; Tananbaum, H.; Trolier-McKinstry, S.; Wilke, R. H. T.

    2011-09-01

    An X-ray telescope with sub-arcsec angular resolution and >104 cm2 effective area will trigger another revolution in high energy astrophysics. We are developing technologies which would make such a telescope possible: adjustable grazing incidence bimorph mirrors composed of thin glass or metal segments with a few micrometer layer of piezoelectric material deposited on the back surface. The piezo cells are used to correct mirror figure errors due to fabrication, mounting, gravity release, and thermal deformations. Supporting analytical studies show the feasibility of mirror control, and laboratory demonstrations have shown that displacements of sufficient amplitude can be produced to achieve the required correction. The science topics for a high-resolution, large area X-ray telescope range from neutron star binary populations in the Milky Way and nearby galaxies to studies of diffuse baryons in the biggest objects in the Universe and in the warm-hot intergalactic medium. There will be a significant time span relative to the Chandra baseline for detailed observations of the expanding SNRs, reflection of the past activity of Sgr A* from surrounding molecular clouds, cooling of isolated neutron stars, etc. An exciting new frontier is observations of co-evolution of the supermassive black holes and their host galaxies across the peak in the cosmic star formation at z 3 and into the end of Dark Ages at z=6-10.

  15. Using iridium films to compensate for piezo-electric materials processing stresses in adjustable x-ray optics

    NASA Astrophysics Data System (ADS)

    Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.

    2015-09-01

    Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.

  16. Center for X-Ray Optics, 1992

    SciTech Connect

    Not Available

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  17. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  18. Center for X-ray Optics, 1988

    SciTech Connect

    Not Available

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  19. Optical observations of X-ray systems

    NASA Astrophysics Data System (ADS)

    Gudets, R.

    The significance of optical observations of X-ray sources is discussed. A short review of X-ray and optical observations of X-ray stars in socialist countries, carried out by the Intercosmos program and by multilateral cooperation of the Academies of Sciences of Socialist Countries is given. Some examples and results of observations are presented.

  20. Advances in transmission x-ray optics

    SciTech Connect

    Ceglio, N.M.

    1983-01-01

    Recent developments in x-ray optics are reviewed. Specific advances in coded aperture imaging, zone plate lens fabrication, time and space resolved spectroscopy, and CCD x-ray detection are discussed.

  1. Center for X-Ray Optics, 1986

    SciTech Connect

    Not Available

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers. (LSP)

  2. X-ray microlaminography with polycapillary optics

    NASA Astrophysics Data System (ADS)

    Dąbrowski, K. M.; Dul, D. T.; Wróbel, A.; Korecki, P.

    2013-06-01

    We demonstrate layer-by-layer x-ray microimaging using polycapillary optics. The depth resolution is achieved without sample or source rotation and in a way similar to classical tomography or laminography. The method takes advantage from large angular apertures of polycapillary optics and from their specific microstructure, which is treated as a coded aperture. The imaging geometry is compatible with polychromatic x-ray sources and with scanning and confocal x-ray fluorescence setups.

  3. Capillary Optics generate stronger X-rays

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA scientist, in the Space Sciences lab at Marshall, works with capillary optics that generate more intense X-rays than conventional sources. This capability is useful in studying the structure of important proteins.

  4. The Future of X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.

  5. White beam x-ray waveguide optics

    SciTech Connect

    Jarre, A.; Salditt, T.; Panzner, T.; Pietsch, U.; Pfeiffer, F.

    2004-07-12

    We report a white beam x-ray waveguide (WG) experiment. A resonant beam coupler x-ray waveguide (RBC) is used simultaneously as a broad bandpass (or multibandpass) monochromator and as a beam compressor. We show that, depending on the geometrical properties of the WG, the exiting beam consists of a defined number of wavelengths which can be shifted by changing the angle of incidence of the white x-ray synchrotron beam. The characteristic far-field pattern is recorded as a function of exit angle and energy. This x-ray optical setup may be used to enhance the intensity of coherent x-ray WG beams since the full energetic acceptance of the WG mode is transmitted.

  6. X-ray Interferometer Using Prism Optics

    SciTech Connect

    Suzuki, Yoshio

    2004-05-12

    Two-beam X-ray interferometer using refractive optics has been developed. A prism made of acrylic resin is used as the beam deflector for hard X-ray wavefront dividing interferometer. This configuration is the same as that of the Fresnel's bi-prism interferometer or the Leith-Upatnieks type two-beam holography in visible light region. Therefore, quantitative analysis of the degree of transversal coherence can be performed by measuring the visibility of interference fringes. It is also possible to realize two-beam holographic imaging in hard X-ray regions.

  7. Optics Developments for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  8. Optics for coherent X-ray applications

    PubMed Central

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-01-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  9. Optics for coherent X-ray applications.

    PubMed

    Yabashi, Makina; Tono, Kensuke; Mimura, Hidekazu; Matsuyama, Satoshi; Yamauchi, Kazuto; Tanaka, Takashi; Tanaka, Hitoshi; Tamasaku, Kenji; Ohashi, Haruhiko; Goto, Shunji; Ishikawa, Tetsuya

    2014-09-01

    Developments of X-ray optics for full utilization of diffraction-limited storage rings (DLSRs) are presented. The expected performance of DLSRs is introduced using the design parameters of SPring-8 II. To develop optical elements applicable to manipulation of coherent X-rays, advanced technologies on precise processing and metrology were invented. With propagation-based coherent X-rays at the 1 km beamline of SPring-8, a beryllium window fabricated with the physical-vapour-deposition method was found to have ideal speckle-free properties. The elastic emission machining method was utilized for developing reflective mirrors without distortion of the wavefronts. The method was further applied to production of diffraction-limited focusing mirrors generating the smallest spot size in the sub-10 nm regime. To enable production of ultra-intense nanobeams at DLSRs, a low-vibration cooling system for a high-heat-load monochromator and advanced diagnostic systems to characterize X-ray beam properties precisely were developed. Finally, new experimental schemes for combinative nano-analysis and spectroscopy realised with novel X-ray optics are discussed. PMID:25177986

  10. Advanced X-ray diffractive optics

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, J.; Jefimovs, K.; Pilvi, T.; Ritala, M.; Sarkar, S. S.; Solak, H. H.; Guzenko, V. A.; Stampanoni, M.; Marone, F.; Raabe, J.; Tzvetkov, G.; Fink, R. H.; Grolimund, D.; Borca, C. N.; Kaulich, B.; David, C.

    2009-09-01

    X-ray microscopy greatly benefits from the advances in x-ray optics. At the Paul Scherrer Institut, developments in x-ray diffractive optics include the manufacture and optimization of Fresnel zone plates (FZPs) and diffractive optical elements for both soft and hard x-ray regimes. In particular, we demonstrate here a novel method for the production of ultra-high resolution FZPs. This technique is based on the deposition of a zone plate material (iridium) onto the sidewalls of a prepatterned template structure (silicon) by atomic layer deposition. This approach overcomes the limitations due to electron-beam writing of dense patterns in FZP fabrication and provides a clear route to push the resolution into sub-10 nm regime. A FZP fabricated by this method was used to resolve test structures with 12 nm lines and spaces at the scanning transmission x-ray microscope of the PolLux beamline of the Swiss Light Source at 1.2 keV photon energy.

  11. The X-ray optics for X-ray pulsar navigation

    NASA Astrophysics Data System (ADS)

    Jin, Dongdong; Li, Wenbin; Lian, Jian; Shi, Yufeng; Song, Juan; Wang, Wencong; Sun, Shukun

    2016-01-01

    The effective X-ray optics is a key premise for X-ray pulsar detection and navigation. However, it is very difficult to focus the X-ray photons through refraction for the reason that the X-ray photon is very easy to be absorbed by the materials. The most effective ways for the X-ray focusing is reflection. In this paper, we will give a brief introduction of the theory of the grazing incidence and the corresponding optical systems. By comparing the design parameters of main X-ray astronomical telescope in NASA and ESA, we will give the development trend of the X-ray optics for X-ray pulsar navigation and introduce several new technology for the manufacture of the micro-pore optics (MPO).

  12. Large area soft x-ray collimator to facilitate x-ray optics testing

    NASA Technical Reports Server (NTRS)

    Espy, Samuel L.

    1994-01-01

    The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.

  13. Principles of femtosecond X-ray/optical cross-correlation with X-ray induced transient optical reflectivity in solids

    SciTech Connect

    Eckert, S. E-mail: martin.beye@helmholtz-berlin.de; Beye, M. E-mail: martin.beye@helmholtz-berlin.de; Pietzsch, A.; Quevedo, W.; Hantschmann, M.; Ochmann, M.; Huse, N.; Ross, M.; Khalil, M.; Minitti, M. P.; Turner, J. J.; Moeller, S. P.; Schlotter, W. F.; Dakovski, G. L.; Föhlisch, A.

    2015-02-09

    The discovery of ultrafast X-ray induced optical reflectivity changes enabled the development of X-ray/optical cross correlation techniques at X-ray free electron lasers worldwide. We have now linked through experiment and theory the fundamental excitation and relaxation steps with the transient optical properties in finite solid samples. Therefore, we gain a thorough interpretation and an optimized detection scheme of X-ray induced changes to the refractive index and the X-ray/optical cross correlation response.

  14. X-ray optics - Developments in the CSFR

    NASA Astrophysics Data System (ADS)

    Hudec, Rene

    1991-10-01

    The development and present state of X-ray optics are reviewed. Comparisons are made between the state of X-ray optics in various countries, with special attention given to projects involving the CSFR and the X-ray telescope aboard Salyut 7 and the participation of X-ray telescopes in the Phobos missions. Prospects for future developments in X-ray optics are addressed.

  15. Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics

    DOEpatents

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2016-08-09

    A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.

  16. Indus-2 X-ray lithography beamline for X-ray optics and material science applications

    SciTech Connect

    Dhamgaye, V. P. Lodha, G. S.

    2014-04-24

    X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and also irradiation of biological and liquid samples.

  17. Challenges for Synchrotron X-Ray Optics

    NASA Astrophysics Data System (ADS)

    Freund, Andreas K.

    2002-12-01

    It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power to make it suitable for being used on the experimental stations. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfill this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has always been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and systems based on bent surfaces, for example, Kirkpatrick-Baez systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. The overview of the present challenges includes the properties of present and also mentions aspects of future x-ray sources such as the "ultimate" storage ring and free electron lasers. These challenges range from the thermal performances of monochromators to the surface quality of mirrors, from coherence preservation of modern multilayers to short pulse preservation by crystals, and from micro- and nano

  18. Correlated X-ray and optical variability in X-ray Binaries

    NASA Astrophysics Data System (ADS)

    O'Brien, K.; Horne, K.

    In X-ray binaries much of the optical/UV emission arises from X-rays reprocessed by material in the accretion disk, stream and the companion star. The resulting optical variability will be delayed in time with respect to the X-ray variability depending on the position of the reprocessing regions in the binary system. By deconvolving the X-ray and optical variability we can determine a range of time-delays present in the system. This time-delay transfer function can be used to echo-map the geometry of the reprocessing regions in the binary system. We present results from our echo-mapping campaign using X-ray lightcurves from RXTE, simultaneous with high time resolution optical and UV observations. In the SXT, GRO J1655-40, using RXTE and HST shortly after the 1996 outburst, we find evidence for reprocessing in the outer regions of a thick accretion disk. In the Z-source Cygnus X-2, using RXTE and Keck II, we find an anti-correlation of the X-ray and optical variability on the timescale of hours, with superimposed correlated X-ray and optical flaring.

  19. Optical, x-ray and microwave diagnostics

    SciTech Connect

    Tudisco, S.; Mascali, D.; Altana, C.; Anzalone, A.; Gammino, S.; Musumarra, A.; Musumeci, F.; Scordino, A.; Romano, F. P.; Tramontana, A.

    2013-07-26

    Laser-driven ion acceleration is a new approach for the particles acceleration, which allows obtaining ion beams with unique properties, such as short burst duration, large particle number, small size source size, low transverse emittance. Currently, two main acceleration mechanisms have been identified and investigated: target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). Electrons dynamics and energies are strongly coupled to these acceleration mechanisms and they can be investigated with optical and X-ray techniques. The main aim of these studies are the identification of few physical observables that can be directly correlated to the proton emission obtained (in terms of reproducibility and intensity) in operations with different target material and structure and laser-target interaction parameters.

  20. Multilayers for EUV, soft x-ray and x-ray optics

    NASA Astrophysics Data System (ADS)

    Wang, Zhanshan; Huang, Qiushi; Zhang, Zhong

    2016-02-01

    Driven by the requirements in synchrotron radiation applications, astronomical observation, and dense plasma diagnostics, the EUV, soft X-rays and X-rays multilayer optics have been tremendously developed. Based on the LAMP project for soft X-ray polarimetry, Co/C and Cr/C multilayers have been fabricated and characterized. Both Co/C and Cr/C multilayers reveal good optical performance working at 250 eV. Pd/Y multilayers have been successfully fabricated using reactive sputtering with nitrogen working at around 9.4 nm. EUV normal incidence Schwarzschild and soft X-ray grazing incidence KB microscopes were developed for ICF plasma diagnostics. This paper covers the outline of the multilayer optics and the current status in our lab.

  1. Combined optical and X-ray observations of variable stars

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.

    1975-01-01

    Questions concerning the optical identification of X-ray sources are considered. There are now a total of eight optically identified galactic X-ray sources. Of these eight, five are definitely established as binaries. The nature of the other three sources remains unknown. Studies of U Geminorum conducted on the basis of optical and X-ray observations are also discussed. From the upper limit to the accretion rate for U Gem obtained with the aid of soft X-ray data, it is seen that most of the mass flow in U Gem is lost from the system.

  2. Optimizing Focusing X-Ray Optics for Planetary Science Applications

    NASA Astrophysics Data System (ADS)

    Melso, Nicole; Romaine, Suzanne; Hong, Jaesub; Cotroneo, Vincenzo

    2015-01-01

    X-Ray observations are a valuable tool for studying the composition, formation and evolution of the numerous X-Ray emitting objects in our Solar System. Although there are plenty of useful applications for in situ X-Ray focusing instrumentation, X-Ray focusing optics have never been feasible for use onboard planetary missions due to their mass and cost. Recent advancements in small-scale X-Ray instrumentation have made focusing X-Ray technology more practical and affordable for use onboard in situ spacecraft. Specifically, the technology of a metal-ceramic hybrid material combined with Electroformed Nickel Replication (ENR) holds great promise for realizing lightweight X-ray optics. We are working to optimize these lightweight focusing X-Ray optics for use in planetary science applications. We have explored multiple configurations and geometries that maximize the telescope's effective area and field of view while meeting practical mass and volume requirements. Each configuration was modeled via analytic calculations and Monte Carlo ray tracing simulations and compared to alternative Micro-pore Optics designs. The improved performance of our approach using hybrid materials has many exciting implications for the future of planetary science, X-Ray instrumentation, and the exploration of X-Ray sources in our Solar System.This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  3. Investigation of X-Ray Optical Anisotropy of Materials by means of X-Ray Interferometry

    SciTech Connect

    Mkrtchyan, Vahram P.; Gasparyan, Laura G.; Balyan, Minas K.

    2010-04-06

    A novel approach is proposed in the present work for investigation of X-ray optical anisotropy of materials, that is based on X-ray interferometric method of measurements. Unlike the existing methods, where the specimen to be tested is placed in the path of one of interfering beams, in the proposed approach the specimens under investigation are placed directly in the paths of both the interfering beams, owing to which the impact of other factors on the shift of interference Moire fringes is eliminated. In this way the Moire fringes simultaneously appear during the same exposure both in the absence and presence of specimens with different orientations of optical axes. Due to the fact that the relative displacement of Moire fringes is observed in three different columns of the same beam, it becomes possible to simultaneously observe and immediately identify the presence of X-ray optical anisotropy, as well as to measure the values of refractive indices n{sub o} and n{sub e} for specimens under study. By means of proposed method the X-ray optical anisotropy of cellophane film was registered and values of refractive indices n{sub o} and n{sub e} for cellophane were measured. It was established that cellophane is X-ray optically positive anisotropic medium.

  4. Investigation of X-Ray Optical Anisotropy of Materials by means of X-Ray Interferometry

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, Vahram P.; Gasparyan, Laura G.; Balyan, Minas K.

    2010-04-01

    A novel approach is proposed in the present work for investigation of X-ray optical anisotropy of materials, that is based on X-ray interferometric method of measurements. Unlike the existing methods, where the specimen to be tested is placed in the path of one of interfering beams, in the proposed approach the specimens under investigation are placed directly in the paths of both the interfering beams, owing to which the impact of other factors on the shift of interference Moire fringes is eliminated. In this way the Moire fringes simultaneously appear during the same exposure both in the absence and presence of specimens with different orientations of optical axes. Due to the fact that the relative displacement of Moire fringes is observed in three different columns of the same beam, it becomes possible to simultaneously observe and immediately identify the presence of X-ray optical anisotropy, as well as to measure the values of refractive indices no and ne for specimens under study. By means of proposed method the X-ray optical anisotropy of cellophane film was registered and values of refractive indices no and ne for cellophane were measured. It was established that cellophane is X-ray optically positive anisotropic medium.

  5. X-Ray Optics on a Chip: Guiding X Rays in Curved Channels

    NASA Astrophysics Data System (ADS)

    Salditt, T.; Hoffmann, S.; Vassholz, M.; Haber, J.; Osterhoff, M.; Hilhorst, J.

    2015-11-01

    We study the propagation of hard x rays in single curved x-ray waveguide channels and observe waveguide effects down to surprisingly small radii of curvature R ≃10 mm and a large contour length s ≃5 mm , deflecting beams up to 30°. At these high angles, about 2 orders of magnitude above the critical angle of total reflection θc, most radiation modes are lost by "leaking" into the cladding, while certain "survivor" modes persist. This may open up a new form of integrated x-ray optics "on a chip," requiring curvatures mostly well below the extreme values studied here, e.g., to split and to delay x-ray pulses.

  6. X-Ray Optics on a Chip: Guiding X Rays in Curved Channels.

    PubMed

    Salditt, T; Hoffmann, S; Vassholz, M; Haber, J; Osterhoff, M; Hilhorst, J

    2015-11-13

    We study the propagation of hard x rays in single curved x-ray waveguide channels and observe waveguide effects down to surprisingly small radii of curvature R≃10  mm and a large contour length s≃5  mm, deflecting beams up to 30°. At these high angles, about 2 orders of magnitude above the critical angle of total reflection θ(c), most radiation modes are lost by "leaking" into the cladding, while certain "survivor" modes persist. This may open up a new form of integrated x-ray optics "on a chip," requiring curvatures mostly well below the extreme values studied here, e.g., to split and to delay x-ray pulses. PMID:26613440

  7. Property of slice square polycapillary x-ray optics

    NASA Astrophysics Data System (ADS)

    Shi-Qi, Peng; Zhi-Guo, Liu; Tian-Xi, Sun; Kai, Wang; Long-Tao, Yi; Kui, Yang; Man, Chen; Jin-Bang, Wang

    2016-02-01

    A geometrical description of square polycapillary x-ray optics and the basic theory of the transmission of x-rays are presented. A method of numerical calculation is developed based on ray-tracing theory. The method simulates the intensity distribution of x-rays propagating through slice square polycapillary x-ray optics. The simulation results are compared with the experimental results. Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2012LZD07 and 2014kJJCA03) and the National Natural Science Foundation of China (Grant Nos. 11375027 and 11075017).

  8. Impact of microfabrication technology on x-ray optics

    SciTech Connect

    Ceglio, N.M.

    1981-08-01

    X-ray optics stands on the threshold of realizing its early promise: precision analysis of microstructure on the scale of the x-ray wavelength. The achievement of this exciting goal will depend in large part on advances in microfabrication technology making possible the precision fabrication of periodic microstructures. A review of recent advances in, as well as future prospects for: x-ray microscopy, coded imaging, and space-time resolved spectroscopy, resulting from improved microstructure fabrication capabilities is presented.

  9. X-ray optics of gold nanoparticles.

    PubMed

    Letfullin, Renat R; Rice, Colin E W; George, Thomas F

    2014-11-01

    Gold nanoparticles have been investigated as contrast agents for traditional x-ray medical procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance the contrast of the detected x-ray image. Here we use the Kramers-Kronig relation for complex atomic scattering factors to find the real and imaginary parts of the index of refraction for the medium composed of single-element materials or compounds in the x-ray range of the spectrum. These complex index of refraction values are then plugged into a Lorenz-Mie theory to calculate the absorption efficiency of various size gold nanoparticles for photon energies in the 1-100 keV range. Since the output from most medical diagnostic x-ray devices follows a wide and filtered spectrum of photon energies, we introduce and compute the effective intensity-absorption-efficiency values for gold nanoparticles of radii varying from 5 to 50 nm, where we use the TASMIP model to integrate over all spectral energies generated by typical tungsten anode x-ray tubes with kilovolt potentials ranging from 50 to 150 kVp. PMID:25402878

  10. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer

    Henke, B. L.; Gullikson, E. M.; Davis, J. C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  11. X-ray properties of optically selected QSOs

    NASA Technical Reports Server (NTRS)

    Avni, Y.; Tananbaum, H.

    1986-01-01

    The dependence of the X-ray-to-optical luminosity ratio on optical luminosity and redshift for optically selected QSOs is studied, largely on the basis of two, complete, magnitude-limited samples (Bright Quasar Survey /1983/ and Braccesi Faint /1984/) which were observed with the Einstein Observatory. Heterogeneous samples are established as adequate for the study of that dependence. Optimal choices for increasing the size of the data set for such a study are pointed out. The previous results of Avni and Tananbaum for alpha sub 0, x(z, L sub opt) are confirmed and strengthened, and the numerical sensitivity to changes in the values of q sub 0 and of the optical spectral index is evaluated. It is shown that the large majority, probably all, of optically selected QSOs are X-ray loud; no more than a few percent can be X-ray quiet. Thus X-ray emission appears to be a universal property of QSOs. It is shown that comparisons of optically selected QSOs with X-ray selected QSOs are numerically sensitive to the details of the input ingredients. A residual discrepancy of about a factor of 2 between calculated and observed X-ray number counts is found. Directions for further research that are important for understanding the full bivariate optical-X-ray evolution and luminosity function for QSOs are discussed.

  12. COMPACT OPTICAL COUNTERPARTS OF ULTRALUMINOUS X-RAY SOURCES

    SciTech Connect

    Tao Lian; Feng Hua; Grise, Fabien; Kaaret, Philip

    2011-08-20

    Using archival Hubble Space Telescope (HST) imaging data, we report the multiband photometric properties of 13 ultraluminous X-ray sources (ULXs) that have a unique compact optical counterpart. Both magnitude and color variation are detected at timescales of days to years. The optical color, variability, and X-ray to optical flux ratio indicate that the optical emission of most ULXs is dominated by X-ray reprocessing on the disk, similar to that of low-mass X-ray binaries. For most sources, the optical spectrum is a power law, F{sub {nu}}{proportional_to}{nu}{sup {alpha}} with {alpha} in the range 1.0-2.0 and the optically emitting region has a size on the order of 10{sup 12} cm. Exceptions are NGC 2403 X-1 and M83 IXO 82, which show optical spectra consistent with direct emission from a standard thin disk, M101 ULX-1 and M81 ULS1, which have X-ray to optical flux ratios more similar to high-mass X-ray binaries, and IC 342 X-1, in which the optical light may be dominated by the companion star. Inconsistent extinction between the optical counterpart of NGC 5204 X-1 and the nearby optical nebulae suggests that they may be unrelated.

  13. X-ray-optical analytical microscope with two Kumakhov lenses

    NASA Astrophysics Data System (ADS)

    Borisov, G. I.; Kondratenko, R. I.; Odinov, B. V.; Pukhov, A. V.

    2005-07-01

    On the basis of research microscope equipped with a 3D sample stage and two x-ray micro analyzers fitted with Kumakhov polycapillary optics, an x-ray optical scanning microscope (ROCAM) has been developed. The instrument is designed for investigation ofheterogeneous objects in optic and x-ray spectra of photon radiation. Examples of ROCAM application for forensic studies and in mineralogy are shown. The instrument can be used in medicine and biology, metal studies, nuclear power, ecology, micro electronics, in customs, for investigation of pieces of art and so on.

  14. Flight programs and X-ray optics development at MSFC

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; O'Dell, S.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, M.

    The X-ray astronomy group at the Marshall Space Flight Center (MSFC) is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HEROES balloon payload. Our current orbital program is the fabrication of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG). A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin-shell optics to the arcsecond-level.

  15. Capillary optics for micro x-ray fluorescence analysis

    SciTech Connect

    Bjeoumikhov, A.; Langhoff, N.; Bjeoumikhova, S.; Wedell, R.

    2005-06-15

    Practically achieved parameters of capillary optics are presented. A micro x-ray fluorescence (XRF) arrangement was realized by using a microfocus x-ray tube and a capillary optic. Several examples for application of micro XRF are given. It was shown that polycapillary lenses free of the 'halo effect' well suited for micro XRF of heavy elements can be manufactured. Limits of opportunities for micro XRF applications and further development for micro XRF by using capillary optics are analyzed.

  16. Development of X-Ray Optics for the International X-Ray Observatory (IXO)

    NASA Technical Reports Server (NTRS)

    Zhang, William W.; Bolognese, J.; Byron, G.; Caldwell, D.; Chan, K.; Content, D. A.; Gubarev, M.; Davis, W.; Freeman, M.; Hadjimichael, T. J.; He, C.; Hong, M.; Kolos, L.; Jones, W. D.; Lehan, . P.; Lozipone, L.; Mazzarella, J.; McClelland, R.; Nguyen, D. T.; Olsen, L.; Petre, R.; Podgorski, W.; Robinson, D.; Russell, R.; Romaine, S.

    2009-01-01

    The International X-ray Observatory requires mirror assemblies with unprecedented characteristics that cannot be provided by existing optical technologies. In the past several years, the project has supported a vigorous mirror technology development program. This program includes the fabrication of lightweight mirror segments by slumping commercially available thin glass sheets, the support and mounting of these thin mirror segments for accurate metrology, the mounting and attachment of these mirror segments for the purpose of X-ray tests, and development of methods for aligning and integrating these mirror segments into mirror assemblies. This paper describes our efforts and developments in these areas.

  17. Refractive Optics for Hard X-ray Transmission Microscopy

    SciTech Connect

    Simon, M.; Last, A.; Mohr, J.; Nazmov, V.; Reznikova, E.; Ahrens, G.; Voigt, A.

    2011-09-09

    For hard x-ray transmission microscopy at photon energies higher than 15 keV we design refractive condenser and imaging elements to be used with synchrotron light sources as well as with x-ray tube sources. The condenser lenses are optimized for low x-ray attenuation--resulting in apertures greater than 1 mm--and homogeneous intensity distribution on the detector plane, whereas the imaging enables high-resolution (<100 nm) full-field imaging. To obtain high image quality at reasonable exposure times, custom-tailored matched pairs of condenser and imaging lenses are being developed. The imaging lenses (compound refractive lenses, CRLs) are made of SU-8 negative resist by deep x-ray lithography. SU-8 shows high radiation stability. The fabrication technique enables high-quality lens structures regarding surface roughness and arrangement precision with arbitrary 2D geometry. To provide point foci, crossed pairs of lenses are used. Condenser lenses have been made utilizing deep x-ray lithographic patterning of thick SU-8 layers, too, whereas in this case, the aperture is limited due to process restrictions. Thus, in terms of large apertures, condenser lenses made of structured and rolled polyimide film are more attractive. Both condenser types, x-ray mosaic lenses and rolled x-ray prism lenses (RXPLs), are considered to be implemented into a microscope setup. The x-ray optical elements mentioned above are characterized with synchrotron radiation and x-ray laboratory sources, respectively.

  18. Flight Programs and X-ray Optics Development at MSFC

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, Martin

    2012-01-01

    The X-ray astronomy group at the Marshall Space Flight Center is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HERO balloon payload. Our current orbital program is the fabrication of a series of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG.) The details and status of these various programs are presented. A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin shell optics to the arcsecond-level. The status of these x-ray optics technology developments is also presented.

  19. Developments for Nickel Electroformed X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Ramsey, B.; Engelhaupt, D.; Gubarev, M.; O'Dell, S.; Speegle, C.; Weisskopf, M.

    2008-01-01

    This slide presentation reviews the developments at Marshall Space Flight Center in fabricating Electroformed Nickel X-ray Optical devices. Missions that are using the mandrels created using the described process are reviewed, and improvements in the process of creating better quality mandrels are also reviewed. One of the processes, Electrochemically-Enhanced Mechanical Polishing (EEMP), is described. The Alignment and mounting system for full-shell replicated X-Ray Optics is shown, and the selective deposition process is also shown.

  20. Diamond turning in the production of x ray optics

    NASA Technical Reports Server (NTRS)

    Fawcett, Steven C.

    1994-01-01

    A demonstration x-ray optic has been produced by diamond turning and replication techniques that could revolutionize the fabrication of advanced mirror assemblies. The prototype optic was developed as part of the Advanced X-ray Astrophysics Facility - Spectrographic project (AXAF-S). The initial part of the project was aimed at developing and testing the replica technique so that it could potentially be used for the production of the entire mirror array comprised of up to 50 individual mirror shells.

  1. Anecdotes about the Early Days of X-Ray Optics.

    PubMed

    Baez, A V

    1997-01-01

    An anecdotal description of the trials and tribulations encountered by the first investigators in the field of x-ray optics starting in the late 1940s and how they managed to overcome them is provided. Some of the players, in addition to the author, included Paul Kirkpatrick, Hussein El Sum, and Howard Pattee of Stanford. At the University of Redlands we became interested in producing an x-ray microscope based on the concepts of holography which Dennis Gabor had demonstrated. This led to correspondence with Gabor and the opportunity to meet him and many other investigators at the first International Conference on X-Ray Microscopy and Microradiography held in Cambridge, England, in 1956. With the help of V.E. Cosslett and William Nixon, a point-focus x-ray tube was obtained by the University of Redlands for its experiments in x-ray holography in the1950s. PMID:21307542

  2. Progress with MEMS x-ray micro pore optics

    NASA Astrophysics Data System (ADS)

    Ezoe, Yuichiro; Moriyama, Teppei; Ogawa, Tomohiro; Kakiuchi, Takuya; Ohashi, Takaya; Mitsuishi, Ikuyuki; Mitsuda, Kazuhisa; Horade, Mitsuhiro; Sugiyama, Susumu; Riveros, Raul E.; Yamaguchi, Hitomi; Kanamori, Yoshiaki; Morishita, Kohei; Nakajima, Kazuo; Maeda, Ryutaro

    2012-09-01

    Our development of ultra light-weight X-ray micro pore optics based on MEMS (Micro Electro Mechanical System) technologies is described. Using dry etching or X-ray lithography and electroplating, curvilinear sidewalls through a flat wafer are fabricated. Sidewalls vertical to the wafer surface are smoothed by use of high temperature annealing and/or magnetic field assisted finishing to work as X-ray mirrors. The wafer is then deformed to a spherical shape. When two spherical wafers with different radii of curvature are stacked, the combined system will be an approximated Wolter type-I telescope. This method in principle allows high angular resolution and ultra light-weight X-ray micro pore optics. In this paper, performance of a single-stage optic, coating of a heavy metal on sidewalls with atomic layer deposition, and assembly of a Wolter type-I telescope are reported.

  3. Optical and X-ray Properties of Groups of Galaxies

    NASA Astrophysics Data System (ADS)

    dell'Antonio, I. P.; Geller, M. J.; Fabricant, D.

    1992-12-01

    We study the optical and x-ray properties of 30 groups of galaxies observed with EINSTEIN. We have obtained redshifts for the galaxies in the group fields down to a limiting magnitude M_B<= 15.7. Typically this corresponds to ~ 18 redshifts per group. Our sample contains 14 MKW-AWM clusters, three of which are actually superpositions of two groups. We compare the velocity dispersions and virial masses we derive from the optical data with the x-ray luminosity and structure. We find remarkable correlations between the x-ray structure and optical galaxy positions. The x-ray emission associated with the galaxies is extended even in more distant groups. This emission is probably due to hot gas in the individual galaxy potentials, which implies that the poor clusters of galaxies are dynamically young. This is consistent with results from N-body simulations of group formation.

  4. X-ray optic developments at NASA's MSFC

    NASA Astrophysics Data System (ADS)

    Atkins, C.; Ramsey, B.; Kilaru, K.; Gubarev, M.; O'Dell, S.; Elsner, R.; Swartz, D.; Gaskin, J.; Weisskopf, M.

    2013-05-01

    NASA's Marshall Space Flight Center (MSFC) has a successful history of fabricating optics for astronomical x-ray telescopes. In recent years optics have been created using electroforming replication for missions such as the balloon payload HERO (High energy replicated optics) and the rocket payload FOXSI (Focusing Optics x-ray Solar Imager). The same replication process is currently being used in the creation seven x-ray mirror modules (one module comprising of 28 nested shells) for the Russian ART-XC (Astronomical Rontgen Telescope) instrument aboard the Spectrum-Roentgen-Gamma mission and for large-diameter mirror shells for the Micro-X rocket payload. In addition to MSFC's optics fabrication, there are also several areas of research and development to create the high resolution light weight optics which are required by future x-ray telescopes. Differential deposition is one technique which aims to improve the angular resolution of lightweight optics through depositing a filler material to smooth out fabrication imperfections. Following on from proof of concept studies, two new purpose built coating chambers are being assembled to apply this deposition technique to astronomical x-ray optics. Furthermore, MSFC aims to broaden its optics fabrication through the recent acquisition of a Zeeko IRP 600 robotic polishing machine. This paper will provide a summary of the current missions and research and development being undertaken at NASA's MSFC.

  5. Microfocus/Polycapillary-Optic Crystallographic X-Ray System

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Gubarev, Mikhail; Ciszak, Ewa

    2005-01-01

    A system that generates an intense, nearly collimated, nearly monochromatic, small-diameter x-ray beam has been developed for use in macromolecular crystallography. A conventional x-ray system for macromolecular crystallography includes a rotating-anode x-ray source, which is massive (.500 kg), large (approximately 2 by 2 by 1 m), and power-hungry (between 2 and 18 kW). In contrast, the present system generates a beam of the required brightness from a microfocus source, which is small and light enough to be mounted on a laboratory bench, and operates at a power level of only tens of watts. The figure schematically depicts the system as configured for observing x-ray diffraction from a macromolecular crystal. In addition to the microfocus x-ray source, the system includes a polycapillary optic . a monolithic block (typically a bundle of fused glass tubes) that contains thousands of straight or gently curved capillary channels, along which x-rays propagate with multiple reflections. This particular polycapillary optic is configured to act as a collimator; the x-ray beam that emerges from its output face consists of quasi-parallel subbeams with a small angular divergence and a diameter comparable to the size of a crystal to be studied. The gap between the microfocus x-ray source and the input face of the polycapillary optic is chosen consistently with the focal length of the polycapillary optic and the need to maximize the solid angle subtended by the optic in order to maximize the collimated x-ray flux. The spectrum from the source contains a significant component of Cu K (photon energy is 8.08 keV) radiation. The beam is monochromatized (for Cu K ) by a nickel filter 10 m thick. In a test, this system was operated at a power of 40 W (current of 897 A at an accelerating potential of 45 kV), with an anode x-ray spot size of 41+/-2 microns. Also tested, in order to provide a standard for comparison, was a commercial rotating-anode x-ray crystallographic system with a

  6. X-Ray Optics at NASA Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; Swartz, Douglas A.; Tennant, Allyn F.; Weisskopf, Martin C.; Zavlin, Vyacheslav E.

    2015-01-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce high-strength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications-namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  7. X-ray optics at NASA Marshall Space Flight Center

    NASA Astrophysics Data System (ADS)

    O'Dell, Stephen L.; Atkins, Carolyn; Broadway, David M.; Elsner, Ronald F.; Gaskin, Jessica A.; Gubarev, Mikhail V.; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Ramsey, Brian D.; Roche, Jacqueline M.; Swartz, Douglas A.; Tennant, Allyn F.; Weisskopf, Martin C.; Zavlin, Vyacheslav E.

    2015-05-01

    NASA's Marshall Space Flight Center (MSFC) engages in research, development, design, fabrication, coating, assembly, and testing of grazing-incidence optics (primarily) for x-ray telescope systems. Over the past two decades, MSFC has refined processes for electroformed-nickel replication of grazing-incidence optics, in order to produce highstrength, thin-walled, full-cylinder x-ray mirrors. In recent years, MSFC has used this technology to fabricate numerous x-ray mirror assemblies for several flight (balloon, rocket, and satellite) programs. Additionally, MSFC has demonstrated the suitability of this technology for ground-based laboratory applications—namely, x-ray microscopes and cold-neutron microscopes and concentrators. This mature technology enables the production, at moderately low cost, of reasonably lightweight x-ray telescopes with good (15-30 arcsecond) angular resolution. However, achieving arcsecond imaging for a lightweight x-ray telescope likely requires development of other technologies. Accordingly, MSFC is conducting a multi-faceted research program toward enabling cost-effective production of lightweight high-resolution x-ray mirror assemblies. Relevant research topics currently under investigation include differential deposition for post-fabrication figure correction, in-situ monitoring and control of coating stress, and direct fabrication of thin-walled full-cylinder grazing-incidence mirrors.

  8. Spherical mirror grazing incidence x-ray optics

    NASA Technical Reports Server (NTRS)

    Cash, Jr., Webster C. (Inventor)

    1997-01-01

    An optical system for x-rays combines at least two spherical or near spherical mirrors for each dimension in grazing incidence orientation to provide the functions of a lens in the x-ray region. To focus x-ray radiation in both the X and the Y dimensions, one of the mirrors focusses the X dimension, a second mirror focusses the Y direction, a third mirror corrects the X dimension by removing comatic aberration and a fourth mirror corrects the Y dimension. Spherical aberration may also be removed for an even better focus. The order of the mirrors is unimportant.

  9. Improved release coatings for electroformed x-ray optics

    NASA Astrophysics Data System (ADS)

    Romaine, S.; Boike, J.; Bruni, R.; Engelhaupt, D.; Gorenstein, P.; Ramsey, B.

    2011-09-01

    X-ray astronomy grazing incidence telescopes use the principle of nested shells to maximize the collecting area. Some of the more recent missions, such as XMM-Newton [1], have used an electroformed nickel replication (ENR) process [2] to fabricate the mirror shells. Upcoming missions, such as Spectrum-Röntgen-Gamma [3] and Focusing Optics X-ray Solar Imager [4], also use the electroforming process to fabricate nested shell grazing incidence X-ray telescopes. We present recent results on fabrication of replicas with multilayer coatings from Wolter-1 mandrels using a new hardcoat release material to simplify and improve this electroforming process.

  10. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, S.; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.

    2009-12-01

    The Focusing Optics x-ray Solar Imager is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager provides excellent spatial (2 arcseconds) and spectral (1~keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The foxsi project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  11. Optical and X-ray observations of the low-mass X-ray binary EXO 0748-676

    NASA Technical Reports Server (NTRS)

    Thomas, Brian; Corbet, Robin; Augusteijn, Thomas; Callanan, Paul; Smale, Alan P.

    1993-01-01

    Optical and X-ray observations of EXO-676 in late March 1989 are presented. Our optical observations provide some support for the previously observed correlation between the mean optical brightness and light curve morphology. Unexpectedly, the mean X-ray and optical flux levels during this period do not reflect similar system states. The optical counterpart is found to be in an intermediate to low state, while X-ray data imply a bright (high) state. The changed relationship between optical and X-ray fluxes is evidence showing that EXO 0748-676 has possibly evolved. We fail to find correlated variability in simultaneous X-ray and optical observations. The lack of covariability is attributed to the limited simultaneous coverage of the source and/or significant geometric modulation in the optical light curve.

  12. Recoil splitting of x-ray-induced optical fluorescence

    SciTech Connect

    Gavrilyuk, S.; Aagren, H.; Gel'mukhanov, F.; Sun, Y.-P.; Levin, S.

    2010-03-15

    We show that the anisotropy of the recoil velocity distribution of x-ray-ionized atoms or molecules leads to observable splittings in subsequent optical fluorescence or absorption when the polarization vector of the x rays is parallel to the momentum of the fluorescent photons. The order of the magnitude of the recoil-induced splitting is about 10 {mu}eV, which can be observed using Fourier or laser-absorption spectroscopic techniques.

  13. X-ray Optics for BES Light Source Facilities

    SciTech Connect

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  14. Cosmic X-ray spectroscopy with multilayer optics

    NASA Technical Reports Server (NTRS)

    Walker, Arthur B. C., Jr.; Martinez, Dennis S.; Paris, Elizabeth S.; Hoover, Richard B.; Barbee, Troy W., Jr.

    1992-01-01

    Multilayer optics operated at normal incidence offer a powerful new technology for the study of the solar spectrum in the XUV. The spectra of most cosmic X-ray sources are strongly extinguished at wavelengths above 40 A due to absorption and scattering by interstellar grains. We describe a number of configurations which allow multilayer optics to be used at nonnormal angles of incidence in conjunction with grazing incidence optics to analyze the spectra of cosmic X-ray sources in the wavelength interval between 1.5 and 40 A. These optical configurations utilize both multilayer mirrors and gratings, and permit the efficient observation of extended sources using stigmatic spectrographs. The response of the instruments described to typical cosmic X-ray sources is also discussed.

  15. Breakthroughs in photonics 2013: X-ray optics

    SciTech Connect

    Soufli, Regina

    2014-04-01

    Here, this review discusses the latest advances in extreme ultraviolet/X-ray optics development, which are motivated by the availability and demands of new X-ray sources and scientific and industrial applications. Among the breakthroughs highlighted are the following: i) fabrication, metrology, and mounting technologies for large-area optical substrates with improved figure, roughness, and focusing properties; ii) multilayer coatings with especially optimized layer properties, achieving improved reflectance, stability, and out-of-band suppression; and iii) nanodiffractive optics with improved efficiency and resolution.

  16. Replicated Nickel Optics for the Hard-X-Ray Region

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian

    2005-01-01

    Replicated nickel optics has been used extensively in x-ray astronomy, most notable for the XMM/Newton mission. Thc combination of relative ease of fabrication and the inherent stability of full shell optics, make them FIJI attractive approach for medium-resolution, high-throughput applications. MSFC has been developing these optics for use in the hard-x-ray region. Efforts at improving the resolution of these, particularly the very-thin shells required to meet thc weight budget of future missions, will be described together with the prospects for significant improvements down to the 5-arcsec level.

  17. First Search for an X-Ray-Optical Reverberation Signal in an Ultraluminous X-Ray Source

    NASA Astrophysics Data System (ADS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.; Cenko, S. Bradley; Trippe, Margaret L.; Mushotzky, Richard F.; Gandhi, Poshak

    2016-02-01

    Using simultaneous optical (VLT/FORS2) and X-ray (XMM-Newton) data of NGC 5408, we present the first ever attempt to search for a reverberation signal in an ultraluminous X-ray source (NGC 5408 X-1). The idea is similar to active galactic nucleus broad line reverberation mapping where a lag measurement between the X-ray and the optical flux combined with a Keplerian velocity estimate should enable us to weigh the central compact object. We find that although NGC 5408 X-1's X-rays are variable on a timescale of a few hundred seconds (rms of 9.0 ± 0.5%), the optical emission does not show any statistically significant variations. We set a 3σ upper limit on the rms optical variability of 3.3%. The ratio of the X-ray to the optical variability is an indicator of X-ray reprocessing efficiency. In X-ray binaries, this ratio is roughly 5. Assuming a similar ratio for NGC 5408 X-1, the expected rms optical variability is ≈2%, which is still a factor of roughly two lower than what was possible with the VLT observations in this study. We find marginal evidence (3σ) for optical variability on a ˜24 hr timescale. Our results demonstrate that such measurements can be made, but photometric conditions, low sky background levels, and longer simultaneous observations will be required to reach optical variability levels similar to those of X-ray binaries.

  18. Optical variability of X-ray-selected QSOs

    NASA Astrophysics Data System (ADS)

    Pica, Andrew J.; Webb, James R.; Smith, Alex G.; Leacock, Robert J.; Bitran, Mauricio

    1987-08-01

    Photometric data for ten X-ray-selected quasistellar objects have been obtained from archival records of the Rosemary Hill Observatory. Reliable magnitudes were obtained for seven of the ten sources and six displayed optical variations significant at the 95 percent confidence level or greater. One source appeared to exhibit optically violent behavior. Light curves and photographic magnitudes are presented and discussed.

  19. Development of microchannel plate x-ray optics

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with size on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. We have succeeded in producing silicon lenses with a geometry suitable for a 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. In addition to the silicon fabrication, an x-ray beam line was constructed at Columbia for testing the optics. Most recently, we have done several experiments to find the fundamental limits that the anisotropic etch process placed on the etched surface roughness.

  20. Technology development for high-energy x-ray optics

    NASA Astrophysics Data System (ADS)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell; Kester, Thomas; Speegle, Chet

    2006-06-01

    We are developing hard-x-ray optics using an electroformed-nickel-replication process off superpolished mandrels. To date, we have fabricated over 100 shells for our HERO balloon payload with typical angular resolutions in the 13-15 arcsec range. This paper discusses the factors currently limiting this resolution and various developments geared towards the production of higher-resolution optics.

  1. Optical variability of X-ray-selected QSOs

    SciTech Connect

    Pica, A.J.; Webb, J.R.; Smith, A.G.; Leacock, R.J.; Bitran, M.

    1987-08-01

    Photometric data for ten X-ray-selected quasistellar objects have been obtained from archival records of the Rosemary Hill Observatory. Reliable magnitudes were obtained for seven of the ten sources and six displayed optical variations significant at the 95 percent confidence level or greater. One source appeared to exhibit optically violent behavior. Light curves and photographic magnitudes are presented and discussed. 22 references.

  2. Chandra X-ray Observatory Optical Axis and Aimpoint

    NASA Astrophysics Data System (ADS)

    Zhao, Ping

    2016-01-01

    Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond resolution. Chandra comprises of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM). To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements stay rigid and stable for the entire life time of the Chandra operation. Tracking the Chandra optical axis and aimpoint with respect to detector positions is the most relevant measurement for understanding telescope stability. The study shows that both the optical axis and the aimpoint has been drifting since Chandra launch. I will discuss the telescope focal-point, optical axis, aimpoint, their positiondrifts during the mission, the impact to Chandra operations, and the permanent default aimpoint, to be implemented in Chandra cycle 18.

  3. X-Ray and Optical Filaments in M87

    NASA Astrophysics Data System (ADS)

    Sparks, William B.; Donahue, Megan; Jordán, Andrés; Ferrarese, Laura; Côté, Patrick

    2004-05-01

    We compare a very deep X-ray image of M87, at the center of the Virgo Cluster, to high-quality optical images of the low-excitation emission-line gas in the same region. There are striking coincidences of detail between the two. We explore the possibility that this represents a thermal interaction between hot gas at 107 K and warm gas at 104 K. We find that two temperatures are present in the X-ray gas, with the lower more prevalent in the vicinity of the optical filaments. Electron conduction from the hot phase to the cooler one provides a quantitatively acceptable energy source for the optical filaments, and we show additionally that it can do so for the brightest X-ray cluster, Perseus. If operative, conduction in the presence of gas-rich galaxy mergers may explain the presence of ``cool cores'' in clusters of galaxies.

  4. X-ray multilayer optics for Indus synchrotrons application

    NASA Astrophysics Data System (ADS)

    Nayak, Maheswar; Pradhan, P. C.; Lodha, G. S.

    2015-06-01

    We present the state-of-the-art X-ray multilayer optics fabrication facilities at Indus synchrotrons complex. The facilities are regularly used for fabrication of high quality x-ray multilayer structures. The results on two representative materials combination of Mo/Si and W/B4C are presented. In Mo/Si multilayer system, we have achieved ˜70% of reflectivity (near normal incidence angle) at soft x-ray region. Large area (300mm×50mm) Mo/Si multilayers are also successively fabricated for monochromator application in hard x-ray region. Whereas in W/B4C system, we demonstrate the capability of these facilities to fabricate ultra short period multilayer (periodicity ˜15-20 Å) with large number of layer pairs in the range of 200-400 for transmission polarizer near Fe L-edge and for monochromator application in hard x-ray region. Hard x-ray reflectivity of ˜54% is achieved from W/B4C MLs with periodicity ˜20 Å and number of layer pairs 300.

  5. Optical properties of X-rays--dynamical diffraction.

    PubMed

    Authier, André

    2012-01-01

    The first attempts at measuring the optical properties of X-rays such as refraction, reflection and diffraction are described. The main ideas forming the basis of Ewald's thesis in 1912 are then summarized. The first extension of Ewald's thesis to the X-ray case is the introduction of the reciprocal lattice. In the next step, the principles of the three versions of the dynamical theory of diffraction, by Darwin, Ewald and Laue, are given. It is shown how the comparison of the dynamical and geometrical theories of diffraction led Darwin to propose his extinction theory. The main optical properties of X-ray wavefields at the Bragg incidence are then reviewed: Pendellösung, shift of the Bragg peak, fine structure of Kossel lines, standing waves, anomalous absorption, paths of wavefields inside the crystal, Borrmann fan and double refraction. Lastly, some of the modern applications of the dynamical theory are briefly outlined: X-ray topography, location of adsorbed atoms at crystal surfaces, optical devices for synchrotron radiation and X-ray interferometry. PMID:22186282

  6. Optics-free x-ray FEL oscillator

    SciTech Connect

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  7. Chandra X-ray Observatory Aimpoint and Optical Axis

    NASA Astrophysics Data System (ADS)

    Zhao, Ping

    2012-01-01

    Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond resolution. The Chandra telescope is comprised of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM), which is where the X-ray detectors mounted and is connected to the HRMA by a 10-meter long Optical Bench Assembly. To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements to stay rigid and stable for the entire life time of the Chandra operation. By measuring the telescope Aimpoint and Optical Axis positions on the detectors, we can exam the stability of the telescope. These positions have been monitored continuously as one of the Chandra on-orbit calibration tasks. The results show that these positions have been drifting continuously since launch. I will present the drift of the Optical Axis and Aimpoint, their default offset, and explain their impacts to the Chandra operation and evaluates the integrity and stability of the telescope. This study is essential to ensure the optimal operation of the Chandra X-ray Observatory.

  8. Optical Design for a Survey X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Zhang, William W.; McClelland, Ryan S.

    2014-01-01

    Optical design trades are underway at the Goddard Space Flight Center to define a telescope for an x-ray survey mission. Top-level science objectives of the mission include the study of x-ray transients, surveying and long-term monitoring of compact objects in nearby galaxies, as well as both deep and wide-field x-ray surveys. In this paper we consider Wolter, Wolter-Schwarzschild, and modified Wolter-Schwarzschild telescope designs as basic building blocks for the tightly nested survey telescope. Design principles and dominating aberrations of individual telescopes and nested telescopes are discussed and we compare the off-axis optical performance at 1.0 KeV and 4.0 KeV across a 1.0-degree full field-of-view.

  9. Technology Development for Nickel X-Ray Optics Enhancement

    NASA Technical Reports Server (NTRS)

    Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2008-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.

  10. The Focusing Optics Solar X-ray Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, L.; Krucker, S.; Ramsey, B.; Ishikawa, S.; Takahashi, T.; Tajima, H.

    2010-05-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  11. The Focusing Optics X-ray Solar Imager (FOXSI)

    NASA Astrophysics Data System (ADS)

    Krucker, Sam; Christe, Steven; Glesener, Lindsay; McBride, Steve; Turin, Paul; Glaser, David; Saint-Hilaire, Pascal; Delory, Gregory; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Terada, Yukikatsu; Ishikawa, Shin-Nosuke; Kokubun, Motohide; Saito, Shinya; Takahashi, Tadayuki; Watanabe, Shin; Nakazawa, Kazuhiro; Tajima, Hiroyasu; Masuda, Satoshi; Minoshima, Takashi; Shomojo, Masumi

    2009-08-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar hard x-ray instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of indirect imaging, the derived images have a low dynamic range (<30) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the solar flare acceleration process. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding particle acceleration in solar flares. The FOXSI project is led by the Space Science Laboratory at the University of California. The NASA Marshall Space Flight Center, with experience from the HERO balloon project, is responsible for the grazing-incidence optics, while the Astro H team (JAXA/ISAS) will provide double-sided silicon strip detectors. FOXSI will be a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  12. Effect of focusing optics on x-ray speckle contrast

    SciTech Connect

    Retsch, C. C.; Wang, Y.; Frigo, S. P.; McNulty, I.; Lurio, L. B.; Stephenson, G. B.

    1999-11-02

    The authors investigated the behavior of speckle contrast and size under various experimental conditions using 1.82 keV x-rays. In this paper, they report the comparison of two different setups for x-ray speckle experiments: one employing a focusing zone plate and one in which a pinhole selects the size of the coherent x-ray beam. They found a strong dependence of the speckle contrast and size on the type of setup. In general, the pinhole setup results in higher contrast but smaller speckle size. On the other hand the zone plate setup allows one to target much smaller areas of interest in the sample, down to submicron dimensions, and also to adjust the speckle size. The authors anticipate that these results will be useful in future time-correlation spectroscopy experiments.

  13. Optical Shaping of X-Ray Free-Electron Lasers.

    PubMed

    Marinelli, A; Coffee, R; Vetter, S; Hering, P; West, G N; Gilevich, S; Lutman, A A; Li, S; Maxwell, T; Galayda, J; Fry, A; Huang, Z

    2016-06-24

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes. PMID:27391728

  14. Optical Shaping of X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, A.; Coffee, R.; Vetter, S.; Hering, P.; West, G. N.; Gilevich, S.; Lutman, A. A.; Li, S.; Maxwell, T.; Galayda, J.; Fry, A.; Huang, Z.

    2016-06-01

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  15. Microchannel-plate-based x-ray optics

    NASA Astrophysics Data System (ADS)

    Beijersbergen, Marco W.; Bavdaz, Markos; Peacock, Anthony J.; Tomaselli, Enrico; Fraser, G.; Brunton, A.; Flyckt, E.; Krumrey, Michael K.; Souvorov, Alexei

    1999-10-01

    X-ray optics based on micro-channel plates (MCPs) offer some distinctive advantages over conventional technologies used to produce imagin optics for astrophysics applications. Such micro-pore optics (MPOs) are far lighter and allow a larger stacking density than optics based on metallic foils or plates. Until recent, x-ray optics based on MCPs were not feasible or useful because of the limited quality of the MCPs. We have produced thick square pore MPOs of improved quality and have developed methods to stack the channels in a radial pattern, as required for imagin optics based on Wolter type I or II designs. The individual plates were tested in synchrotron radiation facilities and conventional beam lines to determine their geometric and surface scattering properties.

  16. X-ray optics simulation using Gaussian superposition technique.

    PubMed

    Idir, Mourad; Cywiak, Moisés; Morales, Arquímedes; Modi, Mohammed H

    2011-09-26

    We present an efficient method to perform x-ray optics simulation with high or partially coherent x-ray sources using Gaussian superposition technique. In a previous paper, we have demonstrated that full characterization of optical systems, diffractive and geometric, is possible by using the Fresnel Gaussian Shape Invariant (FGSI) previously reported in the literature. The complex amplitude distribution in the object plane is represented by a linear superposition of complex Gaussians wavelets and then propagated through the optical system by means of the referred Gaussian invariant. This allows ray tracing through the optical system and at the same time allows calculating with high precision the complex wave-amplitude distribution at any plane of observation. This technique can be applied in a wide spectral range where the Fresnel diffraction integral applies including visible, x-rays, acoustic waves, etc. We describe the technique and include some computer simulations as illustrative examples for x-ray optical component. We show also that this method can be used to study partial or total coherence illumination problem. PMID:21996845

  17. High energy, high resolution X-ray optics

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Joy, Marshall; Kahn, Steven

    1990-01-01

    The scientific goals of X-ray astronomy are considered to evaluate the relative advantages of using classical Wolter-1 optics or using a different approach. The portion of the X-ray band over 10 keV is unexploited in the present X-ray optics technology, and focussing in this portion of the band is crucial because nonfocussed experiments are background limited. The basic design of 'hard' X-ray optics is described theoretically emphasizing the very small angles of incidence in the grazing-incidence optics. Optimization of the signal-to-noise ratio is found to occur at a finite angular resolution. In real applications, the effective area reduced by the efficiency of the two reflections is 80 percent at energies up to 40 keV, and the quality of the reflecting surface can be monitored to minimize scattering. Focussing optics are found to offer improvements in signal-to-noise as well as more effective scientific return because microelectronic focal-plane technology is employed.

  18. X-ray optics simulation using Gaussian superposition technique

    SciTech Connect

    Idir, M.; Cywiak, M.; Morales, A. and Modi, M.H.

    2011-09-15

    We present an efficient method to perform x-ray optics simulation with high or partially coherent x-ray sources using Gaussian superposition technique. In a previous paper, we have demonstrated that full characterization of optical systems, diffractive and geometric, is possible by using the Fresnel Gaussian Shape Invariant (FGSI) previously reported in the literature. The complex amplitude distribution in the object plane is represented by a linear superposition of complex Gaussians wavelets and then propagated through the optical system by means of the referred Gaussian invariant. This allows ray tracing through the optical system and at the same time allows calculating with high precision the complex wave-amplitude distribution at any plane of observation. This technique can be applied in a wide spectral range where the Fresnel diffraction integral applies including visible, x-rays, acoustic waves, etc. We describe the technique and include some computer simulations as illustrative examples for x-ray optical component. We show also that this method can be used to study partial or total coherence illumination problem.

  19. FY06 LDRD Final Report Next-generation x-ray optics: focusing hard x-rays

    SciTech Connect

    Pivovaroff, M; Soufli, R

    2007-03-01

    The original goal of our research was to open up a new class of scientific experiments by increasing the power of newly available x-ray sources by orders of magnitude. This was accomplished by developing a new generation of x-ray optics, based on hard x-ray (10-200 keV) reflective and diffractive focusing elements. The optical systems we envision begin with a core reflective optic, which has the ability to capture and concentrate x-rays across a wide range of energies and angles band, combined with diffractive optics, based on large-scale multilayer structures, that will further enhance the spatial, spectral and temporal resolving power of the system. Enabling technologies developed at LLNL such as precise mounting of thermally formed substrates, smoothing techniques and multilayer films of ultra-high reflectance and precision were crucial in the development and demonstration of our research objectives. Highlights of this phase of the project include: the design and fabrication of a concentrator optic for the Pleiades Thomson X-ray source located at LLNL, smoothing of glass substrates through application of polyimide films, and the design, fabrication and testing of novel volume multilayers structures. Part of our research into substrate smooth led to the development of a new technique (patent pending) to construct high-quality, inexpensive x-ray optics. This innovation resulted in LLNL constructing a x-ray optic for the CERN Axion Solar Telescope (CAST) and allowed LLNL to join the international experiment.

  20. Soft X-ray astronomy using grazing incidence optics

    NASA Technical Reports Server (NTRS)

    Davis, John M.

    1989-01-01

    The instrumental background of X-ray astronomy with an emphasis on high resolution imagery is outlined. Optical and system performance, in terms of resolution, are compared and methods for improving the latter in finite length instruments described. The method of analysis of broadband images to obtain diagnostic information is described and is applied to the analysis of coronal structures.

  1. A 0535+26: an X-ray/Optical Tour

    NASA Astrophysics Data System (ADS)

    Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.; Jenke, P.; Coe, M. J.; Steele, I.; Caballero, I.; Gutierrez-Soto, J.; Kretschmar, P.; Suso, J.; McBride, V. A.; Rodríguez, J.

    2011-09-01

    We compiled X-ray and Optical observations of the accreting X-ray binary sytem A 0535+26 since its discovery in 1975, that will allow us to shed light on the unpredictible behavior of this binary system. We present the data in terms of the Be-disc interaction with the neutron star companion. In addition, we show recent results from the continous monitoring of this source by the Gamma-ray Burst Monitor (GBM), on board the Fermi observatory, since its launch in 2008 June 11.

  2. Simultaneous X-ray and optical observations of GX 339-4 in an X-ray high state

    NASA Technical Reports Server (NTRS)

    Makishima, K.; Mitsuda, K.; Maejima, Y.; Bradt, H. V.; Remillard, R. A.

    1986-01-01

    Optical emission, soft X-rays, and hard X-rays have been observed simultaneously from the black hole candidate GX 3339-4 in a typical high state. Each of these components is interpreted as arising from a characteristic region of the accretion disk. Considered as a black hole, GX 339-4 lacks the variable 2 keV blackbody component that would be emitted from the 'solid' surface of a neutron star in the low-mass neutron star binaries. The X-ray emission in the high state is therefore extremely soft and stable in time. The intermediate disk region is optically thick and geometrically thin. The observed soft X-ray component with a 'disk blackbody' spectrum comes from this region. The innermost disk region is dynamically unstable due to the effect of general relativity and possibly due to radiation pressure. This region is responsible for the generation of the hard X-ray tail through Comptonization.

  3. Femtosecond optical/hard X-ray timing diagnostics at an FEL: implementation and performance

    NASA Astrophysics Data System (ADS)

    Lemke, Henrik T.; Weaver, Matt; Chollet, Matthieu; Robinson, Joseph; Glownia, James M.; Zhu, Diling; Bionta, Mina R.; Cammarata, Marco; Harmand, Marion; Coffee, Ryan N.; Fritz, David M.

    2013-05-01

    The development of Free Electron Lasers has opened the possibility to investigate ultrafast processes using femtosecond hard x-ray pulses. In optical/x-ray light pump/probe experiments, however, the time resolution is mainly limited by the ability to synchronize both light sources over a long distance (<100 fs FWHM) rather than their pulse length (<10 fs FWHM). We have implemented a spectrally encoding x-ray to optical laser timing diagnostic into the XPP beamline at LCLS with a timing uncertainty down to 10 fs. An x-ray induced change of refractive index in a solid target is temporally probed for single pulses by a chirped white light pulse [4]. By resorting single shot data to the timestamps obtained by the diagnostics, the temporal data quality can be improved to basically pulse length limited time resolution. By interchangable targets and adjustable x-ray and laser foci, the method was successfully applied for very different x-ray parameters. These are different photon energies in the range of 6-20 keV, which at LCLS also includes application of 3rd Harmonic radiation, pulse energy, and bandwidth, when using a Si(111) monochromator.

  4. Optical Klystron Enhancement to SASE X-ray FELs

    SciTech Connect

    Ding, Yuantao; Emma, Paul; Huang, Zhirong; Kumar, Vinit

    2006-04-07

    The optical klystron enhancement to self-amplified spontaneous emission (SASE) free electron lasers (FELs) is studied in theory and in simulations. In contrast to a seeded FEL, the optical klystron gain in a SASE FEL is not sensitive to any phase mismatch between the radiation and the microbunched electron beam. The FEL performance with the addition of four optical klystrons located at the undulator long breaks in the Linac Coherent Light Source (LCLS) shows significant improvement if the uncorrelated energy spread at the undulator entrance can be controlled to a very small level. In addition, FEL saturation at shorter x-ray wavelengths (around 1.0 A) within the LCLS undulator length becomes possible. We also discuss the application of the optical klystron in a compact x-ray FEL design that employs relatively low electron beam energy together with a shorter-period undulator.

  5. The Focusing Optics X-Ray Solar Imager: FOXSI

    NASA Technical Reports Server (NTRS)

    Krucker, Saem; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; McBride, Stephen; Glaser, David; Turin, Paul; Lin, R. P.; Gubarev, Mikhail; Ramsey, Brian; Saito, Shinya; Tanaka, Yasuyuki; Takahashi, Tadayuki; Watanabe, Shin; Tajima, Takaaki; Tajima, Hiroyasu; Masuda, Satoshi

    2011-01-01

    The Focusing Optics x-ray Solar Imager (FOXSI) is a sounding rocket payload funded under the NASA Low Cost Access to Space program to test hard x-ray (HXR) focusing optics and position-sensitive solid state detectors for solar observations. Today's leading solar HXR instrument, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides excellent spatial (2 arcseconds) and spectral (1 keV) resolution. Yet, due to its use of an indirect imaging system, the derived images have a low dynamic range (typically <10) and sensitivity. These limitations make it difficult to study faint x-ray sources in the solar corona which are crucial for understanding the particle acceleration processes which occur there. Grazing-incidence x-ray focusing optics combined with position-sensitive solid state detectors can overcome both of these limitations enabling the next breakthrough in understanding impulsive energy release on the Sun. The FOXSI project is led by the Space Sciences Laboratory at the University of California, Berkeley. The NASA Marshall Space Flight Center is responsible for the grazing-incidence optics, while the Astro-H team at JAXA/ISAS has provided double-sided silicon strip detectors. FOXSI is a pathfinder for the next generation of solar hard x-ray spectroscopic imagers. Such observatories will be able to image the non-thermal electrons within the solar flare acceleration region, trace their paths through the corona, and provide essential quantitative measurements such as energy spectra, density, and energy content in accelerated electrons.

  6. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    NASA Astrophysics Data System (ADS)

    Sun, Xuepeng; Liu, Zhiguo; Sun, Tianxi; Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen; Ma, Yongzhong; Ding, Xunliang

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the "virtual" X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  7. Optical Variability of X-Ray Bright Southern Symbiotic Stars

    NASA Astrophysics Data System (ADS)

    Hedrick, C.; Sokoloski, J.

    2004-12-01

    We performed weekly B- and V-band observations of four X-ray bright southern symbiotic binary stars -- CD-43 14304, Hen 3-1591, LMC S63, and SMC LN 358 -- using the 1.3-m telescope at Cerro Tololo Inter-American Observatory (CTIO). We began optical monitoring in August 2003 for two of the objects (LMC S63 and SMC LN 358) and in January 2004 for the other two objects (CD-43 14304 and Hen 3-1591). None of the four survey objects experienced a major outburst during the monitoring period. We did, however, detect small-amplitude ( 0.1 mag) optical variability on a time scale of tens of days, for the first time, in each of the four systems. Both the structure and amplitude of the variations are roughly the same in the B band and V band in all of the symbiotics in our sample except one (LMC S63), and is most consistent with the idea that the week-time-scale variability originates with the hot component (most likely an accreting white dwarf) rather than the red giant. We compare the variability properties of our small sample of X-ray-bright symbiotic stars to those of samples of both X-ray-bright and X-ray-dim symbiotic stars from the database of the American Association of Variable Star Observers (AAVSO).

  8. Development of microchannel plate x-ray optics

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip; Chen, Andrew

    1994-01-01

    The goal of this research program was to develop a novel technique for focusing x-rays based on the optical system of a lobster's eye. A lobster eye employs many closely packed reflecting surfaces arranged within a spherical or cylindrical shell. These optics have two unique properties: they have unlimited fields of view and can be manufactured via replication of identical structures. Because the angular resolution is given by the ratio of the size of the individual optical elements to the focal length, optical elements with sizes on the order of one hundred microns are required to achieve good angular resolution with a compact telescope. We employed anisotropic etching of single crystal silicon wafers for the fabrication of micron-scale optical elements. This technique, commonly referred to as silicon micromachining, is based on silicon fabrication techniques developed by the microelectronics industry. An anisotropic etchant is a chemical which etches certain silicon crystal planes much more rapidly than others. Using wafers in which the slowly etched crystal planes are aligned perpendicularly to the wafer surface, it is possible to etch a pattern completely through a wafer with very little distortion. Our optics consist of rectangular pores etched completely through group of zone axes (110) oriented silicon wafers. The larger surfaces of the pores (the mirror elements) were aligned with the group of zone axes (111) planes of the crystal perpendicular to the wafer surface. We have succeeded in producing silicon lenses with a geometry suitable for 1-d focusing x-ray optics. These lenses have an aspect ratio (40:1) suitable for x-ray reflection and have very good optical surface alignment. We have developed a number of process refinements which improved the quality of the lens geometry and the repeatability of the etch process. A significant progress was made in obtaining good optical surface quality. The RMS roughness was decreased from 110 A for our initial lenses

  9. Optics for nano-satellite X-ray monitor

    NASA Astrophysics Data System (ADS)

    Tichý, Vladimír.; Burrows, David N.; Prieskorn, Zachary; Hudec, René

    The Schmidt lobster eye design for a grazing incidence X-ray optics provides wide field of view of the order of many degrees, for this reason it can be a convenient approach for the construction of space X-ray monitors. It is possible to assemble Schmidt lobster eye telescopes with dimensions and focal lengths acceptable for nano class satellites. In this paper, draft of nano-class space mission providing monitoring of specific sky area is presented. Preliminary optical design study for such mission is performed. Two of possible opticle designs are presented. For those designs, field of view, effective input area and other basic optical parameters are calculated. Examples of observed images are presented.

  10. Bendable X-ray Optics for High Resolution Imaging

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Ramsey, B.; Kilaru, K.; Atkins, C.; Broadway, D.

    2014-01-01

    Current state-of the-art for x-ray optics fabrication calls for either the polishing of massive substrates into high-angular-resolution mirrors or the replication of thin, lower-resolution, mirrors from perfectly figured mandrels. Future X-ray Missions will require a change in this optics fabrication paradigm in order to achieve sub-arcsecond resolution in light-weight optics. One possible approach to this is to start with perfectly flat, light-weight surface, bend it into a perfect cone, form the desired mirror figure by material deposition, and insert the resulting mirror into a telescope structure. Such an approach is currently being investigated at MSFC, and a status report will be presented detailing the results of finite element analyses, bending tests and differential deposition experiments.

  11. Workshop on high heat load x-ray optics

    SciTech Connect

    Not Available

    1990-01-01

    A workshop on High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite element'' and finite difference'' calculations comparing experiment with theory and extending theory to optimize performance.

  12. Optical, radio, and X-ray structure in NGC 1275.

    NASA Astrophysics Data System (ADS)

    McNamara, Brian R.; O'Connell, Robert W.; Sarazin, Craig L.

    1996-07-01

    We have compiled U, I, Hα, radio, and x-ray maps of NGC 1275 in order to study the galaxy's structure and color distribution. There are strong indications that the radio source is interacting with the gaseous medium in NGC 1275. A ~2 mag spread in U-I color is found across the face of the galaxy. The brightest and bluest structure in the U-band image is located along the northern radio lobes and cavity walls in the x-ray emission. Correspondingly bright features are absent along the southern radio lobe. The low velocity Hα emission avoids the cavities in the x-ray emission occupied by the radio lobes. The global distribution of excess blue light, Hα emission, and brightest x-ray emission occur over similar spatial scales (~30-40 kpc). However, the x-ray and optical structures are not correlated in detail. We have detected a faint blue continuum from the outer, "crab-like" low velocity filaments, which may signal ongoing star formation there. In addition, we have detected blue continuum toward the high velocity emission regions, perhaps from stars associated with the high velocity gas. Dark features, probably associated with dust, surround the nucleus and extend in filaments to the north- west. We suggest the dust surrounding the nucleus is associated with NGC 1275 itself, whereas the dust to the north-west may be associated with the high velocity system. The color distribution is consistent with population ages ranging from ~10 Myr to 1 Gyr superposed on an older, elliptical background population. The formation of the youngest (brightest, bluest) population along the radio lobes may have been induced by shock compression of cold gas along the northern radio lobe. This interpretation is complicated, however, by the superposition of light toward both high and low velocity gas to the north-west of the nucleus and the pole-on aspect of the radio source. The cooling rate of the x-ray-emitting gas in the central 20 kpc or so is comparable to the estimated star

  13. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  14. Correlated X-ray/ultraviolet/optical variability in NGC 6814

    NASA Astrophysics Data System (ADS)

    Troyer, Jon; Starkey, David; Cackett, Edward M.; Bentz, Misty C.; Goad, Michael R.; Horne, Keith; Seals, James E.

    2016-03-01

    We present results of a three-month combined X-ray/UV/optical monitoring campaign of the Seyfert 1 galaxy NGC 6814. The object was monitored by Swift from June through August 2012 in the X-ray and UV bands and by the Liverpool Telescope from May through July 2012 in B and V. The light curves are variable and significantly correlated between wavebands. Using cross-correlation analysis, we compute the time lag between the X-ray and lower energy bands. These lags are thought to be associated with the light travel time between the central X-ray emitting region and areas further out on the accretion disc. The computed lags support a thermal reprocessing scenario in which X-ray photons heat the disc and are reprocessed into lower energy photons. Additionally, we fit the light curves using CREAM, a Markov Chain Monte Carlo code for a standard disc. The best-fitting standard disc model yields unreasonably high super-Eddington accretion rates. Assuming more reasonable accretion rates would result in significantly underpredicted lags. If the majority of the reprocessing originates in the disc, then this implies the UV/optical emitting regions of the accretion disc are farther out than predicted by the standard thin disc model. Accounting for contributions from broad emission lines reduces the lags in B and V by ˜25 per cent (less than the uncertainty in the lag measurements), though additional contamination from the Balmer continuum may also contribute to the larger than expected lags. This discrepancy between the predicted and measured interband delays is now becoming common in AGN where wavelength-dependent lags are measured.

  15. New micro pore optics for x-ray pulsar navigation

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Zhang, Qindong; Xu, Zhao; Zhang, Zhengjun; Zhang, Zhiyong; Xu, Wei; Li, Jingwen; Wang, Jian

    2016-01-01

    Solutions of focusing pulsars X-ray is a key factor in improving the accuracy of pulsar navigation. Based on the focusing principle of lobster eye grazing incidence, new micro pore optics (MPO) for pulsar navigation which is glass-substrated X-ray MPO is researched and developed. The effective areas on MPO when single grazing incidence or double grazing incidence happens are analyzed in detail and the first generation of MPO is produced. By illumination of parallel X-ray beam with 1.49keV and 8.05keV on the MPO, it is found that the crossing focusing image can be clearly visible, and the arm of cross image of 1.49keV and 8.05keV are is respectively 30mm and 17mm in length. Moreover, the center intensity was significantly higher than the cross arm which is consistent with theoretical calculation. Besides, the angular resolution of first generation of MPO with 8.05keV parallel X-ray beam illuminated is 4.19'.

  16. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  17. X-ray mirror assessment with optical light

    NASA Technical Reports Server (NTRS)

    Kunieda, Hideyo; Serlemitsos, Peter J.

    1988-01-01

    The imaging capability of a thin foil X-ray mirror has been examined with optical light, using a laser beam and a wide optical parallel beam. These measurements reveal that: (1) image broadening due to millimeter scale waviness (orange peel) of the aluminum substrate, partly intrinsic to the foil and partly caused during the foil treatment, is 1.2-min of arc half-power diameter (HPD) in two reflections; (2) slope errors due to foil shaping and misalignment cause broadening of 1.6-2.0-min of arc HPD; and (3) total broadening is about 3-min of arc HPD, which is consistent with the broadening of 2.6-min of arc HPD measured with X rays.

  18. Management of optics. [for HEAO-2 X ray telescope

    NASA Technical Reports Server (NTRS)

    Kirchner, T. E.; Russell, M.

    1981-01-01

    American Science and Engineering, Inc., designed the large X-ray optic for the HEAO-2 X-ray Telescope. The key element in this project was the High Resolution Mirror Assembly (HRMA), subcontracting the fabrication of the optical surfaces and their assembly and alignment. The roles and organization of the key participants in the creation of HRMA are defined, and the degree of interaction between the groups is described. Management of this effort was extremely complex because of the intricate weaving of responsibilities, and AS&E, as HEAO-2 Program managers, needed to be well versed in the scientific objectives, the technical requirements, the program requirements, and the subcontract management. Understanding these factors was essential for implementing both technical and management controls, such as schedule and budget constraints, in-process control, residence requirements, and scientist review and feedback. Despite unforeseen technical problems and interaction differences, the HEAO-2 was built on schedule and to specification.

  19. Multitapered x-ray capillary optics for mammography.

    PubMed

    Bradford, Carla D; Peppler, Walter W; Ross, Richard E

    2002-06-01

    X-ray mammography is currently the primary tool used for breast cancer detection. However, studies have shown that 5%-15% of breast cancers are not visualized mammographically. The long term goal of this project is to improve the x-ray mammographic imaging system using capillary optics. A post-patient capillary optic lens has the potential to increase spatial resolution and eliminate the detection of scattered x rays, thereby improving image contrast and the signal-to-noise ratio (SNR). Several individual and two prototype multitapered optics were studied to determine the feasibility of a full-field multitapered optic. Scatter fraction, contrast, transmission, uniformity, and the modulation transfer function (MTF) were measured for a Mo target tube/computed radiography (CR) imaging system when this prototype was applied. The results were compared with standard grid and airgap techniques. The multitapered optic lens removed 85% of the scattered photons as compared to 66% and 39% for the air gap and grid methods, respectively. This resulted in an improvement of contrast by approximately 80% for the optics, 51% for the air gap, and 30% for grid methods. The single optic lens improved the limiting resolution (5% MTF level) of the CR detector by 78% due to magnification with very little focal spot blurring, while the multitapered prototype improved resolution significantly, but not as much as the single optic. These measurements have shown that it is feasible to create a multitapered optic lens that significantly improves system MTF and virtually eliminates scatter. With continued improvements in fabrication techniques, a full-field multitapered lens will be feasible. PMID:12094979

  20. X-ray and optical observations of four polars

    NASA Astrophysics Data System (ADS)

    Worpel, H.; Schwope, A. D.; Granzer, T.; Reinsch, K.; Schwarz, R.; Traulsen, I.

    2016-08-01

    Aims: We investigate the temporal and spectral behaviour of four polar cataclysmic variables from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and search for a possible excess of soft X-ray photons. Methods: We obtained and analysed four XMM-Newton X-ray observations of three of the sources, two of them discovered with the SDSS and one in the RASS. The X-ray data were complemented by optical photometric and spectroscopic observations and, for two sources, archival Swift observations. Results: SDSSJ032855.00+052254.2 was X-ray bright in two XMM-Newton and two Swift observations, and shows transitions from high and low accretion states on a timescale of a few months. The source shows no significant soft excess. We measured the magnetic field strength at the main accreting pole to be 39 MG and the inclination to be 45° ≤ i ≤ 77°, and we refined the long-term ephemeris. SDSSJ133309.20+143706.9 was X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which seems to spend almost all of its time accreting at a low level. Its inclination is less than about 76°. 1RXSJ173006.4+033813 was X-ray bright in the XMM-Newton observation. Its spectrum contained a modest soft blackbody component, not luminous enough to be considered a significant soft excess. We inferred a magnetic field strength at the main accreting pole of 20 to 25 MG, and that the inclination is less than 77° and probably less than 63°. V808 Aur, also known as CSS081231:J071126+440405, was X-ray faint in the Swift observation, but there is nonetheless strong evidence for bright and faint phases in X-rays and perhaps in UV. Residual X-ray flux from the faint phase is difficult to explain by thermal emission from the white dwarf surface, or by accretion onto the second pole. We present a revised distance estimate of 250 pc. Conclusions: The three systems we were able to study in detail

  1. X-ray Transport Optics and Diagnostics Commissioning Report

    SciTech Connect

    Bionta, R M

    2004-10-24

    We discuss commissioning work funded through LCLS WBS element 1.5: X-ray Transport Optics and Diagnostics (XTOD.) A short description of the XTOD commissioning diagnostics hardware is followed by a brief discussion of FEL induced damage considerations. The remainder discusses simulation work on the response of the Direct Imager camera to a mix of spontaneous and FEL radiation and a Monte Carlo Calculation of the reflections of the spontaneous radiation in the undulator vacuum tube.

  2. Microstructured Optical Fiber for X-ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stanton L.

    2009-01-01

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  3. MICROSTRUCTURED OPTICAL FIBER FOR X-RAY DETECTION

    SciTech Connect

    DeHaven, S. L.

    2010-02-22

    A novel scintillating optical fiber is presented using a composite micro-structured quartz optical fiber. Scintillating materials are introduced into the multiple inclusions of the fiber. This creates a composite optical fiber having quartz as a cladding with an organic scintillating material core. X-ray detection using these fibers is compared to a collimated cadmium telluride (CdTe) detector over an energy range from 10 to 40 keV. Results show a good correlation between the fiber count rate trend and that of the CdTe detector.

  4. Synchronous time-resolved optical and x-ray emission from simultaneous optical and x-ray streak cameras driven by a master ramp generator

    SciTech Connect

    Balmer, J.E.; Lampert, W.; Roschger, E.; Hares, J.D.; Kilkenny, J.D.

    1985-05-01

    An optical and an x-ray streak camera have been synchronized by driving the deflection plates of both cameras from the same ramp generator. The relative timing of the two cameras was calibrated by running UV light onto the x-ray streak camera. The x-ray streak camera was then used to measure the time of the x-ray emission from a laser plasma with respect to the laser pulse.

  5. Merging Technologies to Develop Light Weight X-ray Optics

    NASA Astrophysics Data System (ADS)

    Romaine, Suzanne

    We have made significant progress in our on-going program to develop higher resolution grazing incidence focusing hard X-ray optics for future missions. This proposal is for continued development of light weight optics for future hard X-ray missions. Our goal is to reduce the mass of the present full shell nickel replicated optics by more than half, while at the same time improving their resolution. The electroformed-nickel-replication process produces full shells of revolution, which are inherently stable with good figure control, offering the potential for good angular resolution. With angular resolution of 10 15 , such a telescope will improve the sensitivity by a factor of 5 over current planned high energy missions, and would lead to compelling new science which is central to NASA s Physics of the Cosmos Program. We have made significant progress over our previous period of performance and have achieved most of our goals including the first replication of a Wolter-1 mandrel using a metal-ceramic coating with an effective density of less than 4gm/cc. Achieving our goals will significantly advance the state-of-the-art for replicated full shell telescopes and will lower the cost for future NASA X-ray astronomy missions of moderate resolution.

  6. Recent development in homemade x-ray polycapillary optic and its application to topics of x-ray optics

    NASA Astrophysics Data System (ADS)

    Perez, R. Daniel

    2012-05-01

    The possibilities of performing non-destructive x-ray microanalysis with homemade polycapillary optics are described in this paper. Monocapillaries and monolithic polycapillary half-lenses using fiber glass technology were made by drawing glass capillary bundles at high temperature in a heating furnace. General guidelines of the manufacture process are enumerated and the specific process implemented in our conventional laboratory is described. The potential of the lenses is illustrated by some applications on x-ray microanalysis as the recently developed confocal geometry. The selected examples show the feasibility of elemental and structural depth profile analysis using homemade polycapillary optics. The developed lenses provide an opportunity to upgrade conventional laboratories with a low cost investment.

  7. Spontaneous emission effects in optically pumped x-ray FEL

    SciTech Connect

    Smetanin, I.V.; Grigor`ev, S.V.

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  8. TW Hya: A Simultaneous Optical and X-Ray Campaign

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea K.; Brickhouse, N. S.; Cranmer, S. R.; Irwin, J.; Bessell, M. S.; Crause, L. A.; Lawson, W. A.; Luna, J.; Mallik, S. V.; Pallavicini, R.; Schuler, S. C.

    2010-01-01

    A world-wide campaign of spectroscopy and photometry was carried out for 17 days in February- March 2007 (JD 2454147 - 2454164) in support of an extended CHANDRA HETG observation of the nearby accreting T Tauri star: TW Hya (CD -34 7151).This program included photometry from Super WASP-South and SAAO. Spectroscopy was obtained from TNG/SARG, Vainu Bappu Observatory, SAAO, MSSO, Magellan/MIKE, Pico do Dios, and Gemini-S. The photometric period of the star derived from the periodogram of WASP-S photometry during this time was 4.76+/-0.01 d. Hα fluxes do not appear to correlate well with the photometric period nor the total X-ray flux, perhaps influenced by flaring that occurred in both optical and X-ray sequences during this time. Hα profiles from TW Hya can change dramatically during a night, with substantial systematic changes in the wind opacity signaled both in Hα and the He I 10830 Å transition. Related posters by Schneider et al., and Wolk et al. address the optical veiling and X-ray spectrum of TW Hya from this program. Research supported in part by NASA and the Smithsonian Astrophysical Observatory.

  9. Streak cameras for soft x-ray and optical radiation

    SciTech Connect

    Medecki, H.

    1983-09-01

    The principal component of a streak camera is the image converter tube. A slit-shaped photocathode transforms the radiation into a proportional emission of electrons. An electron - optics arrangement accelerates the electrons and projects them into a phosphor screen creating the image of the slit. A pair of deflection plates deflects the electronic beam along a direction perpendicular to the main dimension of the slit. Different portions of the phosphor screen show the instantaneous image of the slit with brightness proportional to the number of emitted electrons and, consequently, to the intensity of the radiation. For our x-ray streak cameras, we use the RCA C73435A image conventer tube intended for the measurement of the radiation of light and modified to have an x-ray sensitive photocathode. Practical considerations lead to the use of transparent rather than reflecting photocathodes. Several of these camera tubes are briefly described.

  10. Reflective Coating for Lightweight X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Zhang, William W.; Windt, David; Hong, Mao-Ling; Saha, Timo; McClelland, Ryan; Sharpe, Marton; Dwivedi, Vivek H.

    2012-01-01

    X-ray reflective coating for next generation's lightweight, high resolution, optics for astronomy requires thin-film deposition that is precisely fine-tuned so that it will not distort the thin sub-mm substrates. Film of very low stress is required. Alternatively, mirror distortion can be cancelled by precisely balancing the deformation from multiple films. We will present results on metallic film deposition for the lightweight optics under development. These efforts include: low-stress deposition by magnetron sputtering and atomic layer deposition of the metals, balancing of gross deformation with two-layer depositions of opposite stresses and with depositions on both sides of the thin mirrors.

  11. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  12. Design, Fabrication and Testing of Multilayer Coated X-Ray Optics for the Water Window Imaging X-Ray Microscope

    NASA Technical Reports Server (NTRS)

    Spencer, Dwight C.

    1996-01-01

    Hoover et. al. built and tested two imaging Schwarzschild multilayer microscopes. These instruments were constructed as prototypes for the "Water Window Imaging X-Ray Microscope," which is a doubly reflecting, multilayer x-ray microscope configured to operate within the "water window." The "water window" is the narrow region of the x-ray spectrum between the K absorption edges of oxygen (lamda = 23.3 Angstroms) and of carbon (lamda = 43.62 Angstroms), where water is relatively highly transmissive and carbon is highly absorptive. This property of these materials, thus permits the use of high resolution multilayer x-ray microscopes for producing high contrast images of carbon-based structures within the aqueous physiological environments of living cells. We report the design, fabrication and testing of multilayer optics that operate in this regime.

  13. Simultaneous X-ray and optical observations of the flaring X-ray source, Aquila A-1

    NASA Technical Reports Server (NTRS)

    Bowyer, C. S.; Charles, P. A.

    1979-01-01

    During the summer of 1978 the recurrent transient X-ray source, Aquila X-1, underwent its first major outburst in two years. The results of extensive observations at X-ray and optical wavelengths throughout this event, which lasted for approximately two months are presented. The peak X-ray luminosity was approximately 1.3 times that of the Crab and exhibited spectral dependent flickering on timescales approximately 5 minutes. The observations are interpreted in terms of a standard accretion disk model withparticular emphasis on the similarities to Sco X-1 and other dward X-ray systems, although the transient nature of the system remains unexplained. It was found that Aquila X-1 can be described adequately by the semi-detached Roche lobe model and yields a mass ratio of less than or approximate to 3.5.

  14. Optically thick X-ray transfer - The shell game. [transmission through gas surrounding cosmic x ray source

    NASA Technical Reports Server (NTRS)

    Langer, S. H.; Ross, R. R.; Mccray, R.

    1978-01-01

    This paper investigates the radiative transfer of X-rays through a shell that is optically thick to Compton scattering, surrounding a point source of continuum X-rays. The emission and absorption of X-rays due to K-shell transitions of iron are included. The calculations are done in two entirely independent ways: by Monte Carlo simulation and by solving a Fokker-Planck diffusion equation. The emergent spectra agree very well for Thomson depths of at least about 2. The validity is confirmed of the modification to the Fokker-Planck equation of Kompaneets (1957) that is required when the photon energy is large compared with the average thermal energy of the electrons. A procedure is also developed for treating models of compact X-ray sources consisting of incomplete shells.

  15. Multi-tapered x-ray capillary optics for mammography

    NASA Astrophysics Data System (ADS)

    Bradford, Carla Duquesne

    X-ray mammography is currently the primary tool used for breast cancer detection. However mammography has limitations. Studies have shown that 5%-15% of breast cancers are not visualized mammographically and of the number of cases sent to biopsy, only 15% are actually cancerous (high false positive percentage). The long term goal of this project is to improve the x- ray mammographic imaging system using capillary optics. A post-patient capillary optic lens has the potential to increase spatial resolution and eliminate the detection of scattered x-rays, thereby improving image contrast and SNR. These improvements can be exploited with any detector but may have the greatest potential when implemented with digital detectors. An image analysis study has been performed using a prototype multi-tapered optic to determine the feasibility of a full-field multi-tapered optic. Scatter fraction, contrast, transmission, uniformity, MTF, NPS and DQE were measured for a CR imaging system when the prototype multi-tapered optic lens was applied. The results were compared with standard grid and air gap techniques. The measurements demonstrate that the multi-tapered optic lens removes 85% of the scattered photons, while air gap and grid methods remove 66% and 39%, respectively. This results in an improvement of contrast by approximately 80% for the optics, compared to 51% for the air gap and 30% for the grid methods. The single capillary optic lenses can improve the limiting resolution (5% MTF level) of the CR detector by 78% due to magnification with very little focal spot blurring, while the multi-tapered prototype improved resolution significantly but not as much as the single optic. This was due to relative misalignment of the individual lenses in the multi- tapered optic. Acceptable levels of misalignment have been established that appear to be readily achievable. Once this relative misalignment issue is resolved, the multi-tapered lens will produce results similar to single

  16. X-Ray, UV, and Optical Observations of Supernova 2006bp with Swift: Detection of Early X-Ray Emission

    NASA Technical Reports Server (NTRS)

    Immler, S.; Brown, P. J.; Milne, P.; Dessart, L.; Mazzali, P. A.; Landsman, W.; Gehrels, N.; Petre, R.; Burrows, D. N.; Nousek, J. A.; Chevalier, R. A.; Williams, C. L.; Koss, M.; Stockdale, C. J.; Kelley, M. T.; Weiler, K. W.; Holland, S. T.; Pian, E.; Roming, P. W. A.; Pooley, D.; Nomoto, K.; Greiner, J.; Campana, S.; Soderberg, A. M.

    2007-01-01

    We present results on the X-ray and optical/UV emission from the Type IIP supernova (SN) 2006bp and the interaction of the SW shock with its environment, obtained with the X-Ray Telescope (XRT) and UV/Optical Telescope (UVOT) on-board the Swift observatory. SN 2006bp is detected in X-rays at a 4.5 sigmalevel of significance in the merged XRT data from days 1 to 12 after the explosion. If the (0.2-10 keV band) X-ray luminosity of L(sub 0.2-10) = (1.8 plus or minus 0.4) x l0(exp 39 ergs s(exp -1) is caused by interaction of the SN shock with circumstellar material (CSM), deposited by a stellar wind from the progenitor's companion star, a mass-loss rate of M is approximately 2x10(exp -6) solar mass yr(exp -1) (v(sub w)/10 km s(exp -l) is inferred. The mass-loss rate is one of the lowest ever recorded for a core-collapse SN and consistent with the non-detection in the radio with the VLA on days 2, 9, and 11 after the explosion. The Swift data further show a fading of the X-ray emission starting around day 12 after the explosion. In combination with a follow-up XMM-Newton observation obtained on day 21 after the explosion, an X-ray rate of decline Lx, varies as t(exp -n) with index n = 1.2 plus or minus 0.6 is inferred. Since no other SN has been detected in X-rays prior to the optical peak and since Type IIP SNe have an extended 'plateau' phase in the optical, we discuss the scenario that the X-rays might be due to inverse Compton scattering of photospheric optical photons off relativistic electrons produced in circumstellar shocks. However, due to the high required value of the Lorentz factor (approximately 10-100), inconsistent with the ejecta velocity inferred from optical line widths, we conclude that Inverse Compton scattering is an unlikely explanation for the observed X-ray emission. The fast evolution of the optical/ultraviolet (1900-5500A) spectral energy distribution and the spectral changes observed with Swift reveal the onset of metal line-blanketing and

  17. Simultaneous x-rays/optical tomography of small animals

    NASA Astrophysics Data System (ADS)

    Da Silva, A.; Leabad, M.; Bordy, T.; Dinten, J.-M.; Peltié, P.; Rizo, P.

    2007-03-01

    A small animal multimodality tomographer dedicated to the co-registration of fluorescence optical signal and X-rays measurements has been developed in our laboratory. The purpose of such a system is to offer the possibility to get in vivo anatomical and functional information at once. Moreover, anatomical measurements can be used as a regularization factor in order to get the reconstructions of the biodistribution of fluorochromes more accurate and to speed up the treatment. The optical system is basically composed with a CW laser (Krypton, 752 nm) for an optimal excitation of Alexa-Fluor 750 fluorochromes, and a CCD camera coupled with a combination of filters for the fluorescence detection. The animal is placed inside a transparent tube filled with an index matching fluid. In order to perform multiple views of fluorescence data acquisitions, the cylinder is fixed to a rotating stage. The excitation beam is brought to the cylinder via two mirrors mounted on translation plates allowing a vertical scan. The optical data acquisitions are performed with a high sensitivity CCD camera. The X-ray generator and the X-ray detector have been placed perpendicularly to the optical chain. A first study on phantoms was conducted to evaluate the feasibility, to test the linearity and the reproducibility, and to fix the parameters for the co-registration. These test experiments were reproduced by considering mice in the oesophagus of which thin glass tubes containing fluorochromes were inserted. Finally, the performance of the system was evaluated in vivo on mice bearing tumours in the lungs, tagged with Transferin-AlexaFluor 750.

  18. FINDING FOSSIL GROUPS: OPTICAL IDENTIFICATION AND X-RAY CONFIRMATION

    SciTech Connect

    Miller, Eric D.; Rykoff, Eli S.; Dupke, Renato A.; Mendes de Oliveira, Claudia; Proctor, Robert N.; Lopes de Oliveira, Raimundo; Garmire, Gordon P.; Koester, Benjamin P.; McKay, Timothy A.

    2012-03-10

    We report the discovery of 12 new fossil groups (FGs) of galaxies, systems dominated by a single giant elliptical galaxy and cluster-scale gravitational potential, but lacking the population of bright galaxies typically seen in galaxy clusters. These FGs, selected from the maxBCG optical cluster catalog, were detected in snapshot observations with the Chandra X-ray Observatory. We detail the highly successful selection method, with an 80% success rate in identifying 12 FGs from our target sample of 15 candidates. For 11 of the systems, we determine the X-ray luminosity, temperature, and hydrostatic mass, which do not deviate significantly from expectations for normal systems, spanning a range typical of rich groups and poor clusters of galaxies. A small number of detected FGs are morphologically irregular, possibly due to past mergers, interaction of the intra-group medium with a central active galactic nucleus (AGN), or superposition of multiple massive halos. Two-thirds of the X-ray-detected FGs exhibit X-ray emission associated with the central brightest cluster galaxy (BCG), although we are unable to distinguish between AGN and extended thermal galaxy emission using the current data. This sample representing a large increase in the number of known FGs, will be invaluable for future planned observations to determine FG temperature, gas density, metal abundance, and mass distributions, and to compare to normal (non-fossil) systems. Finally, the presence of a population of galaxy-poor systems may bias mass function determinations that measure richness from galaxy counts. When used to constrain power spectrum normalization and {Omega}{sub m}, these biased mass functions may in turn bias these results.

  19. Results of X-ray and optical monitoring of SCO X-1

    NASA Technical Reports Server (NTRS)

    Mook, D. E.; Messina, R. J.; Hiltner, W. A.; Belian, R.; Conner, J.; Evans, W. D.; Strong, I.; Blanco, V.; Hesser, J.; Kunkel, W.

    1974-01-01

    Sco X-1 was monitored at optical and X-ray wavelengths from 1970 April 26 to 1970 May 21. The optical observations were made at six observatories around the world and the X-ray observations were made by the Vela satellites. There was a tendency for the object to show greater variability in X-ray when the object is optically bright. A discussion of the intensity histograms is presented for both the optical and X-ray observations. No evidence for optical or X-ray periodicity was detected.

  20. Growing Cutting-edge X-ray Optics

    SciTech Connect

    Ray Conley

    2012-11-30

    Ever imagined that an Xbox controller could help open a window into a world spanning just one billionth of a meter? Brookhaven Lab's Ray Conley grows cutting-edge optics called multilayer Laue lenses (MLL) one atomic layer at a time to focus high-energy x-rays to within a single nanometer. To achieve this focusing feat, Ray uses a massive, custom-built atomic deposition device, an array of computers, and a trusty Xbox controller. These lenses will be deployed at the Lab's National Synchrotron Light Source II, due to begin shining super-bright light on pressing scientific puzzles in 2015

  1. Growing Cutting-edge X-ray Optics

    ScienceCinema

    Ray Conley

    2013-07-17

    Ever imagined that an Xbox controller could help open a window into a world spanning just one billionth of a meter? Brookhaven Lab's Ray Conley grows cutting-edge optics called multilayer Laue lenses (MLL) one atomic layer at a time to focus high-energy x-rays to within a single nanometer. To achieve this focusing feat, Ray uses a massive, custom-built atomic deposition device, an array of computers, and a trusty Xbox controller. These lenses will be deployed at the Lab's National Synchrotron Light Source II, due to begin shining super-bright light on pressing scientific puzzles in 2015

  2. Recent progress in X-ray optics at the ESRF

    NASA Astrophysics Data System (ADS)

    Freund, A.

    2003-03-01

    It is the task of x-ray optics to adapt the raw beam generated by modern sources such as synchrotron storage rings to a great variety of experimental requirements in terms of intensity, spot size, polarization and other parameters. The very high quality of synchrotron radiation (source size of a few microns and beam divergence of a few micro-radians) and the extreme x-ray flux (power of several hundred Watts in a few square mm) make this task quite difficult. In particular the heat load aspect is very important in the conditioning process of the brute x-ray power. Cryogenically cooled silicon crystals and water-cooled diamond crystals can presently fulfil this task, but limits will soon be reached and new schemes and materials must be envisioned. A major tendency of instrument improvement has a ways been to concentrate more photons into a smaller spot utilizing a whole variety of focusing devices such as Fresnel zone plates, refractive lenses and Systems based on bent surfaces, for example Kirkpatrick-Baez Systems. Apart from the resistance of the sample, the ultimate limits are determined by the source size and strength on one side, by materials properties, cooling, mounting and bending schemes on the other side, and fundamentally by the diffraction process. There is also the important aspect of coherence that can be both a nuisance and a blessing for the experiments, in particular for imaging techniques. Its conservation puts additional constraints on the quality of the optical elements. A review of recent progress in this field is given.

  3. Magnetic smart material application to adaptive x-ray optics

    NASA Astrophysics Data System (ADS)

    Ulmer, M. P.; Graham, Michael E.; Vaynman, Semyon; Cao, J.; Takacs, Peter Z.

    2010-09-01

    We discuss a technique of shape modification that can be applied to thin walled ({100-400 micron thickness) electroformed replicated optics or slumped glass optics to improve the near net shape of the mirror as well as the midfrequency ripple. The process involves sputter deposition of a magnetic smart material (MSM) film onto a permanently magnetic material. The MSM material exhibits strains about 400 times stronger than ordinary ferromagnetic materials. The deformation process involves a magnetic write head which traverses the surface, and under the guidance of active metrology feedback, locally magnetizes the surface to impart strain where needed. Designs and basic concepts as applied to space borne X-ray optics will be described.

  4. High efficiency replicated x-ray optics and fabrication method

    DOEpatents

    Barbee, Jr., Troy W.; Lane, Stephen M.; Hoffman, Donald E.

    2001-01-01

    Replicated x-ray optics are fabricated by sputter deposition of reflecting layers on a super-polished reusable mandrel. The reflecting layers are strengthened by a supporting multilayer that results in stronger stress-relieved reflecting surfaces that do not deform during separation from the mandrel. The supporting multilayer enhances the ability to part the replica from the mandrel without degradation in surface roughness. The reflecting surfaces are comparable in smoothness to the mandrel surface. An outer layer is electrodeposited on the supporting multilayer. A parting layer may be deposited directly on the mandrel before the reflecting surface to facilitate removal of the layered, tubular optic device from the mandrel without deformation. The inner reflecting surface of the shell can be a single layer grazing reflection mirror or a resonant multilayer mirror. The resulting optics can be used in a wide variety of applications, including lithography, microscopy, radiography, tomography, and crystallography.

  5. Optical Monitoring of Selected X-ray AGN

    NASA Astrophysics Data System (ADS)

    Phillips, V. D.; Sadun, A.; Kelly, M.; Baca, P.; Holt, J.; Galadari, A.; Nied, P.; Howard, E.; Ghosh, K.

    2001-12-01

    We present the results of microvariability studies of X-ray loud/radio quiet AGN in optical wavelengths (R band). The optical data were taken over approximately eight months at the Sommers-Bausch Observatory (U. Colorado-Boulder), and at the SARA Observatory. In addition to engaging in routine optical analysis, we investigated the extent to which these objects exhibited intra-night variability. The presence of microvariability would indicate that in addition to an accretion disk, there would also be present relativistic components such as parsec-scale jets; quiescence would indicate that long-term variability in these objects is perhaps due to accretion disk instabilities alone. The preliminary indication from our data is that there is indeed evidence of relativistic jets in this class of objects.

  6. Monochromatic Mammographic Imaging Using X-Ray Polycapillary Optics

    NASA Astrophysics Data System (ADS)

    Sugiro, Francisca

    2002-06-01

    Monochromatic imaging is typically done with synchrotron sources. These sources are expensive and not practical for clinical settings. However, conventional laboratory sources normally have insufficient intensity. Polycapillary x-ray optics can be used to efficiently produce an intense parallel beam, which can be diffracted from a crystal to create monochromatic radiation. Monochromatic parallel beam imaging produces high subject contrast, high resolution, and low patient dose. Contrast, resolution, and intensity measurements were performed with both high and low angular acceptance crystals. Testing was first done at 8 keV with an intense copper rotating anode source. Preliminary l7.5 kev measurements were then made with a molybdenum source. At 8 keV, contrast enhancement was a factor of five relative to the polychromatic case, in good agreement with theoretical values. At l7.5 kev, monochromatic subject contrast was a factor of two times greater than the conventional polychromatic contrast. The measured angular resolution with a silicon crystal is 0.6 mrad at 8 keV, and 0.2 - 0.3 mrad at 17.5 keV. For a 50-mm thick patient, this angle corresponds to 50 lp/mm with an ideal detector. The use of polychromatic collimating optics allow monochromatic mammographic imaging measurements with a conventional x-ray source in a practical clinical setting.

  7. Optical synchronization system for femtosecond X-ray sources

    DOEpatents

    Wilcox, Russell B.; Holzwarth, Ronald

    2011-12-13

    Femtosecond pump/probe experiments using short X-Ray and optical pulses require precise synchronization between 100 meter-10 km separated lasers in a various experiments. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1-10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with various implementations. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range two single-frequency lasers separated by several teraHertz will be lock to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  8. Glancing incidence optics for X-ray and ultraviolet astronomy.

    NASA Technical Reports Server (NTRS)

    Underwood, J. H.; Neupert, W. M.; Hoover, R. B.

    1971-01-01

    Glancing incidence telescopes of the kind first described by Wolter have now been physically realized, so that it is possible to obtain high-resolution images of celestial objects at all wavelengths greater than about 3 A. The GSFC-MSFC X-ray telescope for the Apollo telescope mount uses Wolter type 1 optics and is capable of forming images of the sun in the 8-70 A region with spatial resolution of the order of one arc second. The GSFC extreme ultraviolet spectroheliometer for OSO H uses type 2 optics and can obtain images of the sun in spectral lines in the 170-400 A region with a spatial resolution of about ten arc seconds. Theoretical (ray trace) and laboratory data on these systems are presented.

  9. Development of the water window imaging X-ray microscope utilizing normal-incidence multilayer optics

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    A water-window imaging X-ray telescope configured with normal-incidence multilayer X-ray mirrors has been developed to obtain images with unprecedented spatial resolution and contrast of carbon-based microstructures within living cells. The narrow bandpass response inherent in multilayer X-ray optics is accurately tuned to wavelengths within the water window.

  10. Optical studies of X-ray peculiar chromosphereically active stars

    NASA Astrophysics Data System (ADS)

    Pandey, J. C.

    2006-02-01

    A multiwavelength study of the late-type active stars, selected on the basis of their X-ray and radio luminosities is presented in this thesis. For FR Cnc, a photometric period 0.8267 +/- 0.0004 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. A photometric period of 18.802 +/- 0.074 has been discovered in the star HD 81032. The shape and amplitude of the photometric light curves of FR Cnc, HD 81032, HD 95559 and LO Peg are observed to be changing from one epoch to another. The change in the amplitude is mainly due to a change in the minimum of the light curve, and this May be due to a change in the spot coverage. This indicates that photometric variability is due to the presence of dark spots on the surface of active star. Two groups of spots are identified for FR Cnc and LO Peg. The spots are found to migrate, and migration periods of 0.97 year and 0.93 year are determined from the 4 years of data. A migration period of 1.12 years for one group of spots in LO Peg is also determined. Formation of a new group of spots in the star HD 95559 was also seen during our observations. A single large group of spots is found to migrate, and a migration period of 7.32 +/- 0.04 years is determined for HD 81032. The stars FR Cnc, HD 81032, HD 160934 and LO Peg are seen to be redder at the light minimum and we interpret this is due to the relatively cooler temperature of the darker regions present in the visible hemisphere. We find the lack of color-brightness correlation in the star HD 95559 and this May be due to the presence of bright faculae and plages like regions accompanied by dark spots in any one component of the this binary system. The optical spectroscopy of FR Cnc and HD 81032 carried out during 2002-2003, reveals the presence of strong and variable Ca II H and K, Halpha and Hbeta emission features indicative

  11. The X-ray properties of high redshift, optically selected QSOs. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Anderson, S. F.

    1985-01-01

    In order to study the X-ray properties of high redshift QSOs, grism/grens plates covering 17 deg. of sky previously imaged to very sensitive X-ray flux levels with the Einstein Observatory were taken. Following optical selection of the QSO, the archived X-ray image is examined to extract an X-ray flux detection or a sensitive upper limit.

  12. The peculiar optical-UV X-ray spectra of the X-ray weak quasar PG 0043+039

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.; Schartel, N.; Zetzl, M.; Santos-Lleó, M.; Rodríguez-Pascual, P. M.; Ballo, L.; Talavera, A.

    2016-01-01

    Context. The object PG 0043+039 has been identified as a broad absorption line (BAL) quasar based on its UV spectra. However, this optical luminous quasar has not been detected before in deep X-ray observations, making it the most extreme X-ray weak quasar known today. Aims: This study aims to detect PG 0043+039 in a deep X-ray exposure. The question is what causes the extreme X-ray weakness of PG 0043+039? Does PG 0043+039 show other spectral or continuum peculiarities? Methods: We took simultaneous deep X-ray spectra with XMM-Newton, far-ultraviolet (FUV) spectra with the Hubble Space Telescope (HST), and optical spectra of PG 0043+039 with the Hobby-Eberly Telescope (HET) and Southern African Large Telescope (SALT) in July, 2013. Results: We have detected PG 0043+039 in our X-ray exposure taken in 2013. We presented our first results in a separate paper (Kollatschny et al. 2015). PG 0043+039 shows an extreme αox gradient (αox = -2.37). Furthermore, we were able to verify an X-ray flux of this source in a reanalysis of the X-ray data taken in 2005. At that time, it was fainter by a factor of 3.8 ±0.9 with αox = -2.55. The X-ray spectrum is compatible with a normal quasar power-law spectrum (Γ = 1.70-0.45+0.57) with moderate intrinsic absorption (NH = 5.5-3.9+6.9 × 1021 cm-2) and reflection. The UV/optical flux of PG 0043+039 has increased by a factor of 1.8 compared to spectra taken in the years 1990-1991. The FUV spectrum is highly peculiar and dominated by broad bumps besides Lyα. There is no detectable Lyman edge associated with the BAL absorbing gas seen in the CIV line. PG 0043+039 shows a maximum in the overall continuum flux at around λ ≈ 2500 Å in contrast to most other AGN where the maximum is found at shorter wavelengths. All the above is compatible with an intrinsically X-ray weak quasar, rather than an absorbed X-ray emission. Besides strong FeII multiplets and broad Balmer and HeI lines in the optical band we only detect a narrow [O ii

  13. Progress on the Slumped Glass X-Ray Optics for the International X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Petre, Robert

    2011-01-01

    NASA has been developing technology for the large area IXO mirror based on precise slumping of glass sheets into parabolic and hyperbolic mirror segments. Recent progress toward attaining the stringent IXO angular resolution requirement and demonstrating technical readiness of the slumped glass technology will be described. This includes a series of X-ray measurements of mirror segment pairs in a flight-like mount. Additionally, the plan for maturing the slumped glass approach over the next several years will be summarized.

  14. Efficient Fresnel x-ray optics made simple.

    PubMed

    Braig, Christoph; Predehl, Peter

    2007-05-10

    A practical design for upcoming spaceborne x-ray telescopes with ultrahigh angular resolution is proposed. Particular attention is directed to technological simplicity and robust as well as cheap components. Based on dispersion corrected Fresnel lenses, an optimized arrangement will be identified with respect to the instrumental sensitivity for a given focal spot size. We show that this optical Gamow peak essentially depends on the radial transmission profile of a diffractive-refractive aperture. Examples for energies above 4 keV illustrate astronomical capabilities for large-scale compact and segmented objectives as well. The spectral and spatial resolutions of conventional semiconductor detectors are very well matched to imaging characteristics of those achromatic lenses. The constraints to fabrication techniques using most promising materials like Li, Be, and plastics are discussed. PMID:17446906

  15. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  16. Alkali halide microstructured optical fiber for X-ray detection

    SciTech Connect

    DeHaven, S. L. E-mail: russel.a.wincheski@nasa.gov; Wincheski, R. A. E-mail: russel.a.wincheski@nasa.gov; Albin, S.

    2015-03-31

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  17. Soft X-Ray Optics by Pulsed Laser Deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1996-01-01

    Mo/Si and C/Co multilayers for soft x-ray optics were designed for spectral regions of interest in possible applications. Fabrication was effected by Pulsed Laser Deposition using Nd:YAG (355 nm) or excimer (248 nm) lasers in order to evaluate the suitability of this technique. Results for Mo/Si structures were not considered satisfactory due mainly to problems with particulate production and target surface modification during Si ablation. These problems may be alleviated by a two-wavelength approach, using separate lasers for each target. Results for C/Co multilayers are much more encouraging, since indication of good layering was observed for extremely thin layers. We expect to continue investigating this possibility. In order to compete with traditional PVD techniques, it is necessary to achieve film coverage uniformity over large enough areas. It was shown that this is feasible, and novel means of achieving it were devised.

  18. Optical and X-ray variability in NGC 4395

    NASA Astrophysics Data System (ADS)

    Lira, P.; Lawrence, A.

    We are studying a volume-limited sample of very nearby galaxies using multi-band imaging and optical spectroscopy. Our aims are to study the nature of low luminosity nuclear activity in normal galaxies, and the star formation activity and history in nuclear regions. The sample of 46 galaxies was selected from the Kraan-Korteweg & Tamman (KKT) catalogue and contains all galaxies within 7 Mpc, with declinations > -35 deg, and Hubble types Sdm or earlier. With complete UBVRI imaging, and near-IR, X-ray and radio data for the majority of our sample, we selected all interesting targets for high S/N, long-slit spectroscopy. Currently 76% of the sample has been observed with the ISIS spectrograph at The William Herschel Telescope. In this poster we present results from our spectroscopic data, which involves the analysis and modelling of the nuclear stellar population and emission-line spectra.

  19. X-ray absorption fine structure and X-ray excited optical luminescence studies of II-VI semiconducting nanostructures

    NASA Astrophysics Data System (ADS)

    Murphy, Michael Wayne

    2010-06-01

    Various II-VI semiconducting nanomaterials such as ZnO-ZnS nanoribbons (NRs), CdSxSe1-x nanostructures, ZnS:Mn NRs, ZnS:Mn,Eu nanoprsims (NPs), ZnO:Mn nanopowders, and ZnO:Co nanopowders were synthesized for study. These materials were characterized by techniques such as scanning electron microscopy, transmission electron microscopy, element dispersive X-ray spectroscopy, selected area electron diffraction, and X-ray diffraction. The electronic and optical properties of these nanomaterials were studied by X-ray absorption fine structure (XAFS) spectroscopy and X-ray excited optical luminescence (XEOL) techniques, using tuneable soft X-rays from a synchrotron light source. The complementary nature ofthe XAFS and XEOL techniques give site, element and chemical specific measurements which allow a better understanding of the interplay and role of each element in the system. Chemical vapour deposition (CVD) of ZnS powder in a limited oxygen environment resulted in side-by-side biaxial ZnO-ZnS NR heterostructures. The resulting NRs contained distinct wurtzite ZnS and wurtzite ZnO components with widths of 10--100 nm and 20 --500 nm, respectively and a uniform interface region of 5-15 nm. XAFS and XEOL measurements revealed the luminescence of ZnO-ZnS NRs is from the ZnO component. The luminescence of CdSxSe1-x nanostructures is shown to be dependent on the S to Se ratio, with the band-gap emission being tunable between that of pure CdS and CdSe. Excitation of the CdSxSe 1-x nanostructures by X-ray in XEOL has revealed new de-excitation channels which show a defect emission band not seen by laser excitation. CVD of Mn2+ doped ZnS results in nanostructures with luminescence dominated by the yellow Mn2+ emission due to energy transfer from the ZnS host to the Mn dopant sites. The addition of EuCl3 to the reactants in the CVD process results in a change in morphology from NR to NP. Zn1-xMnxO and Zn1-xCOxO nanopowders were prepared by sol-gel methods at dopant concentrations

  20. OPTICAL COUNTERPARTS OF THE NEAREST ULTRALUMINOUS X-RAY SOURCES

    SciTech Connect

    Gladstone, Jeanette C.; Heinke, Craig O.; Cartwright, Taylor F.; Copperwheat, Chris; Roberts, Timothy P.; Levan, Andrew J.; Goad, Mike R.

    2013-06-01

    We present a photometric survey of the optical counterparts of ultraluminous X-ray sources (ULXs) observed with the Hubble Space Telescope (HST) in nearby ({approx}<5 Mpc) galaxies. Of the 33 ULXs with HST and Chandra data, 9 have no visible counterpart, placing limits on their M{sub V} of {approx} -4 to -9, enabling us to rule out O-type companions in 4 cases. The refined positions of two ULXs place them in the nucleus of their host galaxy. They are removed from our sample. Of the 22 remaining ULXs, 13 have one possible optical counterpart, while multiple are visible within the error regions of other ULXs. By calculating the number of chance coincidences, we estimate that 13 {+-} 5 are the true counterparts. We attempt to constrain the nature of the companions by fitting the spectral energy distribution and M{sub V} to obtain candidate spectral types. We can rule out O-type companions in 20 cases, while we find that one ULX (NGC 253 ULX2) excludes all OB-type companions. Fitting with X-ray irradiated models provides constraints on the donor star mass and radius. For seven ULXs, we are able to impose inclination-dependent upper and/or lower limits on the black holes' mass, if the extinction to the assumed companion star is not larger than the Galactic column. These are NGC 55 ULX1, NGC 253 ULX1, NGC 253 ULX2, NGC 253 XMM6, Ho IX X-1, IC342 X-1, and NGC 5204 X-1. This suggests that 10 ULXs do not have O companions, while none of the 18 fitted rule out B-type companions.

  1. Intercomparison between optical and x-ray scatterometry measurements of FinFET structures

    NASA Astrophysics Data System (ADS)

    Lemaillet, P.; Germer, T. A.; Kline, R. Joseph; Sunday, Daniel F.; Wang, Chengqing; Wu, Wen-li

    2013-04-01

    In this paper, we present a comparison of profile measurements of vertical field effect transistor (FinFET) fin arrays by optical critical dimension (OCD) metrology and critical dimension small angle X-ray scattering (CD-SAXS) metrology. Spectroscopic Muller matrix elements measurements were performed at various azimuthal angles for OCD, and X-ray diffraction intensities were collected for different incident angles in CD-SAXS measurements. A common trapezoidal model was used to compute the OCD and CD-SAXS signatures, using rigorous coupled wave (RCW) analysis and a 2D Fourier transform, respectively. Profile parameters, some material parameters, and instruments parameters were adjusted by a non-linear fitting procedure of the data. Results from both measurement techniques were compared and found in reasonable agreement with one another, although some of the parameters have differences that exceed the estimated uncertainties.

  2. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    SciTech Connect

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi; Kimura, Takashi; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  3. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    NASA Astrophysics Data System (ADS)

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  4. Optical Synchronization Systems for Femtosecond X-raySources

    SciTech Connect

    Wilcox, Russell; Staples, John W.; Holzwarth, Ronald

    2004-05-09

    In femtosecond pump/probe experiments using short X-Ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error over 100 meter of glass fiber. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1 10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with a piezoelectric phase modulator. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range we will lock two single-frequency lasers separated by several tera Hertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  5. Development of Coherent X-ray Diffraction Apparatus with Kirkpatrick-Baez Mirror Optics

    SciTech Connect

    Takahashi, Y.; Tsutsumi, R.; Mimura, H.; Matsuyama, S.; Nishino, Y.; Ishikawa, T.; Yamauchi, K.

    2011-09-09

    To realize coherent x-ray diffraction microscopy with higher spatial resolution, it is necessary to increase the density of x-ray photons illuminated onto the sample. In this study, we developed a coherent x-ray diffraction apparatus with Kirkpatrick-Baez mirror optics. By using mirrors fabricated by elastic emission machining, a high-density coherent x-ray beam was produced. In a demonstration experiment using a silver nanocube as a sample, a high-contrast coherent x-ray diffraction pattern was observed over a wide-q range. This proves that both the density and the degree of coherence of the focused beam were high.

  6. Two-Layer Ultra-High Density X-Ray Optical Memory

    NASA Astrophysics Data System (ADS)

    Bezirganyan, Hakob (Akop) P.; Bezirganyan, Siranush E.; Bezirganyan, Hayk H., Jr.; Bezirganyan, Petros H., Jr.

    Data reading procedure from nanostructured semiconductor X-ray optical memory (X-ROM) system detects data by measuring the changes in x-ray micro beam intensity reflected from the various surface points of data storage media. Two different mechanisms of the digital information read-out procedure, which are utilizing grazing-angle incidence X-ray backscattering diffraction (GIXB) and grazing-angle incidence X-ray reflection (GIX) techniques respectively, enable, in principle, the fabrication and exploitation of two-layer X-ROM. Angle of incidence of the x-ray micro beam is different for each storage layer of the proposed two-layer X-ROM.

  7. Development of a prototype nickel optic for the Constellation-X hard x-ray telescope

    NASA Astrophysics Data System (ADS)

    Romaine, S.; Basso, S.; Bruni, R. J.; Burkert, W.; Citterio, O.; Cotroneo, V.; Engelhaupt, D.; Freyberg, M. J.; Gorenstein, P.; Gubarev, M.; Hartner, G.; Mazzoleni, F.; O'Dell, S.; Pareschi, G.; Ramsey, B. D.; Speegle, C.; Spiga, D.

    2007-09-01

    The Constellation-X mission concept has been streamlined to a single Atlas V 551 configuration. This decision was reached by the project team after considering the increases in launch costs announced in 2006 coupled with the constrained budget environment apparent with the release of the NASA 2007 budget. Along with the Spectroscopy X-ray Telescopes, this new configuration continues to carry a Hard X-ray Telescope (HXT) component, with some modifications to the original requirements to adjust to the new configuration. The total effective area requirement in the 7 - 40 keV band has been reduced, but at the same time the angular resolution requirement has been increased from 1 arcmin to 30 arcsec. The Smithsonian Astrophysical Observatory, Marshall Space Flight Center and Brera Observatory, Italy) have been collaborating to develop and HXT which meets the requirements of Constellation-X. The development work we have been engaged in to produce multilayer coated Electroformed-Nickel-Replicate (ENR) shells is well suited for this new configuration. We report here on results of fabrication and testing of a prototyped optic for the HXT. Full beam illumination X-ray tests, taken at MPE-Panter Test Facility, show that these optics meet the new requirement of 30 arcsec for the streamlined Constellation-X configuration. This report also presents preliminary results from studies using titanium nitride as a release agent to simplify and improve the nickel electroforming replication process.

  8. Electroform/Plasma-Spray Laminates for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Ulmer, Melville P.; Graham, Michael; Vaynman, Semyon

    2007-01-01

    Electroform/plasma-spray laminates have shown promise as lightweight, strong, low-thermal-expansion components for xray optics. The basic idea is to exploit both (1) the well-established art of fabrication of optical components by replication and (2) plasma spraying as a means of reinforcing a thin replica optic with one or more backing layer(s) having tailorable thermomechanical properties. In x-ray optics as in other applications, replication reduces the time and cost of fabrication because grinding and polishing can be limited to a few thick masters, from which many lightweight replicas can thereafter be made. The first step in the fabrication of a component of the type in question is to make a replica optic by electroforming a thin layer of nickel on a master. Through proper control of the electroforming process conditions, it is possible to minimize residual stress and, hence, to minimize distortion in the replica. Next, a powder comprising ceramic particles coated with a metal compatible with the electroformed nickel is plasma-sprayed onto the backside of the nickel replica. Then through several repetitions and variations of the preceding steps or perhaps a small compressive stress, alternating layers of electroformed nickel and plasma-sprayed metal-coated ceramic powder are deposited. The thicknesses of the layers and the composition of the metal-coated ceramic powder are chosen to optimize the strength, areal mass density, and toughness of the finished component. An important benefit of using both electroforming and plasma spraying is the possibility of balancing stresses to a minimum level, which could be zero or perhaps a small net compressive stress designed to enhance the function of the component in its intended application.

  9. Coating Thin Mirror Segments for Lightweight X-ray Optics

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Sharpe, Marton V.; Zhang, William; Kolosc, Linette; Hong, Melinda; McClelland, Ryan; Hohl, Bruce R.; Saha, Timo; Mazzarellam, James

    2013-01-01

    Next generations lightweight, high resolution, high throughput optics for x-ray astronomy requires integration of very thin mirror segments into a lightweight telescope housing without distortion. Thin glass substrates with linear dimension of 200 mm and thickness as small as 0.4 mm can now be fabricated to a precision of a few arc-seconds for grazing incidence optics. Subsequent implementation requires a distortion-free deposition of metals such as iridium or platinum. These depositions, however, generally have high coating stresses that cause mirror distortion. In this paper, we discuss the coating stress on these thin glass mirrors and the effort to eliminate their induced distortion. It is shown that balancing the coating distortion either by coating films with tensile and compressive stresses, or on both sides of the mirrors is not sufficient. Heating the mirror in a moderately high temperature turns out to relax the coated films reasonably well to a precision of about a second of arc and therefore provide a practical solution to the coating problem.

  10. Size Optimization for Mirror Segments for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Biskach, Michael P.; McClelland, Ryan S.; Saha, Timo; Zhang, William W.

    2011-01-01

    The flight mirror assemblies (FMA) for X-ray telescopes similar to that of the International X-ray Observatory (IXO) concept consist of several thousands of individual mirror segments. The size, shape, and location of these mirrors affect many characteristics of the telescope design. Mission requirements among other factors in turn restrict mirror segment parameters such as thickness, axial- length, azimuthal span, and mass density. This paper provides an overview of the critical relationships relating to mirror segment size and configuration throughout the design and analysis of an X-ray mirror assembly. A computational analysis is presented in the form of ray tracing pairs of thin X-ray mirror segments of varying sizes aligned in gravity and supported using kinematic constraints with corresponding self weight distortions calculated using finite element analysis (FEA). The work in this paper may be used as a starting point for determining mirror segment sizes for X-ray missions like that of IXO and beyond.

  11. An X-ray and optical study of the cluster of galaxies Abell 754

    NASA Technical Reports Server (NTRS)

    Fabricant, D.; Beers, T. C.; Geller, M. J.; Gorenstein, P.; Huchra, J. P.

    1986-01-01

    X-ray and optical data for A754 are used to study the relative distribution of the luminous and dark matter in this dense, rich cluster of galaxies with X-ray luminosity comparable to that of the Coma Cluster. A quantitative statistical comparison is made of the galaxy positions with the total mass responsible for maintaining the X-ray emitting gas in hydrostatic equilibrium. A simple bimodal model which fits both the X-ray and optical data suggests that the galaxies are distributed consistently with the projected matter distribution within the region covered by the X-ray map (0.5-1 Mpc). The X-ray and optical estimates of the mass in the central region of the cluster are 2.9 x 10 to the 14th and 3.6 + or - 0.5 x 10 to the 14th solar masses, respectively.

  12. X-RAY EMISSION FROM OPTICALLY SELECTED RADIO-INTERMEDIATE AND RADIO-LOUD QUASARS

    SciTech Connect

    Miller, B. P.; Brandt, W. N.; Schneider, D. P.; Wu Jianfeng; Gibson, R. R.; Steffen, A. T. E-mail: niel@astro.psu.edu E-mail: jfwu@astro.psu.edu E-mail: rgibson@astro.washington.edu

    2011-01-01

    We present the results of an investigation into the X-ray properties of radio-intermediate and radio-loud quasars (RIQs and RLQs, respectively). We combine large, modern optical (e.g., SDSS) and radio (e.g., FIRST) surveys with archival X-ray data from Chandra, XMM-Newton, and ROSAT to generate an optically selected sample that includes 188 RIQs and 603 RLQs. This sample is constructed independently of X-ray properties but has a high X-ray detection rate (85%); it provides broad and dense coverage of the l-z plane, including at high redshifts (22% of objects have z = 2-5), and it extends to high radio-loudness values (33% of objects have R* = 3-5, using logarithmic units). We measure the 'excess' X-ray luminosity of RIQs and RLQs relative to radio-quiet quasars (RQQs) as a function of radio loudness and luminosity, and parameterize the X-ray luminosity of RIQs and RLQs both as a function of optical/UV luminosity and also as a joint function of optical/UV and radio luminosity. RIQs are only modestly X-ray bright relative to RQQs; it is only at high values of radio loudness (R* {approx}> 3.5) and radio luminosity that RLQs become strongly X-ray bright. We find no evidence for evolution in the X-ray properties of RIQs and RLQs with redshift (implying jet-linked IC/CMB emission does not contribute substantially to the nuclear X-ray continuum). Finally, we consider a model in which the nuclear X-ray emission contains both disk/corona-linked and jet-linked components and demonstrate that the X-ray jet-linked emission is likely beamed but to a lesser degree than applies to the radio jet. This model is used to investigate the increasing dominance of jet-linked X-ray emission at low inclinations.

  13. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL

    NASA Astrophysics Data System (ADS)

    Feldhaus, J.; Saldin, E. L.; Schneider, J. R.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-08-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL is proposed. The scheme consists of two undulators and an X-ray monochromator located between them. The first stage of the FEL amplifier operates in the SASE linear regime. After the exit of the first undulator the electron bunch is guided through a non-isochronous bypass and the X-ray beam enters the monochromator. The main function of the bypass is to suppress the modulation of the electron beam induced in the first undulator. This is possible because of the finite value of the natural energy spread in the beam. At the entrance to the second undulator the radiation power from the monochromator dominates significantly over the shot noise and the residual electron bunching. As a result the second stage of the FEL amplifier operates in the steady-state regime when the input signal bandwidth is small with respect to that of the FEL amplifier. Integral losses of the radiation power in the monochromator are relatively small because grazing incidence optics can be used. The proposed scheme is illustrated for the example of the 6 nm option SASE FEL at the TESLA Test Facility under construction at DESY. As shown in this paper the spectral bandwidth of such a two-stage SASE FEL (Δλ/λ⋍ 5 × 10-5) is close to the limit defined by the finite duration of the radiation pulse. The average brilliance is equal to 7 × 1024photons/(s × mrad2 × mm2 × 0.1% bandw.) which is by two orders of magnitude higher than the value which could be reached by the conventional SASE FEL. The monochromatization of the radiation is performed at a low level of radiation power (about 500 times less than the saturation level) which allows one to use conventional X-ray optical elements (grazing incidence grating and mirrors) for the monochromator design.

  14. RADIOCHEMICAL ANALYSIS BY HIGH SENSITIVITY DUAL-OPTIC MICRO X-RAY FLUORESCENCE

    EPA Science Inventory

    A novel dual-optic micro X-ray fluorescence instrument will be developed to do radiochemical analysis of high-level radioactive wastes at DOE sites such as Savannah River Site and Hanford. This concept incorporates new X-ray optical elements such as monolithic polycapillaries and...

  15. Ion Figuring of Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Cantey, Thomas M.; Gregory, Don A.

    1997-01-01

    This investigation included experiments to demonstrate ion beam figuring effects on electroless nickel with the expressed desire to figure X-ray optic mandrels. It was important to establish that ion beam figuring did not induce any adverse effects to the nickel surface. The ion beam has consistently been shown to be an excellent indicator of the quality of the subsurface. Polishing is not the only cause for failure in the ion beam final figuring process, the material composition is equally important. Only by careful consideration of both these factors can the ion beam final figuring process achieve its greatest potential. The secondary goal was to construct a model for representing the ion beam material removal rate. Representing the ion beam removal rate is only an approximation and has a number of limiting factors. The resolution of the metrology apparatus limits the modeling of the beam function as well. As the surface error corrections demand more precision in the final figuring, the model representing beam function must be equally precise. The precision to which the beam function can be represented is not only determined by the model but also by the measurements producing that model. The method developed for determining the beam function has broad application to any material destined to be ion beam figured.

  16. Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction.

    PubMed

    Maddox, B R; Akin, M C; Teruya, A; Hunt, D; Hahn, D; Cradick, J; Morgan, D V

    2016-08-01

    Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from the sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10(7) molybdenum Kα photons. PMID:27587130

  17. X-ray pump optical probe cross-correlation study of GaAs

    SciTech Connect

    Durbin, S.M.; Clevenger, T.; Graber, T.; Henning, R.

    2012-09-10

    Ultrafast dynamics in atomic, molecular and condensed-matter systems are increasingly being studied using optical-pump, X-ray probe techniques where subpicosecond laser pulses excite the system and X-rays detect changes in absorption spectra and local atomic structure. New opportunities are appearing as a result of improved synchrotron capabilities and the advent of X-ray free-electron lasers. These source improvements also allow for the reverse measurement: X-ray pump followed by optical probe. We describe here how an X-ray pump beam transforms a thin GaAs specimen from a strong absorber into a nearly transparent window in less than 100 ps, for laser photon energies just above the bandgap. We find the opposite effect - X-ray induced optical opacity - for photon energies just below the bandgap. This raises interesting questions about the ultrafast many-body response of semiconductors to X-ray absorption, and provides a new approach for an X-ray/optical cross-correlator for synchrotron and X-ray free-electron laser applications.

  18. Lightweight x-ray optics for future space missions

    NASA Astrophysics Data System (ADS)

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf V.; Ticha, Hana; Brozek, Vlastimil; Zentkova, Maria; Zentko, Anton; Chylek, Tomas

    2003-03-01

    The future X-ray astrophysics space missions require very light-weight but large and precise X-ray mirrors shells. Clearly, developments of innovative techniques and approaches are necessary. We discuss the possible alternative techniques with focus on the technologies and experience available in the Czech Republic. They include light ceramics replication by plasma spraying as well as by CVD and PVD technologies, SiC, thin glass technology, improved electroforming, glossy carbon, as well as glossy metals.

  19. Lithium metal for x-ray refractive optics

    NASA Astrophysics Data System (ADS)

    Pereira, Nino R.; Arms, Dohn A.; Clarke, Roy; Dierker, Steve B.; Dufresne, Eric; Foster, D.

    2001-12-01

    Lithium is the best material for refractive x-ray lenses, with peak performance around 8 keV. To date we have built a prototype of Cederstrom's so-called alligator lens, and have tested the lens with beamline 7ID's 10 keV x-rays on the Advanced Photon Source at Argonne National Laboratories. To date we have attained only a threefold gain, most likely limited by surface roughness that is avoidable with more careful manufacturing techniques.

  20. Kinoform optics applied to x-ray photon correlation spectroscopy.

    SciTech Connect

    Sandy, A. R.; Narayanan, S.; Sprung, M.; Su, J.-D.; Evans-Lutterodt, K.; Isakovic, A. F.; Stein, A.; BNL

    2010-01-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  1. A comparison of X-ray and optical emission in Cassiopeia A

    SciTech Connect

    Patnaude, Daniel J.; Fesen, Robert A.

    2014-07-10

    Broadband optical and narrowband Si XIII X-ray images of the young Galactic supernova remnant Cassiopeia A (Cas A) obtained over several decades are used to investigate spatial and temporal emission correlations on both large and small angular scales. The data examined consist of optical and near-infrared ground-based and Hubble Space Telescope images taken between 1951 and 2011, and of X-ray images from Einstein, ROSAT, and Chandra taken between 1979 and 2013. We find weak spatial correlations between the remnant's X-ray and optical emission features on large scales, but several cases of good optical/X-ray correlations on small scales for features which have brightened due to recent interactions with the reverse shock. We also find instances (1) where a time delay is observed between the appearance of a feature's optical and X-ray emissions, (2) of displacements of several arcseconds between a feature's X-ray and optical emission peaks, and (3) of regions showing no corresponding X-ray or optical emissions. To explain this behavior, we propose a highly inhomogeneous density model for Cas A's ejecta consisting of small, dense optically emitting knots (n ∼10{sup 2-3} cm{sup –3}) and a much lower density (n ∼0.1-1 cm{sup –3}) diffuse X-ray emitting component often spatially associated with optical emission knots. The X-ray emitting component is sometimes linked to optical clumps through shock-induced mass ablation generating trailing material leading to spatially offset X-ray/optical emissions. A range of ejecta densities can also explain the observed X-ray/optical time delays since the remnant's ≈5000 km s{sup –1} reverse shock heats dense ejecta clumps to temperatures around 3 × 10{sup 4} K relatively quickly, which then become optically bright while more diffuse ejecta become X-ray bright on longer timescales. Highly inhomogeneous ejecta as proposed here for Cas A may help explain some of the X-ray/optical emission features seen in other young core

  2. A Comparison of X-Ray and Optical Emission in Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Patnaude, Daniel J.; Fesen, Robert A.

    2014-07-01

    Broadband optical and narrowband Si XIII X-ray images of the young Galactic supernova remnant Cassiopeia A (Cas A) obtained over several decades are used to investigate spatial and temporal emission correlations on both large and small angular scales. The data examined consist of optical and near-infrared ground-based and Hubble Space Telescope images taken between 1951 and 2011, and of X-ray images from Einstein, ROSAT, and Chandra taken between 1979 and 2013. We find weak spatial correlations between the remnant's X-ray and optical emission features on large scales, but several cases of good optical/X-ray correlations on small scales for features which have brightened due to recent interactions with the reverse shock. We also find instances (1) where a time delay is observed between the appearance of a feature's optical and X-ray emissions, (2) of displacements of several arcseconds between a feature's X-ray and optical emission peaks, and (3) of regions showing no corresponding X-ray or optical emissions. To explain this behavior, we propose a highly inhomogeneous density model for Cas A's ejecta consisting of small, dense optically emitting knots (n ~102-3 cm-3) and a much lower density (n ~0.1-1 cm-3) diffuse X-ray emitting component often spatially associated with optical emission knots. The X-ray emitting component is sometimes linked to optical clumps through shock-induced mass ablation generating trailing material leading to spatially offset X-ray/optical emissions. A range of ejecta densities can also explain the observed X-ray/optical time delays since the remnant's ≈5000 km s-1 reverse shock heats dense ejecta clumps to temperatures around 3 × 104 K relatively quickly, which then become optically bright while more diffuse ejecta become X-ray bright on longer timescales. Highly inhomogeneous ejecta as proposed here for Cas A may help explain some of the X-ray/optical emission features seen in other young core-collapse supernova remnants.

  3. Unveiling optical and X-ray properties of the high mass X-ray binary XMMU J054134.7-682550

    NASA Astrophysics Data System (ADS)

    Lopes de Oliveira, R.; Placco, V. M.

    2014-10-01

    XMMU J054134.7-682550 is an X-ray source located in the Large Magellanic Cloud. Based on its X-ray properties, and from optical and near-infrared photometry, it was assumed to be a Be/X-ray binary. In this work we present the characterization of its optical counterpart from optical medium-resolution spectra acquired with the 3.6-m New Technology Telescope and the 4.1-m SOAR Telescope. Photospheric lines along with strong emission lines from the Hα, Hβ and several transitions of iron show that the optical counterpart is a Be star with a dense or large circumstellar disk. Thus, it is now conclusive that the system is indeed a Be/X-ray binary. Additionally, we present an ongoing program which aims to improve the characterization of the system from XMM-Newton, Swift/BAT and ASM/RXTE X-ray observations.

  4. Novel x-ray optics for medical diagnostic techniques

    NASA Astrophysics Data System (ADS)

    Kuyumchyan, A.; Arvanian, V.; Kuyumchyan, D.; Aristov, V.; Shulakov, E.

    2009-08-01

    A new hard X - ray hologram with using crystal Fresnel zone plates (ZP) has been described. An image of Fourier hologram for hard X- ray is presented. X-ray phase contrast methods for medical diagnostics techniques are presented. We have developed an X-ray microscope, based on micro focus source which is capable of high resolution phasecontrast imaging and holograms. We propose a new imaging technique with the x-ray energy 8 keV. The method is expected to have wide applications in imaging of low absorbing samples such as biological and medical tissue. We used FIB to reproduction three dimension structures of damaged spinal cord of rat before and after combined treatment with NT3 and NR2D. PUBLISHER'S NOTE 12/16/09: This SPIE Proceedings paper has been updated with an erratum correcting several issues throughout the paper. The corrected paper was published in place of the earlier version on 9/1/2009. If you purchased the original version of the paper and no longer have access, please contact SPIE Digital Library Customer Service at CustomerService@SPIEDigitalLibrary.org for assistance.

  5. Optimized spatial overlap in optical pump-X-ray probe experiments with high repetition rate using laser-induced surface distortions.

    PubMed

    Reinhardt, Matthias; Koc, Azize; Leitenberger, Wolfram; Gaal, Peter; Bargheer, Matias

    2016-03-01

    Ultrafast X-ray diffraction experiments require careful adjustment of the spatial overlap between the optical excitation and the X-ray probe pulse. This is especially challenging at high laser repetition rates. Sample distortions caused by the large heat load on the sample and the relatively low optical energy per pulse lead to only tiny signal changes. In consequence, this results in small footprints of the optical excitation on the sample, which turns the adjustment of the overlap difficult. Here a method for reliable overlap adjustment based on reciprocal space mapping of a laser excited thin film is presented. PMID:26917135

  6. Hard X-ray Optics Technology Development for Astronomy at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Kilaru, Kiranmayee

    2009-01-01

    Grazing-incidence telescopes based on Wolter 1 geometry have delivered impressive advances in astrophysics at soft-x-ray wavelengths, while the hard xray region remains relatively unexplored at fine angular resolution and high sensitivities. The ability to perform ground-breaking science in the hard-x-ray energy range had been the motivation for technology developments aimed at fabricating low-cost, light-weight, high-quality x-ray mirrors. Grazing-incidence x-ray optics for high-energy astrophysical applications is being developed at MSFC using the electroform-nickel replication process.

  7. Soft-x-ray hollow fiber optics with inner metal coating.

    PubMed

    Matsuura, Yuji; Oyama, Tadaaki; Miyagi, Mitsunobu

    2005-10-10

    A glass capillary with an inner metal coating is proposed to be used as soft-x-ray fiber optics in medical applications. Based on the results of theoretical calculations, nickel was chosen as the coating material for x rays radiated from a conventional x-ray tube. A nickel-coated capillary was fabricated by electroless deposition, and focusing and collimating effects were observed from measurements of the transmission efficiency of soft x rays. The transmission of a nickel-coated capillary with an inner diameter of 0.53 mm and a length of 300 mm was 10%, which is approximately double that of an uncoated glass capillary. PMID:16237934

  8. Next Generation Astronomical X-ray Optics: High Angular Resolution, Light Weight, and Low Production Cost

    NASA Technical Reports Server (NTRS)

    Zhang. W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Gaskin, J. A.; Hong, M. L.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; O'Dell, S. L.; Saha, T. T.; Sharpe, M. V.

    2012-01-01

    X-ray astronomy depends on the availability of telescopes with high resolution and large photon collecting areas. Since x-ray observation can only be carried out above the atmosphere, these telescopes must be necessarily lightweight. Compounding the lightweight requirement is that an x-ray telescope consists of many nested concentric shells, which further require that x-ray mirrors must also be geometrically thin to achieve high packing efficiency. This double lightweight and geometrically thin requirement poses significant technical challenges in fabricating the mirrors and in integrating them into mirror assemblies. This paper reports on the approach, strategy and status of our x-ray optics development program whose objective is to meet these technical challenges at modest cost to enable future x-ray missions, including small Explorer missions in the near term, probe class missions in the medium term, and large flagship missions in the long term.

  9. Pinhole X-ray/coronagraph optical systems concept definition study

    NASA Technical Reports Server (NTRS)

    Zehnpfenning, T. F.; Rappaport, S.; Wattson, R. B.

    1980-01-01

    The Pinhole X-ray/Coronagraph Concept utilizes the long baselines possible in Earth orbit with the space transportation system (shuttle) to produce observations of solar X-ray emission features at extremely high spatial resolution (up to 0.1 arc second) and high energy (up to 100 keV), and also white light and UV observations of the inner and outer corona at high spatial and/or spectral resolution. An examination of various aspects of a preliminary version of the X-ray Pinhole/Coronagraph Concept is presented. For this preliminary version, the instrument package will be carried in the shuttle bay on a mounting platform, and will be connected to the occulter with a deployable boom such as an Astromast. Generally, the spatial resolution, stray light levels, and minimum limb observing angles improve as the boom length increases. However, the associated engineering problems also become more serious with greater boom lengths.

  10. High-resolution X-ray imaging by polycapillary optics and lithium fluoride detectors combination

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Della Ventura, G.; Bellatreccia, F.; Magi, M.; Bonfigli, F.; Montereali, R. M.

    2011-12-01

    Novel results on high-resolution X-ray imaging by a table-top laboratory system based on lithium fluoride (LiF) imaging radiation detectors and a X-ray tube combined with polycapillary optics are reported for the first time. In this paper, imaging experiments of reference objects, as well as thick geological samples, show some of the potentialities of this approach for the development of a compact laboratory X-ray microscopy apparatus. The high spatial resolution and dynamic range of versatile LiF imaging detectors, based on optical reading of photoluminescence from X-ray-induced color centers in LiF crystals and films, allow us to use very simple contact imaging techniques. Promising applications can be foreseen in the fields of bio-medical imaging diagnostics, characterization of X-ray sources and optical elements, material science and photonics.

  11. Nanofabrication of diffractive optics for soft X-ray and atom beam focusing

    NASA Astrophysics Data System (ADS)

    Rehbein, S.

    2003-03-01

    Nanostructuring processes are described for manufacturing diffractive optics for the condensermonochromator set-up of the transmission X-ray microscope (TXM) and for the scanning transmission X-ray microscope (STXM) at the BESSY II electron storage ring in Berlin. Furthermore, a process for manufacturing freestanding nickel zone plates for helium atom beam focusing experiments is presented.

  12. Numerical simulation of x-ray luminescence optical tomography for small-animal imaging.

    PubMed

    Li, Changqing; Martínez-Dávalos, Arnulfo; Cherry, Simon R

    2014-04-01

    X-ray luminescence optical tomography (XLOT) is an emerging hybrid imaging modality in which x-ray excitable particles (phosphor particles) emit optical photons when stimulated with a collimated x-ray beam. XLOT can potentially combine the high sensitivity of optical imaging with the high spatial resolution of x-ray imaging. For reconstruction of XLOT data, we compared two reconstruction algorithms, conventional filtered backprojection (FBP) and a new algorithm, x-ray luminescence optical tomography with excitation priors (XLOT-EP), in which photon propagation is modeled with the diffusion equation and the x-ray beam positions are used as reconstruction priors. Numerical simulations based on dose calculations were used to validate the proposed XLOT imaging system and the reconstruction algorithms. Simulation results showed nanoparticle concentrations reconstructed with XLOT-EP are much less dependent on scan depth than those obtained with FBP. Measurements at just two orthogonal projections are sufficient for XLOT-EP to reconstruct an XLOT image for simple source distributions. The heterogeneity of x-ray energy deposition is included in the XLOT-EP reconstruction and improves the reconstruction accuracy, suggesting that there is a need to calculate the x-ray energy distribution for experimental XLOT imaging. PMID:24695846

  13. Interferometric and optical tests of water window imaging x ray microscopes

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1993-01-01

    Interferometric tests of Schwarzchild X-ray Microscope are performed to evaluate the optical properties and alignment of the components. Photographic measurements of the spatial resolution, focal properties, and vignetting characteristics of the prototype Water Window Imaging X-ray Microscope are made and analyzed.

  14. Li metal for x-ray refractive optics

    SciTech Connect

    Pereira, Nino R.; Arms, Dohn A.; Clarke, Roy; Dierker, Steve B.; Dufresne, Eric; Foster, D.

    2004-01-27

    Lithium metal is the best material for refractive lenses that must focus x-rays with energies below 15 keV, but to date no lens from Li has been reported. This letter demonstrates focusing of 10 keV x-rays with a one-dimensional sawtooth lens made from Li. The lens theoretical gain is 4.5, with manufacturing imperfections likely responsible for the threefold gain that is observed. Despite the Li reactivity the lens is stable over months of operation if kept under vacuum.

  15. Analysis and design of grazing incidence x-ray optics for pulsar navigation

    NASA Astrophysics Data System (ADS)

    Zuo, Fuchang; Chen, Jianwu; Li, Liansheng; Mei, Zhiwu

    2013-10-01

    As a promising new technology for deep space exploration due to autonomous capability, pulsar navigation has attracted extensive attentions from academy and engineering domains. The pulsar navigation accuracy is determined by the measurement accuracy of Time of Arrival (TOA) of X-ray photon, which can be enhanced through design of appropriate optics. The energy band of X-ray suitable for pulsar navigation is 0.1-10keV, the effective focusing of which can be primely and effectively realized by the grazing incidence reflective optics. The Wolter-I optics, originally proposed based on a paraboloid mirror and a hyperboloid mirror for X-ray imaging, has long been widely developed and employed in X-ray observatory. Some differences, however, remain in the requirements on optics between astronomical X-ray observation and pulsar navigation. X-ray concentrator, the simplified Wolter-I optics, providing single reflection by a paraboloid mirror, is more suitable for pulsar navigation. In this paper, therefore, the requirements on aperture, effective area and focal length of the grazing incidence reflective optics were firstly analyzed based on the characteristics, such as high time resolution, large effective area and low angular resolution, of the pulsar navigation. Furthermore, the preliminary design of optical system and overall structure, as well as the diaphragm, was implemented for the X-ray concentrator. Through optical and FEA simulation, system engineering analysis on the X-ray concentrator was finally performed to analyze the effects of environmental factors on the performance, providing basis and guidance for fabrication of the X-ray concentrator grazing incidence optics.

  16. Differential Deposition for Surface Figure Corrections in Grazing Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian D.; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Broadway, David M.

    2015-01-01

    Differential deposition corrects the low- and mid- spatial-frequency deviations in the axial figure of Wolter-type grazing incidence X-ray optics. Figure deviations is one of the major contributors to the achievable angular resolution. Minimizing figure errors can significantly improve the imaging quality of X-ray optics. Material of varying thickness is selectively deposited, using DC magnetron sputtering, along the length of optic to minimize figure deviations. Custom vacuum chambers are built that can incorporate full-shell and segmented Xray optics. Metrology data of preliminary corrections on a single meridian of full-shell x-ray optics show an improvement of mid-spatial frequencies from 6.7 to 1.8 arc secs HPD. Efforts are in progress to correct a full-shell and segmented optics and to verify angular-resolution improvement with X-ray testing.

  17. Space optics: Imaging X-ray optics workshop; Proceedings of the Seminar, Huntsville, Ala., May 22-24, 1979

    NASA Technical Reports Server (NTRS)

    Weisskopf, M.

    1979-01-01

    The papers in this volume are broadly based and represent a comprehensive summary of past achievements, new designs, techniques and future plans in space optics. The design, construction, testing and use of grazing incidence optics have played an integral role in the advance of X-ray astronomy. Topics of interest include a cosmic X-ray telescope for ARIES rocket observations, quest for ultrahigh resolution in X-ray optics, optical coating techniques for Wolter-type substrates, astronomical applications of grazing incidence telescopes with polynomial surfaces, and a paraboloidal X-ray telescope mirror for solar coronal spectroscopy.

  18. Local x-ray structure analysis of optically manipulated biological micro-objects

    SciTech Connect

    Cojoc, Dan; Ferrari, Enrico; Santucci, Silvia C.; Amenitsch, Heinz; Sartori, Barbara; Rappolt, Michael; Marmiroli, Benedetta; Burghammer, Manfred; Riekel, Christian

    2010-12-13

    X-ray diffraction using micro- and nanofocused beams is well suited for nanostructure analysis at different sites of a biological micro-object. To conduct in vitro studies without mechanical contact, we developed object manipulation by optical tweezers in a microfluidic cell. Here we report x-ray microdiffraction analysis of a micro-object optically trapped in three dimensions. We revealed the nanostructure of a single starch granule at different points and investigated local radiation damage induced by repeated x-ray exposures at the same position, demonstrating high stability and full control of the granule orientation by multiple optical traps.

  19. Calibration of the Solar-B x-ray optics

    NASA Astrophysics Data System (ADS)

    Cosmo, Mario L.; DeLuca, Edward E.; Golub, Leon; Austin, Gerald K.; Chappell, Jon H.; Barbera, Marco; Bookbinder, Jay A.; Cheimets, Peter N.; Cirtain, Jonathan; Podgorski, William A.; Davis, William; Varisco, Salvatore; Weber, Mark A.

    2005-08-01

    The Solar-B X-ray telescope (XRT) is a grazing-incidence modified Wolter I X-ray telescope, of 35 cm inner diameter and 2.7 m focal length. XRT, designed for full sun imaging over the wavelength 6-60 Angstroms, will be the highest resolution solar X-Ray telescope ever flown. Images will be recorded by a 2048 X 2048 back-illuminated CCD with 13.5 μm pixels (1 arc-sec/pixel ) with full sun field of view. XRT will have a wide temperature sensitivity in order to observe and discriminate both the high (5-10 MK) and low temperature (1-5 MK) phenomena in the coronal plasma. This paper presents preliminary results of the XRT mirror calibration performed at the X-ray Calibration Facility, NASA-MSFC, Huntsville, Alabama during January and February 2005. We discuss the methods and the most significant results of the XRT mirror performance, namely: characteristics of the point response function (PSF), the encircled energy and the effective area. The mirror FWHM is 0.8" when corrected for 1-g, finite source distance, and CCD pixelization. With the above corrections the encircled energy at 27 μm and 1keV is 52%. The effective area is greater than 2cm2 at 0.5keV and greater than 1.7cm2 at 1.0keV.

  20. Optical and X-ray properties of CAL 83 - II. An X-ray pulsation at ˜67 s

    NASA Astrophysics Data System (ADS)

    Odendaal, A.; Meintjes, P. J.; Charles, P. A.; Rajoelimanana, A. F.

    2014-01-01

    CAL 83 is the prototypical close binary supersoft X-ray source in the Large Magellanic Cloud, has a 1 d orbital period, and is believed to consist of a white dwarf (WD) primary accreting from an evolved donor. Based on published WD model atmosphere fits to X-ray data, the WD has a mass of ˜1.3 M⊙, just below the Chandrasekhar limit. From a systematic search through archival XMM-Newton data for periodic emission from CAL 83 down to the shortest possible period just above the WD break-up period, we report the discovery of an ˜67 s supersoft X-ray modulation, which we interpret as the rotation period of a highly spun-up WD. Such a short period can be explained within the framework of a high mass accretion history, where accretion disc torques could have spun up the WD over time-scales comparable to the thermal time-scale. The presence of carbon, oxygen and nitrogen in published optical and ultraviolet spectra may suggest CNO cycling in the envelope of a secondary star that is oversized for its inferred mass, suggesting that the secondary star shed a significant fraction of its envelope during a high mass-transfer history, resulting in a highly spun-up WD. The reported 67 s period shows an approximately ±3 s drift from the median value in single runs, which we interpret as a hydrogen burning gas envelope surrounding the WD, with a period not quite synchronized with the WD rotation period.

  1. Segmented X-Ray Optics for Future Space Telescopes

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.

    2013-01-01

    Lightweight and high resolution mirrors are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The slumped glass mirror technology in development at NASA GSFC aims to build X-ray mirror modules with an area to mass ratio of approx.17 sq cm/kg at 1 keV and a resolution of 10 arc-sec Half Power Diameter (HPD) or better at an affordable cost. As the technology nears the performance requirements, additional engineering effort is needed to ensure the modules are compatible with space-flight. This paper describes Flight Mirror Assembly (FMA) designs for several X-ray astrophysics missions studied by NASA and defines generic driving requirements and subsequent verification tests necessary to advance technology readiness for mission implementation. The requirement to perform X-ray testing in a horizontal beam, based on the orientation of existing facilities, is particularly burdensome on the mirror technology, necessitating mechanical over-constraint of the mirror segments and stiffening of the modules in order to prevent self-weight deformation errors from dominating the measured performance. This requirement, in turn, drives the mass and complexity of the system while limiting the testable angular resolution. Design options for a vertical X-ray test facility alleviating these issues are explored. An alternate mirror and module design using kinematic constraint of the mirror segments, enabled by a vertical test facility, is proposed. The kinematic mounting concept has significant advantages including potential for higher angular resolution, simplified mirror integration, and relaxed thermal requirements. However, it presents new challenges including low vibration modes and imperfections in kinematic constraint. Implementation concepts overcoming these challenges are described along with preliminary test and analysis results demonstrating the feasibility of kinematically mounting slumped glass mirror segments.

  2. Characteristics of x-ray emission from optically thin high-Z plasmas in the soft x-ray region

    NASA Astrophysics Data System (ADS)

    Ohashi, Hayato; Higashiguchi, Takeshi; Suzuki, Yuhei; Arai, Goki; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Sakaue, Hiroyuki A.; Kato, Daiji; Murakami, Izumi; Tamura, Naoki; Sudo, Shigeru; Koike, Fumihiro; Suzuki, Chihiro

    2015-07-01

    The characteristics of soft x-ray emission from optically thin high-Z plasmas of gold, lead and bismuth were investigated with the large helical device. Compared to optically thicker laser-produced plasmas, significantly different spectral structures were observed due to the difference in opacities and electron temperatures. Peak structures appearing in unresolved transition arrays were identified by calculations using atomic structure codes. The main contributors of discrete line emission in each case were Pd-, Ag-, and Rh-like ion stages. The present calculations point to the overestimation of contributions for 4p-4d transitions based on intensity estimates arising purely from gA distributions that predict strong emission from 4p-4d transitions. Understanding of such spectral emission is not only important for the completion of databases of high-Z highly ion charge states but also the development of promising high brightness sources for biological imaging applications.

  3. A coordinated X-ray, optical, and microwave study of the flare star Proxima Centauri

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Linsky, J. L.; Slee, O. B.; Hearn, D. R.; Walker, A. R.; Rydgren, A. E.; Nicolson, G. D.

    1978-01-01

    Results are reported for a three-day coordinated observing program to monitor the flare star Proxima Centauri in the X-ray, optical, and radio spectrum. During this interval 30 optical flares and 12 possible radio bursts were observed. The SAS 3 X-ray satellite made no X-ray detections. An upper limit of 0.08 on the X-ray/optical luminosity ratio is derived for the brightest optical flare. The most sensitive of the radio telescopes failed to detect 6-cm emission during one major and three minor optical flares, and on this basis an upper limit on the flare radio emission (1 hundred-thousandth of the optimal luminosity) is derived.

  4. Optical fiducial timing system for X-ray streak cameras with aluminum coated optical fiber ends

    DOEpatents

    Nilson, David G.; Campbell, E. Michael; MacGowan, Brian J.; Medecki, Hector

    1988-01-01

    An optical fiducial timing system is provided for use with interdependent groups of X-ray streak cameras (18). The aluminum coated (80) ends of optical fibers (78) are positioned with the photocathodes (20, 60, 70) of the X-ray streak cameras (18). The other ends of the optical fibers (78) are placed together in a bundled array (90). A fiducial optical signal (96), that is comprised of 2.omega. or 1.omega. laser light, after introduction to the bundled array (90), travels to the aluminum coated (82) optical fiber ends and ejects quantities of electrons (84) that are recorded on the data recording media (52) of the X-ray streak cameras (18). Since both 2.omega. and 1.omega. laser light can travel long distances in optical fiber with only a slight attenuation, the initial arial power density of the fiducial optical signal (96) is well below the damage threshold of the fused silica or other material that comprises the optical fibers (78, 90). Thus the fiducial timing system can be repeatably used over long durations of time.

  5. Synchrotron X-ray and optical studies of the DNA-mediated growth of plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Wang, Geng; Zhang, Xiaonan; Geng, Heping; Xu, Lifeng; Li, Wenqin; Liu, Xin

    2015-03-01

    Reproducible and controllable growth of nanostructures with well-defined physical and chemical properties is a longstanding problem in nanoscience. A key step to address this issue is to understand their underlying growth mechanism, which is often entangled in the complexity of growth environments and obscured by rapid reaction speeds. Synchrotron x-rays, because of their specific wavelengths (nanometers) and advantages of large flux, high penetration and adjustable photon energy, have a particularly important position in structural and electronic characterizations of nanomaterials. Herein, we demonstrate that the evolution of size, surface morphology, and the optical properties of plasmonic nanostructures could be quantitatively intercepted by dynamic and stoichiometric control of the DNA-mediated growth. By combining synchrotron-based small-angle X-ray scattering with transmission electron microscopy, we reliably obtained quantitative structural parameters for these fine nanostructures that correlate well with their optical properties as identified by UV/Vis absorption and dark-field scattering spectroscopy. We report growth mechanisms for SERS active plasmonic nanostructures, and the remarkable interplay between their morphology and plasmonic properties. Work supported by NNSF of China (11375256) and Sci. and Tech. Commission of Shanghai Municipality (14JC1493300).

  6. Coordinated X-ray optical and radio observations of YZ Canis Minoris

    NASA Technical Reports Server (NTRS)

    Karpen, J. T.; Crannell, C. J.; Hobbs, R. W.; Maran, S. P.; Moffett, T. J.; Bardas, D.; Clark, G. W.; Hearn, D. R.; Li, F. K.; Markert, T. M.

    1976-01-01

    Coordinated X ray, optical, and radio observations of the flare star YZ CMi are reported. Twenty-two minor optical flares and twelve radio events were recorded. No major optical flares, greater than 3 magnitudes, were observed. Although no flare related X ray emission was observed, the measured upper limits in this band enable meaningful comparisons with published flare star models. Three of the five models predicting the relative X ray to optical or radio flare luminosities are in serious disagreement with the observations. For the largest optical flare with coincident X ray coverage, the 3 sigma upper limit on X ray emission in the 0.15 to 0.8 keV band is 8.7 x 10 to the 28th power erg/s, corresponding to a ratio of X ray to B-band luminosity of less than 0.3. Based on the present results, the contribution of the flares UV Ceti flare stars to the galactic component of the diffuse soft X ray background is less than 0.2 percent.

  7. Optical and UV x-ray imaging diagnostics for imploding plasma experiments

    NASA Astrophysics Data System (ADS)

    Lee, P. H. Y.; Price, R. H.; Reay, J.; Pecos, J.; Seagrave, J.; McGurn, J.; Cochrane, B.; Anderson, B.

    1986-08-01

    The Trailmaster/Pioneer 1 series of imploding plasma experiments are aimed at using an inductive storage driver to implode an ultrathin aluminum foil with a multimegampere, submicrosecond electrical pulse. The power pulse is produced by an explosive flux compression generator and a fast plasma compression opening switch. The goal is to obtain an intense source of soft x rays from the thermalization of the plasma kinetic energy when pinch occurs on axis. An important target diagnostic is a fast camera which measures the dynamics of foil run-in and implosion symmetry. These measurements are made in the visible, UV, and x-ray portions of the electromagnetic spectrum. UV/x-ray images are first converted to visible light, then transmitted by visible light optics to a framing camera, which is located at a safe distance. For UV/soft x-ray imaging, we mount a disposable pinhole camera with a p-terphenyl-coated converter screen on the target chamber. For soft/hard x-ray imaging, a microchannel plate is used in front of the p-terphenyl-coated screen to boost quantum detection efficiency and signal gain. For faster temporal response the p-terphenyl can be replaced by NE-111 or other fast fluors. Image transmission is accomplished by means of two large mirrors (150-250 mm diam) and a large catadioptric telescope. The framing camera consists of four gated microchannel plates with adjustable gate and interframe times. The framing camera is a versatile and rugged instrument, it has performed satisfactorily for each and every Pioneer shot. Experimental data indicate that this camera, which uses individual gated microchannel plates, is far superior to commercial streak/framing cameras, because it has a dynamic range which is orders of magnitude larger than commercial cameras, each channel can be attenuated separately, further increasing the dynamic range of the imaging system. This makes our framing camera especially suitable for recording sequences of events where the brightness

  8. Quest for ultrahigh resolution in X-ray optics. [for solar astronomy

    NASA Technical Reports Server (NTRS)

    Davis, J. M.; Krieger, A. S.; Silk, J. K.; Chase, R. C.

    1979-01-01

    A program of solar X-ray astronomy using grazing incidence optics has culminated in X-ray images of the corona having one arc second spatial resolution. These images have demonstrated that, in general, X-ray optics can be fabricated to their specifications and can provide the level of resolution for which they are designed. Several aspects of these programs relating to the performance of X-ray optics in regard to resolution, including the point response function, the variation of resolution with off-axis position and the recognition that nearly all solar X-ray images have been film limited, are discussed. By extending the experience gained on this and other programs it is clearly possible to design and fabricate X-ray optics with sub arc sec resolution. The performance required to meet the scientific objectives for the remainder of the century are discussed in relation to AXIO, an Advanced X-Ray Imaging Observatory for solar observations which is proposed for flight on the Space Shuttle. Several configurations of AXIO are described, each of which would be a major step in the quest for ultrahigh-resolution observations.

  9. The theoretical reflectance of X-rays from optical surfaces

    NASA Technical Reports Server (NTRS)

    Neergaard, J. R.; Reynolds, J. M.; Fields, S. A.

    1976-01-01

    The theoretical reflectance of X-rays from various materials and evaporated films is presented. A computer program was written that computes the reflected intensity as a function of the angle of the incident radiation. The quantities necessary to generate the efficiency and their effect on the data are demonstrated. Five materials were chosen for evaluation: (1) fused silica, (2) chromium, (3) beryllium, (4) gold, and (5) a thin layer contaminant. Fused silica is a versatile and common material; chromium has high reflection efficiency at X-ray wavelengths and is in the middle of the atomic number range; beryllium contains a single atomic shell and has a low range atomic number; gold contains multiple atomic shells and has a high atomic number; the contaminant is treated as a thin film in the calculations and results are given as a function of thickness for selected wavelengths. The theoretical results are compared to experimental data at lambda = 8.34 A.

  10. DiffractX: A Simulation Toolbox for Diffractive X-ray Optics

    NASA Astrophysics Data System (ADS)

    Selin, M.; Bertilson, M.; Nilsson, D.; von Hofsten, O.; Hertz, H. M.; Vogt, U.

    2011-09-01

    X-ray wavefront propagation is a powerful technique when simulating the performance of x-ray optical components. Using various numerical methods, interesting parameters such as focusing capability and efficiency can be investigated. Here we present the toolbox DiffractX, implemented in MATLAB. It contains many different wave propagation methods for the simulation of diffractive x-ray optics, including Fresnel propagation, the finite difference method (FDM), the thin object approximation, the rigorous coupled wave theory (RCWT), and the finite element method (FEM). All tools are accessed through a graphical interface, making the design of simulations fast and intuitive, even for users with little or no programming experience. The tools have been utilized to characterize realistic as well as idealized optical components. This will aid further developments of diffractive x-ray optics.

  11. Alignment, Assembly and Testing of High Energy X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian

    2005-01-01

    We are developing grazing-incidence x-ray imaging optics for a balloon-borne hard x-ray telescope (HERO). The HERO payload, scheduled for launch in May 2005, currently consists of 8 mirror modules each containing 12 mirror shells fabricated using electroform-nickel replication off super-polished cylindrical mandrels. An optical system developed for aligning and assembling the shells in the modules will be described. Sources for systematic errors associated with this process will be discussed and results from on-ground x-ray testing of each module will be presented.

  12. Comparison of X-ray and optically selected galaxy clusters in the XXL-N field

    NASA Astrophysics Data System (ADS)

    Alis, Sinan; Pacaud, Florian; Pierre, Marguerite; Benoist, Christophe; Maurogordato, Sophie; Clerc, Nicolas; Faccioli, Lorenzo; Sadibekova, Tatyana

    2016-07-01

    Optically selected clusters from the CFHTLS and X-ray selected clusters from the intersecting XXL Survey are compared. We first compare the properties of the ˜100 galaxy clusters common to both catalogues in the redshift range of 0.1 < z < 1.2. Then we focus on the properties of the missed clusters on both sides and stress the impact of AGN contamination in this comparison. Finally scaling relations involving optical and X-ray quantities will be presented.

  13. X-RAY PRODUCTION BY V1647 Ori DURING OPTICAL OUTBURSTS

    SciTech Connect

    Teets, William K.; Weintraub, David A.; Grosso, Nicolas; Principe, David; Kastner, Joel H.; Richmond, Michael; Hamaguchi, Kenji

    2011-11-10

    The pre-main-sequence (PMS) star V1647 Ori has recently undergone two optical/near-infrared (OIR) outbursts that are associated with dramatic enhancements in the stellar accretion rate. Our intensive X-ray monitoring of this object affords the opportunity to investigate whether and how the intense X-ray emission is related to PMS accretion activity. Our analysis of all 14 Chandra X-Ray Observatory observations of V1647 Ori demonstrates that variations in the X-ray luminosity of V1647 Ori are correlated with similar changes in the OIR brightness of this source during both (2003-2005 and 2008) eruptions, strongly supporting the hypothesis that accretion is the primary generation mechanism for the X-ray outbursts. Furthermore, the Chandra monitoring demonstrates that the X-ray spectral properties of the second eruption were strikingly similar to those of the 2003 eruption. We find that X-ray spectra obtained immediately following the second outburst-during which V1647 Ori exhibited high X-ray luminosities, high hardness ratios, and strong X-ray variability-are well modeled as a heavily absorbed (N{sub H} {approx} 4 Multiplication-Sign 10{sup 22} cm{sup -2}), single-component plasma with characteristic temperatures (kT{sub X} {approx} 2-6 keV) that are consistently too high to be generated via accretion shocks but are in the range expected for plasma heated by magnetic reconnection events. We also find that the X-ray absorbing column has not changed significantly throughout the observing campaign. Since the OIR and X-ray changes are correlated, we hypothesize that these reconnection events either occur in the accretion stream connecting the circumstellar disk to the star or in accretion-enhanced protostellar coronal activity.

  14. Capillary Optics Based X-Ray Micro-Imaging Elemental Analysis

    NASA Astrophysics Data System (ADS)

    Hampai, D.; Dabagov, S. B.; Cappuccio, G.; Longoni, A.; Frizzi, T.; Cibin, G.

    2010-04-01

    A rapidly developed during the last few years micro-X-ray fluorescence spectrometry (μXRF) is a promising multi-elemental technique for non-destructive analysis. Typically it is rather hard to perform laboratory μXRF analysis because of the difficulty of producing an original small-size X-ray beam as well as its focusing. Recently developed for X-ray beam focusing polycapillary optics offers laboratory X-ray micro probes. The combination of polycapillary lens and fine-focused micro X-ray tube can provide high intensity radiation flux on a sample that is necessary in order to perform the elemental analysis. In comparison to a pinhole, an optimized "X-ray source-op tics" system can result in radiation density gain of more than 3 orders by the value. The most advanced way to get that result is to use the confocal configuration based on two X-ray lenses, one for the fluorescence excitation and the other for the detection of secondary emission from a sample studied. In case of X-ray capillary microfocusing a μXRF instrument designed in the confocal scheme allows us to obtain a 3D elemental mapping. In this work we will show preliminary results obtained with our prototype, a portable X-ray microscope for X-ray both imaging and fluorescence analysis; it enables μXRF elemental mapping simultaneously with X-ray imaging. A prototype of compact XRF spectrometer with a spatial resolution less than 100 μm has been designed.

  15. Metrology for the Development of High Energy X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell; Dpeegle, Chet

    2005-01-01

    We are developing grazing incidence x-ray optics for a balloon-borne hard-x-ray telescope (HERO). The instrument will have 200 sq cm effective collecting area at 40 keV and an angular resolution goal of 15 arcsec. The HERO mirror shells are fabricated using electroform-nickel replication off super-polished cylindrical mandrels. The angular resolution goal puts stringent requirements on the quality of x-ray mirrors and, hence, on mandrel quality. We used metrology in an iterative approach to monitor and refine the x- ray mirror fabrication process. Comparison of surface figure and microroughness measurements of the mandrel and the shells will be presented together with results from x-ray tests.

  16. Numerical simulation for all-optical Thomson scattering X-ray source

    NASA Astrophysics Data System (ADS)

    Tan, Fang; Zhu, Bin; Han, Dan; Xin, Jian-Ting; Zhao, Zong-Qing; Cao, Lei-Feng; Gu, Yu-Qiu; Zhang, Bao-Han

    2014-03-01

    Energy spectra, angular distributions, and temporal profiles of the photons produced by an all-optical Thomson scattering X-ray source are explored through numerical simulations based on the parameters of the SILEX-I laser system (800 nm, 30 fs, 300 TW) and the previous wakefield acceleration experimental results. The simulation results show that X-ray pulses with a duration of 30 fs and an emission angle of 50 mrad can be produced from such a source. Using the optimized electron parameters, X-ray pulses with better directivity and narrower energy spectra can be obtained. Besides the electron parameters, the laser parameters such as the wavelength, pulse duration, and spot size also affect the X-ray yield, the angular distribution, and the maximum photon energy, except the X-ray pulse duration which is slightly changed for the case of ultrafast laser—electron interaction.

  17. Optics Requirements For The Generation-X X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.; Schwartz, D. A.; Brissenden, R. J.; Elvis, M.; Freeman, M.; Gaetz, T.; Gorenstein, P.; Jerius, D.; Juda, M.; Murray, S. S.; Podgorski, W. A.; Wolk, S. J.; Trolier-McKinstry, S.

    2008-01-01

    US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.

  18. Metrology for the development of high-energy x-ray optics

    NASA Astrophysics Data System (ADS)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell; Speegle, Chet; Smithers, Martin

    2005-08-01

    We are developing grazing-incidence x-ray optics for a balloon-borne hard-x-ray telescope (HERO). The instrument will have 200 cm2 effective collecting area at 40 keV and an angular resolution goal of 15 arcsec. The HERO mirror shells are fabricated using electroformed-nickel replication off super-polished cylindrical mandrels. The angular resolution goal puts stringent requirements on the quality of the x-ray mirrors and, hence, on mandrel quality. We used metrology in an iterative approach to monitor and refine the x-ray mirror fabrication process. Comparison of axial slope measurements of the mandrel and the shells will be presented together with results from x-ray tests.

  19. Femtosecond all-optical synchronization of an X-ray free-electron laser

    SciTech Connect

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

  20. Femtosecond all-optical synchronization of an X-ray free-electron laser

    DOE PAGESBeta

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; et al

    2015-01-20

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less

  1. Femtosecond all-optical synchronization of an X-ray free-electron laser

    PubMed Central

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  2. Femtosecond all-optical synchronization of an X-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

  3. Femtosecond all-optical synchronization of an X-ray free-electron laser.

    PubMed

    Schulz, S; Grguraš, I; Behrens, C; Bromberger, H; Costello, J T; Czwalinna, M K; Felber, M; Hoffmann, M C; Ilchen, M; Liu, H Y; Mazza, T; Meyer, M; Pfeiffer, S; Prędki, P; Schefer, S; Schmidt, C; Wegner, U; Schlarb, H; Cavalieri, A L

    2015-01-01

    Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823

  4. The Behavior of the Optical and X-Ray Emission from Scorpius X-1

    NASA Astrophysics Data System (ADS)

    McNamara, B. J.; Harrison, T. E.; Zavala, R. T.; Galvan, Eduardo; Galvan, Javier; Jarvis, T.; Killgore, GeeAnn; Mireles, O. R.; Olivares, D.; Rodriquez, B. A.; Sanchez, M.; Silva, Allison L.; Silva, Andrea L.; Silva-Velarde, E.; Templeton, M. R.

    2003-03-01

    In 1970, Hiltner & Mook reported the results of the first multiyear study of the optical emission from Sco X-1. They found that the Sco X-1 B-magnitude histograms changed from year to year. Subsequent multiwavelength campaigns confirmed the variable nature of these optical histograms and also found that the X-ray and optical emissions were only correlated when Sco X-1 was brighter than about B=12.6. Models had suggested that the optical emission from this source arose from X-rays reprocessed in an accretion disk surrounding the central neutron star. It was therefore difficult to explain why the optical and X-ray fluxes were not more closely correlated. In 1994 and 1995, two new simultaneous optical and X-ray campaigns on Sco X-1 were conducted with the Burst and Transient Source Experiment on the Compton Gamma Ray Observatory and the 1 m Yale telescope at Cerro Tololo Inter-American Observatory. Using these data and models by Psaltis, Lamb, & Miller, it is now possible to provide a qualitative picture of how the X-ray and optical emissions from Sco X-1 are related. Differences in the B-magnitude histograms are caused by variations in the mass accretion rate and the relatively short time period typically covered by optical investigations. The tilted-Γ pattern seen in plots of the simultaneous X-ray and optical emission from Sco X-1 arises from (1) the nearly linear relation between the optical B magnitude and the mass accretion rate in the range 13.3>=B>=12.3 and an asymptotic behavior in the B magnitude outside this range, and (2) a double-valued relation between the X-ray emission and mass accretion rate along the normal branch and lower flaring branch of this source.

  5. X-ray optics metrology limited by random noise, instrumental drifts, and systematic errors

    SciTech Connect

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Cambie, Rossana; Celestre, Richard; Conley, Raymond; Goldberg, Kenneth A.; McKinney, Wayne R.; Morrison, Gregory; Takacs, Peter Z.; Voronov, Dmitriy L.; Yuan, Sheng; Padmore, Howard A.

    2010-07-09

    Continuous, large-scale efforts to improve and develop third- and forth-generation synchrotron radiation light sources for unprecedented high-brightness, low emittance, and coherent x-ray beams demand diffracting and reflecting x-ray optics suitable for micro- and nano-focusing, brightness preservation, and super high resolution. One of the major impediments for development of x-ray optics with the required beamline performance comes from the inadequate present level of optical and at-wavelength metrology and insufficient integration of the metrology into the fabrication process and into beamlines. Based on our experience at the ALS Optical Metrology Laboratory, we review the experimental methods and techniques that allow us to mitigate significant optical metrology problems related to random, systematic, and drift errors with super-high-quality x-ray optics. Measurement errors below 0.2 mu rad have become routine. We present recent results from the ALS of temperature stabilized nano-focusing optics and dedicated at-wavelength metrology. The international effort to develop a next generation Optical Slope Measuring System (OSMS) to address these problems is also discussed. Finally, we analyze the remaining obstacles to further improvement of beamline x-ray optics and dedicated metrology, and highlight the ways we see to overcome the problems.

  6. Analysis of nearly simultaneous X-ray and optical observations of active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Webb, James Raymond

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 active galactic nuclei (AGN) were reduced and analyzed. Seventy-two X-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectral observations, significant hydrogen column densities above the galactic value were required for nine of the eleven sources which were observed more than once by EINSTEIN. Correlations between the X-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the X-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the X-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the X-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  7. Direct fabrication of full-shell x-ray optics

    NASA Astrophysics Data System (ADS)

    Gubarev, M.; Ramsey, B.; Kolodziejczak, J. K.; Smith, W. S.; Roche, J.; Jones, W.; Griffith, C.; Kester, T.; Atkins, C.; Arnold, W.

    2015-09-01

    The next generation of astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray mirrors. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing stiff and light-weight shells that can be heavily nested, to produce large collecting areas, and are easier to mount, align and assemble, giving improved angular resolution. This approach to mirror fabrication, is being pursued at MSFC. The current status of this direct fabrication technology is presented.

  8. Wide-Field Sky Monitoring - Optical and X-rays

    NASA Astrophysics Data System (ADS)

    Hudec, R.; BART Teams; Ondrejov Observatory Lobster Eye Team

    We report on selected projects in wide-field sky imaging. This includes the recent efforts to digitize the astronomical sky plate archives and to apply these data for various scientific projects. We also address and discuss the status of the development of related algorithms and software programs. These data may easily provide very long term monitoring over very extended time intervals (up to more than 100 years) with limiting magnitudes between 12 and 23. The further experiments include CCD sky monitors, OMC camera onboard the ESA Integral satellite, robotic telescopes, and innovative wide-field X-ray telescopes.

  9. X-Ray Testing Constellation-X Optics at MSFC's 100-m Facility

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Baker, Markus; Content, David; Freeman, Mark; Glenn, Paul; Gubarev, Mikhail; Hair, Jason; Jones, William; Joy, Marshall

    2003-01-01

    In addition to the 530-m-long X-Ray Calibration Facility (XRCF), NASA's Marshall Space Flight Center (MSFC) operates a 104-m-long (source-to-detector) X-ray-test facility. Originally developed and still occasionally used for stray-light testing of visible-fight optical systems, the so-called "Stray-Light Facility" now serves primarily as a convenient and inexpensive facility for performance evaluation and calibration of X-ray optics and detectors. The facility can accommodate X-ray optics up to about 1-m diameter and 12-m focal length. Currently available electron-impact sources at the facility span the approximate energy range 0.2 to 100 keV, thus supporting testing of soft- and hard-X-ray optics and detectors. Available MSFC detectors are a front-illuminated CCD (charge-coupled device) and a scanning CZT (cadmium--zinc--telluride) detector, with low-energy cut-offs of about 0.8 and 3 keV, respectively. In order to test developmental optics for the Constellation-X Project, led by NASA's Goddard Space Flight Center (GSFC), MSFC undertook several enhancements to the facility. Foremost among these was development and fabrication of a five-degree-of-freedom (5-DoF) optics mount and control system, which translates and tilts the user-provided mirror assembly suspended from its interface plate. Initial Constellation-X tests characterize the performance of the Optical Alignment Pathfinder Two (OAP2) for the large Spectroscopy X-ray Telescope (SXT) and of demonstration mirror assemblies for the Hard X-ray Telescope (HXT). With the Centroid Detector Assembly (CDA), used for precision alignment of the Chandra (nee AXAF) mirrors, the Constellation-X SXT Team optically aligned the individual mirrors of the OAPZ at GSFC. The team then developed set-up and alignment procedures, including transfer of the alignment from the optical alignment facility at GSFC to the X-ray test facility at MSFC, using a reference flat and fiducials. The OAPZ incorporates additional ancillary

  10. X-ray and optical properties of groups of galaxies

    NASA Technical Reports Server (NTRS)

    Dell'antonio, Ian P.; Geller, Margaret J.; Fabricant, Daniel G.

    1994-01-01

    We have measured 125 redshifts in 31 groups of galaxies observed with Einstein, and have compiled an additional 543 redshifts from the literature. There is a correlation between galaxy surface density and group velocity dispersion, with mu is proportional to sigma(exp 1.6 +/- 0.6), but the scatter about this relation is large. We examine the relationship between the group x-ray luminosity in the 0.3-3.5 keV band and the measured velocity dispersion. Richer groups follow the same relation as rich clusters (1982) with L(sub X) proportional to sigma(exp 4.0 +/- 0.6), but the relation flattens for lower luminosity systems which have velocity dispersions below 300 km/s. We suggest that the L(sub x)-sigma relation arises from a combination of extended cluster emission and emission associated with individual galaxies. The x-ray emission for the richer groups is dominated by emission from the intragroup medium, as for the richer clusters; emission from the poorer clusters is dominated by less extended emission associated with the individual group galaxies.

  11. The development of hard x-ray optics at MSFC

    NASA Astrophysics Data System (ADS)

    Ramsey, Brian D.; Elsner, Ron F.; Engelhaupt, Darell; Gubarev, Mikhail V.; Kolodziejczak, Jeffery J.; O'Dell, Stephen L.; Speegle, Chet O.; Weisskopf, Martin C.

    2004-02-01

    We have developed the electroformed-nickel replication process to enable us to fabricate light-weight, high-quality mirrors for the hard-x-ray region. Two projects currently utilizing this technology are the production of 240 mirror shells, of diameters ranging from 50 to 94 mm, for our HERO balloon payload, and 150- and 230-mm-diameter shells for a prototype Constellation-X hard-x-ray telescope module. The challenge for the former is to fabricate, mount, align and fly a large number of high-resolution mirrors within the constraints of a modest budget. For the latter, the challenge is to maintain high angular resolution despite weight-budget-driven mirror shell thicknesses (100 μm) which make the shells extremely sensitive to fabrication and handling stresses, and to ensure that the replication process does not degrade the ultra-smooth surface finish (~3 Å) required for eventual multilayer coatings. We present a progress report on these two programs.

  12. Concentration of synchrotron beams by means of monolithic polycapillary x-ray optics

    SciTech Connect

    Ullrich, J.B.; Klotzko, I.L. |; Huang, K.G.; Owens, S.M.; Aloisi, D.C.; Hofmann, F.A.; Gao, N.; Gibson, W.M.

    1995-08-01

    Capillary Optics have proven to be a valuable tool for concentrating synchrotron radiation. Single tapered capillaries are used at several facilities. However, most of these optics collect only over a small area. this can be overcome by using larger capillary structures. Polycapillary optics can deflect x-rays by larger angles than other x-ray optics that use only one or two reflections. Conventional x-ray optics that achieve similar deflections, are much more energy selective than capillaries. Therefore, capillaries achieve very short focal distances for a wide range of energies. The measurements shown here represent first tests performed with polycapillaries of large input diameter. The performance with respect to transmission efficiency and spot size was evaluated for a set of four very different prototypes. It is shown that a significant gain may be achieved if a spot size of the order of 0.1 mm is required. Further, some characteristics of the different optics are discussed.

  13. Development of net-shape piezoelectric actuators for large x-ray optics

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Zhang, Dou; Button, Tim; Meggs, Carl; Atkins, Carolyn; Doel, Peter; Brooks, David; Feldman, Charlotte; Willingale, Richard; James, Ady; Willis, Graham; Smith, Andy

    2010-09-01

    The design of current X-ray telescope systems needs to reach a compromise between the resolution and sensitivity. A new area of interest of adaptive optics is the development of actively controlled thin X-ray mirrors, where aberrations would be corrected. Their assembly on an X-ray telescope would provide an instrument with both high resolution and sensitivity. The Smart X-Ray Optics (SXO) project comprises a U.K.-based consortium developing prototypes for the next generation of X-ray telescopes. The overall aim is to produce X-ray mirrors using thin, below 1mm, structures, comprising Ni mirror shells with bonded piezoelectric unimorph actuators, and with a target resolution of {0.1 arcs. Such an optic would enable the design of an X-ray telescope with both a greater resolution and collective area than the best currently available by Chandra (0.5arcs) and XMM Newton (1650cm2) respectively. Lead zirconate titanate, PZT-based piezoelectric actuators are being developed in this programme to fit precisely the curved Ni mirror shell prototypes (100×300×0.4mm, radius of curvature 167mm). Viscous plastic processing has been chosen for the fabrication of net-shaped piezoelectric unimorph actuators 75×32×0.18mm, with radius of curvature conforming to those of the X-ray optic. Laser machining has been used for precisely controlling the actuator shape and for the definition of the multi-segment electrodes. Accurate control of the thickness, surface finish and curvature are the key factors to delivering satisfactory actuators. Results are presented concerning the fabrication and characterisation of the piezoelectric actuators, and the integration procedure on the nickel optic.

  14. Electron optics simulation for designing carbon nanotube based field emission x-ray source

    NASA Astrophysics Data System (ADS)

    Sultana, Shabana

    In this dissertation, electron optics simulation for designing carbon nanotube (CNT) based field emission x-ray source for medical imaging applications will be presented. However, for design optimization of x-ray tubes accurate electron beam optics simulation is essential. To facilitate design of CNT x-ray sources a commercial 3D finite element software has been chosen for extensive simulation. The results show that a simplified model of uniform electron field emission from the cathode surface is not sufficient when compared to experimental measurements. This necessitated the development of a refined model to describe a macroscopic field emission CNT cathode for electron beam optics simulations. The model emulates the random distribution of CNTs and the associated variation of local field enhancement factor. The main parameter of the model has been derived empirically from the experimentally measured I-V characteristics of the CNT cathode. Simulation results based on this model agree well with experiments which include measurements of the transmission rate and focus spot size. The model provides a consistent simulation platform for optimization of electron beam optics in CNT x-ray source design. A systematic study of electron beam optics in CNT x-ray tubes led to the development of a new generation of compact x-ray source with multiple pixels. A micro focus field emission x-ray source with a variable focal spot size has been fully characterized and evaluated. It has been built and successfully integrated into micro-CT scanners which are capable of dynamic cardiac imaging of free-breathing small animals with high spatial and temporal resolutions. In addition a spatially distributed high power multi-beam x-ray source has also been designed and integrated into a stationary digital breast tomosynthesis (s-DBT) configuration. This system has the potential to reduce the total scan time to 4 seconds and yield superior image quality in breast imaging.

  15. Observation of the x-ray magneto-optical Voigt effect.

    PubMed

    Mertins, H C; Oppeneer, P M; Kunes, J; Gaupp, A; Abramsohn, D; Schäfers, F

    2001-07-23

    The existence of the x-ray magneto-optical Voigt effect is demonstrated. By means of polarization analysis the Voigt rotation and ellipticity of linearly polarized synchrotron radiation are measured at the Co L3 edge upon transmission through an amorphous Co film. The observed x-ray Voigt rotation is about 7.5 degrees /microm. On the basis of ab initio calculations it is shown that the x-ray Voigt effect follows sensitively the amount of spin polarization of the 2p core states. Therefore it provides a unique measure of the spin splitting of the core states. PMID:11461644

  16. Simultaneous X-ray and optical spectroscopy of the Oef supergiant λ Cephei

    NASA Astrophysics Data System (ADS)

    Rauw, G.; Hervé, A.; Nazé, Y.; González-Pérez, J. N.; Hempelmann, A.; Mittag, M.; Schmitt, J. H. M. M.; Schröder, K.-P.; Gosset, E.; Eenens, P.; Uuh-Sonda, J. M.

    2015-08-01

    Context. Probing the structures of stellar winds is of prime importance for the understanding of massive stars. Based on their optical spectral morphology and variability, it has been suggested that the stars in the Oef class feature large-scale structures in their wind. Aims: High-resolution X-ray spectroscopy and time-series of X-ray observations of presumably single O-type stars can help us understand the physics of their stellar winds. Methods: We have collected XMM-Newton observations and coordinated optical spectroscopy of the O6 Ief star λ Cep to study its X-ray and optical variability and to analyse its high-resolution X-ray spectrum. We investigate the line profile variability of the He ii λ 4686 and Hα emission lines in our time series of optical spectra, including a search for periodicities. We further discuss the variability of the broadband X-ray flux and analyse the high-resolution spectrum of λ Cep using line-by-line fits as well as a code designed to fit the full high-resolution X-ray spectrum consistently. Results: During our observing campaign, the He ii λ 4686 line varies on a timescale of ~18 h. On the contrary, the Hα line profile displays a modulation on a timescale of 4.1 days which is likely the rotation period of the star. The X-ray flux varies on timescales of days and could in fact be modulated by the same 4.1-day period as Hα, although both variations are shifted in phase. The high-resolution X-ray spectrum reveals broad and skewed emission lines as expected for the X-ray emission from a distribution of wind-embedded shocks. Most of the X-ray emission arises within less than 2 R∗ above the photosphere. Conclusions: The properties of the X-ray emission of λ Cep generally agree with the expectations of the wind-embedded shock model. There is mounting evidence for the existence of large-scale structures that modulate the Hα line and about 10% of the X-ray emission of λ Cep. Based on observations collected with XMM-Newton, an ESA

  17. X-ray and optical observations of 2 new cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Singh, K. P.; Szkody, P.; Barrett, P.; Schlegel, E.; White, N. E.; Silber, A.; Fierce, E.; Hoard, D.; Hakala, P. J.; Piirola, V.; Sohl, K.

    1996-01-01

    The light curves and spectra of two ultra soft X-ray sources are presented. The sources, WGAJ 1047.1+6335 and WGAJ 1802.1+1804 were discovered during a search using the Rosat position sensitive proportional counter (PSPC). The X-ray spectra of both objects show an unusually strong black body component with respect to the harder bremsstrahlung component. Based on the optical observations and on the analysis of the X-ray data, the two objects are identified with new AM Her type cataclysmic variables.

  18. Ultra soft X-ray Microbeam: optical analysis and intensity measurements

    NASA Astrophysics Data System (ADS)

    Emilio, M. Di Paolo; Palladino, L.; Del Grande, F.

    2016-06-01

    In this work, optical analysis and intensity measurements of the Ultra Soft x-ray microbeam (100 eV–1 keV) are presented. X-ray emission at 500 eV are generated from a plasma produced by focusing Nd-YAG laser beam on the Yttrium target. In particular, we will report the study of x-ray intensity and the measurement of focal spot dimension. Moreover, the software/hardware control of sample holder position and the alignment of biological sample to the microbeam will be described.

  19. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  20. Developments in glass micro pore optics for x-ray applications

    NASA Astrophysics Data System (ADS)

    Wallace, Kotska; Collon, Maximilien; Bavdaz, Marcos; Fairbend, Ray; Séguy, Julien; Krumrey, Michael

    2006-06-01

    ESA is developing technologies for x-ray imaging to reduce the mass and volume of future missions. Applications of x-ray optics are foreseen in future planetary x-ray imagers, x-ray timing observatories and in observatories for high-energy astrophysics. With reference to planetary x-ray imagers the use of glass micro-pore material is being investigated. This technology allows the formation of a monolithic, glass structure that can be used to focus x-rays by glancing reflections off the pore walls. A technique to form x-ray focusing plates that contain thousands of square micro-pores has been developed with Photonis. The square pores are formed in a process that fuses blocks of extruded square fibres, which can then be sliced, etched and slumped to form the segment of an optic with a specific radius. A proposed imager would be created from 2 optics, slumped with different radii, and mounted to form an approximation of a Wolter I optic configuration. Reflection can be improved by coating the channel surfaces with a heavy element, such as nickel. Continuing developments have been made to enhance the manufacturing processes and improve the characteristics of the manufactured x-ray focusing plates, such as improved surface roughness and squareness of pore walls, improved pore alignment from fibre stacking through to optic segment slumping and development of pore wall coatings. In order to measure improvements x-ray measurements are performed by ESA and cosine Research BV, using the BESSY-II synchrotron facility four-crystal monochromator beamline of the Physikalisch-Technische Bundesanstalt, on multifibres, sectors and slumped sectors. A probing beam is used to investigate a number of pores to determine x-ray transmission, focussing characteristics as they relate to the overall transmission, x-ray reflectivity of channel walls, radial alignment of fibres, slumping radius and fibre position in a fused block. SEM measurements and microscope inspection have also been used

  1. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics.

    PubMed

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-14

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis. PMID:26979685

  2. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-01

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  3. Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance

    NASA Technical Reports Server (NTRS)

    Saha, Timo T.; Rohrbach, Scott; Zhang, William W.

    2011-01-01

    Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.

  4. Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses

    SciTech Connect

    Bionta, M. R.; Hartmann, N.; Weaver, M.; French, D.; Glownia, J. M.; Bostedt, C.; Chollet, M.; Ding, Y.; Fritz, D. M.; Fry, A. R.; Krzywinski, J.; Lemke, H. T.; Messerschmidt, M.; Schorb, S.; Zhu, D.; White, W. E.; Nicholson, D. J.; Cryan, J. P.; Baker, K.; Kane, D. J.; and others

    2014-08-15

    The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10–100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for “measure-and-sort” at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses.

  5. Recent Developments of Multilayer Mirror Optics for Laboratory X-ray Instrumentation

    NASA Astrophysics Data System (ADS)

    Michaelsen, Carsten; Wiesmann, Jörg; Hoffmann, C.; Wulf, K.; Brugemann, Lutz; Storm, A.

    2002-12-01

    In this paper we review various improvements that we made in the development of multilayer mirror optics for home-lab x-ray analytical equipment in recent years. For the detection of light elements using x-ray fluorescence spectrometry, we developed a number of new multilayers with improved detection limits. In detail, we found that La/B4C multilayers improve the detection limit of boron by 29 % compared to the previous Mo/B4C multilayers. For the detection of carbon, TiO2/C multilayers improve the detection limit also by 29 % compared to the V/C multilayers previously used. For the detection of aluminum, WSi2/Si or Ta/Si multilayers can lead to detection limit improvements over the current W/Si multilayers of up to 60 % for samples on silicon wafers. For the use as beam-conditioning elements in x-ray diffractometry, curved optics coated with laterally d-spacing graded multilayers give rise to major improvements concerning usable x-ray intensity and beam quality. Recent developments lead to a high quality of these multilayer optics concerning beam intensity, divergence, beam uniformity and spectral purity. For example, x-ray reflectometry instruments equipped with such multilayer optics have dynamic ranges previously only available at synchrotron sources. Two-dimensional focusing multilayer optics are shown to become essential optical elements in protein crystallography and structural proteomics.

  6. Thirteen new BL Lacertae objects discovered by an efficient x ray/radio/optical technique

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.; Stocke, John T.; Perlman, Eric; Elvis, Martin S.; Luu, Jane; Huchra, John P.; Humphreys, Roberta; Remillard, Ron; Wallin, John

    1992-01-01

    The discovery of 13 serendipitous BL Lac objects in the Einstein IPC Slew Survey by means of x ray/radio vs. x ray/optical color-color diagrams and confirmation by optical spectroscopy are reported. These 13 BL Lacs were discovered using a technique which exploits the characteristic broad band spectra of BL Lacs. New VLA detections provide accurate fluxes (f(6 cm) is approximately 0.5 mJy) and 2 in. positions, facilitating the determination of an optical counterpart. All 13 new BL Lacs show essentially featureless optical spectra. Nine of these lie within the range of colors of known x ray selected BL Lacs. Of the remaining four, one is apparently x ray louder (by a factor of 1.5) or optically quieter (by 0.8 mags); and three are optically louder (by 1-1.3 mags) than x ray selected BL Lacs. Approximately 50 new BL Lacs in total are expected from VLA work and upcoming Australia Telescope observations, yielding a complete Slew Survey sample of approximately 90 BL Lacs.

  7. Theoretical Implications of Optical and X-ray Observations of Swift GRB Afterglows

    SciTech Connect

    Panaitescu, A.

    2007-08-21

    The Swift satellite has measured the X-ray emission of GRB afterglows starting from the burst epoch, filling thus a gap of about 2 decades in the temporal coverage of X-ray afterglows previously achieved. At the same time, the accurate localizations provided by Swift and their rapid dissemination has allowed ground-based telescopes to monitor the optical afterglow emission at comparably early epochs. Such optical and X-ray observations allows us to test more thoroughly the basic predictions of the relativistic blast-wave. Perhaps it is not an understatement to say that there were more surprises than anyone expected. A majority of Swift X-ray afterglows exhibit a slow-decay phase from 500 s to about 1 h after trigger, which indicates a long-lived process of energy injection into the blast-wave. At around 1 h, the X-ray decay steepens, indicating the end of significant energy addition to the forward shock. This steeper decay is consistent with the blast-wave model expectations but the 1 h break is, generally, not accompanied by a steepening of the optical light-curve, which indicates that forward-shock microphysical parameters are not constant, as was previously assumed and allowed by afterglow observations. A subsequent steepening of the X-ray light-curve decay, at about 1 d, was observed by Swift for only a few afterglows. This second break appears consistent with originating from the blast-wave collimation (a jet), but a better optical coverage is required to test that it is, indeed, a jet-break. Although the jet model has been the subject of many tens of papers, pre-Swift optical and X-ray observations of GRB afterglows have provided little proof that the 1 d optical breaks observed in a dozen afterglows are consistent with the expectations for a collimated outflow.

  8. Hybrid x-ray/optical luminescence imaging: Characterization of experimental conditions

    SciTech Connect

    Carpenter, C. M.; Sun, C.; Pratx, G.; Rao, R.; Xing, L.

    2010-08-15

    Purpose: The feasibility of x-ray luminescence imaging is investigated using a dual-modality imaging system that merges x-ray and optical imaging. This modality utilizes x-ray activated nanophosphors that luminesce when excited by ionizing photons. By doping phosphors with lanthanides, which emit light in the visible and near infrared range, the luminescence is suitable for biological applications. This study examines practical aspects of this new modality including phosphor concentration, light emission linearity, detector damage, and spectral emission characteristics. Finally, the contrast produced by these phosphors is compared to that of x-ray fluoroscopy. Methods: Gadolinium and lanthanum oxysulfide phosphors doped with terbium (green emission) or europium (red emission) were studied. The light emission was imaged in a clinical x-ray scanner with a cooled CCD camera and a spectrophotometer; dose measurements were determined with a calibrated dosimeter. Using these properties, in addition to luminescence efficiency values found in the literature for a similar phosphor, minimum concentration calculations are performed. Finally, a 2.5 cm agar phantom with a 1 cm diameter cylindrical phosphor-filled inclusion (diluted at 10 mg/ml) is imaged to compare x-ray luminescence contrast with x-ray fluoroscopic contrast at a superficial location. Results: Dose to the CCD camera in the chosen imaging geometry was measured at less than 0.02 cGy/s. Emitted light was found to be linear with dose (R{sup 2}=1) and concentration (R{sup 2}=1). Emission peaks for clinical x-ray energies are less than 3 nm full width at half maximum, as expected from lanthanide dopants. The minimum practical concentration necessary to detect luminescent phosphors is dependent on dose; it is estimated that subpicomolar concentrations are detectable at the surface of the tissue with typical mammographic doses, with the minimum detectable concentration increasing with depth and decreasing with dose. In

  9. Micro-pore optics: from planetary x-rays to industrial market

    NASA Astrophysics Data System (ADS)

    Mutz, Jean-Luc; Bonnet, Olivier; Fairbend, Ray; Schyns, Emile; Seguy, Julien

    2007-02-01

    For over fifteen years, micro-Channel plate (MCP) optics, later termed "Micro Pore Optics" (MPOs) - have been under development to replace the heavy Wolter Type 1 replicated or foil mirrors currently used in X-ray astronomy. Noting other possible applications, including X-ray Lithography and imaging X-ray fluorescence spectroscopy - and after considerable, sustained investment from the European Space Agency Technology Research Programme (TRP), a reliable manufacturing process has now been established, able to produce high quality, low mass X-ray and UV optics in a variety of formats. Optimisation of the glass preparation and drawing technology, in line process controls and metrology as well as improvements in the fibre stacking processes, core glass etching and plate slumping have all been developed. Channel coating methods have also been developed to enhance the high energy response. All these improvements enable Photonis to offer MPOs with square pores from 10x10 μm up to 100x100 μm, with channel aspect ratios of up to 500:1 in both square and radially packed geometries in various shapes and with focal lengths in the range 10 cm to several metres. Space science projects such as LOBSTER (an X-ray all-sky monitor), the Wide Field Auroral Imager for Kuafu B and the Mercury Imaging X-ray Spectrometer (MIXS) for BepiColombo are likely to benefit from this unique technology. Other applications are, however, under consideration, such as X-ray pulsar- based navigation systems for autonomous terrestrial and space navigation. The potential industrial-commercial market interest in developing these compact X-ray lenses for ground-based applications is the subject of our paper.

  10. Bendable X-ray Optics at the ALS: Design, Tuning, Performance and Applications

    SciTech Connect

    Advanced Light Source, Lawrence Berkeley National Laboratory; Yashchuk, Valeriy V.; Church, Matthew N.; Knight, Jason W.; Kunz, Martin; MacDowell, Alastair A.; McKinney, Wayne R.; Tamura, Nabumichi; Warwick, Tony

    2008-09-08

    We review the development at the Advanced Light Source (ALS) of bendable x-ray optics widely used for focusing of beams of soft and hard x-rays. Typically, the focusing is divided in the tangential and sagittal directions into two elliptically cylindrical reflecting elements, the so-called Kirkpatrick-Baez (KB) pair [1]. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. This is in contrast to flat optics, that are simpler to manufacture and easier to measure by conventional interferometry. The figure of a flat substrate can be changed by placing torques (couples) at each end. Equal couples form a tangential cylinder, and unequal couples can approximate a tangential ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, and describe a technique developed at the ALS Optical Metrology Laboratory (OML) for optimal tuning of bendable mirrors before installation in the beamline [2]. The tuning technique adapts a method previously used to adjust bendable mirrors on synchrotron radiation beamlines [3]. However, in our case, optimal tuning of a bendable mirror is based on surface slope trace data obtained with a slope measuring instrument--in our case, the long trace profiler (LTP). We show that due to the near linearity of the bending problem, the minimal set of data, necessary for tuning of two benders, consists of only three slope traces measured before and after a single adjustment of each bending couple. We provide an algorithm that was used in dedicated software for finding optimal settings for the mirror benders. The algorithm is based on the method of regression analysis with experimentally found characteristic functions of the benders. The resulting approximation to the functional dependence of the desired slope shape provides nearly final settings for the benders. Moreover, the characteristic functions of the

  11. Simultaneous X-ray, ultraviolet, optical, and radio observations of the flare star Proxima Centauri

    NASA Technical Reports Server (NTRS)

    Haisch, B. M.; Slee, O. B.; Siegman, B. C.; Nikoloff, I.; Candy, M.; Harwood, D.; Verveer, A.; Quinn, P. J.; Wilson, I.; Linsky, J. L.

    1981-01-01

    Results of coordinated program of observations in the X-ray, UV, optical and radio regions of the dM5e flare star Proxima Centauri are presented. Simultaneous observations of the star were obtained on March 6 and March 7, 1979, by the Einstein Observatory IPC, the IUE SWP and LWR cameras at low dispersion, three ground-based optical telescopes in Australia and the Parkes 64-m radio telescope. A total of 10 radio bursts and six optical flares was detected during three nights of simultaneous radio and optical observations, which appear to be broadly correlated. A major X-ray flare event was detected with temperatures of 1.7 x 10 to the 7th and 1.2 x 10 to the 7th K during the rise and decay phases, respectively, respective X-ray fluxes of 3.0 x 10 to the -11th and 3.7 x 10 to the -11th ergs/sq cm per sec, and changes in spectral flux distribution. No radio, optical or UV flare emission corresponding to the X-ray flare was detected. The X-ray flare is interpreted in terms of an arch model with cooling predominantly by X-ray radiation, with an electron density of 1.0 x 10 to the 11th/cu cm during the decay phase and a total arch length comparable to the size of the star itself. The X-ray flare observed is thus more similar to a typical strong solar flare than heretofore seen on a flare star.

  12. Analysis of nearly simultaneous x-ray and optical observations of active galactic nuclei

    SciTech Connect

    Webb, J.R.

    1988-01-01

    Rosemary Hill optical and EINSTEIN X-ray observations of a sample of 36 galactic nuclei (AGN) were reduced and analyzed. Seventy-two x-ray observations of these sources were reduced, nineteen of which yielded spectral information. Of these spectra observations, significant hydrogen column densities above the galactic value were required for nine of the active galactic nuclei. X-ray variability was detected in eight of the eleven sources which were observed more than once by EINSTEIN. Correlations between the x-ray and optical luminosities were investigated using the Jefferys method of least squares. This method allows for errors in both variables. The results indicate a strong correlation between the x-ray and optical luminosities for the entire sample. Division of the sample into groups with similar optical variability characteristics show that the less violently violent variable AGN are more highly correlated than the violently variable blazars. Infrared and radio observations were combined with the x-ray and optical observations of six AGN. These sources were modelled in terms of the synchrotron-self-Compton model. The turnover frequency falls between the infrared and radio data and reliable estimates of this parameter are difficult to estimate. Therefore the results were found as a function of the turnover frequency. Four sources required relativistic bulk motion or beaming. Multifrequency spectra made at different times for one individual source, 0235+164, required different amounts of beaming to satisfy the x-ray observations. Sizes of the emitting regions for the sources modelled ranged from 0.5 parsec to 1.0 parsec.

  13. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    PubMed

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region. PMID:26589210

  14. X-Ray and Optical Studies of Thin Organic Films

    NASA Astrophysics Data System (ADS)

    Foster, William Joseph, Jr.

    1995-01-01

    In order to quantitatively understand the fundamental statistical physics of Langmuir monolayers (LMs) it is essential that their properties be measured under equilibrium conditions. In order to address this issue, the phase diagrams of relaxed films of doeicosanoic acid and methyl eicosanoate were mapped out over the temperature range of 5.5^circ to 26 ^circC. In contrast to the prevailing technique in which isotherms are taken at a constant rate of compression, isotherms in this study were taken through a series of incremental compressions, separated by variable waiting periods that allowed the monolayer to relax to a steady state. X-ray diffraction, Brewster angle microscopy, and surface pressure measurements at each area were interpreted to characterize the structure of the phases of a relaxed LM of methyl eicosanoate. Below 12^circ C and 2.25 dynes/cm the I(L_2^ {''}) phase, an orthorhombic structure with tilt toward nearest neighbor was observed. Between 12^circ and 22^ circC and below 8 dynes/cm the F(L _2^') phase, with tilt toward next nearest neighbor and an orthorhombic structure was seen. Above 22^circC the Ov phase, with tilt toward nearest neighbor and a hexagonal structure was seen. At higher pressures, the U ^'(CS)/U(S)/R(LS) sequence of phases, typical of most saturated alkane systems, was detected. In order to better understand issues of equilibrium and relaxation for LMs of the fatty acids and to compare our results to previous "fast" measurements, a detailed study of relaxed films of doeicosanoic acid was conducted. Both relaxation isotherms and isochores were performed simultaneously with x-ray diffraction measurements. It was found that, despite uncertainty in the macroscopic trough area per molecule due to collapse of the film, a physically useful phase diagram could be constructed in terms of the microscopic area per molecule, derived from diffraction measurements. In addition, by using a two-dimensional analog of the Clausius -Clapeyron

  15. FOXSI-2: Upgrades of the Focusing Optics X-ray Solar Imager for its Second Flight

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Glesener, Lindsay; Buitrago-Casas, Camilo; Ishikawa, Shin-Nosuke; Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee; Kolodziejczak, Jeffery J.; Watanabe, Shin; Takahashi, Tadayuki; Tajima, Hiroyasu; Turin, Paul; Shourt, Van; Foster, Natalie; Krucker, Sam

    2016-03-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the second time on 2014 December 11. To enable direct Hard X-Ray (HXR) imaging spectroscopy, FOXSI makes use of grazing-incidence replicated focusing optics combined with fine-pitch solid-state detectors. FOXSI’s first flight provided the first HXR focused images of the Sun. For FOXSI’s second flight several updates were made to the instrument including updating the optics and detectors as well as adding a new Solar Aspect and Alignment System (SAAS). This paper provides an overview of these updates as well as a discussion of their measured performance.

  16. The Mechanism of the Optical Variability of Supersoft X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Koyama, A.; Matsuda, T.; Matsumoto, K.; Fukue, J.

    1999-12-01

    We present models of an accretion disk of Supersoft X-ray Sources (SSXSs) to compare with observations. Some SSXSs show peculior behavior in optical light curves. Especially SSXS RX J0513 in the Large Magellanic Cloud (LMC) is known for its quasi-periodic optical variability and X-ray on/off. Considering these observations, we examine three models of an accretion disk whose shape may affect the luminosity from the binary system. We, then, compare the computed spectra based on three models with observation. Two models give good agreements in the optical range, while the other does not. Using present models, we may predict the spectrum in currently unobservable wavelength.

  17. Thermoluminescent response of single mode optical fibre to x-ray irradiation

    NASA Astrophysics Data System (ADS)

    Che Omar, S. S.; Hashim, S.; Ibrahim, S. A.; Hassan, W. M. S. Wan; Mahdiraji, G. A.; Isa, N. Md; Mad Isa, M. J.; Abd Jalil, M. M.; Kadir, A. B.

    2014-11-01

    We present the characteristics of the thermoluminescence (TL) response of single mode optical fibre (SMF) subjected to 30 and 70 kV x-ray irradiation. The TL responses are compared with commercially available TLD-100 (rod types). The SMF and TLD-100 were irradiated with x-ray source by using X-rays Generator model Phillips MG 165 located at Malaysian Nuclear Agency. The SMF and TLD-100 show linear dose response subjected to 30 and 70 kV x-ray irradiation. The SMF shows TL response by 10 times and 8 times greater than TLD-100 for the above-mentioned energies. The TL sensitivity characteristics of SMF show promising results to be introduced as a TL dosimeter material. The SMF could be used in several applications in the fields of medicine, industry, and research purposes.

  18. A combined optical/X-ray study of the Galaxy cluster Abell 2256

    NASA Technical Reports Server (NTRS)

    Fabricant, Daniel G.; Kent, Stephen M.; Kurtz, Michael J.

    1989-01-01

    The dynamics of Abell 2256 is investigated by combining X-ray observations of the intracluster gas with optical observations of the galaxy distribution and kinematics. Magnitudes and positions are presented for 172 galaxies and new redshifts for 75. Abell 2256 is similar to the Coma Cluster in its X-ray luminosity, mass, and galaxy density. Both the X-ray surface brightness and the galaxy surface density distributions exhibit an elliptical morphology. The radial galaxy distribution is steeper than the density profile of the X-ray-emitting gas, yet the galaxy velocity dispersion is higher than the equivalent value for the gas. Under the simplest assumptions that the galaxy velocity distribution is isotropic and the gas is isothermal, the galaxies and gas cannot be in hydrostatic equilibrium in a common gravitational potential. Models consistent with available data have mass-to-light ratios which increase with radius and galaxy orbits that are anisotropic with a radial bias.

  19. High resolution double-sided diffractive optics for hard X-ray microscopy.

    PubMed

    Mohacsi, Istvan; Vartiainen, Ismo; Guizar-Sicairos, Manuel; Karvinen, Petri; Guzenko, Vitaliy A; Müller, Elisabeth; Färm, Elina; Ritala, Mikko; Kewish, Cameron M; Somogyi, Andrea; David, Christian

    2015-01-26

    The fabrication of high aspect ratio metallic nanostructures is crucial for the production of efficient diffractive X-ray optics in the hard X-ray range. We present a novel method to increase their structure height via the double-sided patterning of the support membrane. In transmission, the two Fresnel zone plates on the two sides of the substrate will act as a single zone plate with added structure height. The presented double-sided zone plates with 30 nm smallest zone width offer up to 9.9% focusing efficiency at 9 keV, that results in a factor of two improvement over their previously demonstrated single-sided counterparts. The increase in efficiency paves the way to speed up X-ray microscopy measurements and allows the more efficient utilization of the flux in full-field X-ray microscopy. PMID:25835837

  20. Breadboard micro-pore optic development for x-ray imaging

    NASA Astrophysics Data System (ADS)

    Wallace, Kotska; Collon, Maximilien J.; Beijersbergen, Marco W.; Oemrawsingh, Sumant; Bavdaz, Marcos; Schyns, Emile

    2007-09-01

    Technology associated with x-ray optics for missions such as ESA's XMM-Newton are not compatible with the demanding mass requirements for planetary explorers. Glass micro-pore optics are an enabling technology for future ESA missions to fly remote, planetary, x-ray imagers, by facilitating mass and volume reduction. Activities pursued by ESA have developed manufacturing techniques for micro-channel plates to produce high quality, square fibres, which are used to form glass plates containing square micro-channel pores, with diameters from 10 μm and fill factors around 60%. Matched pairs of plates can be deformed under heat and pressure to form spherical surfaces, such that each plate approximates the radius of one part of the tandem pair of a Wolter I configuration. In such a configuration the tangential walls of the concentric rings of pores are used as the grazing incidence, reflective surfaces that focus x-rays. The monolithic structure of the plates allows dense packing of the rings of x-ray mirrors and simplifies mounting, especially with respect to thermal and mechanical considerations. To improve x-ray reflectivity, processes to coat the channel surfaces with elements such as Ni and Ir have also been investigated. This paper discusses the design of a structure to support the optic segments and assembly of the optics into a structure. Pairs of plates must be aligned into tandems and fixed to form segments of the x-ray optic. Each tandem pair must be aligned into a structure which will support the plates through thermal and mechanical loading. A structure has been designed to allow assembly of the optic within tolerances justified by analysis. Replacement of individual tandems is possible. Thermal and mechanical analyses have been performed to assess the performance and survivability of the optic under loads. An assembly plan has been designed to allow maximisation of the effective area of the optic and ensure its best performance.

  1. Nanostructured diffractive optical devices for soft X-ray microscopes

    NASA Astrophysics Data System (ADS)

    Hambach, D.; Peuker, M.; Schneider, G.

    2001-07-01

    The new transmission X-ray microscope (TXM) installed at the BESSY II electron storage ring uses an off-axis transmission zone plate (OTZ) as diffractive and focusing element of the condenser-monochromator setup. A high resolution micro-zone plate (MZP) forms a magnified image on a CCD-detector. Both, the OTZ with an active area of up to 24 mm2 and the MZP with zone widths as small as 25 nm are generated by a process including electron beam lithography (EBL), dry etching and subsequent electroplating of nickel on top of silicon membrane substrates with about 100- 150 nm thickness. The combination of a larger zone width and the usage of nickel zone structures allows to increase the diffraction efficiency of the condenser element at least by a factor of 3 compared to the earlier used KZP7 condenser zone plate in the TXM at BESSY I. Groove diffraction efficiencies of 21.6% and 14.7% were measured for MZP objectives with 40 and 25 nm outermost zone width, respectively.

  2. X-ray and optical observations of accreting neutron stars and black holes and the construction and testing of the stellar x-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Tomsick, John Allen

    1999-10-01

    In the first part of this thesis, I present results from observations of accreting neutron stars and black hole candidates (BHCs). Through measurements of the physical parameters of neutron stars, including the mass, spin period and magnetic field strength, accreting neutron stars provide an opportunity to learn about matter at extremely high densities and in strong magnetic fields. Here, I study the neutron star X-ray binary XTE J2123-058. X-ray observations are used to estimate the neutron star spin period and magnetic field strength, and the measured spin period of 3.9 ms has implications for neutron star evolution. Results of optical observations provide some of the information necessary to eventually determine the neutron star mass. For BHC X-ray binaries, demonstrating the existence of the event horizon and measuring physical parameters of black holes are of great interest. In order to make progress toward these goals, it is necessary to understand the accretion processes and emission mechanisms that operate in these systems. For some accreting compact objects, significant changes in the X- ray emission properties are observed over time. Here, I study the changes in X-ray emission properties that occurred over three months for an accreting BHC, 4U 1630-47. I also include a study of sharp drops in the 4U 1630-47 X-ray flux (i.e. X-ray dips). X-ray dips provide an opportunity to constrain the sizes of the X-ray emission regions. The 4U 1630-47 X-ray dips provide evidence that one of the two X-ray emission components comes from within ten Schwarzschild radii of the compact object. In the second part of this thesis, I describe work I have done on the Stellar X-Ray Polarimeter (SXRP). The SXRP will be more than an order of magnitude more sensitive than any previous X-ray polarimeter in the 2-15 keV energy band and is expected to increase the number of sources with X-ray polarization detections from one, the Crab Nebula, to between 20 and 30. X-ray binaries will be

  3. A long-term optical-X-ray correlation in 4U 1957+11

    NASA Astrophysics Data System (ADS)

    Russell, D. M.; Lewis, F.; Roche, P.; Clark, J. S.; Breedt, E.; Fender, R. P.

    2010-03-01

    Three years of optical monitoring of the low-mass X-ray binary (LMXB) 4U 1957+11 is presented. The source was observed in V, R and i bands using the Faulkes Telescopes North and South. The light curve is dominated by long-term variations which are correlated (at the >3σ level) with the soft X-ray flux from the All Sky Monitor on board the Rossi X-ray Timing Explorer. The variations span 1mag in all three filters. We find no evidence for periodicities in our light curves, contrary to a previous short-time-scale optical study in which the flux varied on a 9.3-h sinusoidal period by a smaller amplitude. The optical spectral energy distribution is blue and typical of LMXBs in outburst, as is the power-law index of the correlation β = 0.5, where Fν,OPT ~ FβX. The discrete cross-correlation function reveals a peak at an X-ray lag of 2-14 days, which could be the viscous time-scale. However, adopting the least-squares method we find the strongest correlation at a lag of 0 +/- 4 d, consistent with X-ray reprocessing on the surface of the disc. We therefore constrain the optical lag behind X-ray to be between -14 and +4 d. In addition, we use the optical-X-ray luminosity diagram for LMXBs as a diagnostic tool to constrain the nature of the compact object in 4U 1957+11, since black hole and neutron star sources reside in different regions of this diagram. It is found that if the system contains a black hole (as is the currently favoured hypothesis), its distance must exceed ~20 kpc for the optical and X-ray luminosities to be consistent with other soft-state black hole systems. For distances <20 kpc, the data lie in a region of the diagram populated only by neutron star sources (black hole systems are 10 times optically brighter for this X-ray luminosity). 4U 1957+11 is unique: it is either the only black hole LMXB to exist in an apparent persistent soft state or a neutron star LMXB which behaves like a black hole.

  4. High performance X-ray and neutron microfocusing optics. Phase II final report.

    SciTech Connect

    Gregory Hirsch

    2000-01-14

    The use of extremely small diameter x-ray beams at synchrotron radiation facilities has become an important experimental technique for investigators in many other scientific disciplines. While there have been several different optical elements developed for producing such microbeams, this SBIR project was concerned with one particular device: the tapered-monocapillary optic.

  5. Optical constants in the extreme ultraviolet and soft X-ray region

    NASA Technical Reports Server (NTRS)

    Rife, J. C.; Osantowski, J. F.

    1982-01-01

    The nature of optical constants and their measurement by reflection or absorption techniques in the extreme ultraviolet and soft X-ray spectral region from 30 to 3000 eV is discussed with emphasis on mirror design. Sources of optical constant data are mentioned and reflectance measurements for SiC and Kanigen between 40 and 200 eV are reported.

  6. Influence of optical gaps on signal and noise properties of luminescent screen x-ray detectors

    NASA Astrophysics Data System (ADS)

    Koch, Andreas

    2004-05-01

    X-ray detection with luminescent screens requires optical signal transfer as an intermediate step between x-ray detection and conversion to an electronic signal. Luminescent screens may be granular (phosphor screens), structured (e.g. CsI) or transparent (scintillators). The optical signal is imaged with lenses, fibre optics, electron optics or by proximity focussing to an electronic detector. Poor focussing or poor optical contact may degrade the signal and noise transfer characteristics, i.e. modulation transfer function (MTF) and detective quantum efficiency (DQE). The case when x-rays are detected with granular luminescent screens, imaged onto flat panel electronic detectors is considered here. The detector assembly often requires layers of glue or protective thin films creating optical gaps, in which light is spread, hence spatial resolution is degraded. The noise spectrum is not necessarily changed the same way. Its exact shape depends on the dominant noise sources in a given detector configuration under the specific operating conditions: The noise of the primary x-ray quanta, noise aliasing and direct x-ray detection by the electronic detection layer are the main contributions in this investigation. Especially at high spatial frequencies small optical gaps in conjunction with white quantum noise from direct x-ray absorption of the electronic imager degrade DQE: A gap of 40 μm between luminescent screen and detector reduces the DQE by 33% at the Nyquist frequency. This was demonstrated with an a-Si imager of 143-μm pixel size and a Lanex Fine luminescent screen operated at 100 kV.

  7. Defect-Assisted Hard-X-Ray Microscopy with Capillary Optics

    NASA Astrophysics Data System (ADS)

    Korecki, Paweł; Sowa, Katarzyna M.; Jany, Benedykt R.; Krok, Franciszek

    2016-06-01

    Polycapillary x-ray focusing devices are built from hundreds of thousands of bent microcapillaries that are stacked into hexagonal arrays. We show that intrinsic point defects of the optics (e.g., missing or larger capillaries) lead to the formation of multiple x-ray images of an object positioned in the focal plane. These images can be recorded in parallel, and can provide spatial resolution that is limited by the defect size and not by the focal spot size. In a proof-of-principle experiment, we demonstrate submicron resolution, which has not yet been achieved with polycapillary focusing optics. Tailored optics with a controlled distribution of "defects" could be used for multimodal nanoscale x-ray imaging with laboratory setups.

  8. Roles of Thin Film Stress in Making Extremely Lightweight X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2010-01-01

    X-ray optics typically must be coated with one of the noble metals, gold, platinum, or iridium, to enhance their photon collection area. In general, iridium is preferred to the other two because it generates the highest X-ray reflectivity in the I to 10 keV band. Unfortunately, iridium films typically have also the highest stress that can severely degrade the optical figure of the mirror substrate, resulting in a poorer image quality. In this paper we will report our work in understanding this stress and our method to counterbalance it. In particular we will also report on potential ways of using this stress to improve the substrate's optical figure, turning a bug into a desirable feature. This work is done in the context of developing an enabling technology for the International X-ray Observatory which is a collaborative mission of NASA, ESA, and JAXA, and expected to be launched into an L2 orbit in 2021.

  9. CORRELATED OPTICAL AND X-RAY FLARES IN THE AFTERGLOW OF XRF 071031

    SciTech Connect

    Kruehler, T.; Greiner, J.; McBreen, S.; Afonso, P.; Clemens, C.; Filgas, R.; Yoldas, A.; Klose, S.; Rossi, A.; Yoldas, A. Kuepcue; Szokoly, G. P.

    2009-05-20

    We present a densely sampled early light curve of the optical/near-infrared (NIR) afterglow of the X-Ray Flash (XRF) 071031 at z = 2.692. Simultaneous and continuous observations in seven photometric bands from g' to K{sub S} with GROND (Gamma-Ray Burst Optical/Near-InfraRed Detector) at the 2.2-m MPI/ESO telescope on LaSilla were performed between 4 minutes and 7 hr after the burst. The light curve consists of 547 individual points which allows us to study the early evolution of the optical transient associated with XRF 071031 in great detail. The optical/NIR light curve is dominated by an early increase in brightness which can be attributed to the apparent onset of the forward shock emission. There are several bumps which are superimposed onto the overall rise and decay. Significant flaring is also visible in the Swift X-Ray Telescope (XRT) light curve from early to late times. The availability of high-quality, broadband data enables detailed studies of the connection between the X-ray and optical/NIR afterglow and its color evolution during the first night postburst. We find evidence of spectral hardening in the optical bands contemporaneous with the emergence of the bumps from an underlying afterglow component. The bumps in the optical/NIR light curve can be associated with flares in the X-ray regime suggesting late central engine activity as the common origin.

  10. The new BL Lacertae objects discovered by an efficient X-ray/radio/optical technique

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.; Stocke, John T.; Perlman, Eric; Elvis, Martin; Remillard, Ron; Granados, Arno; Luu, Jane; Huchra, John P.; Humphreys, Roberta; Urry, C. M.

    1993-01-01

    We report the recent discovery of ten BL Lac objects in the Einstein IPC Slew Survey by means of X-ray/radio versus X-ray/optical color-color diagrams and confirming optical spectroscopy. These ten BL Lac objects were discovered using a technique proposed by Stocke et al. (1989) which exploits the characteristic broad-band spectra of BL Lac objects. New VLA detections provide accurate fluxes (limiting f(6 cm) about 0.5 mJy) and about 1 arcsec positions, facilitating the determination of an optical counterpart. All ten new BL Lac objects show essentially featureless optical spectra and lie within the range of radio/X-ray/optical colors of known X-ray-selected BL Lac objects, when about 1 mag optical variability is included. We expect about 50 new BL Lac objects in total, from complete optical follow-up of our now completed VLA work and recent Australia Telescope observations, yielding a complete Slew Survey sample of about 90 BL Lac objects.

  11. Narrow-line X-Ray-selected Galaxies in the Chandra-COSMOS Field. II. Optically Elusive X-Ray AGNs

    NASA Astrophysics Data System (ADS)

    Pons, E.; Elvis, M.; Civano, F.; Watson, M. G.

    2016-06-01

    In the Chandra-COSMOS (C-COSMOS) survey, we have looked for X-ray-selected active galactic nuclei (AGNs), which are not detected as such in the optical, the so-called elusive AGNs. A previous study based on XMM-Newton and Sloan Digital Sky Survey observations has found a sample of 31 X-ray AGNs optically misclassified as star-forming (SF) galaxies at z\\lt 0.4, including 17 elusive Sy2s. Using Chandra observations provides a sample of fainter X-ray sources and so, for a given X-ray luminosity, extends to higher redshifts. To study the elusive Sy2s in the C-COSMOS field, we have removed the NLS1s that contaminate the narrow-line sample. Surprisingly, the contribution of NLS1s is much lower in the C-COSMOS sample (less than 10% of the optically misclassified X-ray AGNs) than in Pons & Watson. The optical misclassification of the X-ray AGNs ({L}{{X}}\\gt {10}42 {erg} {{{s}}}-1) can be explained by the intrinsic weakness of these AGNs, in addition to, in some cases, optical dilution by the host galaxies. Interestingly, we found the fraction of elusive Sy2s (narrow emission-line objects) optically misclassified as SF galaxies up to z∼ 1.4 to be 10% ± 3% to 17% ± 4%, compared to the 6% ± 1.5% of the Pons & Watson work (up to z∼ 0.4). This result seems to indicate an evolution with redshift of the number of elusive Sy2s.

  12. New X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of long working distance

    NASA Astrophysics Data System (ADS)

    Terada, Yasuko; Yumoto, Hirokatsu; Takeuchi, Akihisa; Suzuki, Yoshio; Yamauchi, Kazuto; Uruga, Tomoya

    2010-05-01

    A new X-ray microprobe system for trace heavy element analysis using ultraprecise X-ray mirror optics of 300 mm long working distance has been developed at beamline 37XU of SPring-8. A focusing test has been performed in the X-ray energy range 20-37.7 keV. A focused beam size of 1.3 μm ( V)×1.5 μm ( H) has been achieved at an X-ray energy of 30 keV, and a total photon flux of the focused beam was about 2.7×10 10 photons/s. Micro-X-ray fluorescence (μ-XRF) analysis of eggplant roots has been carried out using the developed microprobe. It is clearly observed in the XRF images that cadmium is highly accumulated in the endodermis, exodermis and epidermis of roots. This study demonstrates the potential of scanning microscopy for heavy elements analysis in the high-energy X-ray region.

  13. Integrated modeling for parametric evaluation of smart x-ray optics

    NASA Astrophysics Data System (ADS)

    Dell'Agostino, S.; Riva, M.; Spiga, D.; Basso, S.; Civitani, Marta

    2014-08-01

    This work is developed in the framework of AXYOM project, which proposes to study the application of a system of piezoelectric actuators to grazing-incidence X-ray telescope optic prototypes: thin glass or plastic foils, in order to increase their angular resolution. An integrated optomechanical model has been set up to evaluate the performances of X-ray optics under deformation induced by Piezo Actuators. Parametric evaluation has been done looking at different number and position of actuators to optimize the outcome. Different evaluations have also been done over the actuator types, considering Flexible Piezoceramic, Multi Fiber Composites piezo actuators, and PVDF.

  14. Simultaneous X-Ray and Optical Timing Observations of GX 339-4

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip; Mushotzky, Richard F. (Technical Monitor)

    2004-01-01

    The goal of this proposal is to perform the first comprehensive study of the correlated X-ray and optical variability of the Galactic accreting black hole candidate GX 339-4 using the X-ray and optical instruments on XMM-Newton. With these observations, we hope to make significant progress in understanding the coupled inflow - outflow system around a persistently accreting stellar mass black hole. The data is now all reduced. This includes the data analysis for all of the instruments on XMM-Newton, the EPIC - PN, the EPIC - MOS, the RGS, and the OM. We are currently preparing the results for publication.

  15. X-ray reflection and scatter measurements on selected optical samples

    NASA Technical Reports Server (NTRS)

    Fields, S. A.; Reynolds, J. M.; Holland, R. L.

    1975-01-01

    The results from an experimental program to determine the reflection efficiency and scatter parameters of selected optical samples are presented. The measurements were made using 8.34A X-rays at various angles of incidence. Selected samples were contaminated after being measured and then remeasured to determine the effects of contamination. The instrumentation involved in taking the data, including the X-ray reflectometer and data processing equipment, is discussed in detail. The condition of the optical surfaces, the total reflection measurements, the scatter measurements, and the analysis are discussed.

  16. Contemporaneous Optical and X-ray Observations of the V404 Cygni Outburst

    NASA Astrophysics Data System (ADS)

    Updike, Adria C.; Finan, Sidney; Alfahani, Faihan

    2016-01-01

    The 12 solar mass black hole V404 Cygni began a series of renewed flaring on June 15th, 2015, as detected by Swift and Fermi, when material from its small binary companion began to fall into the black hole. The source was observed for several hours in four optical bands on June 19th by 0.9m Southeastern Association for Research in Astronomy (SARA) telescope on Kitt Peak in Arizona. Several x-ray flares from Swift were detected during the same time period. We present the contemporaneous data and look for simultaneous flaring in the optical and x-ray.

  17. Optically Triggered RXTE Observations of Soft X-Ray Transients (core Program)

    NASA Astrophysics Data System (ADS)

    We propose to use optical/infra-red observations from the SMARTS consortium to trigger RXTE observations of transient soft X-ray binaries. We will trigger on two kinds of events: 1) a rise from quiescence; 2) state transitions during an outburst. These RXTE data, together with data from our already approved Swift program, radio ATCA observations and the SMARTS data themselves, will provide broad-band coverage in optical/IR and X-ray bandpasses, which will be used to study accretion processes and jets in black holes and neutron stars.

  18. Vibration diagnosis and remediation design for an x-ray optics stitching interferometer system.

    SciTech Connect

    Preissner, C.; Assoufid, L.; Shu, D.; Experimental Facilities Division

    2004-01-01

    The Advanced Photon Source (APS) x-ray optics Metrology Laboratory currently operates a small-aperture Wyko laser interferometer in a stitching configuration. While the stitching configuration allows for easier surface characterization of long x-ray substrates and mirrors, the addition of mechanical components for optic element translation can compromise the ultimate measurement performance of the interferometer. A program of experimental vibration measurements, quantifying the laboratory vibration environment and identifying interferometer support-system behavior, has been conducted. Insight gained from the ambient vibration assessment and modal analysis has guided the development of a remediation technique. Discussion of the problem diagnosis and possible solutions are presented in this paper.

  19. Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2012-01-01

    mirror segments is the continued development and perfection of alignment and integration techniques, for incorporating individual mirror segments into a precision mirror assembly. Recently, we have been developing a technique called edge-bonding, which has achieved an accuracy to enable 10-arcsecond x-ray telescopes. Currently, we are investigating and improving the long-term alignment stability of so-bonded mirrors. Next, we shall refine this process to enable 5-arsecond x-ray telescopes. This technology development program includes all elements to demonstrate progress toward TRL-6: metrology; x-ray performance tests; coupled structural, thermal, and optical performance analysis, and environmental testing.

  20. Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost

    NASA Technical Reports Server (NTRS)

    Zhang, William W.

    2011-01-01

    segments is the continued development and perfection of alignment and integration techniques, for incorporating individual mirror segments into a precision mirror assembly. Recently, we have been developing a technique called edge-bonding, which has achieved an accuracy to enable 10- arcsecond x-ray telescopes. Currently, we are investigating and improving the long-term alignment stability of so-bonded mirrors. Next, we shall refine this process to enable 5-arsecond x-ray telescopes. This technology development program includes all elements to demonstrate progress toward TRL-6: metrology; x-ray performance tests; coupled structural, thermal, and optical performance analysis, and environmental testing.

  1. Simultaneous X-ray, ultraviolet, optical, and radio observations of the flare star Proxima Centauri

    SciTech Connect

    Haisch, B.M.; Linsky, J.L.; Slee, O.B.; Siegman, B.C.; Nikoloff, I.; Candy, M.; Harwood, D.; Verveer, A.; Quinn, P.J.; Wilson, I.; Page, A.A.; Higson, P.; Seward, F.D.

    1981-05-01

    We report on a coordinated program involving X-ray, ultraviolet, optical, and radio observations of the dM5e flare star Proxima Centauri. We detected one major X-ray flare event with L/sub x/(0.2--4.0 keV)roughly-equal6.0 x 10/sup 27/ ergs s/sup -1/, T = 1.7 x 10/sup 7/ K, and EM = 7.5 x 10/sup 50/ cm/sup -3/ during the rise phase and L/sub x/roughly-equal7.4 x 10/sup 27/ ergs s/sup -1/, T = 1.2 x 10/sup 7/ K, and EM = 12.0 x 10/sup 50/ cm/sup -3/ during the decay phase. This is the first detection of a time-resolved stellar X-ray flare that shows changes in its spectral flux distribution. We detected no ultraviolet, optical or radio emission corresponding to this flare, but we did detect a total of five optical and 12 possible radio flares, including one event with simultaneous radio and optical emission. We interpret the absence of optical and ultraviolet emission at the time of the X-ray flare in terms of an arch model in which the flare cools predominently by X-ray radiation. The observed 20 min expotential cooling time is consistent with an electron density of 1.0 x 10/sup 11/ cm/sup -3/ during the decay phase and a flare of total arch length of ..pi.. x 10/sup 10/ cm, comparable to the size of the star itself. We conclude that we have observed an X-ray flare more like a typical strong solar flare than heretofore seen on a flare star.

  2. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. I. Overview of the X-Ray Spectrum

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Nicholas, J. S.; Pablo, H.; Shenar, T.; Pollock, A. M. T.; Waldron, W. L.; Moffat, A. F. J.; Richardson, N. D.; Russell, C. M. P.; Hamaguchi, K.; Leutenegger, M.; Gull, T. R.; Iping, R. C.

    2015-01-01

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of Delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (Delta Ori Aa1), Delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around Delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering.

  3. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, δ Orionis Aa. I. Overview of the X-Ray Spectrum

    NASA Astrophysics Data System (ADS)

    Corcoran, M. F.; Nichols, J. S.; Pablo, H.; Shenar, T.; Pollock, A. M. T.; Waldron, W. L.; Moffat, A. F. J.; Richardson, N. D.; Russell, C. M. P.; Hamaguchi, K.; Huenemoerder, D. P.; Oskinova, L.; Hamann, W.-R.; Nazé, Y.; Ignace, R.; Evans, N. R.; Lomax, J. R.; Hoffman, J. L.; Gayley, K.; Owocki, S. P.; Leutenegger, M.; Gull, T. R.; Hole, K. T.; Lauer, J.; Iping, R. C.

    2015-08-01

    We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of δ Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, δ Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, δ Ori Aa2, has a much lower X-ray luminosity than the brighter primary (δ Ori Aa1), δ Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around δ Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe xvii and Ne x are inconsistent with model predictions, which may be an effect of resonance scattering.

  4. The Chandra Deep Field North Survey. XV. Optically Bright, X-Ray-Faint Sources

    NASA Astrophysics Data System (ADS)

    Hornschemeier, A. E.; Bauer, F. E.; Alexander, D. M.; Brandt, W. N.; Sargent, W. L. W.; Bautz, M. W.; Conselice, C.; Garmire, G. P.; Schneider, D. P.; Wilson, G.

    2003-08-01

    We have analyzed optically bright, X-ray-faint [OBXF; i.e., log(fX/fR)<~-2] sources identified in an 178.9 arcmin2 area having high exposure (greater than 1500 ks) within the Chandra Deep Field North 2 Ms survey. We find 43 OBXF sources in this area, making up ~15% of the X-ray sources above a 0.5-2 keV flux of ~2.3×10-17 ergs cm-2 s-1. We present spectroscopic identifications for 42 of the OBXF sources and optical spectra for 25, including five previously unpublished redshifts. Deep optical imaging data (either Hubble Space Telescope [HST] or ground-based) are presented for all the OBXF sources; we measure the optical morphologies of the 20 galaxies having HST imaging data. The OBXF population consists mainly of normal and starburst galaxies detected out to cosmologically significant distances (i.e., to a median redshift of z=0.297 and a full redshift range z=0.06-0.845). This is notable since these distances equate to look-back times of up to ~8 Gyr; we are thus provided with a window on the X-ray emission from galaxies at redshifts much closer to the cosmic star formation peak than was possible prior to the Chandra X-Ray Observatory. The X-ray luminosity distribution of OBXF sources extends to higher luminosity than does that of ``normal'' galaxies, indicating that a significant fraction are likely dominated by low-luminosity active galactic nuclei or vigorous star formation. The lowest redshift galaxies (z~0.06-0.2) have very low X-ray-to-optical flux ratios [i.e., log(fX/fR)<~-3], which are consistent with those of normal galaxies in the local universe. By combining the detected X-ray counts, we find the average OBXF X-ray spectrum to be consistent with a Γ~2.0 power law. The 0.5-2 keV logN-logS for the OBXF galaxies is much steeper (α~-1.7) than for the general X-ray source population. Indeed, the number of OBXF sources has doubled between the 1 and 2 Ms surveys, rising sharply in numbers at faint fluxes. The extragalactic OBXF sources are found to

  5. Optical-X-ray Observations of BL Lacertae Object AO 0235+164

    NASA Astrophysics Data System (ADS)

    Howard, Emily S.; Webb, James R.; Balonek, Thomas J.; McGrath, Elizabeth; Shrader, Chris R.

    1998-11-01

    The BL Lacertea object AO 0235+164 dramatically increased in brightness on October 20, 1997. This outburst was observed with the 1 meter SARA (Southeastern Association for Research in Astronomy) telescope located at Kitt Peak National Observatory (KPNO) located southwest of Tucson, Arizona. As a result of our observations, AO 0235+164 was also observed during the outbust by the Rossi X-ray Timing Experiment (RXTE) and Foggy Bottom Observaotry, Colgate Univserity, New York as a part of a Target of Opportunity (TOO) program. We present here the historical lightcurve of AO 0235+164, Optical observations during the ourtburst from the SARA and Foggy Bottom Observatories and X-ray observations from RXTE. Also, we present multifrequency data during this period and compare the variability of the Optical and X-ray bands.

  6. Optical Metrology for the Segmented Optics on the Constellation-X Spectroscopy X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Content, David; Colella, David; Fleetwood, Charles; Hadjimichael, Theo; Lehan, John; McMann, Joseph; Reid, Paul; Saha, Timo; Wright, Geraldine; Zhang, William

    2004-01-01

    We present the metrology requirements and metrology implementation necessary to prove out the reflector technology for the Constellation X(C-X) spectroscopy X-ray telescope (SXT). This segmented, 1.6m diameter highly nested Wolter-1 telescope presents many metrology and alignment challenges. In particular, these mirrors have a stringent imaging error budget as compared to their intrinsic stiffness; This is required for Constellation-X to have sufficient effective area with the weight requirement. This has implications for the metrology that can be used. A variety of contract and noncontact optical profiling and interferometric methods are combined to test the formed glass substrates before replication and the replicated reflector segments.The reflectors are tested both stand-alone and in-situ in an alignment tower.Some of these methods have not been used on prior X-ray telescopes and some are feasible only because of the segmented approach used on the SXT. Methods discussed include high precision coordinate measurement machines using very low force or optical probe axial interferometric profiling azimuthal circularity profiling and use of advanced null optics such as conical computer generated hologram (CGHs).

  7. Long-term optical variability of high-mass X-ray binaries. II. Spectroscopy

    NASA Astrophysics Data System (ADS)

    Reig, P.; Nersesian, A.; Zezas, A.; Gkouvelis, L.; Coe, M. J.

    2016-05-01

    Context. High-mass X-ray binaries are bright X-ray sources. The high-energy emission is caused by the accretion of matter from the massive companion onto a neutron star. The accreting material comes from either the strong stellar wind in binaries with supergiant companions or the cirscumstellar disk in Be/X-ray binaries. In either case, the Hα line stands out as the main source of information about the state of the accreting material. Aims: We present the results of our monitoring program to study the long-term variability of the Hα line in high-mass X-ray binaries. Our aim is to characterise the optical variability timescales and study the interaction between the neutron star and the accreting material. Methods: We fitted the Hα line with Gaussian profiles and obtained the line parameters and equivalent width. The peak separation in split profiles was used to determine the disk velocity law and estimate the disk radius. The relative intensity of the two peaks (V/R ratio) allowed us to investigate the distribution of gas particles in the disk. The equivalent width was used to characterise the degree of variability of the systems. We also studied the variability of the Hα line in correlation with the X-ray activity. Results: Our results can be summarised as follows: i) we find that Be/X-ray binaries with narrow orbits are more variable than systems with long orbital periods; ii) we show that a Keplerian distribution of gas particles provides a good description of the disks in Be/X-ray binaries, as it does in classical Be stars; iii) a decrease in the Hα equivalent width is generally observed after major X-ray outbursts; iv) we confirm that the Hα equivalent width correlates with disk radius; v) while systems with supergiant companions display multi-structured profiles, most of the Be/X-ray binaries show, at some epoch, double-peak asymmetric profiles, which indicates that density inhomogeneities is a common property in the disk of Be/X-ray binaries; vi) the

  8. Variability of Optical Counterparts to X-ray Selected Sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Johnson, Christopher; Hynes, Robert I.; Jonker, Peter; Torres, Manuel; Maccarone, Thomas J.; Britt, Christopher; Steeghs, Danny; Galactic Bulge Survey Collaboration

    2016-01-01

    The Galactic Bulge Survey (GBS) is a wide-field, multi-wavelength survey of new X-ray sources in the Galactic Bulge detected with the Chandra X-ray Observatory. The goals of the GBS are to test binary population models by uncovering quiescent Low-Mass X-Ray Binaries (LMXB), and to identify suitable systems for follow-up mass determination using multi-wavelength observations. This follow-up is essential to better determine black hole and neutron star mass distributions. We present preliminary results from the southernmost portion of the GBS positioned 1.5-2.0 degrees below the Galactic Center which contains 424 unique X-ray sources. The optical photometry presented here were acquired using the DECam imager and the previous Mosaic-II imager on the 4m Blanco telescope at Cerro-Tololo Inter-American Observatory (CTIO). We combine photometry with optical spectroscopy from several different telescopes to help characterize the detected X-ray sources. To accomplish this goal, we analyze the light curve morphology and the spectroscopic features of the optical counterparts to classify these binary systems. I will describe the technique for determining the correct optical counterpart within the error circle using image subtraction and report on the statistics of the sample. I will then summarize the candidate LMXBs we have identified so far and highlight other interesting sources. This work was supported by the National Science Foundation under Grant No. AST-0908789 and by NASA through Chandra Award Number AR3-14002X issued by the Chandra X-ray Observatory Center, which is operated by the Smithsonian Astrophysical Observatory for and on behalf of the National Aeronautics Space Administration under contract NAS8-03060. We also acknowledge support from a Graduate Student Research Award administered by the Louisiana Space Grant Consortium (LaSPACE).

  9. JIM: a joint integrated module of glass x-ray optics for astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Proserpio, Laura; Breunig, Elias; Friedrich, Peter; Winter, Anita; Rohé, Christian; Eder, Josef; Burwitz, Vadim; Hartner, Gisela D.; Menz, Benedikt; Civitani, Marta; Basso, Stefano; Buratti, Enrico

    2015-09-01

    For several years, the Max-Planck-Institute for extraterrestrial Physics in Germany (MPE) and the Astronomical Observatory of Brera in Italy (INAF-OAB) have been studying the slumping technology for the manufacturing of segmented glass X-ray optics for astronomy. Despite some differences in their specific approaches, the synergy of the two institutes has always been good, focusing on the common goal of developing a technology able to meet the outstanding requirements for future X-ray telescopes: i.e. large collecting areas, low mass and good angular resolution. This synergy has in the last year resulted in an active collaboration for the production of a Joint Integrated Module (JIM) that puts together the expertise of the two research groups. In particular, the indirect slumping approach of MPE has been employed for the manufacturing of X-ray mirror segments that have been integrated into a kind of X-ray Optical Unit following the approach developed at INAF-OAB. The module has then been tested in X-ray at the MPE PANTER facility, in Neuried. The several steps and the results of this joint activity are reviewed and discussed in this paper.

  10. X-ray Pulse Length Characterization using the Surface Magneto Optic Kerr Effect

    SciTech Connect

    Krejcik, P.; /SLAC

    2006-10-04

    It will be challenging to measure the temporal profile of the hard X-ray SASE beam independently from the electron beam in the LCLS and other 4th generation light sources. A fast interaction mechanism is needed that can be probed by an ultrafast laser pulse in a pump-probe experiment. It is proposed to exploit the rotation in polarization of light reflected from a thin magnetized film, known as the surface magneto optic Kerr effect (SMOKE), to witness the absorption of the x-ray pulse in the thin film. The change in spin orbit coupling induced by the x-ray pulse occurs on the subfemtosecond time scale and changes the polarization of the probe beam. The limitation to the technique lies with the bandwidth of the probe laser pulse and how short the optical pulse can be made. The SMOKE mechanism will be described and the choices of materials for use with 1.5 {angstrom} x-rays. A schematic description of the pump-probe geometry for x-ray diagnosis is also described.

  11. An optical and X-ray survey of s-type Markarian galaxies

    NASA Technical Reports Server (NTRS)

    Hutter, D. J.; Mufson, S. L.

    1981-01-01

    The results of a study of 23 compact, lineless Markarian galaxies using broadband optical photometry and X-ray satellite observations are reported. The photometry shows that the sample can be broken into four groups. In one group (Mrk 180, 421, and 501) are composite objects in which a BL Lacertae object is embedded in an elliptical galaxy. For this group, the results of multiepoch X-ray observations using the HEAO-1 and -2 satellites are presented. In addition, photometry is used to decompose the optical emission into nonthermal and galactic components. In the second group are objects showing a small ultraviolet excess relative to normal galaxies. The X-ray survey indicates that the X-ray luminosity of objects in group 2 is much lower than those in group 1. This suggests that there is an intrinsic difference between objects in groups 1 and 2. The third and fourth groups are objects whose colors are indistinguishable from those of normal field galaxies and those of galactic stars, respectively. No X-ray emission was detected from objects in either of these groups.

  12. Development of differential deposition technique for figure corrections in grazing incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.

    2009-08-01

    A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter-type grazing-incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of optics by limiting the achievable angular resolution. In the differential deposition technique, material is selectively deposited in varying thickness along the length of the optic to minimize these deviations, thereby improving the overall figure. The process is being tested on focusing X-ray optics being developed at MSFC for small-animal radionuclide imaging. The required spatial resolution for these optics is 100 μm (30 arc secs), which can be achieved with the electroformnickel- replication fabrication technique regularly employed at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim to significantly improve the resolution beyond this value.

  13. Finite element analyses of thin film active grazing incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.

  14. a Modified Sine-Condition for Single Reflector X-Ray Optics.

    NASA Astrophysics Data System (ADS)

    Keski-Kuha, Ritva Anna Marjatta

    1982-03-01

    Any reduction in the amount of coma in an optical system implies that Abbe's sine-condition is being satisfied to some extent. Abbe's sine-condition as stated and sometimes derived in standard optics textbooks refers to refraction optics. The usual admonition accompanying its statement is to keep the object and image size small. It is not clear with what the object and image sizes should be compared. The difficulty of interpreting and applying Abbe's sine-condition is further coufounded when x-ray reflection optical-systems are under consideration. What if any changes in its form or interpretation occur in the case of reflection optics and in particular grazing incidence optics at x-ray wavelengths? Previous applications of the usual form of Abbe's sine -condition would rule out the possibility of using a single x-ray reflector for good imaging, free of coma. However, the high quality of some experimental x-ray images using single reflecting surfaces raised some questions about the interpretation and limits of Abbe's sine-condition. These questions are more satisfactorily answered by the development herein of a new and highly quantitative sine-condition applicable to x-ray reflection from a single surface. Ray tracing results for a number of different surface shapes, such as circular, elliptical and cubic are compared as to attainable resolution and freedom from coma. One use of the new sine-condition is to generate a new reflecting surface and compare its performance with the more common surfaces. Another use is to specify the optical parameters such as magnification, focal length and field of view allowable for an image of specified quality in terms of wave-abberation theory.

  15. OTELO SURVEY: DEEP BVRI BROADBAND PHOTOMETRY OF THE GROTH STRIP. II. OPTICAL PROPERTIES OF X-RAY EMITTERS

    SciTech Connect

    Povic, M.; Perez GarcIa, A. M.; Bongiovanni, A.; Castaneda, H.; Lorenzo, M. Fernandez; Lara-Lopez, M. A.; Sanchez-Portal, M.; Alfaro, E.; Gallego, J.; Gonzalez-Serrano, J. I.; Gonzalez, J. J. E-mail: miguel.sanchez@sciops.esa.in

    2009-11-20

    The Groth field is one of the sky regions that will be targeted by the OSIRIS Tunable Filter Emission Line Object survey in the optical 820 nm and 920 nm atmospheric windows. In the present paper, public Chandra X-ray data with total exposure time of 200 ks are analyzed and combined with optical broadband data of the Groth field, in order to study a set of optical structural parameters of the X-ray emitters and its relation with X-ray properties. To this aim, we processed the raw, public X-ray data using the Chandra Interactive Analysis of Observations, and determined and analyzed different structural parameters, in order to produce a morphological classification of X-ray sources. We present the morphology of 340 X-ray emitters with optical counterpart detected. Objects have been classified by X-ray type using a diagnostic diagram relating X-ray-to-optical ratio (X/O) to hardness ratio. We did not find any clear correlation between X-ray and morphological types. We analyzed the angular clustering of X-ray sources with optical counterpart using two-point correlation functions. A significant positive angular clustering was obtained from a preliminary analysis of four subsamples of the X-ray sources catalog. The clustering signal of the optically extended counterparts is similar to that of strongly clustered populations like red and very red galaxies, suggesting that the environment plays an important role in active galactic nuclei phenomena. Finally, we combined optical structural parameters with other X-ray and optical properties, and we confirmed an anticorrelation between the X/O ratio and the Abraham concentration index, which might suggest that early-type galaxies have lower Eddington rates than those of late-type galaxies.

  16. Refractive optical elements and optical system for high energy x-ray microscopy

    SciTech Connect

    Simon, M.; Altapova, V.; Baumbach, T.; Kluge, M.; Last, A.; Marschall, F.; Mohr, J.; Nazmov, V.; Vogt, H.

    2012-05-17

    In material science, X-ray radiation with photon energies above 25 keV is used because of its penetration into high density materials. Research of the inner structure of novel materials, such as electrodes in high power batteries for engines, require X-ray microscopes operating in the hard X-ray energy range. A flexible X-ray microscope for hard X-rays with photon energies higher than 25 keV will be realized at the synchrotron source ANKA in Karlsruhe, Germany. The device will use refractive X-ray lenses as condenser as well as objective lenses.

  17. X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms.

    PubMed

    Sandoghchi, S R; Jasion, G T; Wheeler, N V; Jain, S; Lian, Z; Wooler, J P; Boardman, R P; Baddela, N; Chen, Y; Hayes, J; Fokoua, E Numkam; Bradley, T; Gray, D R; Mousavi, S M; Petrovich, M; Poletti, F; Richardson, D J

    2014-10-20

    Specialty optical fibers, in particular microstructured and multi-material optical fibers, have complex geometry in terms of structure and/or material composition. Their fabrication, although rapidly developing, is still at a very early stage of development compared with conventional optical fibers. Structural characterization of these fibers during every step of their multi-stage fabrication process is paramount to optimize the fiber-drawing process. The complexity of these fibers restricts the use of conventional refractometry and microscopy techniques to determine their structural and material composition. Here we present, to the best of our knowledge, the first nondestructive structural and material investigation of specialty optical fibers using X-ray computed tomography (CT) methods, not achievable using other techniques. Recent advances in X-ray CT techniques allow the examination of optical fibers and their preforms with sub-micron resolution while preserving the specimen for onward processing and use. In this work, we study some of the most challenging specialty optical fibers and their preforms. We analyze a hollow core photonic band gap fiber and its preforms, and bond quality at the joint between two fusion-spliced hollow core fibers. Additionally, we studied a multi-element optical fiber and a metal incorporated dual suspended-core optical fiber. The application of X-ray CT can be extended to almost all optical fiber types, preforms and devices. PMID:25401650

  18. Progress on the development of active micro-structured optical arrays for x-ray optics

    NASA Astrophysics Data System (ADS)

    Rodriguez Sanmartin, Daniel; Zhang, Dou; Button, Tim; Atkins, Carolyn; Doel, Peter; Wang, Hongchang; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; Shand, Matthew; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andy

    2009-08-01

    The Smart X-Ray Optics (SXO) project comprises a U.K.-based consortium developing active/adaptive micro-structured optical arrays (MOAs). These devices are designed to focus X-rays using grazing incidence reflection through consecutive aligned arrays of microscopic channels etched in silicon. The silicon channels have been produced both by dry and wet etching, the latter providing smoother channel walls. Adaptability is achieved using piezoelectric actuators, which bend the device and therefore change its focal distance. We aim to achieve a 5 cm radius of curvature which can provide a suitable focal length using a tandem pair MOA configuration. Finite Element Analysis (FEA) modelling has been carried out for the optimization of the MOA device design, consider different types of actuators (unimorph, bimorph and active fibre composites), and different Si/piezoelectric absolute and relative thicknesses. Prototype devices have been manufactured using a Viscous Plastic Processing Process for the piezoelectric actuators and dry etched silicon channels, bonded together using a low shrinkage adhesive. Characterisation techniques have been developed in order to evaluate the device performance in terms of the bending of the MOA channels produced by the actuators. This paper evaluates the progress to date on the actuation of the MOAs, comparing FEA modelling with the results obtained for different prototype structures.

  19. X-Ray and Optical Observations of A 0535+26

    NASA Technical Reports Server (NTRS)

    Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.; Jenke, P.; Steele, I.; Coe, M. J.; Gutierrez-Soto, J.; Kretschmar, P.; Caballero, I.; Yan, J.; Rodriguez, J.; Suso, J.; Case, G.; Cherry, M. L.; Guiriec, S.; McBride, V. A.

    2012-01-01

    We present recent contemporaneous X-ray and optical observations of the Be/X-ray binary system A 0535+26 with the Fermi/Gamma-ray Burst Monitor (GBM) and several ground-based observatories. These new observations are put into the context of the rich historical data (since 1978) and discussed in terms of the neutron-star-Be-disk interaction. The Be circumstellar disk was exceptionally large just before the 2009 December giant outburst, which may explain the origin of the unusual recent X-ray activity of this source. We found a peculiar evolution of the pulse profile during this giant outburst, with the two main components evolving in opposite ways with energy. A hard 30-70 mHz X-ray quasi-periodic oscillation was detected with GBM during this 2009 December giant outburst. It becomes stronger with increasing energy and disappears at energies below 25 keV. In the long term a strong optical/X-ray correlation was found for this system, however in the medium term the Halpha equivalent width and the V-band brightness showed an anti-correlation after 2002 August. Each giant X-ray outburst occurred during a decline phase of the optical brightness, while the H showed a strong emission. In late 2010 and before the 2011 February outburst, rapid V/R variations are observed in the strength of the two peaks of the H line. These had a period of 25 days and we suggest the presence of a global one-armed oscillation to explain this scenario. A general pattern might be inferred, where the disk becomes weaker and shows V/R variability beginning 6 months following a giant outburst.

  20. X-Ray and Optical Observations of A 0535+26

    NASA Astrophysics Data System (ADS)

    Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.; Jenke, P.; Steele, I.; Coe, M. J.; Gutierrez-Soto, J.; Kretschmar, P.; Caballero, I.; Yan, J.; Rodríguez, J.; Suso, J.; Case, G.; Cherry, M. L.; Guiriec, S.; McBride, V. A.

    2012-07-01

    We present recent contemporaneous X-ray and optical observations of the Be/X-ray binary system A 0535+26 with the Fermi/Gamma-ray Burst Monitor (GBM) and several ground-based observatories. These new observations are put into the context of the rich historical data (since ~1978) and discussed in terms of the neutron-star-Be-disk interaction. The Be circumstellar disk was exceptionally large just before the 2009 December giant outburst, which may explain the origin of the unusual recent X-ray activity of this source. We found a peculiar evolution of the pulse profile during this giant outburst, with the two main components evolving in opposite ways with energy. A hard 30-70 mHz X-ray quasi-periodic oscillation was detected with GBM during this 2009 December giant outburst. It becomes stronger with increasing energy and disappears at energies below 25 keV. In the long term a strong optical/X-ray correlation was found for this system, however in the medium term the Hα equivalent width and the V-band brightness showed an anti-correlation after ~2002 August. Each giant X-ray outburst occurred during a decline phase of the optical brightness, while the Hα showed a strong emission. In late 2010 and before the 2011 February outburst, rapid V/R variations are observed in the strength of the two peaks of the Hα line. These had a period of ~25 days and we suggest the presence of a global one-armed oscillation to explain this scenario. A general pattern might be inferred, where the disk becomes weaker and shows V/R variability beginning ~6 months following a giant outburst.

  1. X-RAY AND OPTICAL OBSERVATIONS OF A 0535+26

    SciTech Connect

    Camero-Arranz, A.; Finger, M. H.; Wilson-Hodge, C. A.; Jenke, P.; Coe, M. J.; McBride, V. A.; Gutierrez-Soto, J.; Yan, J.; Suso, J.; Guiriec, S.

    2012-07-20

    We present recent contemporaneous X-ray and optical observations of the Be/X-ray binary system A 0535+26 with the Fermi/Gamma-ray Burst Monitor (GBM) and several ground-based observatories. These new observations are put into the context of the rich historical data (since {approx}1978) and discussed in terms of the neutron-star-Be-disk interaction. The Be circumstellar disk was exceptionally large just before the 2009 December giant outburst, which may explain the origin of the unusual recent X-ray activity of this source. We found a peculiar evolution of the pulse profile during this giant outburst, with the two main components evolving in opposite ways with energy. A hard 30-70 mHz X-ray quasi-periodic oscillation was detected with GBM during this 2009 December giant outburst. It becomes stronger with increasing energy and disappears at energies below 25 keV. In the long term a strong optical/X-ray correlation was found for this system, however in the medium term the H{alpha} equivalent width and the V-band brightness showed an anti-correlation after {approx}2002 August. Each giant X-ray outburst occurred during a decline phase of the optical brightness, while the H{alpha} showed a strong emission. In late 2010 and before the 2011 February outburst, rapid V/R variations are observed in the strength of the two peaks of the H{alpha} line. These had a period of {approx}25 days and we suggest the presence of a global one-armed oscillation to explain this scenario. A general pattern might be inferred, where the disk becomes weaker and shows V/R variability beginning {approx}6 months following a giant outburst.

  2. The X-Ray Optics for the High Angular Resolution Imager (HARI)

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.

    2010-01-01

    This slide presentation shows the basic parameters of the x-ray optics, the housing,a graph of the effective area vs energy, another graph showing the angular off-set vs HEW, and a series of graphs showing the detector offsets and tilts,

  3. Combined Optical and X-ray Tomosynthesis Breast Imaging1

    PubMed Central

    Selb, Juliette; Carp, Stefan A.; Boverman, Gregory; Miller, Eric L.; Brooks, Dana H.; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.

    2011-01-01

    Purpose: To explore the optical and physiologic properties of normal and lesion-bearing breasts by using a combined optical and digital breast tomosynthesis (DBT) imaging system. Materials and Methods: Institutional review board approval and patient informed consent were obtained for this HIPAA-compliant study. Combined optical and tomosynthesis imaging analysis was performed in 189 breasts from 125 subjects (mean age, 56 years ± 13 [standard deviation]), including 138 breasts with negative findings and 51 breasts with lesions. Three-dimensional (3D) maps of total hemoglobin concentration (HbT), oxygen saturation (So2), and tissue reduced scattering coefficients were interpreted by using the coregistered DBT images. Paired and unpaired t tests were performed between various tissue types to identify significant differences. Results: The estimated average bulk HbT from 138 normal breasts was 19.2 μmol/L. The corresponding mean So2 was 0.73, within the range of values in the literature. A linear correlation (R = 0.57, P < .0001) was found between HbT and the fibroglandular volume fraction derived from the 3D DBT scans. Optical reconstructions of normal breasts revealed structures corresponding to chest-wall muscle, fibroglandular, and adipose tissues in the HbT, So2, and scattering images. In 26 malignant tumors of 0.6–2.5 cm in size, HbT was significantly greater than that in the fibroglandular tissue of the same breast (P = .0062). Solid benign lesions (n = 17) and cysts (n = 8) had significantly lower HbT contrast than did the malignant lesions (P = .025 and P = .0033, respectively). Conclusion: The optical and DBT images were structurally consistent. The malignant tumors and benign lesions demonstrated different HbT and scattering contrasts, which can potentially be exploited to reduce the false-positive rate of conventional mammography and unnecessary biopsies. © RSNA, 2010 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol

  4. Coordinated X-Ray, Ultraviolet, Optical, and Radio Observations of the PSR J1023+0038 System in a Low-mass X-Ray Binary State

    NASA Astrophysics Data System (ADS)

    Bogdanov, Slavko; Archibald, Anne M.; Bassa, Cees; Deller, Adam T.; Halpern, Jules P.; Heald, George; Hessels, Jason W. T.; Janssen, Gemma H.; Lyne, Andrew G.; Moldón, Javier; Paragi, Zsolt; Patruno, Alessandro; Perera, Benetge B. P.; Stappers, Ben W.; Tendulkar, Shriharsh P.; D'Angelo, Caroline R.; Wijnands, Rudy

    2015-06-01

    The PSR J1023+0038 binary system hosts a neutron star and a low-mass, main-sequence-like star. It switches on year timescales between states as an eclipsing radio millisecond pulsar and a low-mass X-ray binary (LMXB). We present a multi-wavelength observational campaign of PSR J1023+0038 in its most recent LMXB state. Two long XMM-Newton observations reveal that the system spends ˜70% of the time in a ≈3 × 1033 erg s-1 X-ray luminosity mode, which, as shown in Archibald et al., exhibits coherent X-ray pulsations. This emission is interspersed with frequent lower flux mode intervals with ≈ 5× {10}32 erg s-1 and sporadic flares reaching up to ≈1034 erg s-1, with neither mode showing significant X-ray pulsations. The switches between the three flux modes occur on timescales of order 10 s. In the UV and optical, we observe occasional intense flares coincident with those observed in X-rays. Our radio timing observations reveal no pulsations at the pulsar period during any of the three X-ray modes, presumably due to complete quenching of the radio emission mechanism by the accretion flow. Radio imaging detects highly variable, flat-spectrum continuum radiation from PSR J1023+0038, consistent with an origin in a weak jet-like outflow. Our concurrent X-ray and radio continuum data sets do not exhibit any correlated behavior. The observational evidence we present bears qualitative resemblance to the behavior predicted by some existing “propeller” and “trapped” disk accretion models although none can account for key aspects of the rich phenomenology of this system.

  5. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    PubMed Central

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  6. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    NASA Astrophysics Data System (ADS)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick–Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  7. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    PubMed

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-01-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions. PMID:27097853

  8. The whispering gallery as an optical component in the X-ray region

    SciTech Connect

    Howells, M.R.

    1995-08-01

    The whispering gallery phenomenon in acoustics has been known and studied for more than a century, and the same effect has been observed to take place with waves other than sound waves. In this paper we review the theoretical basis and attractive features of the whispering gallery as a soft x-ray optical component and indicate some of its potential applications. We then describe what may be its most unique capability which, in favorable cases, is to provide a way. to manipulate the phase difference between the s and p polarization components and thus to generate circularly or elliptically polarized soft x-rays.

  9. Development of a Direct Fabrication Technique for Full-Shell X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, M.; Kolodziejczak, J. K.; Griffith, C.; Roche, J.; Smith, W. S.; Kester, T.; Atkins, C.; Arnold, W.; Ramsey, B.

    2016-01-01

    Future astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray optics. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing high resolution, light-weight and affordable x-ray mirrors that can be nested to produce large collecting area. This approach to mirror fabrication, based on the use of the metal substrates coated with nickel phosphorous alloy, is being pursued at MSFC. The design of the polishing fixtures for the direct fabrication, the surface figure metrology techniques used and the results of the polishing experiments are presented.

  10. X-ray and Optical Properties of an Unbiased Sample of Local AGN

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Mushotzky, R.; Tueller, J.; Lewis, K.; Reynolds, C.

    2007-12-01

    The SWIFT Burst Alert Telescope (BAT), while not focused on a Gamma-ray burst, conducts an all-sky survey in the 14 - 195 keV band. After the first 9 months, the BAT has detected a sample of 153 local (z ˜ 0.03) AGN at a flux limit of a few times 10-11 erg/s/cm-2 (Tueller et al. 2007). Since the AGN were detected at very high X-ray energies, they are an unbiased sample towards column densities below 1025 cm-2. We present the X-ray and optical properties of a sample of the BAT AGN.

  11. The faint X-ray sources in and out of omega Centauri: X-ray observations and optical identifications

    NASA Technical Reports Server (NTRS)

    Cool, Adrienne M.; Grindlay, Jonathan E.; Bailyn, Charles D.; Callanan, Paul J.; Hertz, Paul

    1995-01-01

    We present the results of an observation of the globular cluster omega Cen (NGC 5139) with the Einstein high-resolution imager (HRI). Of the five low-luminosity X-ray sources toward omega Cen which were first identified with the Einstein imaging proportional counter (IPC) (Hertz and Grindlay 1983a, b), two are detected in the Einstein HRI observation: IPC sources A and D. These detections provide source positions accurate to 3 sec-4 sec; the positions are confirmed in a ROSAT HRI observation reported here. Using CCD photometry and spectroscopy, we have identified both sources as foreground dwarf M stars with emission lines (dMe). The chance projection of two Mde stars within approximately 13 min of the center of omega Cen is not extraordinary, given the space density of these stellar coronal X-ray sources. We discuss the possible nature of the three as yet unidentified IPC sources toward omega Cen, and consider the constraints that the Einstein observations place on the total population of X-ray sources in this cluster. The integrated luminosity from faint X-ray sources in omega Cen appears to be low relative to both the old open cluster M67 and the post-core-collapse globular, NGC 6397.

  12. Improving X-ray Optics Through Differential Deposition

    NASA Technical Reports Server (NTRS)

    Ramsey, Brian; Kilaru, Kiranmayee; Atkins, Carolyn; Gubarev, Mikhail V.; Gaskin, Jessica A.; O'Dell, Steve; Weisskopf, Martin; Zhang, William; Romaine, Suzanne

    2012-01-01

    The differential deposition technique can in theory correct shell figures to approximate arcsecond value. We have received APRA funding and are building two custom system to demonstrate the technique on full shell and segmented optics. We hope to be able to demonstrate < 5 arcsec performance in < 2 years. To go beyond this, (arcsecond level) is very difficult to judge as we have not yet discovered the problems. May necessitate in-situ metrology, stress reduction investigations, correcting for gravity effects, correcting for temperature effects. Some of this will become obvious in early parts of the investigation.

  13. Spatially confined low-power optically pumped ultrafast synchrotron x-ray nanodiffraction

    SciTech Connect

    Park, Joonkyu; Zhang, Qingteng; Chen, Pice; Cosgriff, Margaret P.; Tilka, Jack A.; Evans, Paul G.; Adamo, Carolina; Schlom, Darrell G.; Wen, Haidan; Zhu, Yi

    2015-08-15

    The combination of ultrafast optical excitation and time-resolved synchrotron x-ray nanodiffraction provides unique insight into the photoinduced dynamics of materials, with the spatial resolution required to probe individual nanostructures or small volumes within heterogeneous materials. Optically excited x-ray nanobeam experiments are challenging because the high total optical power required for experimentally relevant optical fluences leads to mechanical instability due to heating. For a given fluence, tightly focusing the optical excitation reduces the average optical power by more than three orders of magnitude and thus ensures sufficient thermal stability for x-ray nanobeam studies. Delivering optical pulses via a scannable fiber-coupled optical objective provides a well-defined excitation geometry during rotation and translation of the sample and allows the selective excitation of isolated areas within the sample. Experimental studies of the photoinduced lattice dynamics of a 35 nm BiFeO{sub 3} thin film on a SrTiO{sub 3} substrate demonstrate the potential to excite and probe nanoscale volumes.

  14. Optical tomography as adjunct to x-ray mammography: methods and results

    NASA Astrophysics Data System (ADS)

    Khayat, Mario; Ichalalene, Zahia; Mincu, Niculae; Leblond, Fredéric; Guilman, Olga; Djeziri, Salim

    2007-02-01

    Recent years have seen significant efforts deployed to apply optical imaging techniques in clinical indications. Optical mammography as an adjunct to X-ray mammography is one such application. 3D optical mammography relies on the sensitivity of near-infrared light to endogenous breast chromophores in order to generate in vivo functional views of the breast. This work presents prospective tissue characterization results from a multi-site clinical study targeting optical tomography as an adjunct to conventional mammography. A 2 nd -generation multi-wavelength time-domain acquisition system was used to scan a wide population of women presenting normal or suspicious X-ray mammograms. Application specific algorithms based on a diffusive model of light transport were used to quantify the breast's optical properties and derive 3D images of physiological indices. Using histopathological findings as a gold standard, results confirm that optically derived parameters provide statistically significant discrimination between malignant and benign tissue in wide population of subjects. The methodology developed for case reviews, lesion delineation and characterization allows for better translation of the optical data to the more traditional x-ray paradigm while maintaining efficacy. They also point to the need for guidelines that facilitate correlation of optical data if those results are to be confirmed in a clinical setting.

  15. Spatially confined low-power optically pumped ultrafast synchrotron x-ray nanodiffraction.

    PubMed

    Park, Joonkyu; Zhang, Qingteng; Chen, Pice; Cosgriff, Margaret P; Tilka, Jack A; Adamo, Carolina; Schlom, Darrell G; Wen, Haidan; Zhu, Yi; Evans, Paul G

    2015-08-01

    The combination of ultrafast optical excitation and time-resolved synchrotron x-ray nanodiffraction provides unique insight into the photoinduced dynamics of materials, with the spatial resolution required to probe individual nanostructures or small volumes within heterogeneous materials. Optically excited x-ray nanobeam experiments are challenging because the high total optical power required for experimentally relevant optical fluences leads to mechanical instability due to heating. For a given fluence, tightly focusing the optical excitation reduces the average optical power by more than three orders of magnitude and thus ensures sufficient thermal stability for x-ray nanobeam studies. Delivering optical pulses via a scannable fiber-coupled optical objective provides a well-defined excitation geometry during rotation and translation of the sample and allows the selective excitation of isolated areas within the sample. Experimental studies of the photoinduced lattice dynamics of a 35 nm BiFeO3 thin film on a SrTiO3 substrate demonstrate the potential to excite and probe nanoscale volumes. PMID:26329208

  16. Absolute Timing of the Crab Pulsar: X-ray, Radio, and Optical Observations

    NASA Astrophysics Data System (ADS)

    Ray, P. S.; Wood, K. S.; Wolff, M. T.; Lovellette, M. N.; Sheikh, S.; Moon, D.-S.; Eikenberry, S. S.; Roberts, M.; Bloom, E. D.; Tournear, D.; Saz Parkinson, P.; Reilly, K.

    2002-12-01

    We report on multiwavelength observations of the Crab Pulsar and compare the pulse arrival time at radio, IR, optical, and X-ray wavelengths. Comparing absolute arrival times at multiple energies can provide clues to the magnetospheric structure and emission region geometry. Absolute time calibration of each observing system is of paramount importance for these observations and we describe how this is done for each system. We directly compare arrival time determinations for 2--10 keV X-ray observations made contemporaneously with the PCA on the Rossi X-ray Timing Explorer and the USA Experiment on ARGOS. These two X-ray measurements employ very different means of measuring time and satellite position and thus have different systematic error budgets. The comparison with other wavelengths requires additional steps such as dispersion measure corrections and a precise definition of the ``peak'' of the light curve since the light curve shape varies with observing wavelength. We will describe each of these effects and quantify the magnitude of the systematic error that each may contribute. Basic research on X-ray Astronomy at NRL is funded by NRL/ONR.

  17. Preliminary investigation of changes in x-ray multilayer optics subjected to high radiation flux

    SciTech Connect

    Hockaday, M.P.; Blake, R.L.; Grosso, J.S.; Selph, M.M.; Klein, M.M.; Matuska, W. Jr.; Palmer, M.A.; Liefeld, R.J.

    1985-01-01

    A variety of metal multilayers was exposed to high x-ray flux using Sandia National Laboratories' PROTO II machine in the gas puff mode. Fluxes incident on the multilayers above 700 MW/cm/sup 2/ in total radiation, in nominal 20 ns pulses, were realized. The neon hydrogen- and helium-like resonance lines were used to probe the x-ray reflectivity properties of the multilayers as they underwent change of state during the heating pulse. A fluorescer-fiber optic-streak camera system was used to monitor the changes in x-ray reflectivity as a function of time and irradiance. Preliminary results are presented for a W/C multilayer. Work in progress to model the experiment is discussed. 13 refs., 4 figs.

  18. X-ray binaries and black hole candidates: a review of optical properties

    NASA Astrophysics Data System (ADS)

    Casares, Jorge

    This chapter summarizes the optical properties of X-ray binaries, with special emphasis on the class of low mass X-ray binaries and soft X-ray transients. The latter provide the most compelling evidence for the existence of black holes in the Universe, with nine well-established dynamical studies. We review the techniques employed to extract the component masses and discuss the importance of systematic effects. Despite the growing number of black hole cases, the uncertainties involved are still too large to draw statistical conclusions on the mass distribution of collapsed objects. We also present new observational techniques which may help to improve the mass determinations and set constraints on the theory of supernovae and black hole formation.

  19. Design and Analysis of Modules for Segmented X-Ray Optics

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; BIskach, Michael P.; Chan, Kai-Wing; Saha, Timo T; Zhang, William W.

    2012-01-01

    Future X-ray astronomy missions demand thin, light, and closely packed optics which lend themselves to segmentation of the annular mirrors and, in turn, a modular approach to the mirror design. The modular approach to X-ray Flight Mirror Assembly (FMA) design allows excellent scalability of the mirror technology to support a variety of mission sizes and science objectives. This paper describes FMA designs using slumped glass mirror segments for several X-ray astrophysics missions studied by NASA and explores the driving requirements and subsequent verification tests necessary to qualify a slumped glass mirror module for space-flight. A rigorous testing program is outlined allowing Technical Development Modules to reach technical readiness for mission implementation while reducing mission cost and schedule risk.

  20. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    SciTech Connect

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang Rong

    2007-01-19

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future.

  1. Optimizing Monocapillary Optics for Synchrotron X-ray Diffraction, Fluorescence Imaging, and Spectroscopy Applications

    NASA Astrophysics Data System (ADS)

    Bilderback, Donald H.; Kazimirov, Alexander; Gillilan, Richard; Cornaby, Sterling; Woll, Arthur; Zha, Chang-Sheng; Huang, Rong

    2007-01-01

    A number of synchrotron x-ray applications such as powder diffraction in diamond anvil cells, microbeam protein crystallography, x-ray fluorescence imaging, etc. can benefit from using hollow glass monocapillary optics to improve the flux per square micron on a sample. We currently draw glass tubing into the desired elliptical shape so that only one-bounce under total reflection conditions is needed to bring the x-ray beam to a focus at a 25 to 50 mm distance beyond the capillary tip. For modest focal spot sizes of 10 to 20 microns, we can increase the intensity per square micron by factors of 10 to 1000. We show some of the results obtained at CHESS and Hasylab with capillaries focusing 5 to 40 keV radiation, their properties, and how even better the experimental results could be if more ideal capillaries were fabricated in the future.

  2. Development of a computer-controlled polishing process for x-ray optics

    NASA Astrophysics Data System (ADS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian

    2009-08-01

    Future X-ray observatory missions require grazing-incidence X-ray optics with angular resolution of < 5 arcsec half power diameter. For X-ray mirrors fabricated using replication processes, the achievable resolution depends ultimately on the quality of the polished replication mandrels. With an aim to fabricate better mirror shells, and also to reduce the cost/time of mandrel production, a computer-controlled machine is being developed for deterministic and localized polishing of mandrels. A key component in this is software that predicts the surface residual errors under a given set of operating parameters and lap configuration. Design considerations of the polishing lap are discussed and the effects of nonconformance of the lap and the mandrel are presented.

  3. Optical and x-ray photoelectron spectroscopy studies of α-Al2O3

    NASA Astrophysics Data System (ADS)

    Prakash, Ram; Kumar, Sandeep; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2016-05-01

    α-Al2O3 powder sample was synthesized at 550 °C via solution combustion synthesis (SCS) method using urea as an organic fuel. The sample was characterized by X-ray diffraction (XRD), Optical spectroscopy and X-ray photoelectron spectroscopy (XPS) without any further thermal treatment. XRD study reveals that the powder crystallized directly in the hexagons α-Al2O3 phase. A band gap of 5.7 eV was estimated using diffuse reflectance spectra. For surface investigation X-ray photo electron spectroscopy (XPS) was carried out. The XPS survey scan study of α-Al2O3 powder reveals that the sample is free from impurity. The core levels of Al-2s and O-1s are also reported.

  4. X-ray diffraction imaging of metal–oxide epitaxial tunnel junctions made by optical lithography: use of focused and unfocused X-ray beams

    PubMed Central

    Mocuta, Cristian; Barbier, Antoine; Stanescu, Stefan; Matzen, Sylvia; Moussy, Jean-Baptiste; Ziegler, Eric

    2013-01-01

    X-ray diffraction techniques are used in imaging mode in order to characterize micrometre-sized objects. The samples used as models are metal–oxide tunnel junctions made by optical lithography, with lateral sizes ranging from 150 µm down to 10 µm and various shapes: discs, squares and rectangles. Two approaches are described and compared, both using diffraction contrast: full-field imaging (topography) and raster imaging (scanning probe) using a micrometre-sized focused X-ray beam. It is shown that the full-field image gives access to macroscopic distortions (e.g. sample bending), while the local distortions, at the micrometre scale (e.g. tilts of the crystalline planes in the vicinity of the junction edges), can be accurately characterized only using focused X-ray beams. These local defects are dependent on the junction shape and larger by one order of magnitude than the macroscopic curvature of the sample. PMID:23412494

  5. The ROSAT Deep Survey. 2; Optical Identification, Photometry and Spectra of X-Ray Sources in the Lockman Field

    NASA Technical Reports Server (NTRS)

    Schmidt, M.; Hasinger, G.; Gunn, J.; Schneider, D.; Burg, R.; Giacconi, R.; Lehmann, I.; MacKenty, J.; Truemper, J.; Zamorani, G.

    1998-01-01

    The ROSAT Deep Survey includes a complete sample of 50 X-ray sources with fluxes in the 0.5 - 2 keV band larger than 5.5 x 10(exp -15)erg/sq cm/s in the Lockman field (Hasinger et al., Paper 1). We have obtained deep broad-band CCD images of the field and spectra of many optical objects near the positions of the X-ray sources. We define systematically the process leading to the optical identifications of the X-ray sources. For this purpose, we introduce five identification (ID) classes that characterize the process in each case. Among the 50 X-ray sources, we identify 39 AGNs, 3 groups of galaxies, 1 galaxy and 3 galactic stars. Four X-ray sources remain unidentified so far; two of these objects may have an unusually large ratio of X-ray to optical flux.

  6. Optical performance of grazing incidence X-ray/EUV telescopes for space science applications

    NASA Astrophysics Data System (ADS)

    Thompson, Patrick Louis

    In order to improve and expand the field of X-ray astronomy, and imaging in general, we find that these days a comprehensive systems engineering approach to X-ray image formation must be undertaken. While some industrial interests have taken steps in this direction, any academic approach is lacking from within the archival literature to date, and there are virtually no established university courses. Indeed, it would seem that top level, optical-systems-engineering is exclusively reserved for those seasoned professionals who have accumulated (though somewhat artistically) the ``know-how'' to efficiently conceive and implement excellent optical designs. Such expert knowledge is not and should not be mysterious. To this end, we attempt to formulate a highly comprehensive approach to X-ray optical systems engineering and implement it within the context of the Wolter Type-I and Type-II (grazing incidence) telescopes currently utilized for practical X-ray/EUV astronomy. In addition, we will transform the classical paraboloid- hyperboloid designs into `aplanatic' and `isoplanatic', hyperboloid-hyperboloid systems, where certain coma conditions are minimized. As will be shown, one gains little improvement in performance when choosing a quasi-aplanatic mirror design over a classical one, owing to scatter and other image degradation effects. Next we will show that a generalized hyperboloid-hyperboloid design can be comprehensively optimized for any imaging requirement, where the operational field-of-view is weighted according to spatial information content. Our H-H design has been optimized for the GOES Solar X-ray Imager mission and adopted by NASA and NOAA. It is currently undergoing fabrication by Raytheon Optical Systems Inc. who is under subcontract to the Lockheed-Martin Solar and Astrophysics Laboratory. Our design is expected to result in an 80% increase in optical system performance over the original SXI baseline design.

  7. Searching for galaxy clusters in X-ray and optical sky surveys

    NASA Astrophysics Data System (ADS)

    Boschin, W.

    2003-04-01

    The last decade has seen a poderous progress in the research of galaxy clusters. In fact, the application of modern technologies (CCDs, optical fibers, large aperture optical and X-ray telescopes, etc.) in the field of astrophysical observations has allowed fundamental studies of nearby galaxy clusters, both of the optical component of such objects, i.e. galaxies, and the X-ray emitting intracluster gas. Moreover, systematic searches of these objects done by new generation optical and X-ray telescopes have produced valuable samples of medium-distant clusters, helping us to shed light on the evolution of their physical properties (abundance, mass, temperature, etc.), with particular reference to the distribution functions of such quantities. In particular, the cluster abundance distribution in function of redshift is very important since it is strictly connected to the cosmological parameters. From these consideration it is clear that the search for galaxy systems at different redshifts is a fundamental task in modern observational astrophysics. In this work I discuss the topic of searching for galaxy clusters both in X-ray surveys and in optical data. In particular, the main result is the building of a new galaxy cluster catalog based on a serendipitous search in Chandra X-ray archival data. The first chapter describes the general properties of galaxy systems with emphasis on their scientific relevance and the methods used to identify them in the sky. In the second chapter I describe the Chandra X-ray observatory and explain why it is a good instrument to detect clusters. In chapter three I present the characteristics of my survey, the reduction of data, the technique of detection of X-ray sources and the catalog of detected clusters. By computing the sky coverage of the survey I also present a first determination of the cluster cumulative log N-log S relation and show that it is in agreement with results from previous deep ROSAT-based surveys. Finally, in chapter

  8. Iterative deconvolution of x ray and optical SNR images

    NASA Technical Reports Server (NTRS)

    Nisenson, Peter; Standley, Clive; Hughes, John

    1992-01-01

    Blind Iterative Deconvolution (BID) is a technique which was originally developed to correct the degrading effects of atmospheric turbulence on astronomical images from single short exposure, high signal-to-noise-ratio frames. At the Center for Astro physics, we have implemented a version of BID following the general approach of Ayers and Dainty (1988), but extending the technique to use Wiener filtering, and developed it for application to high energy images from Einstein and ROSAT. In the optical, the point spread function (PSF) that degrades the images is due to a combination of telescope and atmospheric aberrations. At high energies, the degrading function is the instrument response function, which is known to be time and energy level unstable. In both cases, the PSF is poorly known, so BID can be used to extract the PSF from the image and then deconvolve the blurred image to produce a sharpened image. Other aspects of this technique are discussed.

  9. Affordable and lightweight high-resolution x-ray optics for astronomical missions

    NASA Astrophysics Data System (ADS)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.; Kolos, L. D.; Mazzarella, J. R.; McClelland, R. S.; McKeon, K. P.; Miller, T. M.; O'Dell, S. L.; Riveros, R. E.; Saha, T. T.; Schofield, M. J.; Sharpe, M. V.; Smith, H. C.

    2014-07-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  10. Affordable and Lightweight High-Resolution X-ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Bly, V. T.; Carter, J. M.; Chan, K. W.; Gaskin, J. A.; Hong, M.; Hohl, B. R.; Jones, W. D.; Kolodziejczak, J. J.

    2014-01-01

    Future x-ray astronomical missions require x-ray mirror assemblies that provide both high angular resolution and large photon collecting area. In addition, as x-ray astronomy undertakes more sensitive sky surveys, a large field of view is becoming increasingly important as well. Since implementation of these requirements must be carried out in broad political and economical contexts, any technology that meets these performance requirements must also be financially affordable and can be implemented on a reasonable schedule. In this paper we report on progress of an x-ray optics development program that has been designed to address all of these requirements. The program adopts the segmented optical design, thereby is capable of making both small and large mirror assemblies for missions of any size. This program has five technical elements: (1) fabrication of mirror substrates, (2) coating, (3) alignment, (4) bonding, and (5) mirror module systems engineering and testing. In the past year we have made progress in each of these five areas, advancing the angular resolution of mirror modules from 10.8 arc-seconds half-power diameter reported (HPD) a year ago to 8.3 arc-seconds now. These mirror modules have been subjected to and passed all environmental tests, including vibration, acoustic, and thermal vacuum. As such this technology is ready for implementing a mission that requires a 10-arc-second mirror assembly. Further development in the next two years would make it ready for a mission requiring a 5-arc-second mirror assembly. We expect that, by the end of this decade, this technology would enable the x-ray astrophysical community to compete effectively for a major x-ray mission in the 2020s that would require one or more 1-arc-second mirror assemblies for imaging, spectroscopic, timing, and survey studies.

  11. The optical emission lines of type 1 X-ray bright Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    La Mura, G.; Berton, M.; Ciroi, S.; Cracco, V.; Di Mille, F.; Rafanelli, P.

    2014-10-01

    A strong X-ray emission is one of the defining signatures of nuclear activity in galaxies. According to the Unified Model for Active Galactic Nuclei (AGN), both the X-ray radiation and the prominent broad emission lines, characterizing the optical and UV spectra of Type 1 AGNs, are originated in the innermost regions of the sources, close to the Super Massive Black Holes (SMBH), which power the central engine. Since the emission is concentrated in a very compact region (with typical size r⩽0.1 pc) and it is not possible to obtain resolved images of the source, spectroscopic studies of this radiation represent the only valuable key to constrain the physical properties of matter and its structure in the center of active galaxies. Based on previous studies on the physics of the Broad Line Region (BLR) and on the X-ray spectra of broad (FWHMHβ ⩾ 2000 km s-1) and narrow line (1000 km s-1 ⩽FWHMHβ ⩽ 2000 km s-1) emitting objects, it has been observed that the kinematic and ionization properties of matter close to the SMBHs are related together, and, in particular, that ionization is higher in narrow line sources. Here we report on the study of the optical and X-ray spectra of a sample of Type 1 AGNs, selected from the Sloan Digital Sky Survey (SDSS) database, within an upper redshift limit of z=0.35, and detected at X-ray energies. We present analysis of the broad emission line fluxes and profiles, as well as the properties of the X-ray continuum and Fe Kα emission and we use these parameters to assess the consistency of our current AGN understanding.

  12. Simultaneous optical and X-ray bursts from 4U/MXB 1636-53

    NASA Technical Reports Server (NTRS)

    Pedersen, H.; Lub, J.; Inoue, H.; Koyama, K.; Makishima, K.; Matsuoka, M.; Mitsuda, K.; Murakami, T.; Oda, M.; Ogawara, Y.

    1982-01-01

    Methods of obtaining information about the geometry of X-ray burster systems from simultaneous optical and X-ray observations are discussed, and such simultaneous observations of 4U/MXB 1636-53 are reported. The physical idea of an optical burst being due to reprocessing of an X-ray burst in material in the vicinity of the compact object is discussed. The resulting modification of the X-ray burst signal is described in terms of an optical response function. Delay and smearing due to radiative processes are discussed along with those due to the geometry. For 4U/MXB 1636-53, the estimated delay is 2.5 seconds, the smearing is less than four seconds, and the maximum temperature of the reprocessing region is about 75,000 K. The projected area of the reprocessing region is about 6 x 10 to the 21st square cm. The neutron star is about 1.4 solar masses, the radius of the accretion disk is greater than 1.5 lt-sec, and the mass of the Roche lobe filling companion star is less than 2.0 solar masses, corresponding to a binary period between about one and ten hours.

  13. Thermoluminescence Response of Germanium-Doped Optical Fibers to X-Ray Irradiation

    NASA Astrophysics Data System (ADS)

    A. Saeed, M.; A. Fauzia, N.; Hossain, I.; T. Ramli, A.; A. Tahir, B.

    2012-07-01

    We present the characteristics of the thermoluminescence (TL) response of Ge-doped optical fibers with various energies and exposures of photon irradiation. To investigate the Ge-doped SiO2 as an efficient TL material, the TL responses are compared with commercially available standard TLD100 media. The Ge-doped optical fiber and TLD100 are placed in gelatin capsules and irradiated with x-ray using a Toshiba model KXO-15R x-ray generator. The Ge-doped fiber and TLD-100 show linear response as a function of current and time using x-ray photon of energy 60, 80 and 100 kV. When irradiated with 60, 80 and 100 kV x-ray energy at various currents (mA), tube distance (cm) and exposure time (second) ranges, TLD100 media provide a TL yield up to two times that of Ge-doped fibers. The energy response of the Ge-doped fibers is linear and similar over the 60-100 kV energy range, and its sensitivity is 0.39±0.05 of the TLD100 media. The glow curves of TLD 100 and doped optical fiber are also compared.

  14. The Optical and X-ray Spectral Properties of the Swift BAT-detected AGNs

    NASA Astrophysics Data System (ADS)

    Winter, Lisa M.; Mushotzky, R.; Lewis, K.; Veilleux, S.; Koss, M.; Keeney, B.

    2010-01-01

    The Swift Burst Alert Telescope (BAT), while not focused on a Gamma-ray burst, conducts an all-sky survey in the 14 - 195 keV band. After the first 9 months, the BAT has detected a sample of 153 local (z 0.03) AGN at a flux limit of a few times 10-11 erg/s/cm-2 (Tueller et al. 2007). Since the AGN were detected at very high X-ray energies, they are an unbiased sample towards Compton thin AGN. We present the X-ray and optical spectral properties of a sample of the BAT AGN, including optical spectra obtained from the literature, SDSS, and our own KPNO 2.1-m observations. Among our results, we show that the optically identified Seyfert 1s and 2s have the same distribution of X-ray and [O III] luminosities. We also find that [O III] luminosity is not well-correlated with the hard X-rays and therefore not a good indicator of bolometric luminosity, supporting the results of Melendez et al. (2008).

  15. X-RAY ABSORPTION SPECTROSCOPY OF YB3+-DOPED OPTICAL FIBERS

    SciTech Connect

    Citron, Robert; Kropf, A.J.

    2008-01-01

    Optical fibers doped with Ytterbium-3+ have become increasingly common in fiber lasers and amplifiers. Yb-doped fibers provide the capability to produce high power and short pulses at specific wavelengths, resulting in highly effective gain media. However, little is known about the local structure, distribution, and chemical coordination of Yb3+ in the fibers. This information is necessary to improve the manufacturing process and optical qualities of the fibers. Five fibers doped with Yb3+ were studied using Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES), in addition to Yb3+ mapping. The Yb3+ distribution in each fiber core was mapped with 2D and 1D intensity scans, which measured X-ray fluorescence over the scan areas. Two of the five fibers examined showed highly irregular Yb3+ distributions in the core center. In four of the five fibers Yb3+ was detected outside of the given fiber core dimensions, suggesting possible Yb3+ diffusion from the core, manufacturing error, or both. X-ray absorption spectroscopy (XAS) analysis has so far proven inconclusive, but did show that the fibers had differing EXAFS spectra. The Yb3+ distribution mapping proved highly useful, but additional modeling and examination of fiber preforms must be conducted to improve XAS analysis, which has been shown to have great potential for the study of similar optical fi bers.

  16. FURTHER EVIDENCE THAT QUASAR X-RAY EMITTING REGIONS ARE COMPACT: X-RAY AND OPTICAL MICROLENSING IN THE LENSED QUASAR Q J0158-4325

    SciTech Connect

    Morgan, Christopher W.; Hainline, Laura J.; Chen Bin; Dai Xinyu; Tewes, Malte; Courbin, F.; Meylan, G.; Kochanek, Christopher S.; Kozlowski, Szymon; Blackburne, Jeffrey A.; Mosquera, Ana M.; Chartas, G.

    2012-09-01

    We present four new seasons of optical monitoring data and six epochs of X-ray photometry for the doubly imaged lensed quasar Q J0158-4325. The high-amplitude, short-period microlensing variability for which this system is known has historically precluded a time delay measurement by conventional methods. We attempt to circumvent this limitation by the application of a Monte Carlo microlensing analysis technique, but we are only able to prove that the delay must have the expected sign (image A leads image B). Despite our failure to robustly measure the time delay, we successfully model the microlensing at optical and X-ray wavelengths to find a half-light radius for soft X-ray emission log (r{sub 1/2,X,soft}/cm) = 14.3{sup +0.4}{sub -0.5}, an upper limit on the half-light radius for hard X-ray emission log (r{sub 1/2,X,hard}/cm) {<=} 14.6, and a refined estimate of the inclination-corrected scale radius of the optical R-band (rest frame 3100 A) continuum emission region of log (r{sub s} /cm) = 15.6 {+-} 0.3.

  17. Differential Deposition to Correct Surface Figure Deviations in Astronomical Grazing-Incidence X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.

    2011-01-01

    A coating technique is being developed to correct the surface figure deviations in reflective-grazing-incidence X-ray optics. These optics are typically designed to have precise conic profiles, and any deviation in this profile, as a result of fabrication, results in a degradation of the imaging performance. To correct the mirror profiles, physical vapor deposition has been utilized to selectively deposit a filler material inside the mirror shell. The technique, termed differential deposition, has been implemented as a proof of concept on miniature X-ray optics developed at MSFC for medical-imaging applications. The technique is now being transferred to larger grazing-incidence optics suitable for astronomy and progress to date is reported.

  18. Optical Studies of Ultra Luminous X-ray Sources in NGC4490

    NASA Astrophysics Data System (ADS)

    Akyuz, Aysun; Avdan, Hasan; Avdan, Senay; Aksaker, Nazim

    2016-07-01

    We present optical studies of Ultraluminous X-ray sources (ULXs) in the spiral galaxy NGC4490 which is interacting with the irregular galaxy NGC 4485. ULXs are extra-nuclear, point-like X-ray sources with isotropic luminosities (Lx > 10 ^{39} erg s ^{-1}) above the Eddington limit for a 10 Msun black hole. HST/ACS/WFC and WFPC3 archival data have been analyzed to investigate the optical counterparts of five ULXs in NGC4490. Using relative astrometry the corrected ULX positions were derived only for three sources within the 1σ error radius of 0.5 arcsec on the HST images. We discuss the properties of three optical counterparts and constraints on their physical nature from multiband optical observations.

  19. Soft x ray optics by pulsed laser deposition

    NASA Technical Reports Server (NTRS)

    Fernandez, Felix E.

    1994-01-01

    A series of molybdenum thin film depositions by PLD (Pulsed Laser Deposition) have been carried out, seeking appropriate conditions for multilayer fabrication. Green (532 nm) and UV (355 nm) light pulses, in a wide range of fluences, were used. Relatively large fluences (in comparison with Si) are required to cause evaporation of molybdenum. The optical penetration depths and reflectivities for Mo at these two wavelengths are comparable, which means that results should be, and do appear to be similar for equal fluences. For all fluences above threshold used, a large number of incandescent particles is ejected by the target (either a standard Mo sputtering target or a Mo sheet were tried), together with the plasma plume. Most of these particles are clearly seen to bounce off the substrate. The films were observed with light microscopy using Nomarski and darkfield techniques. There is no evidence of large debris. Smooth films plus micron-sized droplets are usually seen. The concentration of these droplets embedded in the film appears not to vary strongly with the laser fluence employed. Additional characterization with SEM and XRD is under way.

  20. Metallicity Determinations from Optical Emission Line Gas in X-ray Galaxies

    NASA Astrophysics Data System (ADS)

    Athey, A.; Bregman, J.

    2001-05-01

    In the study of the hot interstellar medium in elliptical galaxies, one of the most contentious issues is the metallicity of the gas. The metallicity is an important parameter in the ISM because it provides insight to the origin of the gas, its mass and eventual evolution. Currently, the metallicity measurements are being determined from X-ray telescopes, such as Chandra and XMM. We conducted a program to obtain an independent determination of this critical quantity with ground based optical spectra from the 2.4m Hilter Telescope at MDM. Trinchieri & Alighieri (1991) investigated a sample of X-ray emitting galaxies through narrow-band optical imaging and found a large fraction (<85%) of X-ray bright galaxies to have optical emission lines (H-alpha and [N II]). Because the structure of this emission line gas is similar to the X-ray emission, it is likely tracing the cooling of the X-ray gas or possibly the injection of mass into the ISM from dying stars. We present optical spectra of 14 elliptical galaxies with wavelength coverage from 3200 Å - 5100 Å and 5600 Å - 7150 Å (NGC720, NGC1407, NGC1600, NGC2768, NGC3377, NGC3379, NGC3607, NGC4125, NGC4472, NGC4494, NGC4552, NGC4636, NGC5846). This wavelength coverage allows us to detect major lines for metallicity determinations, including [O I] 6300 Å, [O II] 3727 Å, [O III] 4363, 5007 Å, [N II] 6583Å, [S II] 6725 Å, as well as H-alpha and H-beta. In 6 of these 14 galaxies we detect emission line gas. In 4 of these galaxies we have complete information to determine metallicites.

  1. Study of X-ray optics. [testing polished Kanigen coated beryllium mirror in X ray telescope on Skylark

    NASA Technical Reports Server (NTRS)

    Froechtenigt, J. F.

    1973-01-01

    The testing is reported of a polished Kanigen coated beryllium mirror in a soft X-ray telescope to be flown on a Skylark sounding rocket. This test involved inserting the telescope in a 220 foot long vacuum line and taking photographs of an X-ray resolution source. These photographs were then used to evaluate the performance of the telescope mirror as a function of distance from the focal plane and the angular distance off the telescope axis. A second test was made in which a point source was used to study the imaging characteristics by means of a pinhole and proportional counter placed in the telescope focal plane. A third test was conducted using a position sensitive detector. The efficiency and resolution was increased by polishing.

  2. RESULTS FROM LONG-TERM OPTICAL MONITORING OF THE SOFT X-RAY TRANSIENT SAX J1810.8-2609

    SciTech Connect

    Zhu Ling; Di Stefano, Rosanne; Wyrzykowski, Lukasz

    2012-12-20

    In this paper, we report the long-term optical observation of the faint soft X-ray transient SAX J1810.8-2609 from the Optical Gravitational Lensing Experiment (OGLE) and Microlensing Observations in Astrophysics (MOA). We have focused on the 2007 outburst, and also cross-correlated its optical light curves and quasi-simultaneous X-ray observations from RXTE/Swift. Both the optical and X-ray light curves of the 2007 outburst show multi-peak features. Quasi-simultaneous optical/X-ray luminosity shows that both the X-ray reprocessing and viscously thermal emission can explain the observed optical flux. There is a slight X-ray delay of 0.6 {+-} 0.3 days during the first peak, while the X-ray emission lags the optical emission by {approx}2 days during the rebrightening stage, which suggests that X-ray reprocessing emission contributes significantly to the optical flux in the first peak, but the viscously heated disk origin dominates it during rebrightening. This implies variation of the physical environment of the outer disk, with even the source remaining in a low/hard state during the entire outburst. The {approx}2 day X-ray lag indicates a small accretion disk in the system, and its optical counterpart was not detected by OGLE and MOA during quiescence, which constrained it to be fainter than M{sub I} = 7.5 mag. There is a suspected short-time optical flare detected at MJD = 52583.5 with no detected X-ray counterpart; this single flux increase implies a magnetic loop reconnection in the outer disk, as proposed by Zurita et al. The observations cover all stages of the outburst; however, due to the low sensitivity of RXTE/ASM, we cannot conclude whether it is an optical precursor at the initial rise of the outburst.

  3. The optimal optical readout for the x-ray light valve--Document scanners

    SciTech Connect

    Oakham, P.; MacDougall, Robert D.; Rowlands, J. A.

    2008-12-15

    The x-ray light valve (XLV) is a novel, potentially low-cost, x-ray detector that converts an x-ray exposure into an optical image stored in a liquid crystal cell. This optical image is then transferred from the liquid crystal cell to a computer through an optical-to-digital imaging readout system. Previously, CCD-based cameras were used for the optical readout, but recently it was proposed that an inexpensive optical scanner, such as an office document scanner, is a better match to the optical properties of the XLV. A methodology for characterizing a document scanner's ability to produce medical quality images from the XLV is outlined and tested on a particular scanner (Canon LiDE 30). This scanner was shown to have key characteristics of a medical device--a linear response, dynamic range sufficient for chest radiography (although not mammography) in a single pass, and an MTF and NPS that exceed the requirements for all medical applications of the scanner. This combination of criteria shows that a document scanner can be used as a digitization method for the XLV.

  4. Angular resolution measurements at SPring-8 of a hard x-ray optic for the New Hard X-ray Mission

    NASA Astrophysics Data System (ADS)

    Spiga, D.; Raimondi, L.; Furuzawa, A.; Basso, S.; Binda, R.; Borghi, G.; Cotroneo, V.; Grisoni, G.; Kunieda, H.; Marioni, F.; Matsumoto, H.; Mori, H.; Miyazawa, T.; Negri, B.; Orlandi, A.; Pareschi, G.; Salmaso, B.; Tagliaferri, G.; Uesugi, K.; Valsecchi, G.; Vernani, D.

    2011-09-01

    The realization of X-ray telescopes with imaging capabilities in the hard (> 10 keV) X-ray band requires the adoption of optics with shallow (< 0.25 deg) grazing angles to enhance the reflectivity of reflective coatings. On the other hand, to obtain large collecting area, large mirror diameters (< 350 mm) are necessary. This implies that mirrors with focal lengths >=10 m shall be produced and tested. Full-illumination tests of such mirrors are usually performed with onground X-ray facilities, aimed at measuring their effective area and the angular resolution; however, they in general suffer from effects of the finite distance of the X-ray source, e.g. a loss of effective area for double reflection. These effects increase with the focal length of the mirror under test; hence a "partial" full-illumination measurement might not be fully representative of the in-flight performances. Indeed, a pencil beam test can be adopted to overcome this shortcoming, because a sector at a time is exposed to the X-ray flux, and the compensation of the beam divergence is achieved by tilting the optic. In this work we present the result of a hard X-ray test campaign performed at the BL20B2 beamline of the SPring-8 synchrotron radiation facility, aimed at characterizing the Point Spread Function (PSF) of a multilayer-coated Wolter-I mirror shell manufactured by Nickel electroforming. The mirror shell is a demonstrator for the NHXM hard X-ray imaging telescope (0.3 - 80 keV), with a predicted HEW (Half Energy Width) close to 20 arcsec. We show some reconstructed PSFs at monochromatic X-ray energies of 15 to 63 keV, and compare them with the PSFs computed from post-campaign metrology data, self-consistently treating profile and roughness data by means of a method based on the Fresnel diffraction theory. The modeling matches the measured PSFs accurately.

  5. X-ray optical system for imaging laser plumes with a spatial resolution of up to 70 nm

    NASA Astrophysics Data System (ADS)

    Nechai, A. N.; Pestov, A. E.; Polkovnikov, V. N.; Salashchenko, N. N.; Toropov, M. N.; Chkhalo, N. I.; Tsybin, N. N.; Shcherbakov, A. V.

    2016-04-01

    We consider an X-ray optical system which permits obtaining laser plume images at a wavelength of 13.5 nm with a resolution of up to 70 nm. The X-ray optical system comprises an X-ray Schwarzschild objective made up of two aspherical multilayer mirrors, a scintillator (YAG : Ce ceramics), which converts X-rays to the visible radiation, and a visible-optical system, which images the scintillator surface onto a CCD camera. The spatial resolution of the system is limited by the resolution of the optical system (0.7 μm) and the magnification (10×) of the X-ray objective and is as high as 70 nm. The effect of Schwarzschild objective mirror shapes on the spatial resolution is analysed. The profile of concave mirror aspherisation is considered, which provides the attainment of the diffraction-limited quality of the objective. Data are given for the quantum efficiency of the system at a wavelength of 13.5 nm. We describe the experimental test bench intended for studying the developed X-ray optical system and outline the first experimental data which illustrate its efficiency. Owing to the natural division into the 'X-ray' and 'visible' parts, the optical system under discussion permits an easy change of the magnification and the field of view without realigning the X-ray optical elements. The wavelength may be varied in a range between 3 and 40 nm by changing the multilayer mirrors.

  6. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL

    NASA Astrophysics Data System (ADS)

    Feldhaus, J.; Saldin, E. L.; Schneider, J. R.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-02-01

    A new design for a single pass X-ray SASE FEL is proposed. The scheme consists of two undulators and an X-ray monochromator located between them. The first stage of the FEL amplifier operates in the SASE linear regime. After the exit of the first undulator the electron bunch is guided through a non-isochronous bypass and the X-ray beam enters the monochromator. The main function of the bypass is to suppress the modulation of the electron beam induced in the first undulator. This is possible because of the finite value of the natural energy spread in the beam. At the entrance to the second undulator the radiation power from the monochromator dominates significantly over the shot noise and the residual electron bunching. As a result, the second stage of the FEL amplifier operates in the steady-state regime. The proposed scheme is illustrated for the example of the 6 nm option SASE FEL at the TESLA Test Facility under construction at DESY. The spectral bandwidth of such a two-stage SASE FEL ( {Δλ}/{λ} ⋍ 5 × 10 -5) is close to the limit defined by the finite duration of the radiation pulse. The average spectral brilliance is equal to 2 × 10 24 photons/(sec×mrad 2×mm 2×0.1% bandwidth) which is by two orders of magnitude higher than the value which could be reached by the conventional SASE FEL.

  7. Late-Time X-Ray, UV, and Optical Monitoring of Supernova 1979C

    NASA Astrophysics Data System (ADS)

    Immler, Stefan; Fesen, Robert A.; Van Dyk, Schuyler D.; Weiler, Kurt W.; Petre, Robert; Lewin, Walter H. G.; Pooley, David; Pietsch, Wolfgang; Aschenbach, Bernd; Hammell, Molly C.; Rudie, Gwen C.

    2005-10-01

    We present results from observations of supernova (SN) 1979C with the Newton X-Ray Multi-Mirror (XMM-Newton) mission in X-rays and in UV, archival X-ray, and Hubble Space Telescope (HST) data, and follow-up ground-based optical imaging. The XMM-Newton MOS spectrum shows the best-fit two-temperature thermal plasma emission characteristics of both the forward (kThigh=4.1+76-2.4 keV) and reverse shock (kTlow=0.79+0.24-0.17 keV) with no intrinsic absorption. The long-term X-ray light curve, constructed from all X-ray data available, reveals that SN 1979C is still radiating at a flux level similar to that detected by ROSAT in 1995, showing no sign of a decline over the last 6 years, some 16-23 yr after its outburst. The high inferred X-ray luminosity (L0.3-2=8×1038 ergs s-1) is caused by the interaction of the SN shock with dense circumstellar matter, likely deposited by a strong stellar wind from the progenitor with a high mass-loss rate of M˙~1.5×10-4 Msolar yr-1 (vw/10 km s-1). The X-ray data support a strongly decelerated shock and show a mass-loss rate history that is consistent with a constant progenitor mass-loss rate and wind velocity over the past >~16,000 yr in the stellar evolution of the progenitor. We find a best-fit circumstellar medium (CSM) density profile of ρCSM~r-s with index s<~1.7 and high CSM densities (>~104 cm-3) out to large radii from the site of the explosion (r>~4×1017 cm). Using XMM-Newton Optical Monitor data, we further detect a pointlike optical/UV source consistent with the position of SN 1979C, with B-, U-, and UVW1-band luminosities of 5, 7, and 9×1036 ergs s-1, respectively. The young stellar cluster in the vicinity of the SN, as imaged by the HST and follow-up ground-based optical imaging, can only provide a fraction of the total observed flux, so that a significant contribution to the output likely arises from the strong interaction of SN 1979C with dense CSM.

  8. The fabrication and characterisation of piezoelectric actuators for active x-ray optics

    NASA Astrophysics Data System (ADS)

    Zhang, Dou; Rodriguez Sanmartin, Daniel; Button, Tim W.; Meggs, Carl; Atkins, Carolyn; Doel, Peter; Brooks, David; Feldman, Charlotte; Willingale, Richard; Michette, Alan; Pfauntsch, Slawka; Sahraei, Shahin; James, Ady; Dunare, Camelia; Stevenson, Tom; Parkes, William; Smith, Andrew; Wang, Hongchang

    2009-08-01

    Piezoelectric actuators are widely employed in adaptive optics to enable an actively controlled mirror surface and improve the optical resolution and sensitivity. Currently two new prototype adaptive X-ray optical systems are under development through the Smart X-ray Optics project in a UK based consortium. One proposed technology is micro-structured optical arrays (MOAs) which uses aligned micro-channels structures obtained by deep silicon etching using both dry and wet techniques and bonded piezoelectric actuators to produce a micro-focused X-ray source for biological applications. The other technology is large scale optics which uses a thin shell mirror segment with 20-40 bonded piezo-actuators for the next generation of X-ray telescopes with an aim to achieve a resolution greater than that currently available by Chandra (0.5"). The Functional Materials Group of Birmingham University has the capability of fabricating a wide range of piezo-actuators including, for example, unimorph, bimorph and active fibre composites (AFC) by using a viscous plastic processing technique. This offers flexibility in customising the shapes (from planar to 3-D helix) and feature sizes (>20 μm) of the actuators, as well as achieving good piezoelectric properties. PZT unimorph actuators are being developed in this programme according to the design and implementation of the proposed mirror and array structures. Precise controls on the dimension, thickness, surface finishing and the curvature have been achieved for delivering satisfactory actuators. Results are presented regarding the fabrication and characterisation of such piezo-actuators, as well as the progress on the large optic and MOAs prototypes employing the piezo-actuators.

  9. Development of modular high-performance pore optics for the XEUS x-ray telescope

    NASA Astrophysics Data System (ADS)

    Kraft, S.; Collon, M.; Guenther, R.; Beijersbergen, M. W.; Bavdaz, M.; Lumb, D. H.; Wallace, K.; Peacock, A.; Krumrey, M.; Hoffmann, M.; Mueller, P.; Lehmann, V.

    2005-08-01

    The next generation astronomical X-ray telescopes (such as the X-ray Evolving Universe Spectroscopy mission XEUS) require extremely large collecting areas (effective area of ~10 m2 at 1 keV) in combination with good angular resolution of ~5" or better. The existing technologies such as polished glass and nickel electroforming would lead to excessively heavy and expensive optics, and/or are not able to produce the required large area. We have developed an entirely novel technology for producing X-ray optics which results in very light, stiff and modular optics. These can be assembled into almost arbitrarily large apertures and are perfectly suited for future astrophysics missions such as XEUS. Indeed this crucial technology ensures that the ambitious mission profile is actually feasible. The technology makes use of commercially available silicon wafers from the semiconductor industry. The latest generation of 12 inch silicon wafers have a surface roughness that is sufficiently low (~0.3 nm) for X-ray reflection, almost perfect mechanical properties and are considerably cheaper than other high-quality optical materials. The wafers are bent into an accurate cone and assembled to form a stiff pore structure. The resulting light and stiff modules, which we term a High-performance Pore Optics (HPO), form a small segment of a Wolter-I optic, and are easily assembled into a modular optic with large collecting area. We have implemented an automated production process of HPOs on laboratory scale and describe facilities developed with ESA at the Cosine Research Centre. We present the status of the production and the results obtained with this highly innovative technology.

  10. High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; McClelland, R. S.; ODell, S. L.; Saha, T. T.; Sharpe, M. V.

    2011-01-01

    X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.

  11. Design study for supporting of thin glass optical elements for x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Freeman, Mark D.; Reid, Paul B.; Davis, William N.

    2008-07-01

    The next large x-ray astrophysics mission launched will likely include soft x-ray spectroscopy as a primary capability. A requirement to fulfill the science goals of such a mission is a large-area x-ray telescope focusing sufficient x-ray flux to perform high-resolution spectroscopy with reasonable observing times. One approach to manufacturing such a telescope is a Wolter-I optic utilizing thin glass segments rather than full shells of revolution. We describe a parameterized Finite Element Modeling (FEM) study that provides insights useful in optimizing the design of a discrete support system to balance the competing requirements of minimizing the effect on optical performance while providing sufficient support to withstand launch loads. Parameters analyzed are number and location of the supports around the glass segments, as well as the glass thickness, size, and angular span. In addition, we utilize more detailed models of several cases taken from the parametric study to examine stress around the bonded area and bond pad size, and compare the stress from the detailed model to the parametric cases from which they were derived.

  12. A Detailed Optical/X-ray Comparison of SNR RCW 86

    NASA Astrophysics Data System (ADS)

    Smith, R. Chris; Long, Knox S.

    1997-12-01

    We present a detailed optical/X-ray comparison of the filaments of the Galactic SNR RCW 86 (also known as G 315.2-2.3 or MSH 14-63). The optical data consist of deep Hα and [S II] emission line images taken with the UM/CTIO Curtis Schmidt telescope, and the X-ray dataset is composed of deep ROSAT PSPC and HRI images of the remnant. Our preliminary analysis of the HRI dataset (using only the two pointings available out of the four scheduled) shows no significant offset between the X-ray emission in the high-resolution HRI images and the sharp Balmer-dominated filaments. The Balmer-dominated filaments do however bound the X-ray filaments along all the sampled regions. The PSPC data show significant spectral variation around the remnant, which we interpret as temperature variations. We present an approximate temperature map based on the ratio of Snowden bands (6+7 over 3+4), and discuss the possible sources of the observed variations. This work was supported in part by NASA grant NAG5-4825 and the Dean B. McLaughlin Fellowship.

  13. Very High Resolution Solar X-ray Imaging Using Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, B. R.; Skinner, G. K.; Li, M. J.; Shih, A. Y.

    2012-01-01

    This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the greater than or equal to 10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approximately equal to 10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics.We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approximately equal to 100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approximately equal to 100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.

  14. X-ray optical units made of glass: achievements and perspectives

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Basso, S.; Ghigo, M.; Pareschi, G.; Salmaso, B.; Spiga, D.; Tagliaferri, G.; Vecchi, G.; Burwitz, V.; Hartner, G. D.; Menz, B.

    2014-07-01

    Future X-ray telescopes with very large collecting area, like the proposed Athena with more than 2 m2 effective area at 1 keV, need to be realized as assemblies of a large number of X-ray optical units, named X-ray Optical Units (XOUs). The Brera Astronomical Observatory (INAF-OAB) is developing a new technology to manufacture these modular elements, compatible with an angular resolution of 5 arcsec HEW (Half-Energy-Width). This technique consists in stacking in a Wolter-I configuration several layers of thin foils of glass, previously formed by direct hot slumping. The achievable global angular resolution of the optics relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments operated trough a dedicated Integration Machine (IMA). In this paper we provide an overview of the project development, reporting on the very promising results achieved so far, including in-focus full illumination X-ray tests of the prototype (Proof of Concept, POC#2, integrated at the beginning of 2013) for which an HEW of 22.1'' has been measured at Panter/MPE. Moreover we report on the on-going activities, with a new integrated prototype (PoC#3). X-ray test in pencil beam revealed that at least a segment between two external ribs is characterized by an HEW well below 10''. Lastly, the overall process up-grade to go from 20 m to 12m focal length (to be compatible with Athena+ configuration) is presented.

  15. Measuring the Radius of a Neutron Star; Origin of High X-Ray Luminosities in Optically Passive Galaxies; Resolving the Source of X-Rays in IC 1613"

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1998-01-01

    This recently expired grant has supported the work of the PI, his students, and his collaborators on a variety of ROSAT projects over the past three years. Annual reports have summarized much of the work accomplished; here we provide a brief review of the work resulting from this effort, and a summary of the personnel who have benefited from its support. A high resolution ROSAT HRI X-ray image of the Local Group dwarf IC1613 revealed that the principal source of X-ray emission in this direction arises in a background cluster of galaxies, as first suggested by Eskridge (1995). In addition, however, we found a bright X-ray source coincident with the only known supernova remnant in this galaxy, S # 8. Extensive ground-based follow-up observations in the radio and optical regimes were conducted. We confirmed the nonthermal radio spectral index of the source and measured its extent to be approx. 3 sec at 20 cm. Imaging spectrophotometric observations taken with the multi-pupil spectrograph of the Special Astrophysical Observatory in the FSU allowed us to determine the density and velocity distribution of the gas in the remnant. The simultaneous presence of luminous X-ray and optical emission suggests a relatively young remnant in which the outward-moving shock has recently encountered dense material. Many of this object's properties are similar to those of the brightest optical remnant in the Large Magellanic Cloud, N49. Another potential source of X-rays in this galaxy which featured prominently in our original proposal, an Oxygen Wolf-Rayet star with a large surrounding wind-blown bubble, was not detected.

  16. FIRST IMAGES FROM THE FOCUSING OPTICS X-RAY SOLAR IMAGER

    SciTech Connect

    Krucker, Säm; Glesener, Lindsay; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; Lin, Robert; Christe, Steven; Ishikawa, Shin-nosuke; Ramsey, Brian; Gubarev, Mikhail; Kilaru, Kiranmayee; Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya; Tanaka, Takaaki; White, Stephen

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  17. First Images from the Focusing Optics X-Ray Solar Imager

    NASA Astrophysics Data System (ADS)

    Krucker, Säm; Christe, Steven; Glesener, Lindsay; Ishikawa, Shin-nosuke; Ramsey, Brian; Takahashi, Tadayuki; Watanabe, Shin; Saito, Shinya; Gubarev, Mikhail; Kilaru, Kiranmayee; Tajima, Hiroyasu; Tanaka, Takaaki; Turin, Paul; McBride, Stephen; Glaser, David; Fermin, Jose; White, Stephen; Lin, Robert

    2014-10-01

    The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket payload flew for the first time on 2012 November 2, producing the first focused images of the Sun above 5 keV. To enable hard X-ray (HXR) imaging spectroscopy via direct focusing, FOXSI makes use of grazing-incidence replicated optics combined with fine-pitch solid-state detectors. On its first flight, FOXSI observed several targets that included active regions, the quiet Sun, and a GOES-class B2.7 microflare. This Letter provides an introduction to the FOXSI instrument and presents its first solar image. These data demonstrate the superiority in sensitivity and dynamic range that is achievable with a direct HXR imager with respect to previous, indirect imaging methods, and illustrate the technological readiness for a spaceborne mission to observe HXRs from solar flares via direct focusing optics.

  18. Differential deposition technique for figure corrections in grazing-incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.; Gregory, Don A.

    2011-10-01

    A differential deposition technique was investigated as a way to minimize axial figure errors in full-shell, grazing-incidence, reflective x-ray optics. These types of optics use a combination of off-axis conic segments--hyperbolic, parabolic, and/or elliptical, to reflect and image x-rays. Several such mirrors or ``shells'' of decreasing diameter are typically concentrically nested to form a single focusing unit. Individual mirrors are currently produced at Marshall Space Flight Center using an electroforming technique, in which the shells are replicated off figured and superpolished mandrels. Several factors in this fabrication process lead to low- and mid-spatial frequency deviations in the surface profile of the shell that degrade the imaging quality of the optics. A differential deposition technique, discussed in this paper, seeks to improve the achievable resolution of the optics by correcting the surface profile deviations of the shells after fabrication. As a proof of concept, the technique was implemented on small-animal radionuclide-imaging x-ray optics being considered for medical applications. This paper discusses the deposition technique, its implementation, and the experimental results obtained to date.

  19. Miniature lightweight X-ray optics (MiXO) for surface elemental composition mapping of asteroids and comets

    NASA Astrophysics Data System (ADS)

    Hong, Jaesub; Romaine, Suzanne

    2016-02-01

    The compositions of diverse planetary bodies are of fundamental interest to planetary science, providing clues to the formation and evolutionary history of the target bodies and the solar system as a whole. Utilizing the X-ray fluorescence unique to each atomic element, X-ray imaging spectroscopy is a powerful diagnostic tool of the chemical and mineralogical compositions of diverse planetary bodies. Until now the mass and volume of focusing X-ray optics have been too large for resource-limited in situ missions, so near-target X-ray observations of planetary bodies have been limited to simple collimator-type X-ray instruments. We introduce a new Miniature lightweight Wolter-I focusing X-ray Optics (MiXO) using metal-ceramic hybrid X-ray mirrors based on electroformed nickel replication and plasma thermal spray processes. MiXO can enable compact, powerful imaging X-ray telescopes suitable for future planetary missions. We illustrate the need for focusing X-ray optics in observing relatively small planetary bodies such as asteroids and comet nuclei. We present a few example configurations of MiXO telescopes and demonstrate their superior performance in comparison to an alternative approach, micro-pore optics, which is being employed for the first planetary focusing X-ray telescope, the Mercury Imaging X-ray Spectrometer-T onboard Bepicolumbo. X-ray imaging spectroscopy using MiXO will open a large new discovery space in planetary science and will greatly enhance our understanding of the nature and origin of diverse planetary bodies.

  20. Multilayer graphene stacks grown by different methods-thickness measurements by X-ray diffraction, Raman spectroscopy and optical transmission

    SciTech Connect

    Tokarczyk, M. Kowalski, G.; Kępa, H.; Grodecki, K.; Drabińska, A.; Strupiński, W.

    2013-12-15

    X-ray diffraction, Raman spectroscopy and Optical absorption estimates of the thickness of graphene multi layer stacks (number of graphene layers) are presented for three different growth techniques. The objective of this work was focused on comparison and reconciliation of the two already widely used methods for thickness estimates (Raman and Absorption) with the calibration of the X-ray method as far as Scherer constant K is concerned and X-ray based Wagner-Aqua extrapolation method.

  1. Two-dimensional ultrahigh-density X-ray optical memory.

    PubMed

    Bezirganyan, Hakob P; Bezirganyan, Siranush E; Bezirganyan, Hayk H; Bezirganyan, Petros H

    2007-01-01

    Most important aspect of nanotechnology applications in the information ultrahigh storage is the miniaturization of data carrier elements of the storage media with emphasis on the long-term stability. Proposed two-dimensional ultrahigh-density X-ray optical memory, named X-ROM, with long-term stability is an information carrier basically destined for digital data archiving. X-ROM is a semiconductor wafer, in which the high-reflectivity nanosized X-ray mirrors are embedded. Data are encoded due to certain positions of the mirrors. Ultrahigh-density data recording procedure can e.g., be performed via mask-less zone-plate-array lithography (ZPAL), spatial-phase-locked electron-beam lithography (SPLEBL), or focused ion-beam lithography (FIB). X-ROM manufactured by nanolithography technique is a write-once memory useful for terabit-scale memory applications, if the surface area of the smallest recording pits is less than 100 nm2. In this case the X-ROM surface-storage capacity of a square centimetre becomes by two orders of magnitude higher than the volumetric data density really achieved for three-dimensional optical data storage medium. Digital data read-out procedure from proposed X-ROM can e.g., be performed via glancing-angle incident X-ray micro beam (GIX) using the well-developed X-ray reflectometry technique. In presented theoretical paper the crystal-analyser operating like an image magnifier is added to the set-up of X-ROM data handling system for the purpose analogous to case of application the higher numerical aperture objective in optical data read-out system. We also propose the set-up of the X-ROM readout system based on more the one incident X-ray micro beam. Presented scheme of two-beam data handling system, which operates on two mutually perpendicular well-collimated monochromatic incident X-ray micro beams, essentially increases the reliability of the digital information read-out procedure. According the graphs of characteristic functions presented in

  2. The INTEGRAL/IBIS AGN catalogue - I. X-ray absorption properties versus optical classification

    NASA Astrophysics Data System (ADS)

    Malizia, A.; Bassani, L.; Bazzano, A.; Bird, A. J.; Masetti, N.; Panessa, F.; Stephen, J. B.; Ubertini, P.

    2012-11-01

    In this work we present the most comprehensive INTEGRAL active galactic nucleus (AGN) sample. It lists 272 AGN for which we have secure optical identifications, precise optical spectroscopy and measured redshift values plus X-ray spectral information, i.e. 2-10 and 20-100 keV fluxes plus column density. Here we mainly use this sample to study the absorption properties of active galaxies, to probe new AGN classes and to test the AGN unification scheme. We find that half (48 per cent) of the sample is absorbed, while the fraction of Compton-thick AGN is small (˜7 per cent). In line with our previous analysis, we have however shown that when the bias towards heavily absorbed objects which are lost if weak and at large distance is removed, as it is possible in the local Universe, the above fractions increase to become 80 and 17 per cent. We also find that absorption is a function of source luminosity, which implies some evolution in the obscuration properties of AGN. A few peculiar classes, so far poorly studied in the hard X-ray band, have been detected and studied for the first time such as 5 X-ray bright optically normal galaxies, 5 type 2 QSOs and 11 low-ionization nuclear emission regions. In terms of optical classification, our sample contains 57 per cent of type 1 and 43 per cent of type 2 AGN; this subdivision is similar to that found in X-rays if unabsorbed versus absorbed objects are considered, suggesting that the match between optical and X-ray classifications is overall good. Only a small percentage of sources (12 per cent) does not fulfil the expectation of the unified theory as we find 22 type 1 AGN which are absorbed and 10 type 2 AGN which are unabsorbed. Studying in depth these outliers we found that most of the absorbed type 1 AGN have X-ray spectra characterized by either complex or warm/ionized absorption more likely due to ionized gas located in an accretion disc wind or in the biconical structure associated with the central nucleus, therefore

  3. Optical and X-ray early follow-up of ANTARES neutrino alerts

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Ageron, M.; Albert, A.; Samarai, I. Al; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaš, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vecchi, M.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Klotz, A.; Boer, M.; Le Van Suu, A.; Akerlof, C.; Zheng, W.; Evans, P.; Gehrels, N.; Kennea, J.; Osborne, J. P.; Coward, D. M.

    2016-02-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or X-ray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with X-ray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.

  4. At-wavelength and optical metrology of bendable x-ray optics for nanofocusing at the ALS

    SciTech Connect

    Yashchuk, Valeriy V.

    2009-06-11

    We report on a new research and development program at the Advanced Light Source, Lawrence Berkeley National Lab directed to establish both at-wavelength and conventional optical metrology techniques suitable to characterize the surface profile of super-high-quality x-ray optics with sub-microradian precision.

  5. X-ray optics developments at the APS for third-generation synchrotron radiation sources

    SciTech Connect

    Mills, D.M.

    1996-09-01

    High brilliance third-generation synchrotron radiation sources simultaneously provide both a need and an opportunity for the development of new x-ray optical components. The high power and power densities of the x-ray beams produced by insertion devices have forced researchers to consider novel, and what may seem like exotic, approaches to the mitigation of thermal distortions that can dilute the beam brilliance delivered to the experiment or next optical component. Once the power has been filtered by such high heat load optical elements, specialized components can be employed that take advantage of the high degree of brilliance. This presentation reviews the performance of optical components that have been designed, fabricated, and tested at the Advanced Photon Source, starting with high heat load components and followed by examples of several specialized devices such as a milli-eV resolution (in-line) monochromator, a high energy x-ray phase retarder, and a phase zone plate with submicron focusing capability.

  6. Optical Spectroscopy of X-Ray-selected Young Stars in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Vaidya, Kaushar; Chen, Wen-Ping; Lee, Hsu-Tai

    2015-12-01

    We present low-resolution optical spectra for 29 X-ray sources identified as either massive star candidates or low-mass pre-main-sequence (PMS) star candidates in the clusters Trumpler 16 and Trumpler 14 of the Carina Nebula. Spectra of two more objects (one with an X-ray counterpart, and one with no X-ray counterpart), not originally our targets, but found close (˜3″) to two of our targets, are presented as well. Twenty early-type stars, including an O8 star, seven B1-B2 stars, two B3 stars, a B5 star, and nine emission-line stars, are identified. Eleven T Tauri stars, including eight classical T Tauri stars (CTTSs) and three weak-lined T Tauri stars, are identified. The early-type stars in our sample are more reddened compared to the previously known OB stars of the region. The Chandra hardness ratios of our T Tauri stars are found to be consistent with the Chandra hardness ratios of T Tauri stars of the Orion Nebula Cluster. Most early-type stars are found to be nonvariable in X-ray emission, except the B2 star J104518.81-594217.9, the B3 star J104507.84-594134.0, and the Ae star J104424.76-594555.0, which are possible X-ray variables. J104452.20-594155.1, a CTTS, is among the brightest and the hardest X-ray sources in our sample, appears to be a variable, and shows a strong X-ray flare. The mean optical and near-infrared photometric variability in the V and Ks bands, of all sources, is found to be ˜0.04 and 0.05 mag, respectively. The T Tauri stars show significantly larger mean variation, ˜0.1 mag, in the Ks band. The addition of one O star and seven B1-B2 stars reported here contributes to an 11% increase of the known OB population in the observed field. The 11 T Tauri stars are the first ever confirmed low-mass PMS stars in the Carina Nebula region.

  7. An optical supernova associated with the X-ray flash XRF 060218.

    PubMed

    Pian, E; Mazzali, P A; Masetti, N; Ferrero, P; Klose, S; Palazzi, E; Ramirez-Ruiz, E; Woosley, S E; Kouveliotou, C; Deng, J; Filippenko, A V; Foley, R J; Fynbo, J P U; Kann, D A; Li, W; Hjorth, J; Nomoto, K; Patat, F; Sauer, D N; Sollerman, J; Vreeswijk, P M; Guenther, E W; Levan, A; O'Brien, P; Tanvir, N R; Wijers, R A M J; Dumas, C; Hainaut, O; Wong, D S; Baade, D; Wang, L; Amati, L; Cappellaro, E; Castro-Tirado, A J; Ellison, S; Frontera, F; Fruchter, A S; Greiner, J; Kawabata, K; Ledoux, C; Maeda, K; Møller, P; Nicastro, L; Rol, E; Starling, R

    2006-08-31

    Long-duration gamma-ray bursts (GRBs) are associated with type Ic supernovae that are more luminous than average and that eject material at very high velocities. Less-luminous supernovae were not hitherto known to be associated with GRBs, and therefore GRB-supernovae were thought to be rare events. Whether X-ray flashes--analogues of GRBs, but with lower luminosities and fewer gamma-rays--can also be associated with supernovae, and whether they are intrinsically 'weak' events or typical GRBs viewed off the axis of the burst, is unclear. Here we report the optical discovery and follow-up observations of the type Ic supernova SN 2006aj associated with X-ray flash XRF 060218. Supernova 2006aj is intrinsically less luminous than the GRB-supernovae, but more luminous than many supernovae not accompanied by a GRB. The ejecta velocities derived from our spectra are intermediate between these two groups, which is consistent with the weakness of both the GRB output and the supernova radio flux. Our data, combined with radio and X-ray observations, suggest that XRF 060218 is an intrinsically weak and soft event, rather than a classical GRB observed off-axis. This extends the GRB-supernova connection to X-ray flashes and fainter supernovae, implying a common origin. Events such as XRF 060218 are probably more numerous than GRB-supernovae. PMID:16943831

  8. X-ray, Optical and Radio Observations of the Extragalactic Superbubble N7793-S26

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas; Schlegel, E. M.; Filipovic, M. D.; Crawford, E.; Payne, J.; Grimes, C. K.

    2012-01-01

    We present a multi-wavelength (X-ray, optical and radio) spatial and spectral analysis of the extragalactic superbubble N7793-S26. Prior observations and analysis of this source had revealed extended emission spanning nearly 400 parsecs at all three wavelength domains: the extended morphology of this object suggests a superbubble classification, prompting the argument that N7793-S26 is actually a microquasar. We investigate the microquasar interpretation of this source based on analysis of its spatial and spectral properties and compare N7793-S26 to another known extragalactic superbubble located in the Local Group Galaxy IC 10. We investigate the scenario that the soft X-ray sources seen at the northern and southern edges of N7793-S26 are actually supernova remnants and that the central hard X-ray source is an X-ray binary serendipitously located to give the appearance of a central engine with two jets. This scenario will be presented and discussed.

  9. Ab initio calculations of optical constants from ultraviolet to X-rays

    NASA Astrophysics Data System (ADS)

    Rivas, Gildardo

    We present a theory of x-ray absorption based on the real space Green's function formalism implemented in the FEFF x-ray spectroscopy code, and test it from UV to the hard x-ray limits. The one-electron theory includes self-consistent scattering potentials, core-hole and self-energy effects, and full or high order multiple scattering. From it we derive the total photo-absorption cross section summed over all edges. In contrast to standard atomic tables, the calculations include important solid-state corrections, e.g., the x-ray absorption fine structure, inelastic losses, lifetime broadening, etc. We further show that the same theory can be used to calculate the imaginary part of the complex dielectric function, from which other optical constants can be derived, e.g., the real part of the dielectric function, the complex index of refraction, and energy loss spectra. Typical results for elemental solids are presented and compared with standard theoretical tables and with experiment.

  10. X-Ray/Optical Studies of Two Outbursts of the Intermediate Polar YY (DO) Draconis

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Nishikida, Kaori; Erb, Dawn; Mukai, Koji; Hellier, Coel; Uemura, M.; Kato, T.; Pavlenko, Elena; Katysheva, Nataly; Shugarov, Sergei; Cook, Lew

    2002-01-01

    YY Draconis (likely the same variable called DO Draconis) is one of a small number of intermediate polars (IPs) that show outburst behavior. We report results from Target of Opportunity observations with the Rossi X-Ray Timing Explorer, together with ground-based optical photometry during outbursts in 1999 September and 2000 November. Similar behavior was evident in both outbursts. At outburst, the X-ray flux increased by more than a factor of 12, and the spectrum became hotter and more absorbed compared to quiescence. While the spin pulse at 529 s is clearly present in the X-ray data at 2-4 days past outburst peak and during quiescence, it was not detected in the X-ray data closest to outburst (1.5 days). This is contrary to the large increase in spin pulse amplitude that has been seen during outbursts of the IPs GK Per, XY Ari, and EX Hya. The differences in YY Dra are likely due to its unique geometry, with two relatively equal poles located near the white dwarf equator. The equal enhancement of both poles near outburst could account for the low pulse amplitude, while unequal feeding of the poles as the magnetosphere recedes during decline could explain the changes in amplitude and pulse shape. The changing height of the shocks may also have an effect on the visibility of both poles.

  11. Inhomogeneous nanostructured honeycomb optical media for enhanced cathodo- and under-x-ray luminescence

    NASA Astrophysics Data System (ADS)

    Gaponenko, N. V.; Kortov, V. S.; Rudenko, M. V.; Pustovarov, V. A.; Zvonarev, S. V.; Slesarev, A. I.; Molchan, I. S.; Thompson, G. E.; Khoroshko, L. S.; Prislopskii, S. Ya.

    2012-05-01

    Photo-, radio-, and pulse cathodoluminescence spectra from sol-gel derived titania, doped with strontium and terbium, deposited on porous anodic alumina (PAA) films are reported. The morphology and qualitative elemental depth distributions have been examined by transmission electron microscopy, scanning electron microscopy, and radio-frequency glow discharge optical emission spectroscopy. PAA films with pore and cell sizes ranging from 170 to 190 and 240 to 270 nm, respectively, have been generated on aluminum and monocrystalline silicon substrates followed by spin-on sol-gel derived coating with the subsequent thermal treatment. The resultant PAA surface is not coated with a continuous xerogel film; the xerogel is mainly distributed near the pore bases, leaving much of the pore volume unfilled. The xerogel/PAA structures reveal terbium-related luminescence under x-ray excitation and cathodoluminescence. The same xerogels generated on monocrystalline silicon revealed no cathode- or under-x-ray luminescence. Thus, PAA enhances strongly the cathode- and under x-ray luminescence from terbium and strontium-doped titania xerogels confined in the porous matrix. The fabricated structures are considered as a type of low-cost, thin-film convertor of x-rays, and cathode ray irradiation into visible light, with an average cell size of the convertor of about 250 nm.

  12. THE CHANDRA COSMOS SURVEY. III. OPTICAL AND INFRARED IDENTIFICATION OF X-RAY POINT SOURCES

    SciTech Connect

    Civano, F.; Elvis, M.; Aldcroft, T.; Fruscione, A.; Hao, H.; Lanzuisi, G.; Brusa, M.; Salvato, M.; Bongiorno, A.; Comastri, A.; Zamorani, G.; Cappelluti, N.; Gilli, R.; Lusso, E.; Capak, P.; Cisternas, M.; Fiore, F.; Kartaltepe, J.; Koekemoer, A.; Impey, C. D.; and others

    2012-08-01

    The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.9 deg{sup 2} of the COSMOS field down to limiting depths of 1.9 Multiplication-Sign 10{sup -16} erg cm{sup -2} s{sup -1} in the soft (0.5-2 keV) band, 7.3 Multiplication-Sign 10{sup -16} erg cm{sup -2} s{sup -1} in the hard (2-10 keV) band, and 5.7 Multiplication-Sign 10{sup -16} erg cm{sup -2} s{sup -1} in the full (0.5-10 keV) band. In this paper we report the i, K, and 3.6 {mu}m identifications of the 1761 X-ray point sources. We use the likelihood ratio technique to derive the association of optical/infrared counterparts for 97% of the X-ray sources. For most of the remaining 3%, the presence of multiple counterparts or the faintness of the possible counterpart prevented a unique association. For only 10 X-ray sources we were not able to associate a counterpart, mostly due to the presence of a very bright field source close by. Only two sources are truly empty fields. The full catalog, including spectroscopic and photometric redshifts and classification described here in detail, is available online. Making use of the large number of X-ray sources, we update the 'classic locus' of active galactic nuclei (AGNs) defined 20 years ago in soft X-ray surveys and define a new locus containing 90% of the AGNs in the survey with full-band luminosity >10{sup 42} erg s{sup -1}. We present the linear fit between the total i-band magnitude and the X-ray flux in the soft and hard bands, drawn over two orders of magnitude in X-ray flux, obtained using the combined C-COSMOS and XMM-COSMOS samples. We focus on the X-ray to optical flux ratio (X/O) and we test its known correlation with redshift and luminosity, and a recently introduced anti-correlation with the concentration index (C). We find a strong anti-correlation (though the dispersion is of the order of 0.5 dex) between X/O computed in the hard band and C and that 90% of the obscured AGNs in the sample with morphological

  13. Simultaneous X-Ray and Optical Timing Observations of GX 339-4

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip; Mushotzky, Richard F. (Technical Monitor)

    2003-01-01

    The goal of this proposal is to perform the first comprehensive study of the correlated x-ray and optical variability of the Galactic accreting black hole candidate GX 339-4 using the x-ray and optical instruments on XMM-Newton. With these observations, we hope to make significant progress in understanding the coupled inflow - outflow system around a persistently accreting stellar mass black hole. We are currently analyzing the data. The data analysis is rather complex as it involves all of the instruments on XMM-Newton, the EPIC-PN, the EPIC-MOS, the RGS, and the OM, and our analysis requires study of correlated fast variability in the EPIC-PN and OM. We expect to have results ready to submit for publication within 3 to 4 months.

  14. Simultaneous X-Ray and Optical Timing Observations of GX 339-4

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip; Mushotzky, Richard F. (Technical Monitor)

    2004-01-01

    The goal of this proposal was to perform the first comprehensive study of the correlated x-ray and optical variability of the Galactic accreting black hole candidate GX 339-4 using the x-ray and optical instruments on XMM-Newton. With these observations, we hoped to make significant progress in understanding the coupled inflow - outflow system around a persistently accreting stellar mass black hole. The work on this project is being led by the European Science PI. The data is fully reduced. This includes the data analysis for all of the instruments on XMM-Newton, the EPIC-PN, the EPIC-MOS, the RGS, and the OM. The results are now being prepared for results for publication and will be submitted for publication after the completion of this grant.

  15. X-ray and Optical Studies of Low--Mass Star Formation

    NASA Astrophysics Data System (ADS)

    Alcalá, J. M.

    1994-02-01

    Weak--line T Tauri stars (WTTS) are low--mass pre--main sequence (PMS) stars which lack both the strong emission lines and the infra--red (IR) excesses typical of classical T Tauri stars (CTTS). Most of them have been discovered on the basis of their solar--like X--ray emission. In this work, X--ray data from the ROSAT all-sky survey in the Chamaeleon (Cha) and the Orion star forming regions (SFR's), and from one ROSAT pointed observation in the Cha I dark cloud, were used to determine the number of WTTS, to investigate their spatial distribution, and to study their physical properties and their X--ray emission. The total number of X-ray sources detected in the ROSAT survey is 820 in Orion (~450 square degrees), and 181 in Chamaeleon (~200 square degrees). Fifty four X--ray sources were detected in the ROSAT pointed observation in Cha I. Cross correlation of the X-ray positions with those of catalogued objects in the Simbad database gives about 30% of coincidences in the two SFR's. These counterparts are mainly extragalactic objects, HD, HR or SAO stars, CTTS, and a few WTTS known from previous EINSTEIN observations. For the remaining sources, a programme of spectroscopic observations has been conducted. These observations led to the identification of 85 and 58 new WTTS in the Chamaeleon and Orion SFR's respectively. For the Chamaeleon SFR, the spectroscopic identification of the survey sources is complete, while for the Orion SFR there are about 470 sources still to be investigated. Eighty percent of the sources from the pointed observation in Cha I have been identified. In addition, optical and near IR photometric observations of a sub--sample of the new WTTS were carried out. The spectral energy distributions of these stars are very similar to those of normal stars of the same spectral type. The effective temperature and the stellar luminosity were derived in order to place the sub--sample of WTTS in the H--R diagram. By comparison with the theoretical

  16. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging.

    PubMed

    Arvanitis, C D; Bohndiek, S E; Royle, G; Blue, A; Liang, H X; Clark, A; Prydderch, M; Turchetta, R; Speller, R

    2007-12-01

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525 x 525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25 x 25 microm pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10(5) electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 microm, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at approximately 0.44 microC/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a: Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled

  17. Empirical electro-optical and x-ray performance evaluation of CMOS active pixels sensor for low dose, high resolution x-ray medical imaging

    SciTech Connect

    Arvanitis, C. D.; Bohndiek, S. E.; Royle, G.; Blue, A.; Liang, H. X.; Clark, A.; Prydderch, M.; Turchetta, R.; Speller, R.

    2007-12-15

    Monolithic complementary metal oxide semiconductor (CMOS) active pixel sensors with high performance have gained attention in the last few years in many scientific and space applications. In order to evaluate the increasing capabilities of this technology, in particular where low dose high resolution x-ray medical imaging is required, critical electro-optical and physical x-ray performance evaluation was determined. The electro-optical performance includes read noise, full well capacity, interacting quantum efficiency, and pixels cross talk. The x-ray performance, including x-ray sensitivity, modulation transfer function, noise power spectrum, and detection quantum efficiency, has been evaluated in the mammographic energy range. The sensor is a 525x525 standard three transistor CMOS active pixel sensor array with more than 75% fill factor and 25x25 {mu}m pixel pitch. Reading at 10 f/s, it is found that the sensor has 114 electrons total additive noise, 10{sup 5} electrons full well capacity with shot noise limited operation, and 34% interacting quantum efficiency at 530 nm. Two different structured CsI:Tl phosphors with thickness 95 and 115 {mu}m, respectively, have been optically coupled via a fiber optic plate to the array resulting in two different system configurations. The sensitivity of the two different system configurations was 43 and 47 electrons per x-ray incident on the sensor. The MTF at 10% of the two different system configurations was 9.5 and 9 cycles/mm with detective quantum efficiency of 0.45 and 0.48, respectively, close to zero frequency at {approx}0.44 {mu}C/kg (1.72 mR) detector entrance exposure. The detector was quantum limited at low spatial frequencies and its performance was comparable with high resolution a:Si and charge coupled device based x-ray imagers. The detector also demonstrates almost an order of magnitude lower noise than active matrix flat panel imagers. The results suggest that CMOS active pixel sensors when coupled to

  18. X-ray and optical measurements of the cataclysmic variable CH UMa

    NASA Technical Reports Server (NTRS)

    Becker, R. H.; Chanan, G. A.; Wilson, A. S.; Pravdo, S. H.

    1982-01-01

    A program to identify optical counterparts of X-ray sources discovered with the Einstein Observatory has resulted in an independent identification of CH UMa as a cataclysmic variable. Spectrophotometric observations made with the Intensified Image Dissector Scanner on the 2.1-m telescope at KPNO revealed an emission line spectrum from an approximately 15 mag object similar to the spectra of cataclysmic variables. A subsequent search of the Harvard photographic plate collection revealed outbursts of 4 mag in amplitude.

  19. CdTe X-ray detectors under strong optical irradiation

    SciTech Connect

    Cola, Adriano; Farella, Isabella

    2014-11-17

    The perturbation behaviour of Ohmic and Schottky CdTe detectors under strong optical pulses is investigated. To this scope, the electric field profiles and the induced charge transients are measured, thus simultaneously addressing fixed and free charges properties, interrelated by one-carrier trapping. The results elucidate the different roles of the contacts and deep levels, both under dark and strong irradiation conditions, and pave the way for the improvement of detector performance control under high X-ray fluxes.

  20. A proposal for an open source graphical environment for simulating x-ray optics

    NASA Astrophysics Data System (ADS)

    Sanchez del Rio, Manuel; Rebuffi, Luca; Demsar, Janez; Canestrari, Niccolo; Chubar, Oleg

    2014-09-01

    A new graphic environment to drive X-ray optics simulation packages such as SHADOW and SRW is proposed. The aim is to simulate a virtual experiment, including the description of the electron beam and simulate the emitted radiation, the optics, the scattering by the sample and radiation detection. Python is chosen as common interaction language. The ingredients of the new application, a glossary of variables for optical component, the selection of visualization tools, and the integration of all these components in a high level workflow environment built on Orange are presented.

  1. The optical light curve of the low-mass X-ray binary GX 9 + 9

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1990-01-01

    The detection of a small modulation in the light curve of the GX 9 + 9 optical counterpart at the same period as determined from the X-ray data is reported. The optical variability is roughly sinusoidal in shape with a period of 4.198 + or - 0.0094 hours and an average peak-to-peak amplitude in the B of 0.19 mag with comparable amplitudes in the V and R bandpasses, and has superposed flickering with a typical amplitude of six percent. The mass of the companion star is deduced to be 0.4 solar mass, which corresponds to an early M-type star. The bulk of the optical light arises in the accretion disk, while the variability arises from orbital modulation of the light reprocessed off the companion star and a bright spot. It is suggested that the X-ray modulation might be due to the asymmetries of X-rays reflected off the bright spot.

  2. Optical pulsations from the anomalous X-ray pulsar 4U0142+61.

    PubMed

    Kern, B; Martin, C

    2002-05-30

    Anomalous X-ray pulsars (AXPs) differ from ordinary radio pulsars in that their X-ray luminosity is orders of magnitude greater than their rate of rotational energy loss, and so they require an additional energy source. One possibility is that AXPs are highly magnetized neuron stars or 'magnetars' having surface magnetic fields greater than 10(14) G. This would make them similar to the soft gamma-ray repeaters (SGRs), but alternative models that do not require extreme magnetic fields also exist. An optical counterpart to the AXP 4U0142+61 was recently discovered, consistent with emission from a magnetar, but also from a magnetized hot white dwarf, or an accreting isolated neutron star. Here we report the detection of optical pulsations from 4U0142+61. The pulsed fraction of optical light (27 per cent) is five to ten times greater than that of soft X-rays, from which we conclude that 4U0142+61 is a magnetar. Although this establishes a direct relationship between AXPs and the soft gamma-ray repeaters, the evolutionary connection between AXPs, SGRs and radio pulsars remains controversial. PMID:12037561

  3. Compensation of X-ray mirror shape-errors using refractive optics

    NASA Astrophysics Data System (ADS)

    Sawhney, Kawal; Laundy, David; Dhamgaye, Vishal; Pape, Ian

    2016-08-01

    Focusing of X-rays to nanometre scale focal spots requires high precision X-ray optics. For nano-focusing mirrors, height errors in the mirror surface retard or advance the X-ray wavefront and after propagation to the focal plane, this distortion of the wavefront causes blurring of the focus resulting in a limit on the spatial resolution. We describe here the implementation of a method for correcting the wavefront that is applied before a focusing mirror using custom-designed refracting structures which locally cancel out the wavefront distortion from the mirror. We demonstrate in measurements on a synchrotron radiation beamline a reduction in the size of the focal spot of a characterized test mirror by a factor of greater than 10 times. This technique could be used to correct existing synchrotron beamline focusing and nanofocusing optics providing a highly stable wavefront with low distortion for obtaining smaller focus sizes. This method could also correct multilayer or focusing crystal optics allowing larger numerical apertures to be used in order to reduce the diffraction limited focal spot size.

  4. Soft-x-ray magneto-optical Kerr effect and element-specific hysteresis measurement

    SciTech Connect

    Kortright, J.B.; Rice, M.

    1997-04-01

    Interest in the utilization of x-ray magneto-optical properties to provide element-specific magnetic information, combined with recent development of tunable linear polarizers for spectroscopic polarization measurement, have led the authors to the study of magneto-optical rotation (MOR) near core levels of magnetic atoms in magnetic multilayer and alloy films. Their initial observation of Faraday rotation (in transmission) demonstrated that for Fe MOR is easily measured and is larger at its L{sub 3} resonance than in the near-visible spectral regions. This work also demonstrated that the spectroscopic behavior of the MOR signal in transmission, resulting from the differential reaction of left- and right-circular components of a linearly polarized beam, is related to the magnetic circular dichroism (MCD), or differential absorption, as expected by a Kramers-Kronig transformation. Thus MCD measurements using circular polarization and MOR measurements using linear polarization can provide complementary, and in some cases equivalent, information. On beamline 6.3.2 the authors have begun to investigate soft x-ray MOR in the reflection geometry, the x-ray magneto-optic Kerr effect (XMOKE). Early measurements have demonstrated the ability to measure element-specific hysteresis loops and large rotations compared to analogous near-visible measurements. The authors are investigating the spectral dependence of the XMOKE signal, and have initiated systematic materials studies of sputter-deposited films of Fe, Fe{sub x}Cr{sub 1{minus}x} alloys, and Fe/Cr multilayers.

  5. Slumped glass optics for x-ray telescopes: advances in the hot slumping assisted by pressure

    NASA Astrophysics Data System (ADS)

    Salmaso, B.; Brizzolari, C.; Basso, S.; Civitani, M.; Ghigo, M.; Pareschi, G.; Spiga, D.; Tagliaferri, G.; Vecchi, G.

    2015-09-01

    Slumped Glass Optics is a viable solution to build future X-ray telescopes. In our laboratories we use a direct hot slumping approach assisted by pressure, in which the glass optical surface is in contact with the mould, and a pressure is applied to enforce the replication of the mould shape on the glass optical surface. Several prototypes have been already produced and tested in X-rays, showing a continuous improvement in our technology. In this paper, we present the advances in our technology, in terms of slumped glass foils quality and expected performances upon an ideal integration. By using Eagle XG glass foils and Zerodur K20 for the slumping mould, we have fine tuned several process parameters: we present a critical analysis correlating the changes in the process to the improvements in different spatial frequency ranges encompassing the profile and roughness measurements. The use of a re-polished K20 mould, together with the optimized process parameters, lead to the latest result of glass foils with expected performance of less than 3 arcsec in single reflection at 1 keV X-ray energy. This work presents all the relevant steps forward in the hot slumping technology assisted by pressure, aimed at reaching angular resolutions of 5 arcsec for the whole mirror assembly.

  6. Long-Term Optical/X-ray Variability of CVs, LMXBs and BeX Sources

    NASA Astrophysics Data System (ADS)

    Charles, Phil; Kotze, Marissa; Rajoelimanana, Andry

    2010-12-01

    The study of long-term variability of interacting binaries has been revolutionised at X-ray and optical wavelengths by RXTE's all-sky monitor, combined with ground-based wide-field optical monitoring of the Magellanic Clouds and galactic bulge regions. We present a summary of long-term, super-orbital X-ray modulations detected in luminous galactic X-ray binaries, with particular emphasis on the recently identified multi-year modulations which may be related to solar-cycle-like variations in the low-mass donor stars. The MACHO and OGLE databases of SMC optical monitoring have revealed long-term (200-3000 d) variations in BeX systems that we propose are a function of the formation and depletion of the rapidly-rotating Be star's equatorial disc. We compile a list of the 7 different types of super-orbital modulations now identified in interacting binaries, based on their observed characteristics and likely physical origin.

  7. X-ray magneto-optic KERR effect studies of spring magnet heterostructures.

    SciTech Connect

    Kortright, J. B.; Kim, S.-K.; Fullerton, E. E.; Jiang, J. S.; Bader, S. D.

    2000-11-01

    The complex 3-dimensional magnetization reversal behavior of Sin-Co/Fe exchange spring films is used to test the sensitivity of different resonant soft x-ray magneto-optical Kerr effect (MOKE) measurements to changes in longitudinal and transverse moments within the SOIIFe layer and to changes in these moments in depth within the Fe layer. As in the visible MOKE, changes in longitudinal and net transverse moments are resolved by measuring both Kerr rotation and intensity loops in the near the Fe 2p core resonance. These x-ray MOKE signals measured using linear incident polarization are more directly interpreted in terms of longitudinal and transverse moments than are the same signals measured using elliptical polarization. Varying photon energy near the Fe L3line is shown to be an effective means of resolving distinctly different reversal behavior at the top and bottom of the 20 nm thick Fe layer resulting from the strong exchange coupling at the Sin-Co/Fe interface. Measured x-ray MOKE spectra and signals are in qualitative agreement with those calculated using standard magneto-optical formalisms incorporating interference between different layers and measured helicity-dependent magneto-optical constants for Fe.

  8. X-ray magneto-optic Kerr effect studies of spring magnet heterostructures

    SciTech Connect

    Kortright, J.B.; Kim, Sang-Koog; Fullerton, E.E.; Jiang, J.S.; Bader, S.D.

    2000-11-02

    The complex 3-dimensional magnetization reversal behavior of Sm-Co/Fe exchange spring films is used to test the sensitivity of different resonant soft x-ray magneto-optical Kerr effect (MOKE) measurements to changes in longitudinal and transverse moments within the soft Fe layer and to changes in these moments in depth within the Fe layer. As in the visible MOKE, changes in longitudinal and net transverse moments are resolved by measuring both Kerr rotation and intensity loops, respectively, near the Fe 2p core resonance. These x-ray MOKE signals measured using linear incident polarization are more directly interpreted in terms of longitudinal and transverse moments than are the same signals measured using elliptical polarization. Varying photon energy near the Fe L{sub 3} line is shown to be an effective means of resolving distinctly different reversal behavior at the top and bottom of the 20 nm thick Fe layer resulting from the strong exchange coupling at the Sm-Co/Fe interface. Measured x-ray MOKE spectra and signals are in qualitative agreement with those calculated using standard magneto-optical formalisms incorporating interference between different layers and measured helicity-dependent magneto-optical constants for Fe.

  9. Automated X-ray and Optical Analysis of the Virtual Observatory and Grid Computing

    NASA Technical Reports Server (NTRS)

    Ptak, A.; Krughoff, S.; Connolly, A.

    2011-01-01

    We are developing a system to combine the Web Enabled Source Identification with X-Matching (WESIX) web service, which emphasizes source detection on optical images,with the XAssist program that automates the analysis of X-ray data. XAssist is continuously processing archival X-ray data in several pipelines. We have established a workflow in which FITS images and/or (in the case of X ray data) an X-ray field can be input to WESIX. Intelligent services return available data (if requested fields have been processed) or submit job requests to a queue to be performed asynchronously. These services will be available via web services (for non-interactive use by Virtual Observatory portals and applications) and through web applications (written in the Django web application framework). We are adding web services for specific XAssist functionality such as determining .the exposure and limiting flux for a given position on the sky and extracting spectra and images for a given region. We are improving the queuing system in XAssist to allow for "watch lists" to be specified by users, and when X-ray fields in a user's watch list become publicly available they will be automatically added to the queue. XAssist is being expanded to be used as a survey planning 1001 when coupled with simulation software, including functionality for NuStar, eRosita, IXO, and the Wide Field Xray Telescope (WFXT), as part of an end to end simulation/analysis system. We are also investigating the possibility of a dedicated iPhone/iPad app for querying pipeline data, requesting processing, and administrative job control.

  10. Automated X-ray and Optical Analysis of the Virtual Observatory and Grid Computing

    NASA Astrophysics Data System (ADS)

    Ptak, A.; Krughoff, S.; Connolly, A.

    2011-07-01

    We are developing a system to combine the Web Enabled Source Identification with X-Matching (WESIX) web service, which emphasizes source detection on optical images,with the XAssist program that automates the analysis of X-ray data. XAssist is continuously processing archival X-ray data in several pipelines. We have established a workflow in which FITS images and/or (in the case of X-ray data) an X-ray field can be input to WESIX. Intelligent services return available data (if requested fields have been processed) or submit job requests to a queue to be performed asynchronously. These services will be available via web services (for non-interactive use by Virtual Observatory portals and applications) and through web applications (written in the Django web application framework). We are adding web services for specific XAssist functionality such as determining the exposure and limiting flux for a given position on the sky and extracting spectra and images for a given region. We are improving the queuing system in XAssist to allow for "watch lists" to be specified by users, and when X-ray fields in a user's watch list become publicly available they will be automatically added to the queue. XAssist is being expanded to be used as a survey planning tool when coupled with simulation software, including functionality for NuStar, eRosita, IXO, and the Wide-Field Xray Telescope (WFXT), as part of an end-to-end simulation/analysis system. We are also investigating the possibility of a dedicated iPhone/iPad app for querying pipeline data, requesting processing, and administrative job control. This work was funded by AISRP grant NNG06GE59G.

  11. Long-term optical observations of the Be/X-ray binary X Per

    SciTech Connect

    Li, Hui; Yan, Jingzhi; Zhou, Jianeng; Liu, Qingzhong

    2014-12-01

    We present optical spectroscopic observations of X Per from 1999 to 2013 with the 2.16 m telescope at Xinglong Station and the 2.4 m telescope at Lijiang Station, National Astronomical Observatories of China. Combining these observations with the public optical photometric data, we find certain epochs of anti-correlations between the optical brightness and the intensity of the Hα and He I 6678 lines, which may be attributed to the mass ejections from the Be star; however, alternative explanations are also possible. The variability of the Fe II 6317 line in the spectra of X Per might also be caused by the shocked waves formed after the mass ejections from the Be star. The X-ray activities of the system might also be connected with the mass ejection events from the Be star. When the ejected materials were transported from the surface of the Be star to the orbit of the neutron star, an X-ray flare could be observed in its X-ray light curves. We use the neutron star as a probe to constrain the motion of the ejected material in the circumstellar disk. With the diffusion time of the ejected material from the surface of the Be star to the orbit of neutron star, the viscosity parameter α of the circumstellar disk is estimated to be 0.39 and 0.28 for the different times, indicating that the disk around the Be star may be truncated by the neutron star at the 2:1 resonance radius and that a Type I X-ray outburst is unlikely to be observed in X Per.

  12. Characterization of the Optical and X-ray Properties of the Northwestern Wisps in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Bucciantini, N.; Idec, W.; Nillson, K.; Schweizer, T.; Tennant, A. F.; Zanin, R.

    2013-01-01

    We have studied the wisps to the northwest of the Crab pulsar as part of a multi-wavelength campaign in the visible and in X-rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X-ray observations were made with the Chandra X-ray Observatory. The observing campaign took place from October 2010 until September 2012. About once per year we observe wisps forming and peeling off from (or near) the region commonly associated with the termination shock of the pulsar wind. We find that the exact locations of the northwestern wisps in the optical and in X-rays are similar but not coincident, with X-ray wisps preferentially located closer to the pulsar. This suggests that the optical and X-ray wisps are not produced by the same particle distribution. It is also interesting to note that the optical and radio wisps are also separated from each other (Bietenholz et al. 2004). Our measurements and their implications are interpreted in terms of a Doppler-boosted ring model that has its origin in MHD modeling. While the Doppler boosting factors inferred from the X-ray wisps are consistent with current MHD simulations of PWNe, the optical boosting factors are not, and typically exceed values from MHD simulations by about a factor of 4.

  13. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics

    PubMed Central

    Zhang, Lin; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez del Rio, Manuel

    2014-01-01

    The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young’s modulus, the shear modulus and Poisson’s ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson’s ratio. For an isotropic constant Poisson’s ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν12 and ν13 as an effective isotropic Poisson’s ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson’s ratio for these orientations leads to an error in thermal deformation smaller than 5.5%. PMID:24763640

  14. The X-Ray through Optical Fluxes and Line Strengths of Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Roth, Nathaniel; Kasen, Daniel; Guillochon, James; Ramirez-Ruiz, Enrico

    2016-08-01

    We study the emission from tidal disruption events (TDEs) produced as radiation from black hole accretion propagates through an extended, optically thick envelope formed from stellar debris. We analytically describe key physics controlling spectrum formation, and present detailed radiative transfer calculations that model the spectral energy distribution and optical line strengths of TDEs near peak brightness. The steady-state transfer is coupled to a solver for the excitation and ionization states of hydrogen, helium, and oxygen (as a representative metal), without assuming local thermodynamic equilibrium. Our calculations show how an extended envelope can reprocess a fraction of soft X-rays and produce the observed optical fluxes of the order of 1043 erg s‑1, with an optical/UV continuum that is not described by a single blackbody. Variations in the mass or size of the envelope may help explain how the optical flux changes over time with roughly constant color. For high enough accretion luminosities, X-rays can escape to be observed simultaneously with the optical flux. Due to optical depth effects, hydrogen Balmer line emission is often strongly suppressed relative to helium line emission (with He ii-to-H line ratios of at least 5:1 in some cases) even in the disruption of a solar-composition star. We discuss the implications of our results to understanding the type of stars destroyed in TDEs and the physical processes responsible for producing the observed flares.

  15. Characterization of the Optical and X-ray Properties of the Northwestern Wisps in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Tennant, A.; Schweizer, T.; Bucciantini, N.; Nilsson, K.

    2013-01-01

    We have studied the variability of the Crab Nebula both in the visible and in X -rays. Optical observations were obtained using the Nordic Optical Telescope in La Palma and X -ray observations were made with the Chandra X -Ray Observatory. We observe wisps forming and peeling off from the region commonly associated with the termination shock of the pulsar wind. We measure a number of properties of the wisps to the Northwest of the pulsar. We find that the exact locations of the wisps in the optical and in X-rays are similar but not coincident, with the X-ray wisp preferentially located closer to the pulsar. Our measurements and their implications are interpreted in terms of a MHD model. We find that the optical wisps are more strongly Doppler boosted than X-ray wisps, a result inconsistent with current MHD simulations. Indeed the inferred optical boosting factors exceed MHD simulation values by about one order of magnitude. These findings suggest that the optical and X-ray wisps are not produced by the same particle distribution, a result which is consistent with the spatial differences. Further, the X -ray wisps and optical wisps are apparently developing independently from each other, but every time a new X ]ray wisp is born so is an optical wisp, thus pointing to a possible common cause or trigger. Finally, we find that the typical wisp formation rate is approximately once per year, interestingly at about the same rate of production of the large gamma-ray flares.

  16. Influence of structural disorder on soft x-ray optical behavior of NbC thin films

    SciTech Connect

    Singh, Amol E-mail: rrcat.amol@gmail.com; Modi, Mohammed H.; Sinha, A. K.; Lodha, G. S.; Rajput, Parasmani

    2015-05-07

    Structural and chemical properties of compound materials are modified, when thin films are formed from bulk materials. To understand these changes, a study was pursued on niobium carbide (NbC) thin films of different thicknesses deposited on Si (100) substrate using ion beam sputtering technique. Optical response of the film was measured in 4–36 nm wavelength region using Indus-1 reflectivity beamline. A discrepancy in soft x-ray performance of NbC film was observed which could not be explained with Henke's tabulated data (see http://henke.lbl.gov/optical{sub c}onstants/ ). In order to understand this, detailed structural and chemical investigations were carried out using x-ray reflectivity, grazing incidence x-ray diffraction, x-ray absorption near edge structure, extended x-ray absorption fine structure, and x-ray photoelectron spectroscopy techniques. It was found that the presence of unreacted carbon and Nb deficiency due to reduced Nb-Nb coordination are responsible for lower soft x-ray reflectivity performance. NbC is an important material for soft x-ray optical devices, hence the structural disorder need to be controlled to achieve the best performances.

  17. X-ray, UV and optical analysis of supergiants: ɛ Ori

    NASA Astrophysics Data System (ADS)

    Puebla, Raul E.; Hillier, D. John; Zsargó, Janos; Cohen, David H.; Leutenegger, Maurice A.

    2016-03-01

    We present a multi-wavelength (X-ray to optical) analysis, based on non-local thermodynamic equilibrium photospheric+wind models, of the B0 Ia-supergiant: ɛ Ori. The aim is to test the consistency of physical parameters, such as the mass-loss rate and CNO abundances, derived from different spectral bands. The derived mass-loss rate is {dot {M}} / {√{f_{∞}}} {˜} 1.6 × 10-6 M⊙ yr-1 where f∞ is the volume filling factor. However, the S IV λλ1062,1073 profiles are too strong in the models; to fit the observed profiles it is necessary to use f∞ <0.01. This value is a factor of 5 to 10 lower than inferred from other diagnostics, and implies {dot{M}} ≲ 1 × 10^{-7} M⊙ yr-1. The discrepancy could be related to porosity-vorosity effects or a problem with the ionization of sulphur in the wind. To fit the UV profiles of N V and O VI it was necessary to include emission from an interclump medium with a density contrast (ρcl/ρICM) of ˜100. X-ray emission in H/He like and Fe L lines was modelled using four plasma components located within the wind. We derive plasma temperatures from 1 × 106 to 7 × 106 K, with lower temperatures starting in the outer regions (R0 ˜ 3-6 R*), and a hot component starting closer to the star (R0 ≲ 2.9 R*). From X-ray line profiles we infer {dot{M}} < 4.9 × 10-7 M⊙ yr-1. The X-ray spectrum (≥0.1 kev) yields an X-ray luminosity LX ˜ 2.0 × 10-7Lbol, consistent with the superion line profiles. X-ray abundances are in agreement with those derived from the UV and optical analysis: ɛ Ori is slightly enhanced in nitrogen and depleted in carbon and oxygen, evidence for CNO processed material.

  18. X-Ray Spectroscopy of Optically Bright Planets using the Chandra Observatory

    NASA Technical Reports Server (NTRS)

    Ford, P. G.; Elsner, R. F.

    2005-01-01

    Since its launch in July 1999, Chandra's Advanced CCD Imaging Spectrometer (ACIS) has observed several planets (Venus, Mars, Jupiter and Saturn) and 6 comets. At 0.5 arc-second spatial resolution, ACIS detects individual x-ray photons with good quantum efficiency (25% at 0.6 KeV) and energy resolution (20% FWHM at 0.6 KeV). However, the ACIS CCDs are also sensitive to optical and near-infrared light, which is absorbed by optical blocking filters (OBFs) that eliminate optical contamination from all but the brightest extended sources, e.g., planets. .Jupiter at opposition subseconds approx.45 arc-seconds (90 CCD pixels.) Since Chandra is incapable of tracking a moving target, the planet takes 10 - 20 kiloseconds to move across the most sensitive ACIS CCD, after which the observatory must be re-pointed. Meanwhile, the OBF covering that CCD adds an opt,ical signal equivalent to approx.110 eV to each pixel that lies within thc outline of the Jovian disk. This has three consequences: (1) the observatory must be pointed away from Jupiter while CCD bias maps are constructed; (2) most x-rays from within the optical image will be misidentified as charged-particle background and ignored; and (3) those x-rays that are reported will bc assigned anomalously high energies. The same also applies to thc other planets, but is less serious since they are either dimmer at optical wavelengths, or they show less apparent motion across the sky, permitting reduced CCD exposure times: the optical contamination from Saturn acids approx.15 eV per pixel, and from Mars and Venus approx.31 eV. After analyzing a series of short .Jupiter observations in December 2000, ACIS parameters were optimized for the February 2003 opposition. CCD bias maps were constructed while Chandra pointed away from Jupiter, and the subsequent observations employed on-board software to ignore any pixel that contained less charge than that expected from optical leakage. In addition, ACIS was commanded to report 5 x 5

  19. Optical, radio and x-ray radiation of red sprites produced by runaway air breakdown

    SciTech Connect

    Yukhimuk, V.; Roussel-Dupre, R.; Symbalisty, E.; Taranenko, Y.

    1997-04-01

    The authors use the runaway air breakdown model of upward discharges to calculate optical, radio, and X-ray radiation generated by red sprites. Red sprites are high altitude (up to 90 km) lightning discharges. Aircraft based observations show that sprites are predominantly red in color at altitudes above {approximately}55 km with faint blue tendrils, which extend downward to an altitude of 40 km; the duration of a single sprite is less than 17 ms, their maximum brightness is about 600 kR, and estimated total optical energy is about 1--5 kJ per event. The ground based observations show similar results, and provide some additional information on spatial and temporal structure of sprites, and on sprite locations. One difference between aircraft and ground-based observations is that blue tendrils are rarely observed from the ground. Sprites usually occur above the anvils of large mesoscale convective systems and correlate with strong positive cloud to ground discharge. Upward discharges are the most probable source of X-ray emission observed above large thunderstorm complexes by the Compton Gamma-ray Observatory. To escape the atmosphere these {gamma}-rays must originate above 25 km altitude. Red sprites are usually observed at altitudes higher than 50 km, and are therefore a likely source of this x-ray emission.

  20. Theoretical Analysis of X-ray Compound Refractive Lens Optical Properties

    SciTech Connect

    Kohn, V.; Snigireva, I.; Snigirev, A.

    2004-05-12

    We present a theoretical analysis of optical properties of parabolic compound refractive lenses (CRL). The parabolic CRL with a large number of elements is considered as a parabolic medium along the x-ray path. The problem of x-ray coherent wave propagation inside such a medium is solved exactly. The analytical formula is obtained for the parabolic CRL imaging propagator as a parabolic wave with complex parameters due to absorption of x rays inside the lens. The fast and universal computer program is developed for simulating the CRL generated images. An imaging example of a test object as a silicon plate of 3 {mu}m thickness with a round hole of 3 {mu}m diameter is presented and discussed in details. The main optical parameters of parabolic CRL such as an effective aperture, a diffraction limited resolution and a focal distance are calculated analytically and discussed. It is shown that parabolic CRL has no spherical aberration while long single plano-concave and bi-concave lenses have.

  1. The X-ray Properties of PS1 Optical Galaxy Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Heeter, Doug; Ptak, A.; Thilker, D. A.; Hornschemeier, A. E.

    2014-01-01

    Through the 2013 Baltimore Excellence in STEM Teaching (BEST) program for high school science teachers sponsored by NASA and Towson University of Maryland, we studied the association of x-ray luminosity with star formation rates and stellar masses estimated from optical images in the PS1 Optical Galaxy Survey (POGS) project. POGS is an ongoing citizen science program in which maps of star formation rate, stellar masses and other parameters are computed based on pixel-by-pixel spectral energy distribution fitting of Pan-STARRS and Sloan Digital Sky Survey photometric data (later to be expanded to include WISE and Galex images). The computation of these models is distributed using BOINC. The sample for this pilot study was based upon galaxies meeting the POGS selection criteria (most galaxies north of declination -30 degrees) with high Chandra exposure times, a redshift of less than 0.01, and that had been processed by POGS as of July 2013, resulting in 67 galaxies. We will discuss our preliminary results and prospects for expanding the project to the entire catalog of galaxies covered by both POGS and the X-ray archive and more detailed analysis of regions within galaxies with sufficient X-ray flux.

  2. Optimization of radiation damage to proteins using X-ray nanofocusing optics

    NASA Astrophysics Data System (ADS)

    Boularaoui, Selwa; Evans-Lutterodt, K.; Lee, S.; Isakovic, A. F.

    2013-03-01

    The need to understand protein structure and perform treatment lead to the use of X-ray and particle-based radiation. Since the use of such radiation has undesirable side effects, mostly through the damage to proteins, it is important to continuously work on decreasing radiation damage. We outline the proposal to use the kinoform refractive optics to focus X-rays on the nanoscale to minimize the radiation damage to protein crystals under study. These optics devices are nanofabricated from low-Z elements (silicon, diamond) and can be used at synchrotron X-ray radiation facilities. We discuss the automated setup that performs nanopositioning of the nanofocusing element, and collects the chemical and structural protein solution under study. We offer simple mathematical models in irradiation and in treatment that help optimize the radiation parameters. This work is supported in part by Khalifa University IRF-Level 1 Fund. The work at BNL-NSLS is supported through US DOE, Office of Basic Energy Sciences.

  3. The optics system of the New Hard X-ray Mission: design and development

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Pareschi, Giovanni; Citterio, Oberto; Spiga, Daniele; Tagliaferri, Gianpiero; Civitani, Marta; Raimondi, Lorenzo; Sironi, Giorgia; Cotroneo, Vincenzo; Negri, Barbara; Parodi, Giancarlo; Martelli, Francesco; Borghi, Giuseppe; Orlandi, Alessandro; Vernani, Dervis; Valsecchi, Giuseppe; Binda, Riccardo; Romaine, Suzanne; Gorenstein, Paul; Attinà, Primo

    2010-07-01

    The New Hard X-ray Mission (NHXM) project will be operated by 2016 and is currently undergoing the Phase B study. It is based on 4 hard X-ray optics modules, each formed by 60 evenly spaced multilayer coated Wolter I mirror shells. An extensible bench is used to reach the 10 m focal length. The Wolter I monolithic substrates with multilayer coating are produced in NiCo by electroforming replication. Three of the mirror modules will host in the focal plane a hybrid a detector system (a soft X-ray Si DEPFET array plus a high energy CdTe detector). The detector of the fourth telescope will be a photoelectric polarimeter with imaging capabilities, operating from 2 up to 35 keV. The total on axis effective area of the three telescopes at 1 keV and 30 kev is of 1500 cm2 and 350 cm2 respectively, with an angular resolution of 20 arcsec HEW at 30 keV. In this paper we report on the design and development of the multilayer optics of the mission, based on thin replicated Ni mirror shells.

  4. X-ray-Excited Optical Luminescence (XEOL) and X-ray Absorption Fine Structures (XAFS) Studies of Gold(I) Complexes with Diphosphine and Bipyridine Ligands

    SciTech Connect

    Kim, Pil-Sook G.; Hu, Yongfeng; Brandys, Marie-C.; Burchell, Tara J.; Puddephatt, Richard J.; Sham, Tsun K.

    2008-10-14

    Synchrotron techniques, X-ray-excited optical luminescence (XEOL) combined with X-ray absorption fine structures (XAFS), have been used to study the electronic structure and optical properties of a series of luminescent gold(I) complexes with diphosphine and bipyridine ligands using tunable X-rays (in the regions of the C and P K-edges and the Au L{sub 3}-edge) and UV from synchrotron light sources. The effects of gold-ligand and aurophilic interactions on the luminescence from these gold(I) complexes have been investigated. It is found that the luminescence from these complexes is phosphorescence, primarily due to the decay of the Au (5d) {yields} PR{sub 3} ({pi}*), metal to ligand charge transfer (MLCT) excitation as well as contributions from the conjugated {pi}-system in the bipyridine ligands via the gold-nitrogen bond. The large Au 5d spin-orbit coupling enhances the intersystem crossing. The elongation of the hydrocarbon chain of the diphosphine ligand does not greatly affect the spectral features of the luminescence from the gold(I) complexes. However, the intensity of the luminescence was reduced significantly when the bipyridine ligand was replaced with 1,2-bis(4-pyridylamido)benzene. The aurophilic interaction, as investigated by EXAFS at the Au L{sub 3}-edge, is shown to be only one of the factors that contribute to the luminescence of the complexes.

  5. THE X-RAY QUIESCENCE OF SWIFT J195509.6+261406 (GRB 070610): AN OPTICAL BURSTING X-RAY BINARY?

    SciTech Connect

    Rea, N.; Jonker, P. G.; Nelemans, G.; Pons, J. A.; Kasliwal, M. M.; Kulkarni, S. R.; Wijnands, R.

    2011-03-10

    We report on an {approx}63 ks Chandra observation of the X-ray transient Swift J195509.6+261406 discovered as the afterglow of what was first believed to be a long-duration gamma-ray burst (GRB 070610). The outburst of this source was characterized by unique optical flares on timescales of second or less, morphologically similar to the short X-ray bursts usually observed from magnetars. Our Chandra observation was performed {approx}2 years after the discovery of the optical and X-ray flaring activity of this source, catching it in its quiescent state. We derive stringent upper limits on the quiescent emission of Swift J195509.6+261406, which argues against the possibility of this object being a typical magnetar. Our limits show that the most viable interpretation on the nature of this peculiar bursting source is a binary system hosting a black hole or a neutron star with a low-mass companion star (<0.12 M{sub sun}) and with an orbital period smaller than a few hours.

  6. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    SciTech Connect

    Murphy, M. W.; Yiu, Y. M. Sham, T. K.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  7. PREFACE: 22nd International Congress on X-Ray Optics and Microanalysis

    NASA Astrophysics Data System (ADS)

    Falkenberg, Gerald; Schroer, Christian G.

    2014-04-01

    ICXOM22 The 22nd edition of the International Congress on X-ray Optics and Microanalysis (ICXOM 22) was held from 2-6 September 2013, in Hamburg, Germany. The congress was organized by scientists from DESY in collaboration with TU Dresden and Helmholtz-Zentrum Geesthacht, who also formed the scientific advisory board. The congress was hosted in the historical lecture hall building of the University of Hamburg located in the city center. ICXOM22 was attended by about 210 registered participants, including 67 students, and was open for listeners. The attendance was split between 26 countries (Germany 120, rest of Europe 57, America 20, Asia 8, Australia 6). The ICXOM series is a forum for the discussion of new developments in instrumentation, methods and applications in the fields of micro- and nano-analysis by means of X-ray beams. Following the trend of the last 10 years, the conference focusses more and more on synchrotron radiation rather than X-ray laboratory sources. Besides micro-beam X-ray fluorescence and absorption spectroscopy, different methods based on diffraction and full-field imaging were covered. Newly introduced to the ICXOM series was scanning coherent X-ray diffraction imaging, which was shown to evolve into a mature method for the imaging of nanostructures, defects and strain fields. New developments on fast X-ray detectors were discussed (Lambda, Maia) and advances in X-ray optics — like the generation of a sub 5nm point focus by Multilayer Zone plates — were presented. Talks on micro- and nano-analysis applications were distributed in special sessions on bio-imaging, Earth and environmental sciences, and Cultural heritage. The congress featured nine keynote and ten plenary talks, 56 talks in 14 parallel sessions and about 120 posters in three afternoon sessions. Seventeen commercial exhibitors exposed related X-ray instrumentation products, and two luncheon seminars on detector electronics were given. This allowed us to keep the student

  8. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber

    PubMed Central

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-01-01

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of −0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber. PMID:25970257

  9. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    PubMed

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-01-01

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber. PMID:25970257

  10. Development of thermally formed glass optics for astronomical hard X-ray telescopes.

    PubMed

    Craig, W; Hailey, C; Jimenez-Garate, M; Windt, D; Harrison, F; Mao, P; Christensen, F; Hussain, A

    2000-08-14

    The next major observational advance in hard X-ray/soft gamma-ray astrophysics will come with the implementation of telescopes capable of focusing 10-200 keV radiation. Focusing allows high signal-to-noise imaging and spectroscopic observations of many sources in this band for the first time. The recent development of depth-graded multilayer coatings has made the design of telescopes for this bandpass practical, however the ability to manufacture inexpensive substrates with appropriate surface quality and figure to achieve sub-arcminute performance has remained an elusive goal. In this paper, we report on new, thermally-formed glass micro-sheet optics capable of meeting the requirements of the next-generation of astronomical hard X-ray telescopes. PMID:19407863

  11. Optics Design for a Soft X-ray FEL at the SLAC A-Line

    SciTech Connect

    Geng, H; Ding, Y.; Emma, P.; Huang, Z.; Nosochkov, Y.; Woodley, M.; /SLAC

    2009-05-15

    LCLS capabilities can be significantly extended with a second undulator aiming at the soft x-ray spectrum (1-5 nm). To allow for simultaneous hard and soft x-ray operations, 14 GeV beams at the end of the LCLS accelerator can be intermittently switched into the SLAC A-line (the beam transport line to End Station A) where the second undulator may be located. In this paper, we discuss the A-line optics design for transporting the high-brightness LCLS beams using the existing tunnel. To preserve the high brightness of the LCLS beams, special attention is paid to effects of incoherent and coherent synchrotron radiation. Start-to-end simulations using realistic LCLS beam distributions are carried out.

  12. Au 133 (SPh - t Bu) 52 Nanomolecules: X-ray Crystallography, Optical, Electrochemical, and Theoretical Analysis

    SciTech Connect

    Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy; Kumara, Chanaka; Jupally, Vijay Reddy; Fortunelli, Alessandro; Sementa, Luca; Barcaro, Giovanni; Zuo, Xiaobing; Noll, Bruce C.

    2015-04-15

    Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the "nanostructure problem". Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au-133(SPh-tBu)(52), was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than in the slightly larger Au-144(SCH2CH2Ph)(60). Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.

  13. Optical/UV and X-Ray Microwave Kinetic Inductance Strip Detectors

    NASA Astrophysics Data System (ADS)

    Mazin, B. A.; Eckart, M. E.; Bumble, B.; Golwala, S.; Day, P. K.; Gao, J.; Zmuidzinas, J.

    2008-04-01

    Microwave Kinetic Inductance Detectors (MKIDs) are superconducting detectors that sense the change in the surface impedance of a thin superconducting film when Cooper Pairs are broken by using a high quality factor resonant circuit. We are developing strip detectors that have aluminum MKID sensors on both ends of a rectangular tantalum strip. These devices can provide one dimensional spatial imaging with high quantum efficiency, energy resolution, and microsecond time resolution for single photons from the IR to the X-ray. We have demonstrated X-ray strip detectors with an energy resolution of 62 eV at 6 keV, and hope to improve this substantially. We will also report on our progress towards optical arrays for a planned camera for the Palomar 200″ telescope.

  14. Development of a Computer-Controlled Polishing Process for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian

    2009-01-01

    The future X-ray observatory missions require grazing-incidence x-ray optics with angular resolution of < 5 arcsec half-power diameter. The achievable resolution depends ultimately on the quality of polished mandrels from which the shells are replicated. With an aim to fabricate better shells, and reduce the cost/time of mandrel production, a computer-controlled polishing machine is developed for deterministic and localized polishing of mandrels. Cylindrical polishing software is also developed that predicts the surface residual errors under a given set of operating parameters and lap configuration. Design considerations of the polishing lap are discussed and the effects of nonconformance of the lap and the mandrel are presented.

  15. Soft x-ray magneto-optic Kerr rotation and element-specific hysteresis measurement

    SciTech Connect

    Kortright, J.B.; Rice, M.

    1996-03-01

    Soft x-ray magneto-optic Kerr rotation has been measured using a continuously tunable multilayer linear polarizer in the beam reflected form samples in applied magnetic fields. Like magnetic circular dichroism, Kerr rotation in the soft x-ray can be element - specific and much larger than in the visible spectral range when the photon energy is tuned near atomic core resonances. Thus sensitive element-specific hysteresis measurements are possible with this technique. Examples showing large Kerr rotation from an Fe film and element-specific hysteresis loops of the Fe and Cr in an Fe/Cr multilayer demonstrate these new capabilities. Some consequences of the strong anomalous dispersion near the FeL{sub 2,3} edges to the Kerr rotation are discussed.

  16. Quiescent X-ray/optical counterparts of the black hole transient H 1705-250

    NASA Astrophysics Data System (ADS)

    Yang, Y. J.; Kong, A. K. H.; Russell, D. M.; Lewis, F.; Wijnands, R.

    2012-12-01

    We report the result of a new Chandra observation of the black hole X-ray transient H 1705-250 in quiescence. H 1705-250 was barely detected in the new ˜50 ks Chandra observation. With five detected counts, we estimate the source quiescent luminosity to be LX ˜ 9.1 × 1030 erg s-1 in the 0.5-10 keV band (adopting a distance of 8.6 kpc). This value is in line with the quiescent luminosities found among other black hole X-ray binaries with similar orbital periods. By using images taken with the Faulkes Telescope North, we derive a refined position of H 1705-250. We also present the long-term light curve of the optical counterpart from 2006 to 2012, and show evidence for variability in quiescence.

  17. On the X-ray and optical properties of the Be star HD 110432: a very hard-thermal X-ray emitter

    NASA Astrophysics Data System (ADS)

    Lopes de Oliveira, R.; Motch, C.; Smith, M. A.; Negueruela, I.; Torrejón, J. M.

    2007-11-01

    HD 110432 is the first proposed, and best studied, member of a growing group of Be stars with X-ray properties similar to γ Cas. These stars exhibit hard-thermal X-rays that are variable on all measurable timescales. This emission contrasts with the soft emission of “normal" massive stars and with the non-thermal emission of all well known Be/X-ray binaries - so far, all Be + neutron star systems. In this work we present X-ray spectral and timing properties of HD 110432 from three XMM-Newton observations in addition to new optical spectroscopic observations. Like γ Cas, the X-rays of HD 110432 appear to have a thermal origin, as supported by strongly ionized Fe XXV and Fe XXVI lines detected in emission. A fluorescent iron feature at 6.4 keV is present in all observations, while the Fe XXVI Lyβ line is present in two of them. Its X-ray spectrum, complex and time variable, is well described in each observation by three thermal plasmas with temperatures ranging between 0.2-0.7, 3-6, and 16-37 keV. Thus, HD 110432 has the hottest thermal plasma of any known Be star. A sub-solar iron abundance (~0.3-0.5 ×Z_Fe,⊙) is derived for the hottest plasma, while lines of less excited ions at longer wavelengths are consistent with solar abundances. The star has a moderate 0.2-12 keV luminosity of ~5×1032 erg s-1. The intensity of the X-ray emission is strongly variable. Recurrent flare-like events on time scales as short as ~10 s are superimposed over a basal flux which varies on timescales of ~5-10×103 s, followed by similarly rapid hardness variabilities. There is no evidence for coherent oscillations, and an upper limit of ~2.5% is derived on the pulsed fraction for short pulsations from 0.005 to 2.5 Hz. In the optical region the strong and quasi-symmetrical profile of the Hα line (EW ~ -60 Å) as well as the detection of several metallic lines in emission strongly suggest a dense and/or large circumstellar disk. Also, the double-peaked profiles of metallic lines

  18. Differential Deposition Technique for Figure Corrections in Grazing Incidence X-ray Optics

    NASA Technical Reports Server (NTRS)

    Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail

    2009-01-01

    A differential deposition technique is being developed to correct the low- and mid-spatial-frequency deviations in the axial figure profile of Wolter type grazing incidence X-ray optics. These deviations arise due to various factors in the fabrication process and they degrade the performance of the optics by limiting the achievable angular resolution. In the differential deposition technique, material of varying thickness is selectively deposited along the length of the optic to minimize these deviations, thereby improving the overall figure. High resolution focusing optics being developed at MSFC for small animal radionuclide imaging are being coated to test the differential deposition technique. The required spatial resolution for these optics is 100 m. This base resolution is achievable with the regular electroform-nickel-replication fabrication technique used at MSFC. However, by improving the figure quality of the optics through differential deposition, we aim at significantly improving the resolution beyond this value.

  19. Damage-resistant single-pulse optics for x-ray free electron lasers

    SciTech Connect

    Hau-Riege, S; London, R; Bogan, M; Chapman, H; Bergh, M

    2007-04-27

    Short-pulse ultraviolet and x-ray free electron lasers of unprecedented peak brightness are in the process of revolutionizing physics, chemistry, and biology. Optical components for these new light sources have to be able to withstand exposure to the extremely high-fluence photon pulses. Whereas most optics have been designed to stay intact for many pulses, it has also been suggested that single-pulse optics that function during the pulse but disintegrate on a longer timescale, may be useful at higher fluences than multiple-pulse optics. In this paper we will review damage-resistant single-pulse optics that recently have been demonstrated at the FLASH soft-x-ray laser facility at DESY, including mirrors, apertures, and nanolenses. It was found that these objects stay intact for the duration of the 25-fs FLASH pulse, even when exposed to fluences that exceed the melt damage threshold by fifty times or more. We present a computational model for the FLASH laser-material interaction to analyze the extent to which the optics still function during the pulse. Comparison to experimental results obtained at FLASH shows good quantitative agreement.

  20. Diagnosing breast cancer using independent diffuse optical tomography and x-ray mammography scans

    NASA Astrophysics Data System (ADS)

    Fradkin, Maxim; Hofmann, Matthias C.; Rouet, Jean-Michel; Moore, Richard H.; Kopans, Daniel B.; Tipton, Keith; Suryanarayanan, Sankar; Boas, David A.; Fang, Qianqian

    2013-03-01

    We have previously demonstrated the utilization of spatially co-registered diffuse optical tomography (DOT) and digital breast tomosynthesis (DBT) for joint breast cancer diagnosis. However, clinical implementation of such a multi-modality approach may require development of integrated DOT/DBT imaging scanners, which can be costly and time-consuming. Exploring effective image registration methods that combine the diagnostic information from a standalone DOT measurement and a separate mammogram can be a cost-effective solution, which may eventually enable adding functional optical assessment to all previously installed digital mammography systems. In this study, we investigate a contour-based image registration method to convert independent optical and x-ray scans into co-registered datasets that can benefit from a joint image analysis. The breast surface used in 3D optical DOT reconstruction is registered with the breast contour line extracted from an x-ray mammogram acquired separately. This allows us to map the 2D mammogram to the optical measurement space and build structural constraints for optical image reconstruction. A non-linear reconstruction utilizing structure-priors is then performed to produce hemoglobin maps with improved resolution. To validate this approach, we used a set of tumor patient measurements with simultaneous DOT/DBT and separate 2D mammographic scans. The images recovered from the registration procedure derived from DOT and 2D mammogram present similar image quality compared to those recovered from co-registered DOT/DBT measurements.

  1. Three-dimensional phase-contrast X-ray microtomography with scanning–imaging X-ray microscope optics

    PubMed Central

    Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2013-01-01

    A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown. PMID:23955044

  2. Mounting and Alignment of Full-Shell Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Gubarev, Mikhail; Arnold, William; Kester, Thomas; Ramsey, Brian; Smithers, Martin

    2007-01-01

    We are developing grazing-incidence x-ray optics for astronomy. The optics are full-cylinder mirror shells fabricated using electroformed-nickel replication off super-polished mandrels. For space-based applications where weight is at a premium, very-thin-walled, light-weight mirrors are required. Such shells have been fabricated at MSFC with greater than 15 arcsec resolution. The challenge, however, is to preserve this resolution during mounting and assembly. We present here a status report on a mounting and alignment system currently under development at Marshall Space Flight Center to meet this challenge.

  3. A Optical Synchrotron Nebula around the X-Ray Pulsar 0540-693

    NASA Astrophysics Data System (ADS)

    Chanan, G.; Helfand, D.; Reynolds, S.

    The authors report the discovery of extended optical continuum emission around the recently discovered 50 ms X-ray pulsar in the supernova remnant 0540-693. Exposures in blue and red broadband filters made with the CTIO 4 m telescope and prime focus CCD show a center-brightened but clearly extended nebula about 4arcsec in diameter (FWHM), while an image in an [O III] filter shows an 8arcsec diameter shell (as reported earlier) which encloses the continuum source. 0540-693 is a system very similar to the Crab nebula and represents the second detection of optical synchrotron radiation in a supernova remnant.

  4. Generation of ultrashort pulses of electrons, X-rays and optical pulses by relativistically strong light

    SciTech Connect

    Umstadter, D.; Banerjee, S.; Chen, S.; Sepke, S.; Maksimchuk, A.; Valenzuela, A.; Rousse, A.; Shah, R.; Phuoc, K. Ta

    2006-04-07

    We report recent results of experiments in which relativistic optical effects play an important role, at peak laser intensities above 1019 W/cm2. These effects are leading to novel radiation sources, all with femtosecond pulse durations: (1) the generation of optical photons by means of pulse compression via relativistic cross-phase modulation, (2) ponderomotive deflection of laser accelerated electron beams, and (3) the generation of well-collimated keV-energy x-ray beams by means of either Thomson scattering or betatron oscillations in ion channels.

  5. Assessment of Ge-doped optical fibres subjected to x-ray irradiation

    NASA Astrophysics Data System (ADS)

    Ibrahim, S. A.; Che Omar, S. S.; Hashim, S.; Mahdiraji, G. A.; Bradley, D. A.; Kadir, A. B.; Isa, N. M.

    2014-11-01

    We have reported the thermoluminescence (TL) response of five different diameters ~120, 241, 362, 483, and 604 μm of 6 mol percent Ge-doped optical fibres. The perfomance of the Ge-doped optical fibre are compared with commercially available TLD-100 chips (LiF:Mg,Ti) in terms of their sensitivity and minimum detectable dose (MDD). The irradiation was performed using X-ray machine (Model ISO 'Narrow Spectrum Series') provided by the Malaysian Nuclear Agency (MNA) at 60 kV X-ray irradiation in low doses ranging from 1-10 mGy. The results show the linear TL dose response from the fibres up to 10 mGy. The smallest diameter of 120 pm optical fibre shows the highest TL dose response compared to above mentioned fibres. The minimum detectable dose (MDD) is 0.82, 0.20, 0.14, 0.08, and 0.13 mGy for Ge-doped with diameters of 120, 241, 362, 483 and 604 μm. All TL materials show the MDD value within the delivered dose 0.01-1.00 mGy subjected to x-ray irradiation. The Ge-doped fibre with diameter of 483 pm was matched the MDD value of TLD-100 chips that equivalent to 0.08 mGy at the same irradiation. We have observed that among the five different diameters of optical fibre, 120 μm shows the best results and its better response than TLD-100 chips (by a factor of 5). The linear response at low dose levels makes this optical fibre most suitable for medical application.

  6. Development of at-wavelength metrology for x-ray optics at the ALS

    SciTech Connect

    Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Yuan, Sheng; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory; Warwick, Tony; Padmore, Howard A.

    2010-07-09

    The comprehensive realization of the exciting advantages of new third- and forth-generation synchrotron radiation light sources requires concomitant development of reflecting and diffractive x-ray optics capable of micro- and nano-focusing, brightness preservation, and super high resolution. The fabrication, tuning, and alignment of the optics are impossible without adequate metrology instrumentation, methods, and techniques. While the accuracy of ex situ optical metrology at the Advanced Light Source (ALS) has reached a state-of-the-art level, wavefront control on beamlines is often limited by environmental and systematic alignment factors, and inadequate in situ feedback. At ALS beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of tests with increasing accuracy and sensitivity. Geometric Hartmann tests, performed with a scanning illuminated sub-aperture determine the wavefront slope across the full mirror aperture. Shearing interferometry techniques use coherent illumination and provide higher sensitivity wavefront measurements. Combining these techniques with high precision optical metrology and experimental methods will enable us to provide in situ setting and alignment of bendable x-ray optics to realize diffraction-limited, sub 50 nm focusing at beamlines. We describe here details of the metrology beamline endstation, the x-ray beam diagnostic system, and original experimental techniques that have already allowed us to precisely set a bendable KB mirror to achieve a focused spot size of 150 nm.

  7. Characterization of X-ray polycapillary optics by LiF crystal radiation detectors through confocal fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bonfigli, Francesca; Hampai, Dariush; Dabagov, Sultan B.; Montereali, Rosa Maria

    2016-08-01

    Solid-state radiation imaging detectors based on photoluminescent colour centres in lithium fluoride (LiF) crystals have been successfully tested for both advanced 2D and 3D characterizations of X-ray polycapillary optics by a table-top laboratory system. Polycapillary optics can control X-ray beams propagation and allows obtaining quasi-parallel beam (half-lens) or focused beams (full-lens). The combination of a fine-focused micro X-ray tube and a polycapillary lens can provide the high intensity radiation fluxes that are necessary for high resolution X-ray imaging. In this paper we present novel results about advanced characterization of these complex optics by 2D as well as 3D confocal laser fluorescence microscopy of X-ray irradiated LiF crystal detectors. Two dimensional high spatial resolution images on a wide field of view of transmitted X-rays through a semi-lens and 3D direct inspection of the coloured volumes produced in LiF crystals by both focused and parallel X-ray beam transmitted by a full and a semi-lens, respectively, as well as their 3D reconstructions were obtained. The results show that the photoluminescent colour centres volume in LiF crystals combined with an optical sectioning reading system provide information about tomography of transmitted X-ray beams by policapillary optics in a single exposure process. For the first time, the use of LiF crystal plates as versatile radiation imaging luminescent detectors have been used to characterize the operation of polycapillary optics as X-ray lens, in focusing and parallel mode.

  8. A new x-ray optics laboratory (XROL) at the ALS: mission, arrangement, metrology capabilities, performance, and future plans

    NASA Astrophysics Data System (ADS)

    Yashchuk, Valeriy V.; Artemiev, Nikolay A.; Lacey, Ian; McKinney, Wayne R.; Padmore, Howard A.

    2014-09-01

    The X-Ray Optics Laboratory (XROL) at the Advanced Light Source (ALS), a unique optical metrology lab, has been recently moved to a new, dedicated clean-room facility that provides improved environmental and instrumental conditions vitally required for high accuracy metrology with state-of-the-art X-ray optics. Besides the ALS, the XROL serves several DOE labs that lack dedicated on-site optical metrology capabilities, including the Linac Coherent Light Source (LCLS) at SLAC and LBNL's Center for X-Ray Optics (CXRO). The major role of XROL is to proactively support the development and optimal beamline use of x-ray optics. The application of different instruments available in the lab enables separate, often complementary, investigations and addresses of different potential sources of error affecting beamline performance. At the beamline, all the perturbations combine to produce a cumulative effect on the performance of the optic that makes it difficult to optimize the optic's operational performance. Ex situ metrology allows us to address the majority of the problems before the installation of the optic at a beamline, and to provide feedback on design and guidelines for the best usage of optics. We will review the ALS XROL mission, lab design and arrangement, ex situ metrology capabilities and performance, as well as the future plans for instrumentation upgrades. The discussion will be illustrated with the results of a broad spectrum of measurements of x-ray optics and optical systems performed at the XROL.

  9. NaGdF4:Eu3+ Nanoparticles for Enhanced X-ray Excited Optical Imaging

    PubMed Central

    2015-01-01

    X-ray luminescent nanoparticles (NPs), including lanthanide fluorides, have been evaluated for application to deep tissue in vivo molecular imaging using optical tomography. A combination of high material density, higher atomic number and efficient NIR luminescence from compatible lanthanide dopant ions indicates that particles that consist of ALnF4 (A = alkaline, Ln = lanthanide element) may offer a very attractive class of materials for high resolution, deep tissue imaging with X-ray excitation. NaGdF4:Eu3+ NPs produced an X-ray excited luminescence that was among the most efficient of nanomaterials that have been studied thus far. We have systematically studied factors such as (a) the crystal structure that changes the lattice environment of the doped Eu3+ ions within the unit cell; and extrinsic factors such as (b) a gold coating (with attendant biocompatibility) that couples to a plasmonic excitation, and (c) changes in the NPs surface properties via changes in the pH of the suspending medium—all with a significant impact on the X-ray excited luminescence of NaGdF4:Eu3+NPs. The luminescence from an optimally doped hexagonal phase NaGdF4:Eu3+ nanoparticle was 25% more intense compared to that of a cubic structure. We observed evidence of plasmonic reabsorption of midwavelength emission by a gold coating on hexagonal NaGdF4:Eu3+ NPs; fortunately, the NaGdF4:Eu3+ @Au core–shell NPs retained the efficient 5D0→7F4 NIR (692 nm) luminescence. The NaGdF4:Eu3+ NPs exhibited sensitivity to the ambient pH when excited by X-rays, an effect not seen with UV excitation. The sensitivity to the local environment can be understood in terms of the sensitivity of the excitons that are generated by the high energy X-rays (and not by UV photons) to crystal structure and to the surface state of the particles. PMID:24803724

  10. The x ray reflectivity of the AXAF VETA-I optics

    NASA Technical Reports Server (NTRS)

    Kellogg, Edwin M.; Chartas, G.; Graessle, D.; Hughes, John P.; Vanspeybroeck, Leon; Zhao, Ping; Weisskopf, M. C.; Elsner, R. F.; Odell, S. L.

    1992-01-01

    The x-ray reflectivity of the VETA-I optic, the outermost shell of the AXAF x-ray telescope, with a bare Zerodur surface, is measured and compared with theoretical predictions. Measurements made at energies of 0.28, 0.9, 1.5, 2.1, and 2.3 keV are compared with predictions based on ray trace calculations. The data were obtained at the x-ray calibrations facility at Marshall Space Flight Center with an electron impact x-ray source located 528 m from the grazing incidence mirror. The source used photoelectric absorption filters to eliminate bremsstrahlung continuum. The mirror has a diameter of 1.2 m and a focal length of 10 m. The incident and reflected x-ray flux are detected using two proportional counters, one located in the incident beam of x-rays at the entrance aperture of the VETA-I, and the other in the focal plane behind an aperture of variable size. Results on the variation of the reflectivity with energy as well as the absolute value of the reflectivity are presented. We also present a synchrotron reflectivity measurement with high energy resolution over the range 0.26 to 1.8 keV on a flat Zerodur sample, done at NSLS. We present evidence for contamination of the flat by a thin layer of carbon on the surface, and the possibility of alteration of the surface composition of the VETA-I mirror perhaps by the polishing technique. The overall agreement between the measured and calculated effective area of VETA-I is between 2.6 percent and 10 percent, depending on which model for the surface composition is adopted. Measurements at individual energies deviate from the best-fitting calculation to 0.3 to 0.8 percent, averaging 0.6 percent at energies below the high energy cutoff of the mirror reflectivity, and are as high as 20.7 percent at the cutoff. We also discuss the approach to the final preflight calibration of the full AXAF flight mirror.

  11. Partially coherent wavefront propagation simulations for inelastic x-ray scattering beamline including crystal optics

    NASA Astrophysics Data System (ADS)

    Suvorov, Alexey; Cai, Yong Q.; Sutter, John P.; Chubar, Oleg

    2014-09-01

    Up to now simulation of perfect crystal optics in the "Synchrotron Radiation Workshop" (SRW) wave-optics computer code was not available, thus hindering the accurate modelling of synchrotron radiation beamlines containing optical components with multiple-crystal arrangements, such as double-crystal monochromators and high-energy-resolution monochromators. A new module has been developed for SRW for calculating dynamical diffraction from a perfect crystal in the Bragg case. We demonstrate its successful application to the modelling of partially-coherent undulator radiation propagating through the Inelastic X-ray Scattering (IXS) beamline of the National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory. The IXS beamline contains a double-crystal and a multiple-crystal highenergy- resolution monochromator, as well as complex optics such as compound refractive lenses and Kirkpatrick-Baez mirrors for the X-ray beam transport and shaping, which makes it an excellent case for benchmarking the new functionalities of the updated SRW codes. As a photon-hungry experimental technique, this case study for the IXS beamline is particularly valuable as it provides an accurate evaluation of the photon flux at the sample position, using the most advanced simulation methods and taking into account parameters of the electron beam, details of undulator source, and the crystal optics.

  12. Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung S.; Ramachandran, Narayanan

    2004-01-01

    Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we nave developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3- D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities are focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.

  13. Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung S.; Ramachandran, Naryanan

    2005-01-01

    Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we have developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3-D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.

  14. Combining Fits of The Optical Photometry and X-ray Spectra of the Low Mass X-ray Binary V1408 Aquilae.

    NASA Astrophysics Data System (ADS)

    Gomez, Sebastian; Mason, Paul A.; Robinson, Edward L.

    2015-01-01

    V1408 Aquilae is a binary system with a black hole primary accreting matter from a low mass secondary. We observed the system at the McDonald Observatory and collected 126 hours of high speed optical photometry on the source. We modeled the optical light curve using the XRbinary light curve synthesis software. The best fits to the optical light curve seem to suggest that the primary is a low mass black hole, however we cannot exclude some high mass solutions. Our models slightly favor a 3 solar mass primary at an inclination of about 13 degrees. In order to further constrain these parameters, and verify their validity we compared the fits of the optical light curve to fits to the X-ray spectra of the source. Using data from the Chandra Transmission Grating Catalog and Archive and the ISIS software analysis package we modeled the spectra of the source with a multi-temperature blackbody for a relativistic accretion disk around a spinning black hole and an additional photon power law component. The fits to the optical lightcurve and X-ray spectra are in agreement, from this we conclude that the case for V1408 Aql to be at a low inclination and harbor a low mass black hole is plausible.

  15. A Disk-Corona Model for Optical-to-Hard X-ray spectrum of AGN

    NASA Astrophysics Data System (ADS)

    Kawaguchi, T.; Shimura, T.; Mineshige, S.

    We construct a disk-corona model to account for the optical-to-X-ray spectral energy distributions of Seyfert nuclei and QSOs. We study the emission spectrum emerging from a vertical disk-corona structure composed of two-temperature plasma by solving hydrostatic equilibrium and radiative transfer self-consistently. A fraction f of viscous heating is assumed to be dissipated in a corona where advective cooling is also included, and the remaining fraction, 1-f, within the main body of the disk. The model exhibits different photon indices in X-ray (Γ ~ 2.5 below 2 keV and ~ 1.5 above, where Fν ∝ ν(1 - Γ)) as the result of different emission mechanisms and different sites; the former slope is due to unsaturated Comptonization from the innermost zone and the latter is due to a combination of Comptonization and bremsstrahlung from the entire corona (<= 300 RSch). Because of the shorter dynamical time-scale at inner region than that at outer region, the emission from the inner radii is likely to be more variable than radiation from the outer parts. Then, the X-ray spectrum is expected to be softer in brighter phase, as observed in many Broad-Line Seyfert 1 nuclei.

  16. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator

    PubMed Central

    Schnell, Michael; Sävert, Alexander; Uschmann, Ingo; Reuter, Maria; Nicolai, Maria; Kämpfer, Tino; Landgraf, Björn; Jäckel, Oliver; Jansen, Oliver; Pukhov, Alexander; Kaluza, Malte Christoph; Spielmann, Christian

    2013-01-01

    Laser-plasma particle accelerators could provide more compact sources of high-energy radiation than conventional accelerators. Moreover, because they deliver radiation in femtosecond pulses, they could improve the time resolution of X-ray absorption techniques. Here we show that we can measure and control the polarization of ultra-short, broad-band keV photon pulses emitted from a laser-plasma-based betatron source. The electron trajectories and hence the polarization of the emitted X-rays are experimentally controlled by the pulse-front tilt of the driving laser pulses. Particle-in-cell simulations show that an asymmetric plasma wave can be driven by a tilted pulse front and a non-symmetric intensity distribution of the focal spot. Both lead to a notable off-axis electron injection followed by collective electron–betatron oscillations. We expect that our method for an all-optical steering is not only useful for plasma-based X-ray sources but also has significance for future laser-based particle accelerators. PMID:24026068

  17. An Integrated X-Ray/Optical Tomography System for Pre-clinical Radiation Research

    PubMed Central

    Eslami, S.; Yang, Y.; Wong, J.; Patterson, M. S.; Iordachita, I.

    2013-01-01

    The current Small Animal Radiation Research Platform (SARRP) is poor for localizing small soft tissue targets for irradiation or tumor models growing in a soft tissue environment. Therefore, an imaging method complementary to x-ray CT is required to localize the soft tissue target’s Center of Mass (CoM) to within 1 mm. In this paper, we report the development of an integrated x-ray/bioluminescence imaging/tomography (BLI/BLT) system to provide a pre-clinical, high resolution irradiation system. This system can be used to study radiation effects in small animals under the conebeam computed tomography (CBCT) imaging guidance by adding the bioluminescence imaging (BLI) system as a standalone system which can also be docked onto the SARRP. The proposed system integrates two robotic rotating stages and an x-ray source rated at maximum 130 kVp and having a small variable focal spot. A high performance and low noise CCD camera mounted in a light-tight housing along with an optical filter assembly is used for multi-wavelength BL tomography. A three-mirror arrangement is implemented to eliminate the need of rotating the CCD camera for acquiring multiple views. The mirror system is attached to a motorized stage to capture images in angles between 0–90° (for the standalone system). Camera and CBCT calibration are accomplished. PMID:25745539

  18. X-ray Imaging of MagLIF Experiments Using a Spherically-Bent Crystal Optic

    NASA Astrophysics Data System (ADS)

    Harding, E. C.; Gomez, M. R.; Jennings, C. A.; Knapp, P. F.; Slutz, S. A.; Sefkow, A. B.; Awe, T. J.; Hansen, S. B.; Peterson, K. J.; Hahn, K. D.; McBride, R. D.; Rochau, G. A.; Sinars, D. B.; Golovkin, I.

    2015-11-01

    The recent Magnetized Liner Inertial Fusion (MagLIF) experiments performed on Sandia's Z-machine produced significant thermonuclear DD fusion yields that were accompanied by observable x-ray emission [M.R. Gomez et. al., PRL (2014)]. The MagLIF experiments relied on a spherically-bent crystal optic to image portions of the x-ray continuum that were generated by the hot stagnation plasma. The images of stagnation show a long (6 to 8 mm) and narrow (~100 micron) column of x-ray emission with structure in both directions. This structure may be caused by variations in the electron temperature (Te) and density (ne) , as well as opacity variations in the surrounding Be pusher. Here we investigate the possible contributions from each of these effects. We will also discuss the development of a diagnostic technique in which Te and ne of the DD fuel are inferred from spectra emitted by Fe impurities that become ionized to a He-like charge state. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DoE NNSA under contract DE-AC04-94AL85000.

  19. Crosscheck of different techniques for two dimensional power spectral density measurements of x-ray optics

    SciTech Connect

    Yashchuk, Valeriy V.; Irick, Steve C.; Gullikson, Eric M.; Howells, Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi, Farhad; Warwick, Tony

    2005-07-12

    The consistency of different instruments and methods for measuring two-dimensional (2D) power spectral density (PSD) distributions are investigated. The instruments are an interferometric microscope, an atomic force microscope (AFM) and the X-ray Reflectivity and Scattering experimental facility, all available at Lawrence Berkeley National Laboratory. The measurements were performed with a gold-coated mirror with a highly polished stainless steel substrate. It was shown that these three techniques provide essentially consistent results. For the stainless steel mirror, an envelope over all measured PSD distributions can be described with an inverse power-law PSD function. It is also shown that the measurements can be corrected for the specific spatial frequency dependent systematic errors of the instruments. The AFM and the X-ray scattering measurements were used to determine the modulation transfer function of the interferometric microscope. The corresponding correction procedure is discussed in detail. Lower frequency investigation of the 2D PSD distribution was also performed with a long trace profiler and a ZYGO GPI interferometer. These measurements are in some contradiction, suggesting that the reliability of the measurements has to be confirmed with additional investigation. Based on the crosscheck of the performance of all used methods, we discuss the ways for improving the 2D PSD characterization of X-ray optics.

  20. Concurrent X-ray and optical observations of two dwarf novae during eruption

    NASA Technical Reports Server (NTRS)

    Silber, A.; Vrtilek, S. D.; Raymond, J. C.

    1994-01-01

    The dwarf novae SU UMa and RU Peg were each observed with the ROSAT Observatory during outburst. SU UMa was also observed twice between outbursts. The spectrum of SU UMa during quiescence is well fitted by a 2.1 keV thermal bremsstrahlung model with a Gaussian line at 0.97 keV absorbed by a column density of 1.4 x 10(exp 20)/sq cm. During the outburst the X-ray count rate dropped by a factor of 3. The outburst spectrum is well fitted to a similar spectrum with a significantly larger absorption. In outburst the mass transfer rate, dot-M, approaches the critical value for the optically thin/thick transition predicted by theoretical models of the boundary layer while the X-ray emission remains optically thin. The best-fit model to the outburst spectrum of RU Peg is a 4.9 keV thermal bremsstrahlung plus a line at 0.89 keV absorbed by a column density of 2.8 x 10(exp 20)/sq cm. The column density is consistent with the upper limit determined for interstellar absorption. The boundary layer at outburst is expected to be optically thick based on the value of dot-M determined from the IUE spectra. There are no ROSAT observations of RU Peg between outbursts, but the flux detected by ROSAT is a factor of 10 lower than that seen with the Einstein Observatory, probably during quiescence. For both CVs the X-ray flux from the boundary layer significantly decreases at the same time that the optical-UV flux greatly increases. We suggest that during outburst most of the boundary layer energy is carried away as kinetic energy of the wind.

  1. On the optical and X-ray afterglows of gamma ray bursts

    NASA Astrophysics Data System (ADS)

    Dado, S.; Dar, A.; De Rújula, A.

    2002-06-01

    We severely criticize the consuetudinary analysis of the afterglows of gamma-ray bursts (GRBs) in the conical-ejection fireball scenarios. We argue that, instead, recent observations imply that the long-duration GRBs and their afterglows are produced by highly relativistic jets of cannonballs (CBs) emitted in supernova explosions. The CBs are heated by their collision with the supernova shell. The GRB is the boosted surface radiation the CBs emit as they reach the transparent outskirts of the shell. The exiting CBs further decelerate by sweeping up interstellar matter (ISM). The early X-ray afterglow is dominated by thermal bremsstrahlung from the cooling CBs, the optical afterglow by synchrotron radiation from the ISM electrons swept up by the CBs. We show that this model fits simply and remarkably well all the measured optical afterglows of the 15 GRBs with known redshift, including that of GRB 990123, for which unusually prompt data are available. We demonstrate that GRB 980425 was a normal GRB produced by SN1998bw, with standard X-ray and optical afterglows. We find that the very peculiar afterglow of GRB 970508 can be explained if its CBs encountered a significant jump in density as they moved through the ISM. The afterglows of the nearest 8 of the known-redshift GRBs show various degrees of evidence for an association with a supernova akin to SN1998bw. In all other cases such an association, even if present, would have been undetectable with the best current photometric sensitivities. This gives strong support to the proposition that most, maybe all, of the long-duration GRBs are associated with supernovae. Although our emphasis is on optical afterglows, we also provide an excellent description of X-ray afterglows. Figures \\ref{fig228} to \\ref{X1216} are only available in electronic form at http:/www.edpsciences.org

  2. X-ray and optical multimodality tomographer for small animal examination

    NASA Astrophysics Data System (ADS)

    Da Silva, A.; Leabad, M.; Bordy, T.; Dinten, J.-M.; Peltié, P.; Rizo, P.

    2007-02-01

    A small animal multimodality tomographer dedicated to the co-registration of fluorescence optical signal and X-rays measurements has been developed in our laboratory. The purpose of such a system is to offer the possibility to get in vivo anatomical and functional information at once. Moreover, anatomical measurements can be used as a regularization factor in order to get the reconstructions of the biodistribution of fluorochromes more accurate and to speed up the treatment. The optical system is basically composed with a CW laser (Krypton, 752 nm) for an optimal excitation of Alexa-Fluor 750 fluorochromes, and a CCD camera coupled with a combination of filters for the fluorescence detection. The animal is placed inside a transparent tube filled with an index matching fluid. In order to perform multiple views of fluorescence data acquisitions, the cylinder is fixed to a rotating stage. The excitation beam is brought to the cylinder via two mirrors mounted on translation plates allowing a vertical scan. The optical data acquisitions are performed with a high sensitivity CCD camera. The X-ray generator and the X-ray detector have been placed perpendicularly to the optical chain. A first study on phantoms was conducted to evaluate the feasibility, to test the linearity and the reproducibility, and to fix the parameters for the co-registration. These test experiments were reproduced by considering mice in the oesophagus of which the previous tubes were inserted. Finally, the performance of the system was evaluated in vivo on mice bearing tumours in the lungs, tagged with Transferrin-AlexaFluor 750.

  3. Curved crystal x-ray optics for monochromatic analysis and imaging

    NASA Astrophysics Data System (ADS)

    Bingolbali, Ahyan

    Monochromatic x-ray imaging has been shown to increase contrast and reduce dose relative to conventional broadband imaging. However, clinical sources with very narrow energy bandwidth tend to have limited intensity and field of view. In this study, focussed fan beam monochromatic radiation was obtained using doubly curved crystal (DCC) x-ray optics. The technique could be used with a variety of clinical sources for monochromatic slot scan imaging. The intensity was assessed and the resolution of the focussed beam was measured using a knife-edge technique. A simulation model was developed and comparisons to the measured resolution were performed to verify the accuracy of the simulation to predict resolution for different conventional sources. A simple geometrical calculation was also developed. The measured, simulated and calculated resolutions agreed well. Adequate resolution and intensity for mammography was predicted for appropriate source/optic combinations. Since DCC optics are employed in crystallography and x-ray fluorescence systems and may find application to imaging, it is increasingly important to understand how optic defects impact performance for these systems. The simulation model assessed the effects of misalignment and optic defects on system parameters such as intensity, beam size, and resolution. Simulation results were compared to optics measurements. Rapid reproducible measurements of optics quality are important both for performing systematic studies of optics defects and for assessing individual optics. A simple operator-independent alignment technique was developed that was also beneficial in ensuring optimal beam intensity in analysis systems. The measurements and simulations were in good agreement and provided insight into essential optics parameters. The optics were used in powder diffraction due to the advantages of the intense focused beams. Measurements were made using a low power microfocus source for several small inorganic samples

  4. Coordinated Optical/X-ray observations of the CTTS V2129 Oph The Chandra View

    NASA Astrophysics Data System (ADS)

    Flaccomio, E.; Argiroffi, C.; Alencar, S. H. P.; Bouvier, J.; Donati, J.-F.; Getman, K.; Gregory, S. G.; Hussain, G.; Ibrahimov, M.; Jardine, M. M.; Skelly, M.; Walter, F.

    2011-12-01

    Young low-mass accreting stars (classical T Tauri stars; CTTSs) possess strong magnetic fields that are responsible for the regulation of the accretion and outflow processes, and the confinement and heating of coronal plasma. Understanding the physics of CTTS magnetospheres and of their interaction with circumstellar disks can elucidate the history and evolution of our own Sun and Solar System, at the stage when planets were being formed. In June 2009 we have conducted an extensive multi-wavelength observing campaign of V2129 Oph, a K5 CTTS in the ρ Ophiuchi molecular cloud, with the goal of obtaining a synoptic view of its photosphere, magnetic field, coronal plasma, and of its accretion spot(s) and funnel flow(s). We here report on the X-ray emission, as observed by the Chandra High Energy Transmission Grating (HETG). High-density plasma, presumably from the accretion shock, is responsible for the soft X-ray emission, at least during the first half of the observation. The X-ray emission from both the coronal plasma (T˜20MK) and the cooler and denser material from the accretion spot (T˜3MK) is observed to vary between the first and second half of the observation. From the high-resolution X-ray spectra we constrain the emission measure of the two components and the density of the cool plasma. Finally we interpret the time variability of the cool plasma component in terms of stellar rotation and the time-changing viewing angle of the accretion stream, as constrained by simultaneous optical observations.

  5. The Optical Gravitational Lensing Experiment. Optical Counterparts to the X-ray Sources in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Kowalczyk, K.; Soszyński, I.; Poleski, R.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Kozłowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Skowron, J.; Wyrzykowski, Ł.

    2012-06-01

    We present a sample of 209 variable objects - very likely optical counterparts to the X-ray sources detected in the direction of the Galactic center by the Galactic Bulge Survey (GBS) carried out with the Chandra satellite. The variable sources were found in the databases of the OGLE long term survey monitoring regularly the Galactic bulge since 1992. The counterpart candidates were searched based on the X-ray source position in the radius of 3.9 arcsec. Optical light curves of the candidates comprise a full variety of variability types: spotted stars, pulsating red giants (potentially secondary stars of symbiotic variables), cataclysmic variables, eclipsing binary systems, irregular non-periodic objects including an AGN (GRS 1734-292). Additionally, we find that positions of 19 non-variable stars brighter than 16.5 mag in the OGLE databases are so well aligned with the X-ray positions (<0.75 arcsec) that these objects are also likely optical counterparts to the GBS X-ray sources. We provide the OGLE astrometric and photometric information for all selected objects and their preliminary classifications. Photometry of the candidates is available from the OGLE Internet archive.

  6. Modeling the optical-X-ray accretion lag in LMC X-3: Insights into black-hole accretion physics

    SciTech Connect

    Steiner, James F.; McClintock, Jeffrey E.; Orosz, Jerome A.; Buxton, Michelle M.; Bailyn, Charles D.; Remillard, Ronald A.; Kara, Erin

    2014-03-10

    The X-ray persistence and characteristically soft spectrum of the black hole X-ray binary LMC X-3 make this source a touchstone for penetrating studies of accretion physics. We analyze a rich, ten-year collection of optical/infrared (OIR) time-series data in conjunction with all available contemporaneous X-ray data collected by the All-Sky Monitor and Proportional Counter Array detectors aboard the Rossi X-ray Timing Explorer. A cross-correlation analysis reveals an X-ray lag of ≈2 weeks. Motivated by this result, we develop a model that reproduces the complex OIR light curves of LMC X-3. The model is comprised of three components of emission: stellar light, accretion luminosity from the outer disk inferred from the time-lagged X-ray emission, and light from the X-ray-heated star and outer disk. Using the model, we filter a strong noise component out of the ellipsoidal light curves and derive an improved orbital period for the system. Concerning accretion physics, we find that the local viscous timescale in the disk increases with the local mass accretion rate; this in turn implies that the viscosity parameter α decreases with increasing luminosity. Finally, we find that X-ray heating is a strong function of X-ray luminosity below ≈50% of the Eddington limit, while above this limit X-ray heating is heavily suppressed. We ascribe this behavior to the strong dependence of the flaring in the disk upon X-ray luminosity, concluding that for luminosities above ≈50% of Eddington, the star lies fully in the shadow of the disk.

  7. FOXSI: Properties of optics and detectors for hard-X rays

    NASA Astrophysics Data System (ADS)

    Camilo Buitrago-Casas, Juan; Glesener, Lindsay; Christe, Steven; Krucker, Sam; Ishikawa, Shin-nosuke; Foster, Natalie

    2015-04-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a state-of-the-art direct focusing X-ray telescope designed to observe the Sun. This experiment completed its second flight onboard a sounding rocket last December 11, 2014 from the White Sands Missile Range in New Mexico. The optics use a set of iridium-coated nickel/cobalt mirrors made using a replication technique based on an electroformed perfect polished surface. Since this technique creates full shells that no need to be co-aligned with other segments, an angular resolution of up to ~5 arcsec is gotten. The FOXSI focal plane consists of seven double-sided strip detectors. Five Silicon and 2 CdTe detectors were used during the second flight.We present on various properties of Wolter-I optics that are applicable to solar HXR observation, including ray-tracing simulations of the single-bounce (“ghost ray”) patterns from sources outside the field of view and angular resolution for different source angles and effective area measurements of the FOXSI optics. We also present the detectors calibration results, paying attention to energy resolution (~0.5 keV), energy thresholds (~4-15 keV for Silicon and ~4-20 keV for CdTe detectors), and spatial coherence of these values over the entire detector.

  8. The origin and dynamics of soft X-ray-excited optical luminescence of ZnO.

    PubMed

    Armelao, Lidia; Heigl, Franziskus; Brunet, Sophie; Sammynaiken, Ramaswami; Regier, Tom; Blyth, Robert I R; Zuin, Lucia; Sankari, Rami; Vogt, Johannes; Sham, Tsun-Kong

    2010-12-01

    The distinct optical emission from ZnO materials, nanoneedles and microcrystallites synthesized with different sizes and morphologies by a flow deposition technique, is investigated with X-ray excited optical luminescence (XEOL) and time-resolved X-ray excited optical luminescence (TR-XEOL) from a synchrotron light source at the O K and Zn L(3,2) edges. The innovative use of XEOL, allowing site-specific chemical information and luminescence information at the same time, is fundamental to provide direct evidence for the different behaviour and the crucial role of bulk and surface defects in the origin of ZnO optical emission, including dynamics. XEOL from highly crystalline ZnO nanoneedles is characterized by a sharp band-gap emission (~380 nm) and a broad red luminescence (~680 nm) related to surface defects. Luminescence from ZnO microcrystallites is mostly dominated by green emission (~510 nm) associated with defects in the core. TR-XEOL experiments show considerably faster decay dynamics in nanoneedles compared to microcrystallites for both band-gap emission and visible luminescence. Herein we make a fundamental step forward correlating for the first time the interplay of size, crystallinity, morphology and excitation energy with luminescence from ZnO materials. PMID:21080402

  9. X-Ray and Optical Microlensing in the Lensed Quasar PG 1115+080

    NASA Astrophysics Data System (ADS)

    Morgan, Christopher W.; Kochanek, Christopher. S.; Dai, Xinyu; Morgan, Nicholas D.; Falco, Emilio E.

    2008-12-01

    We analyzed the microlensing of the X-ray and optical emission of the lensed quasar PG 1115+080. We find that the effective radius of the X-ray emission is 1.3+ 1.1-0.5 dex smaller than that of the optical emission. Viewed as a thin disk observed at inclination angle i, the optical accretion disk has a scale length, defined by the point where the disk temperature matches the rest-frame energy of the monitoring band (kT = hc/λrest with λrest = 0.3 μm), of log{(rs, opt/cm)[cos(i)/0.5]½} = 16.6 +/- 0.4. The X-ray emission region (1.4-21.8 keV in the rest frame) has an effective half-light radius of log (r1/2,X/cm) = 15.6+ 0.6-0.9. Given an estimated black hole mass of 1.2 × 109 M⊙, corresponding to a gravitational radius of log (rg/cm) = 14.3, the X-ray emission is generated near the inner edge of the disk, while the optical emission comes from scales slightly larger than those expected for an Eddington-limited thin disk. We find a weak trend supporting models with low stellar mass fractions near the lensed images, in mild contradiction to inferences from the stellar velocity dispersion and the time delays. Based on observations obtained with the Small and Moderate Aperture Research Telescope System (SMARTS) 1.3 m, which is operated by the SMARTS Consortium; the Apache Point Observatory 3.5 meter telescope, which is owned and operated by the Astrophysical Research Consortium; the WIYN Observatory, which is owned and operated by the University of Wisconsin, Indiana University, Yale University, and the National Optical Astronomy Observatory (NOAO); the 6.5 m Magellan Baade telescope, which is a collaboration between the Observatories of the Carnegie Institution of Washington (OCIW), the University of Arizona, Harvard University, the University of Michigan, and the Massachusetts Institute of Technology; and observations made with the NASA/ESA Hubble Space Telescope for program HST-GO-9744 of the Space Telescope Science Institute, which is operated by the

  10. DETECTION OF A COOL, ACCRETION-SHOCK-GENERATED X-RAY PLASMA IN EX LUPI DURING THE 2008 OPTICAL ERUPTION

    SciTech Connect

    Teets, William K.; Weintraub, David A.; Kastner, Joel H.; Richmond, Michael; Grosso, Nicolas; Hamaguchi, Kenji

    2012-11-20

    EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for a {approx}0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.

  11. Detection of a Cool, Accretion-Shock-Generated X-Ray Plasma in EX Lupi During the 2008 Optical Eruption

    NASA Technical Reports Server (NTRS)

    Teets, William K.; Weintraub, David A.; Kastner, Joel H.; Grosso, Nicholas; Hamaguchi, Kenji; Richmond, Michael

    2012-01-01

    EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for an approx 0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.

  12. The puzzling afterglow of GRB 050721: a rebrightening seen in the optical but not in the X-ray

    SciTech Connect

    Antonelli, L. A.; Romano, P.; Testa, V.; D'Elia, V.; Guetta, D.; Torii, K.; Malesani, D.

    2007-08-21

    We present here the analysis of the early and late multiwavelength afterglow emission, as observed by Swift a small robotic telescope, and the VLT. We compare early observations with late afterglow observations obtained with Swift and the VLT and we observe an intense rebrightening in the optical band at about one day after the burst which is not present in the X-ray band. The lack of detection in X-ray of such a strong rebrightening at lower energies may be described with a variable external density profile. In such a scenario, the combined X-ray and optical observations allow us to derive that the matter density located at {approx} 1017 cm from the burst is about a factor of 10 higher than in the inner region. This is the first time in which a rebrightening has been observed in the optical afterglow of a GRB that is clearly absent in the X-ray afterglow.

  13. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    NASA Technical Reports Server (NTRS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  14. CdTe focal plane detector for hard x-ray focusing optics

    NASA Astrophysics Data System (ADS)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Gregory, Kyle; Inglis, Andrew; Panessa, Marco

    2015-08-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 mm x 20 mm CdTe-based detector with 250 μm square pixels (80x80 pixels) which achieves 1 keV FWHM @ 60 keV and gives full spectroscopy between 5 keV and 200 keV. An added advantage of these detectors is that they have a full-frame readout rate of 10 kHz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1mm-thick CdTe detectors are tiled into a 2x2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flightsuitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  15. X-ray and Optical follow-up of the mid-2014 Outburst of Aql X-1 at peak and at low activity

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Dhillon, Vik S.; Tomsick, John A.; Butterley, Tim; Littlefair, Stuart M.; Wilson, Richard W.; Kennea, Jamie A.

    2014-09-01

    Following reports of optical and X-ray brightening of the soft X-ray transient Aql X-1 (ATel #6280, #6286), we obtained monitoring observations of the source with the Swift X-ray mission, and with the 0.5 m Durham/Sheffield robotic optical telescope located on La Palma.

  16. Development of an Adaptive Optical System for Sub-10-nm Focusing of Synchrotron Radiation Hard X-rays

    SciTech Connect

    Mimura, H.; Kimura, T.; Matsuyama, S.; Yokoyama, H.; Yumoto, H.

    2011-09-09

    In the hard x-ray region, to obtain the theoretical resolution or diffraction-limited focusing size in an imaging optical system, both ultraprecise optics and highly accurate alignment are necessary. An adaptive optical system is used for the compensation of aberrations in various optical systems, such as optical microscopes and space telescopes. In situ wavefront control of hard x-rays is also effective for realizing ideal performance. The aim of this paper is to develop an adaptive optical system for sub-10-nm hard x-ray focusing. The adaptive optical system performs the wavefront measurement using a phase retrieval algorithm and wavefront control using grazing-incidence deformable mirrors. Several results of experiments using the developed system are reported.

  17. A QUASAR CATALOG WITH SIMULTANEOUS UV, OPTICAL, AND X-RAY OBSERVATIONS BY SWIFT

    SciTech Connect

    Wu Jian; Grupe, Dirk; Koch, Scott; Gelbord, Jonathan; Schneider, Donald P.; Gronwall, Caryl; Porterfield, Blair L.; Vanden Berk, Daniel; Wesolowski, Sarah

    2012-08-01

    We have compiled a catalog of optically selected quasars with simultaneous observations in UV/optical and X-ray bands by the Swift Gamma-ray Burst Explorer. Objects in this catalog are identified by matching the Swift pointings with the Sloan Digital Sky Survey Data Release 5 quasar catalog. The final catalog contains 843 objects, among which 637 have both Ultraviolet Optical Telescope (UVOT) and X-Ray Telescope (XRT) observations and 354 of which are detected by both instruments. The overall X-ray detection rate is {approx}60% which rises to {approx}85% among sources with at least 10 ks of XRT exposure time. We construct the time-averaged spectral energy distribution (SED) for each of the 354 quasars using UVOT photometric measurements and XRT spectra. From model fits to these SEDs, we find that the big blue bump contributes about {approx}0.3 dex to the quasar luminosity. We re-visit the {alpha}{sub ox}-L{sub 2500A} relation by selecting a clean sample with only Type 1 radio-quiet quasars; the dispersion of this relation is reduced by at least 15% compared with studies that use non-simultaneous UV/optical and X-ray data. We only found a weak correlation between L{sub bol}/L{sub Edd} and {alpha}{sub UV}. We do not find significant correlations between {alpha}{sub x} and {alpha}{sub ox}, {alpha}{sub ox} and {alpha}{sub UV}, and {alpha}{sub x} and log L(0.3-10 keV). The correlations between {alpha}{sub UV} and {alpha}{sub x}, {alpha}{sub ox} and {alpha}{sub x}, {alpha}{sub ox} and {alpha}{sub UV}, L{sub bol}/L{sub Edd} and {alpha}{sub x}, and L{sub bol}/L{sub Edd} and {alpha}{sub ox} are stronger among low-redshift quasars, indicating that these correlations are likely driven by the changes of SED shape with accretion state.

  18. Progress on the Flash X-Ray Optical Transition Radiation Diagnostic

    SciTech Connect

    Tang, V; Houck, T; Brown, C

    2008-03-30

    This document summarizes the Flash X-Ray accelerator (FXR) optical transition radiation (OTR) spot-size diagnostics efforts in FY07. During this year, new analysis, simulation, and experimental approaches were utilized to interpret OTR spot data from both dielectric foils such as Kapton (VN type) and metal coated foils. Significant new findings of the intricacies involved in the diagnostic and of FXR operational issues were achieved. Geometry and temperature based effects were found to affect the beam image profiles from the OTR foils. These effects must be taken into account in order to deduce accurately the beam current density profile.

  19. HST/ACS IMAGING OF OMEGA CENTAURI: OPTICAL COUNTERPARTS OF CHANDRA X-RAY SOURCES

    SciTech Connect

    Cool, Adrienne M.; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Haggard, Daryl; Anderson, Jay E-mail: dhaggard@northwestern.edu

    2013-02-15

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel images obtained using F625W, F435W, and F658N filters; with nine pointings we cover the central {approx}10' Multiplication-Sign 10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, {approx}40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M {sub 625} =10.4-12.6, making them comparable in brightness to field CVs near the period minimum discovered in the Sloan Digital Sky Survey. Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously reported quiescent low-mass X-ray binary. We also identify 3 foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in {omega} Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring the total number of red stragglers (also known as sub-subgiants) that have been identified in {omega} to Cen 20, the largest number yet known in any globular cluster.

  20. Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics

    SciTech Connect

    Mokso, R.; Cloetens, P.; Maire, E.; Ludwig, W.; Buffiere, J.-Y.

    2007-04-02

    To overcome the limitations in terms of spatial resolution and field of view of existing tomography techniques, a hard x-ray projection microscope is realized based on the sub-100-nm focus produced by Kirkpatrick-Baez optics. The sample is set at a small distance downstream of the focus and Fresnel diffraction patterns with variable magnification are recorded on a medium-resolution detector. While the approach requires a specific phase retrieval procedure and correction for mirror imperfections, it allows zooming nondestructively into bulky samples. Quantitative three-dimensional nanoscale microscopy is demonstrated on an aluminum alloy in local tomography mode.

  1. Analysis of Active Figure Control Effects on Mounting Strategy for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffrey J.; Roche, Jacqueline M.; O'Dell, Stephen L.; Ramsey, Brian D.; Elsner, Ryan F.; Gubarev, Mikhail V.; Weisskopf, Martin C.

    2014-01-01

    As part of ongoing development efforts at MSFC, we have begun to investigate mounting strategies for highly nested x-ray optics in both full-shell and segmented configurations. The analytical infrastructure for this effort also lends itself to investigation of active strategies. We expect that a consequence of active figure control on relatively thin substrates is that errors are propagated to the edges, where they might affect the effective precision of the mounting points. Based upon modeling, we describe parametrically, the conditions under which active mounts are preferred over fixed ones, and the effect of active figure corrections on the required number, locations, and kinematic characteristics of mounting points.

  2. X-ray Experiments for Students at the SLS Optics Beamline

    SciTech Connect

    Flechsig, U.; Jaggi, A.; Krempasky, J.; Oberta, P.; Spielmann, S.; Veen, J. F. van der; Als-Nielsen, J.

    2010-06-23

    We present a X-ray training course for students. The course covers fundamental properties of synchrotron radiation and basic techniques like scattering and absorption. We prepared ten experiments together with a tutorial. The whole course takes about a week. A first student group from the University of Copenhagen passed the course in June 2009. The experiments were performed at the optics beamline of the Swiss Light Source which can be part-time allocated for training purposes. Two experiments are described in more detail: scattering from a hanging drop of water turning into ice and measurement of the power of a pink synchrotron beam using a simple calorimeter.

  3. X-ray laser studies using plasmas created by optical field ionization

    SciTech Connect

    Krushelnick, K.M.; Tighe, W.; Suckewer, S.

    1995-01-01

    X-ray laser experiments involving the creation of fast recombining plasmas by optical field ionization of preformed targets were conducted. A nonlinear increase in the intensity of the 13.5nm Lyman-{alpha} line in Li III with the length of the target plasma was observed but only for distances less than the laser confocal parameter and for low plasma electron temperatures. Multiphoton pumping of resonant atomic transitions was also examined and the process of multiphoton ionization of FIII was found to be more probable than multiphoton excitation.

  4. Optical identification of 4U 1608-52. [X ray source

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Liller, W.

    1978-01-01

    Analysis of astronomical plates obtained with a CTIO 4m telescope has revealed the probable optical counterpart of the recurrent flaring (or transient) X-ray source 4U 1608-52. Since the object is most probably a galactic source, it is not a typical galactic nova. An error box evaluation of the hypothesis is presented, and compared to other large burster error boxes, notably Aql X-1. Limits on the reddening and extinction of the object are set, permitting an estimation (89 kpc) of the object's distance.

  5. Dopant concentration dependent optical and X-Ray induced photoluminescence in Eu3+ doped La2Zr2O7

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Brik, Mikhail; Mao, Yuanbing

    2015-03-01

    Herein, we will be presenting the dopant (Eu) concentration dependent high density La2Zr2O7 nanoparticles for optical and X-ray scintillation applications by use of X - ray diffraction, Raman, FTIR, scanning electron microscope (SEM), transmission electron microscopy (TEM), optically and X-ray excited photoluminescence (PL). Several theoretical methods have been used in order to investigate the structural, electronic, optical, elastic, dynamic properties of Eu doped La2Zr2O7. It is observed that Eu: La2Zr2O7 shows an intense red luminescence under 258, 322, 394 and 465 nm excitation. The optical intensity of Eu: La2Zr2O7 depends on the dopant concentration of Eu3+. Following high energy excitation with X-rays, Eu: La2Zr2O7 shows an atypical Eu PL response (scintillation) with a red emission. The intense color emission of Eu obtained under 258 nm excitation, the X-ray induced luminescence property along with reportedly high density of La2Zr2O7, makes these nanomaterials attractive for optical and X-ray applications. The authors thank the support from the Defense Threat Reduction Agency (DTRA) of the U.S. Department of Defense (Award #HDTRA1-10-1-0114).

  6. Multilayer and grazing incidence X-ray/EUV optics; Proceedings of the Meeting, San Diego, CA, July 22-24, 1991

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor)

    1992-01-01

    The present conference discusses the Advanced X-ray Astrophysics Facility (AXAF) calibration by means of synchrotron radiation and its X-ray reflectivity, X-ray scattering measurements from thin-foil X-ray mirrors, lobster-eye X-ray optics using microchannel plates, space-based interferometry at EUV and soft X-ray wavelengths, a water-window imaging X-ray telescope, a graded d-spacing multilayer telescope for high energy X-ray astronomy, photographic films for the multispectral solar telescope array, a soft X-ray ion chamber, and the development of hard X-ray optics. Also discussed are X-ray spectroscopy with multilayered optics, a slit aperture for monitoring X-ray experiments, an objective double-crystal spectrometer, a Ly-alpha coronagraph/polarimeter, tungsten/boron nitride multilayers for XUV optical applications, the evaluation of reflectors for soft X-ray optics, the manufacture of elastically bent crystals and multilayer mirrors, and selective photodevices for the VUV.

  7. BEaTriX, expanded x-ray beam facility for testing modular elements of telescope optics: an update

    NASA Astrophysics Data System (ADS)

    Pelliciari, C.; Spiga, D.; Bonnini, E.; Buffagni, E.; Ferrari, C.; Pareschi, G.; Tagliaferri, G.

    2015-09-01

    We present in this paper an update on the design of BEaTriX (Beam Expander Testing X-ray facility), an X-ray apparatus to be realized at INAF/OAB and that will generate an expanded, uniform and parallel beam of soft X-rays. BEaTriX will be used to perform the functional tests of X-ray focusing modules of large X-ray optics such as those for the ATHENA X-ray observatory, using the Silicon Pore Optics (SPO) as a baseline technology, and Slumped Glass Optics (SGO) as a possible alternative. Performing the tests in X-rays provides the advantage of an in-situ, at-wavelength quality control of the optical modules produced in series by the industry, performing a selection of the modules with the best angular resolution, and, in the case of SPOs, there is also the interesting possibility to align the parabolic and the hyperbolic stacks directly under X-rays, to minimize the aberrations. However, a parallel beam with divergence below 2 arcsec is necessary in order to measure mirror elements that are expected to reach an angular resolution of about 4 arcsec, since the ATHENA requirement for the entire telescope is 5 arcsec. Such a low divergence over the typical aperture of modular optics would require an X-ray source to be located in a several kilometers long vacuum tube. In contrast, BEaTriX will be compact enough (5 m x 14 m) to be housed in a small laboratory, will produce an expanded X-ray beam 60 mm x 200 mm broad, characterized by a very low divergence (1.5 arcsec HEW), strong polarization, high uniformity, and X-ray energy selectable between 1.5 keV and 4.5 keV. In this work we describe the BEaTriX layout and show a performance simulation for the X-ray energy of 4.5 keV.

  8. Optical and x-ray imaging of electron beams using synchrotron emission

    SciTech Connect

    Wilke, M.D.

    1994-12-01

    In the case of very low eniittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory.

  9. Optical and x-ray imaging of electron beams using synchrotron emission

    SciTech Connect

    Wilke, M.

    1995-01-01

    In the case of very low emittance electron and positron storage ring beams, it is impossible to make intrusive measurements of beam properties without increasing the emittance and possibly disrupting the beam. In cases where electron or positron beams have high average power densities (such as free electron laser linacs), intrusive probes such as wires and optical transition radiation screens or Cherenkov emitting screens can be easily damaged or destroyed. The optical and x-ray emissions from the bends in the storage rings and often from linac bending magnets can be used to image the beam profile to obtain emittance information about the beam. The techniques, advantages and limitations of using both optical and x-ray synchrotron emission to measure beam properties are discussed and the possibility of single bunch imaging is considered. The properties of suitable imagers and converters such as phosphors are described. Examples of previous, existing and planned applications are given where available, including a pinhole imaging system currently being designed for the Advanced Photon Source at Argonne National Laboratory.

  10. Complete optical stack modeling for CMOS-based medical x-ray detectors

    NASA Astrophysics Data System (ADS)

    Zyazin, Alexander S.; Peters, Inge M.

    2015-03-01

    We have developed a simulation tool for modeling the performance of CMOS-based medical x-ray detectors, based on the Monte Carlo toolkit GEANT4. Following the Fujita-Lubberts-Swank approach recently reported by Star-Lack et al., we calculate modulation transfer function MTF(f), noise power spectrum NPS(f) and detective quantum efficiency DQE(f) curves. The complete optical stack is modeled, including scintillator, fiber optic plate (FOP), optical adhesive and CMOS image sensor. For critical parts of the stack, detailed models have been developed, taking into account their respective microstructure. This includes two different scintillator types: Gd2O2S:Tb (GOS) and CsI:Tl. The granular structure of the former is modeled using anisotropic Mie scattering. The columnar structure of the latter is introduced into calculations directly, using the parameterization capabilities of GEANT4. The underlying homogeneous CsI layer is also incorporated into the model as well as the optional reflective layer on top of the scintillator screen or the protective polymer top coat. The FOP is modeled as an array of hexagonal bundles of fibers. The simulated CMOS stack consists of layers of Si3N4 and SiO2 on top of a silicon pixel array. The model is validated against measurements of various test detector structures, using different x-ray spectra (RQA5 and RQA-M2), showing good match between calculated and measured MTF(f) and DQE(f) curves.

  11. The Focusing Optics X-ray Solar Imager: Second Flight and Recent Results

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Krucker, Sam; Glesener, Lindsay; Ramsey, Brian; Ishikawa, Shin-nosuke; Camilo Buitrago Casas, Juan; Foster, Natalie; Takahashi, Tadayuki

    2015-04-01

    Energy release and particle acceleration on the Sun is a frequent occurrence associated with a number of different solar phenomenon including but not limited to solar flares and coronal mass ejections. The exact mechanism through which particle are accelerated is still not well understood. One of the best ways to gain insight into accelerated particles on the Sun is by observing the Sun in hard X-rays (HXR) which provide one of the most direct diagnostics of energetic electrons. Past and current HXR observations lack the sensitivity and dynamic range necessary to observe the faint signature of accelerated electrons where they are accelerated in the solar corona. However these limitations can be overcome through the use of HXR focusing optics coupled with solid-state pixelated detectors. We present on the second successful launch of the Focusing Optics X-ray Solar Imager, a sounding rocket payload which flew on December 11, 2014. In this flight, the FOXSI optics were upgraded for better sensitivity and new CdTe strip detectors were included to provide increased detection efficiency. During this flight, FOXSI observed thermal emission from at least three active regions (AR#12234, AR#12233, AR#12235). Another observation target for FOXSI was the quiet Sun. In this presentation we summarize the flight as well as the latest observations and analysis.

  12. X-ray/EUV optics for astronomy and microscopy; Proceedings of the Meeting, San Diego, CA, Aug. 7-11, 1989

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Editor)

    1989-01-01

    Topics included in these proceedings are on X-ray/EUV zone plates, filters, and windows; X-ray/EUV microscopes, telescopes, and monochromators; the design, characterization, and test of multilayer optics; the fabrication of X-ray/EUV multilayer optics; and the design, characterization, and test of grazing incidence X-ray optics. Other topics are on the fabrication of grazing incidence X-ray optics, X-ray/EUV space observatories and missions, the test and calibration of X-ray/EUV instruments, X-ray polarimetry, and X-ray/EUV spectroscopy and instruments. Papers are presented on 8-keV X-ray zone plates, a cylindrical X-ray multilayer monochromator, multilayer mirrors for 182 A, advanced flow polishing of exotic optical materials, and optical analysis of grazing incidence ring resonators for free-electron lasers. Attention is also given to X-ray mirrors for the European Synchrotron Radiation Facility, the XUV wide-field camera for Rosat, an optical test and alignment method for the XMM mirror module, Bragg crystal polarimeters, and a liftoff process for multilayer phase gratings.

  13. An Ultraviolet-Excess Optical Candidate for the Luminous Globular Cluster X-Ray Source in NGC 1851

    NASA Technical Reports Server (NTRS)

    Deutsch, Eric W.; Anderson, Scott F.; Margon, Bruce; Downes, Ronald A.

    1996-01-01

    The intense, bursting X-ray source in the globular cluster NGC 1851 was one of the first cluster sources discovered, but has remained optically unidentified for 25 years. We report here on results from Hubble Space Telescope WFPC2 multicolor images in NGC 1851. Our high spatial resolution images resolve approximately 200 objects in the 3 minute radius Einstein X-ray error circle, 40 times as many as in previous ground-based work. A color-magnitude diagram of the cluster clearly reveals a markedly UV-excess object with B approximately 21, (U - B) approximately -0.9, only 2 minutes from the X-ray position. The UV-excess candidate is 0.12 minutes distant from a second, unremarkable star that is 0.5 mag brighter in B; thus ground-based studies of this field are probably impractical. Three other UV-excess objects are also present among the approximately 16,000 objects in the surveyed region of the cluster, leaving an approximately 5% probability that a UV-excess object has fallen in the X-ray error circle by chance. No variability of the candidate is seen in these data, although a more complete study is required. If this object is in fact the counterpart of the X-ray source, previous inferences that some globular cluster X-ray sources are optically subluminous with respect to low-mass X-ray binaries in the field are now strengthened.

  14. X-RAY AND OPTICAL STUDY OF LOW CORE DENSITY GLOBULAR CLUSTERS NGC6144 AND E3

    SciTech Connect

    Lan, S-H; Kong, Albert K. H.; Verbunt, Frank; Lewin, Walter H. G.; Bassa, Cees; Anderson, Scott F.; Pooley, David

    2010-03-20

    We report on the Chandra X-ray Observatory and Hubble Space Telescope (HST) observations of two low core-density globular clusters, NGC6144 and E3. By comparing the number of X-ray sources inside the half-mass radius to those outside, we found six X-ray sources within the half-mass radius of NGC6144, of which four are expected to be background sources; three X-ray sources are also found within the half-mass radius of E3, of which three are expected to be background sources. Therefore, we cannot exclude the possibility that all our sources are background sources. However, combining the results from X-ray and optical observations, we found that one to two sources in NGC6144 and one source in E3 are likely to be cataclysmic variables and that one source in NGC6144 is an active binary, based on the X-ray and optical properties. The number of faint X-ray sources in NGC6144 and E3 found with Chandra and HST is higher than a prediction based on collision frequency, but is closer to that based on mass. Our observations strongly suggest that the compact binary systems in NGC6144 and E3 are primordial in origin.

  15. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics

    SciTech Connect

    Riveros, Raul E.; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3{+-}2.5nmrms to 5.7{+-}0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  16. Design and development of the SIMBOL-X hard x-ray optics

    NASA Astrophysics Data System (ADS)

    Pareschi, G.; Attinà, P.; Basso, S.; Borghi, G.; Burkert, W.; Buzzi, R.; Citterio, O.; Civitani, M.; Conconi, P.; Cotroneo, V.; Cusumano, G.; Dell'Orto, E.; Freyberg, M.; Hartner, G. D.; Gorenstein, P.; Mattaini, E.; Mazzoleni, F.; Parodi, G.; Romaine, S.; Spiga, D.; Tagliaferri, G.; Valtolina, R.; Valsecchi, G.; Vernani, D.

    2008-07-01

    The SIMBOL-X formation-flight X-ray mission will be operated by ASI and CNES in 2014, with a large participation of the French and Italian high energy astrophysics scientific community. Also German and US Institutions are contributing in the implementation of the scientific payload. Thanks to the formation-flight architecture, it will be possible to operate a long (20 m) focal length grazing incidence mirror module, formed by 100 confocal multilayer-coated Wolter I shells. This system will allow us to focus X-rays over a very broad energy band, from 0.5 keV up to 80 keV and beyond, with more than two orders of magnitude improvement in angular resolution (20 arcsec HEW) and sensitivity (0.5 µCrab on axis @30 keV) compared to non focusing detectors used so far. The X-ray mirrors will be realized by Ni electroforming replication, already successfully used for BeppoSAX, XMM-Newton, and JET-X/SWIFT; the thickness trend will be about two times less than for XMM, in order to save mass. Multilayer reflecting coatings will be implemented, in order to improve the reflectivity beyond 10 keV and to increase the field of view 812 arcmin at 30 keV). In this paper, the SIMBOL-X optics design, technology and implementation challenges will be discussed; it will be also reported on recent results obtained in the context of the SIMBOL-X optics development activities.

  17. BLOX: the Bonn lensing, optical, and X-ray selected galaxy clusters. I. Cluster catalog construction

    NASA Astrophysics Data System (ADS)

    Dietrich, J. P.; Erben, T.; Lamer, G.; Schneider, P.; Schwope, A.; Hartlap, J.; Maturi, M.

    2007-08-01

    The mass function of galaxy clusters is an important cosmological probe. Differences in the selection method could potentially lead to biases when determining the mass function. From the optical and X-ray data of the XMM-Newton Follow-Up Survey, we obtained a sample of galaxy cluster candidates using weak gravitational lensing, the optical Postman matched filter method, and a search for extended X-ray sources. We developed our weak-lensing search criteria by testing the performance of the aperture mass statistic on realistic ray-tracing simulations matching our survey parameters and by comparing two filter functions. We find that the dominant noise source for our survey is shape noise at almost all significance levels and that spurious cluster detections due to projections of large-scale structures are negligible, except possibly for highly significantly detected peaks. Our full cluster catalog has 155 cluster candidates, 116 found with the Postman matched filter, 59 extended X-ray sources, and 31 shear selected potential clusters. Most of these cluster candidates were not previously known. The present catalog will be a solid foundation for studying possible selection effects in either method. Based on observations carried out at the European Southern Observatory, La Silla, Chile under program Nos. 170.A-0789, 70.A-0529, 71.A-0110, 072.A-0061, 073.A-0050. The cluster catalogs are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg/cgi-bin/qcat?J/A+A/470/821

  18. Intra-fraction setup variability: IR optical localization vs. X-ray imaging in a hypofractionated patient population

    PubMed Central

    2011-01-01

    Background The purpose of this study is to investigate intra-fraction setup variability in hypo-fractionated cranial and body radiotherapy; this is achieved by means of integrated infrared optical localization and stereoscopic kV X-ray imaging. Method and Materials We analyzed data coming from 87 patients treated with hypo-fractionated radiotherapy at cranial and extra-cranial sites. Patient setup was realized through the ExacTrac X-ray 6D system (BrainLAB, Germany), consisting of 2 infrared TV cameras for external fiducial localization and X-ray imaging in double projection for image registration. Before irradiation, patients were pre-aligned relying on optical marker localization. Patient position was refined through the automatic matching of X-ray images to digitally reconstructed radiographs, providing 6 corrective parameters that were automatically applied using a robotic couch. Infrared patient localization and X-ray imaging were performed at the end of treatment, thus providing independent measures of intra-fraction motion. Results According to optical measurements, the size of intra-fraction motion was (median ± quartile) 0.3 ± 0.3 mm, 0.6 ± 0.6 mm, 0.7 ± 0.6 mm for cranial, abdominal and lung patients, respectively. X-ray image registration estimated larger intra-fraction motion, equal to 0.9 ± 0.8 mm, 1.3 ± 1.2 mm, 1.8 ± 2.2 mm, correspondingly. Conclusion Optical tracking highlighted negligible intra-fraction motion at both cranial and extra-cranial sites. The larger motion detected by X-ray image registration showed significant inter-patient variability, in contrast to infrared optical tracking measurement. Infrared localization is put forward as the optimal strategy to monitor intra-fraction motion, featuring robustness, flexibility and less invasivity with respect to X-ray based techniques. PMID:21496255

  19. A comparison of an elliptical multipole wiggler and crystal optics for the production of circularly polarized x-rays

    SciTech Connect

    Lang, J.C.; Srajer, G.; Dejus, R.J.

    1995-06-19

    Recently, there has been a great deal of interest in polarization modulated x-ray diffraction and spectroscopy techniques. In particular, the importance of photon helicity in spin-dependent magnetic interactions has expanded the need for high quality circularly polarized x-ray sources with fast switching capabilities. Because circularly polarized photons couple differently with the magnetic moment of an atom than do neutrons, they are able to provide unique magnetic information not accessible by neutron techniques. The development of experiments utilizing circularly polarized x-rays, however, has been hampered by the lack of efficient sources. Two different approaches for the production of circularly polarized x-rays have attracted the most attention; (i) employing specialized insertion devices, and (ii) utilizing x-ray phase retarders based on perfect crystal optics. For soft x-rays (0.1--3.0 keV), source development has centered primarily on insertion devices because there are currently no crystal or multilayer polarizing optics available that cover that full energy range. For harder x-rays (>3.0 keV), however, phase retarding optics have been demonstrated, but whether these optics or insertion devices provide the most efficient circularly polarized x-ray source in this energy regime has remained a matter of contention. Advocates of each method have made qualitative statements about their advantages, i.e., insertion devices provide a larger flux and phase retarders provide a higher degree of circular polarization, yet a detailed quantitative comparison has been lacking. In this paper, we attempt to provide such a comparison by examining the efficiencies of an elliptical multipole wiggler (EMW) and a standard undulator followed by phase retarding crystal optics.

  20. A search for optical counterparts of nine galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Davidsen, A.; Malina, R.; Bowyer, S.

    1976-01-01

    Results of a photographic and spectrophotometric search to a limiting B magnitude of approximately 18.5 for the optical counterparts of nine galactic X-ray sources with good positions are reported. The sources included in this survey are 3U 1709-23, 1728-16, 1728-24, 1758-20, 1758-25, 1811-17, 1813-14, 1837+04, 1908+00. Optical candidates for six of these sources are discussed, including blue objects which may be the optical counterparts of 1709-23 and 1728-16, a distant B star near 1908+00, and a very unusual strong-emission-line object which is probably associated with 1728-24 (GX 2+5). Coordinates, magnitudes, colors, spectral data, and finding charts are presented.

  1. High precision surface metrology of x-ray optics with an interferometric microscope

    NASA Astrophysics Data System (ADS)

    Lacey, Ian; Artemiev, Nikolay A.; McKinney, Wayne R.; Merthe, Daniel J.; Yashchuk, Valeriy V.

    2013-09-01

    We describe a systematic procedure developed for surface characterization of super polished x-ray optical components with an interferometric microscope. In this case, obtaining trustworthy metrology data requires thorough accounting of the instrument's optical aberrations, its spatial resolution, and random noise. We analyze and cross compare two general experimental approaches to eliminate the aberration contribution. The reference surface approach relies on aberration evaluation with successive measurements of a high quality reference mirror. The so called super smooth measurement mode consists of subtracting two surface profiles measured over two statistically uncorrelated areas of the optics under test. The precisely measured instrument's modulation transfer function (MTF) and random noise spectrum allows us to correct the aberration-amended surface topography in the spatial frequency domain. While the developed measurement procedure is general and can be applied to various metrology instruments, the specific results presented are from a Zygo NewView™ 7300 microscope.

  2. X-ray optics. II - A technique for high resolution spectroscopy

    NASA Technical Reports Server (NTRS)

    Cash, Webster C., Jr.

    1991-01-01

    A novel combination of optical elements and properties is combined to achieve high-spectral resolution using grazing incidence optics of modest quality. Analysis and ray tracing of examples show that using radial groove gratings at high blaze angles in the manner of an echelle spectrograph can provide high spectral resolution. This arrangement is compared to the conventional in-plane designs to show that the off-plane is superior in nearly every respect. Cross dispersion can be provided by the energy resolution of a CCD detector. Additional resolution can be squeezed from the system by strategic placement of gratings to take advantage of the azimuthal response of a Wolter X-ray optic.

  3. Transient optical properties of semiconductors under femtosecond x-ray irradiation

    NASA Astrophysics Data System (ADS)

    Tkachenko, Victor; Medvedev, Nikita; Li, Zheng; Piekarz, Przemysław; Ziaja, Beata

    2016-04-01

    Semiconductors under femtosecond x-ray irradiation are transiently excited to nonequilibrium states. This can lead to observable material modifications. During the excitation and relaxation dynamics, optical properties of the solid are changing, affected by both transient electron excitation as well as the evolution of the atomic structure. In this paper we apply a unified hybrid model to trace these two effects. Transient evolution of the optical properties is calculated within the transferable tight-binding approach. The presented methodology of calculation of the complex dielectric function proves to be capable of describing changes in the optical parameters during the phase transitions, when the solids are driven out of equilibrium by intense laser pulses, in a reasonable agreement with experiments.

  4. Advanced X-ray Optics Metrology for Nanofocusing and Coherence Preservation

    SciTech Connect

    Goldberg, Kenneth A.; Yashchuk, Valeriy

    2007-12-01

    What is the point of developing new high-brightness light sources if beamline optics won't be available to realize the goals of nano-focusing and coherence preservation? That was one of the central questions raised during a workshop at the 2007 Advanced Light Source Users Meeting. Titled, 'Advanced X-Ray Optics Metrology for Nano-focusing and Coherence Preservation', the workshop was organized by Kenneth Goldberg and Valeriy Yashchuk (both of Lawrence Berkeley National Laboratory, LBNL), and it brought together industry representatives and researchers from Japan, Europe, and the US to discuss the state of the art and to outline the optics requirements of new light sources. Many of the presentations are viewable on the workshop website http://goldberg.lbl.gov/MetrologyWorkshop07/. Many speakers shared the same view of one of the most significant challenges facing the development of new high-brightness third and fourth generation x-ray, soft x-ray, and EUV light sources: these sources place extremely high demands on the surface quality of beamline optics. In many cases, the 1-2-nm surface error specs that define the outer bounds of 'diffraction-limited' quality are beyond the reach of leading facilities and optics vendors. To focus light to 50-nm focal spots, or smaller, from reflective optics and to preserve the high coherent flux that new sources make possible, the optical surface quality and alignment tolerances must be measured in nano-meters and nano-radians. Without a significant, well-supported research effort, including the development of new metrology techniques for use both on and off the beamline, these goals will likely not be met. The scant attention this issue has garnered is evident in the stretched budgets and limited manpower currently dedicated to metrology. With many of the world's leading groups represented at the workshop, it became clear that Japan and Europe are several steps ahead of the US in this critical area. But the situation isn't all

  5. Dynamic Processes in Be Star Atmospheres.. 6; Simultaneous X-Ray, Ultraviolet, and Optical Variations in lambda Eridani

    NASA Technical Reports Server (NTRS)

    Smith, Myron A.; Murakami, T.; Ezuka, H.; Anandarao, B. G.; Chakraborty, A.; Corcoran, M. F.; Hirata, R.

    1995-01-01

    This report describes a joint X ray/ultraviolet/ground based study of the abnormal Be star lambda Eri which has previously shown evidence of X ray flaring from Rosat observations in 1991. The 1991 flare event caught the astronomical hot star community by surprise because x ray flares have not been observed from other single B-type stars, before or since. Both optical (H-alpha) and UV/Voyager observations provide evidence for transient heating events near the surface of lambda Eri.

  6. The HEAO-A2 soft X-ray survey of cataclysmic variable stars - EX Hydrae during optical quiescence

    NASA Technical Reports Server (NTRS)

    Cordova, F. A.; Riegler, G. R.

    1979-01-01

    Results are reported for HEAO A2 soft X-ray (below 2 keV) scanning observations of the southern dwarf nova EX Hya. An X-ray light curve is presented which shows no apparent orbital modulation. The best-fitting spectral parameters are derived for the source, and the observations are compared with the spectral behavior of the dwarf nova SS Cyg during optical quiescence. The results are discussed in terms of models for X-ray production by accreting white dwarfs.

  7. Discovery of the optical polarization flare following the X-ray giant outburst of V0332+53.

    NASA Astrophysics Data System (ADS)

    Slowikowska, Agnieszka; Reig, Pablo; Krzeszowski, Krzysztof; Zejmo, M. Michal

    2016-07-01

    V0332+53 is a transient Be X-ray binary that went through a giant outburst between June 2015 and October 2015 registered by the Gamma-ray Burst Monitor (GMB) on board of the Fermi satellite. We present the discovery of a flare of linearly polarized optical light in V0332+53 that followed the X-ray outburst. We monitored the source with the multi-wavelength optical polarimeter RINGO3 on the 2-m fully robotic Liverpool Telescope located at the Observatorio del Roque de Los Muchachos on La Palma. RINGO3 measures polarization simultaneously in three spectral wavelength bands: blue (350-640 nm), green (650-760 nm) and red (770-1000 nm). The polarized optical flare went off around 90 days after the X-ray burst and lasted another 90 days in all three wavelength bands of RINGO3. Polarization degree reached up to 6% in blue and up to 4% in red, while the PA changed by more than 100 degrees during the flare. This is the first detection of optical polarization flare of high mass X-ray binary correlated with a preceding X-ray outburst. Our observations shed new light on the activities of X-ray binaries.

  8. Progress of Focusing X-ray and Gamma-ray Optics for Small Animal Imaging

    SciTech Connect

    Pivovaroff, M J; Funk, T; Barber, W C; Ramsey, B D; Hasegawa, B H

    2005-08-05

    Significant effort is currently being devoted to the development of noninvasive imaging systems that allow in vivo assessment of biological and biomolecular interactions in mice and other small animals. Ideally, one would like to discern these functional and metabolic relationships with in vivo radionuclide imaging at spatial resolutions approaching those that can be obtained using the anatomical imaging techniques (i.e., <100 {micro}m), which would help to answer outstanding questions in many areas of biomedicine. In this paper, we report progress on our effort to develop high-resolution focusing X-ray and gamma-ray optics for small-animal radionuclide imaging. The use of reflective optics, in contrast to methods that rely on absorptive collimation like single- or multiple-pinhole cameras, decouples spatial resolution from sensitivity (efficiency). Our feasibility studies have refined and applied ray-tracing routines to design focusing optics for small animal studies. We also have adopted a replication technique to manufacture the X-ray mirrors, and which in experimental studies have demonstrated a spatial resolution of {approx}190 {micro}m. We conclude that focusing optics can be designed and fabricated for gamma-ray energies, and with spatial resolutions, and field of view suitable for in vivo biological studies. While the efficiency of a single optic is limited, fabrication methods now are being developed that may make it possible to develop imaging systems with multiple optics that could collect image data over study times that would be practical for performing radionuclide studies of small animals.

  9. Initial Optical Counterpart Identifications for Chandra Deep Survey X-ray Sources towards the Galactic Center

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Grindlay, J. E.; Hong, J.; Laycock, S.; Baganoff, F. K.; Muno, M. P.; Garmire, G. P.; Morris, M.

    2003-03-01

    We present the initial optical counterpart identifications for the Chandra Catalog of X-ray sources towards the Galactic Center (Muno et al. ApJ submitted). 2357 X-ray point sources are detected during 590 ks of Chandra ACIS-I observations with a 17'x17' field around SgrA*. The search for their optical counterparts is conducted with moderately deep V, R, I and Hα images covering the same field taken with the Mosaic camera on the CTIO 4-m telescope in March 2000 as part of the Chandra Multiwavelength Plane (ChaMPlane) Survey. The error radius of each Chandra source is estimated with a raytrace/wavdetect simulation based on the source off-axis angle and net counts. Some 237 sources are detected below 1.2 keV and with >99% source significance in the full 17' field. They are likely sources in the foreground of the Galactic Center. 204 of the 237 sources have matching optical counterparts. For the ˜2000 sources detected in the hard band (2.5--8 keV), only ˜10% have optical matching (at R<23). And most of these ˜10% matches are likely coincident matches with foreground stars. We present our optical counterpart identification method used for the ChaMPlane Survey and the V, R, I, Hα magnitudes of the optical counterparts of this initial sample. This work is supported by NASA/SAO grant AR1-2001X, AR2-3002A and NSF grant AST-0098683.

  10. 100 ps time-resolved solution scattering utilizing a wide-bandwidth X-ray beam from multilayer optics.

    PubMed

    Ichiyanagi, K; Sato, T; Nozawa, S; Kim, K H; Lee, J H; Choi, J; Tomita, A; Ichikawa, H; Adachi, S; Ihee, H; Koshihara, S

    2009-05-01

    100 ps time-resolved X-ray solution-scattering capabilities have been developed using multilayer optics at the beamline NW14A, Photon Factory Advanced Ring, KEK. X-ray pulses with an energy bandwidth of DeltaE/E = 1-5% are generated by reflecting X-ray pulses (DeltaE/E = 15%) through multilayer optics, made of W/B(4)C or depth-graded Ru/C on silicon substrate. This tailor-made wide-bandwidth X-ray pulse provides high-quality solution-scattering data for obtaining photo-induced molecular reaction dynamics. The time-resolved solution scattering of CH(2)I(2) in methanol is demonstrated as a typical example. PMID:19395804

  11. X-ray pulse preserving single-shot optical cross-correlation method for improved experimental temporal resolution

    SciTech Connect

    Beye, M.; Krupin, O.; Hays, G.; Jong, S. de; Lee, S.; Coffee, R.; Holmes, M. R.; Fry, A. R.; White, W. E.; Bostedt, C.; Schlotter, W. F.; Reid, A. H.; Rupp, D.; Lee, W.-S.; Scherz, A. O.; Chuang, Y.-D.; Cryan, J. P.; Glownia, J. M.; Foehlisch, A.; Durr, H. A.

    2012-03-19

    We measured the relative arrival time between an optical pulse and a soft x-ray pulse from a free-electron laser. This femtosecond cross-correlation measurement was achieved by observing the change in optical reflectivity induced through the absorption of a fraction of the x-ray pulse. The main x-ray pulse energy remained available for an independent pump-probe experiment where the sample may be opaque to soft x-rays. The method was employed to correct the two-pulse delay data from a canonical pump-probe experiment and demonstrate 130 {+-} 20 fs (FWHM) temporal resolution. We further analyze possible timing jitter sources and point to future improvements.

  12. The 1978 X-ray and optical outburst of Aquila X-1 /4U 1908+00/

    NASA Astrophysics Data System (ADS)

    Charles, P. A.; Thorstensen, J. R.; Bowyer, S.; Clark, G. W.; Li, F. K.; van Paradijs, J.; Remillard, R.; Holt, S. S.; Kaluzienski, L. J.; Junkkarinen, V. T.; Puetter, R. C.; Smith, H. E.; Pollard, G. S.; Sanford, P. W.; Tapia, S.; Vrba, F. J.

    1980-04-01

    During the summer of 1978 the recurrent transient X-ray source, Aquila X-1, underwent its first major outburst in two years. This paper presents the results of extensive X-ray and optical observations of this event, which lasted for about two months. The peak X-ray luminosity was about 1.3 times that of the Crab and exhibited spectrum-dependent flickering on time scales of about 5 minutes. In addition, one very large flare was observed about one month after maximum that was also correlated with spectral changes. During this flare the previously identified optical counterpart brightened from V = 19 to a peak of V = 14.8, where it was distinctly blue (U - B = 0.4), and then reddened during the decay. These observations are interpreted in terms of a standard accretion disk model with particular emphasis on the similarities to Sco -1 and other dwarf X-ray systems.

  13. The 1978 X-ray and optical outburst of Aquila X-1 /4U 1908+00/

    NASA Technical Reports Server (NTRS)

    Charles, P. A.; Thorstensen, J. R.; Bowyer, S.; Clark, G. W.; Li, F. K.; Van Paradijs, J.; Remillard, R.; Holt, S. S.; Kaluzienski, L. J.; Junkkarinen, V. T.

    1980-01-01

    During the summer of 1978 the recurrent transient X-ray source, Aquila X-1, underwent its first major outburst in two years. This paper presents the results of extensive X-ray and optical observations of this event, which lasted for about two months. The peak X-ray luminosity was about 1.3 times that of the Crab and exhibited spectrum-dependent flickering on time scales of about 5 minutes. In addition, one very large flare was observed about one month after maximum that was also correlated with spectral changes. During this flare the previously identified optical counterpart brightened from V = 19 to a peak of V = 14.8, where it was distinctly blue (U - B = 0.4), and then reddened during the decay. These observations are interpreted in terms of a standard accretion disk model with particular emphasis on the similarities to Sco -1 and other dwarf X-ray systems.

  14. Performance of x-ray imaging systems with optical coupling for demagnification between scintillator and CCD readout

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Yu, Tong; Schempp, William V.

    1994-11-01

    This paper discusses the performance of x-ray imaging devices employing optical coupling between the x-ray detector (phosphor screen) and the readout (CCD). Optical coupling can be performed with the aid of a lens or with the aid of a fiber-optic taper. Conventional wisdom predicts that fiber-optic coupling is superior on account of superior light collection efficiency. For the same demagnification, fiber-optic tapers usually have a higher numerical aperture in the object plane than a lens. This paper presents a review of critical imaging system components and provides a comparison of factors such as light collection efficiency, phosphor screen light output and CCD sensitivity. The paper presents data obtained with two commercially available x-ray imaging systems, one a lens coupled system, the other a fiber- optically coupled system. These systems are used for mammographically guided stereotactic breast biopsy to determine the x-, y-, and z-coordinates of the lesion to be biopsied. The paper concludes that a lens coupled x-ray imaging system can be superior to a fiber-optic one, particularly with respect to Detective Quantum Efficiency. This superiority is based on a quantum gain of about 5 CCD electrons per absorbed x-ray photon, which is (however barely) sufficient to preserve most of the information collected by the system's Lanex screen.

  15. X ray, extreme and far ultraviolet optical thin films for space applications

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    Far and extreme ultraviolet optical thin film filters find many uses in space astronomy, space astrophysics, and space aeronomy. Spacebased spectrographs are used for studying emission and absorption features of the earth, planets, sun, stars, and the interstellar medium. Most of these spectrographs use transmission or reflection filters. This requirement has prompted a search for selective filtering coatings with high throughput in the FUV and EUV spectral region. Important progress toward the development of thin film filters with improved efficiency and stability has been made in recent years. The goal for this field is the minimization of absorption to get high throughput and enhancement of wavelength selection. The Optical Aeronomy Laboratory (OAL) at the University of Alabama in Huntsville has recently developed the technology to determine optical constants of bulk and film materials for wavelengths extending from x-rays (0.1 nm) to the FUV (200 nm), and several materials have been identified that were used for designs of various optical devices which previously have been restricted to space application in the visible and near infrared. A new design concept called the Pi-multilayer was introduced and applied to the design of optical coatings for wavelengths extending from x-rays to the FUV. Section 3 of this report explains the Pi-multilayer approach and demonstrates its application for the design and fabrication of the FUV coatings. Two layer Pi-stacks have been utilized for the design of reflection filters in the EUV wavelength range from 70 - 100 nm. In order to eliminate losses due to the low reflection of the imaging optics and increase throughput and out-of-band rejection of the EUV instrumentation we introduced a self-filtering camera concept. In the FUV region, MgF2 and LiF crystals are known to be birefringent. Transmission polarizers and quarterwave retarders made of MgF2 or LiF crystals are commercially available but the performances are poor. New

  16. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    SciTech Connect

    Voronov, Dmitry L.; Cambie, Rossana; Ahn, Minseung; Anderson, Erik H.; Chang, Chih-Hao; Gullikson, Eric M.; Heilmann, Ralf K.; Salmassi, Farhad; Schattenburg, Mark L.; Yashchuk, Valeriy V.; Padmore, Howard A.

    2009-09-16

    We describe a revolutionary new approach to high spectral resolution soft x-ray optics. Conventionally in the soft x-ray energy range, high spectral resolution is obtained by use of a relatively low line density grating operated in 1st order with small slits. This severely limits throughput. This limitation can be removed by use of a grating either in very high order, or with very high line density, if one can maintain high diffraction efficiency. We have developed a new technology for achieving both of these goals which should allow high throughput spectroscopy, at resolving powers of up to 106 at 1 keV. Such optics should provide a revolutionary advance for high resolution lifetime free spectroscopy, such as RIXS, and for pulse compression of chirped beams. We report recent developmental fabrication and characterization of a prototype grating optimized for 14.2 nm EUV light. The prototype grating with a 200 nm period of the blazed grating substrate coated with 20 Mo/Si bilayers with a period of 7.1 nm demonstrates good dispersion in the third order (effective groove density of 15,000 lines per mm) with a diffraction efficiency of more than 33percent.

  17. [Microfabricated X-ray Optics Technology Development for the Constellation X-Mission

    NASA Technical Reports Server (NTRS)

    Schattenburg, Mark L.

    2005-01-01

    MIT has previously developed advanced methods for the application of silicon microstructures (so-called microcombs) in the precision assembly of foil x-ray optics in support of the Constellation-X Spectroscopy X-ray Telescope (SXT) technology development at the NASA Goddard Space Flight Center (GSFC). During the first year of the above Cooperative Agreement, MIT has developed a new, mature, potentially high- yield process for the manufacturing of microcombs that can be applied to a range of substrates independent of thickness. MIT also developed techniques to extract microcomb accuracy from an assembly truss metrology test stand and to extend the dynamic range of its Shack-Hartmann foil metrology tool. The placement repeatability of foil optics with microcombs in the assembly truss has been improved by a factor of two to approximately 0.15 micron. This was achieved by electric contact determination in favor of determining contact through force measurements. Development work on a stress-free thin foil holder was also supported by this agreement and successfully continued under a different grant.

  18. The Focusing Optics X-ray Solar Imager Small Explorer Concept Mission

    NASA Astrophysics Data System (ADS)

    Christe, Steven; Shih, Albert Y.; Dennis, Brian R.; Glesener, Lindsay; Krucker, Sam; Saint-Hilaire, Pascal; Gubarev, Mikhail; Ramsey, Brian

    2016-05-01

    We present the FOXSI (Focusing Optics X-ray Solar Imager) small explorer (SMEX) concept, a mission dedicated to studying particle acceleration and energy release on the Sun. FOXSI is designed as a 3-axis stabilized spacecraft in low-Earth orbit making use of state-of-the-art grazing incidence focusing optics combined withpixelated solid-state detectors, allowing for direct imaging of solar X-rays. The current design being studied features multiple telescopes with a 14 meter focal length enabled by a deployable boom.FOXSI will observe the Sun in the 3-100 keV energy range. The FOXSI imaging concept has already been tested on two sounding rocket flights, in 2012 and 2014 and on the HEROES balloon payload flight in 2013. FOXSI will image the Sun with an angular resolution of 5'', a spectral resolution of 0.5 keV, and sub-second temporal resolution. FOXSI is a direct imaging spectrometer with high dynamic range and sensitivity and will provide a brand-new perspective on energy release on the Sun. We describe the mission and its science objectives.

  19. Second flight of the Focusing Optics X-ray Solar Imager sounding rocket [FOXSI-2

    NASA Astrophysics Data System (ADS)

    Buitrago-Casas, J. C.; Krucker, S.; Christe, S.; Glesener, L.; Ishikawa, S. N.; Ramsey, B.; Foster, N. D.

    2015-12-01

    The Focusing Optics X-ray Solar Imager (FOXSI) is a sounding rocket experiment that has flown twice to test a direct focusing method for measuring solar hard X-rays (HXRs). These HXRs are associated with particle acceleration mechanisms at work in powering solar flares and aid us in investigating the role of nanoflares in heating the solar corona. FOXSI-1 successfully flew for the first time on November 2, 2012. After some upgrades including the addition of extra mirrors to two optics modules and the inclusion of new fine-pitch CdTe strip detectors, in addition to the Si detectors from FOXSI-1, the FOXSI-2 payload flew successfully again on December 11, 2014. During the second flight four targets on the Sun were observed, including at least three active regions, two microflares, and ~1 minute of quiet Sun observation. This work is focused in giving an overview of the FOXSI rocket program and a detailed description of the upgrades for the second flight. In addition, we show images and spectra investigating the presence of no thermal emission for each of the flaring targets that we observed during the second flight.

  20. VizieR Online Data Catalog: Optical counterparts of X-ray sources in OGLE (Udalski+, 2012)

    NASA Astrophysics Data System (ADS)

    Udalski, A.; Kowalczyk, K.; Soszynski, I.; Poleski, R.; Szymanski, M. K.; Kubiak, M.; Pietrzynski, G.; Kozlowski, S.; Pietrukowicz, P.; Ulaczyk, K.; Skowron, J.; Wyrzykowski, L.

    2012-11-01

    We present a sample of 209 variable objects - very likely optical counterparts to the X-ray sources detected in the direction of the Galactic center by the Galactic Bulge Survey (GBS) carried out with the Chandra satellite. The variable sources were found in the databases of the OGLE long term survey monitoring regularly the Galactic bulge since 1992. The counterpart candidates were searched based on the X-ray source position in the radius of 3.9 arcsec. (2 data files).