Science.gov

Sample records for adjusted pan evaporation

  1. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  2. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  3. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  4. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  5. 7 CFR 58.913 - Evaporators and vacuum pans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Evaporators and vacuum pans. 58.913 Section 58.913....913 Evaporators and vacuum pans. All equipment used in the removal of moisture from milk or milk... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans....

  6. A mathematical model of pan evaporation under steady state conditions

    NASA Astrophysics Data System (ADS)

    Lim, Wee Ho; Roderick, Michael L.; Farquhar, Graham D.

    2016-09-01

    In the context of changing climate, global pan evaporation records have shown a spatially-averaged trend of ∼ -2 to ∼ -3 mm a-2 over the past 30-50 years. This global phenomenon has motivated the development of the "PenPan" model (Rotstayn et al., 2006). However, the original PenPan model has yet to receive an independent experimental evaluation. Hence, we constructed an instrumented US Class A pan at Canberra Airport (Australia) and monitored it over a three-year period (2007-2010) to uncover the physics of pan evaporation under non-steady state conditions. The experimental investigations of pan evaporation enabled theoretical formulation and parameterisation of the aerodynamic function considering the wind, properties of air and (with or without) the bird guard effect. The energy balance investigation allowed for detailed formulation of the short- and long-wave radiation associated with the albedos and the emissivities of the pan water surface and the pan wall. Here, we synthesise and generalise those earlier works to develop a new model called the "PenPan-V2" model for application under steady state conditions (i.e., uses a monthly time step). Two versions (PenPan-V2C and PenPan-V2S) are tested using pan evaporation data available across the Australian continent. Both versions outperformed the original PenPan model with better representation of both the evaporation rate and the underlying physics of a US Class A pan. The results show the improved solar geometry related calculations (e.g., albedo, area) for the pan system led to a clear improvement in representing the seasonal cycle of pan evaporation. For general applications, the PenPan-V2S is simpler and suited for applications including an evaluation of long-term trends in pan evaporation.

  7. Differences in evaporation between a floating pan and class a pan on land

    USGS Publications Warehouse

    Masoner, J.R.; Stannard, D.I.; Christenson, S.C.

    2008-01-01

    Research was conducted to develop a method for obtaining floating pan evaporation rates in a small (less than 10,000 m2) wetland, lagoon, or pond. Floating pan and land pan evaporation data were collected from March 1 to August 31, 2005, at a small natural wetland located in the alluvium of the Canadian River near Norman, Oklahoma, at the U.S. Geological Survey Norman Landfill Toxic Substances Hydrology Research Site. Floating pan evaporation rates were compared with evaporation rates from a nearby standard Class A evaporation pan on land. Floating pan evaporation rates were significantly less than land pan evaporation rates for the entire period and on a monthly basis. Results indicated that the use of a floating evaporation pan in a small free-water surface better simulates actual physical conditions on the water surface that control evaporation. Floating pan to land pan ratios were 0.82 for March, 0.87 for April, 0.85 for May, 0.85 for June, 0.79 for July, and 0.69 for August. ?? 2008 American Water Resources Association.

  8. Modeling monthly pan evaporations using fuzzy genetic approach

    NASA Astrophysics Data System (ADS)

    Kişi, Özgür; Tombul, Mustafa

    2013-01-01

    SummaryThis study investigates the ability of fuzzy genetic (FG) approach in estimation of monthly pan evaporations. Various monthly climatic data, that are, solar radiation, air temperature, relative humidity and wind speed from two stations, Antalya and Mersin, in Mediterranean Region of Turkey, were used as inputs to the FG technique so as to estimate monthly pan evaporations. In the first part of the study, FG models were compared with neuro-fuzzy (ANFIS), artificial neural networks (ANNs) and Stephens-Stewart (SS) methods in estimating pan evaporations of Antalya and Mersin stations, separately. Comparison of the models revealed that the FG models generally performed better than the ANFIS, ANN and SS models. In the second part of the study, models were compared to each other in two different applications. In the first application the input data of Antalya Station were used as inputs to the models to estimate pan evaporation data of Mersin Station. The pan evaporation data of Mersin Station were estimated using the input data of Antalya and Mersin stations in the second application. Comparison results indicated that the FG models performed better than the ANFIS and ANN models. Comparison of the accuracy of the applied models in estimating total pan evaporations showed that the FG model provided the closest estimate. It was concluded that monthly pan evaporations could be successfully estimated by the FG approach.

  9. Evolutionary neural networks for monthly pan evaporation modeling

    NASA Astrophysics Data System (ADS)

    Kişi, Özgür

    2013-08-01

    Estimating pan evaporation is very important for monitoring, survey and management of water resources. This study proposes the application evolutionary neural networks (ENN) for modeling monthly pan evaporations. Solar radiation, air temperature, relative humidity, wind speed and pan evaporation data from two stations, Antalya and Mersin, in Mediterranean Region of Turkey are used in the study. In the first part of the study, ENN models are compared with those of the fuzzy genetic (FG), neuro-fuzzy (ANFIS), artificial neural networks (ANN) and Stephens-Stewart (SS) methods in estimating pan evaporations of Antalya and Mersin stations, separately. Comparison results indicate that the ENN models generally perform better than the FG, ANFIS, ANN and SS models. In the second part of the study, models are compared with each other in estimating Mersin’s pan evaporations using input data of both stations. Results reveal that the ENN models performed better than the FG, ANFIS and ANN models. It was concluded that monthly pan evaporations can be successfully estimated by the ENN method. The performance of the ENN model with full weather data as inputs presents 0.749 and 0.759 mm of mean absolute error for the Antalya and Mersin stations, respectively.

  10. 7 CFR 58.217 - Evaporators and/or vacuum pans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Evaporators and/or vacuum pans. 58.217 Section 58.217....217 Evaporators and/or vacuum pans. Evaporators or vacuum pans or both, with open type condensers... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. When enclosed type...

  11. 7 CFR 58.217 - Evaporators and/or vacuum pans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Evaporators and/or vacuum pans. 58.217 Section 58.217....217 Evaporators and/or vacuum pans. Evaporators or vacuum pans or both, with open type condensers... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. When enclosed type...

  12. 7 CFR 58.217 - Evaporators and/or vacuum pans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Evaporators and/or vacuum pans. 58.217 Section 58.217....217 Evaporators and/or vacuum pans. Evaporators or vacuum pans or both, with open type condensers... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. When enclosed type...

  13. 7 CFR 58.217 - Evaporators and/or vacuum pans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Evaporators and/or vacuum pans. 58.217 Section 58.217....217 Evaporators and/or vacuum pans. Evaporators or vacuum pans or both, with open type condensers... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. When enclosed type...

  14. 7 CFR 58.217 - Evaporators and/or vacuum pans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Evaporators and/or vacuum pans. 58.217 Section 58.217....217 Evaporators and/or vacuum pans. Evaporators or vacuum pans or both, with open type condensers... Sanitary Standards for Milk and Milk Products Evaporators and Vacuum Pans. When enclosed type...

  15. From evaporating pans to transpiring plants (John Dalton Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Roderick, Michael

    2013-04-01

    The name of the original inventor of irrigated agriculture is lost to antiquity. Nevertheless, one can perhaps imagine an inquisitive desert inhabitant noting the greener vegetation along a watercourse and putting two and two together. Once water was being supplied and food was being produced it would be natural to ask a further question: how much water can we put on? No doubt much experience was gained down through the ages, but again, one can readily imagine someone inverting a rain gauge, filling it with water and measuring how fast the water evaporated. The inverted rain gauge measures the demand for water by the atmosphere. We call it the evaporative demand. I do not know if this is what actually happened but it sure makes an interesting start to a talk. Evaporation pans are basically inverted rain gauges. The rain gauge and evaporation pan measure the supply and demand respectively and these instruments are the workhorses of agricultural meteorology. Rain gauges are well known. Evaporation pans are lesser known but are in widespread use and are a key part of several national standardized meteorological networks. Many more pans are used for things like scheduling irrigation on farms or estimating evaporation from lakes. Analysis of the long records now available from standardized networks has revealed an interesting phenomenon, i.e., pan evaporation has increased in some places and decreased in other but when averaged over large numbers of pans there has been a steady decline. These independent reports from, for example, the US, Russia, China, India, Thailand, are replicated in the southern hemisphere in, for example, Australia, New Zealand and South Africa. One often hears the statement that because the earth is expected to warm with increasing greenhouse gas emissions then it follows that water will evaporate faster. The pan evaporation observations show that this widely held expectation is wrong. When expectations disagree with observations, it is the

  16. Monthly pan evaporation modeling using linear genetic programming

    NASA Astrophysics Data System (ADS)

    Guven, Aytac; Kisi, Ozgur

    2013-10-01

    This study compares the accuracy of linear genetic programming (LGP), fuzzy genetic (FG), adaptive neuro-fuzzy inference system (ANFIS), artificial neural networks (ANN) and Stephens-Stewart (SS) methods in modeling pan evaporations. Monthly climatic data including solar radiation, air temperature, relative humidity, wind speed and pan evaporation from Antalya and Mersin stations, in Turkey are used in the study. The study composed of two parts. First part of the study focuses the comparison of LGP models with those of the FG, ANFIS, ANN and SS models in estimating pan evaporations of Antalya and Mersin stations, separately. From the comparison results, the LGP models are found to be better than the other models. Comparison of LGP models with the other models in estimating pan evaporations of the Mersin Station by using both stations' inputs is focused in the second part of the study. The results indicate that the LGP models better accuracy than the FG, ANFIS, ANN and SS models. It is seen that the pan evaporations can be successfully estimated by the LGP method.

  17. Evaporation from the shallow Lake Massaciuccoli (Tuscany, Italy) studied using stable isotopes and evaporation pan data

    NASA Astrophysics Data System (ADS)

    Baneschi, I.; Gonfiantini, R.; Guidi, M.

    2009-04-01

    Oxygen and hydrogen isotope variations monitored in Lake Massaciuccoli (7 km2, 2 m deep, seasonally variable water level) during summer 2008, were compared with those observed in a Class A evaporation pan (diameter 120.6 cm, depth 25.4 cm) placed on the lake eastern shore. Air temperature, pressure, relative humidity, wind speed and direction, solar radiation, water temperature in the lake and the pan were also measured. The pluviometer indicated that no precipitation occurred during the study period. The pan was initially filled with groundwater up to the level of 19.2 cm (219 L), depleted in heavy isotopes with respect to tha lake water. Sodium chloride was added up to the concentration of 1 g×L-1, which is assumed do not affect significantly the evaporation rate till the water volume is reduced to less than 10 %. The Cl- concentration was used to provide an estimation of the evaporated water fraction, in addition to the micrometer measuring the water level variations. The pan water was sampled every 2-3 days and Cl- and stable isotopes determined. The set of stable isotope and evaporation data enabled us to compute the parameters governing the evaporation process and the isotopic exchanges with the atmospheric moisture, according to the procedure proposed by Gonfiantini (1986). The values were applied to test three working hypotheses of water balance of Lake Massaciuccoli: (i) surface inflow and outflow of liquid water are negligible and only evaporation is important; (ii) the inflow is negligible and outflow and evaporation are both significant; (iii) the three terms of balance are all important but the losses by evaporation and outflow exceed inflow (as the lake water level was decreasing). Water exchanges with groundwater are considered negligible. The best agreement between lake and pan data was obtained with the second hypothesis, for which the fraction of water removed by evaporation was estimated to be about 40 % ot he total water losses. This residual

  18. Modeling pan evaporation for Kuwait by multiple linear regression.

    PubMed

    Almedeij, Jaber

    2012-01-01

    Evaporation is an important parameter for many projects related to hydrology and water resources systems. This paper constitutes the first study conducted in Kuwait to obtain empirical relations for the estimation of daily and monthly pan evaporation as functions of available meteorological data of temperature, relative humidity, and wind speed. The data used here for the modeling are daily measurements of substantial continuity coverage, within a period of 17 years between January 1993 and December 2009, which can be considered representative of the desert climate of the urban zone of the country. Multiple linear regression technique is used with a procedure of variable selection for fitting the best model forms. The correlations of evaporation with temperature and relative humidity are also transformed in order to linearize the existing curvilinear patterns of the data by using power and exponential functions, respectively. The evaporation models suggested with the best variable combinations were shown to produce results that are in a reasonable agreement with observation values.

  19. Groundwater evaporation from salt pans: Examples from the eastern Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Schulz, Stephan; Horovitz, Marcel; Rausch, Randolf; Michelsen, Nils; Mallast, Ulf; Köhne, Maximilian; Siebert, Christian; Schüth, Christoph; Al-Saud, Mohammed; Merz, Ralf

    2015-12-01

    The major groundwater resources of the Arabian Peninsula are stored in the large sedimentary basins in its eastern part. Evaporation from continental salt pans (playas) is an important process in water resources assessments of its upper principal aquifers - the Upper Mega Aquifer system - as it constitutes a significant sink. However, literature values on evaporation rates vary widely and usually report about coastal salt pans where seawater evaporation is assumed. The present study applies different methods to provide a comprehensive picture of groundwater evaporation from salt pans of the Upper Mega Aquifer system. A remote sensing approach provided the spatial distribution and total salt pan area of about 36,500 km2. Hydrochemical and isotopic investigations revealed that from about 10% (3600 km2 ± 1600 km2) of the mapped salt pan area seawater evaporates. To estimate the groundwater evaporation rate from continental salt pans a laboratory column experiment was set up, implying a mean annual evaporation rate of about 42 mm ± 13 mm. In-situ analysis of water table fluctuations in the field suggested about 3 mm a-1 originate from recently infiltrated rainwater leading to an annual net groundwater evaporation of 39 mm ± 13 mm. Relating this number to the mapped salt pan area, from which groundwater evaporates, provides a total annual groundwater loss of 1.3 km3 ± 0.5 km3 for the Upper Mega Aquifer system.

  20. Trends in Thailand pan evaporation from 1970 to 2007

    NASA Astrophysics Data System (ADS)

    Limjirakan, Sangchan; Limsakul, Atsamon

    2012-05-01

    One of the expected consequences of an anthropogenically warmed climate is the increase in evaporation. Paradoxically, terrestrial observations across the world show that the rates of pan evaporation (Epan) have been steadily decreasing since 1950s. In this study, we present a trend in Thailand Epan based on quality-controlled data from 28 weather stations from 1970 to 2007. Results indicated that, despite the annual mean air temperature increased by 0.91 °C over the past 38 years (0.024 °C per annum), the trend in annual Epan has steadily declined on average by ~ 7.7 mm a-2 (i.e. mm per annum per annum). By comparing, this change is larger than those previously reported for several countries. A further examination by Kendal's rank correlation and stepwise regression analysis based on some available weather data showed that reduction in wind speed and, to a lesser degree, sunshine duration were the likely causative meteorological factors affecting the Epan decrease in Thailand over the past 38 years. The findings of this study highlight local changes in aerodynamic and radiative drivers of the hydrological cycle, and their linkages to climate change could have important implications for Thailand's nature and society.

  1. ON THE THEORY RELATING CHANGES IN AREA-AVERAGE AND PAN EVAPORATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theory relating changes in the area-average evaporation from a landscape with changes in the evaporation from pans or open water within the landscape is developed. Such changes can arise in two ways, by Type (a) processes related to large-scale changes in atmospheric concentrations and circulation t...

  2. Application of thermal model for pan evaporation to the hydrology of a defined medium, the sponge

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H.; Artley, J. A. (Principal Investigator)

    1981-01-01

    A technique is presented which estimates pan evaporation from the commonly observed values of daily maximum and minimum air temperatures. These two variables are transformed to saturation vapor pressure equivalents which are used in a simple linear regression model. The model provides reasonably accurate estimates of pan evaporation rates over a large geographic area. The derived evaporation algorithm is combined with precipitation to obtain a simple moisture variable. A hypothetical medium with a capacity of 8 inches of water is initialized at 4 inches. The medium behaves like a sponge: it absorbs all incident precipitation, with runoff or drainage occurring only after it is saturated. Water is lost from this simple system through evaporation just as from a Class A pan, but at a rate proportional to its degree of saturation. The contents of the sponge is a moisture index calculated from only the maximum and minium temperatures and precipitation.

  3. Evaporation variability under climate warming in five reanalyses and its association with pan evaporation over China

    NASA Astrophysics Data System (ADS)

    Su, Tao; Feng, Taichen; Feng, Guolin

    2015-08-01

    With the motivation to identify actual evapotranspiration (AE) variability under climate warming over China, an assessment is made from five sets of reanalysis data sets [National Centers for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR), NCEP-Department of Energy (NCEP-DOE), Modern-Era Retrospective Analysis for Research and Applications (MERRA), Interim Reanalysis, and Japanese 55-year Reanalysis (JRA-55)]. Based on comparison with AE estimates calculated using the Budyko equation, all five reanalysis data sets reasonably reproduce the spatial patterns of AE over China, with a clearly southeast-northwest gradient. Overall, JRA-55 (NCEP-DOE) gives the lowest (highest) reanalysis evaporation (RE) values. From 1979 to 2013, dominant modes of RE among five reanalyses are extracted using multivariate empirical orthogonal function analysis. Accordingly, the interdecadal variation of RE is likely driven by the change of temperature, and the interannual variation is constrained by the water supply conditions. Under climate warming, RE increase in the Northwest China, Yangtze-Huaihe river basin, and South China, while they decrease in Qinghai-Tibet Plateau, and northern and Northeast China. Moreover, the relationship between RE and pan evaporation (PE) are comprehensively evaluated in space-time. Negative correlations are generally confirmed in nonhumid environments, while positive correlations exist in the humid regions. Our analysis supports the interpretation that the relationship between PE and AE was complementary with water control and proportional with energy control. In view of data availability, important differences in spatial variability and the amount of RE can be found in Northwest China, the Qinghai-Tibet Plateau, and the Yangtze River Basin. Generally speaking, NCEP-NCAR and MERRA have substantial problems on describing the long-term change of RE; however, there are some inaccuracies in the JRA-55 estimates when focusing on

  4. A simulation model for predicting hourly pan evaporation from meteorological data

    NASA Astrophysics Data System (ADS)

    Molina Martínez, J. M.; Martínez Alvarez, V.; González-Real, M. M.; Baille, A.

    2006-03-01

    The objective of this study was to develop and validate a simulation model of the evaporation rate of a Class A evaporimeter pan ( Epan). A multilayer model was first developed, based on the discretization of the pan water volume into several layers. The energy balance equations established at the water surface and within the successive in-depth layers were solved using an iterative numerical scheme. The wind function at the pan surface was identified from previous experiments, and the convective processes within the tank were accounted for by introducing an internal 'mixing' function which depends on the wind velocity. The model was calibrated and validated using hourly averaged measurements of the evaporation rate and water temperature, collected in a Class A pan located near Cartagena (Southeast Spain). The simulated outputs of both water temperature and Epan proved to be realistic when compared to the observed values. Experimental data evidenced that the convective mixing process within the water volume induced a rapid homogenization of the temperature field within the whole water body. This result led us to propose a simplified version of the multilayer model, assuming an isothermal behavior of the pan. The outputs of the single layer model are similar to those supplied by the multilayer model although slightly less accurate. Due to its good predictive performances, facility of use and implementation, the simplified model may be proposed for applied purposes, such as routine prediction of Class A pan evaporation, while the multilayer model appears to be more appropriate for research purposes.

  5. Effects of salinity upon evaporation from pans and shallow lakes near the Dead Sea

    NASA Astrophysics Data System (ADS)

    Oroud, I. M.

    1995-09-01

    Evaporation was evaluated for three shallow lakes near the Dead Sea with specific gravities (s.g.) of 1.26, 1.31 and 1.34, and for a hypothetical fresh lake of similar depth. The annual march of lake temperature was adequately predicted with an equilibrium temperature model. Predicted temperatures were only slightly affected by neglecting heat exchange between the lake and the underlying sediments. Modeled lake temperatures were then used in a modified Penman-type model and an “alpha ratio” model to generate evaporation estimates. The evaporation models were verified by comparison against 1950'ies water balance estimates of evaporation from the Dead Sea (s.g. about 1.18). Annual totals of evaporation predicted by the models for the shallow lakes declined from 2125 mm for fresh water (s.g. = 1.0) down to 588 mm for the most saline conditions (s.g. = 1.34). Evaporation was also measured from sunken pans in which s.g. was maintained at 1.0, 1.26, 1.31 and 1.34. Mean monthly pan coefficients (from lake/pan evaporation for equal s.g. values) ranged from 0.63 up to 1.03 as s.g. increased from 1.00 up to 1.34. The variations in coefficients are attributed to effects of salinity on the mechanisms that control the gain and loss of heat to the ponds and evaporation pans. The temperatures of the saline lakes were always somewhat warmer than the temperatures measured in the sunken pans, ranging from + 0.7 °C for s.g. of 1.26 up to + 1.3 °C for s.g. of 1.34; the corresponding value for the fresh condition was — 0.4 °C. The pan coefficients defined here for saline conditions will be useful for estimating actual water loss from brine-filled ponds used in commercial extraction of potash and other chemicals.

  6. Inconsistency in Chinese solar radiation data caused by instrument replacement: Quantification based on pan evaporation observations

    NASA Astrophysics Data System (ADS)

    Yang, Hanbo; Li, Zhe; Li, Mingliang; Yang, Dawen

    2015-04-01

    Solar radiation determines our climate and hydrological cycle, and it has been widely measured by pyrometers at meteorological stations. In the early 1990s, a large-scale instrument replacement occurred across China, leading to inconsistent solar radiation observations. Fortunately, China has consistent pan evaporation (Epan) observations from Chinese micropans (with a diameter of 20 cm) from the 1950s to 2001. This study parameterized the PenPan-20 model for estimating Epan from these pans using a Bayesian approach. Furthermore, based on the PenPan-20 model, a shift in the solar radiation data (~1.4 ± 0.5 MJ/(d m2) or 16 ± 7 W/m2) in the early 1990s was revealed; this change was likely due to the large-scale retrofitting of new instruments and irregular calibration operations.

  7. Comparison of artificial neural network and empirical equations for daily reference evapotranspiration estimation from pan evaporation

    NASA Astrophysics Data System (ADS)

    Mosaedi, Abolfazl; Ghabaei S., Mohammad

    2010-05-01

    Evaporation and Evapotranspiration Process are the major components of the hydrologic cycle which play an important role in agricultural studies such as design of irrigation and drainage systems, and irrigation scheduling. Evapotranspiration is a complex non-linear phenomenon which depends on several climatologic factors. It can be measured directly by high-cost micrometeorological techniques. Hence, many mathematical models and empirical equations were developed to estimate this phenomenon. One conventional method to estimate reference crop evapotranspiration (ET0) is converting the class A pan evaporation (EPan) into ETo by using a pan coefficient (KPan) according to following this equation. ETo = Kpan * Epan PIC Another alternative method to estimate ETo is the application of mathematical models like artificial neural networks (ANNs). ANNs are mathematical models whose architecture has been inspired by biological neural networks. ANNs are very appropriate for the modeling of nonlinear processes, i.e. the case of ETo.Kpan is the important factor for computation of ETo from Epan, There for several empirical equations purposed to determine KPan, using wind speed, relative humidity and fetch length conditions by many researchers. The main objective of this study was to comparison between ability of ANNs and empirical equations for estimation daily ET0 from Epan. For this object Daily measured weather data for a 16 year (from 1992 to 2007) period were obtained from the Shiraz synoptic station (latitude 29o 36' N, longitude 52o 32' E, elevation 1480 m) that located in Fars province of Iran. The climate in the study area is semi-arid with an average annual rainfall of 346 mm year-1. In This paper first, we use seven empirical equations: Cuenca (1989), Snyder (1992), Modified Snyder (1992), Doorenbos and Pruitt (1977), Pereira et al. (1995), Orang (1998) and Raghuwanshi and Wallender (1998) for estimation KPan values and second then we use ANNs for converting Epan to

  8. Evaluation of pan evaporation modeling with two different neural networks and weather station data

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Singh, Vijay P.; Seo, Youngmin

    2014-07-01

    This study evaluates neural networks models for estimating daily pan evaporation for inland and coastal stations in Republic of Korea. A multilayer perceptron neural networks model (MLP-NNM) and a cascade correlation neural networks model (CCNNM) are developed for local implementation. Five-input models (MLP 5 and CCNNM 5) are generally found to be the best for local implementation. The optimal neural networks models, including MLP 4, MLP 5, CCNNM 4, and CCNNM 5, perform well for homogeneous (cross-stations 1 and 2) and nonhomogeneous (cross-stations 3 and 4) weather stations. Statistical results of CCNNM are better than those of MLP-NNM during the test period for homogeneous and nonhomogeneous weather stations except for MLP 4 being better in BUS-DAE and POH-DAE, and MLP 5 being better in POH-DAE. Applying the conventional models for the test period, it is found that neural networks models perform better than the conventional models for local, homogeneous, and nonhomogeneous weather stations.

  9. Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration

    USGS Publications Warehouse

    Sumner, D.M.; Jacobs, J.M.

    2005-01-01

    Actual evapotranspiration (ETa) was measured at 30-min resolution over a 19-month period (September 28, 2000-April 23, 2002) from a nonirrigated pasture site in Florida, USA, using eddy correlation methods. The relative magnitude of measured ETa (about 66% of long-term annual precipitation at the study site) indicates the importance of accurate ET a estimates for water resources planning. The time and cost associated with direct measurements of ETa and the rarity of historical measurements of ETa make the use of methods relying on more easily obtainable data desirable. Several such methods (Penman-Monteith (PM), modified Priestley-Taylor (PT), reference evapotranspiration (ET 0), and pan evaporation (Ep)) were related to measured ETa using regression methods to estimate PM bulk surface conductance, PT ??, ET0 vegetation coefficient, and Ep pan coefficient. The PT method, where the PT ?? is a function of green-leaf area index (LAI) and solar radiation, provided the best relation with ET a (standard error (SE) for daily ETa of 0.11 mm). The PM method, in which the bulk surface conductance was a function of net radiation and vapor-pressure deficit, was slightly less effective (SE=0.15 mm) than the PT method. Vegetation coefficients for the ET0 method (SE=0.29 mm) were found to be a simple function of LAI. Pan coefficients for the Ep method (SE=0.40 mm) were found to be a function of LAI and Ep. Historical or future meteorological, LAI, and pan evaporation data from the study site could be used, along with the relations developed within this study, to provide estimates of ETa in the absence of direct measurements of ETa. Additionally, relations among PM, PT, and ET0 methods and ETa can provide estimates of ETa in other, environmentally similar, pasture settings for which meteorological and LAI data can be obtained or estimated. ?? 2004 Elsevier B.V. All rights reserved.

  10. PLS regression-based pan evaporation and minimum-maximum temperature projections for an arid lake basin in India

    NASA Astrophysics Data System (ADS)

    Goyal, Manish Kumar; Ojha, C. S. P.

    2011-10-01

    Climate change information required for impact studies is of a much finer scale than that provided by Global circulation models (GCMs). This paper presents an application of partial least squares (PLS) regression for downscaling GCMs output. Statistical downscaling models were developed using PLS regression for simultaneous downscaling of mean monthly maximum and minimum temperatures ( T max and T min) as well as pan evaporation to lake-basin scale in an arid region in India. The data used for evaluation were extracted from the NCEP/NCAR reanalysis dataset for the period 1948-2000 and the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1, and COMMIT for the period 2001-2100. A simple multiplicative shift was used for correcting predictand values. The results demonstrated that the downscaling method was able to capture the relationship between the premises and the response. The analysis of downscaling models reveals that (1) the correlation coefficient for downscaled versus observed mean maximum temperature, mean minimum temperature, and pan evaporation was 0.94, 0.96, and 0.89, respectively; (2) an increasing trend is observed for T max and T min for A1B, A2, and B1 scenarios, whereas no trend is discerned with the COMMIT scenario; and (3) there was no trend observed in pan evaporation. In COMMIT scenario, atmospheric CO2 concentrations are held at year 2000 levels. Furthermore, a comparison with neural network technique shows the efficiency of PLS regression method.

  11. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    NASA Astrophysics Data System (ADS)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  12. Role of Nonbehavioral Factors in Adjusting Long Bone Diaphyseal Structure in Free-ranging Pan troglodytes.

    PubMed

    Carlson, K J; Sumner, D R; Morbeck, M E; Nishida, T; Yamanaka, A; Boesch, C

    2008-12-01

    Limb bones deform during locomotion and can resist the deformations by adjusting their shapes. For example, a tubular-shaped diaphysis best resists variably-oriented deformations. As behavioral profiles change during adulthood, patterns of bone deformation may exhibit age trends. Habitat characteristics, e.g., annual rainfall, tree density, and elevation changes, may influence bone deformations by eliciting individual components of behavioral repertoires and suppressing others, or by influencing movements during particular components. Habituated chimpanzee communities provide a unique opportunity to examine these factors because of the availability of morphological data and behavioral observations from known-age individuals inhabiting natural habitats. We evaluated adult femora and humeri of 18 female and 10 male free-ranging chimpanzees (Pan troglodytes) from communities in Gombe (Tanzania), Mahale Mountains (Tanzania), and Taï Forest (Côte d'Ivoire) National Parks. We compare cross sections at several locations (35%, 50%, 65% diaphyseal lengths). Community comparisons highlight different diaphyseal shapes of Taï females relative to Mahale and Gombe females, particularly in humeral diaphyses. Age trends in diaphyseal shapes are consistent with reduced activity levels in general, not only reduced arboreal activity. Age-related bone loss is apparent among community females, but is less striking among males. Community trends in diaphyseal shape are qualitatively consistent with ranked annual rainfall at localities, tree density, and elevation change or ruggedness of terrain. Habitat characteristics may contribute to variation in diaphyseal shape among chimpanzee communities, much like among modern human groups, but verification awaits further rigorous experimental and comparative analyses.

  13. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends.

    PubMed

    Kaerkitcha, Navaporn; Chuangchote, Surawut; Sagawa, Takashi

    2016-12-01

    Hollow carbon nanofibers (HCNFs) were prepared by electrospinning method with several coaxial nozzles, in which the level of the inner nozzle-end is adjustable. Core/shell nanofibers were prepared from poly(methyl methacrylate) (PMMA) as a pyrolytic core and polyacrylonitrile (PAN) as a carbon shell with three types of normal (viz. inner and outer nozzle-ends are balanced in the same level), inward, and outward coaxial nozzles. The influence of the applied voltage on these three types of coaxial nozzles was studied. Specific surface area, pore size diameter, crystallinity, and degree of graphitization of the hollow and mesoporous structures of carbon nanofibers obtained after carbonization of the as spun PMMA/PAN nanofibers were characterized by BET analyses, X-ray diffraction, and Raman spectroscopy in addition to the conductivity measurements. It was found that specific surface area, crystallinity, and graphitization degree of the HCNFs affect the electrical conductivity of the carbon nanofibers. PMID:27067734

  14. Safety review of the DCS (Distributed Control System) controlled full scale SRAT/SME (Sludge Receipt Adjustment Tank/Slurry Mix Evaporator) for water runs

    SciTech Connect

    Hacker, B.A.

    1988-01-29

    This memorandum addresses safety concerns of the Full Scale Sludge Receipt Adjustment Tank/Slurry Mix Evaporator (SRAT/SME) resulting from the installation of the new Distributed Control System (DCS). The present configuration of the SRAT/SME with DCS has been determined to be safe for operational testing with water. Another memorandum will be written after experience has been gained during water runs for actual operation. Previous safety evaluations and process hazard reviews for this facility have addressed normal industrial safety hazards and hazards associated with formic acid handling and operation with organics in the feed. Process operation with the new DCS controls will be very similar to the earlier operation controlled by the Modicon programmable logic controller (PLC). The interlocks for the SRAT/SME that were in the PLC have been programmed into the new DCS and will be reviewed here. 6 refs.

  15. Out of the frying pan into the air—emersion behaviour and evaporative heat loss in an amphibious mangrove fish (Kryptolebias marmoratus)

    PubMed Central

    Gibson, Daniel J.; Sylvester, Emma V. A.; Turko, Andy J.; Tattersall, Glenn J.; Wright, Patricia A.

    2015-01-01

    Amphibious fishes often emerse (leave water) when faced with unfavourable water conditions. How amphibious fishes cope with the risks of rising water temperatures may depend, in part, on the plasticity of behavioural mechanisms such as emersion thresholds. We hypothesized that the emersion threshold is reversibly plastic and thus dependent on recent acclimation history rather than on conditions during early development. Kryptolebias marmoratus were reared for 1 year at 25 or 30°C and acclimated as adults (one week) to either 25 or 30°C before exposure to an acute increase in water temperature. The emersion threshold temperature and acute thermal tolerance were significantly increased in adult fish acclimated to 30°C, but rearing temperature had no significant effect. Using a thermal imaging camera, we also showed that emersed fish in a low humidity aerial environment (30°C) lost significantly more heat (3.3°C min−1) than those in a high humidity environment (1.6°C min−1). In the field, mean relative humidity was 84%. These results provide evidence of behavioural avoidance of high temperatures and the first quantification of evaporative cooling in an amphibious fish. Furthermore, the avoidance response was reversibly plastic, flexibility that may be important for tropical amphibious fishes under increasing pressures from climatic change. PMID:26490418

  16. Out of the frying pan into the air--emersion behaviour and evaporative heat loss in an amphibious mangrove fish (Kryptolebias marmoratus).

    PubMed

    Gibson, Daniel J; Sylvester, Emma V A; Turko, Andy J; Tattersall, Glenn J; Wright, Patricia A

    2015-10-01

    Amphibious fishes often emerse (leave water) when faced with unfavourable water conditions. How amphibious fishes cope with the risks of rising water temperatures may depend, in part, on the plasticity of behavioural mechanisms such as emersion thresholds. We hypothesized that the emersion threshold is reversibly plastic and thus dependent on recent acclimation history rather than on conditions during early development. Kryptolebias marmoratus were reared for 1 year at 25 or 30°C and acclimated as adults (one week) to either 25 or 30°C before exposure to an acute increase in water temperature. The emersion threshold temperature and acute thermal tolerance were significantly increased in adult fish acclimated to 30°C, but rearing temperature had no significant effect. Using a thermal imaging camera, we also showed that emersed fish in a low humidity aerial environment (30°C) lost significantly more heat (3.3°C min(-1)) than those in a high humidity environment (1.6°C min(-1)). In the field, mean relative humidity was 84%. These results provide evidence of behavioural avoidance of high temperatures and the first quantification of evaporative cooling in an amphibious fish. Furthermore, the avoidance response was reversibly plastic, flexibility that may be important for tropical amphibious fishes under increasing pressures from climatic change. PMID:26490418

  17. Out of the frying pan into the air--emersion behaviour and evaporative heat loss in an amphibious mangrove fish (Kryptolebias marmoratus).

    PubMed

    Gibson, Daniel J; Sylvester, Emma V A; Turko, Andy J; Tattersall, Glenn J; Wright, Patricia A

    2015-10-01

    Amphibious fishes often emerse (leave water) when faced with unfavourable water conditions. How amphibious fishes cope with the risks of rising water temperatures may depend, in part, on the plasticity of behavioural mechanisms such as emersion thresholds. We hypothesized that the emersion threshold is reversibly plastic and thus dependent on recent acclimation history rather than on conditions during early development. Kryptolebias marmoratus were reared for 1 year at 25 or 30°C and acclimated as adults (one week) to either 25 or 30°C before exposure to an acute increase in water temperature. The emersion threshold temperature and acute thermal tolerance were significantly increased in adult fish acclimated to 30°C, but rearing temperature had no significant effect. Using a thermal imaging camera, we also showed that emersed fish in a low humidity aerial environment (30°C) lost significantly more heat (3.3°C min(-1)) than those in a high humidity environment (1.6°C min(-1)). In the field, mean relative humidity was 84%. These results provide evidence of behavioural avoidance of high temperatures and the first quantification of evaporative cooling in an amphibious fish. Furthermore, the avoidance response was reversibly plastic, flexibility that may be important for tropical amphibious fishes under increasing pressures from climatic change.

  18. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  19. 14. RW Meyer Sugar Mill: 18761889. Sorghum Pan. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. RW Meyer Sugar Mill: 1876-1889. Sorghum Pan. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: In the sorghum pan, heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. The pan was set on a slope so that the juice would move through the compartments by gravity. The hand-lever sluice valves in the partition walls between the compartments permitted the sugar boiler to regulate the movement of batches of cane juice flowing through the pan. The metal fins projecting from the bottom of the pan imparted a circuitous route to the juice as it flowed through the pan--this made it flow over a much greater heated surface. The fins also supplemented the pan's heating surface by ... - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  20. A comparison of methods for estimating open-water evaporation in small wetlands

    USGS Publications Warehouse

    Masoner, Jason R.; Stannard, David I.

    2010-01-01

    We compared evaporation measurements from a floating pan, land pan, chamber, and the Priestley-Taylor (PT) equation. Floating pan, land pan, and meteorological data were collected from June 6 to July 21, 2005, at a small wetland in the Canadian River alluvium in central Oklahoma, USA. Evaporation measured with the floating pan compared favorably to 12 h chamber measurements. Differences between chamber and floating pan rates ranged from −0.2 to 0.3 mm, mean of 0.1 mm. The difference between chamber and land pan rates ranged from 0.8 to 2.0 mm, mean of 1.5 mm. The mean chamber-to-floating pan ratio was 0.97 and the mean chamber-to-land pan ratio was 0.73. The chamber-to-floating pan ratio of 0.97 indicates the use of a floating pan to measure evaporation in small limited-fetch water bodies is an appropriate and accurate method for the site investigated. One-sided Paired t-Tests indicate daily floating pan rates were significantly less than land pan and PT rates. A two-sided Paired t-Test indicated there was no significant difference between land pan and PT values. The PT equation tends to overestimate evaporation during times when the air is of low drying power and tends to underestimate as drying power increases.

  1. Evaporation from seven reservoirs in the Denver water-supply system, central Colorado

    USGS Publications Warehouse

    Ficke, John F.; Adams, D. Briane; Danielson, T.W.

    1977-01-01

    Seven reservoirs in central Colorado, operated by the Denver Board of Water Commissioners, were studied during 1967-73 to determine evaporation losses. These reservoirs, Elevenmile Canyon, Dillon, Gross, Antero, Cheesman, Williams Fork, and Ralston, are located on both sides of the Continental Divide. Methods for computing evaporation include energy-budget, mass-transfer, and pan relationships. Three reservoirs, Elevenmile Canyon, Dillon, and Gross, had mass-transfer coefficients calibrated by energy-budget studies. At the remaining reservoirs, an empirical technique was used to estimate the mass-transfer coefficient. The enery-budget-calibrated methods give the most accurate evaporation values; the empirical coefficients give only a best estimate of evaporation. All reservoirs should be calibrated by energy-budget studies. The pan method of computing evaporation is the least reliable method because of problems of advected energy through the sides of the pan, representative pan exposure , and the irregularity of ratios of reservoir to pan evaporation. (Woodard-USGS)

  2. Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961-2011)

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, Cesar; Vicente-Serrano, Sergio M.; Sanchez-Lorenzo, Arturo; McVicar, Tim R.; Morán-Tejeda, Enrique; Revuelto, Jesús; El Kenawy, Ahmed; Martín-Hernández, Natalia; Tomas-Burguera, Miquel

    2015-04-01

    We analyzed the spatio-temporal evolution of evaporation observations from Piché atmometers (1961-2011; 56 stations) and Pan evaporimeters (1984-2011; 21 stations) across Spain, and compared both measurements with evaporation estimates obtained by four physical models: i.e., Food and Agricultural Organization-56 Penman-Monteith, Food and Agricultural Organization-Pan, PenPan and Penman, based on climate data. In this study we observed a positive and statistically significant correlation between Piché and Pan evaporation measurements during the common period (1984-2011; 19 stations), mainly in summer. When evaporation observations and estimates were compared, we detected positive and statistically significant correlations with the four methods, except for winter. Among the four physical models, the FAO-Pan showed the best fitting to both Piché and Pan evaporation measurements; the PenPan model overestimated evaporation rates; and the FAO-Penman-Monteith and Penman methods underestimated evaporation observations. We also observed a better spatial agreement between Pan evaporation and estimates than that obtained by Piché measurements. Annual and seasonal trends of evaporation estimates show a statistically significant increase for 1961-2011, which do not agree with long-term Piché evaporation trends; e.g. a discontinuity was found around the 1980s. Radiative and aerodynamic driving factors suggest that this discontinuity, and the observed evaporation trends across Spain could be associated with the abrupt increase in air temperature observed during last few decades (i.e., global warming). Further investigations using available Piché evaporation observations for other regions are needed to better understand physical components influencing long-term trends of evaporation.

  3. 3. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: South side of sorghum pan and boiling range flue. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace (east) end to the smokestack (west) end of the boiling range. The sorghum pan sides are of redwood. The flue is built of fire-brick, masonry, and portland cement. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  4. Evaporating firewalls

    NASA Astrophysics Data System (ADS)

    Van Raamsdonk, Mark

    2014-11-01

    In this note, we begin by presenting an argument suggesting that large AdS black holes dual to typical high-energy pure states of a single holographic CFT must have some structure at the horizon, i.e. a fuzzball/firewall, unless the procedure to probe physics behind the horizon is state-dependent. By weakly coupling the CFT to an auxiliary system, such a black hole can be made to evaporate. In a case where the auxiliary system is a second identical CFT, it is possible (for specific initial states) that the system evolves to precisely the thermofield double state as the original black hole evaporates. In this case, the dual geometry should include the "late-time" part of the eternal AdS black hole spacetime which includes smooth spacetime behind the horizon of the original black hole. Thus, if a firewall is present initially, it evaporates. This provides a specific realization of the recent ideas of Maldacena and Susskind that the existence of smooth spacetime behind the horizon of an evaporating black hole can be enabled by maximal entanglement with a Hawking radiation system (in our case the second CFT) rather than prevented by it. For initial states which are not finely-tuned to produce the thermofield double state, the question of whether a late-time infalling observer experiences a firewall translates to a question about the gravity dual of a typical high-energy state of a two-CFT system.

  5. Evaluation of Pan Coefficients for Estimating Reference Evapotranspiration in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Yeh, H.

    2006-12-01

    Evapotranspiration is an important process of water transfer in the hydrosphere and atmosphere, which plays an active role in the hydrological cycle. Evaporation pan (Epan) data are often used to estimate reference evapotranspiration (ETref) for use in water resource planning. Generally, ETref is estimated as the product of the Epan data and a pan coefficient (Kpan). However, reliable estimation of ETref using Epan depends on the accurate determination of pan coefficients Kpan. Many different methods for estimating ETref have been developed, among which the Penman-Monteith method is demonstrated to be especially excellent by the Food and Agriculture Organization (FAO). In this study, the Penman-Monteith reference evapotranspiration, pan evaporation, and pan coefficient are calculated, compared and regionally mapped at nine meteorological stations during 1990-2004 in Southern Taiwan. The results show the reference evapotranspiration and pan evaporation have similar regional distribution patterns in the southern Taiwan both with the highest values being in the lower region and the lowest values being in the upper region. In addition, the pan coefficient, Kpan, varies both regionally and seasonally. Smallest Kpan values are found in the upper reach of the southern Taiwan, meaning that the relative difference between the reference evapotranspiration and pan evaporation is the biggest in the region, the largest Kpan values are obtained in the western area of southern Taiwan. This distribution pattern provides valuable information for regional hydrological studies since it is one of the most important factors determining regional actual evapotranspiration.

  6. Physiological adjustments of sand gazelles (Gazella subgutturosa) to a boom-or-bust economy: standard fasting metabolic rate, total evaporative water loss, and changes in the sizes of organs during food and water restriction.

    PubMed

    Ostrowski, Stephane; Mesochina, Pascal; Williams, Joseph B

    2006-01-01

    To test the hypothesis that desert ungulates adjust their physiology in response to long-term food and water restriction, we established three groups of sand gazelles (Gazella subgutturosa): one that was provided food and water (n = 6; CTRL) ad lib. for 4 mo, one that received ad lib. food and water for the same period but was deprived of food and water for the last 4.5 d (n = 6; EXPT(1)), and one that was exposed to 4 mo of progressive food and water restriction, an experimental regime designed to mimic conditions in a natural desert setting (n = 6; EXPT(2)). At the end of the 4-mo experiment, we measured standard fasting metabolic rate (SFMR) and total evaporative water loss (TEWL) of all sand gazelles and determined lean dry mass of organs of gazelles in CTRL and EXPT(2). Gazelles in CTRL had a mean SFMR of 2,524 +/- 194 kJ d(-1), whereas gazelles in EXPT(1) and EXPT(2) had SFMRs of 2,101+/- 232 and 1,365 +/- 182 kJ d(-1), respectively, values that differed significantly when we controlled for differences in body mass. Gazelles had TEWLs of 151.1 +/- 18.2, 138.5 +/- 17.53, and 98.4 +/- 27.2 g H(2)O d(-1) in CTRL, EXPT(1), and EXPT(2), respectively. For the latter group, mass-independent TEWL was 27.1% of the value for CTRL. We found that normally hydrated sand gazelles had a low mass-adjusted TEWL compared with other arid-zone ungulates: 13.6 g H(2)O kg(-0.898) d(-1), only 17.1% of allometric predictions, the lowest ever measured in an arid-zone ungulate. After 4 mo of progressive food and water restriction, dry lean mass of liver, heart, and muscle of gazelles in EXPT(2) was significantly less than that of these same organs in CTRL, even when we controlled for body mass decrease. Decreases in the dry lean mass of liver explained 70.4% of the variance of SFMR in food- and water-restricted gazelles. As oxygen demands decreased because of reduced organ sizes, gazelles lost less evaporative water, probably because of a decreased respiratory water loss. PMID

  7. Physiological adjustments of sand gazelles (Gazella subgutturosa) to a boom-or-bust economy: standard fasting metabolic rate, total evaporative water loss, and changes in the sizes of organs during food and water restriction.

    PubMed

    Ostrowski, Stephane; Mesochina, Pascal; Williams, Joseph B

    2006-01-01

    To test the hypothesis that desert ungulates adjust their physiology in response to long-term food and water restriction, we established three groups of sand gazelles (Gazella subgutturosa): one that was provided food and water (n = 6; CTRL) ad lib. for 4 mo, one that received ad lib. food and water for the same period but was deprived of food and water for the last 4.5 d (n = 6; EXPT(1)), and one that was exposed to 4 mo of progressive food and water restriction, an experimental regime designed to mimic conditions in a natural desert setting (n = 6; EXPT(2)). At the end of the 4-mo experiment, we measured standard fasting metabolic rate (SFMR) and total evaporative water loss (TEWL) of all sand gazelles and determined lean dry mass of organs of gazelles in CTRL and EXPT(2). Gazelles in CTRL had a mean SFMR of 2,524 +/- 194 kJ d(-1), whereas gazelles in EXPT(1) and EXPT(2) had SFMRs of 2,101+/- 232 and 1,365 +/- 182 kJ d(-1), respectively, values that differed significantly when we controlled for differences in body mass. Gazelles had TEWLs of 151.1 +/- 18.2, 138.5 +/- 17.53, and 98.4 +/- 27.2 g H(2)O d(-1) in CTRL, EXPT(1), and EXPT(2), respectively. For the latter group, mass-independent TEWL was 27.1% of the value for CTRL. We found that normally hydrated sand gazelles had a low mass-adjusted TEWL compared with other arid-zone ungulates: 13.6 g H(2)O kg(-0.898) d(-1), only 17.1% of allometric predictions, the lowest ever measured in an arid-zone ungulate. After 4 mo of progressive food and water restriction, dry lean mass of liver, heart, and muscle of gazelles in EXPT(2) was significantly less than that of these same organs in CTRL, even when we controlled for body mass decrease. Decreases in the dry lean mass of liver explained 70.4% of the variance of SFMR in food- and water-restricted gazelles. As oxygen demands decreased because of reduced organ sizes, gazelles lost less evaporative water, probably because of a decreased respiratory water loss.

  8. Analytical Complementary Relationship Between Actual and Potential Evaporation Defined by Steady State Reference Surface Temperature

    NASA Astrophysics Data System (ADS)

    Or, D.; Aminzadeh, M.; Roderick, M. L.

    2015-12-01

    The definition of potential evaporation remains widely debated despite its centrality for hydrologic and climatic models. We employed an analytical pore-scale representation of evaporation from porous surfaces to define potential evaporation using a hypothetical steady-state reference temperature for air and evaporating surface. The feedback between drying land surfaces and overlaying air properties is implicitly incorporated in the hypothetical steady-state where the sensible heat flux vanishes and available energy is consumed by evaporation. Potential evaporation based on steady-state surface temperature was in surprisingly good agreement with class A pan evaporation measurements suggesting that pan evaporation occurs with negligible sensible heat flux. The model facilitates a new analytical generalization of the asymmetric complementary relationship across a wide range of meteorological conditions with good agreement between measured and predicted actual evaporation.

  9. A generalized complementary relationship between actual and potential evaporation defined by a reference surface temperature

    NASA Astrophysics Data System (ADS)

    Aminzadeh, Milad; Roderick, Michael L.; Or, Dani

    2016-01-01

    The definition of potential evaporation remains widely debated despite its centrality for hydrologic and climatic models. We employed an analytical pore-scale representation of evaporation from terrestrial surfaces to define potential evaporation using a hypothetical steady state reference temperature that is common to both air and evaporating surface. The feedback between drying land surfaces and overlaying air properties, central in the Bouchet (1963) complementary relationship, is implicitly incorporated in the hypothetical steady state where the sensible heat flux vanishes and the available energy is consumed by evaporation. Evaporation rates predicted based on the steady state reference temperature hypothesis were in good agreement with class A pan evaporation measurements suggesting that evaporation from pans occurs with negligible sensible heat flux. The model facilitates a new generalization of the asymmetric complementary relationship with the asymmetry parameter b analytically predicted for a wide range of meteorological conditions with initial tests yielding good agreement between measured and predicted actual evaporation.

  10. Loving Peter Pan.

    ERIC Educational Resources Information Center

    Kinkaid, James R.

    2003-01-01

    Explores the story of "Peter Pan." Considers its creation, its role on the stage, and its impact on society. Considers how "Peter Pan" is about the inability to have make-believe and the true stick together: it dramatizes an artistic failure, the failure to make the vision of the play successful. (SG)

  11. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wang, A.-H.; Wu, S. T.; Nerney, S. F.

    1998-01-01

    Evaporation is the consequence of heating near the top of streamers in ideal Magnetohydrodynamics (MHD) models, where the plasma is weakly contained by the magnetic field. Heating causes slow opening of field lines and release of new solar wind. It was discovered in simulations and, due to the absence of loss mechanisms, the ultimate end point is the complete evaporation of the streamer. Of course streamers do not behave in this way because there are losses by thermal conduction and radiation. Physically, heating is also expected to depend on ambient conditions. We use our global MHD model with thermal conduction to examine the effect of changing the heating scale height. We also apply and extend an analytic model of streamers developed by Pneuman (1968) to show that steady streamers are unable to contain plasma for temperatures near the cusp greater than approximately 2 x 10(exp 6) K.

  12. Group evaporation

    NASA Technical Reports Server (NTRS)

    Shen, Hayley H.

    1991-01-01

    Liquid fuel combustion process is greatly affected by the rate of droplet evaporation. The heat and mass exchanges between gas and liquid couple the dynamics of both phases in all aspects: mass, momentum, and energy. Correct prediction of the evaporation rate is therefore a key issue in engineering design of liquid combustion devices. Current analytical tools for characterizing the behavior of these devices are based on results from a single isolated droplet. Numerous experimental studies have challenged the applicability of these results in a dense spray. To account for the droplets' interaction in a dense spray, a number of theories have been developed in the past decade. Herein, two tasks are examined. One was to study how to implement the existing theoretical results, and the other was to explore the possibility of experimental verifications. The current theoretical results of group evaporation are given for a monodispersed cluster subject to adiabatic conditions. The time evolution of the fluid mechanic and thermodynamic behavior in this cluster is derived. The results given are not in the form of a subscale model for CFD codes.

  13. 15. RW Meyer Sugar Mill: 18761889. Sorghum pan and boiling ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. RW Meyer Sugar Mill: 1876-1889. Sorghum pan and boiling range flue. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: North side of sorghum pan and boiling range flue, with furnace-end in background. In the sorghum pan heat was applied to the cane juice to clarify it, evaporate its water content, and concentrate the sugar crystals. Hot gasses moved through the flue underneath the entire copper bottom of the sorghum pan from the furnace end (in background) to the smokestack end (in foreground). After the hot cane juice moved through the separate compartments until it reached the final compartment (now missing two sides) where it was drawn out from the copper lip in the corner. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  14. Evaporation mitigation using floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. Mahmudul; Peirson, William Leslie; Neyland, Bryce M.; Fiddis, Nicholas McQuistan

    2015-11-01

    Reducing evaporation losses from open water storages is of paramount importance in the improvement of water security in arid countries, including Australia. Widespread adoption of evaporation mitigation techniques has been prevented by their high capital and maintenance or operating costs. The use of clean, floating recycled materials to mitigate evaporation technique has been investigated systematically at sites within both the coastal and semi-arid zones of Australia. Evaporation reduction systematically increases with the proportion of covered surface. Evaporation is reduced by 43% at coastal site and 37% at arid zone site at the maximum packing densities achievable for a single layer of floating devices. The study highlights the importance of both long-term investigations and the climatic influences in the robust quantification of evaporation mitigation. The effects of solar radiation, temperature, wind speed and relative humidity on the evaporation rate at both study sites have been determined in terms of both the classical Penman model and FAO Penman Monteith model with corresponding pan coefficients quantified. FAO Penman Monteith model better estimates evaporation from the open reference tank.

  15. The pipes of pan.

    PubMed

    Chalif, David J

    2004-12-01

    The pipes of pan is the crowning achievement of Pablo Picasso's neoclassical period of the 1920s. This monumental canvas depicts a mythological Mediterranean scene in which two sculpted classical giants stare out, seemingly across the centuries, toward a distant and lost Arcadia. Picasso was influenced by Greco-Roman art during his travels in Italy, and his neoclassical works typically portray massive, immobile, and pensive figures. Pan and his pipes are taken directly from Greek mythological lore by Picasso and placed directly into 20th century art. He frequently turned to various mythological figures throughout his metamorphosing periods. The Pipes of Pan was also influenced by the painter's infatuation with the beautiful American expatriate Sara Murphy, and the finished masterpiece represents a revision of a previously conceived neoclassical work. The Pipes of Pan now hangs in the Musee Picasso in Paris.

  16. Streamer Evaporation

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Wang, A. H.; Wu, Shi T.; Nerney, S.

    1998-01-01

    Evaporation is the consequence of slow plasma heating near the tops of streamers where the plasma is only weakly contained by the magnetic field. The form it takes is the slow opening of field lines at the top of the streamer and transient formation of new solar wind. It was discovered in polytropic model calculations, where due to the absence of other energy loss mechanisms in magnetostatic streamers, its ultimate endpoint is the complete evaporation of the streamer. This takes, for plausible heating rates, weeks to months in these models. Of course streamers do not behave this way, for more than one reason. One is that there are losses due to thermal conduction to the base of the streamer and radiation from the transition region. Another is that streamer heating must have a characteristic time constant and depend on the ambient physical conditions. We use our global Magnetohydrodynamics (MHD) model with thermal conduction to examine a few examples of the effect of changing the heating scale height and of making ad hoc choices for how the heating depends on ambient conditions. At the same time, we apply and extend the analytic model of streamers, which showed that streamers will be unable to contain plasma for temperatures near the cusp greater than about 2xl0(exp 6) K. Slow solar wind is observed to come from streamers through transient releases. A scenario for this that is consistent with the above physical process is that heating increases the near-cusp temperature until field lines there are forced open. The subsequent evacuation of the flux tubes by the newly forming slow wind decreases the temperature and heating until the flux tubes are able to reclose. Then, over a longer time scale, heating begins to again refill the flux tubes with plasma and increase the temperature until the cycle repeats itself. The calculations we report here are first steps towards quantitative evaluation of this scenario.

  17. The Pan Zhichang Incident

    ERIC Educational Resources Information Center

    Yuchen, Zhu

    2007-01-01

    This article examines why Pan Zhichang, a well-known professor and Ph.D. candidate supervisor at Nanjing University, has repeatedly been accused of plagiarism. It may not be difficult to check whether he has committed plagiarism, but seeking the deeper social and systemic reasons for a person's repeated "negligence" is indeed a thought-provoking…

  18. Comparison of different methods for estimating soil surface evaporation in a bare field

    NASA Astrophysics Data System (ADS)

    Yan, Haofang; Zhang, Chuan; Oue, Hiroki; Sugimoto, Hideki

    2012-11-01

    In this paper, three methods for estimating soil evaporation in a bare field were evaluated: evaporation ratio method ( k ratio), complementary relationship and bulk equation. Micro-lysimeters were used to measure the actual evaporation for validation of the three methods. For the k ratio method, pan evaporation was used as the reference evaporation instead of the value obtained from the Penman-Monteith equation. This result is important for areas where meteorological data are unavailable. The results showed that, for daytime evaporation, the k ratio and bulk equation produced a good fit with the observation data, while the complementary relationship generated a larger deviation from the measured data. We recommend that the k ratio method and bulk equation could be used to calculate daytime soil evaporation with high accuracy when soil water content and pan evaporation data or meteorological data are available, while the complementary relationship could be used for a rough estimation when pan evaporation is available. All the methods could be applied to calculate cumulative evaporation.

  19. Estimation of evaporation from open water - A review of selected studies, summary of U.S. Army Corps of Engineers data collection and methods, and evaluation of two methods for estimation of evaporation from five reservoirs in Texas

    USGS Publications Warehouse

    Harwell, Glenn R.

    2012-01-01

    Organizations responsible for the management of water resources, such as the U.S. Army Corps of Engineers (USACE), are tasked with estimation of evaporation for water-budgeting and planning purposes. The USACE has historically used Class A pan evaporation data (pan data) to estimate evaporation from reservoirs but many USACE Districts have been experimenting with other techniques for an alternative to collecting pan data. The energy-budget method generally is considered the preferred method for accurate estimation of open-water evaporation from lakes and reservoirs. Complex equations to estimate evaporation, such as the Penman, DeBruin-Keijman, and Priestley-Taylor, perform well when compared with energy-budget method estimates when all of the important energy terms are included in the equations and ideal data are collected. However, sometimes nonideal data are collected and energy terms, such as the change in the amount of stored energy and advected energy, are not included in the equations. When this is done, the corresponding errors in evaporation estimates are not quantifiable. Much simpler methods, such as the Hamon method and a method developed by the U.S. Weather Bureau (USWB) (renamed the National Weather Service in 1970), have been shown to provide reasonable estimates of evaporation when compared to energy-budget method estimates. Data requirements for the Hamon and USWB methods are minimal and sometimes perform well with remotely collected data. The Hamon method requires average daily air temperature, and the USWB method requires daily averages of air temperature, relative humidity, wind speed, and solar radiation. Estimates of annual lake evaporation from pan data are frequently within 20 percent of energy-budget method estimates. Results of evaporation estimates from the Hamon method and the USWB method were compared against historical pan data at five selected reservoirs in Texas (Benbrook Lake, Canyon Lake, Granger Lake, Hords Creek Lake, and Sam

  20. Evaporator Cleaning Studies

    SciTech Connect

    Wilmarth, W.R.

    1999-04-15

    Operation of the 242-16H High Level Waste Evaporator proves crucial to liquid waste management in the H-Area Tank Farm. Recent operational history of the Evaporator showed significant solid formation in secondary lines and in the evaporator pot. Additional samples remain necessary to ensure material identity in the evaporator pot. Analysis of these future samples will provide actinide partitioning information and dissolution characteristics of the solid material from the pot to ensure safe chemical cleaning.

  1. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  2. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ash pans. 230.69 Section 230.69 Transportation... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans § 230.69 Ash pans. Ash pans shall be securely supported from mud-rings or frames with no part less than...

  3. Influence of three different concentration techniques on evaporation rate, color and phenolics content of blueberry juice.

    PubMed

    Elik, Aysel; Yanık, Derya Koçak; Maskan, Medeni; Göğüş, Fahrettin

    2016-05-01

    The present study was undertaken to assess the effects of three different concentration processes open-pan, rotary vacuum evaporator and microwave heating on evaporation rate, the color and phenolics content of blueberry juice. Kinetics model study for changes in soluble solids content (°Brix), color parameters and phenolics content during evaporation was also performed. The final juice concentration of 65° Brix was achieved in 12, 15, 45 and 77 min, for microwave at 250 and 200 W, rotary vacuum and open-pan evaporation processes, respectively. Color changes associated with heat treatment were monitored using Hunter colorimeter (L*, a* and b*). All Hunter color parameters decreased with time and dependently studied concentration techniques caused color degradation. It was observed that the severity of color loss was higher in open-pan technique than the others. Evaporation also affected total phenolics content in blueberry juice. Total phenolics loss during concentration was highest in open-pan technique (36.54 %) and lowest in microwave heating at 200 W (34.20 %). So, the use of microwave technique could be advantageous in food industry because of production of blueberry juice concentrate with a better quality and short time of operation. A first-order kinetics model was applied to modeling changes in soluble solids content. A zero-order kinetics model was used to modeling changes in color parameters and phenolics content. PMID:27407205

  4. Influence of three different concentration techniques on evaporation rate, color and phenolics content of blueberry juice.

    PubMed

    Elik, Aysel; Yanık, Derya Koçak; Maskan, Medeni; Göğüş, Fahrettin

    2016-05-01

    The present study was undertaken to assess the effects of three different concentration processes open-pan, rotary vacuum evaporator and microwave heating on evaporation rate, the color and phenolics content of blueberry juice. Kinetics model study for changes in soluble solids content (°Brix), color parameters and phenolics content during evaporation was also performed. The final juice concentration of 65° Brix was achieved in 12, 15, 45 and 77 min, for microwave at 250 and 200 W, rotary vacuum and open-pan evaporation processes, respectively. Color changes associated with heat treatment were monitored using Hunter colorimeter (L*, a* and b*). All Hunter color parameters decreased with time and dependently studied concentration techniques caused color degradation. It was observed that the severity of color loss was higher in open-pan technique than the others. Evaporation also affected total phenolics content in blueberry juice. Total phenolics loss during concentration was highest in open-pan technique (36.54 %) and lowest in microwave heating at 200 W (34.20 %). So, the use of microwave technique could be advantageous in food industry because of production of blueberry juice concentrate with a better quality and short time of operation. A first-order kinetics model was applied to modeling changes in soluble solids content. A zero-order kinetics model was used to modeling changes in color parameters and phenolics content.

  5. Evaporative demand, transpiration, and photosynthesis: How are they changing?

    NASA Astrophysics Data System (ADS)

    Farquhar, G. D.; Roderick, M. L.

    2009-04-01

    Carbon dioxide concentration is increasing. This affects photosynthesis via increases in substrate availability (Farquhar et al. 1980). It reduces the amount of water transpired by plants to fix a given amount of carbon into an organic form; i.e it increases transpiration efficiency (Wong et al. 1979). It also warms the earth's surface. It is commonly supposed that this warming causes an increase in evaporative demand - the rate of water loss from a wet surface. This supposition has then been extended to effects on plant water availability, with the idea that there would be offsets to the gains in productivity associated with increased transpiration efficiency. The assumption that increased temperature means increased evaporative demand has also been applied to global maps of changes in soil water content. However, observations of pan evaporation rate show that this measure of evaporative demand has been decreasing in most areas examined over the last few decades. We reconcile these observations with theory by noting that, on long time scales, warming also involves water bodies, so that the vapour pressure at the earth's surface also increases. Using the physics of pan evaporation (Rotstayn et al. 2006) we show that the reduction in evaporative demand has been associated with two main effects, (1) "dimming", a reduction in sunlight received at the earth's surface because of aerosols and clouds, being the first phenomenon identified (Roderick and Farquhar 2002), and (2) "stilling", a reduction in wind speed, being the second (Roderick et al. 2007). We show that better accounting for changes in evaporative demand is important for estimating soil water changes, particularly in regions where precipitation exceeds evaporative demand (i.e where there are rivers) (Hobbins et al. 2008). We synthesise some of these results with others on vegetation change. References: Farquhar, GD, von Caemmerer, S, and Berry, JA, 1980: A biochemical model of photosynthetic CO2 assimilation

  6. [Structural adjustment, cultural adjustment?].

    PubMed

    Dujardin, B; Dujardin, M; Hermans, I

    2003-12-01

    Over the last two decades, multiple studies have been conducted and many articles published about Structural Adjustment Programmes (SAPs). These studies mainly describe the characteristics of SAPs and analyse their economic consequences as well as their effects upon a variety of sectors: health, education, agriculture and environment. However, very few focus on the sociological and cultural effects of SAPs. Following a summary of SAP's content and characteristics, the paper briefly discusses the historical course of SAPs and the different critiques which have been made. The cultural consequences of SAPs are introduced and are described on four different levels: political, community, familial, and individual. These levels are analysed through examples from the literature and individual testimonies from people in the Southern Hemisphere. The paper concludes that SAPs, alongside economic globalisation processes, are responsible for an acute breakdown of social and cultural structures in societies in the South. It should be a priority, not only to better understand the situation and its determining factors, but also to intervene and act with strategies that support and reinvest in the social and cultural sectors, which is vital in order to allow for individuals and communities in the South to strengthen their autonomy and identify.

  7. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A; Dakin, B.; Hoeschele, M.

    2012-03-01

    This measure guideline on evaporative condensers provides information on properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices.

  8. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  9. Absolute astrometry with Pan-STARRS

    NASA Astrophysics Data System (ADS)

    Makarov, Valeri; Berghea, Ciprian; Dorland, Bryan; Hennessy, Greg; Zacharias, Norbert; Magnier, Eugene A.; Monet, David; Gaume, Ralph

    2015-08-01

    A small collaboration of USNO and IfA astronomers is working on an improved astrometric solution for the data collected by the Pan-STARRS project. The 3PI survey performed by the PS1 telescope is well suited for a global astrometric solution. The current approach used in the data reduction pipeline is strictly differential. The 2MASS positions were used as reference for field of view (FoV) and detector calibration procedures. The absence of proper motions in 2MASS results in significant sky-correlated errors up to 30 - 50 mas. Our approach is to solve a huge system of linear equations for a carefully selected set of ~1 million grid objects including the astrometric unknowns (positions, proper motions and parallaxes) and FoV calibration parameters. The grid catalog includes ~5000 extragalactic radio sources with VLBI-detected positions accurate to 1 mas or better, which are used as hard constraints to the astrometric unknowns in the global least-squares adjustment. If successful, this will be the first realization of a large optical astrometry catalog directly anchored to the ICRF. Numerical simulations indicated a 10 mas accuracy level for Pan-STARRS astrometry, but experimental solutions on real data have not yet reached this level.

  10. Flash evaporator systems test

    NASA Technical Reports Server (NTRS)

    Dietz, J. B.

    1976-01-01

    A flash evaporator heat rejection system representative of that proposed for the space shuttle orbiter underwent extensive system testing at the NASA Johnson Space Center (JSC) to determine its operational suitability and to establish system performance/operational characteristics for use in the shuttle system. During the tests the evaporator system demonstrated its suitability to meet the shuttle requirements by: (1) efficient operation with 90 to 95% water evaporation efficiency, (2) control of outlet temperature to 40 + or - 2 F for partial heat load operation, (3) stability of control system for rapid changes in Freon inlet temperature, and (4) repeated dormant-to-active device operation without any startup procedures.

  11. Towards the prediction of actual evaporation from terrestrial surfaces using analytical complementary relationship

    NASA Astrophysics Data System (ADS)

    Or, Dani; Aminzadeh, Milad; Roderick, Michael L.

    2016-04-01

    Notwithstanding the centrality of potential evaporation (PE) in hydrologic and climate models, its definition and proper use remain widely debated. We propose a mechanistic, pore-based model for evaporation and energy partitioning over drying porous surfaces to define PE for a hypothetical steady-state reference surface temperature. Feedback between drying land surface and overlaying air properties is considered in the hypothetical steady-state with a vanishing sensible heat flux and diversion of available energy to evaporation. Surprisingly, the resulting steady-state PE tracks class A pan evaporation data very closely suggesting that pan evaporation occurs with negligible sensible heat flux (in agreement with summer observations). The new PE enables analytical derivation of asymmetric complementary relationship (CR) between potential and actual evaporation for a wide range of conditions in good agreement with measured actual evaporation. The derivations provide new insights into the origins of asymmetry in the CR linked to input weather data and evolution of the temperature of drying surfaces across scales. The analytical CR could offer physically-based estimates of regional scale actual evaporation during surface drying for a wide range of present and future external inputs that may resolve future energy partitioning patterns and issues related to droughts.

  12. Effect of DOC on evaporation from small Wisconsin lakes

    NASA Astrophysics Data System (ADS)

    Watras, C. J.; Morrison, K. A.; Rubsam, J. L.

    2016-09-01

    Evaporation (E) dominates the loss of water from many small lakes, and the balance between precipitation and evaporation (P-E) often governs water levels. In this study, evaporation rates were estimated for three small Wisconsin lakes over several years using 30-min data from floating evaporation pans (E-pans). Measured E was then compared to the output of mass transfer models driven by local conditions over daily time scales. The three lakes were chosen to span a range of dissolved organic carbon (DOC) concentrations (3-20 mg L-1), a solute that imparts a dark, tea-stain color which absorbs solar energy and limits light penetration. Since the lakes were otherwise similar, we hypothesized that a DOC-mediated increase in surface water temperature would translate directly to higher rates of evaporation thereby informing climate response models. Our results confirmed a DOC effect on surface water temperature, but that effect did not translate to enhanced evaporation. Instead the opposite was observed: evaporation rates decreased as DOC increased. Ancillary data and prior studies suggest two explanatory mechanisms: (1) disproportionately greater radiant energy outflux from high DOC lakes, and (2) the combined effect of wind speed (W) and the vapor pressure gradient (es - ez), whose product [W(es - ez)] was lowest on the high DOC lake, despite very low wind speeds (<1.5 m s-1) and steep forested uplands surrounding all three lakes. Agreement between measured (E-pan) and modeled evaporation rates was reasonably good, based on linear regression results (r2: 0.6-0.7; slope: 0.5-0.7, for the best model). Rankings based on E were similar whether determined by measured or modeled criteria (high DOC < low DOC). Across the 3 lakes and 4 years, E averaged ˜3 mm d-1 (C.V. 9%), but statistically significant differences between lakes resulted in substantial differences in cumulative E that were consistent from year to year. Daily water budgets for these lakes show that inputs were

  13. Effect of DOC on evaporation from small Wisconsin lakes

    NASA Astrophysics Data System (ADS)

    Watras, C. J.; Morrison, K. A.; Rubsam, J. L.

    2016-09-01

    Evaporation (E) dominates the loss of water from many small lakes, and the balance between precipitation and evaporation (P-E) often governs water levels. In this study, evaporation rates were estimated for three small Wisconsin lakes over several years using 30-min data from floating evaporation pans (E-pans). Measured E was then compared to the output of mass transfer models driven by local conditions over daily time scales. The three lakes were chosen to span a range of dissolved organic carbon (DOC) concentrations (3-20 mg L-1), a solute that imparts a dark, tea-stain color which absorbs solar energy and limits light penetration. Since the lakes were otherwise similar, we hypothesized that a DOC-mediated increase in surface water temperature would translate directly to higher rates of evaporation thereby informing climate response models. Our results confirmed a DOC effect on surface water temperature, but that effect did not translate to enhanced evaporation. Instead the opposite was observed: evaporation rates decreased as DOC increased. Ancillary data and prior studies suggest two explanatory mechanisms: (1) disproportionately greater radiant energy outflux from high DOC lakes, and (2) the combined effect of wind speed (W) and the vapor pressure gradient (es - ez), whose product [W(es - ez)] was lowest on the high DOC lake, despite very low wind speeds (<1.5 m s-1) and steep forested uplands surrounding all three lakes. Agreement between measured (E-pan) and modeled evaporation rates was reasonably good, based on linear regression results (r2: 0.6-0.7; slope: 0.5-0.7, for the best model). Rankings based on E were similar whether determined by measured or modeled criteria (high DOC < low DOC). Across the 3 lakes and 4 years, E averaged ∼3 mm d-1 (C.V. 9%), but statistically significant differences between lakes resulted in substantial differences in cumulative E that were consistent from year to year. Daily water budgets for these lakes show that inputs

  14. CAPSULE REPORT: EVAPORATION PROCESS

    EPA Science Inventory

    Evaporation has been an established technology in the metal finishing industry for many years. In this process, wastewaters containing reusable materials, such as copper, nickel, or chromium compounds are heated, producing a water vapor that is continuously removed and condensed....

  15. Measure Guideline: Evaporative Condensers

    SciTech Connect

    German, A.; Dakin, B.; Hoeschele, M.

    2012-03-01

    The purpose of this measure guideline on evaporative condensers is to provide information on a cost-effective solution for energy and demand savings in homes with cooling loads. This is a prescriptive approach that outlines selection criteria, design and installation procedures, and operation and maintenance best practices. This document has been prepared to provide a process for properly designing, installing, and maintaining evaporative condenser systems as well as understanding the benefits, costs, and tradeoffs.

  16. Mixed feed evaporator

    DOEpatents

    Vakil, Himanshu B.; Kosky, Philip G.

    1982-01-01

    In the preparation of the gaseous reactant feed to undergo a chemical reaction requiring the presence of steam, the efficiency of overall power utilization is improved by premixing the gaseous reactant feed with water and then heating to evaporate the water in the presence of the gaseous reactant feed, the heating fluid utilized being at a temperature below the boiling point of water at the pressure in the volume where the evaporation occurs.

  17. 76 FR 20831 - Pan American Day and Pan American Week, 2011

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    .... (Presidential Sig.) [FR Doc. 2011-9143 Filed 4-12-11; 11:15 am] Billing code 3195-W1-P ... Documents#0;#0; ] Proclamation 8651 of April 8, 2011 Pan American Day and Pan American Week, 2011 By the President of the United States of America A Proclamation Throughout Pan American Day and Pan American...

  18. Pan Pacific Microgravity Conference -- Outreach

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Teachers, students, and parents listen as scientists explain what is different about the microgravity envirornment of space and why it is a valuable tool for research. This was part of the outreach session of the Pan Pacific Microgravity Conference on May 2, 2001, at the California Science Center.

  19. Electrically controllable artificial PAN muscles

    NASA Astrophysics Data System (ADS)

    Salehpoor, Karim; Shahinpoor, Mohsen; Mojarrad, Mehran

    1996-02-01

    Artificial muscles made with polyacrylonitrile (PAN) fibers are traditionally activated in electrolytic solution by changing the pH of the solution by the addition of acids and/or bases. This usually consumes a considerable amount of weak acids or bases. Furthermore, the synthetic muscle (PAN) itself has to be impregnated with an acid or a base and must have an appropriate enclosure or provision for waste collection after actuation. This work introduces a method by which the PAN muscle may be elongated or contracted in an electric field. We believe this is the first time that this has been achieved with PAN fibers as artificial muscles. In this new development the PAN muscle is first put in close contact with one of the two platinum wires (electrodes) immersed in an aqueous solution of sodium chloride. Applying an electric voltage between the two wires changes the local acidity of the solution in the regions close to the platinum wires. This is because of the ionization of sodium chloride molecules and the accumulation of Na+ and Cl- ions at the negative and positive electrode sites, respectively. This ion accumulation, in turn, is accompanied by a sharp increase and decrease of the local acidity in regions close to either of the platinum wires, respectively. An artificial muscle, in close contact with the platinum wire, because of the change in the local acidity will contract or expand depending on the polarity of the electric field. This scheme allows the experimenter to use a fixed flexible container of an electrolytic solution whose local pH can be modulated by an imposed electric field while the produced ions are basically trapped to stay in the neighborhood of a given electrode. This method of artificial muscle activation has several advantages. First, the need to use a large quantity of acidic or alkaline solutions is eliminated. Second, the use of a compact PAN muscular system is facilitated for applications in active musculoskeletal structures. Third, the

  20. The Pan-STARRS Surveys

    NASA Astrophysics Data System (ADS)

    Carter Chambers, Kenneth

    2015-08-01

    The 4 year Pan-STARRS1 Science Mission has now completed and the data will be publicly release by the time of the IAU Assembly. The full data set, including catalogs (100TB database), images (2PB), and metadata, will be available from the STScI MAST archive. The Pan-STARRS1 Surveys include: (1) The 3pi Steradian Survey, (2) The Medium Deep survey of 10 PS1 footprints (7 sq deg each) spaced around the sky; (3) A solar system survey of the ecliptic optimized for the discovery of Near Earth Objects, (4) a Stellar Transit Survey in the galactic bulge; and (5) a time domain Survey of M31.The characteristics of the Pan-STARRS Surveys will be presented, including image quality, depth, cadence, and coverage. Science results span most fields of astronomy from Near Earth Objects to cosmology.The 2nd mission, the Pan-STARRS NEO Survey, is currently underway on PS1 and it will be supplemented by PS2 as it becomes fully operational. PS2 is currently undergoing commissioning and is expected to begin full time science observations with an functional capability similar to PS1 by summer of 2015. The status of PS2 and commissioning data from PS2 will be presented along with a full description of the Pan-STARRS NEO Survey. The prospects for future (beyond 2017) wide field surveys in the Northern Hemisphere will also be discussed.The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; the National Aeronautics

  1. How do drops evaporate?

    NASA Astrophysics Data System (ADS)

    Murisic, Nebojsa; Kondic, Lou

    2007-11-01

    The problem of evaporating drops with non-pinned contact line, although seemingly trivial, so far lacks satisfactory theoretical description. In particular, there has been much discussion regarding appropriate evaporative mass flux model. We make an attempt to resolve this issue by comparing our experimental data with the results of several mathematical models for evaporating drops. After describing experimental procedure, we propose several models for mass flux and develop a governing equation for evolution of drop's thickness. Two-dimensional numerical results are then compared to the experimental results, and the most appropriate mass flux model is identified. Finally, we propose the governing equation for the full 3D system and present some new numerical results related to curious phenomena, where so-called ``octopus-shaped'' instabilities appear ahead of the contact line of volatile dropsootnotetextY. Gotkis, I. Ivanov, N. Murisic, L. Kondic, Phys. Rev. Lett. 97, 186101 (2006)..

  2. Hot air drum evaporator

    DOEpatents

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  3. Volumetric and lateralized differences in selected brain regions of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus).

    PubMed

    Hopkins, William D; Lyn, Heidi; Cantalupo, Claudio

    2009-12-01

    The two species of Pan, bonobos and common chimpanzees, have been reported to have different social organization, cognitive and linguistic abilities and motor skill, despite their close biological relationship. Here, we examined whether bonobos and chimpanzee differ in selected brain regions that may map to these different social and cognitive abilities. Eight chimpanzees and eight bonobos matched on age, sex and rearing experiences were magnetic resonance images scanned and volumetric measures were obtained for the whole brain, cerebellum, striatum, motor-hand area, hippocampus, inferior frontal gyrus and planum temporale. Chimpanzees had significantly larger cerebellum and borderline significantly larger hippocampus and putamen, after adjusting for brain size, compared with bonobos. Bonobos showed greater leftward asymmetries in the striatum and motor-hand area compared with chimpanzees. No significant differences in either the volume or lateralization for the so-called language homologs were found between species. The results suggest that the two species of Pan are quite similar neurologically, though some volumetric and lateralized differences may reflect inherent differences in social organization, cognition and motor skills.

  4. [Measurement and estimation methods and research progress of snow evaporation in forests].

    PubMed

    Li, Hui-Dong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Yuan, Feng-Hui; Wu, Jia-Bing

    2013-12-01

    Accurate measurement and estimation of snow evaporation (sublimation) in forests is one of the important issues to the understanding of snow surface energy and water balance, and it is also an essential part of regional hydrological and climate models. This paper summarized the measurement and estimation methods of snow evaporation in forests, and made a comprehensive applicability evaluation, including mass-balance methods (snow water equivalent method, comparative measurements of snowfall and through-snowfall, snow evaporation pan, lysimeter, weighing of cut tree, weighing interception on crown, and gamma-ray attenuation technique) and micrometeorological methods (Bowen-ratio energy-balance method, Penman combination equation, aerodynamics method, surface temperature technique and eddy covariance method). Also this paper reviewed the progress of snow evaporation in different forests and its influencal factors. At last, combining the deficiency of past research, an outlook for snow evaporation rearch in forests was presented, hoping to provide a reference for related research in the future.

  5. The Pan-STARRS Surveys

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.; Pan-STARRS Team

    2016-01-01

    The 4 year Pan-STARRS1 Science Mission has now completed and the final data processing and database ingest is underway. We expect to have the public release of the PS1 Survey data at approximately the time of the AAS Meeting. The full data set, including catalogs (150 Terabyte database), images (2 Petabytes), and metadata, will be available from the STScI MASTarchive. The Pan-STARRS1 Surveys include: (1) The 3pi Steradian Survey, (2) The Medium Deep survey of 10 PS1 footprints (7 sq deg each) spaced around the sky; (3) A solar system survey of the ecliptic optimized for the discovery of Near Earth Objects, (4) a Stellar Transit Survey in the galactic bulge; and (5) a time domain Survey of M31. The characteristics of the Pan-STARRS1 Surveys will be presented, including image quality, depth, cadence, and coverage. Science results span most fields of astronomy from Near Earth Objects to cosmology. The 2nd mission, the Pan-STARRS NEO Survey, is currently underway on PS1 and it will be supplemented by PS2 observations as PS2 becomes fully operational. We will also report on the status of PS2 and the prospects for future wide field surveys in the Northern Hemisphere. The Pan-STARRS1 Surveys have been made possible through contributions of the Institute for Astronomy of the University of Hawaii; the Pan-STARRS Project Office; the Max-Planck Society and its participating institutes: the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching; The Johns Hopkins University; Durham University; the University of Edinburgh; Queen's University Belfast; the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated; the National Central University of Taiwan; the Space Telescope Science Institute; the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate; the National

  6. Evaporation from the ocular surface.

    PubMed

    Mathers, William

    2004-03-01

    Evaporation from the ocular surface is dramatically reduced by the lipid layer which covers it. With this layer intact, evaporation represents a small loss of water for which the lacrimal gland easily compensates. When tear production is compromised evaporation becomes important, especially since evaporation in almost all ocular surface disease states and any surface perturbation, including contact lens wear, increases evaporation significantly. How the barrier function of the lipid layer accomplishes this reduction in evaporation is not understood and is probably quite complex as is the structure of the lipid layer. Improving this barrier function remains an important and elusive goal.

  7. 95-1 Campaign evaporator boildown results

    SciTech Connect

    Miller, G.L.

    1994-10-10

    The Process Chemistry Laboratories were requested to support the 242-A Evaporator restart as part of the overall 222-S laboratory effort. The net purpose of these studies is to determine the characteristics of double-shell tank materials as they are processed in the evaporator. The results for the boildown study (which includes pressure and temperature versus % waste volume reduction and density of final boildown residue) supporting the 242-A Evaporator restart are reported below. The boildown was performed in a vacuum distillation apparatus with an adjustable vacuum limiting manometer and an isolatable collection graduated cylinder. The boildown was conducted over a seven hour period. The evaporation was done at 60 torr (to avoid excessive foaming and bumping of solution) for approximately half of the boildown, the pressure then being reduced to 40 torr when the reduction in solution volume allowed this to be done. Percent waste volume reduction was measured by observing the amount of condensate collected in a graduated cylinder. As the graduated cylinder became full, it was isolated from the rest of the system and the condensate removed. Pressure was set using an electronic manometer with a low pressure limiter set at the desired level. Temperature was measured using a J-type thermocouple. The apparatus was calibrated by observing the pressure versus temperature response of pure water, and comparing the values thus obtained to published values.

  8. MOVES2014: Evaporative Emissions Report

    EPA Science Inventory

    Vehicle evaporative emissions are now modeled in EPA’s MOVES according to physical processes, permeation, tank vapor venting, liquid leaks, and refueling emissions. With this update, the following improvements are being incorporated into MOVES evaporative emissions methodology, a...

  9. Comparison of techniques for estimating evaporation from an irrigation water storage

    NASA Astrophysics Data System (ADS)

    McJannet, D. L.; Cook, F. J.; Burn, S.

    2013-03-01

    With the emergence of water supply and food security issues as a result of increasing population and climate change pressures, the need for efficient use of available water supplies is paramount. Management of available resources and improved efficiency require accurate specification of evaporation, which is a major water loss pathway, yet evaporation remains difficult to accurately quantify. This study uses scintillometry-derived measurements of evaporation to test the performance of water balance, pan coefficient, and combination modeling techniques, which might commonly be used by resource managers. Both pan coefficient and water balance techniques performed poorly, but the Penman-Monteith model with local site data and site-specific wind function produced estimates within 2% of those measured. Recognizing that such a model parameterization would rarely be a possibility in most environments, further testing involving the range of data sets that might be available for a location was undertaken. Modeling using over-water measurements and, generally, applicable wind functions from the literature produced estimates 26% greater than those measured. Estimates within 12% of those measured were made for the equivalent model setup using over-land meteorological data; however, when data from the nearest meteorological station was used, this difference increased to 27%. The different evaporation estimation techniques tested were shown to produce a range of estimates of water availability, which varied by nearly 30%. The large differences between measured and predicted evaporation highlight the uncertainty that still exists in evaporation estimation and the sensitivity of predictions to the source of input data.

  10. Inundation and groundwater dynamics for quantification of evaporative water loss in tropical wetlands

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, J.; Johnson, M. S.; Couto, E. G.; Amorim, R. S. S.; Sanches, L.; Campelo Júnior, J. H.; Weiler, M.

    2014-04-01

    The remoteness, complexity and heterogeneity of tropical wetlands make the characterisation of their hydrological processes challenging. In particular estimates of evaporative water loss are inherently uncertain. In view of the large influence on the local and regional climate, the quantification of evaporation is essential for the determination of the water balance of permanent and intermittent water bodies. Data for tropical wetlands are scarce where their remoteness impedes direct evaporation measurements. Seasonal inundation dynamics affect evaporation processes in tropical wetlands, which can be analysed in two stages: the first stage during the wet season and the second stage during the dry season. As yet no adequate method exists for determining second stage evaporation without soil moisture data, which are usually unavailable for the remote tropical wetlands. Our study aimed at developing a process-based model to simulate first and second stage evaporation in tropical wetlands. We selected a set of empirical potential evaporation (PET) models of varying complexity, each based on different assumptions and available datasets, and evaluated the models with pan evaporation observations in the Pantanal of South America, one of the largest tropical wetlands in the world. We used high-resolution measurements of surface and groundwater levels at different locations to determine the water available for evaporation. Actual evaporation (AET) was derived by constraining simulated PET based on available water. The model of best fit was applied to different types of water bodies with varying inundation durations and captured first and second stage evaporation. With our new model we could quantify evaporative water loss in the dry and the wet season for different locations in the Pantanal. This new spatially-explicit approach represents an improvement in our understanding of the role of evaporation in the water balance of the Pantanal. We recommend the application of this

  11. Inundation and groundwater dynamics for quantification of evaporative water loss in tropical wetlands

    NASA Astrophysics Data System (ADS)

    Schwerdtfeger, J.; Johnson, M. S.; Couto, E. G.; Amorim, R. S. S.; Sanches, L.; Campelo, J. H., Jr.; Weiler, M.

    2014-11-01

    Characterizing hydrological processes within tropical wetlands is challenging due to their remoteness, complexity and heterogeneity. In particular, estimates of evaporative water loss are inherently uncertain. In view of the large influence on the local and regional climate, the quantification of evaporation is essential for the determination of the water balance of permanent and intermittent water bodies. Data for tropical wetlands are scarce where their remoteness impedes direct evaporation measurements. Seasonal inundation dynamics affect evaporation processes in tropical wetlands, which can be analysed in two stages: the first stage during the wet season and the second stage during the dry season. As yet no adequate method exists for determining second-stage evaporation in a data-scarce environment that additionally allows for a transfer of simulated actual evaporation (AET) to other locations. Our study aimed at developing a process-based model to simulate first- and second-stage evaporation in tropical wetlands. We selected a set of empirical potential evaporation (PET) models of varying complexity, each based on different assumptions and available data sets, and evaluated the models with pan evaporation observations in the Pantanal of South America, one of the largest tropical wetlands in the world. We used high-resolution measurements of surface and groundwater levels at different locations to determine the water available for evaporation. AET was derived by constraining simulated PET based on available water. The model of best fit was applied to different types of water bodies with varying hydroperiods to capture first- and second-stage evaporation across a range of wetland types. With our new model we could quantify evaporative water loss in the dry and the wet season for different locations in the Pantanal. This new spatially explicit approach represents an improvement in our understanding of the role of evaporation in the water balance of the Pantanal

  12. Reply to the comments on "Comparison of Mann-Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey" by Kisi, O. and Ay, M. [J. Hydrol. 513 (2014) 362-375] and "An innovative method for trend analysis of monthly pan evaporations" by Kisi, O. [J. Hydrol. 527 (2015) 1123-1129

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Ay, Murat

    2016-07-01

    We thank discusser for his comments on our recent papers about application of innovative trend method (Şen, 2012) for water quality parameters (Kisi and Ay, 2014) and evaporation (Kisi, 2015) and are grateful for having the opportunity to explain and discuss the concerns raised. Illustration of the innovative Şen's trend method with some trend possibilities in the comments by discusser (in Fig. 3 in his discussion) has simple data seem to have normal distribution. However, some data may have highly skewed distribution and indicating trends in these data similar to the Figure 3 as suggested by discusser is impossible. Innovative trend analysis (Şen, 2012) of annual low flows for the duration 14-day (Q14) and 60-day (Q60) in Peterek and Dutdere stations are illustrated in Fig. 1 as an example. In Fig. 1, both half time series are sorted in ascending order. Therefore, Kisi and Ay (2014) provided "a general view" or "imaginative illustration" for the innovative Şen's trend method in Fig. 2 in their study. By this figure, general trend possibilities for any data having different distributions can be shown.

  13. Skeletal development in Pan paniscus with comparisons to Pan troglodytes.

    PubMed

    Bolter, Debra R; Zihlman, Adrienne L

    2012-04-01

    Fusion of skeletal elements provides markers for timing of growth and is one component of a chimpanzee's physical development. Epiphyseal closure defines bone growth and signals a mature skeleton. Most of what we know about timing of development in chimpanzees derives from dental studies on Pan troglodytes. Much less is known about the sister species, Pan paniscus, with few in captivity and a wild range restricted to central Africa. Here, we report on the timing of skeletal fusion for female captive P. paniscus (n = 5) whose known ages range from 0.83 to age 11.68 years. Observations on the skeletons were made after the individuals were dissected and bones cleaned. Comparisons with 10 female captive P. troglodytes confirm a generally uniform pattern in the sequence of skeletal fusion in the two captive species. We also compared the P. paniscus to a sample of three unknown-aged female wild P. paniscus, and 10 female wild P. troglodytes of known age from the Taï National Park, Côte d'Ivoire. The sequence of teeth emergence to bone fusion is generally consistent between the two species, with slight variations in late juvenile and subadult stages. The direct-age comparisons show that skeletal growth in captive P. paniscus is accelerated compared with both captive and wild P. troglodytes populations. The skeletal data combined with dental stages have implications for estimating the life stage of immature skeletal materials of wild P. paniscus and for more broadly comparing the skeletal growth rates among captive and wild chimpanzees (Pan), Homo sapiens, and fossil hominins.

  14. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    SciTech Connect

    Stone, M

    2005-04-30

    The Defense Waste Processing Facility (DWPF) converts the high level waste slurries stored at the Savannah River Site into borosilicate glass for long-term storage. The vitrification process results in the generation of approximately five gallons of dilute recycle streams for each gallon of waste slurry vitrified. This dilute recycle stream is currently transferred to the H-area Tank Farm and amounts to approximately 1,400,000 gallons of effluent per year. Process changes to incorporate salt waste could increase the amount of effluent to approximately 2,900,000 gallons per year. The recycle consists of two major streams and four smaller streams. The first major recycle stream is condensate from the Chemical Process Cell (CPC), and is collected in the Slurry Mix Evaporator Condensate Tank (SMECT). The second major recycle stream is the melter offgas which is collected in the Off Gas Condensate Tank (OGCT). The four smaller streams are the sample flushes, sump flushes, decon solution, and High Efficiency Mist Eliminator (HEME) dissolution solution. These streams are collected in the Decontamination Waste Treatment Tank (DWTT) or the Recycle Collection Tank (RCT). All recycle streams are currently combined in the RCT and treated with sodium nitrite and sodium hydroxide prior to transfer to the tank farm. Tank Farm space limitations and previous outages in the 2H Evaporator system due to deposition of sodium alumino-silicates have led to evaluation of alternative methods of dealing with the DWPF recycle. One option identified for processing the recycle was a dedicated evaporator to concentrate the recycle stream to allow the solids to be recycled to the DWPF Sludge Receipt and Adjustment Tank (SRAT) and the condensate from this evaporation process to be sent and treated in the Effluent Treatment Plant (ETP). In order to meet process objectives, the recycle stream must be concentrated to 1/30th of the feed volume during the evaporation process. The concentrated stream

  15. Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Almlie, Jay C.

    2010-01-01

    A water membrane evaporator (WME) has been conceived and tested as an alternative to the contamination-sensitive and corrosion-prone evaporators currently used for dissipating heat from space vehicles. The WME consists mainly of the following components: An outer stainless-steel screen that provides structural support for the components mentioned next; Inside and in contact with the stainless-steel screen, a hydrophobic membrane that is permeable to water vapor; Inside and in contact with the hydrophobic membrane, a hydrophilic membrane that transports the liquid feedwater to the inner surface of the hydrophobic membrane; Inside and in contact with the hydrophilic membrane, an annular array of tubes through which flows the spacecraft coolant carrying the heat to be dissipated; and An inner exclusion tube that limits the volume of feedwater in the WME. In operation, a pressurized feedwater reservoir is connected to the volume between the exclusion tube and the coolant tubes. Feedwater fills the volume, saturates the hydrophilic membrane, and is retained by the hydrophobic membrane. The outside of the WME is exposed to space vacuum. Heat from the spacecraft coolant is conducted through the tube walls and the water-saturated hydrophilic membrane to the liquid/vapor interface at the hydrophobic membrane, causing water to evaporate to space. Makeup water flows into the hydrophilic membrane through gaps between the coolant tubes.

  16. Geometric morphometric analysis of mandibular shape diversity in Pan.

    PubMed

    Robinson, Chris

    2012-07-01

    The aim of this research is to determine whether geometric morphometric (GM) techniques can provide insights into how the shape of the mandibular corpus differs between bonobos and chimpanzees and to explore the potential implications of those results for our understanding of hominin evolution. We focused on this region of the mandible because of the relative frequency with which it has been recovered in the hominin fossil record. In addition, no previous study had explored in-depth three-dimensional (3D) mandibular corpus shape differences between adults of the two Pan species using geometric morphometrics. GM methods enable researchers to quantitatively analyze and visualize 3D shape changes in skeletal elements and provide an important compliment to traditional two-dimensional analyses. Eighteen mandibular landmarks were collected using a Microscribe 3DX portable digitizer. Specimen configurations were superimposed using Generalized Procrustes analysis and the projections of the fitted coordinates to tangent space were analyzed using multivariate statistics. The size-adjusted corpus shapes of Pan paniscus and Pan troglodytes could be assigned to species with approximately 93% accuracy and the Procrustes distance between the two species was significant. Analyses of the residuals from a multivariate linear regression of the data on centroid size suggested that much of the shape difference between the species is size-related. Chimpanzee subspecies and a small sample of Australopithecus specimens could be correctly identified to taxon, at best, only 75% of the time, although the Procrustes distances between these taxa were significant. The shape of the mandibular symphysis was identified as especially useful in differentiating Pan species from one another. This suggests that this region of the mandible has the potential to be informative for taxonomic analyses of fossil hominoids, including hominins. The results also have implications for phylogenetic hypotheses of

  17. An Energy Partitioning Perspective on Lake Evaporation Variations to Climate Change

    NASA Astrophysics Data System (ADS)

    Lee, X.; WANG, W.; Zhao, L.; Subin, Z. M.

    2015-12-01

    Lake evaporation, nexus between lake hydrological cycle and energy balance, is very sensitive to climate change. Despite considerable observational and modeling studies on water surface evaporation, mechanisms underlying the response of long-term lake evaporation variations to climate change are still uncertain. Two hypotheses have been proposed to explain interannual variations in lake evaporation. In the first hypothesis, water surface evaporation will increase as air temperature rises, at a rate of about 7% K-1 predicted by the Clausius-Clapeyron equation. The second hypothesis, supported by the universal decline trends in pan evaporation tied to global diming, is that evaporation variabilities are controlled by variabilities in the surface solar radiation. In this study, we firstly validated the evaporation simulations of NCAR's CLM4.5-LISSS (Lake, Ice, Snow, and Sediment Simulator) against 28 lake observations. Then historical (1991-2010) and future (2005-2100, RCP8.5) lake evaporation were simulated by the same lake model. Results show that global lake evaporation increases with air temperature at a rate faster under the RCP8.5 scenario (3.72 W m-2 oC-1) than in the historical case (3.03 W m-2 oC-1). With normalization of energy constrains, both observed and modeled lake evaporation fraction (the ratio of latent heat flux to net radiation minus heat storage) increase as air temperature rises at a rate perfectly captured by the Priestley-Taylor model with the model parameter of 1.26. From the energy partitioning perspective, the lake evaporation variations are explained primary by air temperature not by surface solar radiation.

  18. Shaft adjuster

    DOEpatents

    Harry, H.H.

    1988-03-11

    Abstract and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus. 3 figs.

  19. Shaft adjuster

    DOEpatents

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  20. Controllable evaporation of cesium from a dispenser oven

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Friedl, R.; Fröschle, M.

    2012-12-01

    This instrument allows controlled evaporation of the alkali metal cesium over a wide range of evaporation rates. The oven has three unique features. The first is an alkali metal reservoir that uses a dispenser as a cesium source. The heating current of the dispenser controls the evaporation rate allowing generation of an adjustable and stable flow of pure cesium. The second is a blocking valve, which is fully metallic as is the body of the oven. This construction both reduces contamination of the dispenser and enables the oven to be operated up to 300 °C, with only small temperature variations (<5 °C). By minimizing the temperature variation, the built up of the alkali metal at a cold spot is significantly hindered. The last feature is an integral surface ionization detector for measuring and controlling the evaporation rate. The dispenser oven can be easily transferred to the other alkali-metals.

  1. Method of evaporation

    NASA Technical Reports Server (NTRS)

    Dufresne, Eugene R.

    1987-01-01

    Liquids, such as juices, milk, molten metal and the like are concentrated by forming uniformly-sized, small droplets in a precision droplet forming assembly and deploying the droplets in free fall downwardly as a central column within an evacuated column with cool walls. A portion of the solvent evaporates. The vapor flows to the wall, condenses, and usually flows down the wall as a film to condensate collector and drain. The vertical column of freely falling droplets enters the splash guard. The condensate can be collected, sent to other towers or recycled.

  2. A stochastic assessment of climate change impacts on precipitation and potential evaporation in Alberta

    NASA Astrophysics Data System (ADS)

    Vashchyshyn, I.; Wheater, H. S.; Chun, K.

    2012-12-01

    In many climate change investigations, changes in precipitation are projected under various scenarios; however, changes in evaporation have received relatively less attention. For irrigation and water resources management, the difference between potential evaporation and precipitation can provide better quantification of local water availability and drought conditions. Therefore, projecting joint variations in precipitation and potential evaporation can provide better information for climate change adaptation. A stochastic approach based on a Generalised Linear Model (GLM) framework is proposed to study these together at a station scale. Eight stations in Alberta are selected for which historical pan evaporation records and up-to-date meteorological information are available. Results show that potential evaporation estimated from Global Circulation Models directly can be unreliable. The evaporation ensemble simulated by the GLM approach can represent observed evaporation more realistically and provide better uncertainty quantification. If only simulated precipitation is considered, the projected drought conditions in the 2080s are likely to be less severe than that in the 2000s. However, the projected difference between precipitation and evaporation (water deficit) shows that the future drought conditions may be higher or lower, varying between the stations. Implications of the results and further development of the proposed approach to address spatial dependence between stations are also discussed.

  3. Miniature electron bombardment evaporation source: evaporation rate measurement

    NASA Astrophysics Data System (ADS)

    Nehasil, V.; Mašek, K.; Moreau, O.; Matolín, V.

    1997-03-01

    Miniature electron beam evaporation sources which operate on the principle of vaporization of source material, in the form of a tip, by electron bombardment are produced by several companies specialised in UHV equipment. These sources are used primarily for materials that are normally difficult to deposit due to their high evaporation temperature. They are appropriate for special applications, like heteroepitaxial thin films growth that require very low and well controlled deposition rate. We propose a simple and easily applicable method of evaporation rate control. The method is based on the measurement of ion current produced by electron bombardment of evaporated atoms. In order to be able to determine the ion current - evaporation flux calibration curves we measured the absolute values of evaporation flux by means of Bayard-Alpert ion gauge.

  4. Monthly evaporation forecasting using artificial neural networks and support vector machines

    NASA Astrophysics Data System (ADS)

    Tezel, Gulay; Buyukyildiz, Meral

    2016-04-01

    Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.

  5. A Hundred Years of Peter Pan

    ERIC Educational Resources Information Center

    Hollindale, Peter

    2005-01-01

    The centenary of the first performance of J. M. Barrie's Peter Pan was celebrated in December 2004. Taking account of the various events in Britain to mark the occasion--newspaper articles, radio and television programmes, retrospects in the original theatre--this article examines the status and popularity of Peter Pan after a hundred years. The…

  6. Peroxyacetyl nitrate (PAN) in the urban atmosphere.

    PubMed

    Lee, Jun-Bok; Yoon, Joong-Sup; Jung, Kweon; Eom, Seok-Won; Chae, Young-Zoo; Cho, Seog-Ju; Kim, Shin-Do; Sohn, Jong Ryeul; Kim, Ki-Hyun

    2013-11-01

    Peroxyacetyl nitrate (PAN) in air has been well known as the indicator of photochemical smog due to its frequent occurrences in Seoul metropolitan area. This study was implemented to assess the distribution characteristics of atmospheric PAN in association with relevant parameters measured concurrently. During a full year period in 2011, PAN was continuously measured at hourly intervals at two monitoring sites, Gwang Jin (GJ) and Gang Seo (GS) in the megacity of Seoul, South Korea. The annual mean concentrations of PAN during the study period were 0.64±0.49 and 0.57±0.46 ppb, respectively. The seasonal trends of PAN generally exhibited dual peaks in both early spring and fall, regardless of sites. Their diurnal trends were fairly comparable to each other. There was a slight time lag (e.g., 1 h) in the peak occurrence pattern between O3 and PAN, as the latter trended to peak after the maximum UV irradiance period (16:00 (GJ) and 17:00 (GS)). The concentrations of PAN generally exhibited strong correlations with particulates. The results of this study suggest that PAN concentrations were affected sensitively by atmospheric stability, the wet deposition of NO2, wind direction, and other factors.

  7. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  8. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  9. 49 CFR 230.69 - Ash pans.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Ash pans. 230.69 Section 230.69 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Ash Pans §...

  10. African Drum and Steel Pan Ensembles.

    ERIC Educational Resources Information Center

    Sunkett, Mark E.

    2000-01-01

    Discusses how to develop both African drum and steel pan ensembles providing information on teacher preparation, instrument choice, beginning the ensemble, and lesson planning. Includes additional information for the drum ensembles. Lists references and instructional materials, sources of drums and pans, and common note layout/range for steel pan…

  11. Comparison of energy-budget evaporation losses from two morphometrically different Florida seepage lakes

    USGS Publications Warehouse

    Sacks, L.A.; Lee, T.M.; Radell, M.J.

    1994-01-01

    Evaporation was computed by the energy-budget method for two north Florida lakes with similar surface areas but different depths, for the period May 1989 to December 1990. Lake Barco, in north-central Florida, is shallow, with an average depth of 3 m; Lake Five-O, in the Florida panhandle, is considerably deeper, with an average depth of 9.5 m. As a result, the thermal regime and seasonal evaporation rates of the lakes are different. Evaporation from the shallower lake was higher than that from the deeper lake in the winter and spring. In the late summer and autumn, however, the situation is reversed. Evaporation from the shallow lake is directly related to the amount of incoming shortwave radiation because of its limited ability to store energy. The lag in evaporation at the deeper lake is a function of the greater amount of heat that it seasonally stores and releases. The difference in annual evaporation between Lake Barco (151 cm year-1) and Lake Five-O (128 cm year-1) is related to differences in regional climatic conditions between the two sites. Additionally, higher than normal evaporation rates at the two lakes are probably related to drought conditions experienced in north Florida during 1990, which resulted in higher temperatures and more incoming radiation. Monthly evaporation at Lake Barco could usually be estimated within 10% of the energy-budget evaporation using a constant pan coefficient. This lake may be representative of other shallow lakes that do not store considerable heat. Monthly evaporation at Lake Five-O, however, could not be estimated accurately by using an annual pan coefficient because of the large seasonal influence of change in stored heat. Monthly mass-transfer evaporation compared well with energy-budget evaporation at Lake Barco, but did not compare well at Lake Five-O. These errors may also be associated with changes in heat storage. Thus, the thermal regime of the lake must be considered to estimate accurately the seasonal

  12. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.

    PubMed

    Boopathy, R; Sekaran, G

    2013-09-15

    The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm(-2) was 0.41 kWh m(-3) for the removal of COD and 2.57 kWh m(-3) for the removal of TKN.

  13. Electrochemical treatment of evaporated residue of soak liquor generated from leather industry.

    PubMed

    Boopathy, R; Sekaran, G

    2013-09-15

    The organic and suspended solids present in soak liquor, generated from leather industry, demands treatment. The soak liquor is being segregated and evaporated in solar evaporation pans/multiple effect evaporator due to non availability of viable technology for its treatment. The residue left behind in the pans/evaporator does not carry any reuse value and also faces disposal threat due to the presence of high concentration of sodium chloride, organic and bacterial impurities. In the present investigation, the aqueous evaporated residue of soak liquor (ERSL) was treated by electrochemical oxidation. Graphite/graphite and SS304/graphite systems were used in electrochemical oxidation of organics in ERSL. Among these, graphite/graphite system was found to be effective over SS304/graphite system. Hence, the optimised conditions for the electrochemical oxidation of organics in ERSL using graphite/graphite system was evaluated by response surface methodology (RSM). The mass transport coefficient (km) was calculated based on pseudo-first order rate kinetics for both the electrode systems (graphite/graphite and SS304/graphite). The thermodynamic properties illustrated the electrochemical oxidation was exothermic and non-spontaneous in nature. The calculated specific energy consumption at the optimum current density of 50 mA cm(-2) was 0.41 kWh m(-3) for the removal of COD and 2.57 kWh m(-3) for the removal of TKN. PMID:23770619

  14. Dry deposition of pan to grassland vegetation

    SciTech Connect

    Doskey, P.V.; Wesely, M.L.; Cook, D.R.; Gao, W.

    1994-01-01

    Peroxyacetyl nitrate or PAN (CH{sub 3}C(O)OONO{sub 2}) is formed in the lower troposphere via photochemical reactions involving nitrogen oxides (NO{sub x}) and non-methane hydrocarbons (NMHCs). PAN has a lifetime in the free troposphere of about three months and is removed by photolysis or reaction with OH. Dry deposition will decrease its lifetime, although the few measurements that have been made indicate that this process is slow. Measurements of the uptake of PAN by alfalfa in growth chambers indicated that the dry deposition velocity (downward flux divided by concentration at a specified height) was 0.75 cm s{sup {minus}1}. Garland and Penkett measured a dry deposition velocity of 0.25 cm s{sup {minus}1} for PAN to grass and soil in a return-flow wind tunnel. Shepson et al. (1992) analyzed trends of PAN and O{sub 3} concentrations in the stable nocturnal boundary layer over mixed deciduous/coniferous forests at night, when leaf stomata were closed, and concluded that the deposition velocity for PAN was at least 0.5 cm s{sup {minus}1}. We measured the dry deposition velocity of PAN to a grassland site in the midwestern United States with a modified Bowen ratio technique. Experiments were conducted on selected days during September, October, and November of 1990. An energy balance Bowen ratio station was used to observe the differences in air temperature and water vapor content between heights of 3.0 and 0.92 m and to evaluate the surface energy balance. Air samples collected at the same two heights in Teflon {reg_sign} bags were analyzed for PAN by a gas chromatographic technique. We present an example of the variations of PAN concentrations and gradients observed during the day and compare measurements of the dry deposition velocity to expectations based on the physicochemical properties of PAN.

  15. Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads

    SciTech Connect

    Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

    2004-01-01

    Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

  16. Installing and maintaining evaporative coolers

    SciTech Connect

    Otterbein, R.

    1996-05-01

    In the spring, many people in the western United States will be starting up or replacing evaporative coolers, or buying them for the first time. Proper installation and maintenance of these systems is very important, and recent improvements in the technology change how to best handle these tasks. Topics covered in this article include the following: evaporative cooler types; cooler maintenance; sizing evaporative coolers; A/C Add-on; Blower Orientation and cooler location; increasing air flow. 5 figs.

  17. Representative shuttle evaporative heat sink

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1978-01-01

    The design, fabrication, and testing of a representative shuttle evaporative heat sink (RSEHS) system which vaporizes an expendable fluid to provide cooling for the shuttle heat transport fluid loop is reported. The optimized RSEHS minimum weight design meets or exceeds the shuttle flash evaporator system requirements. A cold trap which cryo-pumps flash evaporator exhaust water from the CSD vacuum chamber test facility to prevent water contamination of the chamber pumping equipment is also described.

  18. Turkish Undergraduates' Misconceptions of Evaporation, Evaporation Rate, and Vapour Pressure

    ERIC Educational Resources Information Center

    Canpolat, Nurtac

    2006-01-01

    This study focused on students' misconceptions related to evaporation, evaporation rate, and vapour pressure. Open-ended diagnostic questions were used with 107 undergraduates in the Primary Science Teacher Training Department in a state university in Turkey. In addition, 14 students from that sample were interviewed to clarify their written…

  19. Handedness in captive bonobos (Pan paniscus).

    PubMed

    Harrison, Rebecca M; Nystrom, Pia

    2008-01-01

    Species level right-handedness is often considered to be unique to humans. Handedness is held to be interrelated to our language ability and has been used as a means of tracing the evolution of language. Here we examine handedness in 3 captive groups of bonobos (Pan paniscus) comprising 22 individuals. We found no evidence for species level handedness. Conclusions that can be drawn from these findings are: (1) species level handedness evolved after the divergence of the Pan and Homo lineages; (2) inconsistent preferences may represent precursors to human handedness, and (3) Pan may have language abilities but these cannot be measured using handedness.

  20. EVAPORATION OF FRUITS AND VEGETABLES

    PubMed Central

    Cruess, W. V.

    1921-01-01

    More and more the world is utilizing dried fruits and vegetables, the war having given impetus to the preparation of the latter. Here are plain statements of processes and values deduced from scientific institution investigations. Evaporation is in its infancy while sun drying is very ancient. Evaporated products are better looking but more costly. ImagesFigure 1Figure 2Figure 3 PMID:18010426

  1. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, John D.; Gross, Mark E.

    1997-01-01

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  2. Vacuum flash evaporated polymer composites

    DOEpatents

    Affinito, J.D.; Gross, M.E.

    1997-10-28

    A method for fabrication of polymer composite layers in a vacuum is disclosed. More specifically, the method of dissolving salts in a monomer solution, vacuum flash evaporating the solution, condensing the flash evaporated solution as a liquid film, and forming the condensed liquid film into a polymer composite layer on a substrate is disclosed.

  3. Thermal modeling of flow in the San Diego Aqueduct, California, and its relation to evaporation

    USGS Publications Warehouse

    Jobson, Harvey E.

    1980-01-01

    The thermal balance of the 26-kilometer long concrete-lined San Diego Aqueduct, a canal in southern California, was studied to determine the coefficients in a Dalton type evaporation formula. Meteorologic and hydraulic variables, as well as water temperature, were monitored continuously for a 1-year period. A thermal model was calibrated by use of data obtained during a 28-day period to determine the coefficients which best described the thermal balance of the canal. The coefficients applicable to the San Diego Aqueduct are similar to those commonly obtained from lake evaporation studies except that a greater evaporation at low windspeeds is indicated. The model was verified by use of data obtained during 113 days which did not include the calibration data. These data verified that the derived wind function realistically represents the canal evaporation. An annual evaporation of 2.08 meters was computed which is about 91 percent of the amount of water evaporated annually from nearby class A evaporation pans. (Kosco-USGS)

  4. Evaporation estimates from the Dead Sea and their implications on its water balance

    NASA Astrophysics Data System (ADS)

    Oroud, Ibrahim M.

    2011-12-01

    The Dead Sea (DS) is a terminal hypersaline water body situated in the deepest part of the Jordan Valley. There is a growing interest in linking the DS to the open seas due to severe water shortages in the area and the serious geological and environmental hazards to its vicinity caused by the rapid level drop of the DS. A key issue in linking the DS with the open seas would be an accurate determination of evaporation rates. There exist large uncertainties of evaporation estimates from the DS due to the complex feedback mechanisms between meteorological forcings and thermophysical properties of hypersaline solutions. Numerous methods have been used to estimate current and historical (pre-1960) evaporation rates, with estimates differing by ˜100%. Evaporation from the DS is usually deduced indirectly using energy, water balance, or pan methods with uncertainty in many parameters. Accumulated errors resulting from these uncertainties are usually pooled into the estimates of evaporation rates. In this paper, a physically based method with minimum empirical parameters is used to evaluate historical and current evaporation estimates from the DS. The more likely figures for historical and current evaporation rates from the DS were 1,500-1,600 and 1,200-1,250 mm per annum, respectively. Results obtained are congruent with field observations and with more elaborate procedures.

  5. Modeling Treated LAW Feed Evaporation

    SciTech Connect

    DANIEL, WE

    2004-07-08

    This task examines the potential of the treated waste feed blends to form sodium-aluminum silicate precipitates when evaporated using the zeolite database. To investigate the behavior of the blended pretreated waste feed, an OLI Environmental Simulation Package Software (OLI ESP) model of the treated low activity waste (LAW) evaporator was built. A range of waste feed compositions representative of Envelope A, B, and C were then fed into the OLI model to predict various physical and chemical properties of the evaporator concentrates. Additional runs with treated LAW evaporator were performed to compare chemical and physical property model predictions and experimental results for small-scale radioactive tests of the treated feed evaporation process.

  6. Evaporation from heterogeneous soil surfaces

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Or, D.

    2009-04-01

    Evaporation rate is a key process of water exchange between soil surfaces and atmosphere and is controlled by both atmospheric demand and soil hydraulic properties. Initially high evaporation rates are sustained by capillary-induced water flow from receding drying front to evaporating surface. In heterogeneous soils air invades preferentially coarse-textured regions whereas fine textured surface regions remain water saturated. We investigated experimentally and numerically effects of hydraulic coupling on drying rate of heterogeneous porous media. Laboratory experiments with vertical contrasts between fine (0.1-0.5 mm) and coarse sand (0.3-0.9 mm) showed that the period of high drying rate was extended compared to evaporation from homogeneous materials. Water flow from coarse material to supply water evaporated from fine textured surface was monitored by neutron radiography imaging. Due to the high hydraulic conductivity of the coarse material the viscous head loss could be neglected for flow distances analyzed in the experiments (< 600 mm). We proposed a model to explore effects of hydraulic coupling on evaporation for a wide range of soil textural classes at plot scale. When the drying front in the coarse reaches a certain characteristic depth (defined by the pore size distribution) no water evaporates from the coarse surface, yet, subsurface flow from coarse to the fine textured inclusion persists and feeds enhanced evaporation rate. Assuming energy input was not limiting, evaporation from the fine textured inclusion may increase to compensate reduction of evaporating surface. For loam or silt as inclusion in sandy material, water was extracted from regions with more than 10 m in distance before flow was limited by viscous effects. In case of clay inclusions the radius of water extraction was smaller due to enhanced viscous resistance. The findings of the numerical study can be applied as well to assess the effect of shrubs or compacted trafficked zones on the

  7. STEREO Sees Comet Pan-STARRS

    NASA Video Gallery

    In early March 2013, Comet PanSTARRS became visible to the naked eye in the night sky in the Northern Hemisphere, appearing with a similar shape and brightness as a star, albeit with a trailing tai...

  8. Rapid Evaporation of microbubbles

    NASA Astrophysics Data System (ADS)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  9. The Pan-STARRS discovery machine

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.

    2014-11-01

    The Pan-STARRS System has proven to be a remarkable machine for discovery. The PS1 Science Mission has drawn to a close, and the second Pan-STARRS survey, optimized for NEO's has begun. PS2 is in the commissioning stages and will eventually support NEO discovery as well. The performance of the PS1 system, sky coverage, cadence, and data quality of the Pan-STARRS1 Surveys will be presented as well as progress in reprocessing of the data taken to date and the plans for the public release of all Pan-STARRS1 data products in the spring of 2015. Science results related to planetary studies and the dust will be presented. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE).

  10. Pan-information Location Map

    NASA Astrophysics Data System (ADS)

    Zhu, X. Y.; Guo, W.; Huang, L.; Hu, T.; Gao, W. X.

    2013-11-01

    A huge amount of information, including geographic, environmental, socio-economic, personal and social network information, has been generated from diverse sources. Most of this information exists separately and is disorderly even if some of it is about the same person, feature, phenomenon or event. Users generally need to collect related information from different sources and then utilize them in applications. An automatic mechanism, therefore, for establishing a connection between potentially-related information will profoundly expand the usefulness of this huge body of information. A connection tie is semantic location describing semantically concepts and attributes of locations as well as relationships between locations, since 80% of information contains some kind of geographic reference but not all of geographic reference has explicit geographic coordinates. Semantic location is an orthogonal form of location representation which can be represented as domain ontology or UML format. Semantic location associates various kinds of information about a same object to provide timely information services according to users' demands, habits, preferences and applications. Based on this idea, a Pan-Information Location Map (PILM) is proposed as a new-style 4D map to associates semantic location-based information dynamically to organize and consolidate the locality and characteristics of corresponding features and events, and delivers on-demand information with a User-Adaptive Smart Display (UASD).

  11. A Graphical Representation of the Evaporation Solution Space and the Complementary Relationship

    NASA Astrophysics Data System (ADS)

    Crago, R. D.

    2011-12-01

    The Complementary Relationship (CR) between regional evapotranspiration E and potential or pan evaporation Ep can be written as Ep-E0 = b(E0-E), where E0 is the evaporation rate if the entire regional surface was wet. The CR corresponds to the idea that reduced evaporation due to drying of the land surface results in increased sensible heat fluxes and an increased potential for evaporation. Recent (2009) contributions to the theory behind the CR by Pettijohn and Salvucci and by Szilagyi and Jozsa led to a much clearer grasp of the physics behind the CR by examining the role of two-dimensional heat and vapor transport. Recent papers such as those mentioned above have questioned the traditional idea that b=1, while at the same time raising questions about the proper representations of E0 and Ep. As a result, the conceptual simplicity of the original CR models by Bouchet, Morton, and Brutsaert and Stricker is no longer obvious. The goal of this work was to provide a visual representation of local evaporation as defined by the Penman-Monteith equation, and to illustrate different CR models by highlighting those parts of the Penman-Monteith evaporation solution-space that are also part of a CR model solution-space. Specifically, EF is found for a wide range of values of rs/ra and EA/Qn, where EF=E/Qn, Qn is the available energy, rs is the stomatal resistance, ra is the aerodynamic resistance, and EA is the drying power of the air. These results are used to create a 3-dimensional EF surface as a function of rs/ra and EA/Qn. Representations of several CR models based on different values of b, E0 and Ep are represented as curves drawn on the 3-D EF surface. Variations in models include those for which b=1 or b=5; for which E0 is defined with the Priestley Taylor α=1 or α=1.26; and for which Ep is found from Penman's equation or from simulated pan evaporation. Differences in the curves for different versions of the CR are noted. One conclusion is that, while b tends to be

  12. Trends in evaporation and surface cooling in the Mississippi River basin

    USGS Publications Warehouse

    Milly, P.C.D.; Dunne, K.A.

    2001-01-01

    A synthesis of available data for the Mississippi River basin (area 3 ?? 106 km2) reveals an upward trend in evaporation during recent decades, driven primarily by increases in precipitation and secondarily by human water use. A cloud-related decrease in surface net radiation appears to have accompanied the precipitation trend. Resultant evaporative and radiative cooling of the land and lower atmosphere quantitatively explains downward trends in observed pan evaporation. These cooling tendencies also reconcile the observed regional atmospheric cooling with the anticipated regional "greenhouse warming." If recent high levels of precipitation (which correlate with the North Atlantic Oscillation) are mainly caused by an internal climatic fluctuation, an eventual return to normal precipitation could reveal heretofore-unrealized warming in the basin. If, instead, they are caused by some unidentified forcing that will continue to grow in the future, then continued intensification of water cycling and suppression of warming in the basin could result.

  13. Lunar PanCam: Adapting ExoMars PanCam for the ESA Lunar Lander

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Griffiths, A. D.; Leff, C. E.; Schmitz, N.; Barnes, D. P.; Josset, J.-L.; Hancock, B. K.; Cousins, C. R.; Jaumann, R.; Crawford, I. A.; Paar, G.; Bauer, A.; the PanCam Team

    2012-12-01

    A scientific camera system would provide valuable geological context from the surface for lunar lander missions. Here, we describe the PanCam instrument from the ESA ExoMars rover and its possible adaptation for the proposed ESA lunar lander. The scientific objectives of the ESA ExoMars rover are designed to answer several key questions in the search for life on Mars. The ExoMars PanCam instrument will set the geological and morphological context for that mission. We describe the PanCam scientific objectives in geology, and atmospheric science, and 3D vision objectives. We also describe the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has a filter wheel, and a High Resolution Camera for close up investigations. The cameras are housed in an optical bench (OB) and electrical interface is provided via the PanCam Interface Unit (PIU). Additional hardware items include a PanCam Calibration Target (PCT). We also briefly discuss some PanCam testing during field trials. In addition, we examine how such a 'Lunar PanCam' could be adapted for use on the Lunar surface on the proposed ESA lunar lander.

  14. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.

    PubMed

    Havenith, George; Bröde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin

    2013-03-15

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed.

  15. Explosive evaporation in solar flares

    NASA Technical Reports Server (NTRS)

    Fisher, George H.

    1987-01-01

    This paper develops a simple analytical model for the phenomenon of 'explosive evaporation' driven by nonthermal electron heating in solar flares. The model relates the electron energy flux and spectrum, plus details of the preflare atmosphere, to the time scale for explosive evaporation to occur, the maximum pressure and temperature to be reached, rough estimates for the UV pulse emission flux and duration, and the evolution of the blueshifted component of the soft X-ray lines. An expression is given for the time scale for buildup to maximum pressures and the onset of rapid motion of the explosively evaporating plasma. This evaporation can excite a rapid response of UV line and continuum emission. The emission lines formed in the plasma approach a given emissivity-weighted blueshift speed.

  16. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, D.R.; Rawlinson, K.S.

    1994-01-04

    An improved evaporator section is described for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes. 1 figure.

  17. Dual manifold heat pipe evaporator

    DOEpatents

    Adkins, Douglas R.; Rawlinson, K. Scott

    1994-01-01

    An improved evaporator section for a dual manifold heat pipe. Both the upper and lower manifolds can have surfaces exposed to the heat source which evaporate the working fluid. The tubes in the tube bank between the manifolds have openings in their lower extensions into the lower manifold to provide for the transport of evaporated working fluid from the lower manifold into the tubes and from there on into the upper manifold and on to the condenser portion of the heat pipe. A wick structure lining the inner walls of the evaporator tubes extends into both the upper and lower manifolds. At least some of the tubes also have overflow tubes contained within them to carry condensed working fluid from the upper manifold to pass to the lower without spilling down the inside walls of the tubes.

  18. Horst Meyer and Quantum Evaporation

    NASA Astrophysics Data System (ADS)

    Balibar, S.

    2016-11-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  19. Evaporation from open microchannel grooves.

    PubMed

    Kachel, Sibylle; Zhou, Ying; Scharfer, Philip; Vrančić, Christian; Petrich, Wolfgang; Schabel, Wilhelm

    2014-02-21

    The evaporation of water from open u-shaped microchannel grooves was investigated with particular emphasis on the roles of channel width and air flow conditions. Given the small dimensions of the microchannels, all measurements were conducted in a range where convection and diffusion are of equal importance and known correlations for the calculation of mass transfer coefficients cannot be applied. The evaporation rates were measured using a new optical method and a gravimetric method. Both measurement methods yielded mass transfer coefficients that are in agreement with each other. The observed relation between mass transfer coefficient, air velocity and channel width vastly differs from the predictions obtained from macroscopic structures. With respect to diagnostic devices we conclude that analyte concentration in an open microchannel groove strongly increases even within short times due to the evaporation process and we show that wider channels are more favourable in terms of minimizing the relative evaporation rate.

  20. Horst Meyer and Quantum Evaporation

    NASA Astrophysics Data System (ADS)

    Balibar, S.

    2016-06-01

    With their 1963 article in Cryogenics Horst Meyer and his collaborators triggered intense research activity on the evaporation of superfluid helium. Discussing this subject with him in 1975 was enlightening. Fifty years later, the analogy between the photoelectric effect and the evaporation of superfluid helium in the low temperature limit is not yet clear, although remarkable progress has been made in its observation and its understanding. This special issue of the Journal of Low Temperature Physics is an opportunity to recall the history of quantum evaporation, and to express my gratitude to Horst Meyer. It describes quickly most of the experimental and theoretical works which have been published on quantum evaporation during the last 50 years, but it is not a comprehensive review of this fascinating subject.

  1. Evaporation Tower With Prill Nozzles

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

  2. Evaporation waves in superheated dodecane

    NASA Astrophysics Data System (ADS)

    Simões-Moreira, J. R.; Shepherd, J. E.

    1999-03-01

    We have observed propagating adiabatic evaporation waves in superheated liquid dodecane, C12H26. Experiments were performed with a rapid decompression apparatus at initial temperatures of 180 300°C. Saturated dodecane in a tube was suddenly depressurized by rupturing a diaphragm. Motion pictures and still photographic images, and pressure and temperature data were obtained during the evaporation event that followed depressurization. Usually, a front or wave of evaporation started at the liquid free surface and propagated into the undisturbed regions of the metastable liquid. The evaporation wave front moved with a steady mean velocity but the front itself was unstable and fluctuating in character. At low superheats, no waves were observed until a threshold superheat was exceeded. At moderate superheats, subsonic downstream states were observed. At higher superheats, the downstream flow was choked, corresponding to a Chapman Jouguet condition. At the most extreme superheat tested, a vapour content of over 90% was estimated from the measured data, indicating a nearly complete evaporation wave. Our results are interpreted by modelling the evaporation wave as a discontinuity, or jump, between a superheated liquid state and a two-phase liquid vapour downstream state. Reasonable agreement is found between the model and observations; however, there is a fundamental indeterminacy that prevents the prediction of the observed wave speeds.

  3. DWPF Recycle Evaporator Simulant Tests

    SciTech Connect

    Stone, M

    2005-04-05

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  4. Modeling of solvent evaporation from polymer jets in electrospinning

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Fa; Salkovskiy, Yury; Dzenis, Yuris A.

    2011-05-01

    Solvent evaporation plays a critical role in nanofiber formation in electrospinning. Here, we present a nonlinear mass diffusion-transfer model describing the drying process in dilute polymer solution jets. The model is used to predict transient solvent concentration profiles in polyacrylonitrile/N,N-dimethylformamide (PAN/DMF) jets with the initial radii ranging from 50 μm down to 100 nm. Numerical simulations demonstrate high transient inhomogeneity of solvent concentration over the jet cross-section in microscopic jets. The degree of inhomogeneity decreases for finer, submicron jets. The simulated jet drying time decreases rapidly with the decreasing initial jet radius, from seconds for microjets to single milliseconds for nanojets. The results demonstrate the need for further improved coupled multiphysics models of electrospinning jets.

  5. Harnessing Nanoparticles to Control Evaporation at Liquid-Vapor Interfaces

    NASA Astrophysics Data System (ADS)

    Yong, Xin

    2015-11-01

    It is well known that nanoparticles with appropriate size and surface chemistry adsorb to liquid-vapor interfaces and consequently modify the mechanical properties of the interfaces. However, little has been explored about the effect of nanoparticles on the heat transfer occurring at the interfaces. Using many-body dissipative particle dynamics (MDPD), we model an evaporating interface with adsorbed nanoparticles. Homogeneous and amphiphilic Janus nanoparticles, which contain hydrophobic and hydrophobic surface regions, are considered in this study. We measure the variation in the evaporation rates of the interface by gradually increasing particle loading until a hexagonal-close-packed monolayer is achieved. We explore the effect of surface chemistry and surface composition of the particles and demonstrate that evaporation can be readily adjusted by tuning the interaction parameters and amphiphilic ratio. Importantly, we observe that the evaporation suppression by adsorbed nanoparticles occurs only when the ambient vapor pressure is low. This study provides a fundamental understanding of the phase transition in multiphase interfacial systems and opens up new routes to additional control over evaporating interfaces.

  6. Membrane-Based Water Evaporator for a Space Suit

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; McCann, Charles J.; O'Connell, Mary K.; Andrea, Scott

    2004-01-01

    A membrane-based water evaporator has been developed that is intended to serve as a heat-rejection device for a space suit. This evaporator would replace the current sublimator that is sensitive to contamination of its feedwater. The design of the membrane-based evaporator takes advantage of recent advances in hydrophobic micropore membranes to provide robust heat rejection with much less sensitivity to contamination. The low contamination sensitivity allows use of the heat transport loop as feedwater, eliminating the need for the separate feedwater system used for the sublimator. A cross section of the evaporator is shown in the accompanying figure. The space-suit cooling loop water flows into a distribution plenum, through a narrow annulus lined on both sides with a hydrophobic membrane, into an exit plenum, and returns to the space suit. Two perforated metal tubes encase the membranes and provide structural strength. Evaporation at the membrane inner surface dissipates the waste heat from the space suit. The water vapor passes through the membrane, into a steam duct and is vented to the vacuum environment through a back-pressure valve. The back-pressure setting can be adjusted to regulate the heat-rejection rate and the water outlet temperature.

  7. The Pan-STARRS1 Surveys

    NASA Astrophysics Data System (ADS)

    Chambers, Kenneth C.

    2014-01-01

    Pan-STARRS1 is approaching the completion of the PS1 Science Mission. Operations of the PS1 System include the Observatory, Telescope, 1.4 Gigapixel Camera, Image Processing Pipeline , PSPS relational database and reduced science product software servers. The Pan-STARRS1 Surveys include: (1) A 3pi Steradian Survey, (2) A Medium Deep survey of 10 PS1 footprints spaced around the sky; (3) A solar system survey optimized for Near Earth Objects, (4) a Stellar Transit Survey; and (5) a Deep Survey of M31. The PS1 3pi Survey has now covered the sky north of dec=-30 with more than 12 visits in five bands: g,r,i,z and y or over ~60 epochs per 0.25 arcsec resolution element on the sky. The performance of the PS1 system, sky coverage, cadence, and data quality of the Pan-STARRS1 Surveys will be presented as well as progress in reprocessing of the data taken to date and the plans for the public release of all Pan-STARRS1 data products in the spring of 2015. The Pan-STARRS1 Surveys (PS1) have been made possible through contributions of the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under Grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation under Grant No. AST-1238877, the University of Maryland, and Eotvos Lorand University (ELTE).

  8. Salt stains from evaporating droplets.

    PubMed

    Shahidzadeh, Noushine; Schut, Marthe F L; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  9. Salt stains from evaporating droplets

    PubMed Central

    Shahidzadeh, Noushine; Schut, Marthe F. L.; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  10. Evaporative attachment of slow electrons to free sodium clusters

    NASA Astrophysics Data System (ADS)

    Rabinovich, Roman Mikhailovich

    We have carried out a measurement of the mass spectra of sodium cluster anions formed in the collisions of free neutral sodium clusters with beam of low energy (0.1 eV) electrons. Anions covering the size ranges from Na-7 to Na-92 and from Na-132 to Na-144 were observed. The anion mass spectra were recorded simultaneously with those of the precursor cluster beam, which allowed us to monitor the effect of electron capture on the relative abundances of various cluster sizes. The anion mass spectra demonstrated significant restructuring with respect to the precursor beam: a downshift of the shell-closing magic numbers, a change in the shape of the overall intensity envelope, and, significantly, an alteration in the relative intensities of the open-shell peaks located between the magic numbers. This alteration did not represent a simple pattern shift by one electron number, and required an accurate analysis. The restructuring of the mass spectra was treated theoretically by means of an evaporative attachment model, consisting of three steps: (a) electron capture by the strong polarization potential of the cluster, (b) rapid dissipation of the electron energy into the internal vibrational energy of the cluster (cluster heating), and a statistical evaporative cooling process (monomer and dimer evaporations). The analysis yielded results in good agreement with the experimental data and explained the fine structure of the observed abundance restructuring patterns. Based on an accurate statistical description of dimer evaporation we derived an adjustment to the previous literature values of sodium cluster dimer evaporation energies, which had been obtained from cluster photodissociation experiments. The exponential sensitivity of the evaporation process to the cluster evaporation energies allowed us to verify the validity of this adjustment. The corrected evaporation energies for dimers were found to be approximately 20% higher than the original values. The results

  11. Tubular sublimatory evaporator heat sink

    NASA Technical Reports Server (NTRS)

    Webbon, B. W. (Inventor)

    1977-01-01

    An evaporative refrigerator or cooler comprising a bundle of spaced, porous walled tubes closed at one of their ends and vented to a vacuum at the other end is disclosed. The tube bundle is surrounded by a water jacket having a hot water inlet distribution manifold and a cooled water outlet through a plenum chamber. Hot water is pumped into the jacket to circulate around the tubes, and when this water meets the vacuum existing inside the tubes, it evaporates thereby cooling the water in the jacket. If cooling proceeds to the point where water penetrating or surrounding all or part of the tubes freezes, operation continues with local sublimation of the ice on the tubes while the circulating water attempts to melt the ice. Both sublimation and evaporation may take place simultaneously in different regions of the device.

  12. Improving evaporators for crystallizing solutions

    SciTech Connect

    Korbanov, V.N.; Gaidash, N.I.; Kibitkin, V.N.; Mitkevich, E.M.; Nikolenko, V.N.

    1985-07-01

    The authors describe and evaluate the new evaporators with forced circulation and a heat exchange surface of 630 m that have recently been introduced for the production of calcium chloride from still wastes in soda plants. A diagram illustrates the construction of the new apparatus and charts present data on the dependence of heat transfer on the thickness of the walls of the heating pipes, the dependence of the entrainment of calcium chloride by secondary steam on the level of the solution in the vacuum aparatus, and on the performance of the evaporator over time.

  13. Evaporation of primordial black holes

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.

    The usual explanation of the isotropy of the universe is that inflation would have smoothed out any inhomogeneities. However, if the universe was initially fractal or in a foam like state, an overall inflation would have left it in the same state. I suggest that the universe did indeed begin with a tangled web of wormholes connecting pairs of black holes but that the inflationary expansion was unstable: wormholes that are slightly smaller correspond to black holes that are hotter than the cosmological background and evaporate away. This picture is supported by calculations with Raphael Bousso of the evaporation of primordial black holes in the s-wave and large N approximations.

  14. Student-Centered Designs of Pan-African Literature Courses

    ERIC Educational Resources Information Center

    M'Baye, Babacar

    2010-01-01

    A student-centered teaching methodology is an essential ingredient of a successful Pan-African literary course. In this article, the author defines Pan-Africanism and how to go about designing a Pan-African literature course. The author combines reading assignments with journals, film presentations, and lectures in a productive learning…

  15. Rotatable prism for pan and tilt

    NASA Technical Reports Server (NTRS)

    Ball, W. B.

    1980-01-01

    Compact, inexpensive, motor-driven prisms change field of view of TV camera. Camera and prism rotate about lens axis to produce pan effect. Rotating prism around axis parallel to lens produces tilt. Size of drive unit and required clearance are little more than size of camera.

  16. The PAN-DA data acquisition system

    SciTech Connect

    Petravick, D.; Berg, D.; Berman, E.; Bernett, M.; Constanta-Fanourakis, P.; Dorries, T.; Haire, M.; Kaczar, K; MacKinnon, B.; Moore, C.; Nicinski, T.; Oleynik, G.; Pordes, R.; Sergey, G.; Votava, M.; White, V.

    1989-05-01

    The Online and Data Acquisition software groups at Fermi National Accelerator Laboratory have extended the VAXONLINE data acquisition package to include a VME based data path. The resulting environment, PAN-DA, provides a high throughput for logging, filtering, formatting and selecting events. 10 refs., 1 fig.

  17. THE Pan-STARRS1 PHOTOMETRIC SYSTEM

    SciTech Connect

    Tonry, J. L.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Morgan, J. S.; Wainscoat, R. J.; Stubbs, C. W.; Shivvers, I. S.; Lykke, K. R.; Doherty, P.; Price, P. A.

    2012-05-10

    The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination -30 Degree-Sign to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper, we present our determination of the Pan-STARRS1 photometric system: g{sub P1}, r{sub P1}, i{sub P1}, z{sub P1}, y{sub P1}, and w{sub P1}. The Pan-STARRS1 photometric system is fundamentally based on the Hubble Space Telescope Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS1 magnitude system and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. By-products, including transformations to other photometric systems, Galactic extinction, and stellar locus, are also provided. We close with a discussion of remaining systematic errors.

  18. Forced-Flow Evaporative Cooler

    NASA Technical Reports Server (NTRS)

    Ellis, Wilbert E.; Niggemann, Richard E.

    1987-01-01

    Evaporative cooler absorbs heat efficiently under unusual gravitational conditions by using centrifugal force and vapor vortexes to maintain good thermal contact between heat-transfer surface and vaporizable coolant. System useful for cooling electronic or other equipment under low gravity encountered in spacecraft or under multiple-gravity conditions frequently experienced in high-performance airplanes.

  19. Membrane evaporator/sublimator investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    Data are presented on a new evaporator/sublimator concept using a hollow fiber membrane unit with a high permeability to liquid water. The aim of the program was to obtain a more reliable, lightweight and simpler Extra Vehicular Life Support System (EVLSS) cooling concept than is currently being used.

  20. Liquid-phase continuity and solute concentration dynamics during evaporation from porous media: pore-scale processes near vaporization surface.

    PubMed

    Shokri, N; Lehmann, P; Or, D

    2010-04-01

    Evaporation from porous media involves complex pore scale transport processes affecting liquid phase distribution and fluxes. Often, the initial evaporation rate is nearly constant and supplied by capillary flow from wetted zones below to the surface. Sustaining constant flow against gravity hinges on an upward capillary gradient and on liquid phase continuity with hydraulic conductivity sufficient for supplying evaporative flux. The pore scale liquid phase adjustments during evaporative displacement necessary for maintaining a constant flux have been postulated but rarely measured. In this study we employed detailed imaging using x-ray synchrotron radiation to study liquid phase distribution and dynamics at the most sensitive domain just below the surface of evaporating sand columns. Three-dimensional images at a resolution of 7 microns were obtained from sand column (mean particle size 0.6 mm) initially saturated with calcium iodide solution (4% by mass) to enhance image contrast. Detailed imaging of near-surface liquid phase distribution during evaporation confirmed phase continuity at micrometric scale and provided quantitative estimates of liquid conductance in agreement with values required to supply evaporative flux. Temporal variations in bulk salt concentrations determined from x-ray attenuation were proportional to evaporative water mass loss. Highly resolved salt concentration images revealed existence of evaporating chimneys that supply the bulk of evaporative demand. Delineated mass loss dynamics and salt distribution measured by the x-ray attenuation were in reasonable agreement with a simplified analytical convection-diffusion model for salt dynamics during evaporation from porous media. PMID:20481828

  1. Evaporation Estimation of Rift Valley Lakes: Comparison of Models

    PubMed Central

    Melesse, Assefa M.; Abtew, Wossenu; Dessalegne, Tibebe

    2009-01-01

    Evapotranspiration (ET) accounts for a substantial amount of the water flux in the arid and semi-arid regions of the World. Accurate estimation of ET has been a challenge for hydrologists, mainly because of the spatiotemporal variability of the environmental and physical parameters governing the latent heat flux. In addition, most available ET models depend on intensive meteorological information for ET estimation. Such data are not available at the desired spatial and temporal scales in less developed and remote parts of the world. This limitation has necessitated the development of simple models that are less data intensive and provide ET estimates with acceptable level of accuracy. Remote sensing approach can also be applied to large areas where meteorological data are not available and field scale data collection is costly, time consuming and difficult. In areas like the Rift Valley regions of Ethiopia, the applicability of the Simple Method (Abtew Method) of lake evaporation estimation and surface energy balance approach using remote sensing was studied. The Simple Method and a remote sensing-based lake evaporation estimates were compared to the Penman, Energy balance, Pan, Radiation and Complementary Relationship Lake Evaporation (CRLE) methods applied in the region. Results indicate a good correspondence of the models outputs to that of the above methods. Comparison of the 1986 and 2000 monthly lake ET from the Landsat images to the Simple and Penman Methods show that the remote sensing and surface energy balance approach is promising for large scale applications to understand the spatial variation of the latent heat flux. PMID:22303142

  2. Analysis of energy use in tomato evaporation

    SciTech Connect

    Rumsey, T.; Conant, T.

    1980-01-01

    Field performance data for four tomato product evaporators are presented and analyzed. Steam and feed flow rates along with steam economies were measured and are compared to steady state theoretical evaporator models.

  3. Quantifying Evaporation in a Permeable Pavement System

    EPA Science Inventory

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. Th...

  4. Isotopic Compositions of Evaporative Fluxes

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lauder, A. M.; Kopec, B. G.; Dade, W. B.; Virginia, R. A.; Posmentier, E. S.

    2013-12-01

    The isotopic fluxes of evaporation from a water surface are typically computed using a one-dimensional model, originally conceptualized by Craig and Gordon (1965) and further developed and adapted to different natural settings (such as transpiration, open surface evaporation, etc.) by various investigators. These models have two distinguishing characteristics. First, there exists a laminar layer where molecular diffusion away from the water-air interface causes kinetic isotopic fractionation. The magnitude of this fractionation is controlled by the diffusion/transport coefficient of each vapor isotopologue in air and their concentration gradients, the latter being controlled by relative humidity, isotopic ratios of ambient air, and turbulent conditions (such as wind and surface roughness). Second, the horizontal variations are ignored. In particular, the effect of horizontal advection on isotopic variations in the ambient air is not considered. The research reported here addresses the effects of relinquishing the simplifying assumptions in both of these areas. We developed a model, in which the simplification of a purely laminar layer is dropped. Instead, we express the vertical transport coefficient as the sum of the molecular diffusivity, that differs for each water isotopologue, and the turbulent diffusivity that increases linearly with height but does not vary among water isotopologues. With this model, the kinetic isotopic effect reduces with height in the vicinity of the water surface, and the net isotopic fractionation through the boundary layer can be integrated. The advantage of this conceptualization is that the magnitude of kinetic isotopic fractionation can be assessed directly with changing environmental conditions, such as humidity and wind speed, rather than approximated by discontinuous empirical functions of the environmental conditions, as in the conventional models mentioned above. To address the effect of lateral heterogeneity, we expanded the

  5. Computing Evaporation Using Meteorological Data for Hydrological Budget of Lake Wapalanne in NJ School of Conservation

    NASA Astrophysics Data System (ADS)

    Jordan, J. J.; Barrett, K. R.; Galster, J. C.; Ophori, D. U.; Flores, D.; Kelly, S. A.; Lutey, A. M.

    2011-12-01

    Lake Wapalanne is small manmade lake about 5.4 hectares in northwest New Jersey in the Highlands Physiographic province within permanently protected land. The lake's surrounding area consists of forested vegetation and is relatively unoccupied which minimizes human influence. The lake's small size, minimal external influence, geographic isolation, and protected status provide an optimal research environment to record meteorological data used in calculation of potential evaporation. Between July 7h and August 3rd meteorological data was collected from a professional weather station placed on an island directly in the center of Lake Wapalanne. The Vantage Pro2 weather station provided accurate readings of temperate, humidity, wind-speed and direction, precipitation, and atmospheric pressure. A bathometric survey of the lake was conducted to determine the surface area with variations in depth of the lake's water level. Using the collected weather station data, a rate of potential evaporation was determined with several evaporation equations. A quantified volume was then derived from the rate and surface area of the lake. Using small scale evaporation measurements of known volumes of water within small pans placed in the lake water and National Oceanic and Atmospheric Administration evaporation stations near the experiment site, a comparison and validation of the calculated potential evaporation accuracy and regional evaporation is achieved. This three year study is part of an ongoing NSF Research Experience for Undergraduates (REU) project that encompasses additional topics of lake research; see abstract from Kelly et al. AGU 2011 for more information on the lake's hydrologic budget. The results and methods of this study will be of use in future forecasting and baseline measurements of hydrologic budgets for lakes and reservoirs within regional proximity, which provide drinking water to over five million people in the State of New Jersey.

  6. Dynamics of complete wetting liquid under evaporation

    NASA Astrophysics Data System (ADS)

    Pham, Chi-Tuong; Berteloot, Guillaume; Lequeux, FranC.{C.}Ois; Limat, Laurent

    2009-11-01

    We study the dynamics of a contact line under evaporation and complete wetting conditions taking into account the divergent nature of evaporation near the border of the liquid, as evidenced by Deegan et al. [Nature 389, 827]. The model we propose shows the existence of a precursor film at the edge of the liquid. The length of the precursor film is controlled by Hamacker constant and evaporative flux. Past the precursor film, Tanner's law is generalized accounting for evaporative effects.

  7. PanDA for COMPASS at JINR

    NASA Astrophysics Data System (ADS)

    Petrosyan, A. Sh.

    2016-09-01

    PanDA (Production and Distributed Analysis System) is a workload management system, widely used for data processing at experiments on Large Hadron Collider and others. COMPASS is a high-energy physics experiment at the Super Proton Synchrotron. Data processing for COMPASS runs locally at CERN, on lxbatch, the data itself stored in CASTOR. In 2014 an idea to start running COMPASS production through PanDA arose. Such transformation in experiment's data processing will allow COMPASS community to use not only CERN resources, but also Grid resources worldwide. During the spring and summer of 2015 installation, validation and migration work is being performed at JINR. Details and results of this process are presented in this paper.

  8. The Imager for Mars Pathfinder Insurance Pan

    NASA Technical Reports Server (NTRS)

    Herkenhoff, K. E.; Johnson, J. R.; Weller, L. A.

    2003-01-01

    The Imager for Mars Pathfinder (IMP) obtained a full panorama of the Sagan Memorial Station landing site on Sol 2, before the IMP mast was deployed. The images in this panorama were taken in 4 filters (including stereo) and losslessly compressed to provide a high-quality multispectral survey of the landing site even if the IMP mast did not successfully deploy; this data set was therefore called the Insurance Pan. It was completed late in the afternoon of Sol 2, just before the IMP mast was (successfully) deployed. The data were stored in memory and returned to Earth after it became clear that downlink rates were higher than expected. The Insurance Pan horizontal (azimuth) coverage is nearly complete, with gaps caused by pointing errors and data packet losses. Stereo data were acquired in the blue (445 nm) filter, as well as right-eye green (531 nm), orange (600 nm), and near-infrared (752 nm) data.

  9. BRDF of Salt Pan Regolith Samples

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory Bi-directional Reflectance Distribution Function (BRDF) measurements of salt pan regolith samples are presented in this study in an effort to understand the role of spatial and spectral variability of the natural biome. The samples were obtained from Etosha Pan, Namibia (19.20 deg S, 15.93 deg E, alt. 1100 m). It is shown how the BRDF depends on the measurement geometry - incident and scatter angles and on the sample particle sizes. As a demonstration of the application of the results, airborne BRDF measurements acquires with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the regolith samples were collected are compared with the laboratory results. Good agreement between laboratory measured and field measured BRDF is reported.

  10. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  11. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  12. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  13. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  14. 21 CFR 131.130 - Evaporated milk.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Evaporated milk. 131.130 Section 131.130 Food and... CONSUMPTION MILK AND CREAM Requirements for Specific Standardized Milk and Cream § 131.130 Evaporated milk. (a) Description. Evaporated milk is the liquid food obtained by partial removal of water only from milk....

  15. Iodine retention during evaporative volume reduction

    DOEpatents

    Godbee, H.W.; Cathers, G.I.; Blanco, R.E.

    1975-11-18

    An improved method for retaining radioactive iodine in aqueous waste solutions during volume reduction is disclosed. The method applies to evaporative volume reduction processes whereby the decontaminated (evaporated) water can be returned safely to the environment. The method generally comprises isotopically diluting the waste solution with a nonradioactive iodide and maintaining the solution at a high pH during evaporation.

  16. Evaporation by mechanical vapor recompression

    NASA Astrophysics Data System (ADS)

    Iverson, C. H.; Coury, G. E.

    1980-04-01

    Progress in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporation as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search; report on visit to European factories using these technologies; energy balance studies of factories offered by the industry as candidates for the demonstration plants; and report on energy balance studies and the recommendations as to the site for the demonstration plant.

  17. Does groundwater enhance evaporative cooling?

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, E.

    2015-12-01

    Evaporation is a key process in land-climate interactions, not only because it directly regulates the hydrological cycle, but also because it contributes to the Earth's energy balance. Due to its feedbacks on large-scale water processes and its impact on the dynamics of the atmosphere, it has been considered as a driver of droughts and heatwaves1-3. While evaporation from ocean surfaces is likely to increase with rising temperatures, it is unclear whether evapotranspiration from land surfaces could similarly increase, due to possible limitations imposed by soil moisture and vegetation physiology4. Observations suggest that groundwater (hereafter GW) has an important role in hydrological budgets and soil moisture variability in many regions, supplying moisture for evapotranspiration during dry seasons5, 6. Although modeling studies suggest that GW is often close enough to the surface to interact with the atmosphere7, 8, the soil water storage is often underestimated by land surface models. This is most likely due to neglecting the lateral movement of water from topographically higher altitudes to valley bottoms and its convergence close to the land surface, as well as the upward movement of water in the capillary fringe.The focus of this study is to understand where and when GW may significantly enhance the availability of soil water for evapotranspiration. We also quantified the potential contribution of GW to evapotranspiration in the areas where GW is a major supply. We used the global network of eddy covariance observations9 (FLUXNET) along with global modeled GW depth10 and GLEAM ET model estimates11 to address the current gap in modelling ET due to neglecting GW supply. Having identified areas where GW is tightly coupled with the atmosphere through evaporation processes, the study provides the basis to examine the "air conditioning effect" of GW and test the idea if GW enhances evaporation to the extent that leads to a cooler temperatures and wetter climates.

  18. Dynamics of evaporative colloidal patterning

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Wu, Ning; Mandre, Shreyas; Aizenberg, Joanna; Mahadevan, L.

    2015-09-01

    Drying suspensions often leave behind complex patterns of particulates, as might be seen in the coffee stains on a table. Here, we consider the dynamics of periodic band or uniform solid film formation on a vertical plate suspended partially in a drying colloidal solution. Direct observations allow us to visualize the dynamics of band and film deposition, where both are made of multiple layers of close packed particles. We further see that there is a transition between banding and filming when the colloidal concentration is varied. A minimal theory of the liquid meniscus motion along the plate reveals the dynamics of the banding and its transition to the filming as a function of the ratio of deposition and evaporation rates. We also provide a complementary multiphase model of colloids dissolved in the liquid, which couples the inhomogeneous evaporation at the evolving meniscus to the fluid and particulate flows and the transition from a dilute suspension to a porous plug. This allows us to determine the concentration dependence of the bandwidth and the deposition rate. Together, our findings allow for the control of drying-induced patterning as a function of the colloidal concentration and evaporation rate.

  19. Identification of PAN2 by quantitative proteomics as a leucine-rich repeat-receptor-like kinase acting upstream of PAN1 to polarize cell division in maize.

    PubMed

    Zhang, Xiaoguo; Facette, Michelle; Humphries, John A; Shen, Zhouxin; Park, Yeri; Sutimantanapi, Dena; Sylvester, Anne W; Briggs, Steven P; Smith, Laurie G

    2012-11-01

    Mechanisms governing the polarization of plant cell division are poorly understood. Previously, we identified pangloss1 (PAN1) as a leucine-rich repeat-receptor-like kinase (LRR-RLK) that promotes the polarization of subsidiary mother cell (SMC) divisions toward the adjacent guard mother cell (GMC) during stomatal development in maize (Zea mays). Here, we identify pangloss2 (PAN2) as a second LRR-RLK promoting SMC polarization. Quantitative proteomic analysis identified a PAN2 candidate by its depletion from membranes of pan2 single and pan1;pan2 double mutants. Genetic mapping and sequencing of mutant alleles confirmed the identity of this protein as PAN2. Like PAN1, PAN2 has a catalytically inactive kinase domain and accumulates in SMCs at sites of GMC contact before nuclear polarization. The timing of polarized PAN1 and PAN2 localization is very similar, but PAN2 acts upstream because it is required for polarized accumulation of PAN1 but is independent of PAN1 for its own localization. We find no evidence that PAN2 recruits PAN1 to the GMC contact site via a direct or indirect physical interaction, but PAN2 interacts with itself. Together, these results place PAN2 at the top of a cascade of events promoting the polarization of SMC divisions, potentially functioning to perceive or amplify GMC-derived polarizing cues.

  20. A model of the biogeographical journey from Proto-pan to Pan paniscus.

    PubMed

    Myers Thompson, Jo A

    2003-04-01

    Pan paniscus is unique in the group of African apes because of its range south of the Congo River. Examination of the bio-geographical journey of the genus Pan to the species P. paniscus is important when discussing the evolution of African apes. This paper is a review of the paleo-geographic events, the zoogeography, and faunal sorting which influenced P. paniscus divergence from the Proto-pan ancestor within the recent Miocene through Pliocene Epochs, approximately 10-2 MYA. Finally, by elucidating modern day evidence of food plant forms in the southern periphery exploited by P. paniscus in the forest/savanna mosaic habitat, we are able to conclude with those extrinsic events that most influenced the occurrence and distribution of P. paniscus.

  1. Pan Eurasian Experiment (PEEX): a new research initiative focused on the Northern Pan-Eurasian Region

    NASA Astrophysics Data System (ADS)

    Petäjä, Tuukka; Lappalainen, Hanna; Zaytseva, Nina; Shvidenko, Anatoli; Kujansuu, Joni; Kerminen, Veli-Matti; Viisanen, Yrjö; Kotlyakov, Vladimir; Kasimov, Nikolai; Bondur, Valery; Matvienko, Gennadi; Zilitinkevich, Sergej; Kulmala, Markku

    2014-05-01

    The increasing human activities are changing the environment and the humanity is we are pushing the safe boundaries of the globe. It is of utmost importance to gauge with a comprehensive research program on the current status of the environment, particularly in the most vulnerable locations. Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research approach aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions. The PEEX program aims (i) to understand the Earth system and the influence of environmental and societal changes in pristine and industrialized Pan-Eurasian environments, (ii) to establish and sustain long-term, continuous and comprehensive ground-based airborne and seaborne research infrastructures, and to utilize satellite data and multi-scale model frameworks, (iii) to contribute to regional climate scenarios in the northern Pan-Eurasia and determine the relevant factors and interactions influencing human and societal wellbeing (iv) to promote the dissemination of PEEX scientific results and strategies in scientific and stake-holder communities and policy making, (v) to educate the next generation of multidisciplinary global change experts and scientists, and (vi) to increase the public awareness of climate change impacts in the Pan-Eurasian region. The development of PEEX research infrastructure will be one of the first activities of PEEX. PEEX will find synergies with the major European land-atmosphere observation infrastructures such as ICOS a research infrastructure to decipher the greenhouse gas balance of Europe and adjacent regions, ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network-project), and ANAEE (The experimentation in terrestrial ecosystem research) networks and with the flag ship stations like the SMEARs (Station for Measuring Ecosystem-Atmosphere Relations) when design, re-organizing and networking existing

  2. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  3. 22. RW Meyer Sugar Mill: 18761889. Sorghum Pan. Manufactured by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. RW Meyer Sugar Mill: 1876-1889. Sorghum Pan. Manufactured by John Nott & Co., Honolulu, Hawaii, 1878. View: Historical view, 1934, T.T. Waterman Collection, Hawaiian Sugar Planters' Association, Oahu, Hawaii. View looking toward east end of sorghum pan and interior of east end of the boiling house. Walls and final compartment of the sorghum pan are still intact. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  4. Ozone export from East Asia: The role of PAN

    NASA Astrophysics Data System (ADS)

    Jiang, Zhe; Worden, John R.; Payne, Vivienne H.; Zhu, Liye; Fischer, Emily; Walker, Thomas; Jones, Dylan B. A.

    2016-06-01

    Peroxyacetyl nitrate (PAN) is an important ozone (O3) precursor. The lifetime of PAN is approximately 1 month in the free troposphere, and this allows O3 production to occur in pollution plumes at intercontinental distances from its source. In this study we use the Goddard Earth Observing System (GEOS)-Chem global chemical transport model, new satellite measurements of PAN from the Aura Tropospheric Emission Spectrometer (TES), and data from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field campaign over North America, to study the role of natural and anthropogenic Asian emissions on free tropospheric (900-400 hPa) PAN distributions and subsequent O3 production. Using the ARCTAS data with GEOS-Chem, we show that while GEOS-Chem is unbiased with respect to the aircraft data, TES version 7 PAN data are biased high for regions with surface temperatures colder than 285 K. However, GEOS-Chem and TES measurements provide a consistent representation (within 15% difference) of PAN abundance over East Asia. Because of the good agreement between model and observations, we use the GEOS-Chem model to evaluate the sources of PAN precursors and the effect of free tropospheric PAN on the export of O3 from Asia to North America. The GEOS-Chem model results show that the largest contributors to free tropospheric PAN over Asia and the northern Pacific are anthropogenic and soil NOx emissions. Biomass burning emissions have important contributions to free tropospheric PAN over northern Pacific (25% in April), while the contribution from lightning over northern Pacific is significant in July (40%). Strong springtime transport in April results in more export of free tropospheric PAN and O3 from East Asian emissions. This free tropospheric PAN contributes about 35% to the abundance of free tropospheric O3 over western North America in spring and 25% in summer.

  5. Putting the "vap" into evaporation

    NASA Astrophysics Data System (ADS)

    Shuttleworth, W. J.

    2007-01-01

    In the spirit of the Special Issue of HESS to which it contributes, this paper documents the origin and development of the science of natural evaporation from land surfaces over the last 30-35 years, since the symposium A View from the Watershed was held to commemorate the opening of the new Institute of Hydrology (IH) building in 1973. Important subsequent technical progress includes the ability to measure routinely the diurnal cycle of near-surface meteorological variables using automatic weather stations, and of surface energy and momentum exchanges using automated implementations of the Bowen Ratio/Energy Budget technique and the Eddy Correlation technique, along with the capability to estimate the "fetch" for which these measurements apply. These improvements have been complemented by new methods to measure the separate components of evaporation, including: the interception process using randomly relocated below-canopy gauges, transpiration fluxes from individual leaves/shoots using porometers and from plants/plant components using stem-flow gauges and soil evaporation using micro-lysimeters and soil moisture depletion methods. In recent years progress has been made in making theory-based area-average estimates of evaporation using scintillometers, and model-based area-average estimates by assembling many streams of relevant data into Land Data Assimilation Systems. Theoretical progress has been made in extending near-surface turbulence theory to accommodate the effect of the "excess" boundary layer resistance to leaf-to-air transfer of energy and mass fluxes relative to that for momentum, and to allow for observed shortcoming in stability factors in the transition layer immediately above vegetation. Controversy regarding the relative merits of multi-layer model and "big leaf" representations of whole-canopy exchanges has been resolved in favour of the latter approach. Important gaps in the theory of canopy-atmosphere interactions have been filled, including

  6. Pre-evaporative fenton remediation of treated municipal wastewater for reuse purposes.

    PubMed

    Van Hege, K; Dewettinck, T; Verstraete, W

    2001-05-01

    The present study explored the application of evaporative technology as an alternative desalination technique for wastewater treatment plant effluent. In the experiments carried out, it was shown that evaporation allowed for extensive decontamination of wastewater treatment plant effluent as most inorganic and organic contaminants were completely removed. Ammonia could be retained in the concentrate when pH was adjusted to values lower than 4; however this led to increased nitrite volatility due to the formation of nitric oxide. Using an electronic nose, it was observed that evaporation gave rise to a change in odour quality and quantity due to volatilisation of the volatile organic compounds present in the effluent. Remediation of these components was carried out by Fenton oxidation prior to evaporation. A high removal was observed under the applied conditions of Fe2+ = 25 mg l-1, H2O2 = 50 mg l-1, pH = 3 and a reaction time of 2 hours.

  7. The application of three different evaporative cooling strategies to a quick service restaurant

    SciTech Connect

    Waterbury, S.S.; Allen, T.E.; Young, R.

    1999-07-01

    This paper describes the application of evaporative cooling strategies to the kitchen HVAC outdoor air intake, dining area HVAC condensers, and to the total cooling of a large, separate play area in a quick service restaurant (QSR). The paper includes a discussion of the types of evaporative coolers used, including media and once-through water flow, as well as the benefits and shortcomings of evaporative cooling in a quick service restaurant application. Measured data were used to determine the performance of the systems and to develop models used to predict cooling season performance. The performance of all evaporative cooling strategies reduced energy consumption, but they all required adjustments and modifications during the evaluation period. Proper commissioning after installation would have ensured peak performance sooner.

  8. Evaporative oxidation treatability test report

    SciTech Connect

    1995-04-01

    In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatment Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.

  9. Mobile evaporator corrosion test results

    SciTech Connect

    Rozeveld, A.; Chamberlain, D.B.

    1997-05-01

    Laboratory corrosion tests were conducted on eight candidates to select a durable and cost-effective alloy for use in mobile evaporators to process radioactive waste solutions. Based on an extensive literature survey of corrosion data, three stainless steel alloys (304L, 316L, AL-6XN), four nickel-based alloys (825, 625, 690, G-30), and titanium were selected for testing. The corrosion tests included vapor phase, liquid junction (interface), liquid immersion, and crevice corrosion tests on plain and welded samples of candidate materials. Tests were conducted at 80{degrees}C for 45 days in two different test solutions: a nitric acid solution. to simulate evaporator conditions during the processing of the cesium ion-exchange eluant and a highly alkaline sodium hydroxide solution to simulate the composition of Tank 241-AW-101 during evaporation. All of the alloys exhibited excellent corrosion resistance in the alkaline test solution. Corrosion rates were very low and localized corrosion was not observed. Results from the nitric acid tests showed that only 316L stainless steel did not meet our performance criteria. The 316L welded interface and crevice specimens had rates of 22.2 mpy and 21.8 mpy, respectively, which exceeds the maximum corrosion rate of 20 mpy. The other welded samples had about the same corrosion resistance as the plain samples. None of the welded samples showed preferential weld or heat-affected zone (HAZ) attack. Vapor corrosion was negligible for all alloys. All of the alloys except 316L exhibited either {open_quotes}satisfactory{close_quotes} (2-20 mpy) or {open_quotes}excellent{close_quotes} (<2 mpy) corrosion resistance as defined by National Association of Corrosion Engineers. However, many of the alloys experienced intergranular corrosion in the nitric acid test solution, which could indicate a susceptibility to stress corrosion cracking (SCC) in this environment.

  10. Superhydrophobic PAN nanofibers for gas diffusion layers of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Salahuddin, Mohammad; Hwang, Gisuk; Asmatulu, Ramazan

    2016-04-01

    Proton exchange membrane (PEM) fuel cells are considered to be the promising alternatives of natural resources for generating electricity and power. An optimal water management in the gas diffusion layers (GDL) is critical to high fuel cell performance. Its basic functions include transportation of the reactant gas from flow channels to catalyst effectively, draining out the liquid water from catalyst layer to flow channels, and conducting electrons with low humidity. In this study, polyacrylonitrile (PAN) was dissolved in a solvent and electrospun at various conditions to produce PAN nanofibers prior to the stabilization at 280 °C for 1 hour in the atmospheric pressure and carbonization at 850 °C for 1 hour. The surface hydrophobicity values of the carbonized PAN nanofibers were adjusted using superhydrophobic and hydrophilic agents. The thermal, mechanical, and electrical properties of the new GDLs depicted much better results compared to the conventionally used ones. The water condensation tests on the surfaces (superhydrophobic and hydrophilic) of the GDL showed a crucial step towards improved water managements in the fuel cell. This study may open up new possibilities for developing high- performing GDL materials for future PEM fuel cell applications.

  11. Modeling weight variability in a pan coating process using Monte Carlo simulations.

    PubMed

    Pandey, Preetanshu; Katakdaunde, Manoj; Turton, Richard

    2006-10-06

    The primary objective of the current study was to investigate process variables affecting weight gain mass coating variability (CV(m) ) in pan coating devices using novel video-imaging techniques and Monte Carlo simulations. Experimental information such as the tablet location, circulation time distribution, velocity distribution, projected surface area, and spray dynamics was the main input to the simulations. The data on the dynamics of tablet movement were obtained using novel video-imaging methods. The effects of pan speed, pan loading, tablet size, coating time, spray flux distribution, and spray area and shape were investigated. CV(m) was found to be inversely proportional to the square root of coating time. The spray shape was not found to affect the CV(m) of the process significantly, but an increase in the spray area led to lower CV(m) s. Coating experiments were conducted to verify the predictions from the Monte Carlo simulations, and the trends predicted from the model were in good agreement. It was observed that the Monte Carlo simulations underpredicted CV(m) s in comparison to the experiments. The model developed can provide a basis for adjustments in process parameters required during scale-up operations and can be useful in predicting the process changes that are needed to achieve the same CV(m) when a variable is altered.

  12. Evaporation and combustion of sprays

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1983-01-01

    A description is provided of recent spray evaporation and combustion models, taking into account turbulent two- and three-dimensional spray processes found in furnaces, gas turbine combustors, and internal combustion engines. Within the class of spray models of interest, two major categories are distinguished, including locally homogeneous flow (LHF) models and separated flow (SF) models. SF models are of the greatest practical importance, but LHF models have distinct advantages in some cases. Attention is also given to recent progress on modeling interactions between drops and the flow in both dilute and dense sprays, involving sprays having low and high liquid volume fractions, respectively.

  13. Organic Evaporator steam valve failure

    SciTech Connect

    Jacobs, R. A.

    1992-09-29

    DWPF Technical has requested an analysis of the capacity of the organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS).

  14. Global sources and significance of peroxyacetyl nitrate (PAN)

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Jacob, D. J.; Yantosca, R. M.; Payer, M.

    2012-12-01

    Peroxyacetyl nitrate (PAN), formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) serves as a thermally unstable reservoir for nitrogen oxide radicals (NO and NO2, collectively termed NOx). PAN permits NOx to impact the global distribution of the two most important atmospheric oxidants, ozone (O3) and the OH radical. PAN is also a critical channel through which climate-driven changes to the biosphere will affect atmospheric composition, notably through biogenic NMVOC emissions and fires. We use a 3-D chemical transport model (GEOS-Chem) constrained by a global suite of observations to evaluate the sources and significance of PAN. We quantify individual NMVOC and NOX contributions to PAN formation, and we identify where PAN has a significant impact on remote O3, OH and nitrogen deposition. We find that a simulation with improved budgets for key NMVOCs (ethane, acetaldehyde, ethanol, acetone and select aromatic species) is able to reproduce the main features of the global PAN distribution. We also show that the treatment of PAN formation in fires plays an important role in determining the global impact of this PAN source. The contributions of acetaldehyde, acetone and methylglyoxal to PAN formation reflect the sources and lifetimes of these immediate precursors. Acetaldehyde, which is emitted directly from biogenic sources and formed via hydrocarbon oxidation, is the most important peroxyacetyl radical precursor globally. Methylglyoxal, an oxidation product of both isoprene and aromatic species, is responsible for about a third of peroxyactyl radical formation in the lower troposphere. Isoprene oxidation products, other than methylglyoxal, are also significant for the global PAN budget. With updated (lower) photolysis yields, acetone is less important for PAN formation than previously thought. It is responsible for less peroxyactyl radical formation globally than each of the other immediate precursors below 200 hPa. Lightning

  15. Indoor/outdoor concentrations of ozone and peroxyacetyl nitrate (PAN).

    PubMed

    Jakobi, G; Fabian, P

    1997-05-01

    Photochemical pollutants such as ozone and peroxyacetyl nitrate (PAN) could adversely affect human health, especially with relation to effects on lung function. For a realistic assessment of ambient concentrations, both outdoor and indoor measurements of ozone and PAN are required, because people stay indoors for most of the time. Indoor/outdoor concentration ratios, indoor half-life times and indoor chemistry including physicochemical reactions on surfaces are quite well known for ozone, but not for PAN. While ozone is removed very rapidly mainly by heterogeneous reactions on surfaces or by gasphase reactions with e.g. carpet emissions, no such processes are known for PAN at present. The main removal process for PAN is thermal decay. Indoor concentrations of ozone and PAN can be a significant fraction of those outdoors highly depending on the ventilation pattern. Our measurements in various kinds of non-air-conditioned rooms show maximal indoor concentrations between 80 and 100% of those outdoors for ozone and PAN, respectively. Average indoor/outdoor ratios were calculated of 0.5 for ozone and between 0.7 and 0.9 for PAN. The half-life times ranged between only a few minutes for ozone and 0.5 to 1 h for PAN.

  16. Measuring sub-canopy evaporation in a forested wetland using an ensemble of methods

    NASA Astrophysics Data System (ADS)

    Allen, S. T.; Edwards, B.; Reba, M. L.; Keim, R.

    2013-12-01

    Evaporation from the sub-canopy water surface is an integral but understudied component of the water balance in forested wetlands. Previous studies have used eddy covariance, energy balance approaches, and water-table fluctuations to assess whole-system evapotranspiration. However, partitioning evaporation from transpiration is necessary for modeling the system because of different controls over each process. Sub-canopy evaporation is a physically controlled process driven by relatively small gradients in residual energy transmitted through the canopy. The low-energy sub-canopy environment is characterized by a spatiotemporally varying light environment due to sunflecks, small and often inverse temperature and vapor gradients, and a high capacity for heat storage in flood water, which each present challenges to common evapotranspiration measurement techniques. Previous studies have examined wetland surface evaporation rates with small lysimeter experiments, but this approach does not encapsulate micrometeorological processes occurring at the scale of natural wetlands. In this study, we examine a one year time series of in situ sub-canopy flux measurements from a seasonally flooded cypress-tupelo swamp in southeast Louisiana. Our objective is to apply these data towards modeling sub-canopy energy flux responses to intra-annual hydrologic, phenologic, and climatic cycles. To assess and mitigate potential errors due to the inherent measurement challenges of this environment, we utilized multiple measurement approaches including eddy covariance, Bowen ratio energy balance (with both air to air gradients and water surface to air gradients) and direct measurement using a floating evaporation pan. Preliminary results show that Bowen ratio energy balance measurements are useful for constraining evaporation measurements when low wind speed conditions create a non-ideal setting for eddy covariance. However, Bowen ratios were often highly erratic due to the weak temperature

  17. Gestural communication in subadult bonobos (Pan paniscus): repertoire and use.

    PubMed

    Pika, Simone; Liebal, Katja; Tomasello, Michael

    2005-01-01

    This article aims to provide an inventory of the communicative gestures used by bonobos (Pan paniscus), based on observations of subadult bonobos and descriptions of gestural signals and similar behaviors in wild and captive bonobo groups. In addition, we focus on the underlying processes of social cognition, including learning mechanisms and flexibility of gesture use (such as adjustment to the attentional state of the recipient). The subjects were seven bonobos, aged 1-8 years, living in two different groups in captivity. Twenty distinct gestures (one auditory, eight tactile, and 11 visual) were recorded. We found individual differences and similar degrees of concordance of the gestural repertoires between and within groups, which provide evidence that ontogenetic ritualization is the main learning process involved. There is suggestive evidence, however, that some form of social learning may be responsible for the acquisition of special gestures. Overall, the present study establishes that the gestural repertoire of bonobos can be characterized as flexible and adapted to various communicative circumstances, including the attentional state of the recipient. Differences from and similarities to the other African ape species are discussed.

  18. An ice-water saturation adjustment

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, Joanne; Mccumber, Michael

    1989-01-01

    A reasonably accurate and noniterative saturation adjustment scheme is proposed to calculate: (1) the amount of condensation and/or deposition necessary to remove any supersaturated vapor, or (2) the amount of evaporation and/or sublimation necessary to remove any subsaturation in the presence of cloud droplets and/or cloud ice. This proposed scheme can be implemented for a nonhydrostatic cloud model. The derivation of the scheme, an evaluation of its performance, and tests for sensitivity to variations in a few key parameters are presented.

  19. Summertime distributions of peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) in Beijing: Understanding the sources and major sink of PAN

    NASA Astrophysics Data System (ADS)

    Zhang, Gen; Mu, Yujing; Zhou, Lingxi; Zhang, Chenglong; Zhang, Yuanyuan; Liu, Junfeng; Fang, Shuangxi; Yao, Bo

    2015-02-01

    Peroxyacetyl nitrate (PAN), a major secondary pollutant in the atmosphere, has received much concern for its particular importance in atmospheric chemistry and adverse effects on human and plants. Atmospheric PAN and PPN were measured by using a gas chromatograph equipped with electron capture detector (GC-ECD) from June to September 2010, and the source and major sink for PAN were firstly studied in Beijing. The distinct diurnal variations of PAN and PPN with maximum in the afternoon were observed, and the mean and maximum values were 2.61 ± 2.57 ppbv (N = 839) and 12.5 ppbv for PAN and 0.52 ± 0.38 ppbv (N = 152) and 2.16 ppbv for PPN during the measuring period, respectively. Good correlation (R = 0.85) between PAN and PPN with a slope (ΔPPN/ΔPAN) of 0.134 indicated that anthropogenic volatile organic compounds (AVOCs) dominated the photochemical formation of PANs in Beijing. Further, we found acetaldehyde was the predominant carbonyl precursor of PAN with the contribution of 59.7% to the total peroxyacetyl (PA) radical. Methyl glyoxal, methacrolein, acetone, methyl vinyl ketone, and biacetyl contributed 7.1%, 8.8%, 19.7%, 3.4%, and 1.3% to total PA radical, respectively. Anti-correlation between PAN concentrations and the NO/NO2 ratios was found during the whole investigating period. In addition, the amount of PAN lost by thermal decomposition (TPAN) accounted for remarkable fractions of PAN observed under high temperature during both daytime and nighttime.

  20. Insights into the Maize Pan-Genome and Pan-Transcriptome[W][OPEN

    PubMed Central

    Hirsch, Candice N.; Foerster, Jillian M.; Johnson, James M.; Sekhon, Rajandeep S.; Muttoni, German; Vaillancourt, Brieanne; Peñagaricano, Francisco; Lindquist, Erika; Pedraza, Mary Ann; Barry, Kerrie; de Leon, Natalia; Kaeppler, Shawn M.; Buell, C. Robin

    2014-01-01

    Genomes at the species level are dynamic, with genes present in every individual (core) and genes in a subset of individuals (dispensable) that collectively constitute the pan-genome. Using transcriptome sequencing of seedling RNA from 503 maize (Zea mays) inbred lines to characterize the maize pan-genome, we identified 8681 representative transcript assemblies (RTAs) with 16.4% expressed in all lines and 82.7% expressed in subsets of the lines. Interestingly, with linkage disequilibrium mapping, 76.7% of the RTAs with at least one single nucleotide polymorphism (SNP) could be mapped to a single genetic position, distributed primarily throughout the nonpericentromeric portion of the genome. Stepwise iterative clustering of RTAs suggests, within the context of the genotypes used in this study, that the maize genome is restricted and further sampling of seedling RNA within this germplasm base will result in minimal discovery. Genome-wide association studies based on SNPs and transcript abundance in the pan-genome revealed loci associated with the timing of the juvenile-to-adult vegetative and vegetative-to-reproductive developmental transitions, two traits important for fitness and adaptation. This study revealed the dynamic nature of the maize pan-genome and demonstrated that a substantial portion of variation may lie outside the single reference genome for a species. PMID:24488960

  1. Slow-blue PanSTARRS transients

    NASA Astrophysics Data System (ADS)

    MacLeod, Chelsea L.; Bruce, Alastair; Lawrence, Andy; Ward, Martin; Collinson, James; Elvis, Martin; Gezari, Suvi; Smartt, Steven; Smith, Ken; Wright, Darryl; Fraser, Morgan

    2015-01-01

    Photometric and spectroscopic monitoring of 50 blue, nuclear "transients" in PanSTARRS-1 has revealed different types of extremely variable AGN. The majority show a gradual brightening by ~2 mag from the SDSS observation a decade ago and may represent a new class of AGN microlensed by foreground galaxies. Spectra from the William Herschel Telescope identify these as z~1 AGN with atypical spectroscopic properties. We present an analysis of their photometric and spectroscopic variability in an effort to constrain the detailed structure of the source AGN.

  2. Hydrodynamic Instabilities Produced by Evaporation

    NASA Astrophysics Data System (ADS)

    Romo-Cruz, Julio Cesar Ruben; Hernandez-Zapata, Sergio; Ruiz-Chavarria, Gerardo

    2012-11-01

    When a liquid layer (alcohol in the present work) is in an environment where its relative humidity is less than 100 percent evaporation appears. When RH is above a certain threshold the liquid is at rest. If RH decreases below this threshold the flow becomes unstable, and hydrodynamic cells develop. The aim of this work is to understand the formation of those cells and its main features. Firstly, we investigate how the cell size depends on the layer width. We also study how temperature depends on the vertical coordinate when the cells are present. An inverse temperature gradient is found, that is, the bottom of liquid layer is colder than the free surface. This shows that the intuitive idea that the cells are due to a direct temperature gradient, following a Marangoni-like process, does not work. We propose the hypothesis that the evaporation produce a pressure gradient that is responsible of the cell development. On the other hand, using a Schlieren technique we study the topography of the free surface when cells are present. Finally the alcohol vapor layer adjacent to the liquid surface is explored using scattering experiments, giving some insight on the plausibility of the hypothesis described previously. Authors acknowledge support by DGAPA-UNAM under project IN116312 ``Vorticidad y ondas no lineales en fluidos.''

  3. Ratosa playa lake in southern Spain. Karst pan or compound sink?

    PubMed

    Rodríguez-Rodríguez, Miguel; Martos-Rosillo, Sergio; Pedrera, Antonio; Benavente-Herrera, José

    2015-04-01

    In Andalusia (Spain), there are more than 45 semiarid playa lakes protected as natural reserves and related to karstic outcrops. Some of them are located over regional karstic aquifers and have internal drainage networks with sporadic surface outlets, such as sinkholes (compound sinks), but the majority of such playas have no internal drainage systems, so the only water output is evaporation (karst pans). Karst pans are perched and disconnected from the groundwater system. The fact that the Ratosa playa lake is partially located over a karstic Sierra, as well as other hydromorphological observations, it is suggested that the system could be of a compound type, but a detailed hydrogeological analysis showed that the playa is disconnected from the aquifer, so it is in fact a karst pan. Once the hydrological functioning had been established, a monthly water balance for a 10-year period (1998-2008), enabled us to reproduce the evolution of the water level of the playa lake. Estimations of runoff were carried out by a soil water estimate for a water holding capacity in the soil of 191 mm. Results show a good correlation (>90%) after calibration with the time series of water level in the lake for the same period confirming geological observations. Our results highlight that this water body is extremely vulnerable to hydrological alterations of its watershed caused by human activities, particularly those related to land-use change for agriculture. For this reason, we propose a new protection zone, based on hydrological knowledge, instead of the present Peripheral Area of Protection. PMID:25810083

  4. Ratosa playa lake in southern Spain. Karst pan or compound sink?

    PubMed

    Rodríguez-Rodríguez, Miguel; Martos-Rosillo, Sergio; Pedrera, Antonio; Benavente-Herrera, José

    2015-04-01

    In Andalusia (Spain), there are more than 45 semiarid playa lakes protected as natural reserves and related to karstic outcrops. Some of them are located over regional karstic aquifers and have internal drainage networks with sporadic surface outlets, such as sinkholes (compound sinks), but the majority of such playas have no internal drainage systems, so the only water output is evaporation (karst pans). Karst pans are perched and disconnected from the groundwater system. The fact that the Ratosa playa lake is partially located over a karstic Sierra, as well as other hydromorphological observations, it is suggested that the system could be of a compound type, but a detailed hydrogeological analysis showed that the playa is disconnected from the aquifer, so it is in fact a karst pan. Once the hydrological functioning had been established, a monthly water balance for a 10-year period (1998-2008), enabled us to reproduce the evolution of the water level of the playa lake. Estimations of runoff were carried out by a soil water estimate for a water holding capacity in the soil of 191 mm. Results show a good correlation (>90%) after calibration with the time series of water level in the lake for the same period confirming geological observations. Our results highlight that this water body is extremely vulnerable to hydrological alterations of its watershed caused by human activities, particularly those related to land-use change for agriculture. For this reason, we propose a new protection zone, based on hydrological knowledge, instead of the present Peripheral Area of Protection.

  5. Observations on an evaporative, elbow thermosyphon

    SciTech Connect

    Lock, G.S.H.; Fu, J. )

    1993-05-01

    The performance of the evaporative elbow system was found to be superior to that of the nonevaporative system, but comparable to the performance of the linear system. The parametric role of the evaporator wall temperature, the condenser wall temperature, and the vapor saturation temperature was demonstrated, each revealing a similar monotonic effect. With the evaporator upright, the data were found to be similar to, but displaced from, the upright condenser data. The upright evaporator gave the better performance, but not overwhelmingly so. The limit of performance with the condenser upright was found to be dictated by evaporator dryout. In the upright evaporator configuration, the limit may be attributed to flooding in the poorly draining condenser; this limit was indistinguishable from geyser behavior at low vapor pressures. 16 refs., 3 figs.

  6. Pan-European catalogue of flood events

    NASA Astrophysics Data System (ADS)

    Parajka, Juraj; Mangini, Walter; Viglione, Alberto; Hundecha, Yeshewatesfa; Ceola, Serena

    2016-04-01

    There have been numerous extreme flood events observed in Europe in the past years. One of the way to improve our understanding about causing flood generation mechanisms is to analyse spatial and temporal variability of a large number of flood events. The aim of this study is to present a pan-European catalogue of flood events developed within the SWITCH-ON EU Project. The flood events are identified from daily discharge observations at 1315 stations listed in Global Runoff Data Centre database. The average length of discharge time-series for selected stations is 54 years. For each event, basin boundary and additional hydrological and weather characteristics are extracted. Hydrological characteristics are extracted from the pan-European HYPE model simulations. Precipitation, together with the corresponding proportions of rainfall and snowfall, snowmelt, and evapotranspiration are computed as total amounts between the event start date and event peak date. Soil moisture, soil moisture deficit, and basin accumulated snow water equivalent are computed for the event start date. Weather characteristics are derived from the weather circulation pattern catalogue developed within COST 733 Project. The results are generated in an open data access and tools framework which allows reproduction and extension of results to other regions. More information about the analysis and project are available at: http://www.water-switch-on.eu/lab.html.

  7. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Szilagyi, Jozsef; Niu, Guo-Yue; Zhang, Yinsheng; Zhang, Teng; Wang, Binbin; Wu, Yanhong

    2016-06-01

    Previous studies have shown that the majority of the lakes in the Tibetan Plateau (TP) started to expand rapidly since the late 1990s. However, the causes are still not well known. For Nam Co, being a closed lake with no outflow, evaporation (EL) over the lake surface is the only way water may leave the lake. Therefore, quantifying EL is key for investigating the mechanism of lake expansion in the TP. EL can be quantified by Penman- and/or bulk-transfer-type models, requiring only net radiation, temperature, humidity and wind speed for inputs. However, interpolation of wind speed data may be laden with great uncertainty due to extremely sparse ground meteorological observations, the highly heterogeneous landscape and lake-land breeze effects. Here, evaporation of Nam Co Lake was investigated within the 1979-2012 period at a monthly time-scale using the complementary relationship lake evaporation (CRLE) model which does not require wind speed data. Validations by in-situ observations of E601B pan evaporation rates at the shore of Nam Co Lake as well as measured EL over an adjacent small lake using eddy covariance technique suggest that CRLE is capable of simulating EL well since it implicitly considers wind effects on evaporation via its vapor transfer coefficient. The multi-year average of annual evaporation of Nam Co Lake is 635 mm. From 1979 to 2012, annual evaporation of Nam Co Lake expressed a very slight decreasing trend. However, a more significant decrease in EL occurred during 1998-2008 at a rate of -12 mm yr-1. Based on water-level readings, this significant decrease in lake evaporation was found to be responsible for approximately 4% of the reported rapid water level increase and areal expansion of Nam Co Lake during the same period.

  8. Apparatus and method for evaporator defrosting

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  9. Dynamics of complete wetting liquid under evaporation

    NASA Astrophysics Data System (ADS)

    Pham, Chi-Tuong; Berteloot, Guillaume; Lequeux, François; Limat, Laurent

    2008-11-01

    The dynamics of a contact line under evaporation and total wetting conditions is studied taking into account the divergent nature of evaporation near the border of the liquid, as evidenced by Deegan et al. [Nature 389, 827 (1997)]. Complete wetting is assumed to be due to Van der Waals interactions. The existence of a precursor film at the edge of the liquid is shown analytically and numerically. The length of the precursor film is controlled by Hamacker constant and evaporative flux. Past the precursor film, Tanner's law is generalized accounting for evaporative effects.

  10. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  11. Pattern formation in evaporating drops

    NASA Astrophysics Data System (ADS)

    Li, Fang-I.

    The redistribution of organic solutes during drop evaporation is a nanoscale self assembly process with relevance to technologies ranging from inkjet printing of organic displays to synthesis of bio-smart interfaces for sensing and screening. Atomic force microscopy studies comparing the behavior of different generation dendrimers with different surface chemistry in two solvent alcohols on mica substrates confirm that the detailed morphologies of condensed dendrimer ring structures resulting from micro-droplet evaporation sensitively depend on the surface chemistry, the solute evaporation rate and the dendrimer generation. For the dilute concentration studied here the presence of periodically 'scalloped' molecular rings is ubiquitous. The instability wavelength of the scalloped rings is found to be proportional to the width of the ring, similar to observations of the rim instability in dewetting holes. The effect of the surface chemistry of the dendrimer molecules is obvious in the detailed structure of the self assembled rings. Varying the chain length of solvent alcohol leads to modification of ring patterns. The influence of dendrimer generation on ring structure primarily reflects the increase in dendrimer density with generation number. The evolution of G2-50%C12 -pentanol rings as a function of dendrimer concentration is also described. High surface mobility and phase transformation phenomena in condensed, micro-scale dendrimer structures are documented, again using atomic force microscopy. Stratified dendrimer rings undergo dramatic temperature, time and dendrimer generation dependent morphological changes associated with large-scale molecular rearrangements and partial melting. These transformations produce ring structures consisting of a highly stable first monolayer of the scalloped structure in equilibrium with spherical cap shaped dendrimer islands that form at the center of each pre-existing scallop (creating a 'pearl necklace' structure). Analysis of

  12. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Jacob, D. J.; Yantosca, R. M.; Sulprizio, M. P.; Millet, D. B.; Mao, J.; Paulot, F.; Singh, H. B.; Roiger, A.-E.; Ries, L.; Talbot, R. W.; Dzepina, K.; Pandey Deolal, S.

    2013-10-01

    Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs), is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO + NO2). PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30%), acetone (7%), and a suite of other isoprene and terpene oxidation products (19%). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37%) and alkanes (14%). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.

  13. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Jacob, D. J.; Yantosca, R. M.; Sulprizio, M. P.; Millet, D. B.; Mao, J.; Paulot, F.; Singh, H. B.; Roiger, A.; Ries, L.; Talbot, R. W.; Dzepina, K.; Pandey Deolal, S.

    2014-03-01

    Peroxyacetyl nitrate (PAN) formed in the atmospheric oxidation of non-methane volatile organic compounds (NMVOCs) is the principal tropospheric reservoir for nitrogen oxide radicals (NOx = NO + NO2). PAN enables the transport and release of NOx to the remote troposphere with major implications for the global distributions of ozone and OH, the main tropospheric oxidants. Simulation of PAN is a challenge for global models because of the dependence of PAN on vertical transport as well as complex and uncertain NMVOC sources and chemistry. Here we use an improved representation of NMVOCs in a global 3-D chemical transport model (GEOS-Chem) and show that it can simulate PAN observations from aircraft campaigns worldwide. The immediate carbonyl precursors for PAN formation include acetaldehyde (44% of the global source), methylglyoxal (30%), acetone (7%), and a suite of other isoprene and terpene oxidation products (19%). A diversity of NMVOC emissions is responsible for PAN formation globally including isoprene (37%) and alkanes (14%). Anthropogenic sources are dominant in the extratropical Northern Hemisphere outside the growing season. Open fires appear to play little role except at high northern latitudes in spring, although results are very sensitive to plume chemistry and plume rise. Lightning NOx is the dominant contributor to the observed PAN maximum in the free troposphere over the South Atlantic.

  14. Evaporating Global Charges in Braneworld

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gabadadze, Gregory

    2002-09-01

    In braneworld models the global charges, such as baryon or lepton number, are not conserved. The global-charge non-conservation is a rather model-independent feature which arises due to quantum fluctuations of the brane worldvolume. These fluctuations create ``baby branes'' that can capture some global charges and carry them away into the bulk of higher-dimensional space. Such processes are exponentially suppressed at low-energies, but can be significant at high enough temperatures or energies. These effects can lead to a new, intrinsically high-dimensional mechanism of baryogenesis. Baryon asymmetry might be produced due either to evaporation into the baby branes, or creation of the baryon number excess in collisions of two Brane Universes.

  15. Catastrophic evaporation of rocky planets

    NASA Astrophysics Data System (ADS)

    Perez-Becker, Daniel; Chiang, Eugene

    2013-08-01

    Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses ≲ 0.1 M⊕ (less than twice the mass of Mercury) and surface temperatures ≳2000 K are found to disintegrate entirely in ≲10 Gyr. When our model is applied to Kepler planet candidate KIC 12557548b - which is believed to be a rocky body evaporating at a rate of dot{M} gtrsim 0.1 M_{{{oplus }}} Gyr-1 - our model yields a present-day planet mass of ≲ 0.02 M⊕ or less than about twice the mass of the Moon. Mass-loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyr with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass-loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few per cent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10-100 close-in quiescent progenitors with sub-day periods whose hard-surface transits may be detectable by Kepler - if the progenitors are as large as their maximal, Mercury-like sizes (alternatively, the progenitors could be smaller and more numerous). According to our calculations, KIC 12557548b may have lost ˜70 per cent of its formation mass; today we may be observing its naked iron core.

  16. Pan-ebolavirus and Pan-filovirus Mouse Monoclonal Antibodies: Protection against Ebola and Sudan Viruses

    PubMed Central

    Holtsberg, Frederick W.; Shulenin, Sergey; Vu, Hong; Howell, Katie A.; Patel, Sonal J.; Gunn, Bronwyn; Karim, Marcus; Lai, Jonathan R.; Frei, Julia C.; Nyakatura, Elisabeth K.; Zeitlin, Larry; Douglas, Robin; Fusco, Marnie L.; Froude, Jeffrey W.; Saphire, Erica Ollmann; Herbert, Andrew S.; Wirchnianski, Ariel S.; Lear-Rooney, Calli M.; Alter, Galit; Dye, John M.; Glass, Pamela J.; Warfield, Kelly L.

    2015-01-01

    ABSTRACT The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. IMPORTANCE Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus

  17. A Global Astrometric Solution for Pan-STARRS Referenced to ICRF2

    NASA Astrophysics Data System (ADS)

    Berghea, C. T.; Makarov, V. V.; Frouard, J.; Hennessy, G. S.; Dorland, B. N.; Veillette, D. R.; Dudik, R. P.; Magnier, E. A.; Burgett, W. S.; Chambers, K. C.; Denneau, L.; Flewelling, H.; Kaiser, N.; Tonry, J. L.; Wainscoat, R. J.; Sesar, B.

    2016-09-01

    We describe the development and application of a Global Astrometric Solution (GAS) to the problem of Pan-STARRS1 (PS1) astrometry. Current PS1 astrometry is based on differential astrometric measurements using 2MASS reference stars, and thus PS1 astrometry inherits the errors of the 2MASS catalog. The GAS, based on a single, least-squares adjustment to approximately 750 k “grid stars” using over 3000 extragalactic objects as reference objects, avoids this catalog-to-catalog propagation of errors to a great extent. The GAS uses a relatively small number of quasi-stellar objects (QSOs, or distant active galactic nuclei) with very accurate (<1 mas) radio positions, referenced to the ICRF2. These QSOs provide a hard constraint in the global least-squares adjustment. Solving such a system provides absolute astrometry for all of the stars simultaneously. The concept is much cleaner than conventional astrometry but is not easy to perform for large catalogs. In this paper, we describe our method and its application to Pan-STARRS1 data. We show that large-scale systematic errors are easily corrected but our solution residuals for position (˜60 mas) are still larger than expected based on simulations (˜10 mas). We provide a likely explanation for the reason the small-scale residual errors are not corrected in our solution as would be expected.

  18. Nanofluid Drop Evaporation: Experiment, Theory, and Modeling

    NASA Astrophysics Data System (ADS)

    Gerken, William James

    Nanofluids, stable colloidal suspensions of nanoparticles in a base fluid, have potential applications in the heat transfer, combustion and propulsion, manufacturing, and medical fields. Experiments were conducted to determine the evaporation rate of room temperature, millimeter-sized pendant drops of ethanol laden with varying amounts (0-3% by weight) of 40-60 nm aluminum nanoparticles (nAl). Time-resolved high-resolution drop images were collected for the determination of early-time evaporation rate (D2/D 02 > 0.75), shown to exhibit D-square law behavior, and surface tension. Results show an asymptotic decrease in pendant drop evaporation rate with increasing nAl loading. The evaporation rate decreases by approximately 15% at around 1% to 3% nAl loading relative to the evaporation rate of pure ethanol. Surface tension was observed to be unaffected by nAl loading up to 3% by weight. A model was developed to describe the evaporation of the nanofluid pendant drops based on D-square law analysis for the gas domain and a description of the reduction in liquid fraction available for evaporation due to nanoparticle agglomerate packing near the evaporating drop surface. Model predictions are in relatively good agreement with experiment, within a few percent of measured nanofluid pendant drop evaporation rate. The evaporation of pinned nanofluid sessile drops was also considered via modeling. It was found that the same mechanism for nanofluid evaporation rate reduction used to explain pendant drops could be used for sessile drops. That mechanism is a reduction in evaporation rate due to a reduction in available ethanol for evaporation at the drop surface caused by the packing of nanoparticle agglomerates near the drop surface. Comparisons of the present modeling predictions with sessile drop evaporation rate measurements reported for nAl/ethanol nanofluids by Sefiane and Bennacer [11] are in fairly good agreement. Portions of this abstract previously appeared as: W. J

  19. Clinical evaluation of youth with pediatric acute-onset neuropsychiatric syndrome (PANS): recommendations from the 2013 PANS Consensus Conference.

    PubMed

    Chang, Kiki; Frankovich, Jennifer; Cooperstock, Michael; Cunningham, Madeleine W; Latimer, M Elizabeth; Murphy, Tanya K; Pasternack, Mark; Thienemann, Margo; Williams, Kyle; Walter, Jolan; Swedo, Susan E

    2015-02-01

    On May 23 and 24, 2013, the First PANS Consensus Conference was convened at Stanford University, calling together a geographically diverse group of clinicians and researchers from complementary fields of pediatrics: General and developmental pediatrics, infectious diseases, immunology, rheumatology, neurology, and child psychiatry. Participants were academicians with clinical and research interests in pediatric autoimmune neuropsychiatric disorder associated with streptococcus (PANDAS) in youth, and the larger category of pediatric acute-onset neuropsychiatric syndrome (PANS). The goals were to clarify the diagnostic boundaries of PANS, to develop systematic strategies for evaluation of suspected PANS cases, and to set forth the most urgently needed studies in this field. Presented here is a consensus statement proposing recommendations for the diagnostic evaluation of youth presenting with PANS. PMID:25325534

  20. Clinical Evaluation of Youth with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS): Recommendations from the 2013 PANS Consensus Conference

    PubMed Central

    Frankovich, Jennifer; Cooperstock, Michael; Cunningham, Madeleine W.; Latimer, M. Elizabeth; Murphy, Tanya K.; Pasternack, Mark; Thienemann, Margo; Williams, Kyle; Walter, Jolan; Swedo, Susan E.

    2015-01-01

    Abstract On May 23 and 24, 2013, the First PANS Consensus Conference was convened at Stanford University, calling together a geographically diverse group of clinicians and researchers from complementary fields of pediatrics: General and developmental pediatrics, infectious diseases, immunology, rheumatology, neurology, and child psychiatry. Participants were academicians with clinical and research interests in pediatric autoimmune neuropsychiatric disorder associated with streptococcus (PANDAS) in youth, and the larger category of pediatric acute-onset neuropsychiatric syndrome (PANS). The goals were to clarify the diagnostic boundaries of PANS, to develop systematic strategies for evaluation of suspected PANS cases, and to set forth the most urgently needed studies in this field. Presented here is a consensus statement proposing recommendations for the diagnostic evaluation of youth presenting with PANS. PMID:25325534

  1. Advanced evaporator technology progress report FY 1992

    SciTech Connect

    Chamberlain, D.; Hutter, J.C.; Leonard, R.A.

    1995-01-01

    This report summarizes the work that was completed in FY 1992 on the program {open_quotes}Technology Development for Concentrating Process Streams.{close_quotes} The purpose of this program is to evaluate and develop evaporator technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process. Concentrating these streams and minimizing the volume of waste generated can significantly reduce disposal costs; however, equipment to concentrate the streams and recycle the decontaminated condensates must be installed. LICON, Inc., is developing an evaporator that shows a great deal of potential for this application. In this report, concepts that need to be incorporated into the design of an evaporator operated in a radioactive environment are discussed. These concepts include criticality safety, remote operation and maintenance, and materials of construction. Both solubility and vapor-liquid equilibrium data are needed to design an effective process for concentrating process streams. Therefore, literature surveys were completed and are summarized in this report. A model that is being developed to predict vapor phase compositions is described. A laboratory-scale evaporator was purchased and installed to study the evaporation process and to collect additional data. This unit is described in detail. Two new LICON evaporators are being designed for installation at Argonne-East in FY 1993 to process low-level radioactive waste generated throughout the laboratory. They will also provide operating data from a full-sized evaporator processing radioactive solutions. Details on these evaporators are included in this report.

  2. Ultrasonic spray evaporative air coolers. Final report

    SciTech Connect

    Not Available

    1982-04-01

    Theoretical and experimental studies on the development of an energy-efficient evaporative air cooling device employing ultrasonic spray nozzles is discussed. The following works were performed during the project period: (1) Feasibility study of a breadboard model of the evaporative cooler, (2) design of a prototype cooling unit for laboratory and field studies, and (3) preliminary survey of potential applications.

  3. Representational Issues in Students Learning about Evaporation

    ERIC Educational Resources Information Center

    Tytler, Russell; Prain, Vaughan; Peterson, Suzanne

    2007-01-01

    This study draws on recent research on the central role of representation in learning. While there has been considerable research on students' understanding of evaporation, the representational issues entailed in this understanding have not been investigated in depth. The study explored students' engagement with evaporation phenomena through…

  4. 242-A evaporator vacuum condenser system

    SciTech Connect

    Smith, V.A.

    1994-09-28

    This document is written for the 242-A evaporator vacuum condenser system (VCS), describing its purpose and operation within the evaporator. The document establishes the operating parameters specifying pressure, temperature, flow rates, interlock safety features and interfacing sub-systems to support its operation.

  5. Bipedality in chimpanzee (Pan troglodytes) and bonobo (Pan paniscus): testing hypotheses on the evolution of bipedalism.

    PubMed

    Videan, Elaine N; McGrew, W C

    2002-06-01

    A host of ecological, anatomical, and physiological selective pressures are hypothesized to have played a role in the evolution of hominid bipedalism. A referential model, based on the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), was used to test through experimental manipulation four hypotheses on the evolution of hominid bipedalism. The introduction of food piles (Carry hypothesis) increased locomotor bipedality in both species. Neither the introduction of branches (Display hypothesis) nor the construction of visual barriers (Vigilance hypothesis) altered bipedality in either species. Introduction of raised foraging structures (Forage hypothesis) increased postural bipedality in chimpanzees. These experimental manipulations provided support for carrying of portable objects and foraging on elevated food-items as plausible mechanisms that shaped bipedalism in hominids.

  6. Controlling water evaporation through self-assembly.

    PubMed

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation. PMID:27573848

  7. Water evaporation in silica colloidal deposits.

    PubMed

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits.

  8. Controlling water evaporation through self-assembly.

    PubMed

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  9. The Pan-STARRS Moving Object Pipeline

    NASA Astrophysics Data System (ADS)

    Denneau, L., Jr.; Kubica, J.; Jedicke, R.

    2007-10-01

    The Moving Object Processing System (MOPS) team of the University of Hawaii's Pan-STARRS telescope is developing software to automatically discover and identify >90% of near-Earth objects (NEOs) larger than 300 m, and >80% of other classes of asteroids and comets. MOPS relies on new, efficient, multiple-hypothesis KD-tree and variable-tree search algorithms to search the ˜10^{12} detection pairs that are expected per night. Candidate intra- and inter-night associations of detections are evaluated for consistency with a real solar system object, and orbits are computed. We describe the basic operation of the MOPS pipeline, identify pipeline processing steps that are candidates for multiple-hypothesis spatial searches, describe our implementation of those algorithms, and provide preliminary results for MOPS.

  10. Role of contact line evaporation on the spreading of viscous droplet

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, Wassim; Brutin, David

    2014-11-01

    The effect of relative humidity and viscosity on the spreading dynamics of water-glycerol mixtures was analyzed for a range of relative humidities from 20% to 80%. Droplets of identical volume were deposited on ultra-clean microscope glass substrates. We demonstrated that, in addition to the competition between viscous forces, capillary forces and disjoining pressure, droplet spreading was also affected by the evaporation that occurred at the triple line. We provide an updated Tanner's law, which was modified to take into account the evaporative contribution. The same mechanism can be applied to adjust any fluid to Tanner's coefficient of 1/10.

  11. Global distributions of C2H6, C2H2, HCN, and PAN retrieved from MIPAS reduced spectral resolution measurements

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Glatthor, N.; Höpfner, M.; Grabowski, U.; Kellmann, S.; Linden, A.; Stiller, G.; von Clarmann, T.

    2011-08-01

    Vertical profiles of mixing ratios of C2H6, C2H2, HCN, and PAN were retrieved from MIPAS reduced spectral resolution nominal mode limb emission measurements. The retrieval strategy followed that of the analysis of MIPAS high resolution measurements, with occasional adjustments to cope with the reduced spectral resolution under which MIPAS is operated since 2005. Largest mixing ratios are found in the troposphere, and reach 1.2 ppbv for C2H6, 1 ppbv for HCN, 600 pptv for PAN, and 450 pptv for C2H2. The estimated precision in case of significantly enhanced mixing ratios (including measurement noise and propagation of uncertain parameters randomly varying in the time domain) and altitude resolution are typically 10 %, 3-4.5 km for C2H6, 15 %, 4-6 km for HCN, 6 %, 2.5-3.5 km for PAN, and 7 %, 2.5-4 km for C2H2.

  12. Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan paniscus versus Pan troglodytes.

    PubMed

    Mitteroecker, Philipp; Gunz, Philipp; Bookstein, Fred L

    2005-01-01

    Heterochrony, the classic framework in which to study ontogeny and phylogeny, in essence relies on a univariate concept of shape. Though principal component (PC) plots of multivariate shape data seem to resemble classical bivariate allometric plots, the language of heterochrony cannot be translated directly into general multivariate methodology. We simulate idealized multivariate ontogenetic trajectories and explore their appearance in PC plots of shape space and size-shape space. Only if the trajectories of two related species lie along exactly the same path in shape space can the classic terminology of heterochrony apply and pure dissociation of size change against shape change be detected. Regional heterochrony--the variation of apparent heterochrony by region--implies a dissociation of local growth fields and cannot be identified in an overall PC analysis. We exemplify a geometric morphometric approach to these issues using adult and subadult crania of 48 Pan paniscus and 47 Pan troglodytes specimens. On each specimen, we digitized 47 landmarks and 144 semilandmarks on facial curves and the external neurocranial surface. We reject the hypothesis of global heterochrony in the cranium of Pan as well as regional heterochrony for the lower face, the upper face, and the neurocranium.

  13. Brief communication: dental development timing in captive Pan paniscus with comparisons to Pan troglodytes.

    PubMed

    Bolter, Debra R; Zihlman, Adrienne L

    2011-08-01

    Dental eruption provides markers of growth and is one component of a chimpanzee's physical development. Dental markers help characterize transitions between life stages, e.g., infant to juvenile. Most of what we know about the timing of development in chimpanzees derives from Pan troglodytes. Much less is known about the sister species, Pan paniscus, with few in captivity and a restricted wild range in central Africa. Here we report on the dental eruption timing for female captive P. paniscus (n = 5) from the Milwaukee and San Diego Zoos whose ages are known and range from birth to age 8.54 years. Some observations were recorded in zoo records on the gingiva during life; others were made at death on the gingiva and on the skeleton. At birth, P. paniscus infants have no teeth emerged. By 0.83 years, all but the deciduous second molars (dm(2) ) (when both upper and lower dentitions are referenced collectively, no super or subscript notation is used) and canines (dc) are emerged. For permanent teeth, results show a sequence polymorphism for an early P4 eruption, not previously described for P. paniscus. Comparisons between P. paniscus and P. troglodytes document absolute timing differences of emergence in upper second incisors (I(2) ), and upper and lower canines (C) and third molars (M3). The genus Pan encompasses variability in growth not previously recognized. These preliminary data suggest that physical growth in captive P. paniscus may be accelerated, a general pattern found in captive P. troglodytes.

  14. Public Release of Pan-STARRS Data

    NASA Astrophysics Data System (ADS)

    Flewelling, Heather; Consortium, panstarrs

    2015-08-01

    Pan-STARRS 1 is a 1.8 meter survey telescope, located on Haleakala, Hawaii, with a 1.4 Gigapixel camera, a 7 square degree field of view, and 5 filters (g,r,i,z,y). The public release of data, which is available to everyone, consists of 4 years of data taken between May 2010 and April 2014. Two of the surveys available in the public release are the 3pi survey and the Medium Deep (MD) survey. The 3pi survey has roughly 60 epochs (12 per filter) covering 3/4 of the sky and everything north of -30 degrees declination. The MD survey consists of 10 fields, observed in a couple of filters each night, usually 8 exposures per filter per field, for about 4000 epochs per MD field. The available data product are accessed through the “Postage Stamp Server” and through the Published Science Products Subsystem (PSPS), both of these are available through the Pan-STARRS Science Interface (PSI). The Postage Stamp Server provides images and catalogs for different stages of processing on single exposures, stack images, difference images, and forced photometry. The PSPS is a SQLServer database that can be queried via script or web interface, with a database for each MD field and a large database for the 3pi survey. This database has relative photometry and astrometry and object associations, making it easy to do searches across the entire sky as well as tools to generate lightcurves of individual objects as a function of time.

  15. Quantifying nonisothermal subsurface soil water evaporation

    NASA Astrophysics Data System (ADS)

    Deol, Pukhraj; Heitman, Josh; Amoozegar, Aziz; Ren, Tusheng; Horton, Robert

    2012-11-01

    Accurate quantification of energy and mass transfer during soil water evaporation is critical for improving understanding of the hydrologic cycle and for many environmental, agricultural, and engineering applications. Drying of soil under radiation boundary conditions results in formation of a dry surface layer (DSL), which is accompanied by a shift in the position of the latent heat sink from the surface to the subsurface. Detailed investigation of evaporative dynamics within this active near-surface zone has mostly been limited to modeling, with few measurements available to test models. Soil column studies were conducted to quantify nonisothermal subsurface evaporation profiles using a sensible heat balance (SHB) approach. Eleven-needle heat pulse probes were used to measure soil temperature and thermal property distributions at the millimeter scale in the near-surface soil. Depth-integrated SHB evaporation rates were compared with mass balance evaporation estimates under controlled laboratory conditions. The results show that the SHB method effectively measured total subsurface evaporation rates with only 0.01-0.03 mm h-1difference from mass balance estimates. The SHB approach also quantified millimeter-scale nonisothermal subsurface evaporation profiles over a drying event, which has not been previously possible. Thickness of the DSL was also examined using measured soil thermal conductivity distributions near the drying surface. Estimates of the DSL thickness were consistent with observed evaporation profile distributions from SHB. Estimated thickness of the DSL was further used to compute diffusive vapor flux. The diffusive vapor flux also closely matched both mass balance evaporation rates and subsurface evaporation rates estimated from SHB.

  16. Summertime PAN on boundary layer over the Northern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Song, D.; Lee, S.; Lee, G.; Rhee, T. S.

    2012-12-01

    As a part of SHIPPO ( Shipborne Pole to Pole Observation), peroxyacetyl nitrate (PAN) and NO2 have been measured at aboard the R/V Araon during the ship track from Inchon, South Korea to Norm, Alaska, USA from July 14th to 30th, 2012. PAN and NO2 were sampled every 2 minute by a fast chromatograph with luminol-based chemiluminescence detection. In order to assure their detections in remote background airs, we successfully reduced random noise mainly from PMT using ensemble averaging from the 2 min chromatograms in each one hour time interval. With this post-processing analysis, we were able to lower detection limits to 0.01 ppbv and 0.04 ppbv for PAN and NO2, respectively. The preliminary results indicate that the background values ranged from the below the detection limit to 0.37 ppbv (average of 0.06 ppbv) for PAN and 2.05 ppbv (average of 0.24 ppbv) for NO2. It was confirmed that PAN was significant portions of reactive nitrogens in remote marine boundary airs. Occasional enhancements of PAN and NO2 were mainly attributed to the air masses originated from nearby source regions in the Northestern Asia and influenced by ships exhausts. We were able to observe the shifting of equilibrium between PAN and NO2 according to air temperature changes in very clean air masses.

  17. Pan1 is an intrinsically disordered protein with homotypic interactions

    PubMed Central

    Pierce, B. D.; Toptygin, D.; Wendland, B.

    2013-01-01

    The yeast scaffold protein Pan1 contains two EH domains at its N-terminus, a predicted coiled-coil central region, and a C-terminal proline-rich domain. Pan1 is also predicted to contain regions of intrinsic disorder, characteristic of proteins that have many binding partners. In vitro biochemical data suggest that Pan1 exists as a dimer, and we have identified amino acids 705–848 as critical for this homotypic interaction. Tryptophan fluorescence was used to further characterize Pan1 conformational states. Pan1 contains four endogenous tryptophans, each in a distinct region of the protein: Trp312 and Trp642 are each in an EH domain, Trp957 is in the central region, and Trp1280 is a critical residue in the Arp2/3 activation domain. To examine the local environment of each of these tryptophans, three of the four tryptophans were mutagenized to phenylalanine to create four proteins, each with only one tryptophan residue. When quenched with acrylamide, these single tryptophan mutants appeared to undergo collisional quenching exclusively and were moderately accessible to the acrylamide molecule. Quenching with iodide or cesium, however, revealed different Stern-Volmer constants due to unique electrostatic environments of the tryptophan residues. Time-resolved fluorescence anisotropy data confirmed structural and disorder predictions of Pan1. Further experimentation to fully develop a model of Pan1 conformational dynamics will assist in a deeper understanding of the mechanisms of endocytosis. PMID:23801378

  18. Computations of turbulent evaporating sprays

    NASA Technical Reports Server (NTRS)

    Aggarwal, S. K.; Chitre, S.

    1989-01-01

    A computational study of turbulent evaporating sprays is reported. The major focus is to examine the sensitivity of the vaporization behavior of turbulent sprays to the transient liquid-phase processes. Three models considered to represent these processes are the thin skin, infinite diffusion, and diffusion limit models. Favre-averaged equations with k-epsilon-g turbulence model are employed for the gas phase. The Lagrangian approach with a stochastic separated flow method is used for the liquid phase where the effects of gas turbulence on droplet trajectories and interphase transport rates are considered using random-walk computations. Also the variable-property effects are considered in detail. Results indicate that, depending upon the boiling temperature and heat of vaporization of the fuel considered, the vaporization behavior of turbulent sprays may be quite sensitive to the modeling of transient liquid-phase processes. Thus, it is important that for most hydrocarbon fuels these processes be adequately represented in any comprehensive spray computations. The present results also provide further support to the conclusions of earlier studies which have been based on simplified spray configurations.

  19. SLIT ADJUSTMENT CLAMP

    DOEpatents

    McKenzie, K.R.

    1959-07-01

    An electrode support which permits accurate alignment and adjustment of the electrode in a plurality of planes and about a plurality of axes in a calutron is described. The support will align the slits in the electrode with the slits of an ionizing chamber so as to provide for the egress of ions. The support comprises an insulator, a leveling plate carried by the insulator and having diametrically opposed attaching screws screwed to the plate and the insulator and diametrically opposed adjusting screws for bearing against the insulator, and an electrode associated with the plate for adjustment therewith.

  20. 242-A evaporator safety analysis report

    SciTech Connect

    CAMPBELL, T.A.

    1999-05-17

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  1. Tank 26 Evaporator Feed Pump Transfer Analysis

    SciTech Connect

    Tamburello, David; Dimenna, Richard; Lee, Si

    2009-02-11

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.03 and 0.1 wt% sludge undissolved solids weight fraction into the eductor, respectively, and therefore are an order of magnitude less than the 1.0 wt% undissolved solids loading criteria to feed the evaporator. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth. Revision 1 clarifies the analysis presented in Revision 0 and corrects a mathematical error in the calculations for Table 4.1 in Revision 0. However, the conclusions and recommendations of the analysis do not change for Revision 1.

  2. Water repellency diminishes peatland evaporation after wildfire

    NASA Astrophysics Data System (ADS)

    Kettridge, N.; Lukenbach, M.; Hokanson, K. J.; Devito, K. J.; Petrone, R. M.; Hopkinson, C.; Waddington, J. M.

    2015-12-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This large scale reduction in evaporation promotes high water table positions at a landscape scale which limits the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  3. Vapor compression evaporator concentrates, recovers alcohol

    SciTech Connect

    Miller, M.N.; Robe, K.; Bacchetti, J.A.

    1982-11-01

    This article focuses on presenting a solution to the high energy cost of operating a steam heated, single effect evaporator used by Monsanto Industrial Chemical Company at a plant in Seattle, Wash., to produce vanillin from pulp and paper mill sulfite. Use of the single effect flash evaporator resulted in high energy usage due not only to the ''single effect'' use of steam, but also because energy consumption was reduced only slightly at low operating rates. The solution to this problem was the replacement of the single effect evaporator with a vapor recompression evaporator. Operating for over 1 1/2 years, the vapor recompression evaporator system has had no significant maintenance problems. The system operates with only 1/60th the steam consumption and 15% of the total energy consumption of the previous evaporator and has had no tube fouling. Also, since the distillate is condensed within the evaporator, less cooling water is required, allowing two heat exchangers to be taken out of service. When operating at less than design capacity, the energy consumption drops almost linearly with the feed rate. At low feed rates, a by-pass valve unloads the compressor to reduce energy consumption. Total energy consumption, now 15% of the previous level, results in an estimated pay-back of less than three years.

  4. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  5. Are hot Neptunes partially evaporated hot Jupiters?

    NASA Astrophysics Data System (ADS)

    Boué, G.; Figueira, P.; Correia, A. C. M.; Santos, N. C.

    2011-10-01

    The detection of short period planets (hot Jupiters and their lower mass counterparts, hot Neptunes and super-Earths) still defies the models of planet formation and evolution. Several possibilities have been proposed to explain the nature and formation process of the lower mass population, including in situ formation, disk migration, planet-planet scattering and kozai evolution, and the evaporation of a higher mass hot Jupiter. Using dynamical models and the best estimates for evaporation velocities, we show that under reasonable (and observed) physical conditions, hot Jupiter evaporation may explain the observed population of hot Neptunes/super-Earths.

  6. Are Hot Neptunes Partialy Evaporated Hot Jupiters?

    NASA Astrophysics Data System (ADS)

    Santos, Nuno; Boue, G.; Figueira, P.; Correia, A.

    2011-09-01

    The detection of short period planets (hot Jupiters and their lower mass counterparts, hot neptunes and super-earths) still defies the models of planet formation and evolution. Several possibilities have been proposed to explain the nature and formation process of the lower mass population, including in situ formation, disk migration, planet-planet scattering and kozai evolution, and the evaporation of a higher mass hot Jupiter. Using dynamical models and the best estimates for evaporation velocities, we show that under reasonable (and observed) physical conditions, hot Jupiter evaporation can explain the observed population of hot Neptunes/super-Earths.

  7. On the evaporation of ammonium sulfate solution

    SciTech Connect

    Drisdell, Walter S.; Saykally, Richard J.; Cohen, Ronald C.

    2009-07-16

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 {+-} 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly.

  8. On the evaporation of ammonium sulfate solution.

    PubMed

    Drisdell, Walter S; Saykally, Richard J; Cohen, Ronald C

    2009-11-10

    Aqueous evaporation and condensation kinetics are poorly understood, and uncertainties in their rates affect predictions of cloud behavior and therefore climate. We measured the cooling rate of 3 M ammonium sulfate droplets undergoing free evaporation via Raman thermometry. Analysis of the measurements yields a value of 0.58 +/- 0.05 for the evaporation coefficient, identical to that previously determined for pure water. These results imply that subsaturated aqueous ammonium sulfate, which is the most abundant inorganic component of atmospheric aerosol, does not affect the vapor-liquid exchange mechanism for cloud droplets, despite reducing the saturation vapor pressure of water significantly. PMID:19861551

  9. Weighted triangulation adjustment

    USGS Publications Warehouse

    Anderson, Walter L.

    1969-01-01

    The variation of coordinates method is employed to perform a weighted least squares adjustment of horizontal survey networks. Geodetic coordinates are required for each fixed and adjustable station. A preliminary inverse geodetic position computation is made for each observed line. Weights associated with each observed equation for direction, azimuth, and distance are applied in the formation of the normal equations in-the least squares adjustment. The number of normal equations that may be solved is twice the number of new stations and less than 150. When the normal equations are solved, shifts are produced at adjustable stations. Previously computed correction factors are applied to the shifts and a most probable geodetic position is found for each adjustable station. Pinal azimuths and distances are computed. These may be written onto magnetic tape for subsequent computation of state plane or grid coordinates. Input consists of punch cards containing project identification, program options, and position and observation information. Results listed include preliminary and final positions, residuals, observation equations, solution of the normal equations showing magnitudes of shifts, and a plot of each adjusted and fixed station. During processing, data sets containing irrecoverable errors are rejected and the type of error is listed. The computer resumes processing of additional data sets.. Other conditions cause warning-errors to be issued, and processing continues with the current data set.

  10. Combined effects of underlying substrate and evaporative cooling on the evaporation of sessile liquid droplets.

    PubMed

    Wang, Yilin; Ma, Liran; Xu, Xuefeng; Luo, Jianbin

    2015-07-28

    The evaporation of pinned, sessile droplets resting on finite thickness substrates was investigated numerically by extending the combined field approach to include the thermal properties of the substrate. By this approach, the combined effects of the underlying substrate and the evaporative cooling were characterized. The results show that the influence of the substrate on the droplet evaporation depends largely on the strength of the evaporative cooling. When the evaporative cooling is weak, the influence of substrate is also weak. As the strength of evaporative cooling increases, the influence of the substrate becomes more and more pronounced. Further analyses indicated that it is the cooling at the droplet surface and the temperature dependence of the saturation vapor concentration that relate the droplet evaporation to the underlying substrate. This indicates that the evaporative cooling number, Ec, can be used to identify the influence of the substrate on the droplet evaporation. The theoretical predictions by the present model are compared and found to be in good agreement with the experimental measurements. The present work may contribute to the body of knowledge concerning droplet evaporation and may have applications in a wide range of industrial and scientific processes.

  11. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    SciTech Connect

    Adu-Wusu, K.

    2012-05-10

    minor/major impacts are chlorination, pH adjustment, 1st mercury removal, organics removal, 2nd mercury removal, and ion exchange. For minor impacts, the general approach is to use historical process operations data/modeling software like OLI/ESP and/or monitoring/compiled process operations data to resolve any uncertainties with testing as a last resort. For major impacts (i.e., glycolate concentrations > 33 mg/L or 0.44 mM), testing is recommended. No impact is envisaged for the following ETF unit operations regardless of the glycolate concentration - filtration, reverse osmosis, ion exchange resin regeneration, and evaporation.

  12. 12. Level 6 gringing pans, pump above dorr thickener. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Level 6 gringing pans, pump above dorr thickener. View to west. - Kennecott Copper Corporation, Concentration Mill, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  13. PAN and the NOx budget of the troposphere. [Peroxyacylnitrates

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Augustsson, T. R.; Levine, J. S.

    1982-01-01

    The present investigation has the objective to examine the interaction of NOx with the nonmethane hydrocarbons (NMHCs) photochemistry. Attention is given to the influence of temperature, transport, and hydrocarbon radical reactions on the profiles of peroxyacylnitrates (PANs) and NO2. A lumped NMHC chemical reaction scheme was used in a one-dimensional photochemical model of the global troposphere. Model calculations were performed with various temperature profiles and the corresponding solar zenith angles to examine seasonal variations in the profiles of PAN and NOx. A study of the effects of changing temperature and solar zenith angle on the profiles of PAN and NOx showed that the amount of NO2 tied up in PAN increased as temperature decreased.

  14. Afro-Americans and Early Pan-Africanism

    ERIC Educational Resources Information Center

    Contee, Clarence G.

    1970-01-01

    History of the Pan-African movement, the roles of W.E.B.Du Bois and Marcus Garvey in the movement activities, and the shift to African based leadership of the movement in the 1940's are discussed. (KG)

  15. Pan trapping soybean aphids (Hemiptera: Aphididae) using attractants.

    PubMed

    Behrens, Nicholas S; Zhu, Junwei; Coats, Joel R

    2012-06-01

    Since its introduction into the United States in the past 10 yr, soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), has been a damaging pest to soybean, Glycine max (L.) Merrill. During 2008 and 2009, fields in central and north central Iowa experienced pockets of high soybean aphid populations. Electroantennograms have shown that soybean aphid alatae are capable of detecting host plant volatiles and sex pheromones. Here, we evaluated baited pan traps as a potential soybean aphid attractant. Yellow pan traps were placed in soybean fields after planting along with lures that contained plant volatiles and sex pheromones in 2008 or sex pheromones only in 2009. Pan trap contents were collected weekly, and plant counts also were conducted. Aphids were identified, and soybean aphids were counted to determine whether one chemical lure was more attractive to spring migrants than other lures. In both years, soybean aphids collected in pan traps with lures were not significantly different from the other products tested. PMID:22812127

  16. Improvements in analysis of atmospheric peroxyacetyl nitrate (PAN)

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Müller, Josef; Klein, Werner

    Common analytical techniques for PAN determination were modified in order to obtain a sensitive and automatic analysis system. PAN was synthesized by nitration of peracetic acid in hexane, The PAN/hexane solution was purified by water extraction. The quantification was performed determining acetate or nitrite by ion chromatography following alkaline hydrolysis. The validity was checked by liquid i.r. speetroscopy. NMR studies revealed a singulet signal at 2.27 ppm. The precision and sensitivity of the gas Chromatographic analyses were improved by the use of wide bore capillary columns coated with Carbowax 400. The developed system enables automatic and continuous PAN measurements at a 10 min sampling sequence and with a detection limit of 50 ppt.

  17. New surface solar radiation and evaporation datasets in Spain: in search of a better understating of the dimming/brightening

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, A.; Calbó, J.; Wild, M.

    2012-04-01

    Previous research on the dimming/brightening phenomena in Spain has been limited to the analysis of the long-term series of sunshine duration (Sanchez-Lorenzo et al., 2007) and cloud cover observations (Sanchez-Lorenzo et al., 2009). This work describes the development of a new dataset of surface radiation in Spain based on the 16 longest daily series provided by the Spanish Meteorology Agency, with the first series starting in the early 1970s, and providing global, diffuse and direct radiation. For the Madrid station an additional effort has been made to digitalize monthly records of global radiation since 1958, which provide the longest series available in Spain up to the present. The results of a temporal analysis of this dataset show an overall agreement with the trends observed using sunshine duration series, confirming the suitability of this latter variable to estimate surface radiation on decadal time scales. The important role of surface solar radiation to drive evaporation is well known, and consequently an agreement between the dimming/brightening phases and the trends in potential evaporation has been observed worldwide (Wild, 2009). Therefore, a dataset consisting of monthly series of potential evaporation has been generated by using records from tanks and Piche atmometers. The pan evaporation data consist of 13 series with records since 1981, meanwhile for Piche measurements there are around 100 series with more than 60 years of data, some of them starting in the beginning of the 20th century. The results show a decrease in pan evaporation (1981-2010 period) that cannot be explained by the observed increase in solar radiation, but may be linked to a decrease in the wind speed. On the other hand, evaporation trends estimated by the Piche evaporimeter provide a better agreement with solar radiation and sunshine time trends. This relationship needs special attention, as Piche evaporimeter is exposed inside a meteorological screen, especially regarding

  18. Influence of peroxyacetyl nitrate (PAN) on water stress in bean plants

    SciTech Connect

    Starkey, T.E.; Davis, D.D.; Pell, E.J.; Merrill, W.

    1981-08-01

    Bean plants (Phaseolus vulgaris L. cvs. Provider and Stringless Black Valentine) were exposed to 395 ..mu..g/m/sup 3/ (0.08 ppm) peroxyacetyl nitrate (PAN) for 0.5 hr and subjected to drought stress following exposure. PAN influenced the plant potential of PAN-sensitive Provider resulting in visible wilting and reduced soil moisture content. There was no effect of PAN on the water relations of the PAN-tolerant Stringless Black Valentine.

  19. Evaporation analysis for Tank SX-104

    SciTech Connect

    Barrington, C.A.

    1994-10-01

    Decreases in historical interstitial liquid level measurements in tank SX-104 were compared to predictions of a numerical model based upon diffusion of water through a porous crust. The analysis showed that observed level decreases could be explained by evaporation.

  20. Lattice-Boltzmann simulations of droplet evaporation.

    PubMed

    Ledesma-Aguilar, Rodrigo; Vella, Dominic; Yeomans, Julia M

    2014-11-01

    We study the utility and validity of lattice-Boltzmann (LB) simulations to explore droplet evaporation driven by a concentration gradient. Using a binary-fluid lattice-Boltzmann algorithm based on Cahn-Hilliard dynamics, we study the evaporation of planar films and 3D sessile droplets from smooth solid surfaces. Our results show that LB simulations accurately reproduce the classical regime of quasi-static dynamics. Beyond this limit, we show that the algorithm can be used to explore regimes where the evaporative and diffusive timescales are not widely separated, and to include the effect of boundaries of prescribed driving concentration. We illustrate the method by considering the evaporation of a droplet from a solid surface that is chemically patterned with hydrophilic and hydrophobic stripes. PMID:25186667

  1. Potential Evaporation in North America Through 2100

    NASA Video Gallery

    This animation shows the projected increase in potential evaporation through the year 2100, relative to 1980, based on the combined results of multiple climate models. The maximum increase across N...

  2. Effects of nanoparticles on nanofluid droplet evaporation

    SciTech Connect

    Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald

    2010-09-01

    Laponite, Fe2O3 and Ag nanoparticles were added to deionized water to study their effect of evaporation rates. The results show that these nanofluid droplets evaporate at different rates (as indicated by the evaporation rate constant K in the well known D2-law) from the base fluid. Different particles lead to different values of K. As the particle concentration increases due to evaporation. K values of various Ag and Fe2O3 nanofluids go through a transition from one value to another, further demonstrating the effect of increasing nanoparticle concentration. The implication for the heat of vaporization (hfg) is discussed.

  3. New Directions for Evaporative Cooling Systems.

    ERIC Educational Resources Information Center

    Robison, Rita

    1981-01-01

    New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)

  4. Comparing infant and juvenile behavior in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes): a preliminary study.

    PubMed

    De Lathouwers, Mieke; Van Elsacker, Linda

    2006-10-01

    The dichotomy between the two Pan species, the bonobo (Pan paniscus) and chimpanzee (Pan troglodytes) has been strongly emphasized until very recently. Given that most studies were primarily based on adult individuals, we shifted the "continuity versus discontinuity" discussion to the infant and juvenile stage. Our aim was to test quantitatively, some conflicting statements made in literature considering species differences between immature bonobos and chimpanzees. On one hand it is suggested that infant bonobos show retardation in motor and social development when compared with chimpanzees. Additionally it is expected that the weaning process is more traumatic to chimpanzee than bonobo infants. But on the other hand the development of behaviors is expected to be very similar in both species. We observed eight mother-infant pairs of each species in several European zoos. Our preliminary research partially confirms that immature chimpanzees seem spatially more independent, spending more time at a larger distance from their mother than immature bonobos. However, the other data do not seem to support the hypothesis that bonobo infants show retardation of motor or social development. The development of solitary play, environmental exploration, social play, non-copulatory mounts and aggressive interactions do not differ between the species. Bonobo infants in general even groom other group members more than chimpanzee infants. We also found that older bonobo infants have more nipple contact than same aged chimpanzees and that the weaning process seems to end later for bonobos than for immature chimpanzee. Additionally, although immature bonobos show in general more signs of distress, our data suggest that the weaning period itself is more traumatic for chimpanzees.

  5. Fast gas chromotography with luminol detection for measurement of nitrogen dioxide and PANs.

    SciTech Connect

    Gaffney, J. S.; Marley, N. A.; Drayton, P. J.

    1999-09-30

    Fast capillary gas chromatography has been coupled to a luminol-based chemiluminescence detection system for the rapid monitoring of nitrogen dioxide and peroxyacyl nitrates. A first-generation instrument was described recently (Gaffney et al., 1998). This system is capable of monitoring nitrogen dioxide and peroxyacyl nitrates (PANs; to and including the C4 species) with 1-min time resolution. This is an improvement by a factor of five over gas chromatography methods with electron capture detection. In addition, the luminol method is substantially less expensive than laser fluorescent detection or mass spectroscopic methods. Applications in aircraft-based research have been published electronically and will appear shortly in Environmental Science and Technology (Gaffney et al., 1999a). An improved version of the instrument that has been designed and built makes use of a Hammamatsu photon-counting system. Detection limits of this instrumentation are at the low tens of ppt. The range of the instrument can be adjusted by modifying sampling volumes and detection counting times. A review of past work and of recent application of the instrumentation to field measurements of nitrogen dioxide and PANs is presented. The data clearly indicate that the luminol approach can determine the target species with time resolution of less than 1 min. Examples of applications for estimation of peroxyacetyl radical concentrations and nitrate radical formation rates are also presented. This instrumentation can further be used for evaluation of surfaces for loss of nitrogen dioxide and PANs, phenomena of possible importance for sampling interfaces and chamber wall design. Our high-frequency field data clearly indicate that the ''real world'' is not well mixed and that turbulent mixing and plume-edge chemistries might play an important role in urban- and regional-scale interactions. Dynamic flow systems might be required to evaluate such effects in new-generation chamber studies.

  6. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  7. IMPACT OF EVAPORATION ON AQUEOUS TEAR LOSS

    PubMed Central

    McCulley, James P.; Uchiyama, Eduardo; Aronowicz, Joel D.; Butovich, Igor A.

    2006-01-01

    Purpose To determine the impact of evaporation on preocular aqueous tear (AT) loss in normal subjects (controls) and patients with keratoconjunctivitis sicca (KCS). Methods Eighteen patients (32 eyes) with KCS with or without associated meibomian gland dysfunction (MGD) and 11 sex-matched controls had AT evaporation determined between relative humidity (RH) of 20% and 45% using an evaporometer. AT volume, flow, and turnover were determined with a fluorophotometer. Results Evaporative rates increased significantly when the RH was changed from 40%–45% to 20%–25% (P < .001). This change was similar in all groups and on average accounted for a 99.43% increase. There were no statistically significant differences in evaporative rate between controls, the KCS alone group, and the KCS/MGD group. Dry eye patients exhibited a decreased tear turnover when compared to controls. Evaporative contribution to tear loss at 40%–45% RH was 23.47% for controls, 30.99% for “classic” KCS patients, and 25.44% for KCS/MGD patients. At 20%–25% RH, the evaporative contribution was 41.66% for controls, 57.67% for classic KCS patients, and 50.28% for KCS/MGD patients. Conclusions RH significantly impacts evaporation regardless of the presence of dry eye disease and probably accounts for the increased dry eye symptoms in people (controls and dry eye patients) in conditions of low RH (eg, deserts, airplane cabins, cold dry seasons). Contribution of evaporation to tear loss tends to be higher than previously described. The percent contribution is dependent on environmental conditions such as RH. There was a trend toward increased contribution to AT loss in dry eye patients vs controls, but statistical significance was not reached. PMID:17471332

  8. Waste Feed Evaporation Physical Properties Modeling

    SciTech Connect

    Daniel, W.E.

    2003-08-25

    This document describes the waste feed evaporator modeling work done in the Waste Feed Evaporation and Physical Properties Modeling test specification and in support of the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) project. A private database (ZEOLITE) was developed and used in this work in order to include the behavior of aluminosilicates such a NAS-gel in the OLI/ESP simulations, in addition to the development of the mathematical models. Mathematical models were developed that describe certain physical properties in the Hanford RPP-WTP waste feed evaporator process (FEP). In particular, models were developed for the feed stream to the first ultra-filtration step characterizing its heat capacity, thermal conductivity, and viscosity, as well as the density of the evaporator contents. The scope of the task was expanded to include the volume reduction factor across the waste feed evaporator (total evaporator feed volume/evaporator bottoms volume). All the physical properties were modeled as functions of the waste feed composition, temperature, and the high level waste recycle volumetric flow rate relative to that of the waste feed. The goal for the mathematical models was to predict the physical property to predicted simulation value. The simulation model approximating the FEP process used to develop the correlations was relatively complex, and not possible to duplicate within the scope of the bench scale evaporation experiments. Therefore, simulants were made of 13 design points (a subset of the points used in the model fits) using the compositions of the ultra-filtration feed streams as predicted by the simulation model. The chemistry and physical properties of the supernate (the modeled stream) as predicted by the simulation were compared with the analytical results of experimental simulant work as a method of validating the simulation software.

  9. Modeling Evaporation of Drops of Different Kerosenes

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2007-01-01

    A mathematical model describes the evaporation of drops of a hydrocarbon liquid composed of as many as hundreds of chemical species. The model is intended especially for application to any of several types of kerosenes commonly used as fuels. The concept of continuous thermodynamics, according to which the chemical composition of the evaporating multicomponent liquid is described by use of a probability distribution function (PDF). However, the present model is more generally applicable than is its immediate predecessor.

  10. Area-to-point regression kriging for pan-sharpening

    NASA Astrophysics Data System (ADS)

    Wang, Qunming; Shi, Wenzhong; Atkinson, Peter M.

    2016-04-01

    Pan-sharpening is a technique to combine the fine spatial resolution panchromatic (PAN) band with the coarse spatial resolution multispectral bands of the same satellite to create a fine spatial resolution multispectral image. In this paper, area-to-point regression kriging (ATPRK) is proposed for pan-sharpening. ATPRK considers the PAN band as the covariate. Moreover, ATPRK is extended with a local approach, called adaptive ATPRK (AATPRK), which fits a regression model using a local, non-stationary scheme such that the regression coefficients change across the image. The two geostatistical approaches, ATPRK and AATPRK, were compared to the 13 state-of-the-art pan-sharpening approaches summarized in Vivone et al. (2015) in experiments on three separate datasets. ATPRK and AATPRK produced more accurate pan-sharpened images than the 13 benchmark algorithms in all three experiments. Unlike the benchmark algorithms, the two geostatistical solutions precisely preserved the spectral properties of the original coarse data. Furthermore, ATPRK can be enhanced by a local scheme in AATRPK, in cases where the residuals from a global regression model are such that their spatial character varies locally.

  11. BPGA- an ultra-fast pan-genome analysis pipeline

    PubMed Central

    Chaudhari, Narendrakumar M.; Gupta, Vinod Kumar; Dutta, Chitra

    2016-01-01

    Recent advances in ultra-high-throughput sequencing technology and metagenomics have led to a paradigm shift in microbial genomics from few genome comparisons to large-scale pan-genome studies at different scales of phylogenetic resolution. Pan-genome studies provide a framework for estimating the genomic diversity of the dataset, determining core (conserved), accessory (dispensable) and unique (strain-specific) gene pool of a species, tracing horizontal gene-flux across strains and providing insight into species evolution. The existing pan genome software tools suffer from various limitations like limited datasets, difficult installation/requirements, inadequate functional features etc. Here we present an ultra-fast computational pipeline BPGA (Bacterial Pan Genome Analysis tool) with seven functional modules. In addition to the routine pan genome analyses, BPGA introduces a number of novel features for downstream analyses like core/pan/MLST (Multi Locus Sequence Typing) phylogeny, exclusive presence/absence of genes in specific strains, subset analysis, atypical G + C content analysis and KEGG & COG mapping of core, accessory and unique genes. Other notable features include minimum running prerequisites, freedom to select the gene clustering method, ultra-fast execution, user friendly command line interface and high-quality graphics outputs. The performance of BPGA has been evaluated using a dataset of complete genome sequences of 28 Streptococcus pyogenes strains. PMID:27071527

  12. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation

    NASA Astrophysics Data System (ADS)

    McVicar, Tim R.; Roderick, Michael L.; Donohue, Randall J.; Li, Ling Tao; Van Niel, Thomas G.; Thomas, Axel; Grieser, Jürgen; Jhajharia, Deepak; Himri, Youcef; Mahowald, Natalie M.; Mescherskaya, Anna V.; Kruger, Andries C.; Rehman, Shafiqur; Dinpashoh, Yagob

    2012-01-01

    SummaryIn a globally warming climate, observed rates of atmospheric evaporative demand have declined over recent decades. Several recent studies have shown that declining rates of evaporative demand are primarily governed by trends in the aerodynamic component (primarily being the combination of the effects of wind speed ( u) and atmospheric humidity) and secondarily by changes in the radiative component. A number of these studies also show that declining rates of observed near-surface u (termed 'stilling') is the primary factor contributing to declining rates of evaporative demand. One objective of this paper was to review and synthesise the literature to assess whether stilling is a globally widespread phenomenon. We analysed 148 studies reporting terrestrial u trends from across the globe (with uneven and incomplete spatial distribution and differing periods of measurement) and found that the average trend was -0.014 m s -1 a -1 for studies with more than 30 sites observing data for more than 30 years, which confirmed that stilling was widespread. Assuming a linear trend this constitutes a -0.7 m s -1 change in u over 50 years. A second objective was to confirm the declining rates of evaporative demand by reviewing papers reporting trends in measured pan evaporation ( Epan) and estimated crop reference evapotranspiration ( ETo); average trends were -3.19 mm a -2 ( n = 55) and -1.31 mm a -2 ( n = 26), respectively. A third objective was to assess the contribution to evaporative demand trends that the four primary meteorological variables (being u; atmospheric humidity; radiation; and air temperature) made. The results from 36 studies highlighted the importance of u trends. We also quantified the sensitivity of rates of evaporative demand to changes in u and how the relative contributions of the aerodynamic and radiative components change seasonally over the globe. Our review: (i) shows that terrestrial stilling is widespread across the globe; (ii) confirms

  13. A pan-African Flood Forecasting System

    NASA Astrophysics Data System (ADS)

    Thiemig, V.; Bisselink, B.; Pappenberger, F.; Thielen, J.

    2014-05-01

    The African Flood Forecasting System (AFFS) is a probabilistic flood forecast system for medium- to large-scale African river basins, with lead times of up to 15 days. The key components are the hydrological model LISFLOOD, the African GIS database, the meteorological ensemble predictions of the ECMWF and critical hydrological thresholds. In this paper the predictive capability is investigated in a hindcast mode, by reproducing hydrological predictions for the year 2003 where important floods were observed. Results were verified with ground measurements of 36 subcatchments as well as with reports of various flood archives. Results showed that AFFS detected around 70% of the reported flood events correctly. In particular, the system showed good performance in predicting riverine flood events of long duration (>1 week) and large affected areas (>10 000 km2) well in advance, whereas AFFS showed limitations for small-scale and short duration flood events. The case study for "Save flooding" illustrated the good performance of AFFS in forecasting timing and severity of the floods, gave an example of the clear and concise output products, and showed that the system is capable of producing flood warnings even in ungauged river basins. Hence, from a technical perspective, AFFS shows a large potential as an operational pan-African flood forecasting system, although issues related to the practical implication will still need to be investigated.

  14. Pan-STARRS-1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Huber, Mark

    2015-08-01

    The Panoramic Survey Telescope And Rapid Response System-1 (Pan-STARRS-1, PS1) has been in full science operation since Spring 2010 and concluded the observing program for the PS1 Science Consortium (PS1SC) in early 2014. The Medium Deep Survey (MDS) component of the program regularly visited 10 fields (~7 sq. deg. each) with significant multi-wavelength overlap from previous and concurrent surveys (e.g. SDSS, DEEP2, CDFS, COSMOS, GALEX) for 25% of the total time allocation. The cadence generally includes the g,r,i,z filters for a MDS field every 3 days over the 6-8 month season the field is visible, with the y filter done primarily during bright time. The nightly stacks of eight exposures typically reach depths of r,i~23.5 mag. Development work continued to improve the single exposure processing though to deep stacks during the transient event discovery and other science consortium programs over the course of the survey, the culmination of those improvements being applied in a more uniformly reprocessed dataset used for the public data release. A summary of the MDS public data release products will be presented.For details on PS1 and the Science Collaboration, visit http://ps1sc.org/

  15. Pan-STARRS-1 Medium Deep Survey

    NASA Astrophysics Data System (ADS)

    Huber, Mark; PS1-IPP Team, PS1 Science Consortium

    2015-01-01

    The Panoramic Survey Telescope And Rapid Response System-1 (Pan-STARRS-1, PS1) has been in full operation since Spring 2010 and concluded the PS1 Science Consortium (PS1SC) observational program in early 2014. The Medium Deep Survey (MDS) component of the program, allocated 25% of the time, regularly visited 10 fields (~7 sq. deg. each) with significant multi-wavelength overlap from previous and concurrent surveys (e.g. SDSS, DEEP2, CDFS, COSMOS, GALEX). The cadence generally includes the g,r,i,z filters for a MDS field every 3 days with a nightly stack depth of r,i~23.5 mag and the y filter primarily during bright time over the 6-8 month season the field is visible. While regularly producing data for the transient event discovery and science consortium programs, development work continued to improve the single exposures though production of deep stacks for reprocessing into the final and public release. The data products, to be publicly available after the post-observing proprietary period, will be summarized.For details on PS1 and the Science Collaboration, visit http://ps1sc.org/

  16. Electrocardiogram abnormalities in captive chimpanzees (Pan troglodytes).

    PubMed

    Doane, Cynthia J; Lee, D Rick; Sleeper, Meg M

    2006-12-01

    Although cardiovascular disease is the leading cause of death in the captive chimpanzee population, little is known about the prevalence and etiology of heart disease in this species. We reviewed the physical exam records of 265 common chimpanzees (Pan troglodytes) for electrocardiogram abnormalities. During the 24-mo period reviewed (August 2003 through August 2005), 34 animals were diagnosed with cardiac arrhythmias consisting of ventricular arrhythmias, supraventricular arrhythmias, conduction disturbances, mixed arrhythmias, and bradycardia. The incidence of cardiac arrhythmia was significantly higher in male animals, chimpanzees 20 to 39 y old, and those with structural heart disease. Incidence of cardiac arrhythmia was not significantly higher in animals with hypertension, hyperlipidemia, or chronic viral infections. During the retrospective period, 7 animals with cardiac arrhythmias died or were euthanized. Mortality was significantly higher in animals with ventricular arrhythmias compared with those without ventricular arrhythmias. We conclude that in the common chimpanzee, age, male gender, and structural heart disease are risk factors for developing cardiac arrhythmias and that ventricular arrhythmias are risk factors for mortality. PMID:17219782

  17. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  18. Droplet evaporation on a soluble substrate

    NASA Astrophysics Data System (ADS)

    Mailleur, Alexandra; Pirat, Christophe; Colombani, Jean; CNES Collaboration

    2015-11-01

    Stains left by evaporated droplets are ubiquitous in everyday life as well as in industrial processes. Whatever the composition of the evaporating liquid (colloidal suspensions, biological fluids...), the stains are mostly constituted by a deposit at the periphery of the dried drop, similar to a coffee stain (Deegan, 1997). All these studies have been carried with non-reacting solids. In this presentation, we focus on the behavior of a pure-water droplet evaporating on a soluble substrate which is more complex, since three phenomena are strongly interacting: the dissolution of the substrate, the diffusion/convection of the dissolved species into the drop and the evaporation of the liquid. NaCl and KCl single crystals have been chosen for this experimental study as they are fast-dissolving solids. We have observed that the dissolution induces a pinning of the triple line from the beginning of the evaporation, leading to a decrease of the contact angle in time. At the end of the evaporation, a peripheral deposit is always formed, proof of an outward flow inside the drop (coffee-ring effect). The authors would like to thank the CNES for the financial support.

  19. Evaporation-induced cavitation in nanofluidic channels

    PubMed Central

    Duan, Chuanhua; Karnik, Rohit; Lu, Ming-Chang; Majumdar, Arun

    2012-01-01

    Cavitation, known as the formation of vapor bubbles when liquids are under tension, is of great interest both in condensed matter science as well as in diverse applications such as botany, hydraulic engineering, and medicine. Although widely studied in bulk and microscale-confined liquids, cavitation in the nanoscale is generally believed to be energetically unfavorable and has never been experimentally demonstrated. Here we report evaporation-induced cavitation in water-filled hydrophilic nanochannels under enormous negative pressures up to -7 MPa. As opposed to receding menisci observed in microchannel evaporation, the menisci in nanochannels are pinned at the entrance while vapor bubbles form and expand inside. Evaporation in the channels is found to be aided by advective liquid transport, which leads to an evaporation rate that is an order of magnitude higher than that governed by Fickian vapor diffusion in macro- and microscale evaporation. The vapor bubbles also exhibit unusual motion as well as translational stability and symmetry, which occur because of a balance between two competing mass fluxes driven by thermocapillarity and evaporation. Our studies expand our understanding of cavitation and provide new insights for phase-change phenomena at the nanoscale. PMID:22343530

  20. TANK 26 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Si Lee, S; Richard Dimenna, R

    2008-09-30

    The transfer of liquid salt solution from Tank 26 to an evaporator is to be accomplished by activating the evaporator feed pump, located approximately 72 inches above the sludge layer, while simultaneously turning on the downcomer. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics methods to determine the amount of entrained sludge solids pumped out of the tank to the evaporator with the downcomer turned on. The analysis results showed that, for the maximum and minimum supernate levels in Tank 26 (252.5 and 72 inches above the sludge layer, respectively), the evaporator feed pump will entrain between 0.05 and 0.1 wt% sludge solids weight fraction into the eductor, respectively. Lower tank liquid levels, with respect to the sludge layer, result in higher amounts of sludge entrainment due to the increased velocity of the plunging jets from the downcomer and evaporator feed pump bypass as well as decreased dissipation depth.

  1. TANK 32 EVAPORATOR FEED PUMP TRANSFER ANALYSIS

    SciTech Connect

    Tamburello, D; Richard Dimenna, R; Si Lee, S

    2009-01-27

    The transfer of liquid salt solution from Tank 32 to an evaporator is to be accomplished by activating the evaporator feed pump, with the supernate surface at a minimum height of approximately 74.4 inches above the sludge layer, while simultaneously turning on the downcomer with a flow rate of 110 gpm. Previously, activation of the evaporator feed pump was an isolated event without any other components running at the same time. An analysis of the dissolved solution transfer has been performed using computational fluid dynamics (CFD) methods to determine the amount of entrained sludge solids pumped out of the tank toward the evaporator with the downcomer turned on. The analysis results shows that, for the minimum tank liquid level of 105 inches above the tank bottom (which corresponds to a liquid depth of 74.4 inches above the sludge layer), the evaporator feed pump will contain less than 0.1 wt% sludge solids in the discharge stream, which is an order of magnitude less than the 1.0 wt% undissolved solids (UDS) loading criteria to feed the evaporator. Lower liquid levels with respect to the sludge layer will result in higher amounts of sludge entrainment due to the increased plunging jet velocity from the downcomer disturbing the sludge layer.

  2. Acoustic Signature of Evaporation from Porous Media

    NASA Astrophysics Data System (ADS)

    Grapsas, N. K.; Shokri, N.

    2012-12-01

    During evaporation from saturated porous media, rapid interfacial jumps at the pore scale, known as Haines jumps, occur as air invades the pore network and displaces the evaporating fluid. This process produces crackling noises that can be detected using an acoustic emission (AE) machine. In this study, we investigated the acoustic signature of evaporation from porous media using Hele-Shaw cells packed with seven types of sand and glass beads differing in particle size distribution and surface roughness. Each sample was saturated with dyed water, left to evaporate under constant atmospheric conditions on a digital balance in an environmental chamber, and digitally imaged every 20 minutes to quantify phase distribution. An AE sensor was fixed to each column to record the features of observed AE events (hits) such as amplitude, absolute energy, and duration. Results indicate that the cumulative number of hits is strongly related to evaporative mass loss through time in all configurations. Additionally, the cumulative number of hits shares an inverse relationship with particle size and roughness. Finally, image analysis of the liquid phase distribution during evaporation reveals a strong correlation between the area invaded by air and the cumulative AE hits detected in each column. This confirms that AEs are generated by receding liquid menisci and the propagation of drying fronts in porous media. These results suggest that AE techniques may potentially be used to non-invasively analyze the drying of porous media.

  3. Estimating soil water evaporation using radar measurements

    NASA Technical Reports Server (NTRS)

    Sadeghi, Ali M.; Scott, H. D.; Waite, W. P.; Asrar, G.

    1988-01-01

    Field studies were conducted to evaluate the application of radar reflectivity as compared with the shortwave reflectivity (albedo) used in the Idso-Jackson equation for the estimation of daily evaporation under overcast sky and subhumid climatic conditions. Soil water content, water potential, shortwave and radar reflectivity, and soil and air temperatures were monitored during three soil drying cycles. The data from each cycle were used to calculate daily evaporation from the Idso-Jackson equation and from two other standard methods, the modified Penman and plane of zero-flux. All three methods resulted in similar estimates of evaporation under clear sky conditions; however, under overcast sky conditions, evaporation fluxes computed from the Idso-Jackson equation were consistently lower than the other two methods. The shortwave albedo values in the Idso-Jackson equation were then replaced with radar reflectivities and a new set of total daily evaporation fluxes were calculated. This resulted in a significant improvement in computed soil evaporation fluxes from the Idso-Jackson equation, and a better agreement between the three methods under overcast sky conditions.

  4. Water repellency diminishes peatland evaporation after wildfire

    NASA Astrophysics Data System (ADS)

    Kettridge, Nick; Lukenbach, Max; Hokanson, Kelly; Devito, Kevin; Hopkinson, Chris; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatlands are a critically important global carbon reserve. There is increasing concern that such ecosystems are vulnerable to projected increases in wildfire severity under a changing climate. Severe fires may exceed peatland ecological resilience resulting in the long term degradation of this carbon store. Evaporation provides the primary mechanisms of water loss from such environments and can regulate the ecological stress in the initial years after wildfire. We examine variations in evaporation within burned peatlands after wildfire through small scale chamber and large scale remote sensing measurements. We show that near-surface water repellency limits peatland evaporation in these initial years post fire. Water repellent peat produced by the fire restricts the supply of water to the surface, reducing evaporation and providing a strong negative feedback to disturbance. This previously unidentified feedback operates at the landscape scale. High surface temperatures that result from large reductions in evaporation within water repellent peat are observed across the 60,000 ha burn scar three months after the wildfire. This promotes high water table positions at a landscape scale which limit the rate of peat decomposition and supports the post fire ecohydrological recovery of the peatlands. However, severe burns are shown to exceed this negative feedback response. Deep burns at the peatland margins remove the hydrophobic layer, increasing post fire evaporation and leaving the peatland vulnerable to drying and associated ecological shifts.

  5. Evaporation mitigation by floating modular devices

    NASA Astrophysics Data System (ADS)

    Hassan, M. M.; Peirson, W. L.

    2016-05-01

    Prolonged periods of drought and consequent evaporation from open water bodies in arid parts of Australia continue to be a threat to water availability for agricultural production. Over many parts of Australia, the annual average evaporation exceeds the annual precipitation by more than 5 times. Given its significance, it is surprising that no evaporation mitigation technique has gained widespread adoption to date. High capital and maintenance costs of manufactured products are a significant barrier to implementation. The use of directly recycled clean plastic containers as floating modular devices to mitigate evaporation has been investigated for the first time. A six-month trial at an arid zone site in Australia of this potential cost effective solution has been undertaken. The experiment was performed using clean conventional drinking water bottles as floating modules on the open water surface of 240-L tanks with three varying degrees of covering (nil, 34% and 68%). A systematic reduction in evaporation is demonstrated during the whole study period that is approximately linearly proportional to the covered surface. These results provide a potential foundation for robust evaporation mitigation with the prospect of implementing a cost-optimal design.

  6. Evaporation Heat Transfer of Ammonia and Pressure Drop of Warm Water for Plate Type Evaporator

    NASA Astrophysics Data System (ADS)

    Kushibe, Mitsuteru; Lkegami, Yasuyuki; Monde, Masanori; Uehara, Haruo

    The performance test of three types of plate type evaporators for spring thermal energy conversion and ocean thermal energy conversion carried out. Ammonia is utilized as working fluid and warm water is utilized as heat source. An empirical correlation is proposed in order to predict the mean evaporation heat transfer coefficient of ammonia and heat transfer coefficient of warm water for plate type evaporators. The mean heat transfer coefficient and friction factor of warm water were compared with other researches.

  7. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    SciTech Connect

    Yao, Lan; Marquis, Emmanuelle A.; Withrow, Travis; Restrepo, Oscar D.; Windl, Wolfgang

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit for spatial resolution.

  8. Evaporation over fresh and saline water surfaces

    NASA Astrophysics Data System (ADS)

    Abdelrady, Ahmed; Timmermans, Joris; Vekerdy, Zoltan

    2013-04-01

    Evaporation over large water bodies has a crucial role in the global hydrological cycle. Evaporation occurs whenever there is a vapor pressure deficit between a water surface and the atmosphere, and the available energy is sufficient. Salinity affects the density and latent heat of vaporization of the water body, which reflects on the evaporation rate. Different models have been developed to estimate the evaporation process over water surfaces using earth observation data. Most of these models are concerned with the atmospheric parameters. However these models do not take into account the influence of salinity on the evaporation rate; they do not consider the difference in the energy needed for vaporization. For this purpose an energy balance model is required. Several energy balance models that calculate daily evapotranspiration exist, such as the surface energy balance system (SEBS). They estimate the heat fluxes by integration of satellite data and hydro-meteorological field data. SEBS has the advantage that it can be applied over a large scale because it incorporates the physical state of the surface and the aerodynamic resistances in the daily evapotranspiration estimation. Nevertheless this model has not used over water surfaces. The goal of this research is to adapt SEBS to estimate the daily evaporation over fresh and saline water bodies. In particular, 1) water heat flux and roughness of momentum and heat transfer estimation need to be updated, 2) upscaling to daily evaporation needs to be investigated and finally 3) integration of the salinity factor to estimate the evaporation over saline water needs to be performed. Eddy covariance measurements over the Ijsselmeer Lake (The Netherlands) were used to estimate the roughness of momentum and heat transfer at respectively 0.0002 and 0.0001 m. Application of these values over Tana Lake (freshwater), in Ethiopia showed latent heat to be in a good agreement with the measurements, with RMSE of 35.5 Wm-2and r

  9. Simultaneous spreading and evaporation: recent developments.

    PubMed

    Semenov, Sergey; Trybala, Anna; Rubio, Ramon G; Kovalchuk, Nina; Starov, Victor; Velarde, Manuel G

    2014-04-01

    The recent progress in theoretical and experimental studies of simultaneous spreading and evaporation of liquid droplets on solid substrates is discussed for pure liquids including nanodroplets, nanosuspensions of inorganic particles (nanofluids) and surfactant solutions. Evaporation of both complete wetting and partial wetting liquids into a nonsaturated vapour atmosphere are considered. However, the main attention is paid to the case of partial wetting when the hysteresis of static contact angle takes place. In the case of complete wetting the spreading/evaporation process proceeds in two stages. A theory was suggested for this case and a good agreement with available experimental data was achieved. In the case of partial wetting the spreading/evaporation of a sessile droplet of pure liquid goes through four subsequent stages: (i) the initial stage, spreading, is relatively short (1-2 min) and therefore evaporation can be neglected during this stage; during the initial stage the contact angle reaches the value of advancing contact angle and the radius of the droplet base reaches its maximum value, (ii) the first stage of evaporation is characterised by the constant value of the radius of the droplet base; the value of the contact angle during the first stage decreases from static advancing to static receding contact angle; (iii) during the second stage of evaporation the contact angle remains constant and equal to its receding value, while the radius of the droplet base decreases; and (iv) at the third stage of evaporation both the contact angle and the radius of the droplet base decrease until the drop completely disappears. It has been shown theoretically and confirmed experimentally that during the first and second stages of evaporation the volume of droplet to power 2/3 decreases linearly with time. The universal dependence of the contact angle during the first stage and of the radius of the droplet base during the second stage on the reduced time has been

  10. Dynamics of pore-water and salt in estuarine marshes subjected to tide and evaporation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Shen, C.; Li, L.; Lockington, D. A.

    2015-12-01

    Salt dynamics in estuarine tidal marshes are strongly associated with their intrinsic hydrological processes and ecological behaviors, which are not well understood. Numerical simulations were carried out to investigate the transport and distribution of pore water and salt in a vertical cross section perpendicular to the tidal creek that subjects to spring-neap tide and evaporation. Vaporizing pore water from unsaturated soil surface with salt left in soils, the time-variant actual evaporation is affected by aerodynamic factors as well as soil conditions, including pore-water saturation, solute concentration and the thickness of salt precipitation above the soil surface (efflorescence). Different simulation cases were performed by adjusting the tidal signal, marsh platform slope and soil properties. The simulation analysis indicates that, the tide-averaged soil salinity increases with the reduction of inundation period in a spring-neap tide cycle. As the salt accumulated by evaporation could leave soil from seepage back to seawater during ebbtide, the pore-water salinity at the surface within the tidal range remains close to that of seawater. With the presence of hyper-saline soil and efflorescence, salt flat develops only in the area where capillary connection between evaporating surface and water-saturated soil is maintained while tidal inundation absent. On the contrary, the sandy supratidal marsh where hydrological connections are disrupted keeps a relatively low soil salinity (40-60 ppt) and pore-water saturation as evaporation remains low throughout the tidal cycles.

  11. The limits of endowment effects in great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus).

    PubMed

    Kanngiesser, Patricia; Santos, Laurie R; Hood, Bruce M; Call, Josep

    2011-11-01

    The endowment effect describes the bias that people often value things that they possess more than things they do not possess. Thus, they are often reluctant to trade items in their possession for items of equivalent value. Some nonhuman primates appear to share this bias with humans, but it remains an open question whether they show endowment effects to the same extent as humans do. We investigated endowment effects in all four great ape species (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus) by varying whether apes were endowed with food items (Experiment 1, N = 22) or tools that were instrumental in retrieving food (Experiment 2, N = 23). We first assessed apes' preferences for items of a pair and their willingness to trade items in their possession. We then endowed apes with one item of a pair and offered them to trade for the other item. Apes showed endowment effects for food, but not for tools. In Experiment 3, we endowed bonobos (N = 4) and orangutans (N = 5) with either one or 12 food items. Endowment effects did not differ between species and were not influenced by the number of endowed food items. Our findings suggest that endowment effects in great apes are restricted to immediate food gratification and remain unaffected by the quantity of food rewards. However, endowment effects do not seem to extend to other, nonconsumable possessions even when they are instrumental in retrieving food. In general, apes do not show endowment effects across a range of different commodities as humans typically do.

  12. Spontaneous triadic engagement in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes).

    PubMed

    MacLean, Evan; Hare, Brian

    2013-08-01

    Humans are believed to have evolved a unique motivation to participate in joint activities that first develops during infancy and supports the development of shared intentionality. We conducted five experiments with bonobos (Pan paniscus) and chimpanzees (Pan troglodytes) (Total n = 119) to assess their motivation to spontaneously participate in joint activities with a conspecific or a human. We found that even the youngest subjects preferred to interact together with a human and a toy rather than engaging in an identical game alone. In addition, we found that subjects could spontaneously interact with a human in a turn-taking game involving passing a ball back and forth and used behaviors to elicit additional interaction when the game was disrupted. However, when paired with a conspecific, subjects preferred to interact with an object individually rather than together. Our results indicate that nonhuman apes are motivated to engage in triadic activities if they occur spontaneously with humans and require a minimum amount of coordination. These findings leave open the question of whether these activities are coordinated through shared intentions.

  13. Chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) quantify split solid objects.

    PubMed

    Cacchione, Trix; Hrubesch, Christine; Call, Josep

    2013-01-01

    Recent research suggests that gorillas' and orangutans' object representations survive cohesion violations (e.g., a split of a solid object into two halves), but that their processing of quantities may be affected by them. We assessed chimpanzees' (Pan troglodytes) and bonobos' (Pan paniscus) reactions to various fission events in the same series of action tasks modelled after infant studies previously run on gorillas and orangutans (Cacchione and Call in Cognition 116:193-203, 2010b). Results showed that all four non-human great ape species managed to quantify split objects but that their performance varied as a function of the non-cohesiveness produced in the splitting event. Spatial ambiguity and shape invariance had the greatest impact on apes' ability to represent and quantify objects. Further, we observed species differences with gorillas performing lower than other species. Finally, we detected a substantial age effect, with ape infants below 6 years of age being outperformed by both juvenile/adolescent and adult apes.

  14. Modeling the joined performance of PanSTARRS1 and PanSTARRS2 telescopes

    NASA Astrophysics Data System (ADS)

    Lilly (Schunova), Eva; Wainscoat, Richard J.; Weryk, Robert J.

    2016-10-01

    We have performed detailed simulations of the 1st and the 2nd telescope of the Panoramatic Survey Telescope and Rapid response System (PanSTARRS, Morgan et al. 2012, SPIE Conference Series, Vol. 8444; Chambers et al. 2007, Bulletin of the American Astronomical Society, Vol. 39, #142.06) in order to assess their combined performance and to optimize survey strategy for discovery and follow-up observations of near-Earth asteroids (NEAs).PanSTARRS1 (PS1) is situated on the summit of Haleakala, Maui (observatory code F51) and has been operated by the University of Hawaii since the spring of 2010. PS1 has a 1.8 m diameter primary mirror with an ~7 deg2 field of view and can survey ~900 deg2/night for moving objects.PS2 is located adjacent to PS1, and is similar, but benefits from many improvements coming from our experience with PS1. PS2 will be operational very soon.We will show how the best and the worst case scenarios of observing conditions (i.e. regarding the weather and the position of the Galactic plane) affect the NEA detection efficiency during a 1-month long survey for several PS1 and PS2 observing and follow-up strategies.

  15. Saline Evaporation from Porous Media: Characteristics of Salt Precipitation and Its Effect on Evaporation

    NASA Astrophysics Data System (ADS)

    Nachshon, U.; Weisbrod, N.; Dragila, M. I.; Grader, A. S.

    2010-12-01

    Salt precipitation as subflorescence or efflorescence crust occurs during saline solutions evaporation from porous media. Non-linear synergy between evaporation and salt precipitation processes results in a complex mechanism that has yet to be quantitatively understood. Presented here is a series of experiments and a mathematical model that shed light on these processes. Experiments include: (1) long-term column evaporation experiments to quantify changes in evaporation rates due to salt precipitation; (2) long-term Hele-Shaw evaporation experiments to visualize salt precipitation at the macro scale; and (3) CT scans of evaporated porous media pre-saturated with NaI solutions to observe salt precipitation at the pore scale. Experiments were conducted for homogeneous and heterogeneous media using a number of saline solutions (NaCl, CaSO4, KCl, CuSO4 and NaI). A mathematical model was developed to explore quantitatively the physical and chemical mechanisms involved in the evaporation-salt precipitation process. The model simulated salt precipitation and it affect on evaporation. Three new stages of evaporation are introduced and defined for saline solutions: SS1, SS2 and SS3. SS1 exhibits a low and gradual decrease in evaporation rate caused by a changing osmotic potential. During SS2, evaporation rate falls precipitously a salt precipitates. SS3 is characterized by a constant, low evaporation rate. The phenomenological similarity to the classical evaporation stages of pure water, S1, S2 and S3, are only coincidental, the three saline stages correspond to entirely different mechanisms. The mathematical model was used to also quantify the diffusion coefficient through a salt crust. Heterogeneity during saline evaporation was found to strongly control the location of salt precipitation: salt precipitation occurred mainly within the fine-pore regions which act as a wick transporting water from the coarser media. Heterogeneity also permits greater saline evaporation by

  16. Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Schweiss, Rüdiger

    2015-03-01

    Polyacrylonitrile (PAN)-based carbon felts with different fibre properties were studied in terms of their suitability as porous flow-through electrode materials in all vanadium redox flow batteries. The crystallinity and their bulk hetero element content (in particular nitrogen) of the carbon fibres was shown to produce a significant effect on the electrocatalytical properties of the electrodes towards vanadium species. Similar effects were seen on the capacity losses associated with concomitant hydrogen evolution. Adjustments of fibre properties offer the potential of manufacturing improved electrode materials, potentially without additional steps such as surface activation or decoration with catalytically active species.

  17. PEP725 Pan European Phenological Database

    NASA Astrophysics Data System (ADS)

    Koch, E.; Lipa, W.; Ungersböck, M.; Zach-Hermann, S.

    2012-04-01

    PEP725 is a 5 years project with the main object to promote and facilitate phenological research by delivering a pan European phenological database with an open, unrestricted data access for science, research and education. PEP725 is funded by EUMETNET (the network of European meteorological services), ZAMG and the Austrian ministry for science & research bm:w_f. So far 16 European national meteorological services and 7 partners from different nati-onal phenological network operators have joined PEP725. The data access is very easy via web-access from the homepage www.pep725.eu. Ha-ving accepted the PEP725 data policy and registry the data download can be done by different criteria as for instance the selection of a specific plant or all data from one country. At present more than 300 000 new records are available in the PEP725 data-base coming from 31 European countries and from 8150 stations. For some more sta-tions (154) META data (location and data holder) are provided. Links to the network operators and data owners are also on the webpage in case you have more sophisticated questions about the data. Another objective of PEP725 is to bring together network-operators and scientists by organizing workshops. In April 2012 the second of these workshops will take place on the premises of ZAMG. Invited speakers will give presentations spanning the whole study area of phenology starting from observations to modelling. Quality checking is also a big issue. At the moment we study the literature to find ap-propriate methods.

  18. PEP725 Pan European Phenological Database

    NASA Astrophysics Data System (ADS)

    Koch, Elisabeth; Adler, Silke; Ungersböck, Markus; Zach-Hermann, Susanne

    2010-05-01

    Europe is in the fortunate situation that it has a long tradition in phenological networking: the history of collecting phenological data and using them in climatology has its starting point in 1751 when Carl von Linné outlined in his work Philosophia Botanica methods for compiling annual plant calendars of leaf opening, flowering, fruiting and leaf fall together with climatological observations "so as to show how areas differ". The Societas Meteorologicae Palatinae at Mannheim well known for its first European wide meteorological network also established a phenological network which was active from 1781 to 1792. Recently in most European countries, phenological observations have been carried out routinely for more than 50 years by different governmental and non governmental organisations and following different observation guidelines, the data stored at different places in different formats. This has been really hampering pan European studies, as one has to address many National Observations Programs (NOP) to get access to the data before one can start to bring them in a uniform style. From 2004 to 2005 the COST-action 725 was running with the main objective to establish a European reference data set of phenological observations that can be used for climatological purposes, especially climate monitoring, and detection of changes. So far the common database/reference data set of COST725 comprises 7687248 data from 7285 observation sites in 15 countries and International Phenological Gardens (IPG) spanning the timeframe from 1951 to 2000. ZAMG is hosting the database. In January 2010 PEP725 has started and will take over not only the part of maintaining, updating the database, but also to bring in phenological data from the time before 1951, developing better quality checking procedures and ensuring an open access to the database. An attractive webpage will make phenology and climate impacts on vegetation more visible in the public enabling a monitoring of

  19. PEP725 Pan European Phenological Database

    NASA Astrophysics Data System (ADS)

    Koch, E.; Adler, S.; Lipa, W.; Ungersböck, M.; Zach-Hermann, S.

    2010-09-01

    Europe is in the fortunate situation that it has a long tradition in phenological networking: the history of collecting phenological data and using them in climatology has its starting point in 1751 when Carl von Linné outlined in his work Philosophia Botanica methods for compiling annual plant calendars of leaf opening, flowering, fruiting and leaf fall together with climatological observations "so as to show how areas differ". Recently in most European countries, phenological observations have been carried out routinely for more than 50 years by different governmental and non governmental organisations and following different observation guidelines, the data stored at different places in different formats. This has been really hampering pan European studies as one has to address many network operators to get access to the data before one can start to bring them in a uniform style. From 2004 to 2009 the COST-action 725 established a European wide data set of phenological observations. But the deliverables of this COST action was not only the common phenological database and common observation guidelines - COST725 helped to trigger a revival of some old networks and to establish new ones as for instance in Sweden. At the end of 2009 the COST action the database comprised about 8 million data in total from 15 European countries plus the data from the International Phenological Gardens IPG. In January 2010 PEP725 began its work as follow up project with funding from EUMETNET the network of European meteorological services and of ZAMG the Austrian national meteorological service. PEP725 not only will take over the part of maintaining, updating the COST725 database, but also to bring in phenological data from the time before 1951, developing better quality checking procedures and ensuring an open access to the database. An attractive webpage will make phenology and climate impacts on vegetation more visible in the public enabling a monitoring of vegetation development.

  20. Simple, Internally Adjustable Valve

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1990-01-01

    Valve containing simple in-line, adjustable, flow-control orifice made from ordinary plumbing fitting and two allen setscrews. Construction of valve requires only simple drilling, tapping, and grinding. Orifice installed in existing fitting, avoiding changes in rest of plumbing.

  1. Self Adjusting Sunglasses

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Corning Glass Works' Serengeti Driver sunglasses are unique in that their lenses self-adjust and filter light while suppressing glare. They eliminate more than 99% of the ultraviolet rays in sunlight. The frames are based on the NASA Anthropometric Source Book.

  2. Rural to Urban Adjustment

    ERIC Educational Resources Information Center

    Abramson, Jane A.

    Personal interviews with 100 former farm operators living in Saskatoon, Saskatchewan, were conducted in an attempt to understand the nature of the adjustment process caused by migration from rural to urban surroundings. Requirements for inclusion in the study were that respondents had owned or operated a farm for at least 3 years, had left their…

  3. Self adjusting inclinometer

    DOEpatents

    Hunter, Steven L.

    2002-01-01

    An inclinometer utilizing synchronous demodulation for high resolution and electronic offset adjustment provides a wide dynamic range without any moving components. A device encompassing a tiltmeter and accompanying electronic circuitry provides quasi-leveled tilt sensors that detect highly resolved tilt change without signal saturation.

  4. Hypercalibration: A Pan-STARRS1-based Recalibration of the Sloan Digital Sky Survey Photometry

    NASA Astrophysics Data System (ADS)

    Finkbeiner, Douglas P.; Schlafly, Edward F.; Schlegel, David J.; Padmanabhan, Nikhil; Jurić, Mario; Burgett, William S.; Chambers, Kenneth C.; Denneau, Larry; Draper, Peter W.; Flewelling, Heather; Hodapp, Klaus W.; Kaiser, Nick; Magnier, E. A.; Metcalfe, N.; Morgan, Jeffrey S.; Price, Paul A.; Stubbs, Christopher W.; Tonry, John L.

    2016-05-01

    We present a recalibration of the Sloan Digital Sky Survey (SDSS) photometry with new flat fields and zero points derived from Pan-STARRS1. Using point-spread function (PSF) photometry of 60 million stars with 16 < r < 20, we derive a model of amplifier gain and flat-field corrections with per-run rms residuals of 3 millimagnitudes (mmag) in griz bands and 15 mmag in u band. The new photometric zero points are adjusted to leave the median in the Galactic north unchanged for compatibility with previous SDSS work. We also identify transient non-photometric periods in SDSS (“contrails”) based on photometric deviations co-temporal in SDSS bands. The recalibrated stellar PSF photometry of SDSS and PS1 has an rms difference of {9, 7, 7, 8} mmag in griz, respectively, when averaged over 15‧ regions.

  5. DWPF Recycle Evaporator Shielded Cells Testing

    SciTech Connect

    Fellinger, T. L.; Herman, D. T.; Stone, M.E

    2005-07-01

    Testing was performed to determine the feasibility and processing characteristics of evaporation of actual Defense Waste Processing Facility (DWPF) recycle material. Samples of the Off Gas Condensate Tank (OGCT) and Slurry Mix Evaporator Condensate Tank (SMECT) were transferred from DWPF to the Savannah River National Lab (SRNL) Shielded Cells and blended with De-Ionized (DI) water and a small amount of Slurry Mix Evaporator (SME) product. A total of 3000 mL of this feed was concentrated to approximately 90 mL during a semi-batch evaporation test of approximately 17 hours. One interruption occurred during the run when the feed tube developed a split and was replaced. Samples of the resulting condensate and concentrate were collected and analyzed. The resulting analysis of the condensate was compared to the Waste Acceptance Criteria (WAC) limits for the F/H Effluent Treatment Plant (ETP). Results from the test were compared to previous testing using simulants and OLI modeling. Conclusions from this work included the following: (1) The evaporation of DWPF recycle to achieve a 30X concentration factor was successfully demonstrated. The feed blend of OGCT and SMECT material was concentrated from 3000 mL to approximately 90 mL during testing, a concentration of approximately 33X. (2) Foaming was observed during the run. Dow Corning 2210 antifoam was added seven times throughout the run at 100 parts per million (ppm) per addition. The addition of this antifoam was very effective in reducing the foam level, but the impact diminished over time and additional antifoam was required every 2 to 3 hours during the run. (3) No scale or solids formed on the evaporator vessel, but splatter was observed in the headspace of the evaporator vessel. No scaling formed on the stainless steel thermocouple. (4) The majority of the analytes met the F/H ETP WAC. However, the detection limits for selected species (Sr-90, Pu-238, Pu-240, Am-243, and Cm-244) exceeded the ETP WAC limits. (5) I

  6. Lysozyme pattern formation in evaporating droplets

    NASA Astrophysics Data System (ADS)

    Gorr, Heather Meloy

    Liquid droplets containing suspended particles deposited on a solid, flat surface generally form ring-like structures due to the redistribution of solute during evaporation (the "coffee ring effect"). The forms of the deposited patterns depend on complex interactions between solute(s), solvent, and substrate in a rapidly changing, far from equilibrium system. Solute self-organization during evaporation of colloidal sessile droplets has attracted the attention of researchers over the past few decades due to a variety of technological applications. Recently, pattern formation during evaporation of various biofluids has been studied due to potential applications in medical screening and diagnosis. Due to the complexity of 'real' biological fluids and other multicomponent systems, a comprehensive understanding of pattern formation during droplet evaporation of these fluids is lacking. In this PhD dissertation, the morphology of the patterns remaining after evaporation of droplets of a simplified model biological fluid (aqueous lysozyme solutions + NaCl) are examined by atomic force microscopy (AFM) and optical microscopy. Lysozyme is a globular protein found in high concentration, for example, in human tears and saliva. The drop diameters, D, studied range from the micro- to the macro- scale (1 microm -- 2 mm). In this work, the effect of evaporation conditions, solution chemistry, and heat transfer within the droplet on pattern formation is examined. In micro-scale deposits of aqueous lysozyme solutions (1 microm < D < 50 microm), the protein motion and the resulting dried residue morphology are highly influenced by the decreased evaporation time of the drop. The effect of electrolytes on pattern formation is also investigated by adding varying concentrations NaCl to the lysozyme solutions. Finally, a novel pattern recognition program is described and implemented which classifies deposit images by their solution chemistries. The results presented in this Ph

  7. KEPLER PLANETS: A TALE OF EVAPORATION

    SciTech Connect

    Owen, James E.; Wu, Yanqin E-mail: wu@astro.utoronto.ca

    2013-10-01

    Inspired by the Kepler mission's planet discoveries, we consider the thermal contraction of planets close to their parent star, under the influence of evaporation. The mass-loss rates are based on hydrodynamic models of evaporation that include both X-ray and EUV irradiation. We find that only low mass planets with hydrogen envelopes are significantly affected by evaporation, with evaporation being able to remove massive hydrogen envelopes inward of ∼0.1 AU for Neptune-mass objects, while evaporation is negligible for Jupiter-mass objects. Moreover, most of the evaporation occurs in the first 100 Myr of stars' lives when they are more chromospherically active. We construct a theoretical population of planets with varying core masses, envelope masses, orbital separations, and stellar spectral types, and compare this population with the sizes and densities measured for low-mass planets, both in the Kepler mission and from radial velocity surveys. This exercise leads us to conclude that evaporation is the driving force of evolution for close-in Kepler planets. In fact, some 50% of the Kepler planet candidates may have been significantly eroded. Evaporation explains two striking correlations observed in these objects: a lack of large radius/low density planets close to the stars and a possible bimodal distribution in planet sizes with a deficit of planets around 2 R{sub ⊕}. Planets that have experienced high X-ray exposures are generally smaller than this size, and those with lower X-ray exposures are typically larger. A bimodal planet size distribution is naturally predicted by the evaporation model, where, depending on their X-ray exposure, close-in planets can either hold on to hydrogen envelopes ∼0.5%-1% in mass or be stripped entirely. To quantitatively reproduce the observed features, we argue that not only do low-mass Kepler planets need to be made of rocky cores surrounded with hydrogen envelopes, but few of them should have initial masses above 20 M

  8. PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  9. Freezing of Water Droplet due to Evaporation

    NASA Astrophysics Data System (ADS)

    Satoh, Isao; Fushinobu, Kazuyoshi; Hashimoto, Yu

    In this study, the feasibility of cooling/freezing of phase change.. materials(PCMs) due to evaporation for cold storage systems was experimentally examined. A pure water was used as the test PCM, since the latent heat due to evaporation of water is about 7 times larger than that due to freezing. A water droplet, the diameter of which was 1-4 mm, was suspended in a test cell by a fine metal wire (O. D.= 100μm),and the cell was suddenly evacuated up to the pressure lower than the triple-point pressure of water, so as to enhance the evaporation from the water surface. Temperature of the droplet was measured by a thermocouple, and the cooling/freezing behavior and the temperature profile of the droplet surface were captured by using a video camera and an IR thermo-camera, respectively. The obtained results showed that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through remarkable supercooling state. When the initial temperature of the droplet is slightly higher than the room temperature, boiling phenomena occur in the droplet simultaneously with the freezing due to evaporation. Under such conditions, it was shown that the degree of supercooling of the droplet is reduced by the bubbles generated in the droplet.

  10. Gravity Effects in Condensing and Evaporating Films

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Som, S. M.; Allen, J. S.; Pedersen, P. C.

    2004-01-01

    A general overview of gravity effects in condensing and evaporating films is presented. The topics include: 1) Research Overview; 2) NASA Recognizes Critical Need for Condensation & Evaporation Research to Enable Human Exploration of Space; 3) Condensation and Evaporation Research in Reduced Gravity is Enabling for AHST Technology Needs; 4) Differing Role of Surface Tension on Condensing/Evaporating Film Stability; 5) Fluid Mechanisms in Condensing and Evaporating Films in Reduced Gravity; 6) Research Plan; 7) Experimental Configurations for Condensing Films; 8) Laboratory Condensation Test Cell; 9) Aircraft Experiment; 10) Condensation Study Current Test Conditions; 11) Diagnostics; 12) Shadowgraph Images of Condensing n- pentane Film in Unstable (-1g) Configuration; 13) Condensing n-Pentane Film in Normal Gravity (-1g) at Constant Pressure; 14) Condensing n-Pentane Film in Normal Gravity (-1g) with Cyclic Pressure; 15) Non-condensing Pumped Film in Normal Gravity (-1g); 16) Heat Transfer Coefficient in Developing, Unstable Condensing Film in Normal Gravity; 17) Heat Transfer for Unsteady Condensing Film (-1g); 18) Ultrasound Measurement of Film Thickness N-pentane Film, Stable (+1g) Configuration; and 19) Ultrasound Measurement of Film Thickness N-pentane Film, Unstable (-1g) Configuration.

  11. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Hodgson, Ed; Izenso, Mike; Chan, Weibo; Cupples, Scott

    2011-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust non-venting system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA's Spacesuit Water Membrane Evaporator (SWME), and Creare's lithium chloride Heat Pump Radiator (HPR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. The SEAR is evacuated at the onset of operations and thereafter, the water vapor absorption rate of the HPR maintains a low pressure environment for the SWME to evaporate effectively. This water vapor captured by solid LiCl in the HPR with a high enthalpy of absorption, results in sufficient temperature lift to reject most of the heat to space by radiation. After the sortie, the HPR would be heated up in a regenerator to drive off and recover the absorbed evaporant. A one-fourth scale prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The HPR was able to stably reject 60 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  12. Surface tension of evaporating nanofluid droplets

    SciTech Connect

    Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald

    2011-05-01

    Measurements of nanofluid surface tension were made using the pendant droplet method. Three different types of nanoparticles were used - laponite, silver and Fe2O3 - with de-ionized water (DW) as the base fluid. The reported results focus on the following categories; (1) because some nanoparticles require surfactants to form stable colloids, the individual effects of the surfactant and the particles were investigated; (2) due to evaporation of the pendant droplet, the particle concentration increases, affecting the apparent surface tension; (3) because of the evaporation process, a hysteresis was found where the evaporating droplet can only achieve lower values of surface tension than that of nanofluids at the same prepared concentrations: and (4) the Stefan equation relating the apparent surface tension and heat of evaporation was found to be inapplicable for nanofluids investigated. Comparisons with findings for sessile droplets are also discussed, pointing to additional effects of nanoparticles other than the non-equilibrium evaporation process.

  13. Marangoni Convection and Deviations from Maxwells' Evaporation Model

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; Snell, E. H.; Adamek, D. H.

    2003-01-01

    We investigate the convective dynamics of evaporating pools of volatile liquids using an ultra-sensitive thermal imaging camera. During evaporation, there are significant convective flows inside the liquid due to Marangoni forces. We find that Marangoni convection during evaporation can dramatically affect the evaporation rates of volatile liquids. A simple heat balance model connects the convective velocities and temperature gradients to the evaporation rates.

  14. Visualization of an evaporating thin layer during the evaporation of a nanofluid droplet.

    PubMed

    Shin, Dong Hwan; Allen, Jeffrey S; Choi, Chang Kyoung; Lee, Seong Hyuk

    2015-02-01

    During the evaporation of a droplet, there exists an evaporating thin layer that is difficult to visualize because of optical restrictions. The present study visualized this thin layer by using a reflective-mode, confocal microscope that can provide improved signal-to-noise focal plane imaging over traditional optical microscopy while simultaneously serving as an interferometer when imaging thin liquid films. The spatial distribution of the evaporating thin layer thickness was determined from interferometric fringe analysis. Three distinct fringe patterns, or regions, were observed depending on the nanoparticle concentration. These regions are referred to as uniform, slow extension, and rapid extension. The formation of the three regions is closely associated with the variation of the evaporating thin layer thickness of a nanofluid droplet. The nanoparticle bank formed near the contact line region substantially affects the rate of change in the evaporating thin layer thickness that increases with the nanoparticle concentration. PMID:25586137

  15. The Pan-STARRS Moving Object Processing System

    NASA Astrophysics Data System (ADS)

    Denneau, Larry; Jedicke, Robert; Grav, Tommy; Granvik, Mikael; Kubica, Jeremy; Milani, Andrea; Vereš, Peter; Wainscoat, Richard; Chang, Daniel; Pierfederici, Francesco; Kaiser, N.; Chambers, K. C.; Heasley, J. N.; Magnier, Eugene A.; Price, P. A.; Myers, Jonathan; Kleyna, Jan; Hsieh, Henry; Farnocchia, Davide; Waters, Chris; Sweeney, W. H.; Green, Denver; Bolin, Bryce; Burgett, W. S.; Morgan, J. S.; Tonry, John L.; Hodapp, K. W.; Chastel, Serge; Chesley, Steve; Fitzsimmons, Alan; Holman, Matthew; Spahr, Tim; Tholen, David; Williams, Gareth V.; Abe, Shinsuke; Armstrong, J. D.; Bressi, Terry H.; Holmes, Robert; Lister, Tim; McMillan, Robert S.; Micheli, Marco; Ryan, Eileen V.; Ryan, William H.; Scotti, James V.

    2013-04-01

    We describe the Pan-STARRS Moving Object Processing System (MOPS), a modern software package that produces automatic asteroid discoveries and identifications from catalogs of transient detections from next-generation astronomical survey telescopes. MOPS achieves >99.5% efficiency in producing orbits from a synthetic but realistic population of asteroids whose measurements were simulated for a Pan-STARRS4-class telescope. Additionally, using a nonphysical grid population, we demonstrate that MOPS can detect populations of currently unknown objects such as interstellar asteroids. MOPS has been adapted successfully to the prototype Pan-STARRS1 telescope despite differences in expected false detection rates, fill-factor loss, and relatively sparse observing cadence compared to a hypothetical Pan-STARRS4 telescope and survey. MOPS remains highly efficient at detecting objects but drops to 80% efficiency at producing orbits. This loss is primarily due to configurable MOPS processing limits that are not yet tuned for the Pan-STARRS1 mission. The core MOPS software package is the product of more than 15 person-years of software development and incorporates countless additional years of effort in third-party software to perform lower-level functions such as spatial searching or orbit determination. We describe the high-level design of MOPS and essential subcomponents, the suitability of MOPS for other survey programs, and suggest a road map for future MOPS development.

  16. Towards a holistic review of Pan-Africanism: linking the idea and the movement.

    PubMed

    Young, Kurt B

    2010-01-01

    This article explores two general approaches to defining Pan-Africanism. Traditional Pan-Africanism reflects definitions of Pan-Africanism that begin with the assumption that distinctions must be made between early "ideas" of group identification with Africa versus modern organizational activities. However, holistic approaches emphasize the interconnectivity of Pan-African ideas and concrete activities. This discussion explores these approaches and their implications for contemporary analyses of Pan-Africanism. The essay concludes that the holistic line is best suited for developing a new model in Pan-Africanism. PMID:20648996

  17. Towards a holistic review of Pan-Africanism: linking the idea and the movement.

    PubMed

    Young, Kurt B

    2010-01-01

    This article explores two general approaches to defining Pan-Africanism. Traditional Pan-Africanism reflects definitions of Pan-Africanism that begin with the assumption that distinctions must be made between early "ideas" of group identification with Africa versus modern organizational activities. However, holistic approaches emphasize the interconnectivity of Pan-African ideas and concrete activities. This discussion explores these approaches and their implications for contemporary analyses of Pan-Africanism. The essay concludes that the holistic line is best suited for developing a new model in Pan-Africanism.

  18. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, David K.; McKoon, Robert H.

    1993-01-01

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  19. Structuring of polymer solutions upon solvent evaporation

    NASA Astrophysics Data System (ADS)

    Schaefer, C.; van der Schoot, P.; Michels, J. J.

    2015-02-01

    The morphology of solution-cast, phase-separated polymers becomes finer with increasing solvent evaporation rate. We address this observation theoretically for a model polymer where demixing is induced by steady solvent evaporation. In contrast to what is the case for a classical, thermal quench involving immiscible blends, the spinodal instability initially develops slowly and the associated length scale is not time invariant but decreases with time as t-1 /2. After a time lag, phase separation accelerates. Time lag and characteristic length exhibit power-law behavior as a function of the evaporation rate with exponents of -2 /3 and -1 /6 . Interestingly, at later stages the spinodal structure disappears completely while a second length scale develops. The associated structure coarsens but does not follow the usual Lifshitz-Slyozov-Wagner kinetics.

  20. [Evaporating Droplet and Imaging Slip Flows

    NASA Technical Reports Server (NTRS)

    Larson, R. G.

    2002-01-01

    In this report, we summarize work on Evaporating Droplet and Imaging Slip Flows. The work was primarily performed by post-doc Hue Hu, and partially by grad students Lei Li and Danish Chopra. The work includes studies on droplet evaporation and its effects on temperature and velocity fields in an evaporating droplet, new 3-D microscopic particle image velocimetry and direct visualization on wall slip in a surfactant solution. With the exception of the slip measurements, these projects were those proposed in the grant application. Instead of slip flow, the original grant proposed imaging electro-osmotic flows. However, shortly after the grant was issued, the PI became aware of work on electro-osmotic flows by the group of Saville in Princeton that was similar to that proposed, and we therefore elected to carry out work on imaging slip flows rather than electro-osmotic flows.

  1. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, D.K.; McKoon, R.H.

    1993-03-23

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  2. [Shifting path of industrial pollution gravity centers and its driving mechanism in Pan-Yangtze River Delta].

    PubMed

    Zhao, Hai-Xia; Jiang, Xiao-Wei; Cui, Jian-Xin

    2014-11-01

    Shifting path of industrial pollution gravity centers is the response of environmental special formation during the industry transfer process, in order to prove the responding of industrial pollution gravity centers to industry transfer in economically developed areas, this paper calculates the gravity centers of industrial wastewater, gas and solid patterns and reveals the shifting path and its driving mechanism, using the data of industrial pollution in the Pan-Yangtze River Delta from 2000 to 2010. The results show that the gravity center of the industrial waste in Pan-Yangtze River Delta shifts for sure in the last 10 years, and gravity center of solid waste shifts the maximum distance within the three wastes, which was 180.18 km, and shifting distances for waste gas and waste water were 109.51 km and 85.92 km respectively. Moreover, the gravity center of the industrial waste in Pan-Yangtze River Delta shifts westwards, and gravity centers of waste water, gas and solid shift for 0.40 degrees, 0.17 degrees and 0.03 degrees respectively. The shifting of industrial pollution gravity centers is driven by many factors. The rapid development of the heavy industry in Anhui and Jiangxi provinces results in the westward shifting of the pollutions. The optimization and adjustment of industrial structures in Yangtze River Delta region benefit to alleviating industrial pollution, and high-polluting industries shifted to Anhui and Jiangxi provinces promotes pollution gravity center shifting to west. While the development of massive clean enterprise, strong environmental management efforts and better environmental monitoring system slow the shifting trend of industrial pollution to the east in Yangtze River Delta. The study of industrial pollution gravity shift and its driving mechanism provides a new angle of view to analyze the relationship between economic development and environmental pollution, and also provides academic basis for synthetical management and control of

  3. Evaporation control research, 1955-58

    USGS Publications Warehouse

    Cruse, Robert R.; Harbeck, Guy Earl

    1960-01-01

    One hundred fifty-two compounds and compositions of matter were screened as potential evaporation retardants. The homologous straight-chain fatty alkanols are considered the best materials for retardants. Several methods of application of the alkanols to the reservoir surface were investigated. Although wick-type drippers for the application of liquids and cage rafts for the application of solids appear to be the most promising methods from an economic standpoint, both methods have serious disadvantages. Considerable study was given to reducing biochemical oxidation of the evaporation retardants. Copper in several forms was found adequate as a bacteriostatic agent but posed a potential hazard because of its toxicity. Many other bactericides that were tested were also toxic. Two sets of large-scale field tests have been completed and several others are still in progress. On the larger reservoirs, the reduction of evaporation was not more than 20 percent under the prevailing conditions and the application procedure used. Three major practical problems remain; namely, the effects and action of wind on the monofilm, the effects of biochemical oxidation, and the most effective method of application. Fundamental problems remaining include the effects of various impurities, and the composition of the best evaporation retardant; the long-range effects of monofilms on the limnology of a reservoir, including the transfer of oxygen and carbon dioxide; toxicological aspects of all components of any evaporation-retardant composition, plus toxicology of any composition chosen for large-scale use; and further studies of the calorimetry and thermodynamics involved in the mechanism of evaporation and its reduction by a monofilm.

  4. Simulations of Evaporating Multicomponent Fuel Drops

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Le Clercq, Patrick

    2005-01-01

    A paper presents additional information on the subject matter of Model of Mixing Layer With Multicomponent Evaporating Drops (NPO-30505), NASA Tech Briefs, Vol. 28, No. 3 (March 2004), page 55. To recapitulate: A mathematical model of a three-dimensional mixing layer laden with evaporating fuel drops composed of many chemical species has been derived. The model is used to perform direct numerical simulations in continuing studies directed toward understanding the behaviors of sprays of liquid petroleum fuels in furnaces, industrial combustors, and engines. The model includes governing equations formulated in an Eulerian and a Lagrangian reference frame for the gas and drops, respectively, and incorporates a concept of continuous thermodynamics, according to which the chemical composition of a fuel is described by use of a distribution function. In this investigation, the distribution function depends solely on the species molar weight. The present paper reiterates the description of the model and discusses further in-depth analysis of the previous results as well as results of additional numerical simulations assessing the effect of the mass loading. The paper reiterates the conclusions reported in the cited previous article, and states some new conclusions. Some new conclusions are: 1. The slower evaporation and the evaporation/ condensation process for multicomponent-fuel drops resulted in a reduced drop-size polydispersity compared to their single-component counterpart. 2. The inhomogeneity in the spatial distribution of the species in the layer increases with the initial mass loading. 3. As evaporation becomes faster, the assumed invariant form of the molecular- weight distribution during evaporation becomes inaccurate.

  5. Precision adjustable stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved mounting stage of the type used for the detection of laser beams is disclosed. A stage center block is mounted on each of two opposite sides by a pair of spaced ball bearing tracks which provide stability as well as simplicity. The use of the spaced ball bearing pairs in conjunction with an adjustment screw which also provides support eliminates extraneous stabilization components and permits maximization of the area of the center block laser transmission hole.

  6. Adjustable vane windmills

    SciTech Connect

    Ducker, W.L.

    1982-09-14

    A system of rotatably and pivotally mounted radially extended bent supports for radially extending windmill rotor vanes in combination with axially movable radially extended control struts connected to the vanes with semi-automatic and automatic torque and other sensing and servo units provide automatic adjustment of the windmill vanes relative to their axes of rotation to produce mechanical output at constant torque or at constant speed or electrical quantities dependent thereon.

  7. Adjustable vane windmills

    SciTech Connect

    Ducker, W.L.

    1980-01-15

    A system of rotatably and pivotally mounted radially extended bent supports for radially extending windmill rotor vanes in combination with axially movable radially extended control struts connected to the vanes with semi-automatic and automatic torque and other sensing and servo units provide automatic adjustment of the windmill vanes relative to their axes of rotation to produce mechanical output at constant torque or at constant speed or electrical quantities dependent thereon.

  8. Adjustable vane windmills

    SciTech Connect

    Ducker, W.L.

    1982-09-07

    A system of rotatably and pivotally mounted radially extended bent supports for radially extending windmill rotor vanes in combination with axially movable radially extended control struts connected to the vanes with semi-automatic and automatic torque and other sensing and servo units provide automatic adjustment of the windmill vanes relative to their axes of rotation to produce mechanical output at constant torque or at constant speed or electrical quantities dependent thereon.

  9. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  10. Portion of Enhanced 360-degree Gallery Pan

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a sub-section of the 'geometrically improved, color enhanced' version of the 360-degree panorama heretofore known as the 'Gallery Pan', the first contiguous, uniform panorama taken by the Imager for Mars Pathfinder (IMP) over the course of Sols 8, 9, and 10. Different regions were imaged at different times over the three Martian days to acquire consistent lighting and shadow conditions for all areas of the panorama.

    The IMP is a stereo imaging system that, in its fully deployed configuration, stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters. In this geometrically improved version of the panorama, distortion due to a 2.5 degree tilt in the IMP camera mast has been removed, effectively flattening the horizon.

    The IMP has color capability provided by 24 selectable filters -- twelve filters per 'eye'. Its red, green, and blue filters were used to take this image. The color was digitally balanced according to the color transmittance capability of a high-resolution TV at the Jet Propulsion Laboratory (JPL), and is dependent on that device. In this color enhanced version of the panorama, detail in surface features are brought out via changes to saturation and intensity, holding the original hue constant. A threshold was applied to avoid changes to the sky.

    At left is a Lander petal and a metallic mast which is a portion of the low-gain antenna. Misregistration in the antenna and other Lander features is due to parallax in the extreme foreground. Another Lander petal is at the right, showing the fully deployed forward ramp.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The IMP was developed by the University

  11. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  12. Hot air drum evaporator. [Patent application

    DOEpatents

    Black, R.L.

    1980-11-12

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  13. Evaporative cooling of antiprotons to cryogenic temperatures.

    PubMed

    Andresen, G B; Ashkezari, M D; Baquero-Ruiz, M; Bertsche, W; Bowe, P D; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A; Hydomako, R; Jonsell, S; Kurchaninov, L; Lambo, R; Madsen, N; Menary, S; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Silveira, D M; So, C; Storey, J W; Thompson, R I; van der Werf, D P; Wilding, D; Wurtele, J S; Yamazaki, Y

    2010-07-01

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  14. Evaporative Cooling of Antiprotons to Cryogenic Temperatures

    SciTech Connect

    Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Humphries, A.; Madsen, N.; Werf, D. P. van der; Wilding, D.; Cesar, C. L.; Lambo, R.

    2010-07-02

    We report the application of evaporative cooling to clouds of trapped antiprotons, resulting in plasmas with measured temperature as low as 9 K. We have modeled the evaporation process for charged particles using appropriate rate equations. Good agreement between experiment and theory is observed, permitting prediction of cooling efficiency in future experiments. The technique opens up new possibilities for cooling of trapped ions and is of particular interest in antiproton physics, where a precise CPT test on trapped antihydrogen is a long-standing goal.

  15. Evaporation-induced assembly of biomimetic polypeptides

    SciTech Connect

    Keyes, Joseph; Junkin, Michael; Cappello, Joseph; Wu Xiaoyi; Wong, Pak Kin

    2008-07-14

    We report an evaporation assisted plasma lithography (EAPL) process for guided self-assembly of a biomimetic silk-elastinlike protein (SELP). We demonstrate the formation of SELP structures from millimeter to submicrometer range on plasma-treatment surface templates during an evaporation-induced self-assembly process. The self-assembly processes at different humidities and droplet volumes were investigated. The process occurs efficiently in a window of optimized operating conditions found to be at 70% relative humidity and 8 {mu}l volume of SELP solution. The EAPL approach provides a useful technique for the realization of functional devices and systems using these biomimetic materials.

  16. Direct Evaporative Precooling Model and Analysis

    SciTech Connect

    Shen, Bo; Ally, Moonis Raza; Rice, C Keith; Craddick, William G

    2011-01-01

    Evaporative condenser pre-cooling expands the availability of energy saving, cost-effective technology options (market engagement) and serves to expedite the range of options in upcoming codes and equipment standards (impacting regulation). Commercially available evaporative pre-coolers provide a low cost retrofit for existing packaged rooftop units, commercial unitary split systems, and air cooled chillers. We map the impact of energy savings and peak energy reduction in the 3 building types (medium office, secondary school, and supermarket) in 16 locations for three building types with four pad effectivenesses and show the effect for HVAC systems using either refrigerants R22 or R410A

  17. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, Peter

    1991-01-01

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream.

  18. Evaporative cooling enhanced cold storage system

    DOEpatents

    Carr, P.

    1991-10-15

    The invention provides an evaporatively enhanced cold storage system wherein a warm air stream is cooled and the cooled air stream is thereafter passed into contact with a cold storage unit. Moisture is added to the cooled air stream prior to or during contact of the cooled air stream with the cold storage unit to effect enhanced cooling of the cold storage unit due to evaporation of all or a portion of the added moisture. Preferably at least a portion of the added moisture comprises water condensed during the cooling of the warm air stream. 3 figures.

  19. A parameterization of the evaporation of rainfall

    NASA Technical Reports Server (NTRS)

    Schlesinger, Michael E.; Oh, Jai-Ho; Rosenfeld, Daniel

    1988-01-01

    A general theoretical expression for the rainfall rate and the total evaporation rate as a function of the distance below cloud base is developed, and is then specialized to the gamma raindrop size distribution. The theoretical framework is used to analyze the data of Rosenfeld and Mintz (1988) on the radar observations of the rainfall rate as a function of the distance below cloud base, for rain falling from continental convective cells in central South Africa, obtaining a parameterization for the evaporation of rainfall.

  20. PAN hollow fiber membranes elicit functional hippocampal neuronal network.

    PubMed

    Morelli, Sabrina; Piscioneri, Antonella; Salerno, Simona; Tasselli, Franco; Di Vito, Anna; Giusi, Giuseppina; Canonaco, Marcello; Drioli, Enrico; De Bartolo, Loredana

    2012-01-01

    This study focuses on the development of an advanced in vitro biohybrid culture model system based on the use of hollow fibre membranes (HFMs) and hippocampal neurons in order to promote the formation of a high density neuronal network. Polyacrylonitrile (PAN) and modified polyetheretherketone (PEEK-WC) membranes were prepared in hollow fibre configuration. The morphological and metabolic behaviour of hippocampal neurons cultured on PAN HF membranes were compared with those cultured on PEEK-WC HF. The differences of cell behaviour between HFMs were evidenced by the morphometric analysis in terms of axon length and also by the investigation of metabolic activity in terms of neurotrophin secretion. These findings suggested that PAN HFMs induced the in vitro reconstruction of very highly functional and complex neuronal networks. Thus, these biomaterials could potentially be used for the in vitro realization of a functional hippocampal tissue analogue for the study of neurobiological functions and/or neurodegenerative diseases.

  1. Bioenergy and Biodiversity: Key Lessons from the Pan American Region.

    PubMed

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L; Medeiros, Rodrigo; Oliveira, Camila Ortolan F; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  2. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOEpatents

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  3. Bioenergy and Biodiversity: Key Lessons from the Pan American Region

    NASA Astrophysics Data System (ADS)

    Kline, Keith L.; Martinelli, Fernanda Silva; Mayer, Audrey L.; Medeiros, Rodrigo; Oliveira, Camila Ortolan F.; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A.

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region.

  4. The future of PanDA in ATLAS distributed computing

    NASA Astrophysics Data System (ADS)

    De, K.; Klimentov, A.; Maeno, T.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.

    2015-12-01

    Experiments at the Large Hadron Collider (LHC) face unprecedented computing challenges. Heterogeneous resources are distributed worldwide at hundreds of sites, thousands of physicists analyse the data remotely, the volume of processed data is beyond the exabyte scale, while data processing requires more than a few billion hours of computing usage per year. The PanDA (Production and Distributed Analysis) system was developed to meet the scale and complexity of LHC distributed computing for the ATLAS experiment. In the process, the old batch job paradigm of locally managed computing in HEP was discarded in favour of a far more automated, flexible and scalable model. The success of PanDA in ATLAS is leading to widespread adoption and testing by other experiments. PanDA is the first exascale workload management system in HEP, already operating at more than a million computing jobs per day, and processing over an exabyte of data in 2013. There are many new challenges that PanDA will face in the near future, in addition to new challenges of scale, heterogeneity and increasing user base. PanDA will need to handle rapidly changing computing infrastructure, will require factorization of code for easier deployment, will need to incorporate additional information sources including network metrics in decision making, be able to control network circuits, handle dynamically sized workload processing, provide improved visualization, and face many other challenges. In this talk we will focus on the new features, planned or recently implemented, that are relevant to the next decade of distributed computing workload management using PanDA.

  5. The stable isotope ecology of Pan in Uganda and beyond.

    PubMed

    Loudon, James E; Sandberg, Paul A; Wrangham, Richard W; Fahey, Babette; Sponheimer, Matt

    2016-10-01

    Stable isotope analysis has long been used to study the dietary ecology of living and fossil primates, and there has been increasing interest in using stable isotopes to study primate habitat use and anthropogenic impacts on non-human primates. Here, we examine the stable carbon and nitrogen isotope compositions of chimpanzees (Pan troglodytes) from seven communities in Uganda across a continuum of habitat structure (closed to more open) and access to anthropogenic resources (no reliance to heavy reliance). In general, the hair δ(13) C, but not δ(15) N, values of these communities vary depending on forest structure and degree of anthropogenic influence. When integrated with previously published hair δ(13) C and δ(15) N values for Pan, it is apparent that modern "savanna" and "forest" Pan form discrete clusters in carbon and nitrogen isotope space, although there are exceptions probably relating to microhabitat specialization. The combined dataset also reveals that Pan δ(13) C values (but not δ(15) N values) are inversely related to rainfall (r(2)  = 0.62). We converted Pan hair δ(13) C values to enamel equivalents and made comparisons to the fossil hominoids Sivapithecus sp., Gigantopithecus blacki, Ardipithecus ramidus, and Australopithecus anamensis. The δ(13) C values of the fossil hominins Ar. ramidus and Au. anamensis do not cluster with the δ(13) C values of modern Pan in "forest" habitats, or with fossil hominoids that are believed to have inhabited forests. Am. J. Primatol. 78:1070-1085, 2016. © 2016 Wiley Periodicals, Inc.

  6. The stable isotope ecology of Pan in Uganda and beyond.

    PubMed

    Loudon, James E; Sandberg, Paul A; Wrangham, Richard W; Fahey, Babette; Sponheimer, Matt

    2016-10-01

    Stable isotope analysis has long been used to study the dietary ecology of living and fossil primates, and there has been increasing interest in using stable isotopes to study primate habitat use and anthropogenic impacts on non-human primates. Here, we examine the stable carbon and nitrogen isotope compositions of chimpanzees (Pan troglodytes) from seven communities in Uganda across a continuum of habitat structure (closed to more open) and access to anthropogenic resources (no reliance to heavy reliance). In general, the hair δ(13) C, but not δ(15) N, values of these communities vary depending on forest structure and degree of anthropogenic influence. When integrated with previously published hair δ(13) C and δ(15) N values for Pan, it is apparent that modern "savanna" and "forest" Pan form discrete clusters in carbon and nitrogen isotope space, although there are exceptions probably relating to microhabitat specialization. The combined dataset also reveals that Pan δ(13) C values (but not δ(15) N values) are inversely related to rainfall (r(2)  = 0.62). We converted Pan hair δ(13) C values to enamel equivalents and made comparisons to the fossil hominoids Sivapithecus sp., Gigantopithecus blacki, Ardipithecus ramidus, and Australopithecus anamensis. The δ(13) C values of the fossil hominins Ar. ramidus and Au. anamensis do not cluster with the δ(13) C values of modern Pan in "forest" habitats, or with fossil hominoids that are believed to have inhabited forests. Am. J. Primatol. 78:1070-1085, 2016. © 2016 Wiley Periodicals, Inc. PMID:27188271

  7. Evaluation of the tablets' surface flow velocities in pan coaters.

    PubMed

    Dreu, Rok; Toschkoff, Gregor; Funke, Adrian; Altmeyer, Andreas; Knop, Klaus; Khinast, Johannes; Kleinebudde, Peter

    2016-09-01

    The tablet pan coating process involves various types of transverse tablet bed motions, ranging from rolling to cascading. To preserve satisfactory results in terms of coating quality after scale-up, understanding the dynamics of pan coating process should be achieved. The aim of this study was to establish a methodology of estimating translational surface velocities of the tablets in a pan coater and to assess their dependence on the drum's filling degree, the pan speed, the presence of baffles and the selected tablet properties in a dry bed system and during coating while varying the drum's filling degree and the pan speed. Experiments were conducted on the laboratory scale and on the pilot scale in side-vented pan coaters. Surface movement of biconvex two-layer tablets was assessed before, during and after the process of active coating. In order to determine the tablets' surface flow velocities, a high-speed video of the tablet surface flow was recorded via a borescope inserted into the coating drum and analysed via a cross-correlation algorithm. The obtained tablet velocity data were arranged in a linear fashion as a function of the coating drum's radius and frequency. Velocity data obtained during coating were close to those of dry tablets after coating. The filling degree had little influence on the tablet velocity profile in a coating drum with baffles but clearly affected it in a coating drum without baffles. In most but not all cases, tablets with a lower static angle of repose had tablet velocity profiles with lower slopes than tablets with higher inter-tablet friction. This particular tablet velocity response can be explained by case specific values of tablet bed's dynamic angle of repose.

  8. Cardiovascular studies using the chimpanzee (Pan troglodytes)

    NASA Technical Reports Server (NTRS)

    Hinds, J. E.; Cothran, L. N.; Hawthorne, E. W.

    1977-01-01

    Despite the phylogenetic similarities between chimpanzees and man, there exists a paucity of reliable data on normal cardiovascular function and the physiological responses of the system to standard interventions. Totally implanted biotelemetry systems or hardwire analog techniques were used to examine the maximum number of cardiovascular variables which could be simultaneously monitored without significantly altering the system's performance. This was performed in order to acquire base-line data not previously obtained in this species, to determine cardiovascular response to specific forcing functions such as ventricular pacing, drug infusions, and lower body negative pressure. A cardiovascular function profile protocol was developed in order to adjust independently the three major factors which modify ventricular performance, namely, left ventricular performance, left ventricular preload, afterload, and contractility. Cardiac pacing at three levels above the ambient rate was used to adjust end diastolic volume (preload). Three concentrations of angiotensin were infused continuously to evaluate afterload in a stepwide fashion. A continuous infusion of dobutamine was administered to raise the manifest contractile state of the heart.

  9. Evaporation by mechanical vapor recompression. Technical progress report, April 1, 1980-June 30, 1980

    SciTech Connect

    Iverson, C.H.; Coury, G.E.

    1980-01-01

    The expected performance and estimated capital cost are presented of two schemes for the application of mechanical vapor recompression to a conventional, low pressure, five effect juice evaporator in a beet sugar factory. Due to the constraints of the existing system and the desire to make the most effective use of the capital investment, the recommendation is to install Scheme B. This selection recognizes the inability of the falling film evaporator to respond to rapid and frequent changes in capacity, and upon the need to raise the first effect vapor pressure to allow utilization of first effect bleed vapor to boil the white sugar crystallization pan. The recommended installation, Scheme B, is predicted to reduce the hourly steam consumption by up to 10,477 number/hr for an annual fuel savings of $126,800 on today's fuel cost at the Greeley Factory of the Great Western Sugar Company. This represents a 9.35% reduction in the amount of steam generated during the base year of 1978 to 1979. The estimated capital cost of the installation is $825,000.

  10. State-of-the-art evaporation technology: Topical report

    SciTech Connect

    Hasfurther, V.R.; Haass, M.J.

    1986-09-01

    This report discusses evaporation theory, measurement and estimation as well as the effects of water quality on evaporation. Emissions from waste effluents is also mentioned. The theory and equations to represent evaporation using energy balances, mass transport and the combination of these two methods of analysis are presented in detail. Evaporation meters and other techniques for measuring evaporation are reviewed. A discussion of ways to estimate areal evaporation is presented along with criteria which affects evaporation pond design. The effects of chemical monolayers and salinity on the rate of evaporation is cited and discussed to indicated problems associated with most industrial waste effluents. The problem of monitoring emissions resulting from evaporation ponds associated with industrial waste emissions is also presented.

  11. Effect of spring-neap tide and evaporation on the salt dynamics in estuarine marshes

    NASA Astrophysics Data System (ADS)

    Zhang, Chenming; Shen, Chengji; Xin, Pei; Li, Ling

    2016-04-01

    Salt dynamics in estuarine tidal marshes are strongly associated with their intrinsic hydrological processes and ecological behaviors, which are not well understood. Numerical simulations were carried out to investigate the transport and distribution of pore-water and salt in a vertical cross section perpendicular to a tidal creek that subjects to spring-neap tide and evaporation. Vaporizing pore-water from the unsaturated soil surface with salt left in, the time-variant actual evaporation is affected by aerodynamic factors as well as soil conditions, including pore-water saturation, salinity and the thickness of salt precipitation above the soil surface (efflorescence). Different simulation cases were performed by adjusting the potential evaporation rate, tidal signals, marsh platform slope and soil properties. The simulation analysis indicates that, the tide-averaged soil salinity increases with the reduction of inundation period under a spring-neap tide cycle. As the salt accumulated by evaporation could leave soil from seepage back to seawater during ebbtide, the pore-water salinity at the surface within the tidal range remains below solubility. Coarse soils tend to have more intensified seepage flow and hence less pore-water salinity than fine soils. With the presence of hyper-saline soil and efflorescence, salt flat develops only in the area where capillary connection between evaporating surface and water table is maintained while tidal inundation absent. On the contrary, the supratidal marsh where hydrological connections are disrupted keeps a relatively low soil salinity (40-60 ppt) and pore-water saturation as evaporation remains low throughout the tidal cycles.

  12. TCGA's Pan-Cancer Efforts and Expansion to Include Whole Genome Sequence - TCGA

    Cancer.gov

    Carolyn Hutter, Ph.D., Program Director of NHGRI's Division of Genomic Medicine, discusses the expansion of TCGA's Pan-Cancer efforts to include the Pan-Cancer Analysis of Whole Genomes (PAWG) project.

  13. Evaporation of Topopah Spring tuff pore water

    SciTech Connect

    Dibley, M J; Knauss, K G; Rosenberg, N D

    1999-09-10

    We report on the results to date for experiments on the evaporative chemical evolution of a CaSO, rich water representative of Topopah Spring Tuff porewater from Yucca Mountain. Data include anion and cation analysis and qualitative mineral identification for a series of open system experiments, with and without crushed tuff present, conducted at sub-boiling temperatures.

  14. Evaporation of Liquid Hydrocarbon Mixtures on Titan

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Chevrier, V. F.; Rivera-Valentin, E. G.; Singh, S.; Roe, L. A.; Wagner, A.

    2013-10-01

    Besides Earth, Titan is the only other known planetary body with proven stable liquids on its surface. The hydrological cycle of these liquid hydrocarbon mixtures is critical in understanding Titan’s atmosphere and surface features. Evaporation of liquid surface bodies has been indirectly observed as shoreline changes from measurements by Cassini ISS and RADAR (Hayes et al. 2011, Icarus 211, 655-671; Turtle et al. 2011, Science 18, 1414-1417.), but the long seasons of Saturn strongly limit the time span of these observations and their validity over the course of an entire Titan year. Using a novel Titan simulation chamber, the evaporation rate of liquid methane and dissolved nitrogen mixture under Titan surface conditions was derived (Luspay-Kuti et al. 2012, GRL 39, L23203), which is especially applicable to low latitude transient liquids. Polar lakes, though, are expected to be composed of a variety of hydrocarbons, primarily a mixture of ethane and methane (e.g. Cordier et al. 2009, ApJL 707, L128-L131). Here we performed laboratory simulations of ethane-methane mixtures with varying mole fraction under conditions suitable for the polar regions of Titan. We will discuss results specifically addressing the evaporation behavior as the solution becomes increasingly ethane dominated, providing quantitative values for the evaporation rate at every step. These laboratory results are relevant to polar lakes, such as Ontario Lacus, and can shed light on their stability.

  15. Soil water evaporation and crop residues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  16. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  17. Evaporation from an ionic liquid emulsion.

    PubMed

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion.

  18. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  19. On the lifetimes of evaporating droplets

    NASA Astrophysics Data System (ADS)

    Wilson, Stephen; Stauber, Jutta; Duffy, Brian; Sefiane, Khellil

    2013-11-01

    The evaporation of a fluid droplet on a solid substrate is a practically important problem which has been the subject of considerable research in recent years, much of it motivated by a range of technological applications, such as the application of pesticides to plants, DNA microarray analysis, inkjet printing, micro-fabrication, and spray cooling. In particular, the lifetime of a fluid droplet is not only of fundamental scientific interest, but is also important in a number of technological applications, such as inkjet printing and spray cooling applications (in which shorter droplet lifetimes are often needed) and the application of pesticides to plants (in which longer droplet lifetimes are often needed). In this talk we will analyse the lifetimes of fluid droplets evaporating in a variety of modes and, in particular, show that the widely believed folklore that the lifetime of a droplet is always longer than that of an identical droplet evaporating in the constant radius (i.e. pinned contact line) mode and shorter than that of an identical droplet evaporating in the constant angle mode is not, in general, true.

  20. Evaporation from an ionic liquid emulsion.

    PubMed

    Friberg, Stig E

    2007-03-15

    The conditions during evaporation in a liquid crystal-in-ionic liquid microemulsion (LC/microEm) were estimated using the phase diagram of the system. The equations for selected tie lines were established and the coordinates calculated for the sites, at which the evaporation lines crossed the tie lines. These values combined with the coordinates for the phases connecting the tie lines were used to calculate the amounts and the composition of the fractions of the two phases present in the emulsion during the evaporation. One of the emulsion phases was a lamellar liquid crystal and high energy emulsification would lead to the liquid crystal being disrupted to form vesicles. Such a system tenders a unique opportunity to study the interaction between vesicles and normal micelles, which gradually change to inverse micelles over bi-continuous structures. The amount of vesicles in the liquid phase versus the fraction liquid crystal was calculated for two extreme cases of vesicle core size and shell thickness. The limit of evaporation while retaining the vesicle structure was calculated for emulsions of different original compositions assuming the minimum continuous liquid phase to be 50% of the emulsion. PMID:17207810

  1. Isotope fractionation of water during evaporation without condensation.

    PubMed

    Cappa, Christopher D; Drisdell, Walter S; Smith, Jared D; Saykally, Richard J; Cohen, Ronald C

    2005-12-29

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere. PMID:16375440

  2. Isotope fractionation of water during evaporation without condensation.

    PubMed

    Cappa, Christopher D; Drisdell, Walter S; Smith, Jared D; Saykally, Richard J; Cohen, Ronald C

    2005-12-29

    The microscopic events engendering liquid water evaporation have received much attention over the last century, but remain incompletely understood. We present measurements of isotope fractionation occurring during free molecular evaporation from liquid microjets and show that the isotope ratios of evaporating molecules exhibit dramatic differences from equilibrium vapor values, strong variations with the solution deuterium mole fraction, and a clear temperature dependence. These results indicate the existence of an energetic barrier to evaporation and that the evaporation coefficient of water is less than unity. These new insights into water evaporation promise to advance our understanding of the processes that control the formation and lifetime of clouds in the atmosphere.

  3. Late Cardiac Events after Childhood Cancer: Methodological Aspects of the Pan-European Study PanCareSurFup

    PubMed Central

    Feijen, Elizabeth A. M.; Font-Gonzalez, Anna; van Dalen, Elvira C.; van der Pal, Helena J. H.; Reulen, Raoul C.; Winter, David L.; Kuehni, Claudia E.; Haupt, Riccardo; Alessi, Daniela; Byrne, Julianne; Bardi, Edit; Jakab, Zsuzsanna; Grabow, Desiree; Garwicz, Stanislaw; Jankovic, Momcilo; Levitt, Gill A.; Skinner, Roderick; Zadravec Zaletel, Lorna; Hjorth, Lars; Tissing, Wim J. E.; de Vathaire, Florent; Hawkins, Mike M.; Kremer, Leontien C. M.

    2016-01-01

    Background and Aim Childhood cancer survivors are at high risk of long-term adverse effects of cancer and its treatment, including cardiac events. The pan-European PanCareSurFup study determined the incidence and risk factors for cardiac events among childhood cancer survivors. The aim of this article is to describe the methodology of the cardiac cohort and nested case-control study within PanCareSurFup. Methods Eight data providers in Europe participating in PanCareSurFup identified and validated symptomatic cardiac events in their cohorts of childhood cancer survivors. Data on symptomatic heart failure, ischemia, pericarditis, valvular disease and arrhythmia were collected and graded according to the Criteria for Adverse Events. Detailed treatment data, data on potential confounders, lifestyle related risk factors and general health problems were collected. Results The PanCareSurFup cardiac cohort consisted of 59,915 5-year childhood cancer survivors with malignancies diagnosed between 1940 and 2009 and classified according to the International Classification of Childhood Cancer 3. Different strategies were used to identify cardiac events such as record linkage to population/ hospital or regional based databases, and patient- and general practitioner-based questionnaires. Conclusion The cardiac study of the European collaborative research project PanCareSurFup will provide the largest cohort of 5-year childhood cancer survivors with systematically ascertained and validated data on symptomatic cardiac events. The result of this study can provide information to minimize the burden of cardiac events in childhood cancer survivors by tailoring the follow-up of childhood cancer survivors at high risk of cardiac adverse events, transferring this knowledge into evidence-based clinical practice guidelines and providing a platform for future research studies in childhood cancer patients.  PMID:27643694

  4. Tank 26F-2F Evaporator Study

    SciTech Connect

    Adu-Wusu, K.

    2012-12-19

    Tank 26F supernate sample was sent by Savannah River Remediation to Savannah River National Laboratory for evaporation test to help understand the underlying cause of the recent gravity drain line (GDL) pluggage during operation of the 2F Evaporator system. The supernate sample was characterized prior to the evaporation test. The evaporation test involved boiling the supernate in an open beaker until the density of the concentrate (evaporation product) was between 1.4 to 1.5 g/mL. It was followed by filtering and washing of the precipitated solids with deionized water. The concentrate supernate (or concentrate filtrate), the damp unwashed precipitated solids, and the wash filtrates were characterized. All the precipitated solids dissolved during water washing. A semi-quantitative X-ray diffraction (XRD) analysis on the unwashed precipitated solids revealed their composition. All the compounds with the exception of silica (silicon oxide) are known to be readily soluble in water. Hence, their dissolution during water washing is not unexpected. Even though silica is a sparingly water-soluble compound, its dissolution is also not surprising. This stems from its small fraction in the solids as a whole and also its relative freshness. Assuming similar supernate characteristics, flushing the GDL with water (preferably warm) should facilitate dissolution and removal of future pluggage events as long as build up/aging of the sparingly soluble constituent (silica) is limited. On the other hand, since the amount of silica formed is relatively small, it is quite possible dissolution of the more soluble larger fraction will cause disintegration or fragmentation of the sparingly soluble smaller fraction (that may be embedded in the larger soluble solid mass) and allow its removal via suspension in the flushing water.

  5. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  6. The Evaporative Function of Cockroach Hygroreceptors

    PubMed Central

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach’s moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell’s response with the wet-bulb temperature and the dry cell’s response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and

  7. The evaporative function of cockroach hygroreceptors.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach's moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell's response with the wet-bulb temperature and the dry cell's response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the

  8. The evaporative function of cockroach hygroreceptors.

    PubMed

    Tichy, Harald; Kallina, Wolfgang

    2013-01-01

    Insect hygroreceptors associate as antagonistic pairs of a moist cell and a dry cell together with a cold cell in small cuticular sensilla on the antennae. The mechanisms by which the atmospheric humidity stimulates the hygroreceptive cells remain elusive. Three models for humidity transduction have been proposed in which hygroreceptors operate either as mechanical hygrometers, evaporation detectors or psychrometers. Mechanical hygrometers are assumed to respond to the relative humidity, evaporation detectors to the saturation deficit and psychrometers to the temperature depression (the difference between wet-bulb and dry-bulb temperatures). The models refer to different ways of expressing humidity. This also means, however, that at different temperatures these different types of hygroreceptors indicate very different humidity conditions. The present study tested the adequacy of the three models on the cockroach's moist and dry cells by determining whether the specific predictions about the temperature-dependence of the humidity responses are indeed observed. While in previous studies stimulation consisted of rapid step-like humidity changes, here we changed humidity slowly and continuously up and down in a sinusoidal fashion. The low rates of change made it possible to measure instantaneous humidity values based on UV-absorption and to assign these values to the hygroreceptive sensillum. The moist cell fitted neither the mechanical hygrometer nor the evaporation detector model: the temperature dependence of its humidity responses could not be attributed to relative humidity or to saturation deficit, respectively. The psychrometer model, however, was verified by the close relationships of the moist cell's response with the wet-bulb temperature and the dry cell's response with the dry-bulb temperature. Thus, the hygroreceptors respond to evaporation and the resulting cooling due to the wetness or dryness of the air. The drier the ambient air (absolutely) and the

  9. Pan-Eurasian experiment (PEEX) establishing a process towards high level Pan-Eurasian atmosphere-ecosystem observation networks

    NASA Astrophysics Data System (ADS)

    Lappalainen, Hanna K.; Petäjä, Tuukka; Zaytzeva, Nina; Viisanen, Yrjö; Kotlyakov, Vladimir; Kasimov, Nikolay; Bondur, Valery; Matvienko, Gennady; Zilitinkevich, Sergej; Kulmala, Markku

    2014-05-01

    Pan-Eurasian Experiment (PEEX) is a new multidisciplinary research approach aiming at resolving the major uncertainties in the Earth system science and global sustainability questions in the Arctic and boreal Pan-Eurasian regions (Kulmala et al. 2011). The main goal of PEEX Research agenda is to contribute to solving the scientific questions that are specifically important for the Pan-Eurasian region in the coming years, in particular the global climate change and its consequences to nature and human society. Pan Eurasian region represents one the Earth most extensive areas of boreal forest (taiga) and the largest natural wetlands, thus being a significant source area of trace gas emissions, biogenic aerosol particles, and source and sink area for the greenhouse gas (GHG) exchange in a global scale (Guenther et al. 1995, Timkovsky et al. 2010, Tunved et al. 2006, Glagolev et al. 2010). One of the first activities of the PEEX initiative is to establish a process towards high level Pan-Eurasian Observation Networks. Siberian region is currently lacking a coordinated, coherent ground based atmosphere-ecosystem measurement network, which would be crucial component for observing and predicting the effects of climate change in the Northern Pan- Eurasian region The vision of the Pan-Eurasion network will be based on a hierarchical SMEAR-type (Stations Measuring Atmosphere-Ecosystem Interactions) integrated land-atmosphere observation system (Hari et al. 2009). A suite of stations have been selected for the Preliminary Phase of PEEX Observation network. These Preliminary Phase stations includes the SMEAR-type stations in Finland (SMEAR-I-II-II-IV stations), in Estonia (SMEAR-Järviselja) and in China (SMEAR-Nanjing) and selected stations in Russia and ecosystem station network in China. PEEX observation network will fill in the current observational gap in the Siberian region and bring the Siberian observation setup into international context with the with standardized or

  10. Condensation and Evaporation of Solar System Materials

    NASA Astrophysics Data System (ADS)

    Davis, A. M.; Richter, F. M.

    2003-12-01

    condensable matter (see Chapter 1.08; Grossman, 1973; Wänke et al., 1974; Grossman and Ganapathy, 1976; Grossman et al., 1977), where CI chondrites are taken to represent total condensable matter.Elemental abundance patterns ordered by volatility certainly could have been produced by partial condensation, but they could also have been caused by partial evaporation. The relative importance of these opposite processes is still subject to debate and uncertainty. It should be remembered that condensation calculations typically assume chemical equilibrium in a closed system, in which case the system has no memory of the path by which it arrived at a given state, and thus the chemical and isotopic composition of the condensed phase cannot be used to distinguish between partial condensation and partial evaporation. Humayun and Clayton (1995) have taken a somewhat different view by arguing that condensation and evaporation are distinguishable, in that evaporation, but not condensation, will produce isotopically fractionated residues. With this idea in mind, they carefully measured the potassium isotopic compositions of a broad range of solar system materials with different degrees of potassium depletion and found them to be indistinguishable. This they took as evidence that evaporation could not have been a significant process in determining the diverse elemental abundance patterns of the various solar system materials they measured, because had evaporation been important in fractionating potassium it would have also fractionated the potassium isotopes. We will qualify this line of reasoning by arguing that evaporation and condensation can under certain conditions produce isotopically fractionated condensed phases (i.e., that partial evaporation can produce isotopically heavy residues and that partial condensation can produce isotopically light condensates) but that under other conditions both can produce elemental fractionations without significant isotopic fractionation. The

  11. Subsea adjustable choke valves

    SciTech Connect

    Cyvas, M.K. )

    1989-08-01

    With emphasis on deepwater wells and marginal offshore fields growing, the search for reliable subsea production systems has become a high priority. A reliable subsea adjustable choke is essential to the realization of such a system, and recent advances are producing the degree of reliability required. Technological developments have been primarily in (1) trim material (including polycrystalline diamond), (2) trim configuration, (3) computer programs for trim sizing, (4) component materials, and (5) diver/remote-operated-vehicle (ROV) interfaces. These five facets are overviewed and progress to date is reported. A 15- to 20-year service life for adjustable subsea chokes is now a reality. Another factor vital to efficient use of these technological developments is to involve the choke manufacturer and ROV/diver personnel in initial system conceptualization. In this manner, maximum benefit can be derived from the latest technology. Major areas of development still required and under way are listed, and the paper closes with a tabulation of successful subsea choke installations in recent years.

  12. Sampling bee communities using pan traps: alternative methods increase sample size

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring of the status of bee populations and inventories of bee faunas require systematic sampling. Efficiency and ease of implementation has encouraged the use of pan traps to sample bees. Efforts to find an optimal standardized sampling method for pan traps have focused on pan trap color. Th...

  13. Capillary gas chromatographic analysis of pans with luminol chemilumnescent detection

    SciTech Connect

    Gaffney, J.; Bornick, R.; Chen, Yu-Harn; Marley, N.

    1996-12-31

    Peroxyacyl nitrates (PANs) are important air pollutants in tropospheric chemistry. PANs are known to be potent phytotoxins at low ppb concentrations and are lachrymators. They can also transport the more reactive nitrogen dioxide long distances, because they are in equilibrium with that NO{sub x} species. Since PANs are trapped peroxyradicals, they are a direct measure of the peroxyradical levels and the of {open_quotes}photochemical age{close_quotes} of an air parcel. The PANs are typically measured in the atmosphere by using electron capture detection methods. These methods suffer from large background signals and detector responses to oxygen and water vapor. This paper describes the combination of a capillary gas chromatographic column with a modified luminol chemiluminescent nitrogen dioxide detector (Scintrex, Luminox) for rapid and sensitive detection of nitrogen dioxide, peroxyacetyl nitrate, peroxypropionyl nitrate, and peroxybutyryl nitrate. Detection limits for this approach in the low tens of parts per trillion have been observed with total analysis times of less than three minutes. We will discuss the potential application of this method to other compounds, particularly, organonitrates, in a pyrolysis system and/or with ozone addition to the sampling streams.

  14. The Historical Aspects of the Pan American Games.

    ERIC Educational Resources Information Center

    Emery, Curtis R.

    The purpose of this study was to produce an accurate account of the origin and development of the Pan American Games. A further purpose was to collect, organize, and systematically compile the results of competition for each festival, and to identify some noteworthy incidents in each series of games. The document first explains that the idea of…

  15. 24. Roof detail from liftbed truck, showing pan roof above ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Roof detail from lift-bed truck, showing pan roof above breezeway, with sawn redwood trim, tube-type drains; note missing rain gutter at roof edge, deteriorated condition of slates; view to south, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  16. The nature, distribution and formation of pans in arid zones

    NASA Astrophysics Data System (ADS)

    Goudie, A. S.; Wells, G. L.

    1995-03-01

    Pans, closed depressions, are a widespread feature of many of the world's drylands. By using literature survey, air photographs, topographic maps, orbital photographs and imagery, combined with field work it is possible to describe the major areas where these features occur. Their distribution is controlled to a great extent by the availability of susceptible surfaces. They also develop in certain particular environmental settings: palaeolacustrine basins, palaeodrainages, interdunes, and on coastal plains. Many of the pans have a distinctive morphology while on their lee sides they may have lunette dunes. Many processes combine to create and maintain pans, and these can be considered in a general model which has certain key elements. The first of these is that the area should not be one where fluvial processes are fully integrated. It should also not be one where aeolian accumulation is such as to infill any irregularities in the land's surface. If these two predisposing conditions are fulfilled then under dryland conditions, if susceptible surfaces are present, there are various circumstances that may lead to hollow development and enlargement. Although in some cases such processes as solution, suffosion and animal activities may play a role, we believe that the predominant reason why pans have the characteristics that they do (including their shapes, lunettes, alignments, etc.) is that they result from the operation of the twin processes of salt weathering and aeolian deflation.

  17. A case of maxillary sarcoma in a chimpanzee (Pan troglodytes).

    PubMed

    Fujisawa, M; Udono, T; Nogami, E; Hirosawa, M; Morimura, N; Saito, A; Seres, M; Teramoto, M; Nagano, K; Mori, Y; Uesaka, H; Nasu, K; Tomonaga, M; Idani, G; Hirata, S; Tsuruyama, T; Matsubayashi, K

    2014-04-01

    Oral malignancy is rare in chimpanzees. A 34-year-old female chimpanzee (Pan troglodytes) at Kumamoto Sanctuary, Japan, had developed it. Treatment is technically difficult for chimpanzees while malignant neoplasm is seemingly rising in captive populations. Widespread expert discussion, guidelines for treatment, especially for great apes in terminal stages is urgently needed.

  18. Maya Education and Pan Maya Ideology in the Yucatan.

    ERIC Educational Resources Information Center

    Burns, Allan

    1998-01-01

    A University of Yucatan (Mexico) professor who taught a Mayan linguistics course to indigenous teachers in Mayan discusses three issues that are central to understanding how indigenous education interacts with pan-Maya identity: the importance of locally developed Maya literature, the symbols used to define Maya culture, and a conflict over Maya…

  19. Can Chimpanzees ("Pan troglodytes") Discriminate Appearance from Reality?

    ERIC Educational Resources Information Center

    Krachun, Carla; Call, Josep; Tomasello, Michael

    2009-01-01

    A milestone in human development is coming to recognize that how something looks is not necessarily how it is. We tested appearance-reality understanding in chimpanzees ("Pan troglodytes") with a task requiring them to choose between a small grape and a big grape. The apparent relative size of the grapes was reversed using magnifying and…

  20. Characterization of low thermal conductivity PAN-based carbon fibers

    NASA Technical Reports Server (NTRS)

    Katzman, Howard A.; Adams, P. M.; Le, T. D.; Hemminger, Carl S.

    1992-01-01

    The microstructure and surface chemistry of eight low thermal conductivity (LTC) PAN-based carbon fibers were determined and compared with PAN-based fibers heat treated to higher temperatures. Based on wide-angle x ray diffraction, the LTC PAN fibers all appear to have a similar turbostratic structure with large 002 d-spacings, small crystallite sizes, and moderate preferred orientation. Limited small-angle x ray scattering (SAXS) results indicate that, with the exception of LTC fibers made by BASF, the LTC fibers do not have well developed pores. Transmission electron microscopy shows that the texture of the two LTC PAN-based fibers studied (Amoco T350/23X and /25X) consists of multiple sets of parallel, wavy, bent layers that interweave with each other forming a complex three dimensional network oriented randomly around the fiber axis. X ray photoelectron spectroscopy (XPS) analysis finds correlations between heat treated temperatures and the surface composition chemistry of the carbon fiber samples.

  1. Kibaran magmatism and Pan-African granulite metamorphism in northern Mozambique: single zircon ages and regional implications

    NASA Astrophysics Data System (ADS)

    Kroner, A.; Sacchi, R.; Jaeckel, P.; Costa, M.

    1997-10-01

    Single zircons from granitoid orthogneisses in the foreland of the Lurio Belt of northern' Mozambique were dated by the evaporation method and yielded 207Pb/ 206Pb magmatic emplacement ages between 1040.1 ±0.4 and 1148.2±0.4 Ma. These data confirm previous RbSr whole rock and SHRIMP zircon analyses and record a period of magmatic activity corresponding to the Kibaran event of east central Africa. A1300 Ma old zircon xenocryst in one sample suggests the presence of still older crust in the region. Metamorphic zircons from a granulite-facies psammopelitic gneiss of the Mugeba klippe, which is derived tectonically from the Lurio Belt, were dated by evaporation, conventional techniques and SHRIMP at ˜615 Ma. This us interpreted as reflecting the peak of high-grade metamorphism in this rock and, by implication, in the Lurio Belt. It is concluded from this that the main metamorphism in the basement of northern Mozambique occured in Pan-African times, as is the case in adjacent regions of Tanzania and Malawi, and that this may be the result of collision between East and West Gondwana

  2. Effect of Variable Gravity on Evaporation of Binary Fluids in a Capillary Pore Evaporator

    NASA Technical Reports Server (NTRS)

    Girgis, Morris M.; Matta, Nabil S.; Kolli, Kiran; Brown, Leon; Bain, James, Jr.; McGown, Juantonio

    1996-01-01

    The research project focuses on experimental investigation of the capillary-pumped evaporative heat transfer phenomenon. The objective is to examine whether the heat transfer and stability of a heated meniscus in a capillary pore can be enhanced by adding trace amounts of a non-volatile solute to a solvent and to understand the changes that occur. The experimental setup consists of a single pore evaporator connected to a reservoir which supplies liquid to the evaporator. In addition to the experiments of capillary-pumped evaporation, a parallel experimental study has been conducted to systematically investigate the effects of gravity as well as the effects of bulk composition on the heat transfer characteristics of evaporating binary thin films near the contact line region along an inclined heated surface. To investigate the buoyancy effects on evaporation along an inclined heated surface, the angle of inclination from a horizontal plane was varied fro 15 C to 90 C. An optimum concentration between 0.5% and 1% decane in pentane/decane solutions has been demonstrated at different angles of inclination. Improved heat transfer was found for the geometry with the smallest angle of inclination of 15 degrees. In addition, flow visualization has revealed that at low inclination angles effective heat transfer takes place primarily due to an extension of the thin film near the contact line. At these low inclination angles, the optimum concentration is associated with enhanced wetting characteristics and reduced thermocapillary stresses along the interface.

  3. Vaccination to conserved influenza antigens in mice using a novel Simian adenovirus vector, PanAd3, derived from the bonobo Pan paniscus.

    PubMed

    Vitelli, Alessandra; Quirion, Mary R; Lo, Chia-Yun; Misplon, Julia A; Grabowska, Agnieszka K; Pierantoni, Angiolo; Ammendola, Virginia; Price, Graeme E; Soboleski, Mark R; Cortese, Riccardo; Colloca, Stefano; Nicosia, Alfredo; Epstein, Suzanne L

    2013-01-01

    Among approximately 1000 adenoviruses from chimpanzees and bonobos studied recently, the Pan Adenovirus type 3 (PanAd3, isolated from a bonobo, Pan paniscus) has one of the best profiles for a vaccine vector, combining potent transgene immunogenicity with minimal pre-existing immunity in the human population. In this study, we inserted into a replication defective PanAd3 a transgene expressing a fusion protein of conserved influenza antigens nucleoprotein (NP) and matrix 1 (M1). We then studied antibody and T cell responses as well as protection from challenge infection in a mouse model. A single intranasal administration of PanAd3-NPM1 vaccine induced strong antibody and T cell responses, and protected against high dose lethal influenza virus challenge. Thus PanAd3 is a promising candidate vector for vaccines, including universal influenza vaccines.

  4. Adolescent Mothers' Adjustment to Parenting.

    ERIC Educational Resources Information Center

    Samuels, Valerie Jarvis; And Others

    1994-01-01

    Examined adolescent mothers' adjustment to parenting, self-esteem, social support, and perceptions of baby. Subjects (n=52) responded to questionnaires at two time periods approximately six months apart. Mothers with higher self-esteem at Time 1 had better adjustment at Time 2. Adjustment was predicted by Time 2 variables; contact with baby's…

  5. EVALUATION OF HADWACO MVR EVAPORATOR, ETV REPORT& STATEMENT

    EPA Science Inventory

    Hadwaco US, Inc., manufactures a commercial ready mechanical vapor recompression (MVR) evaporator for use in the metal finishing industry. The evaporator utilizes proven MVR and falling film principles, with the key innovation being the construction material of the heat transfer ...

  6. EVAPORATOR FLOOR, CLARIFIERS TO THE LEFT, SCALES TO THE RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EVAPORATOR FLOOR, CLARIFIERS TO THE LEFT, SCALES TO THE RIGHT, EVAPORATOR CELLS ONE, TWO AND THREE IN THE BACKGROUND. VIEW FROM NORTHWEST FROM LIME VATS - Lihue Plantation Company, Sugar Mill Building, Haleko Road, Lihue, Kauai County, HI

  7. An Investigation of Graduate Scientists' Understandings of Evaporation and Boiling.

    ERIC Educational Resources Information Center

    Goodwin, Alan; Orlik, Yuri

    2000-01-01

    Uses a video presentation of six situations relating to the evaporation and boiling of liquids and the escape of dissolved gases from solution and investigates graduate scientists' understanding of the concepts of boiling and evaporation. (Author/YDS)

  8. The Pan-STARRS search for Near Earth Objects

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard; Weryk, Robert; Schunova, Eva; Carter Chambers, Kenneth

    2015-08-01

    The two Pan-STARRS telescopes, located on Haleakala, Maui, Hawaii, are 1.8-meter diameter telescopes equipped with 1.4 Gigapixel cameras that deliver 7 square degree fields of view. The first of these telescopes, Pan-STARRS1 (PS1), is now conducting a dedicated survey for Near-Earth Objects. The second telescope, Pan-STARRS2 (PS2) is being commissioned.The PS1+PS2 surveys now extend south to -47.5 degrees declination. The image quality in the deep southern sky from Haleakala is good, and the new southern extension to the survey area has been very productive.PS1 discovered more than half of the larger NEOs and PHAs in 2014, and has become the leading NEO discovery telescope. PS1 delivers excellent astrometry and photometry. PS1 continues to discover a significant number of large (> 1km) NEOs.The Pan-STARRS telescopes are very efficient at detecting cometary activity. PS1 discovered almost half of the new comets in 2014, and discovered 10 comets in 10 nights in November 2014.The discovery rate of NEO candidates by PS1 is now overwhelming the external NEO follow-up resources, particularly for fainter NEOs. It has required that PS1 repeat fields to recover NEO candidates. As PS2 matures, and when G96 has its new camera, the combination of these three telescopes will facilitate a higher NEO discovery rate, and a better census of the NEOs in the sky. This will in turn lead to a better understanding of the size and orbit distribution of NEOs, and the corresponding hazard to Earth. The Pan-STARRS NEO survey is also likely to discover asteroids suitable for the NASA asteroid redirect mission.

  9. An Intercomparison of Airborne VOC and PAN Measurements

    NASA Astrophysics Data System (ADS)

    Hansel, A.; Wisthaler, A.; Flocke, F.; Weinheimer, A.; Fall, R.; Goldan, P.; Hübler, G.; Fehsenfeld, F. C.

    2002-12-01

    As part of the Texas Air Quality Study (TexAQS 2000) an informal airborne intercomparison has been conducted to evaluate the state-of-the-art of fast-response, in-situ methods for analyzing Volatile Organic Compounds (VOCs) and peroxyacetyl nitrate (PAN). Instrumentation included a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS), the Tropospheric Airborne Chromatograph for Oxy-hydrocarbons and Hydrocarbons (TACOH) and a gas chromatograph for PAN detection using electron capture (GC/ECD). The measurements were made in the Greater Houston area and East Texas in August/September 2000 during 13 flights with the NSF/NCAR ELECTRA aircraft. The intercomparison was conducted mainly in the boundary layer but included some encounters with air masses from the free troposphere. Final results from the intercomparison show that measurements of acetaldehyde, isoprene, the sum\\textsuperscript{*} of acetone and propanal, the sum\\textsuperscript{*} methyl vinyl ketone and methacrolein (\\textsuperscript{*} PTR-MS does not distinguish between isobaric species) and toluene agree very well. Poor agreement was achieved in the case of methanol and the underlying sensitivity problem in the PTR-MS or TACOH system is under investigation. The results of the PAN intercomparison indicate that the PTR-MS technique suffered from an interference most likely associated with the presence of peracetic acid in photochemically aged air. If this interfering signal was traced by periodically inserting a selective PAN scrubber (thermal decomposition) into the sample air stream and subtracted from the original signal, the corrected PTR-MS PAN data are in very good agreement with the GC/ECD results.

  10. [Irrigation scheduling with a 20 cm standard pan for drip-irrigated cucumber grown in solar greenhouse in the North China Plain].

    PubMed

    Gong, Xue-wen; Sun, Jing-sheng; Liu, Hao; Zhang, Hao; Wu, Xiao-lei; Sun, Yu-hong

    2015-11-01

    An experiment was conducted in 2013 and 2014 at the Xinxiang Comprehensive Experimental Station, Chinese Academy of Agriculture Sciences. Water amount was estimated with the Ep-20 and pan coefficient. Responses of cucumber evapotranspiration (ET), yield, quality and water use efficiency (WUE) to different drip irrigation amounts (Kcp1: 0.25; Kcp2: 0.5; Kcp3: 0.75; Kcp4: 1.0; Kcp5: 1.25) were investigated. The possibility of developing drip irrigation scheduling using the 20 cm pan was also discussed. Results showed that the seasonal evapotranspiration of cucumber ranged between 129 and 314 mm, and the water consumption generally increased with the increase in drip irrigation water amount. There was no significance difference in cucumber yield between the treatments with Kcp > 0.75, and the responses of mean fruit mass, number and length to water amount had a threshold value (0.75Ep-20). Regarding the fruit quality, the contents of total soluble solids, vitamin C and soluble sugar slightly decreased with increasing the irrigation water amount, while the soluble protein content varied in order as: Kcp2 > Kcp3 > Kcp4 > Kcp1 > Kcp5. There was a significant positive correlation (P < 0.01) between the pan evaporation and the reference crop evapotranspiration estimated based on a modified Penman-Monteith equation. In a conclusion, the drip water amount calculated with Kcp of 0.75 and the 20 cm pan were easy and feasible for cucumber cultivation in solar greenhouse in the North China Plain. PMID:26915194

  11. Evaporative cooler including one or more rotating cooler louvers

    DOEpatents

    Gerlach, David W

    2015-02-03

    An evaporative cooler may include an evaporative cooler housing with a duct extending therethrough, a plurality of cooler louvers with respective porous evaporative cooler pads, and a working fluid source conduit. The cooler louvers are arranged within the duct and rotatably connected to the cooler housing along respective louver axes. The source conduit provides an evaporative cooler working fluid to the cooler pads during at least one mode of operation.

  12. Adsorption Isotherms for Xenon and Krypton using INL HZ-PAN and AgZ-PAN Sorbents

    SciTech Connect

    Troy G. Garn; Mitchell Greenhalgh; Veronica J. Rutledge; Jack D. Law

    2014-08-01

    The generation of adsorption isotherms compliments the scale-up of off-gas processes used to control the emission of encapsulated radioactive volatile fission and activation products released during Used Nuclear Fuel (UNF) reprocessing activities. A series of experiments were conducted to obtain capacity results for varying Kr and Xe gas concentrations using HZ-PAN and AgZ-PAN engineered form sorbents. Gas compositions for Kr ranged from 150-40,000 ppmv and 250-5020 ppmv for Xe in a helium balance. The experiments were all performed at 220 K at a flowrate of 50 sccm. Acquired capacities were then respectively fit to the Langmuir equation using the Langmuir linear regression method to obtain the equilibrium parameters Qmax and Keq. Generated experimental adsorption isotherms were then plotted with the Langmuir predicted isotherms to illustrate agreement between the two. The Langmuir parameters were provided for input into the OSPREY model to predict breakthrough of single component adsorption of Kr and Xe on HZ-PAN and AgZ-PAN sorbents at the experimental conditions tested. Kr and Xe capacities resulting from model breakthrough predictions were then compared to experimental capacities for model validation.

  13. Metallurgical and acoustical characterization of a hydroformed, 304 stainless steel, Caribbean-style musical pan

    SciTech Connect

    Murr, L.E. Gaytan, S.M.; Lopez, M.I.; Bujanda, D.E.; Martinez, E.Y.; Whitmyre, G.; Price, H.

    2008-03-15

    We report herein the metallurgical and acoustical characterization of hydroformed 304 stainless steel, Caribbean pans. These pans were fully tuned to chromatic tones and compared to a manufactured, low-carbon, Caribbean steel pan standard. Hydroformed platforms had a Vickers microindentation hardness of HV 345, which was reduced by annealing during pan fabrication to HV 270. Skirts welded to the hydroformed head had a microindentation hardness of HV 440. Microstructural characterization by light optical metallography and transmission electron microscopy illustrated microstructures (including grain structures) characteristic of these pan microindentation hardnesses.

  14. Black hole evaporation rates without spacetime.

    PubMed

    Braunstein, Samuel L; Patra, Manas K

    2011-08-12

    Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem. PMID:21902381

  15. Thermoelectric integrated membrane evaporation water recovery technology

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  16. Influence of Refrigerant Oil on Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jong Soo; Katsuta, Masafumi

    Because of the phase-out CFC Freon series required by Montreal Protocal, the conversion to HFC alternatives for vapor compression refrigeration system have been in progress. The each component design of these system should need to be reassessed, however, to improve the performance and compactness of the evaporator, an influence of the refrigerant oil on the refrigerant side heat transfer remains as an important and unsolved subject. In this article, the previous research progresses on the thermophysical properties, two-phase flow regimes and heat transfer in evaporator tube of refrigerant and oil mixture are briefly reviewed and the ability of these results to the combination of the alternative refrigerant and oil system is discussed. According to the review, the limited quantitative agreements were obtained from the perfect miscible refrigerant and oil mixture and, in particular, the much detailed research on the heat transfer mechanisms are required in future.

  17. Reactively evaporated films of copper molybdenum sulfide

    NASA Technical Reports Server (NTRS)

    Chi, K. C.; Dillon, R. O.; Bunshah, R. F.; Alterovitz, S.; Woollam, J. A.

    1978-01-01

    Films of superconducting Chevrel-phase copper molybdenum sulfide CuxMo6S8 were deposited on sapphire substrates by reactive evaporation using H2S as the reacting gas. Two superconducting temperatures (10.0 K and 5.0 K) of the films were found, corresponding to two different phases with different copper concentrations. All films were superconducting above 4.2 K and contained Chevrel-phase compound as well as free molybdenum. The critical current was measured as a function of applied field. One sample was found to deviate from the scaling law found for co-evaporated or sputtered samples, which possibly indicates a different pinning mechanism or inhomogeneity of the sample.

  18. Self similar evolution of evaporative supernova remnants

    NASA Astrophysics Data System (ADS)

    Chieze, J. P.; Lazareff, B.

    1981-02-01

    The expansion of a supernova remnant into an inhomogeneous medium of evaporating clouds can be idealized as a self-similar problem. The equations are set up and solved in the two limiting cases of negligible and dominant large scale conductivity, in the presence of an ad hoc external intercloud density equal to the product of Gamma, a parameter dependent on the evaporation parameter and the energy deposited by the supernova, with the -5/3 power of the radial distance, with Gamma equals 0 as a limiting case. While the detailed structure depends on Gamma, the global properties such as the expansion law and the total mass are to a large extent independent of this parameter, and agree with previous approximate results of McKee and Ostriker (1977). The limitations of the formal solutions are briefly discussed.

  19. Black hole evaporation rates without spacetime.

    PubMed

    Braunstein, Samuel L; Patra, Manas K

    2011-08-12

    Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.

  20. Thermodynamic Modeling of Savannah River Evaporators

    SciTech Connect

    Weber, C.F.

    2001-08-02

    A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.

  1. Preparation of microstructure-controllable superhydrophobic polytetrafluoroethylene porous thin film by vacuum thermal-evaporation

    NASA Astrophysics Data System (ADS)

    Yi, Na; Bao, Shanhu; Zhou, Huaijuan; Xin, Yunchuan; Huang, Aibin; Ma, Yining; Li, Rong; Jin, Ping

    2016-09-01

    The three-dimensional porous network polytetrafluoroethylene (PTFE) thin films were achieved by a vacuum technique through evaporating the pure PTFE powders. The surfaces of PTFE thin films showed various morphologies by adjusting the evaporation temperature and the corresponding contact angle ranging from 133° to 155°. Further analyses of surface chemical composition and morphology by FTIR and FE-SEM revealed that the origin of hydrophobicity for the PTFE thin films could be ascribed to the fluorine-containing groups and the surface morphologies, indicating that abundant -CF2 groups and network structures with appropriate pore sizes played a vital role in superhydrophobicity. By characterization of UV-Vis, the films also showed high transmittance and antireflection effect. The films prepared by this simple method have potential applications such as waterproof membrane and self-cleaning coating.

  2. The evaporative demand drought index: Part I 1 – Linking drought evolution to variations in evaporative demand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many operational drought indices focus primarily on precipitation and temperature when depicting hydroclimatic anomalies, and this perspective can be augmented by analyses and products that reflect the evaporative dynamics of drought. We leverage the linkage between atmospheric evaporative demand (E...

  3. Fluid Flow in An Evaporating Droplet

    NASA Technical Reports Server (NTRS)

    Hu, H.; Larson, R.

    1999-01-01

    Droplet evaporation is a common phenomenon in everyday life. For example, when a droplet of coffee or salt solution is dropped onto a surface and the droplet dries out, a ring of coffee or salt particles is left on the surface. This phenomenon exists not only in everyday life, but also in many practical industrial processes and scientific research and could also be used to assist in DNA sequence analysis, if the flow field in the droplet produced by the evaporation could be understood and predicted in detail. In order to measure the fluid flow in a droplet, small particles can be suspended into the fluid as tracers. From the ratio of gravitational force to Brownian force a(exp 4)(delta rho)(g)/k(sub B)T, we find that particle's tendency to settle is proportional to a(exp 4) (a is particle radius). So, to keep the particles from settling, the droplet size should be chosen to be in a range 0.1 -1.0 microns in experiments. For such small particles, the Brownian force will affect the motion of the particle preventing accurate measurement of the flow field. This problem could be overcome by using larger particles as tracers to measure fluid flow under microgravity since the gravitational acceleration g is then very small. For larger particles, Brownian force would hardly affect the motion of the particles. Therefore, accurate flow field could be determined from experiments in microgravity. In this paper, we will investigate the fluid flow in an evaporating droplet under normal gravity, and compare experiments to theories. Then, we will present our ideas about the experimental measurement of fluid flow in an evaporating droplet under microgravity.

  4. Hot Jupiters: how rapidly are they evaporating?

    NASA Astrophysics Data System (ADS)

    Garcia Munoz, A.; McConnell, J. C.; Caldwell, J. J.

    2005-08-01

    The detection of an extended atmosphere on the exoplanet HD 209458 b containing H, C and O and reaching as far out as 3-4 planetary radii (Vidal-Madjar et al. 2004, Astrophys. J. 604, L69-L72 ) constitutes a unique case in the study of so-called hot Jupiters. At 0.045 AU from its host star, stellar EUV radiation supplies HD 209458 b with sufficient energy so as to heat up its upper atmosphere and, presumably, power its evaporation. The goal of this work is two-fold: estimate the evaporation rate from the atmosphere of hot Jupiters, of importance for the understanding of their evolution, and predict the composition of their thermosphere, giving support to future observations. For this purpose we have built an idealized one-dimensional hydrodynamic model of the thermosphere of hot Jupiters, of particular relevance for HD 209458 b. Concentrations of H-, C- and O-bearing constituents, as well as density, velocity and temperature of the whole plasma, are solved self-consistently. The evaporation rate is fluid-dynamically constrained by the occurrence of a sonic point in the expansion of the atmospheric gas. Rapid adiabatic cooling may place an additional constraint on the thermal structure near the transition between the lower and upper atmospheres of these planets. Evaporation rates and profiles of constituents will be given for various planet-star distances, appropriate to very hot Jupiters ( ˜ 0.02 AU), hot Jupiters ( ˜ 0.05 AU) and more temperate conditions (> 0.1 AU).

  5. Evaporation flows driven by early B stars.

    NASA Astrophysics Data System (ADS)

    Peeters, Els

    2013-10-01

    Young massive OB stars significantly influence their environment as their far-UV photons (6 eV < E < 13.6 eV) dominate the physics and chemistry of the surrounding gas, creating PhotoDissociation Regions (PDRs). The incident FUV field heats and photo-dissociates the PDR and may create evaporation flows of the PDR surfaces. These photo-evaporated flows are fundamental to understanding proplyds, pillars, and the evolution of molecular clouds and hence may greatly influence the star and planet formation process. As the far-UV luminosity of the galaxy is dominated by later type B stars rather than O stars, understanding the interaction of B stars with nearby molecular clouds is key. However, for the majority of the PDRs -- those associated with lower mass B stars -- the photo-evaporation process and its relation with star formation are not well studied. Here, we propose a velocity-resolved study of the [CII] line at 158 micron with the GREAT spectrometer on board of SOFIA to study the dynamical interaction of the B2V star HD 39703 and the B0.5IVe star gamma Cas with the molecular cloud they illuminate. These regions are well-studied over a wide-wavelength range and have been observed by Spitzer/IRS in spectral mapping and Herschel/PACS in both photometry and line-mapping (cooling lines, CO). The goal of this combined SOFIA/Herschel/Spitzer study is to address the kinematic characteristics of the interaction of these two stars with the molecular cloud, determine the mass loss rate, and assess their role in triggering star formation in the PDR. In this way, we can assess the role of evaporation flows driven by early B stars in the evolution of molecular clouds.

  6. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, John D.; Darab, John G.; Gross, Mark E.

    1999-01-01

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer.

  7. Flash evaporation of liquid monomer particle mixture

    DOEpatents

    Affinito, J.D.; Darab, J.G.; Gross, M.E.

    1999-05-11

    The present invention is a method of making a first solid composite polymer layer. The method has the steps of (a) mixing a liquid monomer with particles substantially insoluble in the liquid monomer forming a monomer particle mixture; (b) flash evaporating the particle mixture and forming a composite vapor; and (c) continuously cryocondensing said composite vapor on a cool substrate and cross-linking the cryocondensed film thereby forming the polymer layer. 3 figs.

  8. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop. PMID:27418601

  9. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop

    NASA Astrophysics Data System (ADS)

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J. G. M.; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life—a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called “Ouzo effect.” Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  10. Evaporation-triggered microdroplet nucleation and the four life phases of an evaporating Ouzo drop.

    PubMed

    Tan, Huanshu; Diddens, Christian; Lv, Pengyu; Kuerten, J G M; Zhang, Xuehua; Lohse, Detlef

    2016-08-01

    Evaporating liquid droplets are omnipresent in nature and technology, such as in inkjet printing, coating, deposition of materials, medical diagnostics, agriculture, the food industry, cosmetics, or spills of liquids. Whereas the evaporation of pure liquids, liquids with dispersed particles, or even liquid mixtures has intensively been studied over the past two decades, the evaporation of ternary mixtures of liquids with different volatilities and mutual solubilities has not yet been explored. Here we show that the evaporation of such ternary mixtures can trigger a phase transition and the nucleation of microdroplets of one of the components of the mixture. As a model system, we pick a sessile Ouzo droplet (as known from daily life-a transparent mixture of water, ethanol, and anise oil) and reveal and theoretically explain its four life phases: In phase I, the spherical cap-shaped droplet remains transparent while the more volatile ethanol is evaporating, preferentially at the rim of the drop because of the singularity there. This leads to a local ethanol concentration reduction and correspondingly to oil droplet nucleation there. This is the beginning of phase II, in which oil microdroplets quickly nucleate in the whole drop, leading to its milky color that typifies the so-called "Ouzo effect." Once all ethanol has evaporated, the drop, which now has a characteristic nonspherical cap shape, has become clear again, with a water drop sitting on an oil ring (phase III), finalizing the phase inversion. Finally, in phase IV, all water has evaporated, leaving behind a tiny spherical cap-shaped oil drop.

  11. Digitally Programmable Micro Evaporation Source for Nanofabrication

    NASA Astrophysics Data System (ADS)

    Han, Han; Imboden, Matthias; Del Corro, Pablo; Stark, Thomas; Lally, Richard; Pardo, Flavio; Bolle, Cris; Bishop, David

    2015-03-01

    There is a significant world-wide effort to develop nano-manufacturing methods that can extend into the deep nanoscale region, below 20 nm. Techniques include photolithography, nano-imprint and direct write methods such as dip-pen lithography and atomic calligraphy. A central component of any fabrication setup is the deposition control of the materials to be used. Here we present a MEMS based, multi-material evaporation source array with each source element consisting of a polysilicon plate suspended by two electrical constriction leads. When resistively heating the plate, the pre-loaded material is thermally evaporated off of the plate. By arranging many of these devices into an array, one has a multi-material, digitally programmable evaporation source. Pulsing the source with precisely controlled peak voltage and timing can emit atom fluxes with an unprecedented level of control in terms of what, when and how many atoms get deposited. By varying their dimensions and arrangement, the source array can provide controllable atom fluxes ranging over ten orders of magnitude. Such a material source can provide precise control and flexibility when conducting nanopatterning and nanolithography.

  12. Tubeless evaporation process development: Final report

    SciTech Connect

    Not Available

    1987-12-01

    A tubeless evaporation process which has the potential to combine the advantage of both evaporation and freezing processes, without their disadvantages is being developed. The TEP is capable of concentrating process solutions of such things as sugar, caustic soda, salt, sodium sulfate, black liquor from the pulp and paper industry, cooling tower blowdown, ''spent'' pickling liquor (sulfuric acid) from the steel industry, and nitric acid with potential energy savings of half to three-quarters of the energy required by conventional evaporators, with about half of the capital and maintenance cost. It has similar potential for the production of fresh water from seawater. The process uses working fluids (WF's) at their freezing point to effect direct contact heat exchange. The purpose of this project was to find additional and lower cost WF's in the laboratory, to obtain sizing information for the major equipment for an economic evaluation and a pilot plant design in a bench scale plant, and to perform the economic evaluation, and the pilot plant design and cost estimate. 6 refs., 37 figs., 7 tabs.

  13. Dense spray evaporation as a mixing process

    NASA Astrophysics Data System (ADS)

    de Rivas, A.; Villermaux, E.

    2016-05-01

    We explore the processes by which a dense set of small liquid droplets (a spray) evaporates in a dry, stirred gas phase. A dense spray of micron-sized liquid (water or ethanol) droplets is formed in air by a pneumatic atomizer in a closed chamber. The spray is conveyed in ambient air as a plume whose extension depends on the relative humidity of the diluting medium. Standard shear instabilities develop at the plume edge, forming the stretched lamellar structures familiar with passive scalars. Unlike passive scalars however, these lamellae vanish in a finite time, because individual droplets evaporate at their border in contact with the dry environment. Experiments demonstrate that the lifetime of an individual droplet embedded in a lamellae is much larger than expected from the usual d2 law describing the fate of a single drop evaporating in a quiescent environment. By analogy with the way mixing times are understood from the convection-diffusion equation for passive scalars, we show that the lifetime of a spray lamellae stretched at a constant rate γ is tv=1/γ ln(1/+ϕ ϕ ) , where ϕ is a parameter that incorporates the thermodynamic and diffusional properties of the vapor in the diluting phase. The case of time-dependent stretching rates is examined too. A dense spray behaves almost as a (nonconserved) passive scalar.

  14. Evaporation characteristics of ETBE-blended gasoline.

    PubMed

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed.

  15. Modeling of Bulk Evaporation and Condensation

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Ding, Z.

    1996-01-01

    This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.

  16. Changes in flavor volatile composition of oolong tea after panning during tea processing.

    PubMed

    Sheibani, Ershad; Duncan, Susan E; Kuhn, David D; Dietrich, Andrea M; Newkirk, Jordan J; O'Keefe, Sean F

    2016-05-01

    Panning is a processing step used in manufacturing of some varieties of oolong tea. There is limited information available on effects of panning on oolong tea flavors. The goal of this study was to determine effects of panning on flavor volatile compositions of oolong using Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Olfactometry (GC-O). SDE and SPME techniques were applied for extraction of volatiles in panned and unpanned teas. A total of 190 volatiles were identified from SDE and SPME extractions using GC-MS and GC-O. There were no significant differences (P > 0.05) in aldehyde or terpene contents of unpanned and panned tea. However, alcohols, ketones, acids and esters contents were significantly reduced by panning. Among 12 major volatiles previously used for identification and quality assessment of oolong tea, trans nerolidol, 2- hexenal, benzaldehyde, indole, gernaiol, and benzenacetaldehyde contents were significantly decreased (P < 0.05) by panning. Panning increased (P < 0.05) contents of linalool oxide, cis jasmone, and methyl salicylate. The GC-O study also showed an increase of aroma active compounds with sweet descriptions and decrease of aroma active compounds with fruity and smoky descriptions after panning. Panning significantly changes the volatile compositions of the tea and created new aroma active compounds. Results from this study can be used in quality assessment of panned oolong tea. PMID:27247775

  17. Considering complementary relationship of evaporation in Budyko's hydrological model

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Shao, Weiwei

    2013-04-01

    In Budyko's hydrological model, actual evaporation was partitioned from precipitation as a function of the relative magnitude of precipitation and potential evaporation. In practice, both Penman equation and Priestley-Taylor equation have been used to estimate the potential evaporation with same Budyko curve, and they are not distinguished under Budyko framework. Nevertheless, according to the complementary relationship of evaporation, the definitions of Penman equation and Priestley-Taylor equation are absolutely different. When water availability is not limited, evaporation occurs at Priestley-Taylor's evaporation (Ew, referred to as wet environment evaporation). As the surface dries without changing the available energy, the actual and Penman's potential evaporation (Epen) rates depart from Ew with opposite changes in fluxes. So the question is: what is the difference of the Budyko's hydrological model with potential evaporation estimated by Penman or Priestley-Taylor equation? How to consider the complementary relationship in Budyko framework? In this study, for both long-term (multiyear) and annual values on water balances in the 29 non-humid catchments in the middle Yellow River Basin of China, the performances of Budyko's hydrological model with potential evaporation estimated by Epen and Ew were distinguished and compared. The catchments with larger value of Ep/Ew (ratio of Penman potential evaporation to Priestley-Taylor evaporation) are characterized with smaller evaporation ratios. The value of Ep/Ew can be served as another variable besides dryness index to partition actual evaporation from precipitation. With Priestley-Taylor equation as energy supply, an empirical formula for the parameter of the Budyko in terms of Ep/Ew and curve is proposed. Therefore, the complementary relationship of evaporation should be considered in the Budyko framework.

  18. Field evaporation of doubly charged ions from a polar liquid

    NASA Astrophysics Data System (ADS)

    Balakin, A. A.; Novikova, L. I.

    2012-11-01

    The effect of charge on field evaporation of ions from polar liquids is considered. Using the electromembrane ion source, we performed mass-spectral analysis of field evaporation of ions from the solution of sodium sulfate in a water-glycerol mixture. The composition of doubly charged cluster ions in the field evaporation from glycerol is determined. The rates of the field evaporation of doubly charged ions and singly charged ions are compared. It is shown that the ion charge as well as its localization considerably influences the efficiency of field evaporation of ions from polar liquids.

  19. Delay Adjusted Incidence Infographic

    Cancer.gov

    This Infographic shows the National Cancer Institute SEER Incidence Trends. The graphs show the Average Annual Percent Change (AAPC) 2002-2011. For Men, Thyroid: 5.3*,Liver & IBD: 3.6*, Melanoma: 2.3*, Kidney: 2.0*, Myeloma: 1.9*, Pancreas: 1.2*, Leukemia: 0.9*, Oral Cavity: 0.5, Non-Hodgkin Lymphoma: 0.3*, Esophagus: -0.1, Brain & ONS: -0.2*, Bladder: -0.6*, All Sites: -1.1*, Stomach: -1.7*, Larynx: -1.9*, Prostate: -2.1*, Lung & Bronchus: -2.4*, and Colon & Rectum: -3/0*. For Women, Thyroid: 5.8*, Liver & IBD: 2.9*, Myeloma: 1.8*, Kidney: 1.6*, Melanoma: 1.5, Corpus & Uterus: 1.3*, Pancreas: 1.1*, Leukemia: 0.6*, Brain & ONS: 0, Non-Hodgkin Lymphoma: -0.1, All Sites: -0.1, Breast: -0.3, Stomach: -0.7*, Oral Cavity: -0.7*, Bladder: -0.9*, Ovary: -0.9*, Lung & Bronchus: -1.0*, Cervix: -2.4*, and Colon & Rectum: -2.7*. * AAPC is significantly different from zero (p<.05). Rates were adjusted for reporting delay in the registry. www.cancer.gov Source: Special section of the Annual Report to the Nation on the Status of Cancer, 1975-2011.

  20. The simultaneous mass and energy evaporation (SM2E) model.

    PubMed

    Choudhary, Rehan; Klauda, Jeffery B

    2016-01-01

    In this article, the Simultaneous Mass and Energy Evaporation (SM2E) model is presented. The SM2E model is based on theoretical models for mass and energy transfer. The theoretical models systematically under or over predicted at various flow conditions: laminar, transition, and turbulent. These models were harmonized with experimental measurements to eliminate systematic under or over predictions; a total of 113 measured evaporation rates were used. The SM2E model can be used to estimate evaporation rates for pure liquids as well as liquid mixtures at laminar, transition, and turbulent flow conditions. However, due to limited availability of evaporation data, the model has so far only been tested against data for pure liquids and binary mixtures. The model can take evaporative cooling into account and when the temperature of the evaporating liquid or liquid mixture is known (e.g., isothermal evaporation), the SM2E model reduces to a mass transfer-only model.

  1. An environmental chamber for investigating the evaporation of volatile chemicals.

    PubMed

    Dillon, H K; Rumph, P F

    1998-03-01

    An inexpensive test chamber has been constructed that provides an environment appropriate for testing the effects of temperature and chemical interactions on gaseous emissions from test solutions. Temperature, relative humidity, and ventilation rate can be controlled and a well-mixed atmosphere can be maintained. The system is relatively simple and relies on heated tap water or ice to adjust the temperature. Temperatures ranging from 9 to 21 degrees C have been maintained. At an average temperature of 15.1 degrees C, temperatures at any location within the chamber vary by no more than 0.5 degree C, and the temperature of the test solution within the chamber varies by no more than 0.1 degree C. The temperatures within the chamber are stable enough to generate precise steady-state concentrations. The wind velocities within the chamber are reproducible from run to run. Consequently, the effect of velocity on the rate of evaporation of a test chemical is expected to be uniform from run to run. Steady-state concentrations can be attained in less than 1 hour at an air exchange rate of about 5 per hour. PMID:9530806

  2. PanDaTox: a tool for accelerated metabolic engineering

    SciTech Connect

    Amitai, Gil; Sorek, Rotem

    2012-04-18

    Metabolic engineering is often facilitated by cloning of genes encoding enzymes from various heterologous organisms into E. coli. Such engineering efforts are frequently hampered by foreign genes that are toxic to the E. coli host. We have developed PanDaTox (www.weizmann.ac.il/pandatox), a web-based resource that provides experimental toxicity information for more than 1.5 million genes from hundreds of different microbial genomes. The toxicity predictions, which were extensively experimentally verified, are based on serial cloning of genes into E. coli as part of the Sanger whole genome shotgun sequencing process. PanDaTox can accelerate metabolic engineering projects by allowing researchers to exclude toxic genes from the engineering plan and verify the clonability of selected genes before the actual metabolic engineering experiments are conducted.

  3. On the working conditions of a two-pan balance

    NASA Astrophysics Data System (ADS)

    de Carvalho, Carlos R.

    2016-07-01

    In this article we address the assumptions concerning the equilibrium of rigid bodies, commonly used in textbooks, that can lead to completely wrong conclusions. In particular, we show that in an idealised world, where frictions and deformations don’t occur, a steelyard or two-pan balance would not work. This apparent contradiction, that one needs imperfections to make things work, doesn’t appear in textbooks because the corresponding topics are presented in the equilibrium configuration, where the imperfections’ role is no longer necessary. At the end, taking the two-pan balance as example, we show that to avoid of working with imperfections, one must deal with a device whose design has a subtle difference from that one we are used to think about.

  4. Lithium Ion Polymer Electrolyte Based on Pva-Pan

    NASA Astrophysics Data System (ADS)

    Genova, F. Kingslin Mary; Selvasekarapandian, S.; Rajeswari, N.; Devi, S. Siva; Karthikeyan, S.; Raja, C. Sanjeevi

    2013-07-01

    The polymer blend electrolytes based on polyvinylalcohol(PVA) and polyacrylonitrile (PAN) doped with lithium per chlorate (LiClO4) have been prepared by solution casting technique using DMF as solvent. The complex formation between blend polymer and the salt has been confirmed by Fourier transform infrared spectroscopy. The amorphous nature of the blend polymer electrolyte has been confirmed by X-ray diffraction analysis. The ionic conductivity of the prepared blend polymer electrolyte has been found by ac impedence spectroscopic analysis. The highest ionic conductivity has been found to be 5.0 X10-4 S cm -1 at room temperature for 92.5 PVA: 7.5PAN: 20 molecular wt. % of LiClO4. The effect of salt concentration on the conductivity of the blend polymer electrolyte has been discussed.

  5. THE FLAMMABILITY ANALYSIS AND TIME TO REACH LOWER FLAMMABILITY LIMIT CALCULATIONS ON THE WASTE EVAPORATION AT 242-A EVAPORATOR

    SciTech Connect

    HU TA

    2007-10-31

    This document describes the analysis of the waste evaporation process on the flammability behavior. The evaluation calculates the gas generation rate, time to reach 25% and 100% of the lower flammability limit (LFL), and minimum ventilation rates for the 242-A Evaporator facility during the normal evaporation process and when vacuum is lost. This analysis performs flammability calculations on the waste currently within all 28 double-shell tanks (DST) under various evaporation process conditions to provide a wide spectrum of possible flammable gas behavior. The results of this analysis are used to support flammable gas control decisions and support and upgrade to Documented Safety Analysis for the 242-A Evaporator.

  6. The Pan-STARRS-1 Outer Solar System Pipeline

    NASA Astrophysics Data System (ADS)

    Holman, Matthew J.; Protopapas, P.; Chen, Y.; Lin, H.; Grav, T.; Ragozzine, D.; Pan-STARRS-1 Science Consortium

    2011-01-01

    The Pan-STARRS-1 survey began full scale scientific operation in May, 2010. Roughly 60% of the observing time of the Pan-STARR-1 telescope is dedicated to a "3pi steradian" survey with an observing cadence that is suitable for the detection of near-Earth asteroids and slow-moving solar system bodies. Over this course of its science mission, Pan-STARRS-1 survey will discover a large number of asteroids, Trojans, Centaurs, comets, and trans-neptunian objects (TNOs) brighter than the limiting magnitude of the survey (r=22 to r=22.5). This census will be used to address a large number of questions regarding the physical and dynamical properties of the various small body populations of the solar system. In addition, this survey will determine the population of large, distant, and rare members of the outer solar system and have the potential to detect planet-sized objects at great distances. We have developed an independent software pipeline that is optimized for the detection of outer solar system bodies at and beyond the distance of Jupiter. This pipeline is efficient, flexible, and portable. It is suitable for use in future wide-field surveys such as LSST. We have recently demonstrated the successful operation of this pipeline with the discovery of new TNOs and the recovery of TNOs found by previous surveys. We present the details of the software pipeline. In addition, we present details of the outer solar system objects discovered and recovered by Pan-STARRS-1 to date, including follow-up observations.

  7. PAN AIR summary document (version 1.0)

    NASA Technical Reports Server (NTRS)

    Derbyshire, T.; Sidwell, K. W.

    1982-01-01

    The capabilities and limitations of the panel aerodynamics (PAN AIR) computer program system are summarized. This program uses a higher order panel method to solve boundary value problems involving the Prandtl-Glauert equation for subsonic and supersonic potential flows. Both aerodynamic and hydrodynamic problems can be solved using this modular software which is written for the CDC 6600 and 7600, and the CYBER 170 series computers.

  8. Prevalence of dental trauma in Pan American games athletes.

    PubMed

    Andrade, Rafaela Amarante; Evans, Patricia Louise Scabell; Almeida, Anne Louise Scabell; da Silva, Juliana de Jesus Rodrigues; Guedes, Aurelino Machado Lima; Guedes, Fábio Ribeiro; Ranalli, Dennis N; Modesto, Adriana; Tinoco, Eduardo Muniz Barretto

    2010-06-01

    The aim of this cross-sectional epidemiological survey was to assess the prevalence of dental trauma in athletes representing 42 countries competing at the most recent Pan American Games (XV Pan Am) held in Rio de Janeiro, Brazil in July of 2007, and to determine prior use and type of mouthguard among this group of athletes. The examiners participated in standardization and calibration training sessions before the field phase began. Invitations were sent to >5500 participating athletes competing in 41 sports and to the Medical Committee of the Pan American Sports Organization before and during the XV PAN. A convenience sample of 409 athletes was recruited. After signing an informed consent, all athletes answered a questionnaire. Data were collected at the clinical examination and recorded on a specific trauma form. The mean age of the athletes was 24.4 +/- 5.3 years. Males comprised 55% of the sample; females 45%. The prevalence of dental trauma among the athletes was 49.6% (n = 203) with no gender-based differences. Most of these injuries (63.6%) were related to activities during training or competition. Sports with the highest injury prevalence were wrestling (83.3%), boxing (73.7%), basketball (70.6%) and karate (60%). The most common injury was enamel fracture (39.8%); root fracture was the least common (0.4%). The teeth most affected were the maxillary permanent central incisors (n = 113), followed by the mandibular central incisors (n = 19). Based on the results of this study, nearly one-half of the subjects had experienced previous dental trauma; the majority related to sports activities. Furthermore, only 17% of the athletes reported prior mouthguard use; the most frequent mouthguards reported were boil-and-bite. These results suggest the importance of enhanced educational efforts and the use of properly fitted mouthguards to reduce dental trauma among athletes in international sports competition, especially in sports where mouthguards are not mandatory

  9. Near Field Cosmology with the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    McConnachie, A. W.; PAndAS Collaboration

    2012-08-01

    I describe the Pan-Andromeda Archaeological Survey (PAndAS), and discuss several recent science highlights, including studies of its dwarf satellite systems, its stellar halo, and correlations with the HI content. I also discuss the need for a large scale, wide field, multi-object spectroscopic survey, such as the type made possible with the proposed Next Generation Canada-France-Hawaii Telescope (NG-CFHT).

  10. Pharmaceutical services at the Tenth Pan American Games.

    PubMed

    Wagner, J C; Ulrich, L R; McKean, D C; Blankenbaker, R G

    1989-10-01

    The pharmaceutical services provided by volunteers, including more than 100 pharmacists, at the 1987 Pan American Games in Indianapolis, Indiana, are described. Pharmacists at a local hospital were given responsibility for doping control and operation of the medical clinic pharmacy at the games. Barracks at a U.S. Army facility within the games' boundaries were converted into the clinic; an area on the second floor was equipped as the pharmacy. The pharmacy secured the necessary licensure and obtained drug products and supplies. Volunteer pharmacists were recruited and instructed about responsibilities, procedures, and security. The formulary was based on the 1983 Pan American Games formulary, the 1988 Olympic Games formulary, and requests from the Pan American Sports Organization. In the 26 days that the pharmacy was open, 968 prescriptions were filled. The drugs most commonly prescribed were ibuprofen, terfenadine, acetaminophen, penicillin V potassium, clotrimazole cream, and naproxen. A doping control center located at each competition venue was staffed by a physician, pharmacists, nurses, medical technologists, and nonmedical personnel. After an event, selected athletes were escorted to a doping control center, where a medical history and urine sample were obtained. The urine was tested for pH and specific gravity, and the coded specimen bottles were sealed for transport to the laboratory. Each step was documented on special forms. A total of 981 athletes were tested; six athletes had positive test results. The 1987 Pan American Games provided a unique opportunity for pharmacists to assist in providing medical services at a large athletic event and to become involved in doping control. PMID:2479267

  11. Prevalence of dental trauma in Pan American games athletes.

    PubMed

    Andrade, Rafaela Amarante; Evans, Patricia Louise Scabell; Almeida, Anne Louise Scabell; da Silva, Juliana de Jesus Rodrigues; Guedes, Aurelino Machado Lima; Guedes, Fábio Ribeiro; Ranalli, Dennis N; Modesto, Adriana; Tinoco, Eduardo Muniz Barretto

    2010-06-01

    The aim of this cross-sectional epidemiological survey was to assess the prevalence of dental trauma in athletes representing 42 countries competing at the most recent Pan American Games (XV Pan Am) held in Rio de Janeiro, Brazil in July of 2007, and to determine prior use and type of mouthguard among this group of athletes. The examiners participated in standardization and calibration training sessions before the field phase began. Invitations were sent to >5500 participating athletes competing in 41 sports and to the Medical Committee of the Pan American Sports Organization before and during the XV PAN. A convenience sample of 409 athletes was recruited. After signing an informed consent, all athletes answered a questionnaire. Data were collected at the clinical examination and recorded on a specific trauma form. The mean age of the athletes was 24.4 +/- 5.3 years. Males comprised 55% of the sample; females 45%. The prevalence of dental trauma among the athletes was 49.6% (n = 203) with no gender-based differences. Most of these injuries (63.6%) were related to activities during training or competition. Sports with the highest injury prevalence were wrestling (83.3%), boxing (73.7%), basketball (70.6%) and karate (60%). The most common injury was enamel fracture (39.8%); root fracture was the least common (0.4%). The teeth most affected were the maxillary permanent central incisors (n = 113), followed by the mandibular central incisors (n = 19). Based on the results of this study, nearly one-half of the subjects had experienced previous dental trauma; the majority related to sports activities. Furthermore, only 17% of the athletes reported prior mouthguard use; the most frequent mouthguards reported were boil-and-bite. These results suggest the importance of enhanced educational efforts and the use of properly fitted mouthguards to reduce dental trauma among athletes in international sports competition, especially in sports where mouthguards are not mandatory.

  12. An electronic pan/tilt/zoom camera system

    NASA Technical Reports Server (NTRS)

    Zimmermann, Steve; Martin, H. Lee

    1991-01-01

    A camera system for omnidirectional image viewing applications that provides pan, tilt, zoom, and rotational orientation within a hemispherical field of view (FOV) using no moving parts was developed. The imaging device is based on the effect that from a fisheye lens, which produces a circular image of an entire hemispherical FOV, can be mathematically corrected using high speed electronic circuitry. An incoming fisheye image from any image acquisition source is captured in memory of the device, a transformation is performed for the viewing region of interest and viewing direction, and a corrected image is output as a video image signal for viewing, recording, or analysis. As a result, this device can accomplish the functions of pan, tilt, rotation, and zoom throughout a hemispherical FOV without the need for any mechanical mechanisms. A programmable transformation processor provides flexible control over viewing situations. Multiple images, each with different image magnifications and pan tilt rotation parameters, can be obtained from a single camera. The image transformation device can provide corrected images at frame rates compatible with RS-170 standard video equipment.

  13. Baselines for the Pan-Canadian science curriculum framework.

    PubMed

    Liu, Xiufeng

    2013-01-01

    Using a Canadian student achievement assessment database, the Science Achievement Indicators Program (SAIP), and employing the Rasch partial credit measurement model, this study estimated the difficulties of items corresponding to the learning outcomes in the Pan-Canadian science curriculum framework and the latent abilities of students of grades 7, 8, 10, 11, 12 and OAC (Ontario Academic Course). The above estimates serve as baselines for validating the Pan-Canadian science curriculum framework in terms of the learning progression of learning outcomes and expected mastery of learning outcomes by grades. It was found that there was no statistically significant progression in learning outcomes from grades 4-6 to grades 7-9, and from grades 7-9 to grades 10-12; the curriculum framework sets mastery expectation about 2 grades higher than students' potential abilities. In light of the above findings, this paper discusses theoretical issues related to deciding progression of learning outcomes and setting expectation of student mastery of learning outcomes, and highlights the importance of using national assessment data to establish baselines for the above purposes. This paper concludes with recommendations for further validating the Pan-Canadian science curriculum frameworks. PMID:23816613

  14. Bioenergy and Biodiversity: Key Lessons from the Pan American Region.

    PubMed

    Kline, Keith L; Martinelli, Fernanda Silva; Mayer, Audrey L; Medeiros, Rodrigo; Oliveira, Camila Ortolan F; Sparovek, Gerd; Walter, Arnaldo; Venier, Lisa A

    2015-12-01

    Understanding how large-scale bioenergy production can affect biodiversity and ecosystems is important if society is to meet current and future sustainable development goals. A variety of bioenergy production systems have been established within different contexts throughout the Pan American region, with wide-ranging results in terms of documented and projected effects on biodiversity and ecosystems. The Pan American region is home to the majority of commercial bioenergy production and therefore the region offers a broad set of experiences and insights on both conflicts and opportunities for biodiversity and bioenergy. This paper synthesizes lessons learned focusing on experiences in Canada, the United States, and Brazil regarding the conflicts that can arise between bioenergy production and ecological conservation, and benefits that can be derived when bioenergy policies promote planning and more sustainable land-management systems. We propose a research agenda to address priority information gaps that are relevant to biodiversity concerns and related policy challenges in the Pan American region. PMID:26105970

  15. Baselines for the Pan-Canadian science curriculum framework.

    PubMed

    Liu, Xiufeng

    2013-01-01

    Using a Canadian student achievement assessment database, the Science Achievement Indicators Program (SAIP), and employing the Rasch partial credit measurement model, this study estimated the difficulties of items corresponding to the learning outcomes in the Pan-Canadian science curriculum framework and the latent abilities of students of grades 7, 8, 10, 11, 12 and OAC (Ontario Academic Course). The above estimates serve as baselines for validating the Pan-Canadian science curriculum framework in terms of the learning progression of learning outcomes and expected mastery of learning outcomes by grades. It was found that there was no statistically significant progression in learning outcomes from grades 4-6 to grades 7-9, and from grades 7-9 to grades 10-12; the curriculum framework sets mastery expectation about 2 grades higher than students' potential abilities. In light of the above findings, this paper discusses theoretical issues related to deciding progression of learning outcomes and setting expectation of student mastery of learning outcomes, and highlights the importance of using national assessment data to establish baselines for the above purposes. This paper concludes with recommendations for further validating the Pan-Canadian science curriculum frameworks.

  16. Inside the Pan-genome - Methods and Software Overview

    PubMed Central

    Guimarães, Luis Carlos; Florczak-Wyspianska, Jolanta; de Jesus, Leandro Benevides; Viana, Marcus Vinícius Canário; Silva, Artur; Ramos, Rommel Thiago Jucá; Soares, Siomar de Castro; Soares, Siomar de Castro

    2015-01-01

    The number of genomes that have been deposited in databases has increased exponentially after the advent of Next-Generation Sequencing (NGS), which produces high-throughput sequence data; this circumstance has demanded the development of new bioinformatics software and the creation of new areas, such as comparative genomics. In comparative genomics, the genetic content of an organism is compared against other organisms, which helps in the prediction of gene function and coding region sequences, identification of evolutionary events and determination of phylogenetic relationships. However, expanding comparative genomics to a large number of related bacteria, we can infer their lifestyles, gene repertoires and minimal genome size. In this context, a powerful approach called Pan-genome has been initiated and developed. This approach involves the genomic comparison of different strains of the same species, or even genus. Its main goal is to establish the total number of non-redundant genes that are present in a determined dataset. Pan-genome consists of three parts: core genome; accessory or dispensable genome; and species-specific or strain-specific genes. Furthermore, pan-genome is considered to be “open” as long as new genes are added significantly to the total repertoire for each new additional genome and “closed” when the newly added genomes cannot be inferred to significantly increase the total repertoire of the genes. To perform all of the required calculations, a substantial amount of software has been developed, based on orthologous and paralogous gene identification. PMID:27006628

  17. Global satellite retrievals of Peroxy Acetyl Nitrate (PAN) in the troposphere

    NASA Astrophysics Data System (ADS)

    Payne, V.; Alvarado, M.; Cady-Pereira, K. E.; Worden, J.; Kulawik, S. S.; Fischer, E. V.

    2013-12-01

    Peroxyacetyl Nitrate (PAN) is a thermally unstable reservoir for NOx that allows NOx to be transported over large distances, enabling ozone formation far downwind from the original source. Satellite retrievals of PAN could potentially provide substantial information on the fate of NOx emissions from a range of sources including biomass burning and anthropogenic combustion. PAN has previously been retrieved in the upper troposphere and lower stratosphere on a global scale from limb-sounding satellite instruments. PAN signatures have also been detected in nadir-viewing satellite observations of smoke plumes from fires. However, to our knowledge, PAN has not yet been retrieved in the nadir view on a global scale. Here we present global observations of tropospheric PAN from the Tropospheric Emission Spectrometer (TES), a thermal infrared spectrometer flying on the Aura satellite since 2004. PAN can be detected in TES spectra for cases where the PAN signal is above the instrument noise. The detection limit for a single TES measurement is dependent on the atmospheric and surface conditions. For observations where the cloud optical depth is less than 0.5, we find that the TES detection limit for PAN is in the region of 200 to 300 pptv. We present example distributions of elevated PAN concentrations associated with (1) trans-Pacific transport of Asian pollution, (2) boreal biomass burning and (3) the Tropical South Atlantic in austral spring.

  18. Pan1 regulates transitions between stages of clathrin-mediated endocytosis.

    PubMed

    Bradford, Mary Katherine; Whitworth, Karen; Wendland, Beverly

    2015-04-01

    Endocytosis is a well-conserved process by which cells invaginate small portions of the plasma membrane to create vesicles containing extracellular and transmembrane cargo proteins. Dozens of proteins and hundreds of specific binding interactions are needed to coordinate and regulate these events. Saccharomyces cerevisiae is a powerful model system with which to study clathrin-mediated endocytosis (CME). Pan1 is believed to be a scaffolding protein due to its interactions with numerous proteins that act throughout the endocytic process. Previous research characterized many Pan1 binding interactions, but due to Pan1's essential nature, the exact mechanisms of Pan1's function in endocytosis have been difficult to define. We created a novel Pan1-degron allele, Pan1-AID, in which Pan1 can be specifically and efficiently degraded in <1 h upon addition of the plant hormone auxin. The loss of Pan1 caused a delay in endocytic progression and weakened connections between the coat/actin machinery and the membrane, leading to arrest in CME. In addition, we determined a critical role for the central region of Pan1 in endocytosis and viability. The regions important for endocytosis and viability can be separated, suggesting that Pan1 may have a distinct role in the cell that is essential for viability.

  19. Hollow-Fiber Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Tsioulos, Gus; Mitchell, Keith; Settles, Joseph

    2013-01-01

    The hollow-fiber spacesuit water membrane evaporator (HoFi SWME) is being developed to perform the thermal control function for advanced spacesuits and spacecraft to take advantage of recent advances in micropore membrane technology in providing a robust, heat-rejection device that is less sensitive to contamination than is the sublimator. After recent contamination tests, a commercial-off-the-shelf (COTS) micro porous hollow-fiber membrane was selected for prototype development as the most suitable candidate among commercial hollow-fiber evaporator alternatives. An innovative design that grouped the fiber layers into stacks, which were separated by small spaces and packaged into a cylindrical shape, was developed into a full-scale prototype for the spacesuit application. Vacuum chamber testing has been performed to characterize heat rejection as a function of inlet water temperature and water vapor back-pressure, and to show contamination resistance to the constituents expected to be found in potable water produced by the wastewater reclamation distillation processes. Other tests showed tolerance to freezing and suitability to reject heat in a Mars pressure environment. In summary, HoFi SWME is a lightweight, compact evaporator for heat rejection in the spacesuit that is robust, contamination- insensitive, freeze-tolerant, and able to reject the required heat of spacewalks in microgravity, lunar, and Martian environments. The HoFi is packaged to reject 810 W of heat through 800 hours of use in a vacuum environment, and 370 W in a Mars environment. The device also eliminates free gas and dissolved gas from the coolant loop.

  20. Evaporative light scattering detection of pyrrolizidine alkaloids.

    PubMed

    Schaneberg, Brian T; Molyneux, Russell J; Khan, Ikhlas A

    2004-01-01

    A reverse-phase high-performance liquid chromatography method utilizing evaporative light scattering detection (ELSD) has been developed for the simultaneous detection of hepatotoxic pyrrolizidine alkaloids with and without chromophores, namely, riddelliine, riddelliine N-oxide, senecionine, senecionine N-oxide, seneciphylline, retrorsine, integerrimine, lasiocarpine and heliotrine. Pyrrolizidine alkaloids were detected in five plant extracts (Senecio spartioides, S. douglasii var. longilobus, S. jacobaea, S. intergerrimus var. exaltatus and Symphytum officinale). The detection of heliotrine (which does not contain a chromophore) was much improved by ELSD compared with photodiode array detection. PMID:14979525

  1. Two stage indirect evaporative cooling system

    DOEpatents

    Bourne, Richard C.; Lee, Brian E.; Callaway, Duncan

    2005-08-23

    A two stage indirect evaporative cooler that moves air from a blower mounted above the unit, vertically downward into dry air passages in an indirect stage and turns the air flow horizontally before leaving the indirect stage. After leaving the dry passages, a major air portion travels into the direct stage and the remainder of the air is induced by a pressure drop in the direct stage to turn 180.degree. and returns horizontally through wet passages in the indirect stage and out of the unit as exhaust air.

  2. CHEMISTRY IN EVAPORATING ICES-UNEXPLORED TERRITORY

    SciTech Connect

    Cecchi-Pestellini, Cesare; Rawlings, Jonathan M. C.; Viti, Serena; Williams, David A. E-mail: jcr@star.ucl.ac.u E-mail: daw@star.ucl.ac.u

    2010-12-20

    We suggest that three-body chemistry may occur in warm high-density gas evaporating in transient co-desorption events on interstellar ices. Using a highly idealized computational model we explore the chemical conversion from simple species of the ice to more complex species containing several heavy atoms, as a function of density and of adopted three-body rate coefficients. We predict that there is a wide range of densities and rate coefficients in which a significant chemical conversion may occur. We discuss the implications of this idea for the astrochemistry of hot cores.

  3. Treatment of evaporator condensates by pervaporation

    DOEpatents

    Blume, Ingo; Baker, Richard W.

    1990-01-01

    A pervaporation process for separating organic contaminants from evaporator condensate streams is disclosed. The process employs a permselective membrane that is selectively permeable to an organic component of the condensate. The process involves contacting the feed side of the membrane with a liquid condensate stream, and withdrawing from the permeate side a vapor enriched in the organic component. The driving force for the process is the in vapor pressure across the membrane. This difference may be provided for instance by maintaining a vacuum on the permeate side, or by condensing the permeate. The process offers a simple, economic alternative to other separation techniques.

  4. Evaporation control research, 1959-60

    USGS Publications Warehouse

    ,

    1963-01-01

    Two hundred and forty-five dispersions of long-chain alkanols were formulated by using various emulsifiers and alkanols. The dispensing and spreading ability of each of these formulations was tested. The most promising emulsifier that could be used with any of the alkanols was glyceryl monostearate (self-emulsifying). However, the concentration of the alkanol in the dispersion form varied somewhat: with the length of the carbon chain. A maximum concentration of 16 percent was obtained using the longer chain alkanols in the dispersion form without losing any of the properties of a fluid. Nine field tests were undertaken on small stock tanks. The retardant materials used in these tests were dodecanol, hexadecanol, and octadecanol. These materials were applied in either liquid or dispersion form. Four types of dispensing equipment were tested. The first type used a pressure system which sprayed a liquid onto the surface of the water. An anemometer and wind-controlled vane, operated by an electrical system, determined the length End frequency of application. The second type was similar to the first except that gravity was utilized to force the liquid onto the surface. The third type. used a drip system with rates of about 10 drops per minute. The fourth type used a gravity feed and a wind-controlled valve which allowed the dispersion material to flow onto the surface of the water when the wind was in the proper direction. In the field tests, the best reduction in evaporation was obtained using octadecanol in dispersion form and dispensed with the wind-controlled valve and gravity feed system. The maximum reduction in evaporation for a 2-week period was 27 percent. However, the economics of suppressing evaporation from stock tanks is questionable because of the short travel time across the tank by the film. There are still many problems unsolved. Some of these can be resolved in the laboratory whereas others can be resolved only in the field. Some of the more serious

  5. Dry deposition of peroxyacetyl nitrate (PAN): Determination of its deposition velocity at night from measurements of the atmospheric PAN and 222Radon concentration gradient

    NASA Astrophysics Data System (ADS)

    Schrimpf, Wolfram; Lienaerts, Karlheinz; Müller, Klaus Peter; Rudolph, Jochen; Neubert, Rolf; Schüßler, Wolfram; Levin, Ingeborg

    During the field campaign POPCORN (Photooxidant Formation by Plant Emitted Compounds and OH-Radicals in North-Eastern Germany) in August 1994 we measured the nighttime deposition velocities of PAN above a corn field. These are the first absolute measurements of PAN deposition velocities in the field. The deposition velocities were derived using a novel method, which uses measurements of the gradients of PAN and 222Rn and of the emission rates of 222Rn from the soil. A unique data set of about 250 field measurements of the PAN deposition velocity at night was thus obtained. The deposition velocity at night proved to be highly variable with an average of 0.54 cm/s and a standard deviation of 0.94 cm/s. Recent presumptions by Shepson et al. [1992] that the PAN deposition velocity is strongly reduced with increasing relative humidity could not be confirmed by our measurements.

  6. The chimpanzee-specific pericentric inversions that distinguish humans and chimpanzees have identical breakpoints in Pan troglodytes and Pan paniscus.

    PubMed

    Szamalek, Justyna M; Goidts, Violaine; Searle, Jeremy B; Cooper, David N; Hameister, Horst; Kehrer-Sawatzki, Hildegard

    2006-01-01

    Seven of nine pericentric inversions that distinguish human (HSA) and chimpanzee karyotypes are chimpanzee-specific. In this study we investigated whether the two extant chimpanzee species, Pan troglodytes (common chimpanzee) and Pan paniscus (bonobo), share exactly the same pericentric inversions. The methods applied were FISH with breakpoint-spanning BAC/PAC clones and PCR analyses of the breakpoint junction sequences. Our findings for the homologues to HSA 4, 5, 9, 12, 16, and 17 confirm for the first time at the sequence level that these pericentric inversions have identical breakpoints in the common chimpanzee and the bonobo. Therefore, these inversions predate the separation of the two chimpanzee species 0.86-2 Mya. Further, the inversions distinguishing human and chimpanzee karyotypes may be regarded as early acquisitions, such that they are likely to have been present at the time of human/chimpanzee divergence. According to the chromosomal speciation theory the inversions themselves could have promoted human speciation.

  7. Does early care affect joint attention in great apes (Pan troglodytes, Pan paniscus, Pongo abelii, Pongo pygmaeus, Gorilla gorilla)?

    PubMed

    Pitman, Caisie A; Shumaker, Robert W

    2009-08-01

    The ability to share attention with another is the foundation on which other theory of mind skills are formed. The quality of care received during infancy has been correlated with increased joint attention in humans. The purpose of this study was to assess the effects of care style (responsive or basic) and caregiver type (ape or human) during the first 6 months on joint attention in 4 great ape species (Pan troglodytes, Gorilla gorilla, Pongo spp., and Pan pansicus). Great apes engaged in joint attention with conspecifics and humans regardless of the style of early care they experienced from either a great ape mother or human caregiver. This finding suggests that joint attention is a robust ability in great apes that is resilient against at least some differences in early care. Future studies using additional measures of early care quality are recommended.

  8. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    NASA Astrophysics Data System (ADS)

    Greer, James A.

    2011-11-01

    Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis

  9. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    NASA Astrophysics Data System (ADS)

    Greer, James A.

    2011-11-01

    Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis

  10. Kinetic Limited Water Evaporation in Hydrophilic Nanofluidic Channels

    NASA Astrophysics Data System (ADS)

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Xie, Quan; Duan, Chuanhua

    2015-11-01

    Capillary evaporation is one of the most efficient approaches for heat and mass transfer, but the interfacial resistance in capillary evaporation governed by the kinetic theory has remained poorly understood. Here we report experimental studies of the kinetic-limited water capillary evaporation in 2-D hydrophilic nanochannels. A novel hybrid nanochannel design is employed to guarantee sufficient water supply to the liquid/vapor evaporation interface and to enable precise evaporation rate measurements. We study the effects of confinement (16 ~ 105nm), temperature (20 ~ 40 °C), and relative humidity (0% ~ 60%) on the evaporation rate and the evaporation coefficient. A maximum evaporation flux of 21287 micron/s is obtained in 16-nm nanochannels at 40°C and RH =0%, which corresponds to a heat flux of 4804 W/cm°. The evaporation coefficient is found to be independent on geometrical confinement, but shows a clear dependence on temperature, decreasing from 0.55 at 20°C to 0.5 at 40 °C. These findings have implications for understanding heat and mass transport in nanofluidic devices and porous media, and shed light on further development of evaporation-based technologies for thermal management, membrane purification and lab-on-a-chip devices. The work is supported by the American Chemical Society Petroleum Research Fund (ACS PRF # 54118-DNI7) and the Faculty Startup Fund (Boston University, USA).

  11. The continuous similarity model of bulk soil-water evaporation

    NASA Technical Reports Server (NTRS)

    Clapp, R. B.

    1983-01-01

    The continuous similarity model of evaporation is described. In it, evaporation is conceptualized as a two stage process. For an initially moist soil, evaporation is first climate limited, but later it becomes soil limited. During the latter stage, the evaporation rate is termed evaporability, and mathematically it is inversely proportional to the evaporation deficit. A functional approximation of the moisture distribution within the soil column is also included in the model. The model was tested using data from four experiments conducted near Phoenix, Arizona; and there was excellent agreement between the simulated and observed evaporation. The model also predicted the time of transition to the soil limited stage reasonably well. For one of the experiments, a third stage of evaporation, when vapor diffusion predominates, was observed. The occurrence of this stage was related to the decrease in moisture at the surface of the soil. The continuous similarity model does not account for vapor flow. The results show that climate, through the potential evaporation rate, has a strong influence on the time of transition to the soil limited stage. After this transition, however, bulk evaporation is independent of climate until the effects of vapor flow within the soil predominate.

  12. Capillary Limit in a Loop Heat Pipe with Dual Evaporators

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gajanana; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes a study on the capillary limit of a loop heat pipe (LHP) with two evaporators and two condensers. Both theoretical analysis and experimental investigation are conducted. Tests include heat load to one evaporator only, even heat loads to both evaporators and uneven heat load to both evaporators. Results show that after the capillary limit is exceeded, vapor will penetrate through the wick of the weaker evaporator and the compensation chamber (CC) of that evaporator will control the loop operating temperature regardless of which CC has been in control prior to the event Because the evaporator can tolerate vapor bubbles, the loop may continue to work and reach a new steady state at a higher operating temperature. The loop may even function with a modest increase in the heat load past the capillary limit With a heat load to only one evaporator, the capillary limit can be identified by rapid increases in the operating temperature and in the temperature difference between the evaporator and the CC. However, it is more difficult to tell when the capillary limit is exceeded if heat loads are applied to both evaporators. In all cases, the loop can recover by reducing the heat load to the loop.

  13. Multi-component testing using HZ-PAN and AgZ-PAN Sorbents for OSPREY Model validation

    SciTech Connect

    Garn, Troy G.; Greenhalgh, Mitchell; Lyon, Kevin L.; Law, Jack D.

    2015-04-01

    In efforts to further develop the capability of the Off-gas SeParation and RecoverY (OSPREY) model, multi-component tests were completed using both HZ-PAN and AgZ-PAN sorbents. The primary purpose of this effort was to obtain multi-component xenon and krypton capacities for comparison to future OSPREY predicted multi-component capacities using previously acquired Langmuir equilibrium parameters determined from single component isotherms. Experimental capacities were determined for each sorbent using two feed gas compositions of 1000 ppmv xenon and 150 ppmv krypton in either a helium or air balance. Test temperatures were consistently held at 220 K and the gas flowrate was 50 sccm. Capacities were calculated from breakthrough curves using TableCurve® 2D software by Jandel Scientific. The HZ-PAN sorbent was tested in the custom designed cryostat while the AgZ-PAN was tested in a newly installed cooling apparatus. Previous modeling validation efforts indicated the OSPREY model can be used to effectively predict single component xenon and krypton capacities for both engineered form sorbents. Results indicated good agreement with the experimental and predicted capacity values for both krypton and xenon on the sorbents. Overall, the model predicted slightly elevated capacities for both gases which can be partially attributed to the estimation of the parameters and the uncertainty associated with the experimental measurements. Currently, OSPREY is configured such that one species adsorbs and one does not (i.e. krypton in helium). Modification of OSPREY code is currently being performed to incorporate multiple adsorbing species and non-ideal interactions of gas phase species with the sorbent and adsorbed phases. Once these modifications are complete, the sorbent capacities determined in the present work will be used to validate OSPREY multicomponent adsorption predictions.

  14. The Pan-STARRS search for near-Earth objects

    NASA Astrophysics Data System (ADS)

    Wainscoat, R.; Veres, P.; Bolin, B.; Denneau, L.; Jedicke, R.; Chastel, S.; Micheli, M.

    2014-07-01

    The Pan-STARRS1 (PS1) telescope, located on Haleakala, Maui, Hawaii, is a 1.8-meter diameter wide-field survey telescope. It is equipped with the largest digital camera in the world, with almost 1.4 billion pixels, and images an area of sky of 7 square degrees. During the last 3 years, PS1 has been conducting a multipurpose survey ranging from a search for Near Earth Objects (NEOs) to cosmology. During this survey, 11 % of the observing time was dedicated to a search for NEOs. During that time, PS1 became the leading telescope in terms of discovery of NEOs and Potentially Hazardous Asteroids (PHAs). PS1 has also become an important discovery telescope for comets, and has discovered numerous main belt comets, including the recent discoveries of P/2013 P5 and P/2013 R3. The multipurpose survey being conducted by PS1 finished in February 2014, and 100 % of the observing time on PS1 is now dedicated to a search for Near Earth Objects. The primary region that is being searched is the 60 × 60 degree region around opposition (subject to observability from Hawaii's latitude, and avoiding high star density regions close to the Galactic plane). The sweet spot regions close to the Sun are also being searched. The result will be a deep multi-epoch survey of the ecliptic spanning at least 3 years. A second Pan-STARRS telescope (PS2), located adjacent to PS1, is nearing completion and will soon also be surveying the night sky for NEOs. The second telescope will allow us to survey much of the available sky on at least four epochs per month. The much larger amount of observing time dedicated to the NEO search will allow a much more systematic survey to be conducted, and this will result in better insight into the size and orbital distribution of NEOs. One of the strengths of Pan-STARRS is that the depth of its observations enables it to discover large undiscovered NEOs that are more distant from Earth. Pan-STARRS is less efficient at discovering small nearby NEOs that are fast

  15. The Pan-STARRS search for Near Earth Objects

    NASA Astrophysics Data System (ADS)

    Wainscoat, Richard J.; Chambers, Kenneth; Lilly, Eva; Weryk, Robert; Chastel, Serge; Denneau, Larry; Micheli, Marco

    2015-11-01

    The two Pan-STARRS telescopes, located on Haleakala, Hawaii, are 1.8-meter diameter telescopes equipped with 1.4 Gigapixel cameras that deliver 7 square degree fields of view. The first telescope, Pan-STARRS1 (PS1), has been conducting a survey for Near-Earth Objects. The second telescope, Pan-STARRS2 (PS2) is nearing completion. The telescope was commissioned using an incomplete focal plane with only 18 good detectors (60 required). The camera is presently being upgraded, and will be operated from October 2015 with 60 detectors (some engineering grade). A final upgrade to the camera in early 2016 will make the telescope fully operational.The two telescopes survey much of the sky accessible from Haleakala multiple times each lunation. The area surveyed ranges from +90 degrees in the north down to -47.5 degrees declination in the south. The “sweet spots” close to the Sun have been productive in discovery of large objects.The PS1 survey is becoming more mature and productive, having discovered more than half of all NEOs in 2015 to date, and more than 60% of the larger NEOs and PHAs discovered in 2015. Both PS1 and PS2 deliver excellent astrometry and photometry. PS1 continues to discover a significant number of large (> 1km) NEOs. PS1 has become the leading discover of comets, discovering more than half of the new comets in both 2014 and 2015.In good weather conditions, the discovery rate of NEO candidates by PS1 overwhelms the external NEO followup resources. particularly for fainter NEOs. As a result, we needed to repeat fields to recover NEO candidates. As PS2 matures, with a complete focal plane, and when the G96 camera upgrade is complete, the combination of these three telescopes will facilitate a higher NEO discovery rate, a better census of the NEOs in the sky, and better orbits for NEOs. This will in turn lead to a better understanding of the size and orbit distribution of NEOs. The Pan-STARRS NEO survey is also likely to discover asteroids suitable for

  16. Mood Adjustment via Mass Communication.

    ERIC Educational Resources Information Center

    Knobloch, Silvia

    2003-01-01

    Proposes and experimentally tests mood adjustment approach, complementing mood management theory. Discusses how results regarding self-exposure across time show that patterns of popular music listening among a group of undergraduate students differ with initial mood and anticipation, lending support to mood adjustment hypotheses. Describes how…

  17. Spousal Adjustment to Myocardial Infarction.

    ERIC Educational Resources Information Center

    Ziglar, Elisa J.

    This paper reviews the literature on the stresses and coping strategies of spouses of patients with myocardial infarction (MI). It attempts to identify specific problem areas of adjustment for the spouse and to explore the effects of spousal adjustment on patient recovery. Chapter one provides an overview of the importance in examining the…

  18. Reactive evaporation of Chevrel phase superconducting compounds

    NASA Astrophysics Data System (ADS)

    Webb, R. J.; Goldman, A. M.; Kang, J. H.; Maps, J.; Schmidt, M. F.

    1985-03-01

    Thin films of Chevrel phase compounds CuMo6S8 and HoMo6S8 have been formed using a reactive evaporation technique in which the metallic constituents are derived from either electron-gun or resistively heated sources and S vapor is obtained from a molecular beam oven. The constituents are reacted on a sapphire substrate kept at elevated temperatures. Compositional uniformity is insured by controlling the S rate and locking the rates of the other sources to it in a prearranged fashion. The evaporation system used in this work is equipped with a vacuum lock which permits substrates to be changed without reprocessing the system. CuMo6S8 films produced using these techniques are relatively pure and well-ordered. HoMo6S8 films show a resistance minimum but do not become completely superconducting as prepared, but do so after reactive annealing. These methods have not been used successfully to form PbMo6S8 films because of the high volatility and short dwell time of Pb on the substrate surface.

  19. A swirl flow evaporative cold plate

    NASA Technical Reports Server (NTRS)

    Niggemann, R. E.; Greenlee, W. J.; Hill, D. G.; Ellis, W.; Marshall, P.

    1985-01-01

    A forced flow evaporative cold plate is under development for future application to the thermal bus concept being pursued by NASA for Space Station Thermal Control. The vaporizer is a swirl-flow device employing a spiral tube coil geometry sandwiched between conductive metal plates upon which electric components could be mounted. This concept is based on the inherent phase separation that occurs in a two phase stream in curvilinear flow. This is a zero 'g' design with one 'g' all-attitude capability and is capable of high heat transfer coefficients, good isothermality, and the ability to function at heat fluxes approaching 5w/sq cm on the cold plates (10w/sq cm on the tube wall) with Freon 114. The advantages of this design over other two phase evaporator approaches are high heat flux capability, simplified control requirements, insensitivity to micro-gravity oscillations, and inexpensive manufacturability. The program included design, fabrication, and test of such a cold plate utilizing an existing test stand developed for two-phase thermal management system (TPTMS) testing. Test results analysis and conclusions are included.

  20. The lifetime of evaporating dense sprays

    NASA Astrophysics Data System (ADS)

    de Rivas, Alois; Villermaux, Emmanuel

    2015-11-01

    We study the processes by which a set of nearby liquid droplets (a spray) evaporates in a gas phase whose relative humidity (vapor concentration) is controlled at will. A dense spray of micron-sized water droplets is formed in air by a pneumatic atomizer and conveyed through a nozzle in a closed chamber whose vapor concentration has been pre-set to a controlled value. The resulting plume extension depends on the relative humidity of the diluting medium. When the spray plume is straight and laminar, droplets evaporate at its edge where the vapor is saturated, and diffuses through a boundary layer developing around the plume. We quantify the shape and length of the plume as a function of the injecting, vapor diffusion, thermodynamic and environment parameters. For higher injection Reynolds numbers, standard shear instabilities distort the plume into stretched lamellae, thus enhancing the diffusion of vapor from their boundary towards the diluting medium. These lamellae vanish in a finite time depending on the intensity of the stretching, and relative humidity of the environment, with a lifetime diverging close to the equilibrium limit, when the plume develops in an medium saturated in vapor. The dependences are described quantitatively.

  1. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  2. How surfactants influence evaporation-driven flows

    NASA Astrophysics Data System (ADS)

    Liepelt, Robert; Marin, Alvaro; Rossi, Massimiliano; Kähler, Christian J.

    2014-11-01

    Capillary flows appear spontaneously in sessile evaporating drops and give rise to particle accumulation around the contact lines, commonly known as coffee-stain effect (Deegan et al., Nature, 1997). On the other hand, out-of-equilibrium thermal effects may induce Marangoni flows in the droplet's surface that play an important role in the flow patterns and in the deposits left on the substrate. Some authors have argued that contamination or the presence of surfactants might reduce or eventually totally annul the Marangoni flow (Hu & Larson, J. Phys. Chem. B, 2006). On the contrary, others have shown an enhancement of the reverse surface flow (Sempels et al., Nat. Commun., 2012). In this work, we employ Astigmatic Particle Tracking Velocimetry (APTV) to obtain the 3D3C evaporation-driven flow in both bulk and droplet's surface, using surfactants of different ionic characters and solubility. Our conclusions lead to a complex scenario in which different surfactants and concentrations yield very different surface-flow patterns, which eventually might influence the colloidal deposition patterns.

  3. Influence of Oil on Refrigerant Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Jong-Soo, Kim; Nagata, Katsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    To explore the quantitative effect of the lubrication oil on the thermal and hydraulic evaporator performance, the detailed structure of two-phase refrigerant (R11) and lubrication oil (Suniso 5GS) flow has been investigated. Experiment has been performed using a transparent tube 20mm in inner diameter and 2600mm in total length as main test section, which was heated by surrounding hot water bath. This water bath also functioned as the visual observation section of the transition of two-phase flow pattern. Oil mass concentration was controlled initially, and circulated into the system. The void fraction at the main test section was measured by direct volume measurement using so-called "Quick Closing Valve" method. Since the effect of oil on the transition of two-phase flow pattern is emphasized at the low flow rate, operation was made at relatively low mass velocity, 50 and 100 kg/m2·s, five different oil concentrations were taken. Throughout the experiment, the evaporation pressure was kept at 105 kPa. In general, when contamination of the lubrication oil happened, the void fraction was decreasing due to the change of viscosity and surface tension and the occurence of the foaming. To correlate the void fraction as function of quality, Zivi's expression was modified to include the effect of oil concentration. The agreement between the data and this proposed correlation was favorable. Finally, to take into account the effect of lubrication oil, the new flow pattern diagram was proposed.

  4. Evaporation-Driven Bioassays in Suspended Droplets.

    PubMed

    Hernandez-Perez, Ruth; Fan, Z Hugh; Garcia-Cordero, Jose L

    2016-07-19

    The microtiter plate has been an essential tool for diagnostics, high-throughput screening, and biological assays. We present an alternative platform to perform bioassays in a microplate format that exploits evaporation to drive assay reactions. Our method consists of droplets suspended on plastic pillars; reactions occur in these droplets instead of the wells. The pillars are fabricated by milling, and the rough surface created by this fabrication method pins the droplet to a constant contact line during the assay and also acts as a hydrophobic surface. Upon evaporation, natural convection arising from Marangoni currents mixes solutions in the droplet, which speeds up assay reactions, decreases assay times, and increases limits of detection. As a proof of concept we implemented two colorimetric assays to detect glucose and proteins in only 1.5 μL, without any external devices for mixing and with a digital microscope as a readout mechanism. Our platform is an ideal alternative to the microtiter plate, works with different volumes, is compatible with commercially available reagent dispensers and plate-readers, and could have broad applications in diagnostics and high-throughput screening. PMID:27331825

  5. Parental Divorce and Children's Adjustment.

    PubMed

    Lansford, Jennifer E

    2009-03-01

    This article reviews the research literature on links between parental divorce and children's short-term and long-term adjustment. First, I consider evidence regarding how divorce relates to children's externalizing behaviors, internalizing problems, academic achievement, and social relationships. Second, I examine timing of the divorce, demographic characteristics, children's adjustment prior to the divorce, and stigmatization as moderators of the links between divorce and children's adjustment. Third, I examine income, interparental conflict, parenting, and parents well-being as mediators of relations between divorce and children's adjustment. Fourth, I note the caveats and limitations of the research literature. Finally, I consider notable policies related to grounds for divorce, child support, and child custody in light of how they might affect children s adjustment to their parents divorce.

  6. Adjustment versus no adjustment when using adjustable sutures in strabismus surgery

    PubMed Central

    Liebermann, Laura; Hatt, Sarah R.; Leske, David A.; Holmes, Jonathan M.

    2013-01-01

    Purpose To compare long-term postoperative outcomes when performing an adjustment to achieve a desired immediate postoperative alignment versus simply tying off at the desired immediate postoperative alignment when using adjustable sutures for strabismus surgery. Methods We retrospectively identified 89 consecutive patients who underwent a reoperation for horizontal strabismus using adjustable sutures and also had a 6-week and 1-year outcome examination. In each case, the intent of the surgeon was to tie off and only to adjust if the patient was not within the intended immediate postoperative range. Postoperative success was predefined based on angle of misalignment and diplopia at distance and near. Results Of the 89 patients, 53 (60%) were adjusted and 36 (40%) were tied off. Success rates were similar between patients who were simply tied off immediately after surgery and those who were adjusted. At 6 weeks, the success rate was 64% for the nonadjusted group versus 81% for the adjusted group (P = 0.09; difference of 17%; 95% CI, −2% to 36%). At 1 year, the success rate was 67% for the nonadjusted group versus 77% for the adjusted group (P = 0.3; difference of 11%; 95% CI, −8% to 30%). Conclusions Performing an adjustment to obtain a desired immediate postoperative alignment did not yield inferior long-term outcomes to those obtained by tying off to obtain that initial alignment. If patients were who were outside the desired immediate postoperative range had not been not adjusted, it is possible that their long-term outcomes would have been worse, therefore, overall, an adjustable approach may be superior to a nonadjustable approach. PMID:23415035

  7. The evaporative fraction as a measure of surface energy partitioning

    SciTech Connect

    Nichols, W.E. ); Cuenca, R.H. )

    1990-01-01

    The evaporative fraction is a ratio that expresses the proportion of turbulent flux energy over land surfaces devoted to evaporation and transpiration (evapotranspiration). It has been used to characterize the energy partition over land surfaces and has potential for inferring daily energy balance information based on mid-day remote sensing measurements. The HAPEX-MOBILHY program's SAMER system provided surface energy balance data over a range of agricultural crops and soil types. The databases from this large-scale field experiment was analyzed for the purpose of studying the behavior and daylight stability of the evaporative fraction in both ideal and general meteorological conditions. Strong linear relations were found to exist between the mid-day evaporative fraction and the daylight mean evaporative fraction. Statistical tests however rejected the hypothesis that the two quantities were equal. The relations between the evaporative fraction and the surface soil moisture as well as soil moisture in the complete vegetation root zone were also explored.

  8. Analytical solution for soil water redistribution during evaporation process.

    PubMed

    Teng, Jidong; Yasufuku, Noriyuki; Liu, Qiang; Liu, Shiyu

    2013-01-01

    Simulating the dynamics of soil water content and modeling soil water evaporation are critical for many environmental and agricultural strategies. The present study aims to develop an analytical solution to simulate soil water redistribution during the evaporation process. This analytical solution was derived utilizing an exponential function to describe the relation of hydraulic conductivity and water content on pressure head. The solution was obtained based on the initial condition of saturation and an exponential function to model the change of surface water content. Also, the evaporation experiments were conducted under a climate control apparatus to validate the theoretical development. Comparisons between the proposed analytical solution and experimental result are presented from the aspects of soil water redistribution, evaporative rate and cumulative evaporation. Their good agreement indicates that this analytical solution provides a reliable way to investigate the interaction of evaporation and soil water profile. PMID:24355839

  9. Evaporation of Ethanol-Water Binary Mixture Sessile Liquid Marbles.

    PubMed

    Ooi, Chin Hong; Bormashenko, Edward; Nguyen, Anh V; Evans, Geoffrey M; Dao, Dzung V; Nguyen, Nam-Trung

    2016-06-21

    Liquid marble is a liquid droplet coated with particles. Recently, the evaporation process of a sessile liquid marble using geometric measurements has attracted great attention from the research community. However, the lack of gravimetric measurement limits further insights into the physical changes of a liquid marble during the evaporation process. Moreover, the evaporation process of a marble containing a liquid binary mixture has not been reported before. The present paper investigates the effective density and the effective surface tension of an evaporating liquid marble that contains aqueous ethanol at relatively low concentrations. The effective density of an evaporating liquid marble is determined from the concurrent measurement of instantaneous mass and volume. Density measurements combined with surface profile fitting provide the effective surface tension of the marble. We found that the density and surface tension of an evaporating marble are significantly affected by the particle coating. PMID:27230102

  10. Evaporation of Ethanol-Water Binary Mixture Sessile Liquid Marbles.

    PubMed

    Ooi, Chin Hong; Bormashenko, Edward; Nguyen, Anh V; Evans, Geoffrey M; Dao, Dzung V; Nguyen, Nam-Trung

    2016-06-21

    Liquid marble is a liquid droplet coated with particles. Recently, the evaporation process of a sessile liquid marble using geometric measurements has attracted great attention from the research community. However, the lack of gravimetric measurement limits further insights into the physical changes of a liquid marble during the evaporation process. Moreover, the evaporation process of a marble containing a liquid binary mixture has not been reported before. The present paper investigates the effective density and the effective surface tension of an evaporating liquid marble that contains aqueous ethanol at relatively low concentrations. The effective density of an evaporating liquid marble is determined from the concurrent measurement of instantaneous mass and volume. Density measurements combined with surface profile fitting provide the effective surface tension of the marble. We found that the density and surface tension of an evaporating marble are significantly affected by the particle coating.

  11. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    NASA Technical Reports Server (NTRS)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  12. Tailoring the mass distribution and functional group density of dimethylsiloxane-based films by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Töpper, Tino; Lörcher, Samuel; Weiss, Florian; Müller, Bert

    2016-05-01

    The tailoring of molecular weight distribution and the functional group density of vinyl-terminated polydimethylsiloxane (PDMS) by molecular beam deposition is demonstrated herein. Thermally evaporated PDMS and its residue are characterized using gel permeation chromatography and nuclear magnetic resonance. Thermal fragmentation of vinyl groups occurs for evaporation temperatures above 487 K (214 °C). At a background pressure of 10-6 mbar, the maximum molecular weight distribution is adjusted from (700 ± 100) g/mol to (6100 ± 100) g/mol with a polydispersity index of 1.06 ± 0.02. The content of vinyl-termination per repeating unit of PDMS is tailored from (2.8 ± 0.2)% to (5.6 ± 0.1)%. Molecular weights of vinyl-terminated PDMS evaporated at temperatures above 388 K (115 °C) correspond to those attributed to trimethyl-terminated PDMS. Side groups of linear PDMS dominate intermolecular interactions and vapor pressure.

  13. EVALUATION OF MIXING IN THE SLURRY MIX EVAPORATOR AND MELTER FEED TANK

    SciTech Connect

    MARINIK, ANDREW

    2004-08-01

    The Defense Waste Processing Facility (DWPF) vitrifies High Level radioactive Waste (HLW) currently stored in underground tanks at the Savannah River Site (SRS). The HLW currently being processed is a waste sludge composed primarily of metal hydroxides and oxides in caustic slurry. These slurries are typically characterized as Bingham Plastic fluids. The HLW undergoes a pretreatment process in the Chemical Process Cell (CPC) at DWPF. The processed HLW sludge is then transferred to the Sludge Receipt and Adjustment Tank (SRAT) where it is acidified with nitric and formic acid then evaporated to concentrate the solids. Reflux boiling is used to strip mercury from the waste and then the waste is transferred to the Slurry Mix Evaporator tank (SME). Glass formers are added as a frit slurry to the SME to prepare the waste for vitrification. This mixture is evaporated in the SME to the final concentration target. The frit slurry mixture is then transferred to the Melter Feed Tank (MFT) to be fed to the melter.

  14. A parabolic function to modify Thornthwaite estimates of potential evapotranspiration for the eastern United States

    USGS Publications Warehouse

    McCabe, G.J., Jr.

    1989-01-01

    Errors of the Thornthwaite model can be analyzed using adjusted pan evaporation as an index of potential evapotranspiration. An examination of ratios of adjusted pan evaporation to Thornthwaite potential evapotranspiration indicates that the ratios are highest in the winter and lowest during summer months. This trend suggests a parabolic pattern. In this study a parabolic function is used to adjust Thornthwaite estimates of potential evapotranspiration. Forty locations east of the Rocky Mountains are analyzed. -from Author

  15. Probing loop quantum gravity with evaporating black holes.

    PubMed

    Barrau, A; Cailleteau, T; Cao, X; Diaz-Polo, J; Grain, J

    2011-12-16

    This Letter aims at showing that the observation of evaporating black holes should allow the usual Hawking behavior to be distinguished from loop quantum gravity (LQG) expectations. We present a full Monte Carlo simulation of the evaporation in LQG and statistical tests that discriminate between competing models. We conclude that contrarily to what was commonly thought, the discreteness of the area in LQG leads to characteristic features that qualify evaporating black holes as objects that could reveal quantum gravity footprints.

  16. /sup 18/O + /sup 12/C fusion-evaporation reaction

    SciTech Connect

    Heusch, B; Beck, C; Coffin, J P; Freeman, R M; Gallmann, A; Haas, F; Rami, F; Wagner, P; Alburger, D E

    1980-01-01

    A study of the /sup 18/O + /sup 12/C fusion evaporation reaction has been undertaken for 2 reasons: to make a systematic study of the formation cross section for each individual evaporation residue over a broad excitation energy region in the compound nucleus /sup 30/Si:30 to 62 MeV; and to compare all results to fusion-evaporation calculations done in the framework of the Hauser-Feschbach statistical model.

  17. Determining the Inception and Magnitude of Subsurface Evaporation

    NASA Astrophysics Data System (ADS)

    Deol, P. K.; Heitman, J.; Amoozegar, A.; Clayton Field Study Team

    2011-12-01

    Evaporation from an initially wet soil occurs at the soil surface but further drying of surface soil with time results in the formation of a dry surface layer. At this stage, the evaporation front moves from the surface to the subsurface. This phenomenon occurs in a highly dynamic near-surface zone making it very challenging to know the location/depth of the evaporation front and to quantify the subsurface evaporation rate. Recent studies show that subsurface evaporation can be measured using a sensible heat balance approach by accounting for the latent heat flux originating below soil surface which is not taken into account in the traditional surface energy balance equation. The soil sensible energy balance approach has been successfully tested against mass balance for estimating evaporation under steady-state controlled lab conditions, as well as to a limited extent in the field. Limitations of the approach for field conditions include inability of instrumentation to quantify evaporation during the initial shift between surface and subsurface evaporation (i.e. when evaporation occurs at depths shallower than approximately 3 mm). The objectives of this study are to 1) find indicators of the change in the location of the evaporation front from surface to subsurface, and 2) test the sensible heat balance approach for quantifying evaporation from the inception of the subsurface evaporation zone. Recently introduced multi-needle heat pulse probes were used to make continuous soil temperature and thermal property measurements in the near-surface zone at the mm scale in a bare surface soil. Preliminary results from this investigation will be presented.

  18. Simple flash evaporator for making thin films of compounds

    SciTech Connect

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C.

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  19. Chimpanzees (Pan troglodytes) flexibly adjust their behaviour in order to maximize payoffs, not to conform to majorities.

    PubMed

    Van Leeuwen, Edwin J C; Cronin, Katherine A; Schütte, Sebastian; Call, Josep; Haun, Daniel B M

    2013-01-01

    Chimpanzees have been shown to be adept learners, both individually and socially. Yet, sometimes their conservative nature seems to hamper the flexible adoption of superior alternatives, even to the extent that they persist in using entirely ineffective strategies. In this study, we investigated chimpanzees' behavioural flexibility in two different conditions under which social animals have been predicted to abandon personal preferences and adopt alternative strategies: i) under influence of majority demonstrations (i.e. conformity), and ii) in the presence of superior reward contingencies (i.e. maximizing payoffs). Unlike previous nonhuman primate studies, this study disentangled the concept of conformity from the tendency to maintain one's first-learned strategy. Studying captive (n=16) and semi-wild (n=12) chimpanzees in two complementary exchange paradigms, we found that chimpanzees did not abandon their behaviour in order to match the majority, but instead remained faithful to their first-learned strategy (Study 1a and 1b). However, the chimpanzees' fidelity to their first-learned strategy was overridden by an experimental upgrade of the profitability of the alternative strategy (Study 2). We interpret our observations in terms of chimpanzees' relative weighing of behavioural options as a function of situation-specific trade-offs. More specifically, contrary to previous findings, chimpanzees in our study abandoned their familiar behaviour to maximize payoffs, but not to conform to a majority. PMID:24312252

  20. Application of a Sequential Reaction Model to PANS and Aldehyde Measurements in Two Urban Areas

    SciTech Connect

    Roberts, James M.; Stroud, C.; Jobson, B Tom T.; Trainer, Michael; Hereid, D.; Williams, E. J.; Fehsenfeld, Fred C.; Brune, W. H.; Martinez, M.; Harder, H.

    2001-12-15

    Measurements of peroxycarboxylic nitric anhydrides (= PAN, PPN, MPAN) and aldehydes (acetaldehyde, propanal, and methacrolein) were made at Nashville, Tennessee, in 1999 and Houston, Texas, in 2000. The data were interpreted with a sequential reaction model that included reaction of aldehydes with hydroxl radical and formation or loss of PANs mediated by peroxyacyl radicals. The comparison of the measured ratios with those predicted by the model showed disagreement for PAN/acetaldehyde and PPN/propanal in Nashville but agreement in Houston. These features are consistent with the relative importance of isoprene to PAN formation at each site.

  1. Evolution of the ATLAS PanDA workload management system for exascale computational science

    NASA Astrophysics Data System (ADS)

    Maeno, T.; De, K.; Klimentov, A.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Schovancova, J.; Vaniachine, A.; Wenaus, T.; Yu, D.; Atlas Collaboration

    2014-06-01

    An important foundation underlying the impressive success of data processing and analysis in the ATLAS experiment [1] at the LHC [2] is the Production and Distributed Analysis (PanDA) workload management system [3]. PanDA was designed specifically for ATLAS and proved to be highly successful in meeting all the distributed computing needs of the experiment. However, the core design of PanDA is not experiment specific. The PanDA workload management system is capable of meeting the needs of other data intensive scientific applications. Alpha-Magnetic Spectrometer [4], an astro-particle experiment on the International Space Station, and the Compact Muon Solenoid [5], an LHC experiment, have successfully evaluated PanDA and are pursuing its adoption. In this paper, a description of the new program of work to develop a generic version of PanDA will be given, as well as the progress in extending PanDA's capabilities to support supercomputers and clouds and to leverage intelligent networking. PanDA has demonstrated at a very large scale the value of automated dynamic brokering of diverse workloads across distributed computing resources. The next generation of PanDA will allow other data-intensive sciences and a wider exascale community employing a variety of computing platforms to benefit from ATLAS' experience and proven tools.

  2. Peroxyacetyl nitrate (PAN) measurements at a remote site in New Mexico

    SciTech Connect

    Prestbo, E. ); Gaffney, J.S. )

    1988-09-01

    Photochemical oxidants are not limited to the criteria pollutant, ozone. Peroxyactyl nitrate (PAN) is probably one of the better known non-criteria oxidants. PAN was originally referred to as compound X, as it caused a unique type of plant damage to numerous crops in southern California. PAN was associated with Los Angeles photochemical smog and ozone in the late 1950s and 60s. It should not be confused with X-agent which has also been associated with photochemical oxidants. PAN has been found to be an important means of transporting NOx in remote regions. This is due to its rather long atmospheric lifetime. It reacts slowly with OH radical, is photochemically stable, and has a low water solubility. Its principal loss is due to unimolecular decomposition. The authors have been making ozone, NO, NO{sup 2}, and PAN measurements at a remote site near Los Alamos, New Mexico for an extended period of time. An automated gas chromatograph equipped with an electron capture detector is used to make the PAN measurements. Diffusion tubes with PAN/n-tridecane solutions are used to calibrate the instrument. Typical PAN data obtained at the sight are presented. The collected PAN and oxidant data are examined, and have been modeled to determine the possible concentrations of peracetic acid and methyl hydroperoxide in remote air. These studies are discussed in light of their possible implications for peroxide contributions to environmental impacts and aqueous chemistry reactions.

  3. In situ evaporation of lithium for LEVIS ion source

    SciTech Connect

    Gerber, B.; Lopez, M.; Lamppa, K.; Stearns, W.; Bieg, K.

    1994-05-01

    This report describes the In Situ evaporation of pure lithium on the anode of PBFA II which then can be evaporated and ionized by Laser Evaporation and Ionization Source (LEVIS). Included in this report are the necessary calculations, light laboratory experiments and details of the hardware for PBFA II. This report gives all the details of In Situ evaporation for PBFA II so when a decision is made to provide an active lithium source for PBFA II, it can be fielded in a minimum of time.

  4. Dynamics of a Complete Wetting Liquid Under Evaporation

    NASA Astrophysics Data System (ADS)

    Pham, C.-T.; Lequeux, F.; Limat, L.

    We describe a simple model of a contact line under purely diffusive evaporation and complete wetting condition taking into account the divergent nature of evaporative flux near the contact line as proposed by Deegan et al. [Nature 389:827, 1997] by using electrostatic analogy. We show the existence of a precursor film at the edge of the liquid and generalize Tanner's law accounting for evaporative effects. We apply this model to the problem of evaporation of a liquid droplet and partly recover the dynamics of spreading and retraction found in experiments [Poulard et al., Langmuir 21:8226-8233, 2005].

  5. Evaporation of liquid droplets from a surface of anodized aluminum

    NASA Astrophysics Data System (ADS)

    Kuznetsov, G. V.; Feoktistov, D. V.; Orlova, E. G.

    2016-01-01

    The results of study of evaporation of water droplets and NaCl salt solution from a solid substrate made of anodized aluminum are presented in this paper. The experiment provides the parameters describing the droplet profile: contact spot diameter, contact angle, and droplet height. The specific rate of evaporation was calculated from the experimental data. The water droplets or brine droplets with concentration up to 9.1 % demonstrate evaporation with the pinning mode for the contact line. When the salt concentration in the brine is taken up to 16.7 %, the droplet spreading mode was observed. Two stages of droplet evaporation are distinguished as a function of phase transition rate.

  6. Evaporative cooling of antiprotons for the production of trappable antihydrogen

    SciTech Connect

    Silveira, D. M.; Cesar, C. L.; Andresen, G. B.; Bowe, P. D.; Hangst, J. S.; Ashkezari, M. D.; Hayden, M. E.; Baquero-Ruiz, M.; Chapman, S.; Fajans, J.; Povilus, A.; So, C.; Wurtele, J. S.; Bertsche, W.; Butler, E.; Charlton, M.; Madsen, N.; Werf, D. P. van der; Friesen, T.; Hydomako, R.; and others

    2013-03-19

    We describe the implementation of evaporative cooling of charged particles in the ALPHA apparatus. Forced evaporation has been applied to cold samples of antiprotons held in Malmberg-Penning traps. Temperatures on the order of 10 K were obtained, while retaining a significant fraction of the initial number of particles. We have developed a model for the evaporation process based on simple rate equations and applied it succesfully to the experimental data. We have also observed radial re-distribution of the clouds following evaporation, explained by simple conservation laws. We discuss the relevance of this technique for the recent demonstration of magnetic trapping of antihydrogen.

  7. Electron beam assisted field evaporation of insulating nanowires/tubes

    NASA Astrophysics Data System (ADS)

    Blanchard, N. P.; Niguès, A.; Choueib, M.; Perisanu, S.; Ayari, A.; Poncharal, P.; Purcell, S. T.; Siria, A.; Vincent, P.

    2015-05-01

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  8. Evaporation of Sunscreen Films: How the UV Protection Properties Change.

    PubMed

    Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-06-01

    We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens. PMID:27167054

  9. Clustered field evaporation of metallic glasses in atom probe tomography.

    PubMed

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses.

  10. Optimized evaporation technique for leachate treatment: Small scale implementation.

    PubMed

    Benyoucef, Fatima; Makan, Abdelhadi; El Ghmari, Abderrahman; Ouatmane, Aziz

    2016-04-01

    This paper introduces an optimized evaporation technique for leachate treatment. For this purpose and in order to study the feasibility and measure the effectiveness of the forced evaporation, three cuboidal steel tubs were designed and implemented. The first control-tub was installed at the ground level to monitor natural evaporation. Similarly, the second and the third tub, models under investigation, were installed respectively at the ground level (equipped-tub 1) and out of the ground level (equipped-tub 2), and provided with special equipment to accelerate the evaporation process. The obtained results showed that the evaporation rate at the equipped-tubs was much accelerated with respect to the control-tub. It was accelerated five times in the winter period, where the evaporation rate was increased from a value of 0.37 mm/day to reach a value of 1.50 mm/day. In the summer period, the evaporation rate was accelerated more than three times and it increased from a value of 3.06 mm/day to reach a value of 10.25 mm/day. Overall, the optimized evaporation technique can be applied effectively either under electric or solar energy supply, and will accelerate the evaporation rate from three to five times whatever the season temperature.

  11. Evaporation of Sunscreen Films: How the UV Protection Properties Change.

    PubMed

    Binks, Bernard P; Brown, Jonathan; Fletcher, Paul D I; Johnson, Andrew J; Marinopoulos, Ioannis; Crowther, Jonathan M; Thompson, Michael A

    2016-06-01

    We have investigated the evaporation of thin sunscreen films and how the light absorption and the derived sun protection factor (SPF) change. For films consisting of solutions of common UV filters in propylene glycol (PG) as solvent, we show how evaporation generally causes three effects. First, the film area can decrease by dewetting leading to a transient increase in the average film thickness. Second, the film thins by evaporative loss of the solvent. Third, precipitation of the UV filter occurs when solvent loss causes the solubility limit to be reached. These evaporation-induced changes cause the UV absorbance of the film to decrease with resultant loss of SPF over the time scale of the evaporation. We derive an approximate model which accounts semiquantitatively for the variation of SPF with evaporation. Experimental results for solutions of different UV filters on quartz, different skin mimicking substrates, films with added nanoparticles, films with an added polymer and films with fast-evaporating decane as solvent (instead of slow evaporating PG) are discussed and compared with model calculations. Addition of either nanoparticles or polymer suppress film dewetting. Overall, it is hoped that the understanding gained about the mechanisms whereby film evaporation affects the SPF will provide useful guidance for the formulation of more effective sunscreens.

  12. Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis.

    PubMed

    Dash, Susmita; Garimella, Suresh V

    2013-08-27

    We report on experiments of droplet evaporation on a structured superhydrophobic surface that displays very high contact angle (CA ∼ 160 deg), and negligible contact angle hysteresis (<1 deg). The droplet evaporation is observed to occur in a constant-contact-angle mode, with contact radius shrinking for almost the entire duration of evaporation. Experiments conducted on Teflon-coated smooth surface (CA ∼ 120 deg) as a baseline also support an evaporation process that is dominated by a constant-contact-angle mode. The experimental results are compared with an isothermal diffusion model for droplet evaporation from the literature. Good agreement is observed for the Teflon-coated smooth surface between the analytical expression and experimental results in terms of the total time for evaporation, transient volume, contact angle, and contact radius. However, for the structured superhydrophobic surface, the experiments indicate that the time taken for complete evaporation of the droplet is greater than the predicted time, across all droplet volumes. This disparity is attributed primarily to the evaporative cooling at the droplet interface due to the high aspect ratio of the droplet and also the lower effective thermal conductivity of the substrate due to the presence of air gaps. This hypothesis is verified by numerically evaluating the temperature distribution along the droplet interface. We propose a generalized relation for predicting the instantaneous volume of droplets with initial CA > 90 deg, irrespective of the mode of evaporation.

  13. Further Evaluation of an Emperical Equation for Annual Total Evaporation

    NASA Technical Reports Server (NTRS)

    Choudhury, Bhaskar J.

    1999-01-01

    An empirical equation for annual total evaporation based on annual precipitation and net radiation was found to provide evaporation within 10% of the observed values at seven locations within temperate and tropical regions, but it overestimated evaporation by 90% at one location within the tundra region. A synthesis of observations at two other locations within the tundra region gives overestimates of about 65%. A general analysis of observed precipitation, net radiation, and runoff within the tundra region shows that the empirical equation is generally biased to overestimate annual evaporation within the tundra region. A theoretical analysis is being done to understand the reason behind this bias.

  14. Electron beam assisted field evaporation of insulating nanowires/tubes

    SciTech Connect

    Blanchard, N. P. Niguès, A.; Choueib, M.; Perisanu, S.; Ayari, A.; Poncharal, P.; Purcell, S. T.; Siria, A.; Vincent, P.

    2015-05-11

    We demonstrate field evaporation of insulating materials, specifically BN nanotubes and undoped Si nanowires, assisted by a convergent electron beam. Electron irradiation leads to positive charging at the nano-object's apex and to an important increase of the local electric field thus inducing field evaporation. Experiments performed both in a transmission electron microscope and in a scanning electron microscope are presented. This technique permits the selective evaporation of individual nanowires in complex materials. Electron assisted field evaporation could be an interesting alternative or complementary to laser induced field desorption used in atom probe tomography of insulating materials.

  15. The evaporation of silicone oil in electrorheological fluids

    NASA Astrophysics Data System (ADS)

    Wang, D.; Shen, R.; Wei, S. Q.; Lu, K. Q.

    2013-11-01

    A study on the evaporation of electrorheological (ER) fluids consisting of CTO nanoparticles and silicone oil is performed. The serious evaporation observed in giant ER fluids is mainly due to the small size of particles contained. The weight losses of the ER fluids under different experimental conditions were measured and the systematic results on the relationships of type of silicone oil, weight fraction of particles, surface area and depth of samples were obtained. Those evaporating phenomena have been explained mainly based on the Kelvin equation. The understanding on the behaviors of evaporation in ER fluids should be beneficial for applying and storing the ER fluids.

  16. Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis

    NASA Astrophysics Data System (ADS)

    Cardoso, Ricardo S.; Defeo, Omar

    2004-11-01

    Biogeographic patterns in life history traits of the Pan-American sandy beach isopod Excirolana braziliensis were analyzed to determine latitudinal variations along its distribution, from tropical (9°N) to temperate (39°S) sandy beaches in Atlantic and Pacific oceans. Population features exhibited systematic geographical patterns of variation: (1) an increase in individual sizes and growth rates towards temperate beaches, following an inverse relationship with mean water temperature of the surf zone; (2) a shift from almost continuous to seasonal growth from subtropical to temperate Atlantic beaches and a positive relationship between amplitude of intra-annual growth oscillations and temperature range; (3) a linear decrease in life span and an increase in natural mortality from temperate to subtropical beaches; and (4) an increase in the individual mass-at-size (length-mass relationship) from subtropical to temperate beaches. Analyses discriminated by sex were consistent with the patterns illustrated above. Local effects of temperature and beach morphodynamics are discussed. Our results demonstrate that the population dynamics of E. braziliensis is highly plastic over latitudinal gradients, with large-scale variations in temperature and concurrent environmental variables leading to an adjustment of the phenotype-environment relationship.

  17. Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Makinen, Janice V.; Miller, Sean.; Campbell, Colin; Lynch, Bill; Vogel, Matt; Craft, Jesse; Petty, Brian

    2014-01-01

    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV.

  18. Mechanisms of solvent evaporation encapsulation processes: prediction of solvent evaporation rate.

    PubMed

    Wang, J; Schwendeman, S P

    1999-10-01

    The mechanism of organic solvent evaporation during microencapsulation and its role during microsphere hardening has been investigated. Evaporation and encapsulation studies were carried out in a jacketed beaker, filled with aqueous hardening solution, which was maintained at constant temperature and constant stirring rate in the turbulent regime. Evaporation of dissolved methylene chloride (MC), ethyl acetate (EA), and acetonitrile (ACN) was examined by the decline in organic solvent concentration in the hardening bath, which was monitored by gas chromatography. The evaporation from the bath followed first-order kinetics under dilute conditions (e.g., MC < 3 mg/mL), yielding an overall permeability coefficient, P. The value of P was theoretically related to the Kolmogorov length-scale of turbulence under conditions that favor liquid-side transport control. According to theory, factors that favored liquid-phase control (as opposed to gas-phase control) were those that favored a high Henry's law constant [i.e., elevated temperature near the normal boiling point (bp) of the organic solvent] and properties of the dissolved organic solvent (i.e., low normal bp and low aqueous solubility). These theoretical hypotheses were confirmed by (1) correlating the experimentally determined P with process variables raised to the appropriate power according to theory, r(2) = 0.95 (i.e., P approximately rotational speed, omega(3/4), impeller diameter, d (5/4), volume of hardening bath, V(-1/4), and the product of kinematic viscosity and diffusion coefficient, nu(-5/12)D (2/3)), and (2) illustrating that at constant temperature, the tendency of the evaporation system to obey liquid-side transport control follows the same order of increasing Henry's law constant (i.e., MC > EA > ACN). To establish the relationship of evaporation with microsphere hardening, the decline in MC concentration was determined in both the continuous and dispersed polymer phases during microencapsulation. By

  19. Evaporation of urea at atmospheric pressure.

    PubMed

    Bernhard, Andreas M; Czekaj, Izabela; Elsener, Martin; Wokaun, Alexander; Kröcher, Oliver

    2011-03-31

    Aqueous urea solution is widely used as reducing agent in the selective catalytic reduction of NO(x) (SCR). Because reports of urea vapor at atmospheric pressure are rare, gaseous urea is usually neglected in computational models used for designing SCR systems. In this study, urea evaporation was investigated under flow reactor conditions, and a Fourier transform infrared (FTIR) spectrum of gaseous urea was recorded at atmospheric pressure for the first time. The spectrum was compared to literature data under vacuum conditions and with theoretical spectra of monomolecular and dimeric urea in the gas phase calculated with the density functional theory (DFT) method. Comparison of the spectra indicates that urea vapor is in the monomolecular form at atmospheric pressure. The measured vapor pressure of urea agrees with the thermodynamic data obtained under vacuum reported in the literature. Our results indicate that considering gaseous urea will improve the computational modeling of urea SCR systems.

  20. Evaporative cooling of speleothem drip water

    NASA Astrophysics Data System (ADS)

    Cuthbert, M. O.; Rau, G. C.; Andersen, M. S.; Roshan, H.; Rutlidge, H.; Marjo, C. E.; Markowska, M.; Jex, C. N.; Graham, P. W.; Mariethoz, G.; Acworth, R. I.; Baker, A.

    2014-06-01

    This study describes the first use of concurrent high-precision temperature and drip rate monitoring to explore what controls the temperature of speleothem forming drip water. Two contrasting sites, one with fast transient and one with slow constant dripping, in a temperate semi-arid location (Wellington, NSW, Australia), exhibit drip water temperatures which deviate significantly from the cave air temperature. We confirm the hypothesis that evaporative cooling is the dominant, but so far unattributed, control causing significant disequilibrium between drip water and host rock/air temperatures. The amount of cooling is dependent on the drip rate, relative humidity and ventilation. Our results have implications for the interpretation of temperature-sensitive, speleothem climate proxies such as δ18O, cave microecology and the use of heat as a tracer in karst. Understanding the processes controlling the temperature of speleothem-forming cave drip waters is vital for assessing the reliability of such deposits as archives of climate change.