Science.gov

Sample records for adjusted species richness

  1. Species richness changes lag behind climate change.

    PubMed

    Menéndez, Rosa; Megías, Adela González; Hill, Jane K; Braschler, Brigitte; Willis, Stephen G; Collingham, Yvonne; Fox, Richard; Roy, David B; Thomas, Chris D

    2006-06-22

    Species-energy theory indicates that recent climate warming should have driven increases in species richness in cool and species-poor parts of the Northern Hemisphere. We confirm that the average species richness of British butterflies has increased since 1970-82, but much more slowly than predicted from changes of climate: on average, only one-third of the predicted increase has taken place. The resultant species assemblages are increasingly dominated by generalist species that were able to respond quickly. The time lag is confirmed by the successful introduction of many species to climatically suitable areas beyond their ranges. Our results imply that it may be decades or centuries before the species richness and composition of biological communities adjusts to the current climate. PMID:16777739

  2. INTRODUCED TERRESTRIAL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all introduced mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. These data are available for both 8-digit HUCs and EMAP hexagons. The data are species counts for each spatial unit.

  3. Estimating species richness: The importance of heterogeneity in species detectability

    USGS Publications Warehouse

    Boulinier, T.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.; Pollock, K.H.

    1998-01-01

    Estimating species richness (i.e. the actual number of species present in a given area) is a basic objective of many field studies carried out in community ecology and is also of crucial concern when dealing with the conservation and management of biodiversity. In most studies, the total number of species recorded in an area at a given time is taken as a measure of species richness. Here we use a capture-recapture approach to species richness estimation with North American Breeding Bird Survey (BBS) data in order to estimate species detectability and thus gain insight about its importance. We carried out analyses on all survey routes of four states, Arizona, Maryland, North Dakota, and Wisconsin, in two years, 1970 and 1990. These states were chosen to provide contrasting habitats, bird species composition and survey quality. We investigated the effect of state, year and observer ability on the proportions of different models selected, and on estimates of detectability and species richness. Our results indicate that model Mh, which assumes heterogeneous detection probability among species, is frequently appropriate for estimating species richness from BBS data. Species detectability varied among states and was higher for the more skilled observers. These results emphasize the need to take into account potential heterogeneities in detectability among species in studies of factors affecting species richness.

  4. NATIVE TERRESTRIAL ANIMAL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all native mammals, birds, reptiles, amphibians and butterflies in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each spatial unit.

  5. Weighted species richness outperforms species richness as predictor of biotic resistance.

    PubMed

    Henriksson, Anna; Yu, Jun; Wardle, David A; Trygg, Johan; Englund, Göran

    2016-01-01

    The species richness hypothesis, which predicts that species-rich communities should be better at resisting invasions than species-poor communities, has been empirically tested many times and is often poorly supported. In this study, we contrast the species richness hypothesis with four alternative hypotheses with the aim of finding better descriptors of invasion resistance. These alternative hypotheses state that resistance to invasions is determined by abiotic conditions, community saturation (i.e., the number of resident species relative to the maximum number of species that can be supported), presence/absence of key species, or weighted species richness. Weighted species richness is a weighted sum of the number of species, where each species' weight describes its contribution to resistance. We tested these hypotheses using data on the success of 571 introductions of four freshwater fish species into lakes throughout Sweden, i.e., Arctic char (Salvelinus alpinus), tench (Tinca tinca), zander (Sander lucioperca), and whitefish (Coregonus lavaretus). We found that weighted species richness best predicted invasion success. The weights describing the contribution of each resident species to community resistance varied considerably in both strength and sign. Positive resistance weights, which indicate that species repel invaders, were as common as negative resistance weights, which indicate facilitative interactions. This result can be contrasted with the implicit assumption of the original species richness hypothesis, that all resident species have negative effects on invader success. We argue that this assumption is unlikely to be true in natural communities, and thus that we expect that weighted species richness is a better predictor of invader success than the actual number of resident species. PMID:27008794

  6. Topography, energy and the global distribution of bird species richness

    PubMed Central

    Davies, Richard G; Orme, C. David L; Storch, David; Olson, Valerie A; Thomas, Gavin H; Ross, Simon G; Ding, Tzung-Su; Rasmussen, Pamela C; Bennett, Peter M; Owens, Ian P.F; Blackburn, Tim M; Gaston, Kevin J

    2007-01-01

    A major goal of ecology is to determine the causes of the latitudinal gradient in global distribution of species richness. Current evidence points to either energy availability or habitat heterogeneity as the most likely environmental drivers in terrestrial systems, but their relative importance is controversial in the absence of analyses of global (rather than continental or regional) extent. Here we use data on the global distribution of extant continental and continental island bird species to test the explanatory power of energy availability and habitat heterogeneity while simultaneously addressing issues of spatial resolution, spatial autocorrelation, geometric constraints upon species' range dynamics, and the impact of human populations and historical glacial ice-cover. At the finest resolution (1°), topographical variability and temperature are identified as the most important global predictors of avian species richness in multi-predictor models. Topographical variability is most important in single-predictor models, followed by productive energy. Adjusting for null expectations based on geometric constraints on species richness improves overall model fit but has negligible impact on tests of environmental predictors. Conclusions concerning the relative importance of environmental predictors of species richness cannot be extrapolated from one biogeographic realm to others or the globe. Rather a global perspective confirms the primary importance of mountain ranges in high-energy areas. PMID:17311781

  7. Would species richness estimators change the observed species area relationship?

    NASA Astrophysics Data System (ADS)

    Borges, Paulo A. V.; Hortal, Joaquín; Gabriel, Rosalina; Homem, Nídia

    2009-01-01

    We evaluate whether the description of the species area relationship (SAR) can be improved by using richness estimates instead of observed richness values. To do this, we use three independent datasets gathered with standardized survey methods from the native laurisilva forest of the Azorean archipelago, encompassing different distributional extent and biological groups: soil epigean arthropods at eight forest fragments in Terceira Island, canopy arthropods inhabiting Juniperus brevifolia at 16 forest fragments of six different islands, and bryophytes of seven forest fragments from Terceira and Pico islands. Species richness values were estimated for each forest fragment using seven non-parametric estimators (ACE, ICE, Chao1, Chao2, Jackknife1, Jackknife2 and Bootstrap; five in the case of bryophytes). These estimates were fitted to classical log-log species-area curves and the intercept, slope and goodness of fit of these curves were compared with those obtained from the observed species richness values to determine if significant differences appear in these parameters. We hypothesized that the intercepts would be higher in the estimated data sets compared with the observed data, as estimated richness values are typically higher than observed values. We found partial support for the hypothesis - intercepts of the SAR obtained from estimated richness values were significantly higher in the case of epigean arthropods and bryophyte datasets. In contrast, the slope and goodness of fit obtained with estimated values were not significantly different from those obtained from observed species richness in all groups, although a few small differences appeared. We conclude that, although little is gained using these estimators if data come from standardized surveys, their estimations could be used to analyze macroecological relationships with non-standardized observed data, provided that survey incompleteness and/or unevenness are also taken into account.

  8. Nonparametric lower bounds for species richness and shared species richness under sampling without replacement.

    PubMed

    Chao, Anne; Lin, Chih-Wei

    2012-09-01

    A number of species richness estimators have been developed under the model that individuals (or sampling units) are sampled with replacement. However, if sampling is done without replacement so that no sampled unit can be repeatedly observed, then the traditional estimators for sampling with replacement tend to overestimate richness for relatively high-sampling fractions (ratio of sample size to the total number of sampling units) and do not converge to the true species richness when the sampling fraction approaches one. Based on abundance data or replicated incidence data, we propose a nonparametric lower bound for species richness in a single community and also a lower bound for the number of species shared by multiple communities. Our proposed lower bounds are derived under very general sampling models. They are universally valid for all types of species abundance distributions and species detection probabilities. For abundance data, individuals' detectabilities are allowed to be heterogeneous among species. For replicated incidence data, the selected sampling units (e.g., quadrats) need not be fully censused and species can be spatially aggregated. All bounds converge correctly to the true parameters when the sampling fraction approaches one. Real data sets are used for illustration. We also test the proposed bounds by using subsamples generated from large real surveys or censuses, and their performance is compared with that of some previous estimators. PMID:22348318

  9. Correlates of species richness in the largest Neotropical amphibian radiation

    PubMed Central

    Gonzalez-Voyer, A; Padial, J M; Castroviejo-Fisher, S; De La Riva, I; Vilà, C

    2011-01-01

    Although tropical environments are often considered biodiversity hotspots, it is precisely in such environments where least is known about the factors that drive species richness. Here, we use phylogenetic comparative analyses to study correlates of species richness for the largest Neotropical amphibian radiation: New World direct-developing frogs. Clade-age and species richness were nonsignficantly, negatively correlated, suggesting that clade age alone does not explain among-clade variation in species richness. A combination of ecological and morphological traits explained 65% of the variance in species richness. A more vascularized ventral skin, the ability to colonize high-altitude ranges, encompassing a large variety of vegetation types, correlated significantly with species richness, whereas larger body size was marginally correlated with species richness. Hence, whereas high-altitude ranges play a role in shaping clade diversity in the Neotropics, intrinsic factors, such as skin structures and possibly body size, might ultimately determine which clades are more speciose than others. PMID:21401771

  10. Constancy in Functional Space across a Species Richness Anomaly.

    PubMed

    Swenson, Nathan G; Weiser, Michael D; Mao, Lingfeng; Normand, Signe; Rodríguez, Miguel Ángel; Lin, Luxiang; Cao, Min; Svenning, Jens-Christian

    2016-04-01

    The relationship between large-scale gradients in species richness and functional diversity provides important information regarding the mechanisms driving patterns of biodiversity. A classic hypothesis in ecology is that strong interspecific interactions should result in an increase in the functional volume of assemblages as the species richness increases, whereas climatic constraints may result in no change in functional volume. Most research of this kind examines latitudinal gradients in species richness, but the results are likely confounded by underlying gradients in climate and phylogenetic composition. We take an alternative approach that examines functional richness across a tree species richness anomaly where species richness doubles from Europe to eastern North America. The results demonstrate that the functional richness on both continents saturates at a similar point as species richness increases and that the packing of functional space becomes tighter. Further, the species richness anomaly is driven primarily by genera unique to North America, but those genera contribute less than expected functional richness to the region, indicating a high level of redundancy with genera shared between the continents. Taken together, the results indicate that the species richness anomaly is associated with diversification within a climatically constrained trait space. More generally, the work demonstrates the power of utilizing species richness anomalies in biodiversity research, particularly when they are coupled with information regarding organismal function. PMID:27028083

  11. Productivity is a poor predictor of plant species richness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating fine-scale species richness. The true relationship was thought to be hump-shaped, with richness peaking at intermediate levels of productivity, ...

  12. Estimating bird species richness from capture and count data

    USGS Publications Warehouse

    Dawson, D.K.; Sauer, J.R.; Wood, P.A.; Berlanga, M.; Wilson, M.H.; Robbins, C.S.

    1995-01-01

    We used capture-recapture methods to estimate bird species richness from mist-net and point-count data from a study area in Campeche, Mexico. We estimated species richness separately for each survey technique for two habitats, forest and pasture, in six sampling periods. We then estimated richness based on species' detections by either technique, and estimated the proportion of species detected by each technique that are not part of the population sampled by the other technique. No consistent differences existed between richness estimates from count data and from capture data in the two habitats. In some sampling periods, over 50% of the richness estimate from one survey technique may be species that are not sampled by the other technique, suggesting that one technique may not be adequate to estimate total species richness and that comparing estimates from areas sampled by different techniques may not be valid.

  13. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    PubMed

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date. PMID:24641509

  14. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    PubMed

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  15. Patterns of infracommunity species richness in eels, Anguilla anguilla.

    PubMed

    Norton, J; Rollinson, D; Lewis, J W

    2004-06-01

    Between October 1999 and October 2001, a total of 510 European eels Anguilla anguilla were captured in 13 different samples from the rivers Thames (five locations) and Test (one location) in southern England. The relationship between parasite component community species richness (CCR) and maximum infracommunity species richness (ICRmax) compared with that previously observed in bird and mammal hosts. Specifically, the maximum number of parasite species occurring in infracommunities equalled or exceeded half the number of parasite species in the component community at that time, across a wide range of CCR values (2-9 parasite species). Furthermore, the frequency distribution of infracommunity richness (ICR) suggested that the species composition of infracommunities is probably random. These findings suggest that intestinal macroparasite infracommunities in eels are unsaturated and potentially species rich assemblages and, in these respects, share a fundamental similarity with the infracommunities of birds and mammals. PMID:15153286

  16. Detecting change in intertidal species richness on sandy beaches: calibrating across sampling designs

    NASA Astrophysics Data System (ADS)

    Schooler, Nicholas K.; Dugan, Jenifer E.; Hubbard, David M.

    2014-10-01

    Detecting changes in the biodiversity of biotic communities is fundamental to evaluating ecological responses to anthropogenic and climatic drivers at multiple scales. Species richness, the simplest measure of biodiversity, can be strongly affected by sampling design, making comparisons among results of different studies challenging. We investigated the use of extrapolative species richness estimators to address these issues in comparing species richness results from two sampling designs that differed in area sampled for intertidal macroinvertebrates on exposed sandy beaches. The area sampled by the proportional area sampling design increased with beach width (0.4 m2-3.0 m2) across our sites. The area sampled by the fixed area sampling design (3.5 m2) was independent of intertidal width. To obtain datasets for comparisons, we simultaneously used these sampling designs on nested intertidal grids at seven sandy beaches in central and southern California, USA. Observed species richness differed significantly (p ≤ 0.05) between the two sampling designs and was consistently lower (3-10 species less) for the proportional area design compared to the fixed area design (8-35 vs. 12-38 species, respectively), except at the widest beach where sampling areas were most similar (3 m2 vs. 3.5 m2). All seven non-parametric species richness estimators provided higher estimates of richness for both designs (mean = 5.4 ± 3.8 species), but only four of the richness estimators reduced differences in richness obtained by the two designs to a non-significant level (p ≥ 0.05) across the sites. The ratio of richness values (proportional area/fixed area) obtained by the two designs was strongly correlated with sampling area for observed richness and four of the seven estimators, suggesting these estimators did not uniformly correct for sampling area. When we used an extrapolation of sample-based rarefaction to adjust for sampling area, differences in species richness between sampling

  17. Species richness in the Phanerozoic: Compensating for sampling bias

    NASA Astrophysics Data System (ADS)

    Signor, Philip W., III

    1982-12-01

    Sampling biases are the greatest impediment to resolving the history of species richness of fossilizable marine invertebrates in the Phanerozoic. Actual patterns of species richness have remained uncertain because no method is available to compensate for variations in sampling intensity. Data are not obtainable which would permit application of techniques that allow direct compensation for sampling intensity, such as rarefaction, but actual patterns can be estimated with a sampling model designed to account for sampling bias. One can estimate the total species richness of a geologic period if one knows the relative sampling intensity devoted to that period, the original species-abundance distribution of all species that existed during the interval, and the number of species that existed during the Cenozoic. The model presented here is based on the assumption that the species-abundance distributions of fossilizable marine invertebrates were lognormal and that sampling was proportional to sediment area, volume, or paleontologist interest units. The model produces consistent results with different estimates of total Cenozoic species richness and sampling intensity and strongly suggests low diversity during the Paleozoic and Mesozoic, followed by a dramatic early Cenozoic increase in standing species richness. These results are consistent with Valentine's (1970) Empirical model of species richness.

  18. Global patterns and predictors of fish species richness in estuaries.

    PubMed

    Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N

    2015-09-01

    1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these

  19. Species richness, equitability, and abundance of ants in disturbed landscapes

    USGS Publications Warehouse

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2009-01-01

    Ants are used as indicators of environmental change in disturbed landscapes, often without adequate understanding of their response to disturbance. Ant communities in the southeastern United States displayed a hump-backed species richness curve against an index of landscape disturbance. Forty sites at Fort Benning, in west-central Georgia, covered a spectrum of habitat disturbance (military training and fire) in upland forest. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and warmer, more compact soils with shallower A-horizons. We sampled ground-dwelling ants with pitfall traps, and measured 15 habitat variables related to vegetation and soil. Ant species richness was greatest with a relative disturbance of 43%, but equitability was greatest with no disturbance. Ant abundance was greatest with a relative disturbance of 85%. High species richness at intermediate disturbance was associated with greater within-site spatial heterogeneity. Species richness was also associated with intermediate values of the normalized difference vegetation index (NDVI), a correlate of net primary productivity (NPP). Available NPP (the product of NDVI and the fraction of days that soil temperature exceeded 25 ??C), however, was positively correlated with species richness, though not with ant abundance. Species richness was unrelated to soil texture, total ground cover, and fire frequency. Ant species richness and equitability are potential state indicators of the soil arthropod community. Moreover, equitability can be used to monitor ecosystem change. ?? 2008 Elsevier Ltd.

  20. Human population, grasshopper and plant species richness in European countries

    NASA Astrophysics Data System (ADS)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  1. Geomorphic controls on elevational gradients of species richness.

    PubMed

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-02-16

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity. PMID:26831107

  2. Geomorphic controls on elevational gradients of species richness

    PubMed Central

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-01-01

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity. PMID:26831107

  3. Body size and species-richness in carnivores and primates.

    PubMed

    Gittleman, J L; Purvis, A

    1998-01-22

    We use complete species-level phylogenies of extant Carnivora and Primates to perform the first thorough phylogenetic tests, in mammals, of the hypothesis that small body size is associated with species-richness. Our overall results, based on comparisons between sister clades, indicate a weak tendency for lineages with smaller bodies to contain more species. The tendency is much stronger within caniform carnivores (canids, procyonids, pinnipeds, ursids and mustelids), perhaps relating to the dietary flexibility and hence lower extinction rates in small, meat-eating species. We find significant heterogeneity in the size-diversity relationship within and among carnivore families. There is no significant association between body mass and species-richness in primates or feliform carnivores. Although body size is implicated as a correlate of species-richness in mammals, much of the variation in diversity cannot be attributed to size differences. PMID:9474795

  4. Body size and species-richness in carnivores and primates.

    PubMed Central

    Gittleman, J L; Purvis, A

    1998-01-01

    We use complete species-level phylogenies of extant Carnivora and Primates to perform the first thorough phylogenetic tests, in mammals, of the hypothesis that small body size is associated with species-richness. Our overall results, based on comparisons between sister clades, indicate a weak tendency for lineages with smaller bodies to contain more species. The tendency is much stronger within caniform carnivores (canids, procyonids, pinnipeds, ursids and mustelids), perhaps relating to the dietary flexibility and hence lower extinction rates in small, meat-eating species. We find significant heterogeneity in the size-diversity relationship within and among carnivore families. There is no significant association between body mass and species-richness in primates or feliform carnivores. Although body size is implicated as a correlate of species-richness in mammals, much of the variation in diversity cannot be attributed to size differences. PMID:9474795

  5. Integrative modelling reveals mechanisms linking productivity and plant species richness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For 40 years ecologists have sought a canonical productivity-species richness relationship 48 (PRR) for ecosystems, despite continuing disagreements about expected form and 49 interpretation. Using a large global dataset of terrestrial grasslands, we consider how 50 productivity and richness relate ...

  6. Dynamics and species richness of tropical rain forests.

    PubMed Central

    Phillips, O L; Hall, P; Gentry, A H; Sawyer, S A; Vásquez, R

    1994-01-01

    We present a worldwide analysis of humid tropical forest dynamics and tree species richness. New tree mortality, recruitment, and species richness data include the most dynamic and diverse mature tropical forests known. Twenty-five sites show a strong tendency for the most species-rich forests to be dynamic and aseasonal. Mean annual tree mortality and recruitment-turnover-is the most predictive factor of species richness, implying that small-scale disturbance helps regulate tropical forest diversity. Turnover rates are also closely related to the amount of basal area turnover in mature tropical forests. Therefore the contribution of small-scale disturbance to maintaining tropical forest diversity may ultimately be driven by ecosystem productivity. PMID:11607468

  7. NATIVE FRESHWATER FISH AND MUSSEL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all native freshwater fish and freshwater mussels in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each spatial unit.

  8. THREATENED AND ENDANGERED TERRESTRIAL ANIMAL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all U.S. listed threatened and endangered mammals, birds, reptiles, and amphibians in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each sp...

  9. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species

  10. Diversification rates and species richness across the Tree of Life.

    PubMed

    Scholl, Joshua P; Wiens, John J

    2016-09-14

    Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies. PMID:27605507

  11. Species richness and morphological diversity of passerine birds

    PubMed Central

    Ricklefs, Robert E.

    2012-01-01

    The relationship between species richness and the occupation of niche space can provide insight into the processes that shape patterns of biodiversity. For example, if species interactions constrained coexistence, one might expect tendencies toward even spacing within niche space and positive relationships between diversity and total niche volume. I use morphological diversity of passerine birds as a proxy for diet, foraging maneuvers, and foraging substrates and examine the morphological space occupied by regional and local passerine avifaunas. Although independently diversified regional faunas exhibit convergent morphology, species are clustered rather than evenly distributed, the volume of the morphological space is weakly related to number of species per taxonomic family, and morphological volume is unrelated to number of species within both regional avifaunas and local assemblages. These results seemingly contradict patterns expected when species interactions constrain regional or local diversity, and they suggest a larger role for diversification, extinction, and dispersal limitation in shaping species richness. PMID:22908271

  12. Evaluating species richness: biased ecological inference results from spatial heterogeneity in species detection probabilities

    USGS Publications Warehouse

    McNew, Lance B.; Handel, Colleen M.

    2015-01-01

    Accurate estimates of species richness are necessary to test predictions of ecological theory and evaluate biodiversity for conservation purposes. However, species richness is difficult to measure in the field because some species will almost always be overlooked due to their cryptic nature or the observer's failure to perceive their cues. Common measures of species richness that assume consistent observability across species are inviting because they may require only single counts of species at survey sites. Single-visit estimation methods ignore spatial and temporal variation in species detection probabilities related to survey or site conditions that may confound estimates of species richness. We used simulated and empirical data to evaluate the bias and precision of raw species counts, the limiting forms of jackknife and Chao estimators, and multi-species occupancy models when estimating species richness to evaluate whether the choice of estimator can affect inferences about the relationships between environmental conditions and community size under variable detection processes. Four simulated scenarios with realistic and variable detection processes were considered. Results of simulations indicated that (1) raw species counts were always biased low, (2) single-visit jackknife and Chao estimators were significantly biased regardless of detection process, (3) multispecies occupancy models were more precise and generally less biased than the jackknife and Chao estimators, and (4) spatial heterogeneity resulting from the effects of a site covariate on species detection probabilities had significant impacts on the inferred relationships between species richness and a spatially explicit environmental condition. For a real dataset of bird observations in northwestern Alaska, the four estimation methods produced different estimates of local species richness, which severely affected inferences about the effects of shrubs on local avian richness. Overall, our results

  13. Drivers of species richness in European Tenebrionidae (Coleoptera)

    NASA Astrophysics Data System (ADS)

    Fattorini, Simone; Ulrich, Werner

    2012-08-01

    The species-area relationship (SAR) and the latitudinal gradient in species richness are the most widespread and best-documented patterns in ecology, yet few studies have explored how the two patterns are interrelated. We used tenebrionid beetles as a species rich invertebrate group to investigate how area, habitat heterogeneity, climate, and ecological history act together in shaping species richness across Europe. We tested the effects of various climatic gradients on tenebrionid richness, with separate analyses for endemics and non-endemics. To take into account differences in area size among geographical units, we included species-area relationships using simultaneous autoregressive models. Although area had a significant effect on richness, the signal associated with temperature is so strong that it is still evident as a major driver. Also, the effect of area was only apparent when the effect of spatial coordinates had been accounted for, which has important implications for the use of SARs to locate diversity hotspots. The influence of latitude was mainly explained by a temperature gradient. Our findings support a postglacial European colonisation mainly from glacial southern refuges. Large Mediterranean islands were also important refugial areas.

  14. Species richness at continental scales is dominated by ecological limits.

    PubMed

    Rabosky, Daniel L; Hurlbert, Allen H

    2015-05-01

    Explaining variation in species richness among provinces and other large geographic regions remains one of the most challenging problems at the intersection of ecology and evolution. Here we argue that empirical evidence supports a model whereby ecological factors associated with resource availability regulate species richness at continental scales. Any large-scale predictive model for biological diversity must explain three robust patterns in the natural world. First, species richness for evolutionary biotas is highly correlated with resource-associated surrogate variables, including area, temperature, and productivity. Second, species richness across epochal timescales is largely stationary in time. Third, the dynamics of diversity exhibit clear and predictable responses to mass extinctions, key innovations, and other perturbations. Collectively, these patterns are readily explained by a model in which species richness is regulated by diversity-dependent feedback mechanisms. We argue that many purported tests of the ecological limits hypothesis, including branching patterns in molecular phylogenies, are inherently weak and distract from these three core patterns. We have much to learn about the complex hierarchy of processes by which local ecological interactions lead to diversity dependence at the continental scale, but the empirical evidence overwhelmingly suggests that they do. PMID:25905501

  15. Tree species richness affecting fine root biomass in European forests

    NASA Astrophysics Data System (ADS)

    Finér, Leena; Domisch, Timo; Vesterdal, Lars; Dawud, Seid M.; Raulund-Rasmussen, Karsten

    2016-04-01

    Fine roots are an important factor in the forest carbon cycle, contributing significantly to below-ground biomass and soil carbon storage. Therefore it is essential to understand the role of the forest structure, indicated by tree species diversity in controlling below-ground biomass and managing the carbon pools of forest soils. We studied how tree species richness would affect fine root biomass and its distribution in the soil profile and biomass above- and below-ground allocation patterns of different tree species. Our main hypothesis was that increasing tree species richness would lead to below-ground niche differentiation and more efficient soil exploitation by the roots, resulting in a higher fine root biomass in the soil. We sampled fine roots of trees and understorey vegetation in six European forest types in Finland, Poland, Germany, Romania, Italy and Spain, representing boreal, temperate and Mediterranean forests, established within the FunDivEUROPE project for studying the effects of tree species diversity on forest functioning. After determining fine root biomasses, we identified the percentages of different tree species in the fine root samples using the near infrared reflectance spectroscopy (NIRS) method. Opposite to our hypothesis we did not find any general positive relationship between tree species richness and fine root biomass. A weak positive response found in Italy and Spain seemed to be related to dry environmental conditions during Mediterranean summers. At the Polish site where we could sample deeper soil layers (down to 40 cm), we found more tree fine roots in the deeper layers under species-rich forests, as compared to the monocultures, indicating the ability of trees to explore more resources and to increase soil carbon stocks. Tree species richness did not affect biomass allocation patterns between above- and below-ground parts of the trees.

  16. Multiscale assessment of patterns of avian species richness

    PubMed Central

    Rahbek, Carsten; Graves, Gary R.

    2001-01-01

    The search for a common cause of species richness gradients has spawned more than 100 explanatory hypotheses in just the past two decades. Despite recent conceptual advances, further refinement of the most plausible models has been stifled by the difficulty of compiling high-resolution databases at continental scales. We used a database of the geographic ranges of 2,869 species of birds breeding in South America (nearly a third of the world's living avian species) to explore the influence of climate, quadrat area, ecosystem diversity, and topography on species richness gradients at 10 spatial scales (quadrat area, ≈12,300 to ≈1,225,000 km2). Topography, precipitation, topography × latitude, ecosystem diversity, and cloud cover emerged as the most important predictors of regional variability of species richness in regression models incorporating 16 independent variables, although ranking of variables depended on spatial scale. Direct measures of ambient energy such as mean and maximum temperature were of ancillary importance. Species richness values for 1° × 1° latitude-longitude quadrats in the Andes (peaking at 845 species) were ≈30–250% greater than those recorded at equivalent latitudes in the central Amazon basin. These findings reflect the extraordinary abundance of species associated with humid montane regions at equatorial latitudes and the importance of orography in avian speciation. In a broader context, our data reinforce the hypothesis that terrestrial species richness from the equator to the poles is ultimately governed by a synergism between climate and coarse-scale topographic heterogeneity. PMID:11296292

  17. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service.

    PubMed

    Winfree, Rachael; Fox, Jeremy W; Williams, Neal M; Reilly, James R; Cariveau, Daniel P

    2015-07-01

    Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature. PMID:25959973

  18. Plant species richness and ecosystem multifunctionality in global drylands

    USGS Publications Warehouse

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  19. Plant species richness and ecosystem multifunctionality in global drylands

    PubMed Central

    Maestre, Fernando T.; Quero, José L.; Gotelli, Nicholas J.; Escudero, Adriá; Ochoa, Victoria; Delgado-Baquerizo, Manuel; García-Gómez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceição, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Romão, Roberto; Tighe, Matthew; Torres-Díaz, Cristian; Val, James; Veiga, José P.; Wang, Deli; Zaady, Eli

    2013-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report on the first global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality, and always included species richness as a predictor variable. Our results suggest that preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands. PMID:22246775

  20. Bimodality of Latitudinal Gradients in Marine Species Richness.

    PubMed

    Chaudhary, Chhaya; Saeedi, Hanieh; Costello, Mark J

    2016-09-01

    The paradigm for the latitudinal gradient in species richness is that it is unimodal with a tropical peak. For 27 published studies, and global datasets of 65 000 recent and 50 000 fossil marine species, we found that almost all datasets were significantly bimodal with a dip in species richness near the equator. The locations of mid-latitude peaks varied between taxa and were higher in the northern hemisphere where the continental shelf is greatest. Our findings support hypotheses of tropical species evolving in response to temperature variation near the edges of the tropics and available high-productivity habitat. They suggest that the equator may already be too hot for some species and that the modes may move further apart due to climate warming. PMID:27372733

  1. Environmental correlates of species richness of European springtails (Hexapoda: Collembola)

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner; Fiera, Cristina

    2009-01-01

    Our knowledge about environmental correlates of the spatial distribution of animal species stems mostly from the study of well known vertebrate and a few invertebrate taxa. The poor spatial resolution of faunistic data and undersampling prohibit detailed spatial modeling for the vast majority of arthropods. However, many such models are necessary for a comparative approach to the impact of environmental factors on the spatial distribution of species of different taxa. Here we use recent compilations of species richness of 35 European countries and larger islands and linear spatial autocorrelation modeling to infer the influence of area and environmental variables on the number of springtail (Collembola) species in Europe. We show that area, winter length and annual temperature difference are major predictors of species richness. We also detected a significant negative longitudinal gradient in the number of springtail species towards Eastern Europe that might be caused by postglacial colonization. In turn, environmental heterogeneity and vascular plant species richness did not significantly contribute to model performance. Contrary to theoretical expectations, climate and longitude corrected species-area relationships of Collembola did not significantly differ between islands and mainlands.

  2. Predictability of Stemflow in a Species-Rich Tropical Forest

    NASA Astrophysics Data System (ADS)

    Zimmermann, A.; Zimmermann, B.

    2014-12-01

    Numerous studies investigated the influence of abiotic (meteorological conditions) and biotic factors (tree characteristics) on stemflow generation. Though these studies identified the variables that influence stemflow volumes in simply structured forests, the combination of tree characteristics that allows a robust prediction of stemflow volumes in species-rich forests is not well known. For many hydrological investigations, it would be useful if at least a rough estimate of stemflow volumes can be obtained based on tree characteristics. The need for robust predictions of stemflow motivated us to investigate the relations between tree characteristics and stemflow volumes in a species-rich tropical forest located in central Panama. With a sampling setup consisting of 10 rainfall collectors, 300 throughfall samplers, and 60 stemflow collectors and cumulated data comprising 26 rain events, we derive three main findings. First, stemflow represents a minor hydrological component in the studied 1 ha forest patch (0.98 % of cumulated rainfall). Second, in the studied species-rich forest, single tree characteristics are only weakly related to stemflow volumes. The influence of multiple tree parameters (e.g. crown diameter, presence of large epiphytes, and inclination of branches) and the dependencies among these parameters require a multivariate approach to understand the generation of stemflow. Third, predicting stemflow in species-rich forests based on tree parameters is a difficult task. Although the best model can capture the variation in stemflow to some degree, a critical validation reveals that the model cannot provide robust predictions of stemflow. A reanalysis of data from previous studies in species-rich forests corroborates this finding. Based on these results we discuss several options for quantifying stemflow volumes in species-rich forests.

  3. How to describe species richness patterns for bryophyte conservation?

    PubMed

    Hespanhol, Helena; Cezón, Katia; Felicísimo, Ángel M; Muñoz, Jesús; Mateo, Rubén G

    2015-12-01

    A large amount of data for inconspicuous taxa is stored in natural history collections; however, this information is often neglected for biodiversity patterns studies. Here, we evaluate the performance of direct interpolation of museum collections data, equivalent to the traditional approach used in bryophyte conservation planning, and stacked species distribution models (S-SDMs) to produce reliable reconstructions of species richness patterns, given that differences between these methods have been insufficiently evaluated for inconspicuous taxa. Our objective was to contrast if species distribution models produce better inferences of diversity richness than simply selecting areas with the higher species numbers. As model species, we selected Iberian species of the genus Grimmia (Bryophyta), and we used four well-collected areas to compare and validate the following models: 1) four Maxent richness models, each generated without the data from one of the four areas, and a reference model created using all of the data and 2) four richness models obtained through direct spatial interpolation, each generated without the data from one area, and a reference model created with all of the data. The correlations between the partial and reference Maxent models were higher in all cases (0.45 to 0.99), whereas the correlations between the spatial interpolation models were negative and weak (-0.3 to -0.06). Our results demonstrate for the first time that S-SDMs offer a useful tool for identifying detailed richness patterns for inconspicuous taxa such as bryophytes and improving incomplete distributions by assessing the potential richness of under-surveyed areas, filling major gaps in the available data. In addition, the proposed strategy would enhance the value of the vast number of specimens housed in biological collections. PMID:27069596

  4. Genetic diversity in widespread species is not congruent with species richness in alpine plant communities.

    PubMed

    Taberlet, Pierre; Zimmermann, Niklaus E; Englisch, Thorsten; Tribsch, Andreas; Holderegger, Rolf; Alvarez, Nadir; Niklfeld, Harald; Coldea, Gheorghe; Mirek, Zbigniew; Moilanen, Atte; Ahlmer, Wolfgang; Marsan, Paolo Ajmone; Bona, Enzo; Bovio, Maurizio; Choler, Philippe; Cieślak, Elżbieta; Colli, Licia; Cristea, Vasile; Dalmas, Jean-Pierre; Frajman, Božo; Garraud, Luc; Gaudeul, Myriam; Gielly, Ludovic; Gutermann, Walter; Jogan, Nejc; Kagalo, Alexander A; Korbecka, Grażyna; Küpfer, Philippe; Lequette, Benoît; Letz, Dominik Roman; Manel, Stéphanie; Mansion, Guilhem; Marhold, Karol; Martini, Fabrizio; Negrini, Riccardo; Niño, Fernando; Paun, Ovidiu; Pellecchia, Marco; Perico, Giovanni; Piękoś-Mirkowa, Halina; Prosser, Filippo; Puşcaş, Mihai; Ronikier, Michał; Scheuerer, Martin; Schneeweiss, Gerald M; Schönswetter, Peter; Schratt-Ehrendorfer, Luise; Schüpfer, Fanny; Selvaggi, Alberto; Steinmann, Katharina; Thiel-Egenter, Conny; van Loo, Marcela; Winkler, Manuela; Wohlgemuth, Thomas; Wraber, Tone; Gugerli, Felix; Vellend, Mark

    2012-12-01

    The Convention on Biological Diversity (CBD) aims at the conservation of all three levels of biodiversity, that is, ecosystems, species and genes. Genetic diversity represents evolutionary potential and is important for ecosystem functioning. Unfortunately, genetic diversity in natural populations is hardly considered in conservation strategies because it is difficult to measure and has been hypothesised to co-vary with species richness. This means that species richness is taken as a surrogate of genetic diversity in conservation planning, though their relationship has not been properly evaluated. We tested whether the genetic and species levels of biodiversity co-vary, using a large-scale and multi-species approach. We chose the high-mountain flora of the Alps and the Carpathians as study systems and demonstrate that species richness and genetic diversity are not correlated. Species richness thus cannot act as a surrogate for genetic diversity. Our results have important consequences for implementing the CBD when designing conservation strategies. PMID:23006492

  5. Patterns of Freshwater Species Richness, Endemism, and Vulnerability in California.

    PubMed

    Howard, Jeanette K; Klausmeyer, Kirk R; Fesenmyer, Kurt A; Furnish, Joseph; Gardali, Thomas; Grantham, Ted; Katz, Jacob V E; Kupferberg, Sarah; McIntyre, Patrick; Moyle, Peter B; Ode, Peter R; Peek, Ryan; Quiñones, Rebecca M; Rehn, Andrew C; Santos, Nick; Schoenig, Steve; Serpa, Larry; Shedd, Jackson D; Slusark, Joe; Viers, Joshua H; Wright, Amber; Morrison, Scott A

    2015-01-01

    The ranges and abundances of species that depend on freshwater habitats are declining worldwide. Efforts to counteract those trends are often hampered by a lack of information about species distribution and conservation status and are often strongly biased toward a few well-studied groups. We identified the 3,906 vascular plants, macroinvertebrates, and vertebrates native to California, USA, that depend on fresh water for at least one stage of their life history. We evaluated the conservation status for these taxa using existing government and non-governmental organization assessments (e.g., endangered species act, NatureServe), created a spatial database of locality observations or distribution information from ~400 data sources, and mapped patterns of richness, endemism, and vulnerability. Although nearly half of all taxa with conservation status (n = 1,939) are vulnerable to extinction, only 114 (6%) of those vulnerable taxa have a legal mandate for protection in the form of formal inclusion on a state or federal endangered species list. Endemic taxa are at greater risk than non-endemics, with 90% of the 927 endemic taxa vulnerable to extinction. Records with spatial data were available for a total of 2,276 species (61%). The patterns of species richness differ depending on the taxonomic group analyzed, but are similar across taxonomic level. No particular taxonomic group represents an umbrella for all species, but hotspots of high richness for listed species cover 40% of the hotspots for all other species and 58% of the hotspots for vulnerable freshwater species. By mapping freshwater species hotspots we show locations that represent the top priority for conservation action in the state. This study identifies opportunities to fill gaps in the evaluation of conservation status for freshwater taxa in California, to address the lack of occurrence information for nearly 40% of freshwater taxa and nearly 40% of watersheds in the state, and to implement adequate

  6. Patterns of Freshwater Species Richness, Endemism, and Vulnerability in California

    PubMed Central

    Furnish, Joseph; Gardali, Thomas; Grantham, Ted; Katz, Jacob V. E.; Kupferberg, Sarah; McIntyre, Patrick; Moyle, Peter B.; Ode, Peter R.; Peek, Ryan; Quiñones, Rebecca M.; Rehn, Andrew C.; Santos, Nick; Schoenig, Steve; Serpa, Larry; Shedd, Jackson D.; Slusark, Joe; Viers, Joshua H.; Wright, Amber; Morrison, Scott A.

    2015-01-01

    The ranges and abundances of species that depend on freshwater habitats are declining worldwide. Efforts to counteract those trends are often hampered by a lack of information about species distribution and conservation status and are often strongly biased toward a few well-studied groups. We identified the 3,906 vascular plants, macroinvertebrates, and vertebrates native to California, USA, that depend on fresh water for at least one stage of their life history. We evaluated the conservation status for these taxa using existing government and non-governmental organization assessments (e.g., endangered species act, NatureServe), created a spatial database of locality observations or distribution information from ~400 data sources, and mapped patterns of richness, endemism, and vulnerability. Although nearly half of all taxa with conservation status (n = 1,939) are vulnerable to extinction, only 114 (6%) of those vulnerable taxa have a legal mandate for protection in the form of formal inclusion on a state or federal endangered species list. Endemic taxa are at greater risk than non-endemics, with 90% of the 927 endemic taxa vulnerable to extinction. Records with spatial data were available for a total of 2,276 species (61%). The patterns of species richness differ depending on the taxonomic group analyzed, but are similar across taxonomic level. No particular taxonomic group represents an umbrella for all species, but hotspots of high richness for listed species cover 40% of the hotspots for all other species and 58% of the hotspots for vulnerable freshwater species. By mapping freshwater species hotspots we show locations that represent the top priority for conservation action in the state. This study identifies opportunities to fill gaps in the evaluation of conservation status for freshwater taxa in California, to address the lack of occurrence information for nearly 40% of freshwater taxa and nearly 40% of watersheds in the state, and to implement adequate

  7. Productivity Is a Poor Predictor of Plant Species Richness.

    SciTech Connect

    Peter B. Adler; et al.

    2011-09-22

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.

  8. Analysis of the parasitic copepod species richness among Mediterranean fish

    NASA Astrophysics Data System (ADS)

    Raibaut, André; Combes, Claude; Benoit, Françoise

    1998-06-01

    The Mediterranean ichthyofauna is composed of 652 species belonging to 405 genera and 117 families. Among these, 182 were studied for their parasitic copepods. The analysis of all the works conducted on these crustacea yielded 226 species distributed in 88 genera and 20 families. For each fish species we have established a file providing the species name of the fish, its family, its geographical distribution within the Mediterranean and some of its bio-ecological characteristics. Within each file, all the parasitic copepod species reported on each host species were listed. This allowed to know the species richness (SR) of these hosts. We thus produced 182 files within which 226 copepod species are distributed. A program was created under the Hypercard software, in order to analyse our data. Two parameters were studied. The first one is the mean species richness (MSR), which corresponds to the mean of the different SR found on the different host species. The second is the parasite-host ratio (P/H), which is the ratio of the number of copepod species by the number of host species. These parameters are calculated by our program for all the 182 species of Mediterranean fishes retained in our investigation, on the first hand, and, on the second hand, for one particular group of fish species. We used the following variables to investigate their correlations with copepod species richness: taxonomy—fish families, genera and species; biometry—maximal size of the adult fish; eco-ethology—mode of life (benthic, pelagic or nectonic), displacements (sedentary, migratory with environmental change, or migratory without environmental change), behaviour (solitary or gregarious). Other variables (colour, food, reproduction, abundance, distribution area) were also analysed but did not reveal any clear correlation. Providing that our study does not rely on quantitative (prevalence, intensity) but qualitative basis our aim was only to reveal some tendencies. These tendencies are

  9. Climate patterns as predictors of amphibians species richness and indicators of potential stress

    USGS Publications Warehouse

    Battaglin, W.; Hay, L.; McCabe, G.; Nanjappa, P.; Gallant, A.L.

    2005-01-01

    Amphibians occupy a range of habitats throughout the world, but species richness is greatest in regions with moist, warm climates. We modeled the statistical relations of anuran and urodele species richness with mean annual climate for the conterminous United States, and compared the strength of these relations at national and regional levels. Model variables were calculated for county and subcounty mapping units, and included 40-year (1960-1999) annual mean and mean annual climate statistics, mapping unit average elevation, mapping unit land area, and estimates of anuran and urodele species richness. Climate data were derived from more than 7,500 first-order and cooperative meteorological stations and were interpolated to the mapping units using multiple linear regression models. Anuran and urodele species richness were calculated from the United States Geological Survey's Amphibian Research and Monitoring Initiative (ARMI) National Atlas for Amphibian Distributions. The national multivariate linear regression (MLR) model of anuran species richness had an adjusted coefficient of determination (R2) value of 0.64 and the national MLR model for urodele species richness had an R2 value of 0.45. Stratifying the United States by coarse-resolution ecological regions provided models for anUrans that ranged in R2 values from 0.15 to 0.78. Regional models for urodeles had R2 values. ranging from 0.27 to 0.74. In general, regional models for anurans were more strongly influenced by temperature variables, whereas precipitation variables had a larger influence on urodele models.

  10. Helminth parasite species richness in rodents from Southeast Asia: role of host species and habitat.

    PubMed

    Palmeirim, Marta; Bordes, Frédéric; Chaisiri, Kittipong; Siribat, Praphaiphat; Ribas, Alexis; Morand, Serge

    2014-10-01

    Southeast Asia is a biodiversity hotspot that harbours many species of rodents, including some that live in close contact with humans. They host helminth parasites, some of which are of zoonotic importance. It is therefore important to understand the factors that influence the richness of the helminths parasitizing rodents. The specific objectives of this study were to evaluate rodent species as a factor determining helminth richness in rodent assemblages, to identify the major rodent helminth reservoir species and to explore the influence of habitat on helminth richness. We estimated helminth species richness using a large dataset of 18 rodent species (1,651 individuals) originating from Southeast Asia and screened for helminth parasites. The use of an unbiased estimator shows that the helminth species richness varies substantially among rodent species and across habitats. We confirmed this pattern by investigating the number of helminth species per individual rodent in all rodent species, and specifically in the two mitochondrial lineages Rattus tanezumi and R. tanezumi R3, which were captured in all habitats. PMID:25082015

  11. Grassland invader responses to realistic changes in native species richness.

    PubMed

    Rinella, Matthew J; Pokorny, Monica L; Rekaya, Romdhane

    2007-09-01

    The importance of species richness for repelling exotic plant invasions varies from ecosystem to ecosystem. Thus, in order to prioritize conservation objectives, it is critical to identify those ecosystems where decreasing richness will most greatly magnify invasion risks. Our goal was to determine if invasion risks greatly increase in response to common reductions in grassland species richness. We imposed treatments that mimic management-induced reductions in grassland species richness (i.e., removal of shallow- and/or deep-rooted forbs and/or grasses and/or cryptogam layers). Then we introduced and monitored the performance of a notorious invasive species (i.e., Centaurea maculosa). We found that, on a per-gram-of-biomass basis, each resident plant group similarly suppressed invader growth. Hence, with respect to preventing C. maculosa invasions, maintaining overall productivity is probably more important than maintaining the productivity of particular plant groups or species. But at the sites we studied, all plant groups may be needed to maintain overall productivity because removing forbs decreased overall productivity in two of three years. Alternatively, removing forbs increased productivity in another year, and this led us to posit that removing forbs may inflate the temporal productivity variance as opposed to greatly affecting time-averaged productivity. In either case, overall productivity responses to single plant group removals were inconsistent and fairly modest, and only when all plant groups were removed did C. maculosa growth increase substantially over a no-removal treatment. As such, it seems that intense disturbances (e.g., prolonged drought, overgrazing) that deplete multiple plant groups may often be a prerequisite for C. maculosa invasion. PMID:17913143

  12. Productivity is a poor predictor of plant species richness

    USGS Publications Warehouse

    Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Grace, James B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Calabrese, Laura B.; Chu, Cheng-Jin; Cleland, Elsa E.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Frater, Paul; Gasarch, Eve I.; Gruner, Daneil S.; Hagenah, Nicole; Lambers, Janneke Hille Ris; Humphries, Hope; Jin, Virginia L.; Kay, Adam D.; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; Orrock, John L.; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Wang, Gang; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity an

  13. Habitat Suitability Index Models: Wildlife Species Richness in Shelterbelts

    USGS Publications Warehouse

    Schroeder, Richard L.

    1986-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model for evaluating potential species richness in shelterbelts. The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  14. Plant species richness increases phosphatase activities in an experimental grassland

    NASA Astrophysics Data System (ADS)

    Hacker, Nina; Wilcke, Wolfgang; Oelmann, Yvonne

    2014-05-01

    Plant species richness has been shown to increase aboveground nutrient uptake requiring the mobilization of soil nutrient pools. For phosphorus (P) the underlying mechanisms for increased P release in soil under highly diverse grassland mixtures remain obscure because aboveground P storage and concentrations of inorganic and organic P in soil solution and differently reactive soil P pools are unrelated (Oelmann et al. 2011). The need of plants and soil microorganisms for P can increase the exudation of enzymes hydrolyzing organically bound P (phosphatases) which might represent an important release mechanism of inorganic P in a competitive environment such as highly diverse grassland mixtures. Our objectives were to test the effects of i) plant functional groups (legumes, grasses, non-leguminous tall and small herbs), and of (ii) plant species richness on microbial P (Pmic) and phosphatase activities in soil. In autumn 2013, we measured Pmic and alkaline phosphomonoesterase and phosphodiesterase activities in soil of 80 grassland mixtures comprising different community compositions and species richness (1, 2, 4, 8, 16, 60) in the Jena Experiment. In general, Pmic and enzyme activities were correlated (r = 0.59 and 0.46 for phosphomonoesterase and phosphodiesterase activities, respectively; p

  15. Wildlife species richness in shelterbelts: test of a habitat model

    USGS Publications Warehouse

    Schroeder, Richard L.; Cable, Ted T.; Haire, Sandra L.

    1992-01-01

    Shelterbelts are human-made habitats consisting of rows of shrubs and trees planted either in fields or on the windward side of farmstead dwellings. Shelterbelts provide wooded habitat for a large variety of birds and other wildlife. A model to predict wildlife species richness in shelterbelts (Schroeder 1986) was published as part of the U.S. Fish and Wildlife Service Habitat Suitability Index (HSI) model series (Schamberger et al. 1982). HSI models have been used extensively by wildlife managers and land use planners to assess habitat quality. Several HSI models have become the focus of a test program that includes analysis of field data for corroboration, refutation, or modification of model hypotheses. Previous tests of HSI models focused either on single species (e.g., Cook and Irwin 1985, Morton et al. 1989, Schroeder 1990) or examined portions of HSI models, such as the relationship between cavity abundance and tree diameter (Allen and Corn 1990). The shelterbelt model, however, assesses habitat value at the community level. The effects of habitat characteristics, area, and perimeter on diversity and abundance of bird and mammal species in shelterbelts were first studied by Yahner (1983a, b). Johnson and Beck (1988) confirmed the importance of shelterbelts to wildlife and identified area, perimeter, and diversity and complexity of vegetation as key measurements of habitat quality. The shelterbelt model incorporates both specific habitat variables and larger scale parameters, such as area and configuration, to predict wildlife species richness. This shift in perspective comes at a time of increasing interest in conservation and planning beyond the species levels (e.g., Graul and Miller 1984, Hutto et al. 1987, Schroeder 1987: 26). We report results of a 3-year study of spatial and vegetative parameters and their relationship to breeding bird species richness (BSR) in 34 Kansas shelterbelts. Our objectives were to test the hypothesis presented in the original

  16. Effects of urbanization on carnivore species distribution and richness

    USGS Publications Warehouse

    Ordenana, Miguel A.; Crooks, Kevin R.; Boydston, Erin E.; Fisher, Robert N.; Lyren, Lisa M.; Siudyla, Shalene; Haas, Christopher D.; Harris, Sierra; Hathaway, Stacie A.; Turschak, Greta M.; Miles, A. Keith; Van Vuren, Dirk H.

    2010-01-01

    Urban development can have multiple effects on mammalian carnivore communities. We conducted a meta-analysis of 7,929 photographs from 217 localities in 11 camera-trap studies across coastal southern California to describe habitat use and determine the effects of urban proximity (distance to urban edge) and intensity (percentage of area urbanized) on carnivore occurrence and species richness in natural habitats close to the urban boundary. Coyotes (Canis latrans) and bobcats (Lynx rufus) were distributed widely across the region. Domestic dogs (Canis lupus familiaris), striped skunks (Mephitis mephitis), raccoons (Procyon lotor), gray foxes (Urocyon cinereoargenteus), mountain lions (Puma concolor), and Virginia opossums (Didelphis virginiana) were detected less frequently, and long-tailed weasels (Mustela frenata), American badgers (Taxidea taxus), western spotted skunks (Spilogale gracilis), and domestic cats (Felis catus) were detected rarely. Habitat use generally reflected availability for most species. Coyote and raccoon occurrence increased with both proximity to and intensity of urbanization, whereas bobcat, gray fox, and mountain lion occurrence decreased with urban proximity and intensity. Domestic dogs and Virginia opossums exhibited positive and weak negative relationships, respectively, with urban intensity but were unaffected by urban proximity. Striped skunk occurrence increased with urban proximity but decreased with urban intensity. Native species richness was negatively associated with urban intensity but not urban proximity, probably because of the stronger negative response of individual species to urban intensity.

  17. Integrative modelling reveals mechanisms linking productivity and plant species richness

    NASA Astrophysics Data System (ADS)

    Grace, James B.; Anderson, T. Michael; Seabloom, Eric W.; Borer, Elizabeth T.; Adler, Peter B.; Harpole, W. Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M.; Pärtel, Meelis; Bakker, Jonathan D.; Buckley, Yvonne M.; Crawley, Michael J.; Damschen, Ellen I.; Davies, Kendi F.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hector, Andy; Knops, Johannes M. H.; MacDougall, Andrew S.; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Smith, Melinda D.

    2016-01-01

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.

  18. Integrative modelling reveals mechanisms linking productivity and plant species richness.

    PubMed

    Grace, James B; Anderson, T Michael; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M; Pärtel, Meelis; Bakker, Jonathan D; Buckley, Yvonne M; Crawley, Michael J; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hector, Andy; Knops, Johannes M H; MacDougall, Andrew S; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Smith, Melinda D

    2016-01-21

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems. PMID:26760203

  19. Does plant species richness guarantee the resilience of local medical systems? A perspective from utilitarian redundancy.

    PubMed

    Santoro, Flávia Rosa; Ferreira Júnior, Washington Soares; Araújo, Thiago Antônio de Souza; Ladio, Ana Haydée; Albuquerque, Ulysses Paulino

    2015-01-01

    Resilience is related to the ability of a system to adjust to disturbances. The Utilitarian Redundancy Model has emerged as a tool for investigating the resilience of local medical systems. The model determines the use of species richness for the same therapeutic function as a facilitator of the maintenance of these systems. However, predictions generated from this model have not yet been tested, and a lack of variables exists for deeper analyses of resilience. This study aims to address gaps in the Utilitarian Redundancy Model and to investigate the resilience of two medical systems in the Brazilian semi-arid zone. As a local illness is not always perceived in the same way that biomedicine recognizes, the term "therapeutic targets" is used for perceived illnesses. Semi-structured interviews with local experts were conducted using the free-listing technique to collect data on known medicinal plants, usage preferences, use of redundant species, characteristics of therapeutic targets, and the perceived severity for each target. Additionally, participatory workshops were conducted to determine the frequency of targets. The medical systems showed high species richness but low levels of species redundancy. However, if redundancy was present, it was the primary factor responsible for the maintenance of system functions. Species richness was positively associated with therapeutic target frequencies and negatively related to target severity. Moreover, information about redundant species seems to be largely idiosyncratic; this finding raises questions about the importance of redundancy for resilience. We stress the Utilitarian Redundancy Model as an interesting tool to be used in studies of resilience, but we emphasize that it must consider the distribution of redundancy in terms of the treatment of important illnesses and the sharing of information. This study has identified aspects of the higher and lower vulnerabilities of medical systems, adding variables that should be

  20. Does Plant Species Richness Guarantee the Resilience of Local Medical Systems? A Perspective from Utilitarian Redundancy

    PubMed Central

    Santoro, Flávia Rosa

    2015-01-01

    Resilience is related to the ability of a system to adjust to disturbances. The Utilitarian Redundancy Model has emerged as a tool for investigating the resilience of local medical systems. The model determines the use of species richness for the same therapeutic function as a facilitator of the maintenance of these systems. However, predictions generated from this model have not yet been tested, and a lack of variables exists for deeper analyses of resilience. This study aims to address gaps in the Utilitarian Redundancy Model and to investigate the resilience of two medical systems in the Brazilian semi-arid zone. As a local illness is not always perceived in the same way that biomedicine recognizes, the term “therapeutic targets” is used for perceived illnesses. Semi-structured interviews with local experts were conducted using the free-listing technique to collect data on known medicinal plants, usage preferences, use of redundant species, characteristics of therapeutic targets, and the perceived severity for each target. Additionally, participatory workshops were conducted to determine the frequency of targets. The medical systems showed high species richness but low levels of species redundancy. However, if redundancy was present, it was the primary factor responsible for the maintenance of system functions. Species richness was positively associated with therapeutic target frequencies and negatively related to target severity. Moreover, information about redundant species seems to be largely idiosyncratic; this finding raises questions about the importance of redundancy for resilience. We stress the Utilitarian Redundancy Model as an interesting tool to be used in studies of resilience, but we emphasize that it must consider the distribution of redundancy in terms of the treatment of important illnesses and the sharing of information. This study has identified aspects of the higher and lower vulnerabilities of medical systems, adding variables that

  1. Image Texture Predicts Avian Density and Species Richness

    PubMed Central

    Wood, Eric M.; Pidgeon, Anna M.; Radeloff, Volker C.; Keuler, Nicholas S.

    2013-01-01

    For decades, ecologists have measured habitat attributes in the field to understand and predict patterns of animal distribution and abundance. However, the scale of inference possible from field measured data is typically limited because large-scale data collection is rarely feasible. This is problematic given that conservation and management typical require data that are fine grained yet broad in extent. Recent advances in remote sensing methodology offer alternative tools for efficiently characterizing wildlife habitat across broad areas. We explored the use of remotely sensed image texture, which is a surrogate for vegetation structure, calculated from both an air photo and from a Landsat TM satellite image, compared with field-measured vegetation structure, characterized by foliage-height diversity and horizontal vegetation structure, to predict avian density and species richness within grassland, savanna, and woodland habitats at Fort McCoy Military Installation, Wisconsin, USA. Image texture calculated from the air photo best predicted density of a grassland associated species, grasshopper sparrow (Ammodramus savannarum), within grassland habitat (R2 = 0.52, p-value <0.001), and avian species richness among habitats (R2 = 0.54, p-value <0.001). Density of field sparrow (Spizella pusilla), a savanna associated species, was not particularly well captured by either field-measured or remotely sensed vegetation structure variables, but was best predicted by air photo image texture (R2 = 0.13, p-value = 0.002). Density of ovenbird (Seiurus aurocapillus), a woodland associated species, was best predicted by pixel-level satellite data (mean NDVI, R2 = 0.54, p-value <0.001). Surprisingly and interestingly, remotely sensed vegetation structure measures (i.e., image texture) were often better predictors of avian density and species richness than field-measured vegetation structure, and thus show promise as a valuable tool for mapping habitat quality

  2. Resource polyphenism increases species richness: a test of the hypothesis

    PubMed Central

    Pfennig, David W.; McGee, Matthew

    2010-01-01

    A major goal of evolutionary biology is to identify the causes of diversification and to ascertain why some evolutionary lineages are especially diverse. Evolutionary biologists have long speculated that polyphenism—where a single genome produces alternative phenotypes in response to different environmental stimuli—facilitates speciation, especially when these alternative phenotypes differ in resource or habitat use, i.e. resource polyphenism. Here, we present a series of replicated sister-group comparisons showing that fishes and amphibian clades in which resource polyphenism has evolved are more species rich, and have broader geographical ranges, than closely related clades lacking resource polyphenism. Resource polyphenism may promote diversification by facilitating each of the different stages of the speciation process (isolation, divergence, reproductive isolation) and/or by reducing a lineage's risk of extinction. Generally, resource polyphenism may play a key role in fostering diversity, and species in which resource polyphenism has evolved may be predisposed to diversify. PMID:20083634

  3. Foraminifera Species Richness, Abundance, and Diversity Research in Bolinas, California

    NASA Astrophysics Data System (ADS)

    Brunwin, N.; Ingram, Z.; Mendez, M.; Sandoval, K.

    2015-12-01

    Foraminifera are abundant, diverse, respond rapidly to environmental change, and are present in all marine and estuarine environments, making them important indicator species. A survey of occurrence and distribution of foraminifera in the Bolinas Lagoon, Marin County, California was carried out by Hedman in 1975, but no study since has focused on foraminiferal composition within this important ecosystem. In July 2015, the Careers in Science (CiS) Intern Program collected samples at 12 sites previously examined in the 1975 study. Thirty-six samples were collected from the upper few centimeters of sediment from a variety of intertidal and subtidal environments within the lagoon. Foraminifera from each sample were isolated, identified and species richness, abundance and diversity quantified. Furthermore, comparisons of faunal composition represented in our recent collection and that of Hedman's 1975 report are made.

  4. Ectomycorrhizal fungal richness declines towards the host species' range edge.

    PubMed

    Lankau, Richard A; Keymer, Daniel P

    2016-07-01

    Plant range boundaries are generally considered to reflect abiotic conditions; however, a rise in negative or decline in positive species interactions at range margins may contribute to these stable boundaries. While evidence suggests that pollinator mutualisms may decline near range boundaries, little is known about other important plant mutualisms, including microbial root symbionts. Here, we used molecular methods to characterize root-associated fungal communities in populations of two related temperate tree species from across the species' range in the eastern United States. We found that ectomycorrhizal fungal richness on plant roots declined with distance from the centre of the host species range. These patterns were not evident in nonmycorrhizal fungal communities on roots nor in fungal communities in bulk soil. Climatic and soil chemical variables could not explain these biogeographic patterns, although these abiotic gradients affected other components of the bulk soil and rhizosphere fungal community. Depauperate ectomycorrhizal fungal communities may represent an underappreciated challenge to marginal tree populations, especially as rapid climate change pushes these populations outside their current climate niche. PMID:27029467

  5. Vascular plant and vertebrate species richness in national parks of the eastern United States

    USGS Publications Warehouse

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  6. Collembola, the biological species concept and the underestimation of global species richness.

    PubMed

    Cicconardi, Francesco; Fanciulli, Pietro P; Emerson, Brent C

    2013-11-01

    Despite its ancient origin, global distribution and abundance in nearly all habitats, the class Collembola is comprised of only 8000 described species and is estimated to number no more than 50,000. Many morphologically defined species have broad geographical ranges that span continents, and recent molecular work has revealed high genetic diversity within species. However, the evolutionary significance of this genetic diversity is unknown. In this study, we sample five morphological species of the globally distributed genus Lepidocyrtus from 14 Panamanian sampling sites to characterize genetic diversity and test morphospecies against the biological species concept. Mitochondrial and nuclear DNA sequence data were analysed and a total of 58 molecular lineages revealed. Deep lineage diversification was recovered, with 30 molecular lineages estimated to have established more than 10 million years ago, and the origin almost all contemporary lineages preceding the onset of the Pleistocene (~2 Mya). Thirty-four lineages were sampled in sympatry revealing unambiguous cosegregation of mitochondrial and nuclear DNA sequence variation, consistent with biological species. Species richness within the class Collembola and the geographical structure of this diversity are substantially misrepresented components of terrestrial animal biodiversity. We speculate that global species richness of Collembola could be at least an order of magnitude greater than a previous estimate of 50,000 species. PMID:24112308

  7. Tree species richness promotes productivity in temperate forests through strong complementarity between species.

    PubMed

    Morin, Xavier; Fahse, Lorenz; Scherer-Lorenzen, Michael; Bugmann, Harald

    2011-12-01

    Understanding the link between biodiversity and ecosystem functioning (BEF) is pivotal in the context of global biodiversity loss. Yet, long-term effects have been explored only weakly, especially for forests, and no clear evidence has been found regarding the underlying mechanisms. We explore the long-term relationship between diversity and productivity using a forest succession model. Extensive simulations show that tree species richness promotes productivity in European temperate forests across a large climatic gradient, mostly through strong complementarity between species. We show that this biodiversity effect emerges because increasing species richness promotes higher diversity in shade tolerance and growth ability, which results in forests responding faster to small-scale mortality events. Our study generalises results from short-term experiments in grasslands to forest ecosystems and demonstrates that competition for light alone induces a positive effect of biodiversity on productivity, thus providing a new angle for explaining BEF relationships. PMID:21955682

  8. Application of species richness estimators for the assessment of fungal diversity.

    PubMed

    Unterseher, Martin; Schnittler, Martin; Dormann, Carsten; Sickert, Andreas

    2008-05-01

    Species richness and distribution patterns of wood-inhabiting fungi and mycetozoans (slime moulds) were investigated in the canopy of a Central European temperate mixed deciduous forest. Species richness was described with diversity indices and species-accumulation curves. Nonmetrical multidimensional scaling was used to assess fungal species composition on different tree species. Different species richness estimators were used to extrapolate species richness beyond our own data. The reliability of the abundance-based coverage estimator, Chao, Jackknife and other estimators of species richness was evaluated for mycological surveys. While the species-accumulation curve of mycetozoans came close to saturation, that of wood-inhabiting fungi was continuously rising. The Chao 2 richness estimator was considered most appropriate to predict the number of species at the investigation site if sampling were continued. Gray's predictor of species richness should be used if statements of the number of species in larger areas are required. Multivariate analysis revealed the importance of different tree species for the conservation and maintenance of fungal diversity within forests, because each tree species possessed a characteristic fungal community. The described mathematical approaches of estimating species richness possess great potential to address fungal diversity on a regional, national, and global scale. PMID:18355274

  9. Estimating the spatial and temporal distribution of species richness within Sequoia and Kings Canyon National Parks.

    PubMed

    Wathen, Steve; Thorne, James H; Holguin, Andrew; Schwartz, Mark W

    2014-01-01

    Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations. PMID:25469873

  10. Estimating the Spatial and Temporal Distribution of Species Richness within Sequoia and Kings Canyon National Parks

    PubMed Central

    Wathen, Steve; Thorne, James H.; Holguin, Andrew; Schwartz, Mark W.

    2014-01-01

    Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations. PMID:25469873

  11. Effect of functional group richness and species richness in manipulated productivity diversity studies: a glasshouse pot experiment

    NASA Astrophysics Data System (ADS)

    Lanta, Vojtěch; Lepš, Jan

    2006-01-01

    Species and functional group (grasses, legumes, creeping nonlegume forbs, rosette nonlegume forbs) richness of species assemblages composed of 16 species from four functional plant groups were manipulated to evaluate the productivity-diversity relationships in a greenhouse pot experiment. Pots were filled with sand, and supplied at two levels of nutrients. The plants were grown in monocultures, two, four, eight and 16 species mixtures. Individual two, four, and eight species mixtures differed in the richness of functional groups. Although the two characteristics of biodiversity, i.e. species and functional group richness, were necessarily correlated, it was shown that it is possible to separate their effect statistically, and also test for their common effect without pronounced loss of test power. There was a pronounced increase of average aboveground biomass and a mild increase in belowground biomass with biodiversity. The effect of functional group richness was more pronounced than the effect of the number of species. By using the method of Loreau and Hector (Nature 411 (2001) 72), selection and complementarity effects were statistically separated, and the overyielding index was calculated as a ratio of the productivity of a mixture to the productivity of its most productive component (to demonstrate transgressive overyielding). Positive values of complementarity and transgressive overyielding were both found, particularly in some rich communities and under high nutrient levels. Complementarity significantly increased only with functional group richness and mainly under high nutrients in the belowground biomass. Some species, when grown in monocultures, had decreased productivity under higher nutrients, and thus were more productive in mixtures than in monocultures. It seems that those species suffered from too high nutrient levels when grown in monocultures, but not in the presence of other species, which were able to use the nutrients in high concentrations and

  12. Species richness and wood production: a positive association in Mediterranean forests.

    PubMed

    Vilà, Montserrat; Vayreda, Jordi; Comas, Lluís; Ibáñez, Joan Josep; Mata, Teresa; Obón, Berta

    2007-03-01

    A major debate in the study of biodiversity concerns its influence on ecosystem functioning. We compared whether wood production in forests was associated with tree functional group identity (i.e. deciduous, conifer or sclerophylous), tree species richness (1-> or = 5) and tree functional group richness (1-3) by comparing more than 5000 permanent plots distributed across Catalonia (NE Spain). Deciduous forests were more productive than coniferous and sclerophylous forests. Wood production increased with tree species richness. However, functional group richness increased wood production only in sclerophylous forests. When other forest structure, environmental variables and management practices were included in the analysis, tree functional group identity and species richness still remained significant, while functional species richness did not. Our survey indicates that across a regional scale, and across a broad range of environmental conditions, a significant positive association exists between local tree species richness and wood production at least in typical early successional Mediterranean-type forests. PMID:17305807

  13. Relative species richness and community completeness: avian communities and urbanization in the mid-Atlantic states

    USGS Publications Warehouse

    Cam, E.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.; Flather, C.H.

    2000-01-01

    The idea that local factors govern local richness has been dominant for years, but recent theoretical and empirical studies have stressed the influence of regional factors on local richness. Fewer species at a site could reflect not only the influence of local factors, but also a smaller regional pool. The possible dependency of local richness on the regional pool should be taken into account when addressing the influence of local factors on local richness. It is possible to account for this potential dependency by comparing relative species richness among sites, rather than species richness per se. We consider estimation of a metric permitting assessment of relative species richness in a typical situation in which not all species are detected during sampling sessions. In this situation, estimates of absolute or relative species richness need to account for variation in species detection probability if they are to be unbiased. We present a method to estimate relative species richness based on capture-recapture models. This approach involves definition of a species list from regional data, and estimation of the number of species in that list that are present at a site-year of interest. We use this approach to address the influence of urbanization on relative richness of avian communities in the Mid-Atlantic region of the United States. There is a negative relationship between relative richness and landscape variables describing the level of urban development. We believe that this metric should prove very useful for conservation and management purposes because it is based on an estimator of species richness that both accounts for potential variation in species detection probability and allows flexibility in the specification of a 'reference community.' This metric can be used to assess ecological integrity, the richness of the community of interest relative to that of the 'original' community, or to assess change since some previous time in a community.

  14. Behavioural interactions between ecosystem engineers control community species richness.

    PubMed

    Gribben, Paul E; Byers, James E; Clements, Michael; McKenzie, Louise A; Steinberg, Peter D; Wright, Jeffrey T

    2009-11-01

    Behavioural interactions between ecosystem engineers may strongly influence community structure. We tested whether an invasive ecosystem engineer, the alga Caulerpa taxifolia, indirectly facilitated community diversity by modifying the behaviour of a native ecosystem engineer, the clam Anadara trapezia, in southeastern Australia. In this study, clams in Caulerpa-invaded sediments partially unburied themselves, extending >30% of their shell surface above the sediment, providing rare, hard substrata for colonization. Consequently, clams in Caulerpa had significantly higher diversity and abundance of epibiota compared with clams in unvegetated sediments. To isolate the role of clam burial depth from direct habitat influences or differential predation by habitat, we manipulated clam burial depth, predator exposure and habitat (Caulerpa or unvegetated) in an orthogonal experiment. Burial depth overwhelmingly influenced epibiont species richness and abundance, resulting in a behaviourally mediated facilitation cascade. That Caulerpa controls epibiont communities by altering Anadara burial depths illustrates that even subtle behavioural responses of one ecosystem engineer to another can drive extensive community-wide facilitation. PMID:19702633

  15. The relationship between species richness and community biomass: the importance of environmental variables

    USGS Publications Warehouse

    Gough, L.; Grace, J.B.; Taylor, K.L.

    1994-01-01

    Several studies have used plant community biomass to predict species richness with varying success. In this study we examined the relationship between species richness and biomass for 36 marsh communities from two different watersheds. In addition, we measured several environmental variables and estimated the potential richness (the total number of species known to be able to occur in a community type) for each community. Above ground living and dead biomass combined was found to be weakly correlated with species richness (R2=0.02). Instead, a multiple regression model based on elevation (R2=0.47), salinity (R2=0.30), soil organic matter (R2=0.18), and biomass was able to explain 82% of the variance in species richness. It was found that environmental conditions could explain 89% of the variation in potential richness. Biomass had no relation to potential richness. When used as a predictor variable, potential richness was found to explain 72% of the variation in realized (observed) richness and biomass explained an addition 9% of the variance in realized richness. This finding suggests that realized richness in our system was controlled primarily by environmental regulation of potential richness and secondarily by biomass (as an indicator of competition). Further examination of the data revealed that when sites exposed to extreme environmental conditons were eliminated from the analysis, biomass became the primary predictor of realized richness and potential richness was of secondary importance. We conclude that community biomass has a limited capacity to predict species richness across a broad range of habitat conditions. Of particular importance is the inability of biomass to indicate the effect of environmental factors and evolutionary history on the potential species richness at a site.

  16. Flea (Siphonaptera) species richness in the Great Basin Desert and island biogeography theory.

    PubMed

    Bossard, Robert L

    2014-06-01

    Numbers of flea (Siphonaptera) species (flea species richness) on individual mammals should be higher on large mammals, mammals with dense populations, and mammals with large geographic ranges, if mammals are islands for fleas. I tested the first two predictions with regressions of H. J. Egoscue's trapping data on flea species richness collected from individual mammals against mammal size and population density from the literature. Mammal size and population density did not correlate with flea species richness. Mammal geographic range did, in earlier studies. The intermediate-sized (31 g), moderately dense (0.004 individuals/m(2)) Peromyscus truei (Shufeldt) had the highest richness with eight flea species on one individual. Overall, island biogeography theory does not describe the distribution of flea species on mammals in the Great Basin Desert, based on H. J. Egoscue's collections. Alternatively, epidemiological or metapopulation theories may explain flea species richness. PMID:24820569

  17. Landscape Variation in Tree Species Richness in Northern Iran Forests

    PubMed Central

    Bourque, Charles P.-A.; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area’s unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area’s digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to

  18. Landscape variation in tree species richness in northern Iran forests.

    PubMed

    Bourque, Charles P-A; Bayat, Mahmoud

    2015-01-01

    Mapping landscape variation in tree species richness (SR) is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i) three topographic variables generated directly from the area's digital terrain model; (ii) four ecophysiologically-relevant variables derived from process models or from first principles; and (iii) seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content), yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot), than by Fagus orientalis (median difference of one species). This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently general to be

  19. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  20. Increasing litter species richness reduces variability in a terrestrial decomposer system.

    PubMed

    Keith, Aidan M; Van der Wal, René; Brooker, Rob W; Osler, Graham H R; Chapman, Stephen J; Burslem, David F R P; Elston, David A

    2008-09-01

    Debate on the relationship between diversity and stability has been driven by the recognition that species loss may influence ecosystem properties and processes. We conducted a litterbag experiment in the Scottish Highlands, United Kingdom, to examine the effects of altering plant litter diversity on decomposition, microbial biomass, and microfaunal abundance. The design of treatments was fully factorial and included five species from an upland plant community (silver birch, Betula pendula; Scots' pine, Pinus sylvestris; heather, Calluna vulgaris; bilberry, Vaccinium myrtillus; wavy-hair grass, Deschampsia flexuosa); species richness ranged from one to five species. We tested the effects of litter species richness and composition on variable means, whether increasing litter species richness reduced variability in the decomposer system, and whether any richness-variability relationships were maintained over time (196 vs. 564 days). While litter species composition effects controlled variable means, we revealed reductions in variability with increasing litter species richness, even after accounting for differences between litter types. These findings suggest that higher plant species richness per se may result in more stable ecosystem processes (e.g., decomposition) and decomposer communities. Negative richness-variation relationships generally relaxed over time, presumably because properties of litter mixtures became more homogeneous. However, given that plant litter inputs continue to enter the belowground system over time, we conclude that variation in ecosystem properties may be buffered by greater litter species richness. PMID:18831186

  1. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  2. Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness".

    PubMed

    Tredennick, Andrew T; Adler, Peter B; Grace, James B; Harpole, W Stanley; Borer, Elizabeth T; Seabloom, Eric W; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Brown, Cynthia S; Buckley, Yvonne M; Chu, Chengjin; Collins, Scott L; Crawley, Michael J; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hagenah, Nicole; Hautier, Yann; Hector, Andy; Hillebrand, Helmut; Kirkman, Kevin; Knops, Johannes M H; Laungani, Ramesh; Lind, Eric M; MacDougall, Andrew S; McCulley, Rebecca L; Mitchell, Charles E; Moore, Joslin L; Morgan, John W; Orrock, John L; Peri, Pablo L; Prober, Suzanne M; Risch, Anita C; Schütz, Martin; Speziale, Karina L; Standish, Rachel J; Sullivan, Lauren L; Wardle, Glenda M; Williams, Ryan J; Yang, Louie H

    2016-01-29

    Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness. PMID:26823418

  3. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we investigate how species richness affects temporal stability of biomass production by analyzing 27 recent biodiversity experiments conducted in grassland and freshwater algal communities. We find that, in grasslands, increasing species richness stabilizes whole-community biomass pro...

  4. Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness"

    USGS Publications Warehouse

    Tredennick, Andrew T; Adler, Peter B.; Grace, James B.; Harpole, W Stanley; Borer, Elizabeth T.; Seabloom, Eric W.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Chu, Cheng-Jin; Collins, Scott L.; Crawley, Michael J.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hagenah, Nicole; Hautier, Yann; Hector, Andy; Hillebrand, Helmut; Kirkman, Kevin P.; Knops, Johannes M. H.; Laungani, Ramesh; Lind, Eric M.; MacDougall, Andrew S.; McCulley, Rebecca L.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Orrock, John L.; Peri, Pablo L.; Prober, Suzanne M.; Risch, Anita C.; Schuetz, Martin; Speziale, Karina L.; Standish, Rachel J.; Sullivan, Lauren L.; Wardle, Glenda M.; Williams, Ryan J.; Yang, Louie H.

    2016-01-01

    Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness.

  5. Plant species richness at different scales in native and exotic grasslands in Southeastern Arizona

    USGS Publications Warehouse

    McLaughlin, S.P.; Bowers, Janice E.

    2006-01-01

    Species richness in Madrean mixed-grass prairies dominated by native or exotic species in southeastern Arizona was characterized at the community and point scales using ten 1-m2 quadrats nested within each of eight 1000-m2 plots. In the 1000-m2 plots average richness was significantly higher in oak savanna (OS, 121.0 species) than in exotic grassland on mesa tops (EMT, 52.0 species), whereas native grassland on mesa slopes (NMS, 92.5 species) and native grassland on mesa tops (NMT, 77.0 species) did not differ significantly in richness from OS or EMT When richness was partitioned by life form, EMT was notably poorer than other community types in species of perennial grasses, perennial herbs, and summer annuals. In the 1-m2 quadrats, OS (21.2 species), NMS (20.9 species), and NMT (20.7 species) were significantly richer than EMT (5.9 species). Cover in 1-m2 plots was significantly higher in EMT than in NMT, NMS, or OS. Species richness at the point scale showed a unimodal relation to canopy cover, with cover accounting for 30% of the variation in number of species in 1-m2 quadrats. Competitive exclusion and allelopathy have perhaps limited species richness at the point scale in exotic grassland. There was no evidence of a species-pool effect between point and community scales, but such an effect between community and landscape scales was supported. Madrean mixed-grass prairies are landscapes with high species richness in comparison to other grassland types in North America, providing a large pool of potential colonizing species at the community scale. Beta-diversity (between communities) within the landscape of the Appleton-Whittell Research Ranch was consequently high despite a relative lack of habitat diversity.

  6. Species Richness Patterns and Water-Energy Dynamics in the Drylands of Northwest China

    PubMed Central

    Zerbe, Stefan; Abdusalih, Nurbay; Tang, Zhiyao; Ma, Ming; Yin, Linke; Mohammat, Anwar; Han, Wenxuan; Fang, Jingyun

    2013-01-01

    Dryland ecosystems are highly vulnerable to climatic and land-use changes, while the mechanisms underlying patterns of dryland species richness are still elusive. With distributions of 3637 native vascular plants, 154 mammals, and 425 birds in Xinjiang, China, we tested the water-energy dynamics hypothesis for species richness patterns in Central Asian drylands. Our results supported the water-energy dynamics hypothesis. We found that species richness of all three groups was a hump-shaped function of energy availability, but a linear function of water availability. We further found that water availability had stronger effects on plant richness, but weaker effects on vertebrate richness than energy availability. We conducted piecewise linear regressions to detect the breakpoints in the relationship between species richness and potential evapotranspiration which divided Xinjiang into low and high energy regions. The concordance between mammal and plant richness was stronger in high than in low energy regions, which was opposite to that between birds and plants. Plant richness had stronger effects than climate on mammal richness regardless of energy levels, but on bird richness only in high energy regions. The changes in the concordance between vertebrate and plant richness along the climatic gradient suggest that cautions are needed when using concordance between taxa in conservation planning. PMID:23840472

  7. Tree diversity promotes functional dissimilarity and maintains functional richness despite species loss in predator assemblages.

    PubMed

    Schuldt, Andreas; Bruelheide, Helge; Durka, Walter; Michalski, Stefan G; Purschke, Oliver; Assmann, Thorsten

    2014-02-01

    The effects of species loss on ecosystems depend on the community's functional diversity (FD). However, how FD responds to environmental changes is poorly understood. This applies particularly to higher trophic levels, which regulate many ecosystem processes and are strongly affected by human-induced environmental changes. We analyzed how functional richness (FRic), evenness (FEve), and divergence (FDiv) of important generalist predators-epigeic spiders-are affected by changes in woody plant species richness, plant phylogenetic diversity, and stand age in highly diverse subtropical forests in China. FEve and FDiv of spiders increased with plant richness and stand age. FRic remained on a constant level despite decreasing spider species richness with increasing plant species richness. Plant phylogenetic diversity had no consistent effect on spider FD. The results contrast with the negative effect of diversity on spider species richness and suggest that functional redundancy among spiders decreased with increasing plant richness through non-random species loss. Moreover, increasing functional dissimilarity within spider assemblages with increasing plant richness indicates that the abundance distribution of predators in functional trait space affects ecological functions independent of predator species richness or the available trait space. While plant diversity is generally hypothesized to positively affect predators, our results only support this hypothesis for FD-and here particularly for trait distributions within the overall functional trait space-and not for patterns in species richness. Understanding the way predator assemblages affect ecosystem functions in such highly diverse, natural ecosystems thus requires explicit consideration of FD and its relationship with species richness. PMID:24096740

  8. Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups.

    PubMed

    Xu, Haigen; Cao, Mingchang; Wu, Jun; Cai, Lei; Ding, Hui; Lei, Juncheng; Wu, Yi; Cui, Peng; Chen, Lian; Le, Zhifang; Cao, Yun

    2015-01-01

    Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity. PMID:26629903

  9. Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Jun; Cai, Lei; Ding, Hui; Lei, Juncheng; Wu, Yi; Cui, Peng; Chen, Lian; Le, Zhifang; Cao, Yun

    2015-01-01

    Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity. PMID:26629903

  10. The Distribution and Abundance of Bird Species: Towards a Satellite, Data Driven Avian Energetics and Species Richness Model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2003-01-01

    This paper addresses the fundamental question of why birds occur where and when they do, i.e., what are the causative factors that determine the spatio-temporal distributions, abundance, or richness of bird species? In this paper we outline the first steps toward building a satellite, data-driven model of avian energetics and species richness based on individual bird physiology, morphology, and interaction with the spatio-temporal habitat. To evaluate our model, we will use the North American Breeding Bird Survey and Christmas Bird Count data for species richness, wintering and breeding range. Long term and current satellite data series include AVHRR, Landsat, and MODIS.

  11. SPECIES RICHNESS AND BIODIVERSITY CONSERVATION PRIORITIES IN BRITISH COLUMBIA

    EPA Science Inventory

    Patterns in the geographic distribution of seven species groups were used to identify important areas for conservation in British Columbia, Canada. Potential priority sites for conservation were determined using an integer programming algorithm that maximized the number of speci...

  12. Species richness and interacting factors control invasibility of a marine community

    PubMed Central

    Marraffini, M. L.; Geller, J. B.

    2015-01-01

    Anthropogenic vectors have moved marine species around the world leading to increased invasions and expanded species' ranges. The biotic resistance hypothesis of Elton (in The ecology of invasions by animals and plants, 1958) predicts that more diverse communities should have greater resistance to invasions, but experiments have been equivocal. We hypothesized that species richness interacts with other factors to determine experimental outcomes. We manipulated species richness, species composition (native and introduced) and availability of bare space in invertebrate assemblages in a marina in Monterey, CA. Increased species richness significantly interacted with both initial cover of native species and of all organisms to collectively decrease recruitment. Although native species decreased recruitment, introduced species had a similar effect, and we concluded that biotic resistance is conferred by total species richness. We suggest that contradictory conclusions in previous studies about the role of diversity in regulating invasions reflect uncontrolled variables in those experiments that modified the effect of species richness. Our results suggest that patches of low diversity and abundance may facilitate invasions, and that such patches, once colonized by non-indigenous species, can resist both native and non-indigenous species recruitment. PMID:26203005

  13. Species-richness in Neotropical Sericothripinae (Thysanoptera: Thripidae).

    PubMed

    Lima, Élison Fabrício B; Mound, Laurence A

    2016-01-01

    Two of the three recognized genera of Sericothripinae are known from the Neotropics, and 14 new species from this area are here described in this subfamily. Illustrated keys are provided to females of seven species of Hydatothrips, and 41 species of Neohydatothrips, mainly from Brazil but including all recorded species south of the border between Mexico and USA. Plant species on which breeding has been recorded are indicated where possible, notes are provided on the few species of economic importance, and a key is appended to second instar larvae of seven species. Neohydatothrips burungae (Hood) stat. rev. and N. aztecus Johansen stat. rev. are recalled from synonymy with Neohydatothrips signifer (Priesner), and N. denigratus (De Santis) syn. n. is synonymized with N. burungae. Hydatothrips williamsi (Hood) comb. n. is relocated from Neohydatothrips, and as this produces a homonym in the genus, Hydatothrips tareei nom. nov. is proposed for Hydatothrips williamsi Mound & Tree from Australia. PMID:27615957

  14. Revealing patterns of local species richness along environmental gradients with a novel network tool.

    PubMed

    Baudena, Mara; Sánchez, Angel; Georg, Co-Pierre; Ruiz-Benito, Paloma; Rodríguez, Miguel Á; Zavala, Miguel A; Rietkerk, Max

    2015-01-01

    How species richness relates to environmental gradients at large extents is commonly investigated aggregating local site data to coarser grains. However, such relationships often change with the grain of analysis, potentially hiding the local signal. Here we show that a novel network technique, the "method of reflections", could unveil the relationships between species richness and climate without such drawbacks. We introduced a new index related to potential species richness, which revealed large scale patterns by including at the local community level information about species distribution throughout the dataset (i.e., the network). The method effectively removed noise, identifying how far site richness was from potential. When applying it to study woody species richness patterns in Spain, we observed that annual precipitation and mean annual temperature explained large parts of the variance of the newly defined species richness, highlighting that, at the local scale, communities in drier and warmer areas were potentially the species richest. Our method went far beyond what geographical upscaling of the data could unfold, and the insights obtained strongly suggested that it is a powerful instrument to detect key factors underlying species richness patterns, and that it could have numerous applications in ecology and other fields. PMID:26109495

  15. Factors associated with plant species richness in a coastal tall-grass prairie

    USGS Publications Warehouse

    Grace, J.B.; Allain, L.; Allen, C.

    2000-01-01

    In this study we examine the factors associated with variations in species richness within a remnant tall-grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro-elevation, soil characteristics, indications of recent disturbance, above-ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro-elevation, certain soil parameters, and light penetration through the canopy, but not with above-ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro-elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.

  16. Revealing patterns of local species richness along environmental gradients with a novel network tool

    PubMed Central

    Baudena, Mara; Sánchez, Angel; Georg, Co-Pierre; Ruiz-Benito, Paloma; Rodríguez, Miguel Á.; Zavala, Miguel A.; Rietkerk, Max

    2015-01-01

    How species richness relates to environmental gradients at large extents is commonly investigated aggregating local site data to coarser grains. However, such relationships often change with the grain of analysis, potentially hiding the local signal. Here we show that a novel network technique, the “method of reflections”, could unveil the relationships between species richness and climate without such drawbacks. We introduced a new index related to potential species richness, which revealed large scale patterns by including at the local community level information about species distribution throughout the dataset (i.e., the network). The method effectively removed noise, identifying how far site richness was from potential. When applying it to study woody species richness patterns in Spain, we observed that annual precipitation and mean annual temperature explained large parts of the variance of the newly defined species richness, highlighting that, at the local scale, communities in drier and warmer areas were potentially the species richest. Our method went far beyond what geographical upscaling of the data could unfold, and the insights obtained strongly suggested that it is a powerful instrument to detect key factors underlying species richness patterns, and that it could have numerous applications in ecology and other fields. PMID:26109495

  17. Regional species richness of families and the distribution of abundance and rarity in a local community of forest Hymenoptera

    NASA Astrophysics Data System (ADS)

    Ulrich, Werner

    2005-09-01

    Recent investigations about the relationship between the number of species of taxonomic lineages and regional patterns of species abundances gave indecisive results. Here, it is shown that mean densities of species of a species-rich community of forest Hymenoptera (673 species out of 25 families) were positively related to the number of European species per family. The fraction of abundant species per family declined and the fraction of rare species increased with species richness. Species rich families contained relatively more species, which were present in only one study year (occasional species), and relatively fewer species present during the whole study period (frequent species).

  18. Orchid Species Richness along Elevational and Environmental Gradients in Yunnan, China.

    PubMed

    Zhang, Shi-Bao; Chen, Wen-Yun; Huang, Jia-Lin; Bi, Ying-Feng; Yang, Xue-Fei

    2015-01-01

    The family Orchidaceae is not only one of the most diverse families of flowering plants, but also one of the most endangered plant taxa. Therefore, understanding how its species richness varies along geographical and environmental gradients is essential for conservation efforts. However, such knowledge is rarely available, especially on a large scale. We used a database extracted from herbarium records to investigate the relationships between orchid species richness and elevation, and to examine how elevational diversity in Yunnan Province, China, might be explained by mid-domain effect (MDE), species-area relationship (SAR), water-energy dynamics (WED), Rapoport's Rule, and climatic variables. This particular location was selected because it is one of the primary centers of distribution for orchids. We recorded 691 species that span 127 genera and account for 88.59% of all confirmed orchid species in Yunnan. Species richness, estimated at 200-m intervals along a slope, was closely correlated with elevation, peaking at 1395 to 1723 m. The elevational pattern of orchid richness was considerably shaped by MDE, SAR, WED, and climate. Among those four predictors, climate was the strongest while MDE was the weakest for predicting the elevational pattern of orchid richness. Species richness showed parabolic responses to mean annual temperature (MAT) and mean annual precipitation (MAP), with maximum richness values recorded at 13.7 to 17.7°C for MAT and 1237 to 1414 mm for MAP. Rapoport's Rule also helped to explain the elevational pattern of species richness in Yunnan, but those influences were not entirely uniform across all methods. These results suggested that the elevational pattern of orchid species richness in Yunnan is collectively shaped by several mechanisms related to geometric constraints, size of the land area, and environments. Because of the dominant role of climate in determining orchid richness, our findings may contribute to a better understanding of

  19. Tree species richness decreases while species evenness increases with disturbance frequency in a natural boreal forest landscape.

    PubMed

    Yeboah, Daniel; Chen, Han Y H; Kingston, Steve

    2016-02-01

    Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance-driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have simultaneously accounted for the influences of climate and local site conditions on species diversity. Using forest inventory data, we examined the relationships between species richness, Shannon's index, evenness, and time since last stand-replacing fire (TSF) in a large landscape of disturbance-driven boreal forest. TSF has negative effect on species richness and Shannon's index, and a positive effect on species evenness. Path analysis revealed that the environmental variables affect richness and Shannon's index only through their effects on TSF while affecting evenness directly as well as through their effects on TSF. Synthesis and applications. Our results demonstrate that species richness and Shannon's index decrease while species evenness increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance frequency, local site conditions, and climate simultaneously influence tree species diversity through complex direct and indirect effects in the studied boreal forest. PMID:26865971

  20. A phylogenetic perspective on elevational species richness patterns in Middle American treefrogs: why so few species in lowland tropical rainforests?

    PubMed

    Smith, Sarah A; de Oca, Adrian Nieto Montes; Reeder, Tod W; Wiens, John J

    2007-05-01

    Differences in species richness at different elevations are widespread and important for conservation, but the causes of these patterns remain poorly understood. Here, we use a phylogenetic perspective to address the evolutionary and biogeographic processes that underlie elevational diversity patterns within a region. We focus on a diverse but well-studied fauna of tropical amphibians, the hylid frogs of Middle America. Middle American treefrogs show a "hump-shaped" pattern of species richness (common in many organisms and regions), with the highest regional diversity at intermediate elevations. We reconstructed phylogenetic relationships among 138 species by combining new and published sequence data from 10 genes and then used this phylogeny to infer evolutionary rates and patterns. The high species richness of intermediate elevations seems to result from two factors. First, a tendency for montane clades to have higher rates of diversification. Second, the early colonization of montane regions, leaving less time for speciation to build up species richness in lowland regions (including tropical rainforests) that have been colonized more recently. This "time-for-speciation" effect may explain many diversity patterns and has important implications for conservation. The results also imply that local-scale environmental factors alone may be insufficient to explain the high species richness of lowland tropical rainforests, and that diversification rates are lower in earth's most species-rich biome. PMID:17492971

  1. Spatial association between malaria vector species richness and malaria in Colombia.

    PubMed

    Fuller, Douglas O; Alimi, Temitope; Herrera, Socrates; Beier, John C; Quiñones, Martha L

    2016-06-01

    Malaria transmission in Colombia is highly variable in space and time. Using a species distribution model, we mapped potential distribution of five vector species including Anopheles albimanus, Anopheles calderoni, Anopheles darlingi, Anopheles neivai, and Anopheles nuneztovari in five Departments of Colombia where malaria transmission remains problematic. We overlaid the range maps of the five species to reveal areas of sympatry and related per-pixel species richness to mean annual parasite index (API) for 2011-2014 mapped by municipality (n = 287). The relationship between mean number of vector species per municipality and API was evaluated using a Poisson regression, which revealed a highly significant relationship between species richness and API (p = 0 for Wald Chi-Square statistic). The results suggest that areas of relatively high transmission in Colombia typically contain higher number of vector species than areas with unstable transmission and that future elimination strategies should account for vector species richness. PMID:26970373

  2. Species Associations in a Species-Rich Subtropical Forest Were Not Well-Explained by Stochastic Geometry of Biodiversity

    PubMed Central

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure. PMID:24824996

  3. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    USGS Publications Warehouse

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  4. Species richness-environment relationships of European arthropods at two spatial grains: habitats and countries.

    PubMed

    Entling, Martin H; Schweiger, Oliver; Bacher, Sven; Espadaler, Xavier; Hickler, Thomas; Kumschick, Sabrina; Woodcock, Ben A; Nentwig, Wolfgang

    2012-01-01

    We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PET(min)) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PET(min). At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area. PMID:23029288

  5. Species Richness-Environment Relationships of European Arthropods at Two Spatial Grains: Habitats and Countries

    PubMed Central

    Entling, Martin H.; Schweiger, Oliver; Bacher, Sven; Espadaler, Xavier; Hickler, Thomas; Kumschick, Sabrina; Woodcock, Ben A.; Nentwig, Wolfgang

    2012-01-01

    We study how species richness of arthropods relates to theories concerning net primary productivity, ambient energy, water-energy dynamics and spatial environmental heterogeneity. We use two datasets of arthropod richness with similar spatial extents (Scandinavia to Mediterranean), but contrasting spatial grain (local habitat and country). Samples of ground-dwelling spiders, beetles, bugs and ants were collected from 32 paired habitats at 16 locations across Europe. Species richness of these taxonomic groups was also determined for 25 European countries based on the Fauna Europaea database. We tested effects of net primary productivity (NPP), annual mean temperature (T), annual rainfall (R) and potential evapotranspiration of the coldest month (PETmin) on species richness and turnover. Spatial environmental heterogeneity within countries was considered by including the ranges of NPP, T, R and PETmin. At the local habitat grain, relationships between species richness and environmental variables differed strongly between taxa and trophic groups. However, species turnover across locations was strongly correlated with differences in T. At the country grain, species richness was significantly correlated with environmental variables from all four theories. In particular, species richness within countries increased strongly with spatial heterogeneity in T. The importance of spatial heterogeneity in T for both species turnover across locations and for species richness within countries suggests that the temperature niche is an important determinant of arthropod diversity. We suggest that, unless climatic heterogeneity is constant across sampling units, coarse-grained studies should always account for environmental heterogeneity as a predictor of arthropod species richness, just as studies with variable area of sampling units routinely consider area. PMID:23029288

  6. Butterfly Species Richness and Diversity in the Trishna Wildlife Sanctuary in South Asia

    PubMed Central

    Majumder, Joydeb; Lodh, Rahul; Agarwala, B. K.

    2013-01-01

    Several wildlife sanctuaries in the world are home to the surviving populations of many endemic species. Trishna wildlife sanctuary in northeast India is protected by law, and is home to the last surviving populations of Asian bison (Bos gorus Smith), spectacle monkey (Trachypithecus phayrie Blyth), capped langur (Trachypithecus pileatus Blyth), slow loris (Nycticebus coucang Boddaert), wild cat (Felis chaus Schreber), and wild boars (Sus scrofa L.), among many other animals and plants. The sanctuary was explored for species richness and diversity of butterflies. A six-month-long study revealed the occurrence of 59 butterfly species that included 21 unique species and 9 species listed in the threatened category. The mixed moist deciduous mature forest of the sanctuary harbored greater species richness and species diversity (39 species under 31 genera) than other parts of the sanctuary, which is comprised of regenerated secondary mixed deciduous forest (37 species under 32 genera), degraded forests (32 species under 28 genera), and open grassland with patches of plantations and artificial lakes (24 species under 17 genera). The majority of these species showed a distribution range throughout the Indo-Malayan region and Australasia tropics, and eight species were distributed in the eastern parts of South Asia, including one species, Labadea martha (F.), which is distributed in the eastern Himalayas alone. Estimator Chao 2 provided the best-predicted value of species richness. The steep slope of the species accumulation curve suggested the occurrence of a large number of rare species, and a prolonged gentle slope suggested a higher species richness at a higher sample abundance. The species composition of vegetation-rich habitats showed high similarity in comparison to vegetation-poor habitats. PMID:24219624

  7. Species richness - Energy relationships and dung beetle diversity across an aridity and trophic resource gradient

    NASA Astrophysics Data System (ADS)

    Tshikae, B. Power; Davis, Adrian L. V.; Scholtz, Clarke H.

    2013-05-01

    Understanding factors that drive species richness and turnover across ecological gradients is important for insect conservation planning. To this end, we studied species richness - energy relationships and regional versus local factors that influence dung beetle diversity in game reserves along an aridity and trophic resource gradient in the Botswana Kalahari. Dung beetle species richness, alpha diversity, and abundance declined with increasing aridity from northeast to southwest and differed significantly between dung types (pig, elephant, cattle, sheep) and carrion (chicken livers). Patterns of between-study area species richness on ruminant dung (cattle, sheep) differed to other bait types. Patterns of species richness between bait types in two southwest study areas differed from those in four areas to the northeast. Regional species turnover between study areas was higher than local turnover between bait types. Patterns of southwest to northeast species loss showed greater consistency than northeast to southwest losses from larger assemblages. Towards the southwest, similarity to northeast assemblages declined steeply as beta diversity increased. High beta diversity and low similarity at gradsect extremes resulted from two groups of species assemblages showing either northeast or southwest biogeographical centres. The findings are consistent with the energy hypothesis that indicates insect species richness in lower latitudes is indirectly limited by declining water variables, which drive reduced food resources (lower energy availability) represented, here, by restriction of large mammals dropping large dung types to the northeast and dominance of pellet dropping mammals in the arid southwest Kalahari. The influence of theoretical causal mechanisms is discussed.

  8. Clade age and species richness are decoupled across the eukaryotic tree of life.

    PubMed

    Rabosky, Daniel L; Slater, Graham J; Alfaro, Michael E

    2012-08-01

    Explaining the dramatic variation in species richness across the tree of life remains a key challenge in evolutionary biology. At the largest phylogenetic scales, the extreme heterogeneity in species richness observed among different groups of organisms is almost certainly a function of many complex and interdependent factors. However, the most fundamental expectation in macroevolutionary studies is simply that species richness in extant clades should be correlated with clade age: all things being equal, older clades will have had more time for diversity to accumulate than younger clades. Here, we test the relationship between stem clade age and species richness across 1,397 major clades of multicellular eukaryotes that collectively account for more than 1.2 million described species. We find no evidence that clade age predicts species richness at this scale. We demonstrate that this decoupling of age and richness is unlikely to result from variation in net diversification rates among clades. At the largest phylogenetic scales, contemporary patterns of species richness are inconsistent with unbounded diversity increase through time. These results imply that a fundamentally different interpretative paradigm may be needed in the study of phylogenetic diversity patterns in many groups of organisms. PMID:22969411

  9. Geographic differences between functional groups in patterns of bird species richness in North America

    NASA Astrophysics Data System (ADS)

    Carnicer, Jofre; Díaz-Delgado, Ricardo

    2008-03-01

    Geographic divergences in patterns of species richness were studied for the terrestrial birds of North America using Breeding Bird Survey (BBS) census data subdivided for guild and migratory groups. Our aim was to study if species richness patterns for North American birds were best viewed as the convergent response of different groups to a common mechanism or as the result of several different processes. We observed opposite geographical patterns of species richness and differences in the variables associated with species richness depending on the guild or migratory status considered. Several ecological variables seem to regulate large-scale patterns of terrestrial bird species richness in North America, mainly temperature-, productivity- and landscape habitat structure-related variables. These variables are diverse and group-specific. For instance, the results supported the productivity hypothesis in migratory and frugivore groups and the winter tolerance hypothesis in residents. Habitat structure was also identified as an important factor driving species richness, total abundance and community body mass variation. Overall, our results indicate that the large-scale patterns of bird species richness are the result of several divergent, group-specific processes, and that understanding diversity gradients requires the identification of the functional ecological groups included.

  10. Clade Age and Species Richness Are Decoupled Across the Eukaryotic Tree of Life

    PubMed Central

    2012-01-01

    Explaining the dramatic variation in species richness across the tree of life remains a key challenge in evolutionary biology. At the largest phylogenetic scales, the extreme heterogeneity in species richness observed among different groups of organisms is almost certainly a function of many complex and interdependent factors. However, the most fundamental expectation in macroevolutionary studies is simply that species richness in extant clades should be correlated with clade age: all things being equal, older clades will have had more time for diversity to accumulate than younger clades. Here, we test the relationship between stem clade age and species richness across 1,397 major clades of multicellular eukaryotes that collectively account for more than 1.2 million described species. We find no evidence that clade age predicts species richness at this scale. We demonstrate that this decoupling of age and richness is unlikely to result from variation in net diversification rates among clades. At the largest phylogenetic scales, contemporary patterns of species richness are inconsistent with unbounded diversity increase through time. These results imply that a fundamentally different interpretative paradigm may be needed in the study of phylogenetic diversity patterns in many groups of organisms. PMID:22969411

  11. Bat fly species richness in Neotropical bats: correlations with host ecology and host brain.

    PubMed

    Bordes, Frédéric; Morand, Serge; Ricardo, Guerrero

    2008-11-01

    Patterns of ectoparasite species richness in mammals have been investigated in various terrestrial mammalian taxa such as primates, ungulates and carnivores. Several ecological or life traits of hosts are expected to explain much of the variability in species richness of parasites. In the present comparative analysis we investigate some determinants of parasite richness in bats, a large and understudied group of flying mammals, and their obligate blood-sucking ectoparasite, streblid bat flies (Diptera). We investigate the effects of host body size, geographical range, group size and roosting ecology on the species richness of bat flies in tropical areas of Venezuela and Peru, where both host and parasite diversities are high. We use the data from a major sampling effort on 138 bat species from nine families. We also investigate potential correlation between bat fly species richness and brain size (corrected for body size) in these tropical bats. We expect a relationship if there is a potential energetic trade-off between costly large brains and parasite-mediated impacts. We show that body size and roosting in cavities are positively correlated with bat fly species richness. No effects of bat range size and group size were observed. Our results also suggest an association between body mass-independent brain size and bat fly species richness. PMID:18679724

  12. Southeast Asian primate communities: the effects of ecology and Pleistocene refuges on species richness.

    PubMed

    Hassel-Finnegan, Heather; Borries, Carola; Zhao, Qing; Phiapalath, Phaivanh; Koenig, Andreas

    2013-12-01

    We examined historical and ecological factors affecting current primate biodiversity in Southeast Asia. In Africa, Madagascar and South America, but not Southeast Asia, primate species richness is positively associated with average rainfall and distance from the equator (latitude). We predicted that Southeast Asia's non-conformance may be due to the effect of dispersed Pleistocene refuges (locations of constricted tropical forests during glacial maxima which today are at least 305 m in altitude). Based on 45 forested sites (13 on large islands; 32 on the mainland) of at least 100 km(2) to minimize recent human impact, we determined correlations between extant primate species richness and rainfall, latitude and supplementary ecological variables, while controlling for refuges and islands. We found that refuge sites had significantly higher primate species richness than non-refuges (t = -2.76, P < 0.05), and distance from the nearest Pleistocene refuge was negatively correlated with species richness for non-refuge sites (r = -0.51, P < 0.05). There was no difference in species richness between sites on large islands and the mainland (t = -1.4, P = 0.16). The expected positive relationship between rainfall and species richness was not found (r = 0.17, P = 0.28). As predicted, primate species richness was negatively correlated with latitude (r = -0.39, P < 0.05) and positively correlated with mean temperature (r = 0.45, P < 0.05). General linear models indicated that a site's latitude (F1,38 = 6.18, P < 0.05) and Pleistocene refuge classification (F1,42 = 5.96, P < 0.05) were the best predictors of species richness. Both ecological and historical factors contribute to present day primate species richness in Southeast Asia, making its biodiversity less of an outlier than previously believed. PMID:24344966

  13. A parasitic plant increases native and exotic plant species richness in vernal pools

    PubMed Central

    Graffis, Andrea M.; Kneitel, Jamie M.

    2015-01-01

    Species interactions are well known to affect species diversity in communities, but the effects of parasites have been less studied. Previous studies on parasitic plants have found both positive and negative effects on plant community diversity. Cuscuta howelliana is an abundant endemic parasitic plant that inhabits California vernal pools. We tested the hypothesis that C. howelliana acts as a keystone species to increase plant species richness in vernal pools through a C. howelliana removal experiment at Beale Air Force Base in north-central California. Vernal pool endemic plants were parasitized more frequently, and Eryngium castrense and Navarretia leucocephala were the most frequently parasitized host plant species of C. howelliana. Cuscuta howelliana caused higher plant species richness, both natives and exotics, compared with removal plots. However, there was no single plant species that significantly increased with C. howelliana removal. Decreases in Eryngium castrense percent cover plots with C. howelliana is a plausible explanation for differences in species richness. In conclusion, C. howelliana led to changes in species composition and increases in plant species richness, consistent with what is expected from the effects of a keystone species. This research provides support for a shift in management strategies that focus on species-specific targets to strategies that target maintenance of complex species interactions and therefore maximize biodiversity and resilience of ecosystems. PMID:26307042

  14. The age of island-like habitats impacts habitat specialist species richness.

    PubMed

    Horsák, Michal; Hájek, Michal; Spitale, Daniel; Hájková, Petra; Díte, Daniel; Nekola, Jeffrey C

    2012-05-01

    While the effects of contemporaneous local environment on species richness have been repeatedly documented, much less is known about historical effects, especially over large temporal scales. Using fen sites in the Western Carpathian Mountains with known radiocarbon-dated ages spanning Late Glacial to modern times (16 975-270 cal years before 2008), we have compiled richness data from the same plots for three groups of taxa with contrasting dispersal modes: (1) vascular plants, which have macroscopic propagules possessing variable, but rather low, dispersal abilities; (2) bryophytes, which have microscopic propagules that are readily transported long distances by air; and (3) terrestrial and freshwater mollusks, which have macroscopic individuals with slow active migration rates, but which also often possess high passive dispersal abilities. Using path analysis we tested the relationships between species richness and habitat age, area, isolation, and altitude for these groups. When only matrix-derived taxa were considered, no significant positive relation was noted between species richness and habitat size or age. When only calcareous-fen specialists were considered, however, habitat age was found to significantly affect vascular plant richness and, marginally, also bryophyte richness, whereas mollusk richness was significantly affected by habitat area. These results suggest that in inland insular systems only habitat specialist (i.e., interpatch disperser and/or relict species) richness is influenced by habitat age and/or area, with habitat age becoming more important as species dispersal ability decreases. PMID:22764496

  15. Assessing the influence of environmental and human factors on native and exotic species richness

    NASA Astrophysics Data System (ADS)

    de Albuquerque, Fábio Suzart; Castro-Díez, Pilar; Rodríguez, Miguel Á.; Cayuela, Luis

    2011-03-01

    Understanding the ecological determinants of biological invasions is a key issue for predicting the spread of exotic species over broad geographical extents. The goal of this study was to investigate independent and combined effects of climatic and human-related factors on native and exotic plant species richness in Great Britain. We used multiple and partial regression techniques and spatial methods to investigate the effect of these variables on species richness. The highest plant richness was found in southeastern Great Britain and the lowest in the North for both native and exotic species. We found that energy input was the best predictor of either native or exotic plant richness, followed by water availability. Richness increased linearly with energy input for native plants, but exponentially for exotics. This is probably due to the lower chances of exotic species to succeed in low-energy sites, and/or to the lower species saturation of more productive ecosystems. The low portion of richness variance explained by human footprint was probably due to the study scale and to the overlapping between climatic and human factors. We conclude that the environment-human models are robust to enhance our understanding of the factors controlling the distribution of exotic species. Models containing water-energy measures can be a key component for explaining the broad-scale patterns of exotic species.

  16. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints.

    PubMed

    Colwell, Robert K; Gotelli, Nicholas J; Ashton, Louise A; Beck, Jan; Brehm, Gunnar; Fayle, Tom M; Fiedler, Konrad; Forister, Matthew L; Kessler, Michael; Kitching, Roger L; Klimes, Petr; Kluge, Jürgen; Longino, John T; Maunsell, Sarah C; McCain, Christy M; Moses, Jimmy; Noben, Sarah; Sam, Katerina; Sam, Legi; Shapiro, Arthur M; Wang, Xiangping; Novotny, Vojtech

    2016-09-01

    We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness. PMID:27358193

  17. Does avian species richness in natural patch mosaics follow the forest fragmentation paradigm?

    USGS Publications Warehouse

    Pavlacky, D.C., Jr.; Anderson, S.H.

    2007-01-01

    As one approaches the north-eastern limit of pinyon (Pinus spp.) juniper (Juniperus spp.) vegetation on the Colorado Plateau, USA, woodland patches become increasingly disjunct, grading into sagebrush (Artemisia spp.)-dominated landscapes. Patterns of avian species richness in naturally heterogeneous forests may or may not respond to patch discontinuity in the same manner as bird assemblages in fragmented agricultural systems. We used observational data from naturally patchy woodlands and predictions derived from studies of human-modified agricultural forests to estimate the effects of patch area, shape, isolation and distance to contiguous woodland on avian species richness. We predicted that patterns of species richness in naturally patchy juniper woodlands would differ from those observed in fragmented agricultural systems. Our objectives were to (1) estimate the effect of naturally occurring patch structure on avian species richness with respect to habitat affinity and migratory strategy and (2) assess the concordance of the effects to predictions from agricultural forest systems. We used the analogy between populations and communities to estimate species richness, where species are treated as individuals in the application of traditional capture-recapture theory. Information-theoretic model selection showed that overall species richness was explained primarily by the species area relationship. There was some support for a model with greater complexity than the equilibrium theory of island biogeography where the isolation of large patches resulted in greater species richness. Species richness of woodland-dwelling birds was best explained by the equilibrium hypothesis with partial landscape complementation by open-country species in isolated patches. Species richness within specific migratory strategies showed concomitant increases and no shifts in species composition along the patch area gradient. Our results indicate that many patterns of species richness

  18. The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States.

    PubMed

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r(2) = ∼ 0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r(2) = ∼ 0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and

  19. The Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird Species Richness across the United States

    PubMed Central

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J.

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r2 = ∼0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r2 = ∼0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and

  20. Plant Size as Determinant of Species Richness of Herbivores, Natural Enemies and Pollinators across 21 Brassicaceae Species

    PubMed Central

    Schlinkert, Hella; Westphal, Catrin; Clough, Yann; László, Zoltán; Ludwig, Martin; Tscharntke, Teja

    2015-01-01

    Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies

  1. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern

    USGS Publications Warehouse

    Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.

    2012-01-01

    1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new

  2. Species richness of motile cryptofauna across a gradient of reef framework erosion

    NASA Astrophysics Data System (ADS)

    Enochs, I. C.; Manzello, D. P.

    2012-09-01

    Coral reef ecosystems contain exceptionally high concentrations of marine biodiversity, potentially encompassing millions of species. Similar to tropical rainforests and their insects, the majority of reef animal species are small and cryptic, living in the cracks and crevices of structural taxa (trees and corals). Although the cryptofauna make up the majority of a reef's metazoan biodiversity, we know little about their basic ecology. We sampled motile cryptofaunal communities from both live corals and dead carbonate reef framework across a gradient of increasing erosion on a reef in Pacific Panamá. A total of 289 Operational Taxonomic Units (OTUs) from six phyla were identified. We used species-accumulation models fitted to individual- and sample-based rarefaction curves, as well as seven nonparametric richness estimators to estimate species richness among the different framework types. All procedures predicted the same trends in species richness across the differing framework types. Estimated species richness was higher in dead framework (261-370 OTUs) than in live coral substrates (112-219 OTUs). Surprisingly, richness increased as framework structure was eroded: coral rubble contained the greatest number of species (227-320 OTUs) and the lowest estimated richness of 47-115 OTUs was found in the zone where the reef framework had the greatest vertical relief. This contradicts the paradigm that abundant live coral indicates the apex of reef diversity.

  3. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    USGS Publications Warehouse

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  4. Nested species-rich networks of scavenging vertebrates support high levels of interspecific competition.

    PubMed

    Sebastián-González, Esther; Moleón, Marcos; Gibert, Jean P; Botella, Francisco; Mateo-Tomás, Patricia; Olea, Pedro P; Guimarães, Paulo R; Sánchez-Zapata, José A

    2016-01-01

    Disentangling the processes that shape the organization of ecological assemblages and its implications for species coexistence is one of the foremost challenges of ecology. Although insightful advances have recently related community composition and structure with species coexistence in mutualistic and antagonistic networks, little is known regarding other species assemblages, such as those of scavengers exploiting carrion. Here we studied seven assemblages of scavengers feeding on ungulate carcasses in mainland Spain. We used dynamical models to investigate if community composition, species richness and structure (nestedness) affect species coexistence at carcasses. Scavenging networks showed a nested pattern in sites where highly efficient, obligate scavengers (i.e., vultures) were present and a non-nested pattern everywhere else. Griffon Vulture (Gyps fulvus) and certain meso-facultative mammalian scavengers (i.e., red fox, Vulpes vulpes, and stone marten, Martes foina) were the main species contributing to nestedness. Assemblages with vultures were also the richest ones in species. Nested species-rich assemblages with vulture presence were associated with high carcass consumption rates, indicating higher interspecific competition at the local scale. However, the proportion of species stopping the consumption of carrion (as derived from the competitive dynamic model) stabilized at high richness and nestedness levels. This suggests that high species richness and nestedness may characterize scavenging networks that are robust to high levels of interspecific competition for carrion. Some facilitative interactions driven by vultures and major facultative scavengers could be behind these observations. Our findings are relevant for understanding species' coexistence in highly competitive systems. PMID:27008779

  5. Variable effects of host characteristics on species richness of flea infracommunities in rodents from three continents.

    PubMed

    Kiffner, Christian; Stanko, Michal; Morand, Serge; Khokhlova, Irina S; Shenbrot, Georgy I; Laudisoit, Anne; Leirs, Herwig; Hawlena, Hadas; Krasnov, Boris R

    2014-08-01

    We studied the effect of host gender and body mass on species richness of flea infracommunities in nine rodent host species from three biomes (temperate zone of central Europe, desert of the Middle East and the tropics of East Africa). Using season- and species-specific generalized linear mixed models and controlling for year-to-year variation, spatial clustering of rodent sampling and over-dispersion of the data, we found inconsistent associations between host characteristics and flea species richness. We found strong support for male-biased flea parasitism, especially during the reproductive period (higher species richness in male hosts than in females) in all considered European rodents (Apodemus agrarius, Myodes glareolus and Microtus arvalis) and in one rodent species from the Middle East (Dipodillus dasyurus). In contrast, two of three African rodent species (Lophuromys kilonzoi and Praomys delectorum) demonstrated a trend of female-biased flea species richness. Positive associations between body mass and the number of flea species were detected mainly in males (five of nine species: A. agrarius, M. glareolus, M. arvalis, D. dasyurus and Mastomys natalensis) and not in females (except for M. natalensis). The results of this study support earlier reports that gender-biased, in general, and male-biased, in particular, infestation by ectoparasites is not a universal rule. This suggests that mechanisms of parasite acquisition by an individual host are species-specific and have evolved independently in different rodent host-flea systems. PMID:24820040

  6. Climate and landscape explain richness patterns depending on the type of species' distribution data

    NASA Astrophysics Data System (ADS)

    Tsianou, Mariana A.; Koutsias, Nikolaos; Mazaris, Antonios D.; Kallimanis, Athanasios S.

    2016-07-01

    Understanding the patterns of species richness and their environmental drivers, remains a central theme in ecological research and especially in the continental scales where many conservation decisions are made. Here, we analyzed the patterns of species richness from amphibians, reptiles and mammals at the EU level. We used two different data sources for each taxon: expert-drawn species range maps, and presence/absence atlases. As environmental drivers, we considered climate and land cover. Land cover is increasingly the focus of research, but there still is no consensus on how to classify land cover to distinct habitat classes, so we analyzed the CORINE land cover data with three different levels of thematic resolution (resolution of classification scheme ˗ less to more detailed). We found that the two types of species richness data explored in this study yielded different richness maps. Although, we expected expert-drawn range based estimates of species richness to exceed those from atlas data (due to the assumption that species are present in all locations throughout their region), we found that in many cases the opposite is true (the extreme case is the reptiles where more than half of the atlas based estimates were greater than the expert-drawn range based estimates). Also, we detected contrasting information on the richness drivers of biodiversity patterns depending on the dataset used. For atlas based richness estimates, landscape attributes played more important role than climate while for expert-drawn range based richness estimates climatic variables were more important (for the ectothermic amphibians and reptiles). Finally we found that the thematic resolution of the land cover classification scheme, also played a role in quantifying the effect of land cover diversity, with more detailed thematic resolution increasing the relative contribution of landscape attributes in predicting species richness.

  7. ELECTROFISHING EFFORT REQUIREMENTS FOR ASSESSING SPECIES RICHNESS AND BIOTIC INTEGRITY IN WESTERN OREGON STREAMS

    EPA Science Inventory

    We empirically examined the sampling effort required to adequately represent species richness and proportionate abundance when backpack electrofishing western Oregon streams. When sampling, we separately recorded data for each habitat unit. In data analyses, we repositioned each...

  8. Corridors Increase Plant Species Richness at Large Scales

    SciTech Connect

    Damschen, Ellen I.; Haddad, Nick M.; Orrock,John L.; Tewksbury, Joshua J.; Levey, Douglas J.

    2006-09-01

    Habitat fragmentation is one of the largest threats to biodiversity. Landscape corridors, which are hypothesized to reduce the negative consequences of fragmentation, have become common features of ecological management plans worldwide. Despite their popularity, there is little evidence documenting the effectiveness of corridors in preserving biodiversity at large scales. Using a large-scale replicated experiment, we showed that habitat patches connected by corridors retain more native plant species than do isolated patches, that this difference increases over time, and that corridors do not promote invasion by exotic species. Our results support the use of corridors in biodiversity conservation.

  9. Are parasite richness and abundance linked to prey species richness and individual feeding preferences in fish hosts?

    PubMed

    Cirtwill, Alyssa R; Stouffer, Daniel B; Poulin, Robert; Lagrue, Clément

    2016-01-01

    Variations in levels of parasitism among individuals in a population of hosts underpin the importance of parasites as an evolutionary or ecological force. Factors influencing parasite richness (number of parasite species) and load (abundance and biomass) at the individual host level ultimately form the basis of parasite infection patterns. In fish, diet range (number of prey taxa consumed) and prey selectivity (proportion of a particular prey taxon in the diet) have been shown to influence parasite infection levels. However, fish diet is most often characterized at the species or fish population level, thus ignoring variation among conspecific individuals and its potential effects on infection patterns among individuals. Here, we examined parasite infections and stomach contents of New Zealand freshwater fish at the individual level. We tested for potential links between the richness, abundance and biomass of helminth parasites and the diet range and prey selectivity of individual fish hosts. There was no obvious link between individual fish host diet and helminth infection levels. Our results were consistent across multiple fish host and parasite species and contrast with those of earlier studies in which fish diet and parasite infection were linked, hinting at a true disconnect between host diet and measures of parasite infections in our study systems. This absence of relationship between host diet and infection levels may be due to the relatively low richness of freshwater helminth parasites in New Zealand and high host-parasite specificity. PMID:26573385

  10. Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling

    USGS Publications Warehouse

    Zipkin, Elise F.; DeWan, Amielle; Royle, J. Andrew

    2009-01-01

    1. Species richness is often used as a tool for prioritizing conservation action. One method for predicting richness and other summaries of community structure is to develop species-specific models of occurrence probability based on habitat or landscape characteristics. However, this approach can be challenging for rare or elusive species for which survey data are often sparse. 2. Recent developments have allowed for improved inference about community structure based on species-specific models of occurrence probability, integrated within a hierarchical modelling framework. This framework offers advantages to inference about species richness over typical approaches by accounting for both species-level effects and the aggregated effects of landscape composition on a community as a whole, thus leading to increased precision in estimates of species richness by improving occupancy estimates for all species, including those that were observed infrequently. 3. We developed a hierarchical model to assess the community response of breeding birds in the Hudson River Valley, New York, to habitat fragmentation and analysed the model using a Bayesian approach. 4. The model was designed to estimate species-specific occurrence and the effects of fragment area and edge (as measured through the perimeter and the perimeter/area ratio, P/A), while accounting for imperfect detection of species. 5. We used the fitted model to make predictions of species richness within forest fragments of variable morphology. The model revealed that species richness of the observed bird community was maximized in small forest fragments with a high P/A. However, the number of forest interior species, a subset of the community with high conservation value, was maximized in large fragments with low P/A. 6. Synthesis and applications. Our results demonstrate the importance of understanding the responses of both individual, and groups of species, to environmental heterogeneity while illustrating the utility

  11. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards.

    PubMed

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-09-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  12. Patterns of fine-scale plant species richness in dry grasslands across the eastern Balkan Peninsula

    NASA Astrophysics Data System (ADS)

    Palpurina, Salza; Chytrý, Milan; Tzonev, Rossen; Danihelka, Jiří; Axmanová, Irena; Merunková, Kristina; Duchoň, Mário; Karakiev, Todor

    2015-02-01

    Fine-scale plant species richness varies across habitats, climatic and biogeographic regions, but the large-scale context of this variation is insufficiently explored. The patterns at the borders between biomes harbouring rich but different floras are of special interest. Dry grasslands of the eastern Balkan Peninsula, situated in the Eurasian forest-steppe zone and developed under Mediterranean influence, are a specific case of such biome transition. However, there are no studies assessing the patterns of fine-scale species richness and their underlying factors across the eastern Balkans. To explore these patterns, we sampled dry and semi-dry grasslands (phytosociological class Festuco-Brometea) across Bulgaria and SE Romania. In total, 172 vegetation plots of 10 × 10 m2 were sampled, in which all vascular plant species were recorded, soil depth was measured, and soil samples were collected and analysed in a laboratory for pH and plant-available nutrients. Geographic coordinates were used to extract selected climatic variables. Regression trees and linear regressions were used to quantify the relationships between species richness and environmental variables. Climatic factors were identified as the main drivers of species richness: (1) Species richness was strongly positively correlated with the mean temperature of the coldest month: sub-Mediterranean areas of S and E Bulgaria, characterized by warmer winters, were more species-rich. (2) Outside the sub-Mediterranean areas, species richness strongly increased with annual precipitation, which was primarily controlled by altitude. (3) Bedrock type and soil pH also significantly affected dry grassland richness outside the sub-Mediterranean areas. These results suggest that fine-scale species richness of dry grasslands over large areas is driven by processes at the regional level, especially by the difference in the species pools of large regions, in our case the Continental and Mediterranean biogeographic regions

  13. Stochastic dilution effects weaken deterministic effects of niche-based processes in species rich forests.

    PubMed

    Wang, Xugao; Wiegand, Thorsten; Kraft, Nathan J B; Swenson, Nathan G; Davies, Stuart J; Hao, Zhanqing; Howe, Robert; Lin, Yiching; Ma, Keping; Mi, Xiangcheng; Su, Sheng-Hsin; Sun, I-fang; Wolf, Amy

    2016-02-01

    Recent theory predicts that stochastic dilution effects may result in species-rich communities with statistically independent species spatial distributions, even if the underlying ecological processes structuring the community are driven by deterministic niche differences. Stochastic dilution is a consequence of the stochastic geometry of biodiversity where the identities of the nearest neighbors of individuals of a given species are largely unpredictable. Under such circumstances, the outcome of deterministic species interactions may vary greatly among individuals of a given species. Consequently, nonrandom patterns in the biotic neighborhoods of species, which might be expected from coexistence or community assembly theory (e.g., individuals of a given species are neighbored by phylogenetically similar species), are weakened or do not emerge, resulting in statistical independence of species spatial distributions. We used data on phylogenetic and functional similarity of tree species in five large forest dynamics plots located across a gradient of species richness to test predictions of the stochastic dilution hypothesis. To quantify the biotic neighborhood of a focal species we used the mean phylogenetic (or functional) dissimilarity of the individuals of the focal species to all species within a local neighborhood. We then compared the biotic neighborhood of species to predictions from stochastic null models to test if a focal species was surrounded by more or less similar species than expected by chance. The proportions of focal species that showed spatial independence with respect to their biotic neighborhoods increased with total species richness. Locally dominant, high-abundance species were more likely to be surrounded by species that were statistically more similar or more dissimilar than expected by chance. Our results suggest that stochasticity may play a stronger role in shaping the spatial structure of species rich tropical forest communities than it

  14. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes.

    PubMed

    Catherine, Arnaud; Selma, Maloufi; Mouillot, David; Troussellier, Marc; Bernard, Cécile

    2016-07-15

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R(2)=0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species

  15. THREATENED AND ENDANGERED FRESHWATER FISH AND MUSSEL SPECIES RICHNESS

    EPA Science Inventory

    These data represent predicted current distributions of all US listed Threatened and Endangered freshwater fish and freshwater mussels in the Middle-Atlantic region. The data are available for both 8-digit HUCs and EMAP hexagons and represent total species counts for each spatia...

  16. Does pH affect fish species richness when lake area is considered?

    USGS Publications Warehouse

    Rago, P.J.; Wiener, J.G.

    1986-01-01

    Numerous surveys have shown that fish species richness (number of species) is positively correlated with lake pH. However, species richness of fish communities is also correlated with lake size, and low-pH lakes are often small. Thus, conclusions drawn from examination of fish community structure relative to spatial (among- lake) variation in pH have been limited by uncertainties regarding the confounded effects of lake area. The authors used two statistical methods, analysis of covariance and a nonparametric blocked comparison test, to remove effects of lake area and compare fish species richness in low-pH and high-pH lakes. Data from six previous surveys of water chemistry and fish communities in lakes of Ontario and northern Wisconsin were examined. Lakes with low pH ( less than or equal to 6.0) contained significantly fewer fish species than lakes with high pH (> 6.0) when the effect of lake area was considered. A simple probabilistic model showed that the ability to detect differences in species richness is low when lake areas and the pool of potential colonizing species are small. The authors recommend the blocked comparison test for separating the effects of lake area and pH on species richness.

  17. Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys

    USGS Publications Warehouse

    Kery, M.; Royle, J. Andrew

    2008-01-01

    1. Species richness is the most widely used biodiversity metric, but cannot be observed directly as, typically, some species are overlooked. Imperfect detectability must therefore be accounted for to obtain unbiased species-richness estimates. When richness is assessed at multiple sites, two approaches can be used to estimate species richness: either estimating for each site separately, or pooling all samples. The first approach produces imprecise estimates, while the second loses site-specific information. 2. In contrast, a hierarchical Bayes (HB) multispecies site-occupancy model benefits from the combination of information across sites without losing site-specific information and also yields occupancy estimates for each species. The heart of the model is an estimate of the incompletely observed presence-absence matrix, a centrepiece of biogeography and monitoring studies. We illustrate the model using Swiss breeding bird survey data, and compare its estimates with the widely used jackknife species-richness estimator and raw species counts. 3. Two independent observers each conducted three surveys in 26 1-km(2) quadrats, and detected 27-56 (total 103) species. The average estimated proportion of species detected after three surveys was 0.87 under the HB model. Jackknife estimates were less precise (less repeatable between observers) than raw counts, but HB estimates were as repeatable as raw counts. The combination of information in the HB model thus resulted in species-richness estimates presumably at least as unbiased as previous approaches that correct for detectability, but without costs in precision relative to uncorrected, biased species counts. 4. Total species richness in the entire region sampled was estimated at 113.1 (CI 106-123); species detectability ranged from 0.08 to 0.99, illustrating very heterogeneous species detectability; and species occupancy was 0.06-0.96. Even after six surveys, absolute bias in observed occupancy was estimated at up to 0

  18. Revisiting spatial scale in the productivity-species richness relationship: fundamental issues and global change implications.

    PubMed

    McBride, Paul D; Cusens, Jarrod; Gillman, Len N

    2014-01-01

    The relationship between net primary productivity (NPP) and species richness has been the subject of long-running debate. A changing climate gives added impetus to resolving this debate, as it becomes increasingly necessary to predict biodiversity responses that might arise from shifts in productivity or its climatic correlates. It has become increasingly clear that at small scales productivity-species richness relationships (PSRs) are variable, while at macro scales relationships are typically positive. We demonstrate the importance of explicitly considering scale in discussions on PSRs even at large scales by showing that distinct patterns emerge in a global dataset of terrestrial ecoregions when ecoregions are binned into size classes. At all sizes, PSRs in ecoregions are positive, but the strength of the PSR scales positively with ecoregion size. In small ecoregions (10(3)-10(4) km(2)), factors correlating with productivity play only a minor role in species richness patterns, while in large ecoregions (>10(5) km(2)), NPP modelled from remotely sensed data is able to explain most of the variation in species richness. Better understanding the effects of scale on PSRs contributes to the debate on the relationship between species richness and productivity, which in turn allows us to better predict how both long- and short-term biodiversity patterns and ecosystem functioning might be altered under global change scenarios. This gives focus on future research to clarify causal pathways between species richness and productivity with appropriate attention to scale as an important focusing element. PMID:25249265

  19. Urbanization Level and Woodland Size Are Major Drivers of Woodpecker Species Richness and Abundance

    PubMed Central

    Myczko, Łukasz; Rosin, Zuzanna M.; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species. PMID:24740155

  20. Richness of lichen species, especially of threatened ones, is promoted by management methods furthering stand continuity.

    PubMed

    Boch, Steffen; Prati, Daniel; Hessenmöller, Dominik; Schulze, Ernst-Detlef; Fischer, Markus

    2013-01-01

    Lichens are a key component of forest biodiversity. However, a comprehensive study analyzing lichen species richness in relation to several management types, extending over different regions and forest stages and including information on site conditions is missing for temperate European forests. In three German regions (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin), the so-called Biodiversity Exploratories, we studied lichen species richness in 631 forest plots of 400 m(2) comprising different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests resulting from clear cutting or shelterwood logging), various stand ages, and site conditions, typical for large parts of temperate Europe. We analyzed how lichen species richness responds to management and habitat variables (standing biomass, cover of deadwood, cover of rocks). We found strong regional differences with highest lichen species richness in the Schwäbische Alb, probably driven by regional differences in former air pollution, and in precipitation and habitat variables. Overall, unmanaged forests harbored 22% more threatened lichen species than managed age-class forests. In general, total, corticolous, and threatened lichen species richness did not differ among management types of deciduous forests. However, in the Schwäbische-Alb region, deciduous forests had 61% more lichen species than coniferous forests and they had 279% more threatened and 76% more corticolous lichen species. Old deciduous age classes were richer in corticolous lichen species than young ones, while old coniferous age-classes were poorer than young ones. Overall, our findings highlight the importance of stand continuity for conservation. To increase total and threatened lichen species richness we suggest (1) conserving unmanaged forests, (2) promoting silvicultural methods assuring stand continuity, (3) conserving old trees in managed forests, (4) promoting stands of native deciduous tree species

  1. Description of three new species of Labena Cresson from Mexico (Hymenoptera, Ichneumonidae, Labeninae), with notes on tropical species richness.

    PubMed

    González-Moreno, Alejandra; Bordera, Santiago; Sääksjärvi, Ilari Eerikki

    2015-01-01

    Three new species of Labena Cresson (Ichneumonidae, Labeninae); L. littoralis sp. nov., L. tekalina sp. nov. and L. madoricola sp. nov. are described and illustrated. Material was collected with Malaise traps in 2008 and 2009 in the Biosphere Reserve Ria Lagartos (Mexico). Diagnostic characters to distinguish them from all other New World species of the genus are provided. In addition, the tropical species richness of the genus is shortly discussed. PMID:25947788

  2. Patterns of Species Richness and Turnover for the South American Rodent Fauna.

    PubMed

    Maestri, Renan; Patterson, Bruce D

    2016-01-01

    Understanding the spatial distribution of species sheds light on the group's biogeographical history, offers clues to the drivers of diversity, and helps to guide conservation strategies. Here, we compile geographic range information for South America's diverse rodents, whose 14 families comprise ~50% of the continent's mammalian species. The South American rodent fauna is dominated by independent and temporally staggered radiations of caviomorph and sigmodontine groups. We mapped species richness and turnover of all rodents and the principal clades to identify the main predictors of diversity patterns. Species richness was highest in the Andes, with a secondary hotspot in Atlantic Forest and some regions of considerable richness in Amazonia. Differences in richness were evident between the caviomorphs and sigmodontines, the former showing the greatest richness in tropical forests whereas the latter show-and largely determine-the all-rodent pattern. Elevation was the main predictor of sigmodontine richness, whereas temperature was the principal variable correlated with richness of caviomorphs. Across clades, species turnover was highest along the Andes and was best explained by elevational relief. In South America, the effects of the familiar latitudinal gradient in species richness are mixed with a strong longitudinal effect, triggered by the importance of elevation and the position of the Andes. Both latitudinal and elevational effects help explain the complicated distribution of rodent diversity across the continent. The continent's restricted-range species-those seemingly most vulnerable to localized disturbance-are mostly distributed along the Andes and in Atlantic Forest, with the greatest concentration in Ecuador. Both the Andes and Atlantic Forest are known hotspots for other faunal and floral components. Contrasting patterns of the older caviomorph and younger sigmodontine radiations underscore the interplay of both historical and ecological factors in

  3. Duck productivity in restored species-rich native and species-poor non-native plantings.

    PubMed

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  4. Duck Productivity in Restored Species-Rich Native and Species-Poor Non-Native Plantings

    PubMed Central

    Haffele, Ryan D.; Eichholz, Michael W.; Dixon, Cami S.

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010–2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years. PMID:23840898

  5. A structural equation model of plant species richness and its application to a coastal wetland

    USGS Publications Warehouse

    Grace, J.B.; Pugesek, B.H.

    1997-01-01

    Studies of plant species richness have often emphasized the role of either community biomass (as an indicator of density effects) or abiotic factors. In this article we present a general model that simultaneously examines the relative importance of abiotic and density effects. General and specific models were developed to examine the importance of abiotic conditions, disturbance, and community biomass on plant species richness. Models were evaluated using structural equation modeling based on data from 190 plots across a coastal marsh landscape. The accepted model was found to explain 45% of the observed variation in richness, 75% of biomass, and 65% of light penetration. Model results indicate that abiotic conditions have both direct effects on the species pool and indirect effects on richness mediated through effects on biomass and shading. Effects of disturbance were found to be indirect via biomass. Strong density effects on richness were indicated by the results, and canopy light penetration was found to be a better predictor of richness than was biomass. Overall, it appears that richness in this coastal landscape is controlled in roughly equal proportions by abiotic influences on the species pool and density effects, with disturbance playing a lesser role. The structure of the general model presented should be applicable to a wide variety of herbaceous plant communities.

  6. Species richness and soil properties in Pinus ponderosa forests: A structural equation modeling analysis

    USGS Publications Warehouse

    Laughlin, D.C.; Abella, S.R.; Covington, W.W.; Grace, J.B.

    2007-01-01

    Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North-central Arizona, USA. Methods: We sampled 75 0.05-ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non-linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests. ?? IAVS; Opulus Press.

  7. Multivariate control of plant species richness and community biomass in blackland prairie

    USGS Publications Warehouse

    Weiher, E.; Forbes, S.; Schauwecker, T.; Grace, J.B.

    2004-01-01

    Recent studies have shown that patterns of plant species richness and community biomass are best understood in a multivariate context. The objective of this study was to develop and evaluate a multivariate hypothesis about how herbaceous biomass and richness relate to gradients in soil conditions and woody plant cover in blackland prairies. Structural equation modeling was used to investigate how soil characteristics and shade by scattered Juniperus virginiana trees relate to standing biomass and species richness in 99 0.25 m2 quadrats collected in eastern Mississippi, USA. Analysis proceeded in two stages. In the first stage, we evaluated the hypothesis that correlations among soil parameters could be represented by two underlying (latent) soil factors, mineral content and organic content. In the second stage, we evaluated the hypothesis that richness and biomass were related to (1) soil properties, (2) tree canopy extent, and (3) each other (i.e. reciprocal effects between richness and biomass). With some modification to the details of the original model, it was found that soil properties could be represented as two latent variables. In the overall model, 51% and 53% of the observed variation in richness and biomass were explained. The order of importance for variables explaining variations in richness was (1) soil organic content, (2) soil mineral content, (3) community biomass, and (4) tree canopy extent. The order of importance for variables explaining biomass was (1) tree canopy and (2) soil organic content, with neither soil mineral content nor species richness explaining significant variation in biomass. Based on these findings, we conclude that variations in richness are uniquely related to both variations in soil conditions and variations in herbaceous biomass. We further conclude that there is no evidence in these data for effects of species richness on biomass.

  8. Regional and local species richness in an insular environment: Serpentine plants in California

    USGS Publications Warehouse

    Harrison, S.; Safford, H.D.; Grace, J.B.; Viers, J.H.; Davies, K.F.

    2006-01-01

    We asked how the richness of the specialized (endemic) flora of serpentine rock outcrops in California varies at both the regional and local scales. Our study had two goals: first, to test whether endemic richness is affected by spatial habitat structure (e.g., regional serpentine area, local serpentine outcrop area, regional and local measures of outcrop isolation), and second, to conduct this test in the context of a broader assessment of environmental influences (e.g., climate, soils, vegetation, disturbance) and historical influences (e.g., geologic age, geographic province) on local and regional species richness. We measured endemic and total richness and environmental variables in 109 serpentine sites (1000-m2 paired plots) in 78 serpentine-containing regions of the state. We used structural equation modeling (SEM) to simultaneously relate regional richness to regionalscale predictors, and local richness to both local-scale and regional-scale predictors. Our model for serpentine endemics explained 66% of the variation in local endemic richness based on local environment (vegetation, soils, rock cover) and on regional endemic richness. It explained 73% of the variation in regional endemic richness based on regional environment (climate and productivity), historical factors (geologic age and geographic province), and spatial structure (regional total area of serpentine, the only significant spatial variable in our analysis). We did not find a strong influence of spatial structure on species richness. However, we were able to distinguish local vs. regional influences on species richness to a novel extent, despite the existence of correlations between local and regional conditions. ?? 2006 by the Ecological Society of America.

  9. Effects of Trophic Skewing of Species Richness on Ecosystem Functioning in a Diverse Marine Community

    PubMed Central

    Reynolds, Pamela L.; Bruno, John F.

    2012-01-01

    Widespread overharvesting of top consumers of the world’s ecosystems has “skewed” food webs, in terms of biomass and species richness, towards a generally greater domination at lower trophic levels. This skewing is exacerbated in locations where exotic species are predominantly low-trophic level consumers such as benthic macrophytes, detritivores, and filter feeders. However, in some systems where numerous exotic predators have been added, sometimes purposefully as in many freshwater systems, food webs are skewed in the opposite direction toward consumer dominance. Little is known about how such modifications to food web topology, e.g., changes in the ratio of predator to prey species richness, affect ecosystem functioning. We experimentally measured the effects of trophic skew on production in an estuarine food web by manipulating ratios of species richness across three trophic levels in experimental mesocosms. After 24 days, increasing macroalgal richness promoted both plant biomass and grazer abundance, although the positive effect on plant biomass disappeared in the presence of grazers. The strongest trophic cascade on the experimentally stocked macroalgae emerged in communities with a greater ratio of prey to predator richness (bottom-rich food webs), while stronger cascades on the accumulation of naturally colonizing algae (primarily microalgae with some early successional macroalgae that recruited and grew in the mesocosms) generally emerged in communities with greater predator to prey richness (the more top-rich food webs). These results suggest that trophic skewing of species richness and overall changes in food web topology can influence marine community structure and food web dynamics in complex ways, emphasizing the need for multitrophic approaches to understand the consequences of marine extinctions and invasions. PMID:22693549

  10. The influence of trap density and sampling duration on the detection of small mammal species richness

    USGS Publications Warehouse

    Conard, J.M.; Baumgardt, J.A.; Gipson, P.S.; Althoff, D.P.

    2008-01-01

    Assessing species richness of small mammal communities is an important research objective for many live-trapping studies designed to assess or monitor biological diversity. We tested the effectiveness and efficiency of various trap densities for determining estimates and counts of small mammal species richness. Trapping was conducted in grassland habitats in northeastern Kansas during spring and fall of 2002 and 2003. Estimates and counts of species richness were higher at increased trap densities. This effect appeared to be primarily due to the higher number of individuals sampled at higher trap densities. At least 3 nights duration was needed to produce a stable estimate of species richness for the range of trap densities tested (9-144 trap stations/ha). Higher trap densities generally reached stable richness estimates in fewer nights than low density trapping arrangements. Given that counts and estimates of species richness were influenced by trap density and sampling duration, it is critical that these parameters are selected to most effectively meet research objectives.

  11. Disentangling the Role of Climate, Topography and Vegetation in Species Richness Gradients

    PubMed Central

    Moura, Mario R.; Villalobos, Fabricio; Costa, Gabriel C.; Garcia, Paulo C. A.

    2016-01-01

    Environmental gradients (EG) related to climate, topography and vegetation are among the most important drivers of broad scale patterns of species richness. However, these different EG do not necessarily drive species richness in similar ways, potentially presenting synergistic associations when driving species richness. Understanding the synergism among EG allows us to address key questions arising from the effects of global climate and land use changes on biodiversity. Herein, we use variation partitioning (also know as commonality analysis) to disentangle unique and shared contributions of different EG in explaining species richness of Neotropical vertebrates. We use three broad sets of predictors to represent the environmental variability in (i) climate (annual mean temperature, temperature annual range, annual precipitation and precipitation range), (ii) topography (mean elevation, range and coefficient of variation of elevation), and (iii) vegetation (land cover diversity, standard deviation and range of forest canopy height). The shared contribution between two types of EG is used to quantify synergistic processes operating among EG, offering new perspectives on the causal relationships driving species richness. To account for spatially structured processes, we use Spatial EigenVector Mapping models. We perform analyses across groups with distinct dispersal abilities (amphibians, non-volant mammals, bats and birds) and discuss the influence of vagility on the partitioning results. Our findings indicate that broad scale patterns of vertebrate richness are mainly affected by the synergism between climate and vegetation, followed by the unique contribution of climate. Climatic factors were relatively more important in explaining species richness of good dispersers. Most of the variation in vegetation that explains vertebrate richness is climatically structured, supporting the productivity hypothesis. Further, the weak synergism between topography and vegetation

  12. Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Schultheiß, R.; Van Bocxlaer, B.; Prömmel, K.; Albrecht, C.

    2014-12-01

    Species diversity and how it is structured on a continental scale is influenced by stochastic, ecological, and evolutionary driving forces, but hypotheses on determining factors have been mainly examined for terrestrial and marine organisms. The extant diversity of African freshwater mollusks is in general well assessed to facilitate conservation strategies and because of the medical importance of several taxa as intermediate hosts for tropical parasites. This historical accumulation of knowledge has, however, not resulted in substantial macroecological studies on the spatial distribution of freshwater mollusks. Here, we use continental distribution data and a recently developed method of random and cohesive allocation of species distribution ranges to test the relative importance of various factors in shaping species richness of Bivalvia and Gastropoda. We show that the mid-domain effect, that is, a hump-shaped richness gradient in a geographically bounded system despite the absence of environmental gradients, plays a minor role in determining species richness of freshwater mollusks in sub-Saharan Africa. The western branch of the East African Rift System was included as dispersal barrier in richness models, but these simulation results did not fit observed diversity patterns significantly better than models where this effect was not included, which suggests that the rift has played a more complex role in generating diversity patterns. Present-day precipitation and temperature explain richness patterns better than Eemian climatic condition. Therefore, the availability of water and energy for primary productivity during the past does not influence current species richness patterns much, and observed diversity patterns appear to be in equilibrium with contemporary climate. The availability of surface waters was the best predictor of bivalve and gastropod richness. Our data indicate that habitat diversity causes the observed species-area relationship, and hence, that

  13. Patterns of Species Richness and Turnover for the South American Rodent Fauna

    PubMed Central

    Maestri, Renan; Patterson, Bruce D.

    2016-01-01

    Understanding the spatial distribution of species sheds light on the group’s biogeographical history, offers clues to the drivers of diversity, and helps to guide conservation strategies. Here, we compile geographic range information for South America’s diverse rodents, whose 14 families comprise ~50% of the continent’s mammalian species. The South American rodent fauna is dominated by independent and temporally staggered radiations of caviomorph and sigmodontine groups. We mapped species richness and turnover of all rodents and the principal clades to identify the main predictors of diversity patterns. Species richness was highest in the Andes, with a secondary hotspot in Atlantic Forest and some regions of considerable richness in Amazonia. Differences in richness were evident between the caviomorphs and sigmodontines, the former showing the greatest richness in tropical forests whereas the latter show—and largely determine—the all-rodent pattern. Elevation was the main predictor of sigmodontine richness, whereas temperature was the principal variable correlated with richness of caviomorphs. Across clades, species turnover was highest along the Andes and was best explained by elevational relief. In South America, the effects of the familiar latitudinal gradient in species richness are mixed with a strong longitudinal effect, triggered by the importance of elevation and the position of the Andes. Both latitudinal and elevational effects help explain the complicated distribution of rodent diversity across the continent. The continent’s restricted-range species—those seemingly most vulnerable to localized disturbance—are mostly distributed along the Andes and in Atlantic Forest, with the greatest concentration in Ecuador. Both the Andes and Atlantic Forest are known hotspots for other faunal and floral components. Contrasting patterns of the older caviomorph and younger sigmodontine radiations underscore the interplay of both historical and

  14. Disentangling the Role of Climate, Topography and Vegetation in Species Richness Gradients.

    PubMed

    Moura, Mario R; Villalobos, Fabricio; Costa, Gabriel C; Garcia, Paulo C A

    2016-01-01

    Environmental gradients (EG) related to climate, topography and vegetation are among the most important drivers of broad scale patterns of species richness. However, these different EG do not necessarily drive species richness in similar ways, potentially presenting synergistic associations when driving species richness. Understanding the synergism among EG allows us to address key questions arising from the effects of global climate and land use changes on biodiversity. Herein, we use variation partitioning (also know as commonality analysis) to disentangle unique and shared contributions of different EG in explaining species richness of Neotropical vertebrates. We use three broad sets of predictors to represent the environmental variability in (i) climate (annual mean temperature, temperature annual range, annual precipitation and precipitation range), (ii) topography (mean elevation, range and coefficient of variation of elevation), and (iii) vegetation (land cover diversity, standard deviation and range of forest canopy height). The shared contribution between two types of EG is used to quantify synergistic processes operating among EG, offering new perspectives on the causal relationships driving species richness. To account for spatially structured processes, we use Spatial EigenVector Mapping models. We perform analyses across groups with distinct dispersal abilities (amphibians, non-volant mammals, bats and birds) and discuss the influence of vagility on the partitioning results. Our findings indicate that broad scale patterns of vertebrate richness are mainly affected by the synergism between climate and vegetation, followed by the unique contribution of climate. Climatic factors were relatively more important in explaining species richness of good dispersers. Most of the variation in vegetation that explains vertebrate richness is climatically structured, supporting the productivity hypothesis. Further, the weak synergism between topography and vegetation

  15. Reef flattening effects on total richness and species responses in the Caribbean.

    PubMed

    Newman, Steven P; Meesters, Erik H; Dryden, Charlie S; Williams, Stacey M; Sanchez, Cristina; Mumby, Peter J; Polunin, Nicholas V C

    2015-11-01

    There has been ongoing flattening of Caribbean coral reefs with the loss of habitat having severe implications for these systems. Complexity and its structural components are important to fish species richness and community composition, but little is known about its role for other taxa or species-specific responses. This study reveals the importance of reef habitat complexity and structural components to different taxa of macrofauna, total species richness, and individual coral and fish species in the Caribbean. Species presence and richness of different taxa were visually quantified in one hundred 25-m(2) plots in three marine reserves in the Caribbean. Sampling was evenly distributed across five levels of visually estimated reef complexity, with five structural components also recorded: the number of corals, number of large corals, slope angle, maximum sponge and maximum octocoral height. Taking advantage of natural heterogeneity in structural complexity within a particular coral reef habitat (Orbicella reefs) and discrete environmental envelope, thus minimizing other sources of variability, the relative importance of reef complexity and structural components was quantified for different taxa and individual fish and coral species on Caribbean coral reefs using boosted regression trees (BRTs). Boosted regression tree models performed very well when explaining variability in total (82·3%), coral (80·6%) and fish species richness (77·3%), for which the greatest declines in richness occurred below intermediate reef complexity levels. Complexity accounted for very little of the variability in octocorals, sponges, arthropods, annelids or anemones. BRTs revealed species-specific variability and importance for reef complexity and structural components. Coral and fish species occupancy generally declined at low complexity levels, with the exception of two coral species (Pseudodiploria strigosa and Porites divaricata) and four fish species (Halichoeres bivittatus, H

  16. Effects of ‘Target’ Plant Species Body Size on Neighbourhood Species Richness and Composition in Old-Field Vegetation

    PubMed Central

    Schamp, Brandon S.; Aarssen, Lonnie W.; Wight, Stephanie

    2013-01-01

    Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species. PMID:24349177

  17. ESTIMATING REGIONAL SPECIES RICHNESS USING A LIMITED NUMBER OF SURVEY UNITS

    EPA Science Inventory

    The accurate and precise estimation of species richness at large spatial scales using a limited number of survey units is of great significance for ecology and biodiversity conservation. We used the distribution data of native fish and resident breeding bird species compiled for ...

  18. Clade age and not diversification rate explains species richness among animal taxa.

    PubMed

    McPeek, Mark A; Brown, Jonathan M

    2007-04-01

    Animal taxa show remarkable variability in species richness across phylogenetic groups. Most explanations for this disparity postulate that taxa with more species have phenotypes or ecologies that cause higher diversification rates (i.e., higher speciation rates or lower extinction rates). Here we show that clade longevity, and not diversification rate, has primarily shaped patterns of species richness across major animal clades: more diverse taxa are older and thus have had more time to accumulate species. Diversification rates calculated from 163 species-level molecular phylogenies were highly consistent within and among three major animal phyla (Arthropoda, Chordata, Mollusca) and did not correlate with species richness. Clades with higher estimated diversification rates were younger, but species numbers increased with increasing clade age. A fossil-based data set also revealed a strong, positive relationship between total extant species richness and crown group age across the orders of insects and vertebrates. These findings do not negate the importance of ecology or phenotype in influencing diversification rates, but they do show that clade longevity is the dominant signal in major animal biodiversity patterns. Thus, some key innovations may have acted through fostering clade longevity and not by heightening diversification rate. PMID:17427118

  19. Corridors maintain species richness in the fragmented landscapes of a microecosystem

    PubMed Central

    Gilbert, F.; Gonzalez, A.; Evans-Freke, I.

    1998-01-01

    Theory predicts that species richness or single-species populations can be maintained, or at least extinctions minimized, by boosting rates of immigration. One possible way of achieving this is by establishing corridors of suitable habitat between reserves. Using moss patches as model microecosystems, we provide here probably the first field experimental test of the idea that corridors can reduce the rate of loss of species, and therefore help to maintain species richness. Connecting patches of habitat with corridors did indeed slow the rate of extinction of species, preserving species richness for longer periods of time than in disconnected habitat patches. The pattern of γ-diversity, the cumulative species richness of entire connected systems, is similarly higher than that of fragmented systems, despite the homogenizing effects of movement. Predators are predicted to be more susceptible to fragmentation because of their greater mobility and smaller population sizes. Our data are consistent with this prediction: the proportion of predator species declined significantly in disconnected as compared with connected treatments.

  20. Mussels as ecosystem engineers: Their contribution to species richness in a rocky littoral community

    NASA Astrophysics Data System (ADS)

    Borthagaray, Ana Inés; Carranza, Alvar

    Mussels are important ecosystem engineers in marine benthic systems because they aggregate into beds, thus modifying the nature and complexity of the substrate. In this study, we evaluated the contribution of mussels ( Brachidontes rodriguezii, Mytilus edulis platensis, and Perna perna) to the benthic species richness of intertidal and shallow subtidal communities at Cerro Verde (Uruguay). We compared the richness of macro-benthic species between mussel-engineered patches and patches without mussels but dominated by algae or barnacles at a landscape scale (all samples), between tidal levels, and between sites distributed along a wave exposition gradient. Overall, we found a net increase in species richness in samples with mussels (35 species), in contrast to samples where mussels were naturally absent or scarce (27 species). The positive trend of the effect did not depend upon tidal level or wave exposition, but its magnitude varied between sites. Within sites, a significant positive effect was detected only at the protected site. Within the mussel-engineered patches, the richness of all macro-faunal groups (total, sessile and mobile) was positively correlated with mussel abundance. This evidence indicates that the mussel beds studied here were important in maintaining species richness at the landscape-level, and highlights that beds of shelled bivalves should not be neglected as conservation targets in marine benthic environments.

  1. Spatial and environmental correlates of species richness and turnover patterns in European cryptocephaline and chrysomeline beetles.

    PubMed

    Freijeiro, Andrea; Baselga, Andrés

    2016-01-01

    Despite some general concordant patterns (i.e. the latitudinal richness gradient), species richness and composition of different European beetle taxa varies in different ways according to their dispersal and ecological traits. Here, the patterns of variation in species richness, composition and spatial turnover are analysed in European cryptocephaline and chrysomeline leaf beetles, assessing their environmental and spatial correlates. The underlying rationale to use environmental and spatial variables of diversity patterns is to assess the relative support for niche- and dispersal-driven hypotheses. Our results show that despite a broad congruence in the factors correlated with cryptocephaline and chrysomeline richness, environmental variables (particularly temperature) were more relevant in cryptocephalines, whereas spatial variables were more relevant in chrysomelines (that showed a significant longitudinal gradient besides the latitudinal one), in line with the higher proportion of flightless species within chrysomelines. The variation in species composition was also related to environmental and spatial factors, but this pattern was better predicted by spatial variables in both groups, suggesting that species composition is more linked to dispersal and historical contingencies than species richness, which would be more controlled by environmental limitations. Among historical factors, Pleistocene glaciations appear as the most plausible explanation for the steeper decay in assemblage similarity with spatial distance, both in cryptocephalines and chrysomelines. PMID:27408587

  2. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches

    PubMed Central

    Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region. PMID:26644988

  3. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches.

    PubMed

    Wagner, Elena L E S; Roche, Dominique G; Binning, Sandra A; Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region. PMID:26644988

  4. Spatial and environmental correlates of species richness and turnover patterns in European cryptocephaline and chrysomeline beetles

    PubMed Central

    Freijeiro, Andrea; Baselga, Andrés

    2016-01-01

    Abstract Despite some general concordant patterns (i.e. the latitudinal richness gradient), species richness and composition of different European beetle taxa varies in different ways according to their dispersal and ecological traits. Here, the patterns of variation in species richness, composition and spatial turnover are analysed in European cryptocephaline and chrysomeline leaf beetles, assessing their environmental and spatial correlates. The underlying rationale to use environmental and spatial variables of diversity patterns is to assess the relative support for niche- and dispersal-driven hypotheses. Our results show that despite a broad congruence in the factors correlated with cryptocephaline and chrysomeline richness, environmental variables (particularly temperature) were more relevant in cryptocephalines, whereas spatial variables were more relevant in chrysomelines (that showed a significant longitudinal gradient besides the latitudinal one), in line with the higher proportion of flightless species within chrysomelines. The variation in species composition was also related to environmental and spatial factors, but this pattern was better predicted by spatial variables in both groups, suggesting that species composition is more linked to dispersal and historical contingencies than species richness, which would be more controlled by environmental limitations. Among historical factors, Pleistocene glaciations appear as the most plausible explanation for the steeper decay in assemblage similarity with spatial distance, both in cryptocephalines and chrysomelines. PMID:27408587

  5. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot

    PubMed Central

    Engemann, Kristine; Enquist, Brian J; Sandel, Brody; Boyle, Brad; Jørgensen, Peter M; Morueta-Holme, Naia; Peet, Robert K; Violle, Cyrille; Svenning, Jens-Christian

    2015-01-01

    Macro-scale species richness studies often use museum specimens as their main source of information. However, such datasets are often strongly biased due to variation in sampling effort in space and time. These biases may strongly affect diversity estimates and may, thereby, obstruct solid inference on the underlying diversity drivers, as well as mislead conservation prioritization. In recent years, this has resulted in an increased focus on developing methods to correct for sampling bias. In this study, we use sample-size-correcting methods to examine patterns of tropical plant diversity in Ecuador, one of the most species-rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second-order Jackknife and Bootstrapping resampling methods, and Hill numbers and rarefaction. Species richness was heavily correlated with sampling effort, and only rarefaction was able to remove this effect, and we recommend this method for estimation of species richness with “big data” collections. PMID:25692000

  6. Limited sampling hampers "big data" estimation of species richness in a tropical biodiversity hotspot.

    PubMed

    Engemann, Kristine; Enquist, Brian J; Sandel, Brody; Boyle, Brad; Jørgensen, Peter M; Morueta-Holme, Naia; Peet, Robert K; Violle, Cyrille; Svenning, Jens-Christian

    2015-02-01

    Macro-scale species richness studies often use museum specimens as their main source of information. However, such datasets are often strongly biased due to variation in sampling effort in space and time. These biases may strongly affect diversity estimates and may, thereby, obstruct solid inference on the underlying diversity drivers, as well as mislead conservation prioritization. In recent years, this has resulted in an increased focus on developing methods to correct for sampling bias. In this study, we use sample-size-correcting methods to examine patterns of tropical plant diversity in Ecuador, one of the most species-rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second-order Jackknife and Bootstrapping resampling methods, and Hill numbers and rarefaction. Species richness was heavily correlated with sampling effort, and only rarefaction was able to remove this effect, and we recommend this method for estimation of species richness with "big data" collections. PMID:25692000

  7. Mountaintop island age determines species richness of boreal mammals in the American Southwest

    USGS Publications Warehouse

    Frey, J.K.; Bogan, M.A.; Yates, T.L.

    2007-01-01

    Models that describe the mechanisms responsible for insular patterns of species richness include the equilibrium theory of island biogeography and the nonequilibrium vicariance model. The relative importance of dispersal or vicariance in structuring insular distribution patterns can be inferred from these models. Predictions of the alternative models were tested for boreal mammals in the American Southwest. Age of mountaintop islands of boreal habitat was determined by constructing a geographic cladogram based on characteristics of intervening valley barriers. Other independent variables included area and isolation of mountaintop islands. Island age was the most important predictor of species richness. In contrast with previous studies of species richness patterns in this system, these results supported the nonequilibrium vicariance model, which indicates that vicariance has been the primary determinant of species distribution patterns in this system. Copyright ?? Ecography 2007.

  8. Environmental changes define ecological limits to species richness and reveal the mode of macroevolutionary competition.

    PubMed

    Ezard, Thomas H G; Purvis, Andy

    2016-08-01

    Co-dependent geological and climatic changes obscure how species interact in deep time. The interplay between these environmental factors makes it hard to discern whether ecological competition exerts an upper limit on species richness. Here, using the exceptional fossil record of Cenozoic Era macroperforate planktonic foraminifera, we assess the evidence for alternative modes of macroevolutionary competition. Our models support an environmentally dependent macroevolutionary form of contest competition that yields finite upper bounds on species richness. Models of biotic competition assuming unchanging environmental conditions were overwhelmingly rejected. In the best-supported model, temperature affects the per-lineage diversification rate, while both temperature and an environmental driver of sediment accumulation defines the upper limit. The support for contest competition implies that incumbency constrains species richness by restricting niche availability, and that the number of macroevolutionary niches varies as a function of environmental changes. PMID:27278857

  9. Spatial congruence in language and species richness but not threat in the world's top linguistic hotspot

    PubMed Central

    Turvey, Samuel T.; Pettorelli, Nathalie

    2014-01-01

    Languages share key evolutionary properties with biological species, and global-level spatial congruence in richness and threat is documented between languages and several taxonomic groups. However, there is little understanding of the functional connection between diversification or extinction in languages and species, or the relationship between linguistic and species richness across different spatial scales. New Guinea is the world's most linguistically rich region and contains extremely high biological diversity. We demonstrate significant positive relationships between language and mammal richness in New Guinea across multiple spatial scales, revealing a likely functional relationship over scales at which infra-island diversification may occur. However, correlations are driven by spatial congruence between low levels of language and species richness. Regional biocultural richness may have showed closer congruence before New Guinea's linguistic landscape was altered by Holocene demographic events. In contrast to global studies, we demonstrate a significant negative correlation across New Guinea between areas with high levels of threatened languages and threatened mammals, indicating that landscape-scale threats differ between these groups. Spatial resource prioritization to conserve biodiversity may not benefit threatened languages, and conservation policy must adopt a multi-faceted approach to protect biocultural diversity as a whole. PMID:25320172

  10. Orchid Species Richness along Elevational and Environmental Gradients in Yunnan, China

    PubMed Central

    Zhang, Shi-Bao; Chen, Wen-Yun; Huang, Jia-Lin; Bi, Ying-Feng; Yang, Xue-Fei

    2015-01-01

    The family Orchidaceae is not only one of the most diverse families of flowering plants, but also one of the most endangered plant taxa. Therefore, understanding how its species richness varies along geographical and environmental gradients is essential for conservation efforts. However, such knowledge is rarely available, especially on a large scale. We used a database extracted from herbarium records to investigate the relationships between orchid species richness and elevation, and to examine how elevational diversity in Yunnan Province, China, might be explained by mid-domain effect (MDE), species–area relationship (SAR), water–energy dynamics (WED), Rapoport’s Rule, and climatic variables. This particular location was selected because it is one of the primary centers of distribution for orchids. We recorded 691 species that span 127 genera and account for 88.59% of all confirmed orchid species in Yunnan. Species richness, estimated at 200-m intervals along a slope, was closely correlated with elevation, peaking at 1395 to 1723 m. The elevational pattern of orchid richness was considerably shaped by MDE, SAR, WED, and climate. Among those four predictors, climate was the strongest while MDE was the weakest for predicting the elevational pattern of orchid richness. Species richness showed parabolic responses to mean annual temperature (MAT) and mean annual precipitation (MAP), with maximum richness values recorded at 13.7 to 17.7°C for MAT and 1237 to 1414 mm for MAP. Rapoport’s Rule also helped to explain the elevational pattern of species richness in Yunnan, but those influences were not entirely uniform across all methods. These results suggested that the elevational pattern of orchid species richness in Yunnan is collectively shaped by several mechanisms related to geometric constraints, size of the land area, and environments. Because of the dominant role of climate in determining orchid richness, our findings may contribute to a better

  11. Patterns of reptile and amphibian species richness along elevational gradients in Mt. Kenya.

    PubMed

    Malonza, Patrick Kinyatta

    2015-11-18

    Faunal species richness is traditionally assumed to decrease with increasing elevation and decreasing primary productivity. Species richness is reported to peak at mid-elevation. This survey examines the herpetofaunal diversity and distribution in Mt. Kenya (central Kenya) by testing the hypothesis that changes in species richness with elevation relate to elevation-dependent changes in climate. Sampling along transects from an elevation of approximately 1 700 m in Chogoria forest block (wind-ward side) and approximately 2 600 m in Sirimon block (rain shadow zone) upwards in March 2009. This starts from the forest to montane alpine zones. Sampling of reptiles and amphibians uses pitfall traps associated with drift fences, time-limited searches and visual encounter surveys. The results show that herpetofaunal richness differs among three vegetation zones along the elevation gradient. Chogoria has higher biodiversity than Sirimon. More species occur at low and middle elevations and few exist at high elevations. The trends are consistent with expected optimum water and energy variables. The lower alpine montane zone has high species richness but low diversity due to dominance of some high elevations species. Unambiguous data do not support a mid-domain effect (mid-elevation peak) because the observed trend better fits a model in which climatic variables (rainfall and temperature) control species richness, which indirectly measures productivity. It is important to continue protection of all indigenous forests, especially at low to mid elevations. These areas are vulnerable to human destruction yet are home to some endemic species. Firebreaks can limit the spread of the perennial wildfires, especially on the moorlands. PMID:26646571

  12. Patterns of reptile and amphibian species richness along elevational gradients in Mt. Kenya

    PubMed Central

    MALONZA, Patrick Kinyatta

    2015-01-01

    Faunal species richness is traditionally assumed to decrease with increasing elevation and decreasing primary productivity. Species richness is reported to peak at mid-elevation. This survey examines the herpetofaunal diversity and distribution in Mt. Kenya (central Kenya) by testing the hypothesis that changes in species richness with elevation relate to elevation-dependent changes in climate. Sampling along transects from an elevation of approximately 1 700 m in Chogoria forest block (wind-ward side) and approximately 2 600 m in Sirimon block (rain shadow zone) upwards in March 2009. This starts from the forest to montane alpine zones. Sampling of reptiles and amphibians uses pitfall traps associated with drift fences, time-limited searches and visual encounter surveys. The results show that herpetofaunal richness differs among three vegetation zones along the elevation gradient. Chogoria has higher biodiversity than Sirimon. More species occur at low and middle elevations and few exist at high elevations. The trends are consistent with expected optimum water and energy variables. The lower alpine montane zone has high species richness but low diversity due to dominance of some high elevations species. Unambiguous data do not support a mid-domain effect (mid-elevation peak) because the observed trend better fits a model in which climatic variables (rainfall and temperature) control species richness, which indirectly measures productivity. It is important to continue protection of all indigenous forests, especially at low to mid elevations. These areas are vulnerable to human destruction yet are home to some endemic species. Firebreaks can limit the spread of the perennial wildfires, especially on the moorlands. PMID:26646571

  13. Testing the Effectiveness of Environmental Variables to Explain European Terrestrial Vertebrate Species Richness across Biogeographical Scales.

    PubMed

    Mouchet, Maud; Levers, Christian; Zupan, Laure; Kuemmerle, Tobias; Plutzar, Christoph; Erb, Karlheinz; Lavorel, Sandra; Thuiller, Wilfried; Haberl, Helmut

    2015-01-01

    We compared the effectiveness of environmental variables, and in particular of land-use indicators, to explain species richness patterns across taxonomic groups and biogeographical scales (i.e. overall pan-Europe and ecoregions within pan-Europe). Using boosted regression trees that handle non-linear relationships, we compared the relative influence (as a measure of effectiveness) of environmental variables related to climate, landscape (or habitat heterogeneity), land-use intensity or energy availability to explain European vertebrate species richness (birds, amphibians, and mammals) at the continental and ecoregion scales. We found that dominant land cover and actual evapotranspiration that relate to energy availability were the main correlates of vertebrate species richness over Europe. At the ecoregion scale, we identified four distinct groups of ecoregions where species richness was essentially associated to (i) seasonality of temperature, (ii) actual evapotranspiration and/or mean annual temperature, (iii) seasonality of precipitation, actual evapotranspiration and land cover) and (iv) and an even combination of the environmental variables. This typology of ecoregions remained valid for total vertebrate richness and the three vertebrate groups taken separately. Despite the overwhelming influence of land cover and actual evapotranspiration to explain vertebrate species richness patterns at European scale, the ranking of the main correlates of species richness varied between regions. Interestingly, landscape and land-use indicators did not stand out at the continental scale but their influence greatly increased in southern ecoregions, revealing the long-lasting human footprint on land-use-land-cover changes. Our study provides one of the first multi-scale descriptions of the variability in the ranking of correlates across several taxa. PMID:26161981

  14. Testing the Effectiveness of Environmental Variables to Explain European Terrestrial Vertebrate Species Richness across Biogeographical Scales

    PubMed Central

    Mouchet, Maud; Levers, Christian; Zupan, Laure; Kuemmerle, Tobias; Plutzar, Christoph; Erb, Karlheinz; Lavorel, Sandra; Thuiller, Wilfried; Haberl, Helmut

    2015-01-01

    We compared the effectiveness of environmental variables, and in particular of land-use indicators, to explain species richness patterns across taxonomic groups and biogeographical scales (i.e. overall pan-Europe and ecoregions within pan-Europe). Using boosted regression trees that handle non-linear relationships, we compared the relative influence (as a measure of effectiveness) of environmental variables related to climate, landscape (or habitat heterogeneity), land-use intensity or energy availability to explain European vertebrate species richness (birds, amphibians, and mammals) at the continental and ecoregion scales. We found that dominant land cover and actual evapotranspiration that relate to energy availability were the main correlates of vertebrate species richness over Europe. At the ecoregion scale, we identified four distinct groups of ecoregions where species richness was essentially associated to (i) seasonality of temperature, (ii) actual evapotranspiration and/or mean annual temperature, (iii) seasonality of precipitation, actual evapotranspiration and land cover) and (iv) and an even combination of the environmental variables. This typology of ecoregions remained valid for total vertebrate richness and the three vertebrate groups taken separately. Despite the overwhelming influence of land cover and actual evapotranspiration to explain vertebrate species richness patterns at European scale, the ranking of the main correlates of species richness varied between regions. Interestingly, landscape and land-use indicators did not stand out at the continental scale but their influence greatly increased in southern ecoregions, revealing the long-lasting human footprint on land-use–land-cover changes. Our study provides one of the first multi-scale descriptions of the variability in the ranking of correlates across several taxa. PMID:26161981

  15. Interactive effects of elevation, species richness and extreme climatic events on plant-pollinator networks.

    PubMed

    Hoiss, Bernhard; Krauss, Jochen; Steffan-Dewenter, Ingolf

    2015-11-01

    Plant-pollinator interactions are essential for the functioning of terrestrial ecosystems, but are increasingly affected by global change. The risks to such mutualistic interactions from increasing temperature and more frequent extreme climatic events such as drought or advanced snow melt are assumed to depend on network specialization, species richness, local climate and associated parameters such as the amplitude of extreme events. Even though elevational gradients provide valuable model systems for climate change and are accompanied by changes in species richness, responses of plant-pollinator networks to climatic extreme events under different environmental and biotic conditions are currently unknown. Here, we show that elevational climatic gradients, species richness and experimentally simulated extreme events interactively change the structure of mutualistic networks in alpine grasslands. We found that the degree of specialization in plant-pollinator networks (H2') decreased with elevation. Nonetheless, network specialization increased after advanced snow melt at high elevations, whereas changes in network specialization after drought were most pronounced at sites with low species richness. Thus, changes in network specialization after extreme climatic events depended on climatic context and were buffered by high species richness. In our experiment, only generalized plant-pollinator networks changed in their degree of specialization after climatic extreme events. This indicates that contrary to our assumptions, network generalization may not always foster stability of mutualistic interaction networks. PMID:26332102

  16. Spatio-temporal dynamics of species richness in coastal fish communities

    USGS Publications Warehouse

    Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.

    2002-01-01

    Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.

  17. Molluskan species richness and endemism on New Caledonian seamounts: Are they enhanced compared to adjacent slopes?

    NASA Astrophysics Data System (ADS)

    Castelin, Magalie; Puillandre, Nicolas; Lozouet, Pierre; Sysoev, Alexander; de Forges, Bertrand Richer; Samadi, Sarah

    2011-06-01

    Seamounts were often considered as 'hotspots of diversity' and 'centers of endemism', but recently this opinion has been challenged. After 25 years of exploration and the work of numerous taxonomists, the Norfolk Ridge (Southwest Pacific) is probably one of the best-studied seamount chains worldwide. However, even in this intensively explored area, the richness and the geographic patterns of diversity are still poorly characterized. Among the benthic organisms, the post-mortem remains of mollusks can supplement live records to comprehensively document geographical distributions. Moreover, the accretionary growth of mollusk shells informs us about the life span of the pelagic larva. To compare diversity and level of endemism between the Norfolk Ridge seamounts and the continental slopes of New Caledonia we used species occurrence data drawn from (i) the taxonomic literature on mollusks and (ii) a raw dataset of mainly undescribed deep-sea species of the hyperdiverse Turridae. Patterns of endemism and species richness were analyzed through quantitative indices of endemism and species richness estimator metrics. To date, 403 gastropods and bivalves species have been recorded on the Norfolk Ridge seamounts. Of these, at least 38 species (˜10%) are potentially endemic to the seamounts and nearly all of 38 species have protoconchs indicating lecithotrophic larval development. Overall, our results suggest that estimates of species richness and endemism, when sampling effort is taken into account, were not significantly different between slopes and seamounts. By including in our analyses 347 undescribed morphospecies from the Norfolk Ridge, our results also demonstrate the influence of taxonomic bias on our estimates of species richness and endemism.

  18. Effects of earthworm invasion on plant species richness in northern hardwood forests.

    PubMed

    Holdsworth, Andrew R; Frelich, Lee E; Reich, Peter B

    2007-08-01

    The invasion of non-native earthworms (Lumbricus spp.) into a small number of intensively studied stands of northern hardwood forest has been linked to declines in plant diversity and the local extirpation of one threatened species. It is unknown, however, whether these changes have occurred across larger regions of hardwood forests, which plant species are most vulnerable, or with which earthworm species such changes are associated most closely. To address these issues we conducted a regional survey in the Chippewa and Chequamegon national forests in Minnesota and Wisconsin (U.S.A.), respectively. We sampled earthworms, soils, and vegetation, examined deer browse in 20 mature, sugar-maple-dominated forest stands in each national forest, and analyzed the relationship between invasive earthworms and vascular plant species richness and composition. Invasion by Lumbricus was a strong indicator of reduced plant richness in both national forests. The mass of Lumbricus juveniles was significantly and negatively related to plant-species richness in both forests. In addition, Lumbricus was a significant factor affecting plant richness in a full model that included multiple variables. In the Chequamegon National Forest earthworm mass was associated with higher sedge cover and lower cover of sugar maple seedlings and several forb species. The trends were similar but not as pronounced in Chippewa, perhaps due to lower deer densities and different earthworm species composition. Our results provide regional evidence that invasion by Lumbricus species may be an important mechanism in reduced plant-species richness and changes in plant communities in mature forests dominated by sugar maples. PMID:17650250

  19. Predicting declines in avian species richness under nonrandom patterns of habitat loss in a neotropical landscape.

    PubMed

    Rompré, Ghislain; Robinson, W Douglas; Desrochers, André; Angehr, George

    2009-09-01

    One of the key concerns in conservation is to document and predict the effects of habitat loss on species richness. To do this, the species-area relationship (SAR) is frequently used. That relationship assumes random patterns of habitat loss and species distributions. In nature, however, species distribution patterns are usually nonrandom, influenced by biotic and abiotic factors. Likewise, socioeconomic and environmental factors influence habitat loss and are not randomly distributed across landscapes. We used a recently developed SAR model that accounts for nonrandomness to predict rates of bird species loss in fragmented forests of the Panama Canal region, an area that was historically covered in forest but now has 53% forest cover. Predicted species loss was higher than that predicted by the standard SAR. Furthermore, a species loss threshold was evident when remaining forest cover declined by 25%. This level of forest cover corresponds to 40% of the historical forest cover, and our model predicts rapid species loss past that threshold. This study illustrates the importance of considering patterns of species distributions and realistic habitat loss scenarios to develop better estimates of losses in species richness. Forecasts of tropical biodiversity loss generated from simple species-area relationships may underestimate actual losses because nonrandom patterns of species distributions and habitat loss are probably not unique to the Panama Canal region. PMID:19769107

  20. The Peruvian Amazonian species of Epirhyssa Cresson (Hymenoptera: Ichneumonidae: Rhyssinae), with notes on tropical species richness.

    PubMed

    Gómez, Isrrael C; Sääksjärvi, Ilari E; Puhakka, Liisa; Castillo, Carol; Bordera, Santiago

    2015-01-01

    Epirhyssa Cresson 1865 is a large tropical genus of the family Ichneumonidae. It is the most diverse genus of the subfamily Rhyssinae with about 118 species worldwide. In this study we conducted four long-term field inventories to review the Peruvian Amazonian species of the genus. We provide illustrations, diagnosis and an identification key to the species currently known to occur in the region, including descriptions of 10 new species. In addition, we describe the female of E. wisei Porter and the male of E. pertenuis Porter, discuss the biogeographical patterns of species richness of the genus and provide new faunistic records for Brazil, Colombia, Ecuador, French Guiana, Paraguay and Peru. The Peruvian Amazonia is, according to our results, among the most species-rich areas in the world for this genus. Some of the new species described in this work were named by the public in Finland and Peru during two innovative competitions to name these beautiful species. The aims of these competitions were to draw attention to the plethora of unknown species lurking in the shades of tropical forests and the necessity to protect these highly diverse areas. PMID:25947472

  1. [Geographic patterns and ecological factors correlates of snake species richness in China].

    PubMed

    Cai, Bo; Huang, Yong; Chen, Yue-Ying; Hu, Jun-Hua; Guo, Xian-Guang; Wang, Yue-Zhao

    2012-08-01

    Understanding large-scale geographic patterns of species richness as well its underlying mechanisms are among the most significant objectives of macroecology and biogeography. The ecological hypothesis is one of the most accepted explanations of this mechanism. Here, we studied the geographic patterns of snakes and investigated the relationships between species richness and ecological factors in China at a spatial resolution of 100 km×100 km. We obtained the eigenvector-based spatial filters by Principal Coordinates Neighbor Matrices, and then analyzed ecological factors by multiple regression analysis. The results indicated several things: (1) species richness of snakes showed multi-peak patterns along both the latitudinal and longitudinal gradient. The areas of highest richness of snake are tropics and subtropical areas of Oriental realm in China while the areas of lowest richness are Qinghai-Tibet Plateau, the grasslands and deserts in northern China, Yangtze-Huai Plain, Two-lake Plain, and the Poyang-lake Plain; (2) results of multiple regression analysis explained a total of 56.5% variance in snake richness. Among ecological factors used to explore the species richness patterns, we found the best factors were the normalized difference vegetation index, precipitation in the coldest quarter and temperature annual range ; (3) our results indicated that the model based on the significant variables that (P<0.05) uses a combination of precipitation of coldest quarter, normalized difference vegetation index and temperature annual range is the most parsimonious model for explaining the mechanism of snake richness in China. This finding demonstrates that different ecological factors work together to affect the geographic distribution of snakes in China. Studying the mechanisms that underlie these geographic patterns are complex, so we must carefully consider the choice of impact-factors and the influence of human activities. PMID:22855440

  2. Contrasting soil ciliate species richness and abundance between two tropical plant species: a test of the plant effect.

    PubMed

    Acosta-Mercado, D; Lynn, D H

    2006-05-01

    We still have a rudimentary understanding about the mechanism by which plant roots may stimulate soil microbial interactions. A biochemical model involving plant-derived biochemical fractions, such as exudates, has been used to explain this "rhizosphere effect" on bacteria. However, the variable response of other soil microbial groups, such as protozoa, to the rhizosphere suggests that other factors could be involved in shaping their communities. Thus, two experiments were designed to: (1) determine whether stimulatory and/or inhibiting factors associated with particular plant species regulate ciliate diversity and abundance and (2) obtain a better understanding about the mechanism by which these plant factors operate in the rhizosphere. Bacterial and chemical slurries were reciprocally exchanged between two plant species known to differ in terms of ciliate species richness and abundance (i.e., Canella winterana and plantation Tectona grandis). Analysis of variance showed that the bacteria plus nutrients and the nutrients only treatment had no significant effect on overall ciliate species richness and abundance when compared to the control treatment. However, the use of only colpodean species increased the taxonomic resolution of treatment effects revealing that bacterial slurries had a significant effect on colpodean ciliate species richness. Thus, for particular rhizosphere ciliates, biological properties, such as bacterial diversity or abundance, may have a strong influence on their diversity and possibly abundance. These results are consistent with a model of soil bacteria-mediated mutualisms between plants and protozoa. PMID:16645921

  3. Clade age and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) lineages.

    PubMed

    Bloom, Devin D; Fikáček, Martin; Short, Andrew E Z

    2014-01-01

    Explaining the disparity of species richness across the tree of life is one of the great challenges in evolutionary biology. Some lineages are exceptionally species rich, while others are relatively species poor. One explanation for heterogeneity among clade richness is that older clades are more species rich because they have had more time to accrue diversity than younger clades. Alternatively, disparity in species richness may be due to among-lineage diversification rate variation. Here we investigate diversification in water scavenger beetles (Hydrophilidae), which vary in species richness among major lineages by as much as 20 fold. Using a time-calibrated phylogeny and comparative methods, we test for a relationship between clade age and species richness and for shifts in diversification rate in hydrophilids. We detected a single diversification rate increase in Megasternini, a relatively young and species rich clade whose diversity might be explained by the stunning diversity of ecological niches occupied by this clade. We find that Amphiopini, an old clade, is significantly more species poor than expected, possibly due to its restricted geographic range. The remaining lineages show a correlation between species richness and clade age, suggesting that both clade age and variation in diversification rates explain the disparity in species richness in hydrophilids. We find little evidence that transitions between aquatic, semiaquatic, and terrestrial habitats are linked to shifts in diversification rates. PMID:24887453

  4. Clade Age and Diversification Rate Variation Explain Disparity in Species Richness among Water Scavenger Beetle (Hydrophilidae) Lineages

    PubMed Central

    Bloom, Devin D.; Fikáček, Martin; Short, Andrew E. Z.

    2014-01-01

    Explaining the disparity of species richness across the tree of life is one of the great challenges in evolutionary biology. Some lineages are exceptionally species rich, while others are relatively species poor. One explanation for heterogeneity among clade richness is that older clades are more species rich because they have had more time to accrue diversity than younger clades. Alternatively, disparity in species richness may be due to among-lineage diversification rate variation. Here we investigate diversification in water scavenger beetles (Hydrophilidae), which vary in species richness among major lineages by as much as 20 fold. Using a time-calibrated phylogeny and comparative methods, we test for a relationship between clade age and species richness and for shifts in diversification rate in hydrophilids. We detected a single diversification rate increase in Megasternini, a relatively young and species rich clade whose diversity might be explained by the stunning diversity of ecological niches occupied by this clade. We find that Amphiopini, an old clade, is significantly more species poor than expected, possibly due to its restricted geographic range. The remaining lineages show a correlation between species richness and clade age, suggesting that both clade age and variation in diversification rates explain the disparity in species richness in hydrophilids. We find little evidence that transitions between aquatic, semiaquatic, and terrestrial habitats are linked to shifts in diversification rates. PMID:24887453

  5. Helminth species richness of introduced and native grey mullets (Teleostei: Mugilidae).

    PubMed

    Sarabeev, Volodimir

    2015-08-01

    Quantitative complex analyses of parasite communities of invaders across different native and introduced populations are largely lacking. The present study provides a comparative analysis of species richness of helminth parasites in native and invasive populations of grey mullets. The local species richness differed between regions and host species, but did not differ when compared with invasive and native hosts. The size of parasite assemblages of endohelminths was higher in the Mediterranean and Azov-Black Seas, while monogeneans were the most diverse in the Sea of Japan. The helminth diversity was apparently higher in the introduced population of Liza haematocheilus than that in their native habitat, but this trend could not be confirmed when the size of geographic range and sampling efforts were controlled for. The parasite species richness at the infracommunity level of the invasive host population is significantly lower compared with that of the native host populations that lends support to the enemy release hypothesis. A distribution pattern of the infracommunity richness of acquired parasites by the invasive host can be characterized as aggregated and it is random in native host populations. Heterogeneity in the host susceptibility and vulnerability to acquired helminth species was assumed to be a reason of the aggregation of species numbers in the population of the invasive host. PMID:25579021

  6. Parasite and viral species richness of Southeast Asian bats: Fragmentation of area distribution matters

    PubMed Central

    Gay, Noellie; Olival, Kevin J.; Bumrungsri, Sara; Siriaroonrat, Boripat; Bourgarel, Mathieu; Morand, Serge

    2014-01-01

    Interest in bat-borne diseases and parasites has grown in the past decade over concerns for human health. However, the drivers of parasite diversity among bat host species are understudied as are the links between parasite richness and emerging risks. Thus, we aimed at exploring factors that explain macro and microparasite species richness in bats from Southeast Asia, a hotspot of emerging infectious diseases. First, we identified bat species that need increased sampling effort for pathogen discovery. Our approach highlights pathogen investigation disparities among species within the same genus, such as Rhinolophus and Pteropus. Secondly, comparative analysis using independent contrasts method allowed the identification of likely factors explaining parasite and viral diversity of bats. Our results showed a key role of bat distribution shape, an index of the fragmentation of bat distribution, on parasite diversity, linked to a decrease for both viral and endoparasite species richness. We discuss how our study may contribute to a better understanding of the link between parasite species richness and emergence. PMID:25161915

  7. Cenozoic macroevolution in the deep-sea microfossil record: can we let go of species richness?

    NASA Astrophysics Data System (ADS)

    Hannisdal, Bjarte; Liow, Lee Hsiang

    2014-05-01

    The deep-sea microfossil record is an outstanding resource for the study of macroevolutionary changes in planktonic groups. Studies of plankton evolution and its possible link to climate changes over the Cenozoic have typically targeted apparent trends in species richness. However, most species are rare, and fossil richness is particularly vulnerable to the imperfections (incompleteness, reworking, age and taxonomic errors) of existing microfossil occurrence databases. Here we use an alternative macroevolutionary quantity: Summed Common Species Occurrence Rate (SCOR). By focusing on the most commonly occurring species, SCOR is decoupled from species richness, robust to preservation/sampling variability, yet sensitive to relative changes in the overall abundance of a group. Numerical experiments are used to illustrate the sampling behavior of SCOR and its relationship to (sampling-standardized) species richness. We further show how SCOR estimated from the NEPTUNE database (ODP/DSDP) can provide a new perspective on long-term evolutionary and ecological changes in major planktonic groups (e.g. coccolithophores and forams). Finally, we test possible linkages between planktonic SCOR records and proxy reconstructions of climate changes over the Cenozoic.

  8. Intransitive competition is widespread in plant communities and maintains their species richness.

    PubMed

    Soliveres, Santiago; Maestre, Fernando T; Ulrich, Werner; Manning, Peter; Boch, Steffen; Bowker, Matthew A; Prati, Daniel; Delgado-Baquerizo, Manuel; Quero, José L; Schöning, Ingo; Gallardo, Antonio; Weisser, Wolfgang; Müller, Jörg; Socher, Stephanie A; García-Gómez, Miguel; Ochoa, Victoria; Schulze, Ernst-Detlef; Fischer, Markus; Allan, Eric

    2015-08-01

    Intransitive competition networks, those in which there is no single best competitor, may ensure species coexistence. However, their frequency and importance in maintaining diversity in real-world ecosystems remain unclear. We used two large data sets from drylands and agricultural grasslands to assess: (1) the generality of intransitive competition, (2) intransitivity-richness relationships and (3) effects of two major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity and species richness. Intransitive competition occurred in > 65% of sites and was associated with higher species richness. Intransitivity increased with aridity, partly buffering its negative effects on diversity, but was decreased by intensive land use, enhancing its negative effects on diversity. These contrasting responses likely arise because intransitivity is promoted by temporal heterogeneity, which is enhanced by aridity but may decline with land-use intensity. We show that intransitivity is widespread in nature and increases diversity, but it can be lost with environmental homogenisation. PMID:26032242

  9. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    USGS Publications Warehouse

    Stohlgren, T.J.; Barnett, D.; Flather, C.; Fuller, P.; Peterjohn, B.; Kartesz, J.; Master, L.L.

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P < 0.0001), bird species (r = 0.93, P<0.0001), and fish species (r = 0.41, P<0.0001). Multiple regression models showed that the densities of native plant and bird species could be strongly predicted (adj. R2 = 0.66 in both models) at county levels, but fish species densities were less predictable at drainage levels (adj. R2 = 0.31, P<0.0001). Similarly, non-indigenous plant and bird species densities were strongly predictable (adj. R2 = 0.84 and 0.91 respectively), but non-indigenous fish species density was less predictable (adj. R2 = 0.38). County level hotspots of native and non-indigenous plants, birds, and fishes were located in low elevation areas close to the coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled

  10. A global assessment of endemism and species richness across island and mainland regions

    PubMed Central

    Kier, Gerold; Kreft, Holger; Lee, Tien Ming; Jetz, Walter; Ibisch, Pierre L.; Nowicki, Christoph; Mutke, Jens; Barthlott, Wilhelm

    2009-01-01

    Endemism and species richness are highly relevant to the global prioritization of conservation efforts in which oceanic islands have remained relatively neglected. When compared to mainland areas, oceanic islands in general are known for their high percentage of endemic species but only moderate levels of species richness, prompting the question of their relative conservation value. Here we quantify geographic patterns of endemism-scaled richness (“endemism richness”) of vascular plants across 90 terrestrial biogeographic regions, including islands, worldwide and evaluate their congruence with terrestrial vertebrates. Endemism richness of plants and vertebrates is strongly related, and values on islands exceed those of mainland regions by a factor of 9.5 and 8.1 for plants and vertebrates, respectively. Comparisons of different measures of past and future human impact and land cover change further reveal marked differences between mainland and island regions. While island and mainland regions suffered equally from past habitat loss, we find the human impact index, a measure of current threat, to be significantly higher on islands. Projected land-cover changes for the year 2100 indicate that land-use-driven changes on islands might strongly increase in the future. Given their conservation risks, smaller land areas, and high levels of endemism richness, islands may offer particularly high returns for species conservation efforts and therefore warrant a high priority in global biodiversity conservation in this century. PMID:19470638

  11. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    NASA Astrophysics Data System (ADS)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    The diversity of fish parasite life history strategies makes these species sensitive bioindicators of aquatic ecosystem health. While monoxenous (single-host) species may persist in highly perturbed, extreme environments, this is not necessarily true for heteroxenous (multiple-host) species. As many parasites possess complex life cycles and are transmitted through a chain of host species, their dependency on the latter to complete their life cycles renders them sensitive to perturbed environments. In the present study, parasite communities of grey mullet Liza aurata and Liza ramada (Mugilidae) were investigated at two Mediterranean coastal sites in northern Israel: the highly polluted Kishon Harbor (KH) and the relatively unspoiled reference site, Ma'agan Michael (MM). Both are estuarine sites in which grey mullet are one of the most common fish species. The results indicate that fish at the polluted site had significantly less trematode metacercariae than fish at the reference site. Heteroxenous gut helminths were completely absent at the polluted sampling site. Consequently, KH fish displayed lower mean parasite species richness. At the same time, KH fish mean monoxenous parasite richness was higher, although the prevalence of different monoxenous taxa was variable. Copepods had an increased prevalence while monogenean prevalence was significantly reduced at the polluted site. This variability may be attributed to the differential susceptibility of the parasites to the toxicity of different pollutants, their concentration, the exposure time and possible synergistic effects. In this study, we used the cumulative species curve model that extrapolates "true" species richness of a given habitat as a function of increasing sample size. We considered the heteroxenous and monoxenous species separately for each site, and comparison of curves yielded significant results. It is proposed to employ this approach, originally developed for estimating the "true" parasite

  12. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  13. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature

    PubMed Central

    Cox, Daniel T. C.; Gaston, Kevin J.

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder. PMID:26560968

  14. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas.

    PubMed

    Heim, Olga; Treitler, Julia T; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  15. The Importance of Landscape Elements for Bat Activity and Species Richness in Agricultural Areas

    PubMed Central

    Heim, Olga; Treitler, Julia T.; Tschapka, Marco; Knörnschild, Mirjam; Jung, Kirsten

    2015-01-01

    Landscape heterogeneity is regarded as a key factor for maintaining biodiversity and ecosystem function in production landscapes. We investigated whether grassland sites at close vicinity to forested areas are more frequently used by bats. Considering that bats are important consumers of herbivorous insects, including agricultural pest, this is important for sustainable land management. Bat activity and species richness were assessed using repeated monitoring from May to September in 2010 with acoustic monitoring surveys on 50 grassland sites in the Biosphere Reserve Schorfheide-Chorin (North-East Germany). Using spatial analysis (GIS), we measured the closest distance of each grassland site to potentially connecting landscape elements (e.g., trees, linear vegetation, groves, running and standing water). In addition, we assessed the distance to and the percent land cover of forest remnants and urban areas in a 200 m buffer around the recording sites to address differences in the local landscape setting. Species richness and bat activity increased significantly with higher forest land cover in the 200 m buffer and at smaller distance to forested areas. Moreover, species richness increased in proximity to tree groves. Larger amount of forest land cover and smaller distance to forest also resulted in a higher activity of bats on grassland sites in the beginning of the year during May, June and July. Landscape elements near grassland sites also influenced species composition of bats and species richness of functional groups (open, edge and narrow space foragers). Our results highlight the importance of forested areas, and suggest that agricultural grasslands that are closer to forest remnants might be better buffered against outbreaks of agricultural pest insects due to higher species richness and higher bat activity. Furthermore, our data reveals that even for highly mobile species such as bats, a very dense network of connecting elements within the landscape is

  16. Global patterns in sandy beach macrofauna: Species richness, abundance, biomass and body size

    NASA Astrophysics Data System (ADS)

    Defeo, Omar; McLachlan, Anton

    2013-10-01

    Global patterns in species richness in sandy beach ecosystems have been poorly understood until comparatively recently, because of the difficulty of compiling high-resolution databases at continental scales. We analyze information from more than 200 sandy beaches around the world, which harbor hundreds of macrofauna species, and explore latitudinal trends in species richness, abundance and biomass. Species richness increases from temperate to tropical sites. Abundance follows contrasting trends depending on the slope of the beach: in gentle slope beaches, it is higher at temperate sites, whereas in steep-slope beaches it is higher at the tropics. Biomass follows identical negative trends for both climatic regions at the whole range of beach slopes, suggesting decreasing rates in carrying capacity of the environment towards reflective beaches. Various morphodynamic variables determine global trends in beach macrofauna. Species richness, abundance and biomass are higher at dissipative than at reflective beaches, whereas a body size follows the reverse pattern. A generalized linear model showed that large tidal range (which determines the vertical dimension of the intertidal habitat), small size of sand particles and flat beach slope (a product of the interaction among wave energy, tidal range and grain size) are correlated with high species richness, suggesting that these parameters represent the most parsimonious variables for modelling patterns in sandy beach macrofauna. Large-scale patterns indicate a scaling of abundance to a body size, suggesting that dissipative beaches harbor communities with highest abundance and species with the smallest body sizes. Additional information for tropical and northern hemisphere sandy beaches (underrepresented in our compilation) is required to decipher more conclusive trends, particularly in abundance, biomass and body size. Further research should integrate meaningful oceanographic variables, such as temperature and primary

  17. Can Rapoport's rule be rescued? Modeling causes of the latitudinal gradient in species richness

    SciTech Connect

    Taylor, P.H.; Gaines, S.D.

    1999-12-01

    The latitudinal gradient in species richness, wherein species richness peaks near the equator and declines toward the poles, is a widely recognized phenomenon that holds true for many taxa in all habitat types. Understanding the causative mechanism of mechanisms that generate the latitudinal gradient in species richness (LGSR) has been a major challenge, and the gradient remains unexplained. A different latitudinal trend (named Rapoport's rule), in which the mean size of species geographical ranges tends to decline toward the equator, has been hypothesized by G.C. Stevens to play a key role in generating the LGSR when coupled with a version of the rescue effect, in which local populations toward the fringes of geographical ranges are sustained by immigration. The Stevens hypothesis is now commonly cited as a potential explanation for the LGSR and has provoked numerous empirical studies in macroecology and biogeography. However, important aspects of the hypothesis are not obvious in Steven's verbal model and may go unrecognized, despite their major implications for empirical work related to large-scale ecological and evolutionary processes. Here the authors present mathematical simulation models that test the logical structure of the Stevens hypothesis, examine effects on global patterns of species richness produced by the mechanisms (Rapoport's rule and the rescue effect) explicitly identified by Stevens, and investigate the additional effect of competition.

  18. Testing the influence of environmental heterogeneity on fish species richness in two biogeographic provinces

    PubMed Central

    Proulx, Raphaël; Cabana, Gilbert; Rodríguez, Marco A.

    2015-01-01

    Environmental homogenization in coastal ecosystems impacted by human activities may be an important factor explaining the observed decline in fish species richness. We used fish community data (>200 species) from extensive surveys conducted in two biogeographic provinces (extent >1,000 km) in North America to quantify the relationship between fish species richness and local (grain <10 km2) environmental heterogeneity. Our analyses are based on samples collected at nearly 800 stations over a period of five years. We demonstrate that fish species richness in coastal ecosystems is associated locally with the spatial heterogeneity of environmental variables but not with their magnitude. The observed effect of heterogeneity on species richness was substantially greater than that generated by simulations from a random placement model of community assembly, indicating that the observed relationship is unlikely to arise from veil or sampling effects. Our results suggest that restoring or actively protecting areas of high habitat heterogeneity may be of great importance for slowing current trends of decreasing biodiversity in coastal ecosystems. PMID:25699209

  19. Spatial predictability of juvenile fish species richness and abundance in a coral reef environment

    NASA Astrophysics Data System (ADS)

    Mellin, C.; Andréfouët, S.; Ponton, D.

    2007-12-01

    Juvenile reef fish communities represent an essential component of coral reef ecosystems in the current focus of fish population dynamics and coral reef resilience. Juvenile fish survival depends on habitat characteristics and is, following settlement, the first determinant of the number of individuals within adult populations. The goal of this study was to provide methods for mapping juvenile fish species richness and abundance into spatial domains suitable for micro and meso-scale analysis and management decisions. Generalized Linear Models predicting juvenile fish species richness and abundance were developed according to spatial and temporal environmental variables measured from 10 m up to 10 km in the southwest lagoon of New Caledonia. The statistical model was further spatially generalized using a 1.5-m resolution, independently created, remotely sensed, habitat map. This procedure revealed that : (1) spatial factors at 10 to 100-m scale explained up to 71% of variability in juvenile species richness, (2) a small improvement (75%) was gained when a combination of environmental variables at different spatial and temporal scales was used and (3) the coupling of remotely sensed data, geographical information system tools and point-based ecological data showed that the highest species richness and abundance were predicted along a narrow margin overlapping the coral reef flat and adjacent seagrass beds. Spatially explicit models of species distribution may be relevant for the management of reef communities when strong relationships exist between faunistic and environmental variables and when models are built at appropriate scales.

  20. Comparison of species composition and richness of fish assemblages in altered and unaltered littoral habitats

    USGS Publications Warehouse

    Poe, T.P.; Hatcher, C.O.; Brown, C.L.; Schloesser, D.W.

    1986-01-01

    Species composition and richness of fish assemblages in altered and unaltered littoral habitats in Lake St. Clair, Michigan, differed between areas. A percid-cyprinid-cyprinodontid assemblage dominated in the unaltered area, Muscamoot Bay, which has a natural shoreline (with almost no alteration due to dredging or bulkheading), high water quality, and high species richness of aquatic macrophytes. A centrarchid assemblage dominated in the altered area, Belvidere Bay, which has a bulkheaded shoreline, many dredged areas, reduced water quality due to inputs of nutrients from a nearby river, and relatively low species richness of aquatic macrophytes. Habitat factors, species richness and abundance of aquatic macrophytes, had the most influence on fish community structure in both areas. The percid-cyprinid-cyprinodontid assemblage was significantly correlated with six species of macrophytes whereas the centrarchid assemblage was significantly correlated with only four. These patterns suggest that preference for diverse habitats was higher, and tolerance to habitat alteration lower, in percid-cyprinid-cyprinodontid assemblages than in centrarchid assemblages.

  1. Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory

    PubMed Central

    2013-01-01

    Long-standing ecological theory proposes that diverse communities of plants should experience a decrease in herbivory. Yet previous empirical examinations of this hypothesis have revealed that plant species richness increases herbivory in just as many systems as it decreases it. In this study, I ask whether more insight into the role of plant diversity in promoting or suppressing herbivory can be gained by incorporating information about the evolutionary history of species in a community. In an old field system in southern Ontario, I surveyed communities of plants and measured levels of leaf damage on 27 species in 38 plots. I calculated a measure of phylogenetic diversity (PSE) that encapsulates information about the amount of evolutionary history represented in each of the plots and looked for a relationship between levels of herbivory and both species richness and phylogenetic diversity using a generalized linear mixed model (GLMM) that could account for variation in herbivory levels between species. I found that species richness was positively associated with herbivore damage at the plot-level, in keeping with the results from several other recent studies on this question. On the other hand, phylogenetic diversity was associated with decreased herbivory. Importantly, there was also an interaction between species richness and phylogenetic diversity, such that plots with the highest levels of herbivory were plots which had many species but only if those species tended to be closely related to one another. I propose that these results are the consequence of interactions with herbivores whose diets are phylogenetically specialized (for which I introduce the term cladophage), and how phylogenetic diversity may alter their realized host ranges. These results suggest that incorporating a phylogenetic perspective can add valuable additional insight into the role of plant diversity in explaining or predicting levels of herbivory at a whole-community scale. PMID:23825795

  2. Latitudinal gradients of species richness in the deep-sea benthos of the North Atlantic

    PubMed Central

    Rex, Michael A.; Stuart, Carol T.; Coyne, Gina

    2000-01-01

    Latitudinal species diversity gradients (LSDGs) in the Northern Hemisphere are the most well established biogeographic patterns on Earth. Despite long-standing interest in LSDGs as a central problem in ecology, their explanation remains uncertain. In terrestrial as well as coastal and pelagic marine ecosystems, these poleward declines in diversity typically have been represented and interpreted in terms of species richness, the number of coexisting species. Newly discovered LSDGs in the bathyal (500–4,000 m) benthos of the North Atlantic may help to resolve the underlying causes of these large-scale trends because the deep sea is such a physically distinct environment. However, a major problem in comparing surface and deep-sea LSDGs is that the latter have been measured differently, by using species diversity indices that are affected by both species richness and the evenness of relative abundance. Here, we demonstrate that deep-sea isopods, gastropods, and bivalves in the North Atlantic do exhibit poleward decreases in species richness, just as those found in other environments. A comprehensive systematic revision of the largest deep-sea gastropod family (Turridae) has provided a unique database on geographic distributions that is directly comparable to those used to document LSDGs in surface biotas. This taxon also shows a poleward decline in the number of species. Seasonal organic enrichment from sinking phytodetritus is the most plausible ecological explanation for deep-sea LSDGs and is the environmental factor most consistently associated with depressed diversity in a variety of bathyal habitats. PMID:10759545

  3. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    USGS Publications Warehouse

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  4. Beneath the veil: Plant growth form influences the strength of species richness-productivity relationships in forests

    USGS Publications Warehouse

    Oberle, B.; Grace, J.B.; Chase, J.M.

    2009-01-01

    Aim: Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness-productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location: We analysed 231 plots ranging from 34.0?? to 48.3?? N latitude and from 75.0?? to 124.2?? W longitude in the United States. Methods: We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light-blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results: Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions: The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species

  5. Global mismatch between species richness and vulnerability of reef fish assemblages.

    PubMed

    Parravicini, Valeriano; Villéger, Sébastien; McClanahan, Tim R; Arias-González, Jesus Ernesto; Bellwood, David R; Belmaker, Jonathan; Chabanet, Pascale; Floeter, Sergio R; Friedlander, Alan M; Guilhaumon, François; Vigliola, Laurent; Kulbicki, Michel; Mouillot, David

    2014-09-01

    The impact of anthropogenic activity on ecosystems has highlighted the need to move beyond the biogeographical delineation of species richness patterns to understanding the vulnerability of species assemblages, including the functional components that are linked to the processes they support. We developed a decision theory framework to quantitatively assess the global taxonomic and functional vulnerability of fish assemblages on tropical reefs using a combination of sensitivity to species loss, exposure to threats and extent of protection. Fish assemblages with high taxonomic and functional sensitivity are often exposed to threats but are largely missed by the global network of marine protected areas. We found that areas of high species richness spatially mismatch areas of high taxonomic and functional vulnerability. Nevertheless, there is strong spatial match between taxonomic and functional vulnerabilities suggesting a potential win-win conservation-ecosystem service strategy if more protection is set in these locations. PMID:24985880

  6. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  7. Species richness and relative species abundance of Nymphalidae (Lepidoptera) in three forests with different perturbations in the North-Central Caribbean of Costa Rica.

    PubMed

    Stephen, Carolyn; Sánchez, Ragde

    2014-09-01

    Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p < 0.0001, p < 0.0001, respectively). The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance. PMID:25412524

  8. Mammal predator and prey species richness are strongly linked at macroscales.

    PubMed

    Sandom, Christopher; Dalby, Lars; Fløjgaard, Camilla; Kissling, W Daniel; Lenoir, Jonathan; Sandel, Brody; Trøjelsgaard, Kristian; Ejrnaes, Rasmus; Svenning, Jens-Christian

    2013-05-01

    Predator-prey interactions play an important role for species composition and community dynamics at local scales, but their importance in shaping large-scale gradients of species richness remains unexplored. Here, we use global range maps, structural equation models (SEM), and comprehensive databases of dietary preferences and body masses of all terrestrial, non-volant mammals worldwide, to test whether (1) prey bottom-up or predator top-down relationships are important drivers of broad-scale species richness gradients once the environment and human influence have been accounted for, (2) predator-prey richness associations vary among biogeographic regions, and (3) body size influences large-scale covariation between predators and prey. SEMs including only productivity, climate, and human factors explained a high proportion of variance in prey richness (R2=0.56) but considerably less in predator richness (R2=0.13). Adding predator-to-prey or prey-to-predator paths strongly increased the explained variance in both cases (prey R2=0.79, predator R2=0.57), suggesting that predator-prey interactions play an important role in driving global diversity gradients. Prey bottom-up effects prevailed over productivity, climate, and human influence to explain predator richness, whereas productivity and climate were more important than predator top-down effects for explaining prey richness, although predator top-down effects were still significant. Global predator-prey associations were not reproduced in all regions, indicating that distinct paleoclimate and evolutionary histories (Africa and Australia) may alter species interactions across trophic levels. Stronger cross-trophic-level associations were recorded within categories of similar body size (e.g., large prey to large predators) than between them (e.g., large prey to small predators), suggesting that mass-related energetic and physiological constraints influence broad-scale richness links, especially for large

  9. Patterns of species richness in relation to temperature, taxonomy and spatial scale in eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Wang, Zhiqiang; Ji, Mingfei; Fan, Zhexuan; Deng, Jianming

    2011-07-01

    The species richness increases with area is well known in ecology. However, the Metabolic Theory of Biodiversity (MTB) is used to predict diversity patterns without taking account of the area covered by the community addressed. In this study, we developed a new model to integrate the temperature and community area based on the MTB. We collected plant species distribution information from 270 natural reserves and 11 floristic regions in eastern China, including that of three main plant divisions: pteridophytes, gymnosperms and angiosperms, and five broadly distributed angiosperm families, to explore the patterns of species richness in relation to temperature and community area size at two spatial scales (floristic region and nature reserve). Our results show that at the floristic region scale, the species richness is independent of the area size of the community and the regression slopes of the natural logarithm of richness vs. the inverse transformed temperature are close to the theoretical value of -0.65 for the three main plant divisions as well as the five angiosperm families. However, at the nature reserve scale, the number of species depends significantly upon the area size of nature reserves, and the regression slopes deviate strongly from the expected slope for all the taxonomic groups, except the pteridophyte division. Therefore, the MTB would be fairly robust only under a presumption that the area size of the community addressed has no significant effect on species richness (e.g. at the floristic region scale). Otherwise, the predictions of diversity patterns by MTB tend to be inaccurate (e.g. at the nature reserve scale).

  10. RESTORING SPECIES RICHNESS AND DIVERSITY IN A RUSSIAN KNAPWEED (ACROPTILON REPENS)-INFESTED RIPARIAN PLANT COMMUNITY USING HERBICIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Species richness and diversity are important indicators of ecosystem function and may be related to plant community resistance to invasion by non-indigenous species. Knowledge about the influence of various strategies on species richness and diversity is central to making wise invasive plant manage...

  11. When should species richness be energy-limited, and how would we know?

    SciTech Connect

    Hurlbert, Allen H.; Stegen, James C.

    2014-04-01

    Energetic constraints are fundamental to ecology and evolution, and empirical relationships between species richness and estimates of available energy have led some to suggest that richness is energetically constrained. However, the mechanism linking energy with richness is rarely specified and predictions of secondary patterns consistent with energy-constrained richness are lacking. Here we lay out the necessary and sufficient assumptions of a causal relationship linking energy gradients to richness gradients. We then describe an eco-evolutionary simulation model that combines spatially-explicit diversification with trait evolution, resource availability, and assemblage-level carrying capacities. Our model identified patterns in richness and phylogenetic structure expected when a spatial gradient in energy availability determines the number of individuals supported in a given area. A comparison to patterns under alternative scenarios, in which fundamental assumptions behind energetic explanations were violated, revealed patterns that are useful for evaluating the importance of energetic constraints in empirical systems. We find that clades arising at the low-energy end of a gradient provide the most powerful inferences regarding whether assumptions are met, and use rockfish (Sebastes) from the northeastern Pacific to show how empirical data can be coupled with model predictions to evaluate the role of energetic constraints in generating observed richness gradients.

  12. Tree species identity and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2015-06-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale runoff plots was conducted to investigate the influence of tree species richness and identity as well as tree functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 t ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion, but higher tree species richness did not mitigate soil losses in young forest stands. Thus, different tree morphologies have to be considered, when assessing erosion under forest. High crown cover and leaf area index reduced soil losses in initial forest ecosystems, whereas rising tree height increased them. Even if a leaf litter cover was not present, remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on soil loss. Long-term monitoring of soil erosion under closing tree canopies is necessary and a wide range of functional tree traits should be taken into consideration in future research.

  13. No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands.

    PubMed

    Bachmann, Dörte; Gockele, Annette; Ravenek, Janneke M; Roscher, Christiane; Strecker, Tanja; Weigelt, Alexandra; Buchmann, Nina

    2015-01-01

    Niche complementarity in resource use has been proposed as a key mechanism to explain the positive effects of increasing plant species richness on ecosystem processes, in particular on primary productivity. Since hardly any information is available for niche complementarity in water use, we tested the effects of plant diversity on spatial and temporal complementarity in water uptake in experimental grasslands by using stable water isotopes. We hypothesized that water uptake from deeper soil depths increases in more diverse compared to low diverse plant species mixtures. We labeled soil water in 8 cm (with 18O) and 28 cm depth (with ²H) three times during the 2011 growing season in 40 temperate grassland communities of varying species richness (2, 4, 8 and 16 species) and functional group number and composition (legumes, grasses, tall herbs, small herbs). Stable isotope analyses of xylem and soil water allowed identifying the preferential depth of water uptake. Higher enrichment in 18O of xylem water than in ²H suggested that the main water uptake was in the upper soil layer. Furthermore, our results revealed no differences in root water uptake among communities with different species richness, different number of functional groups or with time. Thus, our results do not support the hypothesis of increased complementarity in water use in more diverse than in less diverse communities of temperate grassland species. PMID:25587998

  14. Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show cl...

  15. Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe.

    PubMed

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  16. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe

    PubMed Central

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  17. Climate and Species Richness Predict the Phylogenetic Structure of African Mammal Communities

    PubMed Central

    Kamilar, Jason M.; Beaudrot, Lydia; Reed, Kaye E.

    2015-01-01

    We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change. PMID:25875361

  18. Habitat fragmentation and effects of herbivore (howler monkey) abundances on bird species richness.

    PubMed

    Feeley, Kenneth J; Terborgh, John W

    2006-01-01

    Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades. PMID:16634305

  19. Species richness and host associations of lepidoptera-attacking Tachinidae in the northeast Ecuadorian Andes.

    PubMed

    Stireman, John O; Greeney, Harold F; Dyer, Lee A

    2009-01-01

    Most of the unknown biological diversity of macro-organisms remaining to be discovered and described lies in the tropical regions of the world and consists primarily of insects. Those insects with parasitoid lifestyles constitute a significant portion of insect diversity, yet parasitoids are among the most poorly known of major insect guilds in the humid tropics. Here we describe and analyze the richness of one diverse taxon of parasitoids, flies in the family Tachinidae, reared from Lepidoptera as part of a biological survey of Lepidoptera and their parasitoids in one mid-elevation (2000 m) area in the northeast Ecuadorian Andes. One hundred fifty-seven separable tachinid "morpho-species" were reared from approximately 160 species of Lepidoptera in 16 families. These tachinid flies were recovered from a sample of over 12,800 successful caterpillar rearing events that resulted in either adult Lepidoptera or parasitoids. Tachinid species accumulation and rarefaction curves exhibit no sign of reaching an asymptote and richness estimators indicate that the community likely consists of nearly twice this number of species (at minimum). Most tachinid species were reared infrequently, with 50% being represented by a single individual. The majority of species appeared to be relatively specialized on one or a few related hosts, but sampling was insufficient to make strong inferences regarding host range. The tribes Blondeliini and Goniini were the best represented, but some tribes that were expected to be common such as Tachinini and Winthemiini were poorly represented. The estimates of tachinid species richness derived here are suggestive of a far more diverse tachinid community than in temperate localities in North America. Additional rearing of Lepidoptera, as well as other herbivorous insect taxa, along with the use of additional collecting methods will be necessary to achieve a more accurate understanding of the richness of tropical Tachinidae and their contribution to

  20. Plant DNA Barcodes Can Accurately Estimate Species Richness in Poorly Known Floras

    PubMed Central

    Costion, Craig; Ford, Andrew; Cross, Hugh; Crayn, Darren; Harrington, Mark; Lowe, Andrew

    2011-01-01

    Background Widespread uptake of DNA barcoding technology for vascular plants has been slow due to the relatively poor resolution of species discrimination (∼70%) and low sequencing and amplification success of one of the two official barcoding loci, matK. Studies to date have mostly focused on finding a solution to these intrinsic limitations of the markers, rather than posing questions that can maximize the utility of DNA barcodes for plants with the current technology. Methodology/Principal Findings Here we test the ability of plant DNA barcodes using the two official barcoding loci, rbcLa and matK, plus an alternative barcoding locus, trnH-psbA, to estimate the species diversity of trees in a tropical rainforest plot. Species discrimination accuracy was similar to findings from previous studies but species richness estimation accuracy proved higher, up to 89%. All combinations which included the trnH-psbA locus performed better at both species discrimination and richness estimation than matK, which showed little enhanced species discriminatory power when concatenated with rbcLa. The utility of the trnH-psbA locus is limited however, by the occurrence of intraspecific variation observed in some angiosperm families to occur as an inversion that obscures the monophyly of species. Conclusions/Significance We demonstrate for the first time, using a case study, the potential of plant DNA barcodes for the rapid estimation of species richness in taxonomically poorly known areas or cryptic populations revealing a powerful new tool for rapid biodiversity assessment. The combination of the rbcLa and trnH-psbA loci performed better for this purpose than any two-locus combination that included matK. We show that although DNA barcodes fail to discriminate all species of plants, new perspectives and methods on biodiversity value and quantification may overshadow some of these shortcomings by applying barcode data in new ways. PMID:22096501

  1. Estimating species richness and modelling habitat preferences of tropical forest mammals from camera trap data.

    PubMed

    Rovero, Francesco; Martin, Emanuel; Rosa, Melissa; Ahumada, Jorge A; Spitale, Daniel

    2014-01-01

    Medium-to-large mammals within tropical forests represent a rich and functionally diversified component of this biome; however, they continue to be threatened by hunting and habitat loss. Assessing these communities implies studying species' richness and composition, and determining a state variable of species abundance in order to infer changes in species distribution and habitat associations. The Tropical Ecology, Assessment and Monitoring (TEAM) network fills a chronic gap in standardized data collection by implementing a systematic monitoring framework of biodiversity, including mammal communities, across several sites. In this study, we used TEAM camera trap data collected in the Udzungwa Mountains of Tanzania, an area of exceptional importance for mammal diversity, to propose an example of a baseline assessment of species' occupancy. We used 60 camera trap locations and cumulated 1,818 camera days in 2009. Sampling yielded 10,647 images of 26 species of mammals. We estimated that a minimum of 32 species are in fact present, matching available knowledge from other sources. Estimated species richness at camera sites did not vary with a suite of habitat covariates derived from remote sensing, however the detection probability varied with functional guilds, with herbivores being more detectable than other guilds. Species-specific occupancy modelling revealed novel ecological knowledge for the 11 most detected species, highlighting patterns such as 'montane forest dwellers', e.g. the endemic Sanje mangabey (Cercocebus sanjei), and 'lowland forest dwellers', e.g. suni antelope (Neotragus moschatus). Our results show that the analysis of camera trap data with account for imperfect detection can provide a solid ecological assessment of mammal communities that can be systematically replicated across sites. PMID:25054806

  2. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs

    PubMed Central

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-01-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts. PMID:27040604

  3. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef

    PubMed Central

    Burkepile, Deron E.; Hay, Mark E.

    2008-01-01

    Consumer effects on prey are well known for cascading through food webs and producing dramatic top-down effects on community structure and ecosystem function. Bottom-up effects of prey (primary producer) biodiversity are also well known. However, the role of consumer diversity in affecting community structure or ecosystem function is not well understood. Here, we show that herbivore species richness can be critical for maintaining the structure and function of coral reefs. In two experiments over 2 years, we constructed large cages enclosing single herbivore species, equal densities of mixed species of herbivores, or excluding herbivores and assessed effects on both seaweeds and corals. When compared with single-herbivore treatments, mixed-herbivore treatments lowered macroalgal abundance by 54–76%, enhanced cover of crustose coralline algae (preferred recruitment sites for corals) by 52–64%, increased coral cover by 22%, and prevented coral mortality. Complementary feeding by herbivorous fishes drove the herbivore richness effects, because macroalgae were unable to effectively deter fishes with different feeding strategies. Maintaining herbivore species richness appears critical for preserving coral reefs, because complementary feeding by diverse herbivores produces positive, but indirect, effects on corals, the foundation species for the ecosystem. PMID:18845686

  4. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems.

    PubMed

    Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich

    2016-05-19

    Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. PMID:27114580

  5. Species Richness and Assemblages in Landscapes of Different Farming Intensity – Time to Revise Conservation Strategies?

    PubMed Central

    Andersson, Erik; Lindborg, Regina

    2014-01-01

    Worldwide conservation goals to protect biodiversity emphasize the need to rethink which objectives are most suitable for different landscapes. Comparing two different Swedish farming landscapes, we used survey data on birds and vascular plants to test whether landscapes with large, intensively managed farms had lower richness and diversity of the two taxa than landscapes with less intensively managed small farms, and if they differed in species composition. Landscapes with large intensively managed farms did not have lower richness than smaller low intensively managed farms. The landscape types were also similar in that they had few red listed species, normally targeted in conservation. Differences in species composition demonstrate that by having both types of agricultural landscapes regional diversity is increased, which is seldom captured in the objectives for agro-environmental policies. Thus we argue that focus on species richness or red listed species would miss the actual diversity found in the two landscape types. Biodiversity conservation, especially in production landscapes, would therefore benefit from a hierarchy of local to regional objectives with explicit targets in terms of which aspects of biodiversity to focus on. PMID:25275484

  6. Effects of unseeded areas on species richness of coal mines reclaimed with municipal biosolids

    SciTech Connect

    Halofsky, J.E.; McCormick, L.H.

    2005-12-01

    Land application of municipal biosolids on coal mine spoils can benefit vegetation establishment in mine reclamation. However, the application of biosolids leads to domination by early-successional species, such as grasses, and low establishment of woody and volunteer species, thus reducing potential for forestry as a postmining land use. In this experiment, tree seedlings were planted in strips (0.6-, 1-, and 4-m wide) that were not seeded with grasses, and the effects of unseeded strip width on seedling growth and species richness were assessed. Planted seedling mortality was high; therefore, the effect of unseeded strip width on seedling growth could not be determined. However, it was found that natural plant invasion and species richness were highest in the 4-m unseeded strips. The practice of leaving 4-m-wide unseeded strips in mine reclamation with biosolids in the eastern United States, along with the improvement of tree seedling planting practices and planting stock, would help promote a more species-rich plant community that could be utilized for forestry or a variety of other postmining land uses.

  7. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs.

    PubMed

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-01-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts. PMID:27040604

  8. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs

    NASA Astrophysics Data System (ADS)

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-04-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts.

  9. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    NASA Astrophysics Data System (ADS)

    Rodríguez, Miguel Á.; Belmontes, Juan Alfonso; Hawkins, Bradford A.

    2005-07-01

    We used regression analyses to examine the relationships between reptile and amphibian species richness in Europe and 11 environmental variables related to five hypotheses for geographical patterns of species richness: (1) productivity; (2) ambient energy; (3) water-energy balance, (4) habitat heterogeneity; and (5) climatic variability. For reptiles, annual potential evapotranspiration (PET), a measure of the amount of atmospheric energy, explained 71% of the variance, with variability in log elevation explaining an additional 6%. For amphibians, annual actual evapotranspiration (AET), a measure of the joint availability of energy and water in the environment, and the global vegetation index, an estimate of plant biomass generated through satellite remote sensing, both described similar proportions of the variance (61% and 60%, respectively) and had partially independent effects on richness as indicated by multiple regression. The two-factor environmental models successfully removed most of the statistically detectable spatial autocorrelation in the richness data of both groups. Our results are consistent with reptile and amphibian environmental requirements, where the former depend strongly on solar energy and the latter require both warmth and moisture for reproduction. We conclude that ambient energy explains the reptile richness pattern, whereas for amphibians a combination of water-energy balance and productivity best explain the pattern.

  10. Higher subsoil carbon storage in species-rich than species-poor temperate forests

    NASA Astrophysics Data System (ADS)

    Schleuß, Per-Marten; Heitkamp, Felix; Leuschner, Christoph; Fender, Ann-Catrin; Jungkunst, Hermann F.

    2014-01-01

    Forest soils contribute ca. 70% to the global soil organic carbon (SOC) pool and thus are an important element of the global carbon cycle. Forests also harbour a large part of the global terrestrial biodiversity. It is not clear, however, whether tree species diversity affects SOC. By measuring the carbon concentration of different soil particle size fractions separately, we were able to distinguish between effects of fine particle content and tree species composition on the SOC pool in old-growth broad-leaved forest plots along a tree diversity gradient (1-, 3- and 5-species). Variation in clay content explained part of the observed SOC increase from monospecific to mixed forests, but we show that the carbon concentration per unit clay or fine silt in the subsoil was by 30-35% higher in mixed than monospecific stands indicating a significant species identity or species diversity effect on C stabilization. Underlying causes may be differences in fine root biomass and turnover, in leaf litter decomposition rate among the tree species, and/or species-specific rhizosphere effects on soil. Our findings may have important implications for forestry offering management options through preference of mixed stands that could increase forest SOC pools and mitigate climate warming.

  11. Species Richness and Host Associations of Lepidoptera-Attacking Tachinidae in the Northeast Ecuadorian Andes

    PubMed Central

    Stireman, John O.; Greeney, Harold F.; Dyer, Lee A.

    2009-01-01

    Most of the unknown biological diversity of macro-organisms remaining to be discovered and described lies in the tropical regions of the world and consists primarily of insects. Those insects with parasitoid lifestyles constitute a significant portion of insect diversity, yet parasitoids are among the most poorly known of major insect guilds in the humid tropics. Here we describe and analyze the richness of one diverse taxon of parasitoids, flies in the family Tachinidae, reared from Lepidoptera as part of a biological survey of Lepidoptera and their parasitoids in one mid-elevation (2000 m) area in the northeast Ecuadorian Andes. One hundred fifty-seven separable tachinid “morpho-species” were reared from approximately 160 species of Lepidoptera in 16 families. These tachinid flies were recovered from a sample of over 12,800 successful caterpillar rearing events that resulted in either adult Lepidoptera or parasitoids. Tachinid species accumulation and rarefaction curves exhibit no sign of reaching an asymptote and richness estimators indicate that the community likely consists of nearly twice this number of species (at minimum). Most tachinid species were reared infrequently, with 50% being represented by a single individual. The majority of species appeared to be relatively specialized on one or a few related hosts, but sampling was insufficient to make strong inferences regarding host range. The tribes Blondeliini and Goniini were the best represented, but some tribes that were expected to be common such as Tachinini and Winthemiini were poorly represented. The estimates of tachinid species richness derived here are suggestive of a far more diverse tachinid community than in temperate localities in North America. Additional rearing of Lepidoptera, as well as other herbivorous insect taxa, along with the use of additional collecting methods will be necessary to achieve a more accurate understanding of the richness of tropical Tachinidae and their

  12. Geographical, Temporal and Environmental Determinants of Bryophyte Species Richness in the Macaronesian Islands

    PubMed Central

    Aranda, Silvia C.; Gabriel, Rosalina; Borges, Paulo A. V.; Santos, Ana M. C.; de Azevedo, Eduardo Brito; Patiño, Jairo; Hortal, Joaquín; Lobo, Jorge M.

    2014-01-01

    Species richness on oceanic islands has been related to a series of ecological factors including island size and isolation (i.e. the Equilibrium Model of Island Biogeography, EMIB), habitat diversity, climate (i.e., temperature and precipitation) and more recently island ontogeny (i.e. the General Dynamic Model of oceanic island biogeography, GDM). Here we evaluate the relationship of these factors with the diversity of bryophytes in the Macaronesian region (Azores, Madeira, Canary Islands and Cape Verde). The predictive power of EMIB, habitat diversity, climate and the GDM on total bryophyte richness, as well as moss and liverwort richness (the two dominant bryophyte groups), was evaluated through ordinary least squares regressions. After choosing the best subset of variables using inference statistics, we used partial regression analyses to identify the independent and shared effects of each model. The variables included within each model were similar for mosses and liverworts, with orographic mist layer being one of the most important predictors of richness. Models combining climate with either the GDM or habitat diversity explained most of richness variation (up to 91%). There was a high portion of shared variance between all pairwise combinations of factors in mosses, while in liverworts around half of the variability in species richness was accounted for exclusively by climate. Our results suggest that the effects of climate and habitat are strong and prevalent in this region, while geographical factors have limited influence on Macaronesian bryophyte diversity. Although climate is of great importance for liverwort richness, in mosses its effect is similar to or, at least, indiscernible from the effect of habitat diversity and, strikingly, the effect of island ontogeny. These results indicate that for highly vagile taxa on oceanic islands, the dispersal process may be less important for successful colonization than the availability of suitable ecological

  13. Geographical, temporal and environmental determinants of bryophyte species richness in the Macaronesian islands.

    PubMed

    Aranda, Silvia C; Gabriel, Rosalina; Borges, Paulo A V; Santos, Ana M C; de Azevedo, Eduardo Brito; Patiño, Jairo; Hortal, Joaquín; Lobo, Jorge M

    2014-01-01

    Species richness on oceanic islands has been related to a series of ecological factors including island size and isolation (i.e. the Equilibrium Model of Island Biogeography, EMIB), habitat diversity, climate (i.e., temperature and precipitation) and more recently island ontogeny (i.e. the General Dynamic Model of oceanic island biogeography, GDM). Here we evaluate the relationship of these factors with the diversity of bryophytes in the Macaronesian region (Azores, Madeira, Canary Islands and Cape Verde). The predictive power of EMIB, habitat diversity, climate and the GDM on total bryophyte richness, as well as moss and liverwort richness (the two dominant bryophyte groups), was evaluated through ordinary least squares regressions. After choosing the best subset of variables using inference statistics, we used partial regression analyses to identify the independent and shared effects of each model. The variables included within each model were similar for mosses and liverworts, with orographic mist layer being one of the most important predictors of richness. Models combining climate with either the GDM or habitat diversity explained most of richness variation (up to 91%). There was a high portion of shared variance between all pairwise combinations of factors in mosses, while in liverworts around half of the variability in species richness was accounted for exclusively by climate. Our results suggest that the effects of climate and habitat are strong and prevalent in this region, while geographical factors have limited influence on Macaronesian bryophyte diversity. Although climate is of great importance for liverwort richness, in mosses its effect is similar to or, at least, indiscernible from the effect of habitat diversity and, strikingly, the effect of island ontogeny. These results indicate that for highly vagile taxa on oceanic islands, the dispersal process may be less important for successful colonization than the availability of suitable ecological

  14. Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage

    PubMed Central

    Guillemot, Nicolas; Kulbicki, Michel; Chabanet, Pascale; Vigliola, Laurent

    2011-01-01

    The relationship between species and the functional diversity of assemblages is fundamental in ecology because it contains key information on functional redundancy, and functionally redundant ecosystems are thought to be more resilient, resistant and stable. However, this relationship is poorly understood and undocumented for species-rich coastal marine ecosystems. Here, we used underwater visual censuses to examine the patterns of functional redundancy for one of the most diverse vertebrate assemblages, the coral reef fishes of New Caledonia, South Pacific. First, we found that the relationship between functional and species diversity displayed a non-asymptotic power-shaped curve, implying that rare functions and species mainly occur in highly diverse assemblages. Second, we showed that the distribution of species amongst possible functions was significantly different from a random distribution up to a threshold of ∼90 species/transect. Redundancy patterns for each function further revealed that some functions displayed fast rates of increase in redundancy at low species diversity, whereas others were only becoming redundant past a certain threshold. This suggested non-random assembly rules and the existence of some primordial functions that would need to be fulfilled in priority so that coral reef fish assemblages can gain a basic ecological structure. Last, we found little effect of habitat on the shape of the functional-species diversity relationship and on the redundancy of functions, although habitat is known to largely determine assemblage characteristics such as species composition, biomass, and abundance. Our study shows that low functional redundancy is characteristic of this highly diverse fish assemblage, and, therefore, that even species-rich ecosystems such as coral reefs may be vulnerable to the removal of a few keystone species. PMID:22039543

  15. From richer to poorer: successful invasion by freshwater fishes depends on species richness of donor and recipient basins.

    PubMed

    Fitzgerald, Daniel B; Tobler, Michael; Winemiller, Kirk O

    2016-07-01

    Evidence for the theory of biotic resistance is equivocal, with experiments often finding a negative relationship between invasion success and native species richness, and large-scale comparative studies finding a positive relationship. Biotic resistance derives from local species interactions, yet global and regional studies often analyze data at coarse spatial grains. In addition, differences in competitive environments across regions may confound tests of biotic resistance based solely on native species richness of the invaded community. Using global and regional data sets for fishes in river and stream reaches, we ask two questions: (1) does a negative relationship exist between native and non-native species richness and (2) do non-native species originate from higher diversity systems. A negative relationship between native and non-native species richness in local assemblages was found at the global scale, while regional patterns revealed the opposite trend. At both spatial scales, however, nearly all non-native species originated from river basins with higher native species richness than the basin of the invaded community. Together, these findings imply that coevolved ecological interactions in species-rich systems inhibit establishment of generalist non-native species from less diverse communities. Consideration of both the ecological and evolutionary aspects of community assembly is critical to understanding invasion patterns. Distinct evolutionary histories in different regions strongly influence invasion of intact communities that are relatively unimpacted by human actions, and may explain the conflicting relationship between native and non-native species richness found at different spatial scales. PMID:26582547

  16. Rich and rare—First insights into species diversity and abundance of Antarctic abyssal Gastropoda (Mollusca)

    NASA Astrophysics Data System (ADS)

    Schwabe, Enrico; Michael Bohn, Jens; Engl, Winfried; Linse, Katrin; Schrödl, Michael

    2007-08-01

    The abyssal depths of the polar oceans are thought to be low in diversity compared with the shallower polar shelves and temperate and tropical deep-sea basins. Our recent study on the gastropod fauna of the deep Southern Ocean gives evidence of the existence of a rich gastropod assemblage at abyssal depths. During the ANDEEP I and II expeditions to the southern Drake Passage, Northwestern Weddell Sea, and South Sandwich Trench, gastropods were collected by bottom and Agassiz trawls, epibenthic sledge, and multicorer, at 40 stations in depths between 127 and 5194 m. On the whole, 473 specimens, corresponding to 93 species of 36 families, were obtained. Of those, 414 specimens were caught below 750 m depth and refer to 84 (90%) benthic species of 32 (89%) families. Most families were represented by a single species only. The numerically dominant families were Skeneidae and Buccinidae (with 10 and 11 species, respectively), Eulimidae and Trochidae (with 9 species each), and Turridae (6 species). Thirty-Seven benthic deep-sea species (44%) were represented by a single specimen, and another 20 species (24%) were found at a single station, suggesting that more than two thirds of Antarctic deep-sea gastropod species are very rare or have a very scattered distribution. Of the 27 species occurring at two or more deep-sea stations, 14 were collected with different gear. Approximately half of the deep-water species are new to science or have been recently described. The present investigation increases the total number of recorded benthic Antarctic deep-sea gastropods (below 750 m) from 115 to 177. The previously known depth ranges have been extended, often considerably, for 31 species. The collected deep-sea gastropods comprise both eurybathic shelf species (29%) and apparently true deep-sea species (58%); some of the latter may belong to a so far unknown Antarctic abyssal fauna. Geographical ranges of the collected Antarctic benthic deep-sea gastropod species appear limited

  17. Climate modifies response of non-native and native species richness to nutrient enrichment.

    PubMed

    Flores-Moreno, Habacuc; Reich, Peter B; Lind, Eric M; Sullivan, Lauren L; Seabloom, Eric W; Yahdjian, Laura; MacDougall, Andrew S; Reichmann, Lara G; Alberti, Juan; Báez, Selene; Bakker, Jonathan D; Cadotte, Marc W; Caldeira, Maria C; Chaneton, Enrique J; D'Antonio, Carla M; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Harpole, W Stanley; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; Laungani, Ramesh; Leakey, Andrew D B; McCulley, Rebecca L; Moore, Joslin L; Pascual, Jesus; Borer, Elizabeth T

    2016-05-19

    Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change. PMID:27114575

  18. Testing Dragonflies as Species Richness Indicators in a Fragmented Subtropical Atlantic Forest Environment.

    PubMed

    Renner, S; Sahlén, G; Périco, E

    2016-06-01

    We surveyed 15 bodies of water among remnants of the Atlantic Forest biome in southern Brazil for adult dragonflies and damselflies to test whether an empirical selection method for diversity indicators could be applied in a subtropical ecosystem, where limited ecological knowledge on species level is available. We found a regional species pool of 34 species distributed in a nested subset pattern with a mean of 11.2 species per locality. There was a pronounced difference in species composition between spring, summer, and autumn, but no differences in species numbers between seasons. Two species, Homeoura chelifera (Selys) and Ischnura capreolus (Hagen), were the strongest candidates for regional diversity indicators, being found only at species-rich localities in our surveyed area and likewise in an undisturbed national forest reserve, serving as a reference site for the Atlantic Forest. Using our selection method, we found it possible to obtain a tentative list of diversity indicators without having detailed ecological information of each species, providing a reference site is available for comparison. The method thus allows for indicator species to be selected in blanco from taxonomic groups that are little known. We hence argue that Odonata can already be incorporated in ongoing assessment programs in the Neotropics, which would also increase the ecological knowledge of the group and allow extrapolation to other taxa. PMID:26686194

  19. Contrasting structure and composition of the understory in species-rich tropical rain forests.

    PubMed

    LaFrankie, James V; Ashton, Peter S; Chuyong, George B; Co, Leonardo; Condit, Richard; Davies, Stuart J; Foster, Robin; Hubbell, Stephen P; Kenfack, David; Lagunzad, Daniel; Losos, Elizabeth C; Nor, Noor Supardi Md; Tan, Sylvester; Thomas, Duncan W; Valencia, Renato; Villa, Gorky

    2006-09-01

    In large samples of trees > or = 1 cm dbh (more than 1 million trees and 3000 species), in six lowland tropical forests on three continents, we assigned species with >30 individuals to one of six classes of stature at maturity (SAM). We then compared the proportional representation of understory trees (1-2 cm dbh) among these classes. The understory of the three Asian sites was predominantly composed of the saplings of large-canopy trees whereas the African and American sites were more richly stocked with trees of the smaller SAM classes. Differences in class representation were related to taxonomic families that were present exclusively in one continent or another. Families found in the Asian plots but not in the American plot (e.g., Dipterocarpaceae, Fagaceae) were predominantly species of the largest SAM classes, whereas families exclusive to the American plots (e.g., Melastomataceae sensu stricto, Piperaceae, and Malvaceae [Bombacacoidea]) were predominantly species of small classes. The African plot was similar to Asia in the absence of those American families rich in understory species, while similar to America in lacking the Asian families rich in canopy species. The numerous understory species of Africa were chiefly derived from families shared with Asia and/or America. The ratio of saplings (1-2 cm dbh) to conspecific canopy trees (>40 cm dbh) was lower in American plots than in the Asian plots. Possible explanations for these differences include phenology, moisture and soil fertility regimes, phyletic constraints, and the role of early successional plants in forest development. These results demonstrate that tropical forests that appear similar in tree number, basal area, and the family taxonomy of canopy trees nonetheless differ in ecological structure in ways that may impact the ecology of pollinators, dispersers, and herbivores and might reflect fundamental differences in canopy tree regeneration. PMID:16995630

  20. Plant biodiversity effects in reducing fluvial erosion are limited to low species richness.

    PubMed

    Allen, Daniel C; Cardinale, Bradley J; Wynn-Thompson, Theresa

    2016-01-01

    It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance. PMID:27008770

  1. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness

    PubMed Central

    Albert, James S.; Carvalho, Tiago P.; Petry, Paulo; Holder, Meghan A.; Maxime, Emmanuel L.; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E.

    2011-01-01

    Simple Summary The immense rainforest ecosystems of tropical America represent some of the greatest concentrations of biodiversity on the planet. Prominent among these are evolutionary radiations of freshwater fishes, including electric eels, piranhas, stingrays, and a myriad of small-bodied and colorful tetras, cichlids, and armored catfishes. In all, the many thousands of these forms account for nearly 10% of all the vertebrate species on Earth. This article explores the complimentary roles that ecological and geographic filters play in limiting dispersal in aquatic species, and how these factors contribute to the accumulation of species richness over broad geographic and evolutionary time scales. Abstract The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200–500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient

  2. Underestimation of Species Richness in Neotropical Frogs Revealed by mtDNA Analyses

    PubMed Central

    Fouquet, Antoine; Gilles, André; Vences, Miguel; Marty, Christian; Blanc, Michel; Gemmell, Neil J.

    2007-01-01

    Background Amphibians are rapidly vanishing. At the same time, it is most likely that the number of amphibian species is highly underestimated. Recent DNA barcoding work has attempted to define a threshold between intra- and inter-specific genetic distances to help identify candidate species. In groups with high extinction rates and poorly known species boundaries, like amphibians, such tools may provide a way to rapidly evaluate species richness. Methodology Here we analyse published and new 16S rDNA sequences from 60 frog species of Amazonia-Guianas to obtain a minimum estimate of the number of undescribed species in this region. We combined isolation by distance, phylogenetic analyses, and comparison of molecular distances to evaluate threshold values for the identification of candidate species among these frogs. Principal Findings In most cases, geographically distant populations belong to genetically highly distinct lineages that could be considered as candidate new species. This was not universal among the taxa studied and thus widespread species of Neotropical frogs really do exist, contrary to previous assumptions. Moreover, the many instances of paraphyly and the wide overlap between distributions of inter- and intra-specific distances reinforce the hypothesis that many cryptic species remain to be described. In our data set, pairwise genetic distances below 0.02 are strongly correlated with geographical distances. This correlation remains statistically significant until genetic distance is 0.05, with no such relation thereafter. This suggests that for higher distances allopatric and sympatric cryptic species prevail. Based on our analyses, we propose a more inclusive pairwise genetic distance of 0.03 between taxa to target lineages that could correspond to candidate species. Conclusions Using this approach, we identify 129 candidate species, two-fold greater than the 60 species included in the current study. This leads to estimates of around 170 to 460

  3. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    USGS Publications Warehouse

    Symstad, A.J.; Jonas, J.L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity. ?? Society for Range

  4. Lower richness of small wild mammal species and chagas disease risk.

    PubMed

    Xavier, Samanta Cristina das Chagas; Roque, André Luiz Rodrigues; Lima, Valdirene dos Santos; Monteiro, Kerla Joeline Lima; Otaviano, Joel Carlos Rodrigues; Ferreira da Silva, Luiz Felipe Coutinho; Jansen, Ana Maria

    2012-01-01

    A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11-89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease. PMID:22616021

  5. Adjustment to the light environment in small-statured forbs as a strategy for complementary resource use in mixtures of grassland species

    PubMed Central

    Roscher, Christiane; Kutsch, Werner L.; Kolle, Olaf; Ziegler, Waldemar; Schulze, Ernst-Detlef

    2011-01-01

    Background and Aims The biological mechanisms of niche complementarity allowing for a stable coexistence of a large number of species in a plant community are still poorly understood. This study investigated how small-statured forbs use environmental niches in light and CO2 to explain their persistence in diverse temperate grasslands. Methods Light and CO2 profiles and the corresponding leaf characteristics of seven small-statured forbs were measured in monocultures and a multi-species mixture within a biodiversity experiment (Jena Experiment) to assess their adjustment to growth conditions in the canopy. Key Results Environmental conditions near the ground varied throughout the season with a substantial CO2 enrichment (>70 µmol mol−1 at 2 cm, >20 µmol mol−1 at 10 cm above soil surface) and a decrease in light transmittance (to <5 % deep in the canopy) with large standing biomass (>500 g d. wt m−2) in the multi-species assemblage. Leaf morphology, biochemistry and physiology of small-statured forbs adjusted to low light in the mixture compared with the monocultures. However, the net carbon assimilation balance during the period of low light only compensated the costs of maintenance respiration, while CO2 enrichment near the ground did not allow for additional carbon gain. Close correlations of leaf mass per area with changes in light availability suggested that small-statured forbs are capable of adjusting to exploit seasonal niches with better light supply for growth and to maintain the carbon metabolism for survival if light transmittance is substantially reduced in multi-species assemblages. Conclusions This study shows that adjustment to a highly dynamic light environment is most important for spatial and seasonal niche separation of small-statured forb species in regularly mown, species-rich grasslands. The utilization of short-period CO2 enrichment developing in dense vegetation close to the ground hardly improves their carbon balance and contributes

  6. Environmental Gradients Explain Species Richness and Community Composition of Coastal Breeding Birds in the Baltic Sea

    PubMed Central

    Nord, Maria; Forslund, Pär

    2015-01-01

    Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection. PMID:25714432

  7. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness.

    PubMed

    Albert, James S; Carvalho, Tiago P; Petry, Paulo; Holder, Meghan A; Maxime, Emmanuel L; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E

    2011-01-01

    The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200-500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient, predating the Late Miocene-Pliocene (c. 4 Ma) uplift that isolated its several headwater basins. The results also suggest that habitat specialization (phylogenetic niche conservatism) and geographic isolation (dispersal limitation) have contributed to the maintenance of high species richness in this region of the Amazon Basin. PMID:26486313

  8. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  9. Filling in the gaps: Modelling native species richness and invasions using spatially incomplete data

    USGS Publications Warehouse

    Jarnevich, C.S.; Stohlgren, T.J.; Barnett, D.; Kartesz, J.

    2006-01-01

    Detailed knowledge of patterns of native species richness, an important component of biodiversity, and non-native species invasions is often lacking even though this knowledge is essential to conservation efforts. However, we cannot afford to wait for complete information on the distribution and abundance of native and harmful invasive species. Using information from counties well surveyed for plants across the USA, we developed models to fill data gaps in poorly surveyed areas by estimating the density (number of species km -2) of native and non-native plant species. Here, we show that native plant species density is non-random, predictable, and is the best predictor of non-native plant species density. We found that eastern agricultural sites and coastal areas are among the most invaded in terms of non-native plant species densities, and that the central USA appears to have the greatest ratio of non-native to native species. These large-scale models could also be applied to smaller spatial scales or other taxa to set priorities for conservation and invasion mitigation, prevention, and control efforts. ?? 2006 The Authors.

  10. Predicting effects of ecosystem engineering on species richness along primary productivity gradients

    NASA Astrophysics Data System (ADS)

    Badano, Ernesto Iván; Marquet, Pablo Angel; Cavieres, Lohengrin Alexis

    2010-01-01

    Physical ecosystem engineering is the process by which some species change the distribution of materials and energy in ecosystems. Although several studies have shown that this process is a driver of local species diversity, the current challenge is predicting when and where ecosystem engineering will have large or small impacts on communities, while also explaining why impacts vary in magnitude across engineer species and environments. This study addresses this issue and proposes a series of predictions for these effects at the three spatial scales (the patch, the habitat and the landscape) along environmental gradients of physical stress. The integrative prediction of this study was that the difference in species diversity between engineered and unmodified situations (patches, habitats or landscapes) will increase as the difference in physical stress between engineered and unmodified patches becomes larger. To test the prediction, the effects of two well known high-Andean ecosystem engineers, the cushion plants Azorella madreporica and Laretia acaulis, were assessed on plant species richness in central Chile. The results support the main prediction, showing that ecosystem engineers have negative effects on species diversity at sites when the environmental modifications they perform increase physical stress for other species, while they have positive effects at sites where these habitat changes mitigate physical stress. Then, the effects of the ecosystem engineers on species diversity seem to depend on the environmental context, where larger environmental modifications are reflected in greater impacts, either positive or negative, on species diversity.

  11. Predicting assemblages and species richness of endemic fish in the upper Yangtze River.

    PubMed

    He, Yongfeng; Wang, Jianwei; Lek-Ang, Sithan; Lek, Sovan

    2010-09-01

    The present work describes the ability of two modeling methods, Classification and Regression Tree (CART) and Random Forest (RF), to predict endemic fish assemblages and species richness in the upper Yangtze River, and then to identify the determinant environmental factors contributing to the models. The models included 24 predictor variables and 2 response variables (fish assemblage and species richness) for a total of 46 site units. The predictive quality of the modeling approaches was judged with a leave-one-out validation procedure. There was an average success of 60.9% and 71.7% to assign each site unit to the correct assemblage of fish, and 73% and 84% to explain the variance in species richness, by using CART and RF models, respectively. RF proved to be better than CART in terms of accuracy and efficiency in ecological applications. In any case, the mixed models including both land cover and river characteristic variables were more powerful than either individual one in explaining the endemic fish distribution pattern in the upper Yangtze River. For instance, altitude, slope, length, discharge, runoff, farmland and alpine and sub-alpine meadow played important roles in driving the observed endemic fish assemblage structure, while farmland, slope grassland, discharge, runoff, altitude and drainage area in explaining the observed patterns of endemic species richness. Therefore, the various effects of human activity on natural aquatic ecosystems, in particular, the flow modification of the river and the land use changes may have a considerable effect on the endemic fish distribution patterns on a regional scale. PMID:20541238

  12. Consequences of organic farming and landscape heterogeneity for species richness and abundance of farmland birds.

    PubMed

    Smith, Henrik G; Dänhardt, Juliana; Lindström, Ake; Rundlöf, Maj

    2010-04-01

    It has been suggested that organic farming may benefit farmland biodiversity more in landscapes that have lost a significant part of its former landscape heterogeneity. We tested this hypothesis by comparing bird species richness and abundance during the breeding season in organic and conventional farms, matched to eliminate all differences not directly linked to the farming practice, situated in either homogeneous plains with only a little semi-natural habitat or in heterogeneous farmland landscapes with abundant field borders and semi-natural grasslands. The effect of farm management on species richness interacted with landscape structure, such that there was a positive relationship between organic farming and diversity only in homogeneous landscapes. This pattern was mainly dependent on the species richness of passerine birds, in particular those that were invertebrate feeders. Species richness of non-passerines was positively related to organic farming independent of the landscape context. Bird abundance was positively related to landscape heterogeneity but not to farm management. This was mainly because the abundance of passerines, particularly invertebrate feeders, was positively related to landscape heterogeneity. We suggest that invertebrate feeders particularly benefit from organic farming because of improved foraging conditions through increased invertebrate abundances in otherwise depauperate homogeneous landscapes. Although many seed-eaters also benefit from increased insect abundance, they may also utilize crop seed resources in homogeneous landscapes and conventional farms. The occurrence of an interactive effect of organic farming and landscape heterogeneity on bird diversity will have consequences for the optimal allocation of resources to restore the diversity of farmland birds. PMID:20213151

  13. Restinga forests of the Brazilian coast: richness and abundance of tree species on different soils.

    PubMed

    Magnago, Luiz F S; Martins, Sebastião V; Schaefer, Carlos E G R; Neri, Andreza V

    2012-09-01

    The aim of this study was to determine changes in composition, abundance and richness of species along a forest gradient with varying soils and flood regimes. The forests are located on the left bank of the lower Jucu River, in Jacarenema Natural Municipal Park, Espírito Santo. A survey of shrub/tree species was done in 80 plots, 5x25 m, equally distributed among the forests studied. We included in the sampling all individuals with >3.2 cm diameter at breast height (1.30 m). Soil samples were collected from the surface layer (0-10 cm) in each plot for chemical and physical analysis. The results indicate that a significant pedological gradient occurs, which is influenced by varying seasonal groundwater levels. Restinga forest formations showed significant differences in species richness, except for Non-flooded Forest and Non-flooded Forest Transition. The Canonical Correlation Analysis (CCA) showed that some species are distributed along the gradient under the combined influence of drainage, nutrient concentration and physical characteristics of the soil. Regarding the variables tested, flooding seems to be a more limiting factor for the establishment of plant species in Restinga forests than basic soil fertility attributes. PMID:22886165

  14. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery

    PubMed Central

    Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund

    2012-01-01

    Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the

  15. Early positive effects of tree species richness on herbivory in a large-scale forest biodiversity experiment influence tree growth

    PubMed Central

    Schuldt, Andreas; Bruelheide, Helge; Härdtle, Werner; Assmann, Thorsten; Li, Ying; Ma, Keping; von Oheimb, Goddert; Zhang, Jiayong

    2015-01-01

    Despite the importance of herbivory for the structure and functioning of species-rich forests, little is known about how herbivory is affected by tree species richness, and more specifically by random vs. non-random species loss. We assessed herbivore damage and its effects on tree growth in the early stage of a large-scale forest biodiversity experiment in subtropical China that features random and non-random extinction scenarios of tree mixtures numbering between one and 24 species. In contrast to random species loss, the non-random extinction scenarios were based on the tree species’ local rarity and specific leaf area – traits that may strongly influence the way herbivory is affected by plant species richness. Herbivory increased with tree species richness across all scenarios and was unaffected by the different species compositions in the random and non-random extinction scenarios. Whereas tree growth rates were positively related to herbivory on plots with smaller trees, growth rates significantly declined with increasing herbivory on plots with larger trees. Our results suggest that the effects of herbivory on growth rates increase from monocultures to the most species-rich plant communities and that negative effects with increasing tree species richness become more pronounced with time as trees grow larger. Synthesis. Our results indicate that key trophic interactions can be quick to become established in forest plantations (i.e. already 2.5 years after tree planting). Stronger herbivory effects on tree growth with increasing tree species richness suggest a potentially important role of herbivory in regulating ecosystem functions and the structural development of species-rich forests from the very start of secondary forest succession. The lack of significant differences between the extinction scenarios, however, contrasts with findings from natural forests of higher successional age, where rarity had negative effects on herbivory. This indicates that

  16. Unimodal Latitudinal Pattern of Land-Snail Species Richness across Northern Eurasian Lowlands

    PubMed Central

    Horsák, Michal; Chytrý, Milan

    2014-01-01

    Large-scale patterns of species richness and their causes are still poorly understood for most terrestrial invertebrates, although invertebrates can add important insights into the mechanisms that generate regional and global biodiversity patterns. Here we explore the general plausibility of the climate-based “water-energy dynamics” hypothesis using the latitudinal pattern of land-snail species richness across extensive topographically homogeneous lowlands of northern Eurasia. We established a 1480-km long latitudinal transect across the Western Siberian Plain (Russia) from the Russia-Kazakhstan border (54.5°N) to the Arctic Ocean (67.5°N), crossing eight latitudinal vegetation zones: steppe, forest-steppe, subtaiga, southern, middle and northern taiga, forest-tundra, and tundra. We sampled snails in forests and open habitats each half-degree of latitude and used generalized linear models to relate snail species richness to climatic variables and soil calcium content measured in situ. Contrary to the classical prediction of latitudinal biodiversity decrease, we found a striking unimodal pattern of snail species richness peaking in the subtaiga and southern-taiga zones between 57 and 59°N. The main south-to-north interchange of the two principal diversity constraints, i.e. drought stress vs. cold stress, explained most of the variance in the latitudinal diversity pattern. Water balance, calculated as annual precipitation minus potential evapotranspiration, was a single variable that could explain 81.7% of the variance in species richness. Our data suggest that the “water-energy dynamics” hypothesis can apply not only at the global scale but also at subcontinental scales of higher latitudes, as water availability was found to be the primary limiting factor also in this extratropical region with summer-warm and dry climate. A narrow zone with a sharp south-to-north switch in the two main diversity constraints seems to constitute the dominant and general

  17. Unimodal latitudinal pattern of land-snail species richness across northern Eurasian lowlands.

    PubMed

    Horsák, Michal; Chytrý, Milan

    2014-01-01

    Large-scale patterns of species richness and their causes are still poorly understood for most terrestrial invertebrates, although invertebrates can add important insights into the mechanisms that generate regional and global biodiversity patterns. Here we explore the general plausibility of the climate-based "water-energy dynamics" hypothesis using the latitudinal pattern of land-snail species richness across extensive topographically homogeneous lowlands of northern Eurasia. We established a 1480-km long latitudinal transect across the Western Siberian Plain (Russia) from the Russia-Kazakhstan border (54.5°N) to the Arctic Ocean (67.5°N), crossing eight latitudinal vegetation zones: steppe, forest-steppe, subtaiga, southern, middle and northern taiga, forest-tundra, and tundra. We sampled snails in forests and open habitats each half-degree of latitude and used generalized linear models to relate snail species richness to climatic variables and soil calcium content measured in situ. Contrary to the classical prediction of latitudinal biodiversity decrease, we found a striking unimodal pattern of snail species richness peaking in the subtaiga and southern-taiga zones between 57 and 59°N. The main south-to-north interchange of the two principal diversity constraints, i.e. drought stress vs. cold stress, explained most of the variance in the latitudinal diversity pattern. Water balance, calculated as annual precipitation minus potential evapotranspiration, was a single variable that could explain 81.7% of the variance in species richness. Our data suggest that the "water-energy dynamics" hypothesis can apply not only at the global scale but also at subcontinental scales of higher latitudes, as water availability was found to be the primary limiting factor also in this extratropical region with summer-warm and dry climate. A narrow zone with a sharp south-to-north switch in the two main diversity constraints seems to constitute the dominant and general pattern of

  18. Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits

    PubMed Central

    Mitchell, Charles E; Blumenthal, Dana; Jarošík, Vojtěch; Puckett, Emily E; Pyšek, Petr

    2010-01-01

    Introduced species escape many pathogens and other enemies, raising three questions. How quickly do introduced hosts accumulate pathogen species? What factors control pathogen species richness? Are these factors the same in the hosts’ native and introduced ranges? We analysed fungal and viral pathogen species richness on 124 plant species in both their native European range and introduced North American range. Hosts introduced 400 years ago supported six times more pathogens than those introduced 40 years ago. In hosts’ native range, pathogen richness was greater on hosts occurring in more habitat types, with a history of agricultural use and adapted to greater resource supplies. In hosts’ introduced range, pathogen richness was correlated with host geographic range size, agricultural use and time since introduction, but not any measured biological traits. Introduced species have accumulated pathogens at rates that are slow relative to most ecological processes, and contingent on geographic and historic circumstance. PMID:20973907

  19. Hotspots of species richness, threat and endemism for terrestrial vertebrates in SW Europe

    NASA Astrophysics Data System (ADS)

    Pascual, López-López; Luigi, Maiorano; Alessandra, Falcucci; Emilio, Barba; Luigi, Boitani

    2011-09-01

    The Mediterranean basin, and the Iberian Peninsula in particular, represent an outstanding "hotspot" of biological diversity with a long history of integration between natural ecosystems and human activities. Using deductive distribution models, and considering both Spain and Portugal, we downscaled traditional range maps for terrestrial vertebrates (amphibians, breeding birds, mammals and reptiles) to the finest possible resolution with the data at hand, and we identified hotspots based on three criteria: i) species richness; ii) vulnerability, and iii) endemism. We also provided a first evaluation of the conservation status of biodiversity hotspots based on these three criteria considering both existing and proposed protected areas (i.e., Natura 2000). For the identification of hotspots, we used a method based on the cumulative distribution functions of species richness values. We found no clear surrogacy among the different types of hotspots in the Iberian Peninsula. The most important hotspots (considering all criteria) are located in the western and southwestern portions of the study area, in the Mediterranean biogeographical region. Existing protected areas are not specifically concentrated in areas of high species richness, with only 5.2% of the hotspots of total richness being currently protected. The Natura 2000 network can potentially constitute an important baseline for protecting vertebrate diversity in the Iberian Peninsula although further improvements are needed. We suggest taking a step forward in conservation planning in the Mediterranean basin, explicitly considering the history of the region as well as its present environmental context. This would allow moving from traditional reserve networks (conservation focused on "patterns") to considerations about the "processes" that generated present biodiversity.

  20. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission.

    PubMed

    Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L

    2016-06-01

    Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions. PMID:26206418

  1. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  2. Experimental factors affecting PCR-based estimates of microbial species richness and evenness

    SciTech Connect

    Engelbrektson, Anna; Kunin, Victor; Wrighton, Kelly C.; Zvenigorodsky, Natasha; Chen, Feng; Ochman, Howard; Hugenholtz, Philip

    2009-12-01

    Pyrosequencing of 16S rRNA gene amplicons for microbial community profiling can, for equivalent costs, yield greater than two orders of magnitude more sensitivity than traditional PCR-cloning and Sanger sequencing. With this increased sensitivity and the ability to analyze multiple samples in parallel, it has become possible to evaluate several technical aspects of PCRbased community structure profiling methods. We tested the effect of amplicon length and primer pair on estimates of species richness number of species and evenness relative abundance of species by assessing the potentially tractable microbial community residing in the termite hindgut. Two regions of the 16S rRNA gene were sequenced from one of two common priming sites, spanning the V1-V2 or V8 regions, using amplicons ranging n length from 352 to 1443 bp. Our results demonstrate that both amplicon length and primer pair markedly influence estimates of richness and evenness. However, estimates of species evenness are consistent among different primer pairs targeting the same region. These results highlight the importance of experimental methodology when comparing diversity estimates across communities.

  3. Predicting species richness and distribution ranges of centipedes at the northern edge of Europe

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Elisavet; Djursvoll, Per; Simaiakis, Stylianos M.

    2016-07-01

    In recent decades, interest in understanding species distributions and exploring processes that shape species diversity has increased, leading to the development of advanced methods for the exploitation of occurrence data for analytical and ecological purposes. Here, with the use of georeferenced centipede data, we explore the importance and contribution of bioclimatic variables and land cover, and predict distribution ranges and potential hotspots in Norway. We used a maximum entropy analysis (Maxent) to model species' distributions, aiming at exploring centres of distribution, latitudinal spans and northern range boundaries of centipedes in Norway. The performance of all Maxent models was better than random with average test area under the curve (AUC) values above 0.893 and True Skill Statistic (TSS) values above 0.593. Our results showed a highly significant latitudinal gradient of increased species richness in southern grid-cells. Mean temperatures of warmest and coldest quarters explained much of the potential distribution of species. Predictive modelling analyses revealed that south-eastern Norway and the Atlantic coast in the west (inclusive of the major fjord system of Sognefjord), are local biodiversity hotspots with regard to high predictive species co-occurrence. We conclude that our predicted northward shifts of centipedes' distributions in Norway are likely a result of post-glacial recolonization patterns, species' ecological requirements and dispersal abilities.

  4. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?

    PubMed

    Hill, Jane K; Gray, Michael A; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C

    2011-11-27

    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects. PMID:22006967

  5. Proteome profile of salt gland-rich epidermis extracted from a salt-tolerant tree species.

    PubMed

    Tan, Wee-Kee; Ang, Yiqian; Lim, Teck-Kwang; Lim, Tit-Meng; Kumar, Prakash; Loh, Chiang-Shiong; Lin, Qingsong

    2015-10-01

    Preparation of proteins from salt-gland-rich tissues of mangrove plant is necessary for a systematic study of proteins involved in the plant's unique desalination mechanism. Extraction of high-quality proteins from the leaves of mangrove tree species, however, is difficult due to the presence of high levels of endogenous phenolic compounds. In our study, preparation of proteins from only a part of the leaf tissues (i.e. salt gland-rich epidermal layers) was required, rendering extraction even more challenging. By comparing several extraction methods, we developed a reliable procedure for obtaining proteins from salt gland-rich tissues of the mangrove species Avicennia officinalis. Protein extraction was markedly improved using a phenol-based extraction method. Greater resolution 1D protein gel profiles could be obtained. More promising proteome profiles could be obtained through 1D-LC-MS/MS. The number of proteins detected was twice as much as compared to TUTS extraction method. Focusing on proteins that were solely present in each extraction method, phenol-based extracts contained nearly ten times more proteins than those in the extracts without using phenol. The approach could thus be applied for downstream high-throughput proteomic analyses involving LC-MS/MS or equivalent. The proteomics data presented herein are available via ProteomeXchange with identifier PXD001691. PMID:26105009

  6. Associations of forest bird species richness with housing and landscape patterns across the USA.

    PubMed

    Pidgeon, A M; Radeloff, V C; Flather, C H; Lepczyk, C A; Clayton, M K; Hawbaker, T J; Hammer, R B

    2007-10-01

    In the United States, housing density has substantially increased in and adjacent to forests. Our goal in this study was to identify how housing density and human populations are associated with avian diversity. We compared these associations to those between landscape pattern and avian diversity, and we examined how these associations vary across the conterminous forested United States. Using data from the North American Breeding Bird Survey, the U.S. Census, and the National Land Cover Database, we focused on forest and woodland bird communities and conducted our analysis at multiple levels of model specificity, first using a coarse-thematic resolution (basic models), then using a larger number of fine-thematic resolution variables (refined models). We found that housing development was associated with forest bird species richness in all forested ecoregions of the conterminous United States. However, there were important differences among ecoregions. In the basic models, housing density accounted for < 5% of variance in avian species richness. In refined models, 85% of models included housing density and/or residential land cover as significant variables. The strongest guild response was demonstrated in the Adirondack-New England ecoregion, where 29% of variation in richness of the permanent resident guild was associated with housing density. Model improvements due to regional stratification were most pronounced for cavity nesters and short-distance migrants, suggesting that these guilds may be especially sensitive to regional processes. The varying patterns of association between avian richness and attributes associated with landscape structure suggested that landscape context was an important mediating factor affecting how biodiversity responds to landscape changes. Our analysis suggested that simple, broadly applicable, land use recommendations cannot be derived from our results. Rather, anticipating future avian response to land use intensification (or

  7. Environmental Effects on Vertebrate Species Richness: Testing the Energy, Environmental Stability and Habitat Heterogeneity Hypotheses

    PubMed Central

    Luo, Zhenhua; Tang, Songhua; Li, Chunwang; Fang, Hongxia; Hu, Huijian; Yang, Ji; Ding, Jingjing; Jiang, Zhigang

    2012-01-01

    Background Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. Methodology/Principal Findings A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100×100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. Conclusions/Significance The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the

  8. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes

    PubMed Central

    Lin, Xiaolong; Stur, Elisabeth; Ekrem, Torbjørn

    2015-01-01

    DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120–242 molecular operational taxonomic units (OTUs) depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescent model (GMYC), Poisson Tree Process (PTP), subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs) are used. We suggest that a 4–5% threshold is appropriate to delineate species of Tanytarsus non-biting midges. PMID:26406595

  9. Predators reduce abundance and species richness of coral reef fish recruits via non-selective predation

    NASA Astrophysics Data System (ADS)

    Heinlein, J. M.; Stier, A. C.; Steele, M. A.

    2010-06-01

    Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.

  10. Species richness and macronutrient content of wawo worms (Polychaeta, Annelida) from Ambonese waters, Maluku, Indonesia

    PubMed Central

    2015-01-01

    Abstract The aims of this research were to: (1) investigate the species richness of wawo worms, and to (2) analyze macronutrient content of the worms. Wawo worms were sampled using a fishing net on March 18th-19th, 2014, from Ambonese waters, Maluku. As many as 26 wawo species belonging to 5 families were identified. Palola sp. was identified as the most abundant species of wawo, followed by Lysidice oele, Horst 1905, Eunice spp. and nereidids. Results of the proximate analysis reveal that female epitokes of Palola sp. contain 10.78 % ash, 10.71 % moisture, 11.67 % crude fat, 54.72 % crude protein and 12.12 % carbohydrate. PMID:25829856

  11. Macroparasite community of the Eurasian red squirrel (Sciurus vulgaris): poor species richness and diversity.

    PubMed

    Romeo, Claudia; Pisanu, Benoît; Ferrari, Nicola; Basset, Franck; Tillon, Laurent; Wauters, Lucas A; Martinoli, Adriano; Saino, Nicola; Chapuis, Jean-Louis

    2013-10-01

    The Eurasian red squirrel (Sciurus vulgaris) is the only naturally occurring tree squirrel throughout its range. We aim at improving current knowledge on its macroparasite fauna, expecting that it will have a poor parasite diversity because in species that have no sympatric congeners parasite richness should be lower than in hosts sharing their range with several closely related species, where host-switching events and lateral transmission are promoted. We examined gastro-intestinal helminth and ectoparasite communities (excluding mites) of, respectively, 147 and 311 red squirrel roadkills collected in four biogeographic regions in Italy and France. As expected, the macroparasite fauna was poor: we found five species of nematodes and some unidentified cestodes, three fleas, two sucking lice and two hard ticks. The helminth community was dominated by a single species, the oxyurid Trypanoxyuris (Rodentoxyuris) sciuri (prevalence, 87%; mean abundance, 373 ± 65 worms/host). Its abundance varied among seasons and biogeographic regions and increased with body mass in male hosts while decreased in females. The most prevalent ectoparasites were the flea Ceratophyllus (Monopsyllus) sciurorum (28%), whose presence was affected by season, and the generalist tick Ixodes (Ixodes) ricinus that was found only in France (34%). All the other helminths and arthropod species were rare, with prevalence below 10%. However, the first record of Strongyloides robustus, a common nematode of North American Eastern grey squirrels (S. carolinensis), in two red squirrels living in areas where this alien species co-inhabits, deserves further attention, since low parasite richness could result in native red squirrels being particularly vulnerable to parasite spillover. PMID:23873618

  12. Geographical patterns in species richness of the benthic polychaetes in the continental shelf of the Gulf of California, Mexican Pacific

    NASA Astrophysics Data System (ADS)

    Hernández-Alcántara, Pablo; Salas-de León, David Alberto; Solís-Weiss, Vivianne; Monreal-Gómez, María Adela

    2013-09-01

    The present study is the first attempt to describe meso-scale patterns in the species richness of polychaetes along the Gulf of California, which stretches from about 23°N to 31°N. We examine herein the spatial changes in species distribution and explore the overlapping of species' ranges towards the centre of the Gulf, to test whether the mid-domain effect (MDE) could explain an expected mid-domain peak in species richness. The faunal composition and the latitudinal range of 244 species of polychaetes recorded along the continental shelf of the Gulf of California were analysed in latitude bands of 1°. The species composition changes around the Gulf's archipelago (~29°N), and the highest values of species richness are found at the 25° (197 species) and 26° (193 species) of latitude. Although the species richness pattern could be described by a parabolic shape, the regional trend was not strongly consistent with the peak of diversity at 27°N (176-191 species) predicted by the mid-domain effect: the random sorting of species' ranges within spatial domain does not explain satisfactorily the geographical patterns of diversity. Nevertheless, a partial contribution of MDE to these natural patterns of diversity could be detected, and the increase in species richness towards middle latitudes was basically determined by species with distribution ranges larger than 6°. The low level of significance between the empirical species richness pattern and the mid-domain model prediction for polychaetes in the Gulf does not restrict their use as a model for exploring the randomness of the diversity patterns.

  13. Fine-scale spatial variation in plant species richness and its relationship to environmental conditions in coastal marshlands

    USGS Publications Warehouse

    Mancera, J.E.; Meche, G.C.; Cardona-Olarte, P.P.; Castaneda-Moya, E.; Chiasson, R.L.; Geddes, N.A.; Schile, L.M.; Wang, H.G.; Guntenspergen, G.R.; Grace, J.B.

    2005-01-01

    Previous studies have shown that variations in environmental conditions play a major role in explaining variations in plant species richness at community and landscape scales. In this study, we considered the degree to which fine-scale spatial variations in richness could be related to fine-scale variations in abiotic and biotic factors. To examine spatial variation in richness, grids of 1 m(2) plots were laid out at five sites within a coastal riverine wetland landscape. At each site, a 5 x 7 array of plots was established adjacent to the river's edge with plots one meter apart. In addition to the estimation of species richness, environmental measurements included sediment salinity, plot microelevation, percent of plot recently disturbed, and estimated community biomass. Our analysis strategy was to combine the use of structural equation modeling (path modeling) with an assessment of spatial association. Mantel's tests revealed significant spatial autocorrelation in species richness at four of the five sites sampled, indicating that richness in a plot correlated with the richness of nearby plots. We subsequently considered the degree to which spatial autocorrelations in richness could be explained by spatial autocorrelations in environmental conditions. Once data were corrected for environmental correlations, spatial autocorrelation in residual species richness could not be detected at any site. Based on these results, we conclude that in this coastal wetland, there appears to be a fine-scale mapping of diversity to microgradients in environmental conditions.

  14. Microbial Species Richness and Metabolic Activities in Hypersaline Microbial Mats: Insight into Biosignature Formation Through Lithification

    NASA Astrophysics Data System (ADS)

    Baumgartner, Laura K.; Dupraz, Christophe; Buckley, Daniel H.; Spear, John R.; Pace, Norman R.; Visscher, Pieter T.

    2009-11-01

    Microbial mats in the hypersaline lake of Salt Pan, Eleuthera, Bahamas, display a gradient of lithification along a transect from the center to the shore of the lake. These mats exist under similar geochemical conditions, with light quantity and quality as the sole major environmental difference. Therefore, we hypothesized that the microbial community may be driving the differences in lithification and, by extension, mineral biosignature formation. The lithifying and non-lithifying mat communities were compared (via 16S rRNA gene sequencing, 485 and 464 sequences, respectively) over both temporal and spatial scales. Seven bacterial groups dominated in all the microbial mat libraries: bacteriodetes, alphaproteobacteria, deltaproetobacteria, chloroflexi, spirochaetes, cyanobacteria, and planctomycetes. The mat communities were all significantly different over space, time, and lithification state. Species richness is significantly higher in the non-lithifying mats, potentially due to differences in mat structure and activity. This increased richness may impact lithification and, hence, biosignature production.

  15. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?

    PubMed Central

    Hill, Jane K.; Gray, Michael A.; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C.

    2011-01-01

    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species–area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects. PMID:22006967

  16. First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae)

    PubMed Central

    Aguilar-Rodríguez, Pedro Adrián; MacSwiney G., M. Cristina; Krömer, Thorsten; García-Franco, José G.; Knauer, Anina; Kessler, Michael

    2014-01-01

    Background and Aims Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. Methods The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. Key Results Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). Conclusions This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats. PMID:24651370

  17. Estimation of avian population sizes and species richness across a boreal landscape in Alaska

    USGS Publications Warehouse

    Handel, C.M.; Swanson, S.A.; Nigro, Debora A.; Matsuoka, S.M.

    2009-01-01

    We studied the distribution of birds breeding within five ecological landforms in Yukon-Charley Rivers National Preserve, a 10,194-km2 roadless conservation unit on the Alaska-Canada border in the boreal forest zone. Passerines dominated the avifauna numerically, comprising 97% of individuals surveyed but less than half of the 115 species recorded in the Preserve. We used distance-sampling and discrete-removal models to estimate detection probabilities, densities, and population sizes across the Preserve for 23 species of migrant passerines and five species of resident passerines. Yellow-rumped Warblers (Dendroica coronata) and Dark-eyed Juncos (Junco hyemalis) were the most abundant species, together accounting for 41% of the migrant passerine populations estimated. White-winged Crossbills (Loxia leucoptera), Boreal Chickadees (Poecile hudsonica), and Gray Jays (Perisoreus canadensis) were the most abundant residents. Species richness was greatest in the Floodplain/Terrace landform flanking the Yukon River but densities were highest in the Subalpine landform. Species composition was related to past glacial history and current physiography of the region and differed notably from other areas of the northwestern boreal forest. Point-transect surveys, augmented with auxiliary observations, were well suited to sampling the largely passerine avifauna across this rugged landscape and could be used across the boreal forest region to monitor changes in northern bird distribution and abundance. ?? 2009 The Wilson Ornithological Society.

  18. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests.

    PubMed

    Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí

    2015-05-11

    The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians. PMID:25958806

  19. Contrasting impacts of different-sized herbivores on species richness of Mediterranean annual pastures differing in primary productivity.

    PubMed

    Rueda, Marta; Rebollo, Salvador; García-Salgado, Gonzalo

    2013-06-01

    Vertebrate herbivores can be key determinants of grassland plant species richness, although the magnitude of their effects can largely depend on ecosystem and herbivore characteristics. It has been demonstrated that the combined effect of primary productivity and body size is critical when assessing the impact of herbivores on plant richness of perennial-dominated grasslands; however, the interaction of site productivity and herbivore size as determinants of plant richness in annual-dominated pastures remains unknown. We experimentally partitioned primary productivity and herbivore body size (sheep and wild rabbits) to study the effect of herbivores on the plant species richness of a Mediterranean semiarid annual plant community in central Spain over six years. We also analyzed the effect of grazing and productivity on the evenness and species composition of the plant community, and green cover, litter, and plant height. We found that plant richness was higher where the large herbivore was present at high-productivity sites but barely changed at low productivity. The small herbivore did not affect species richness at either productivity site despite its large effects on species composition. We propose that adaptations to resource scarcity and herbivory prevented plant richness changes at low-productivity sites, whereas litter accumulation in the absence of herbivores decreased plant richness at high productivity. Our results are consistent with predictions arising from a long history of grazing and highlight the importance of both large and small herbivores to the maintenance of plant diversity of Mediterranean annual-dominated pastures. PMID:23090759

  20. Bathymetric patterns of polychaete (Annelida) species richness in the continental shelf of the Gulf of California, Eastern Pacific

    NASA Astrophysics Data System (ADS)

    Hernández-Alcántara, Pablo; Salas-de León, David Alberto; Solís-Weiss, Vivianne; Monreal-Gómez, María Adela

    2014-08-01

    The mid-domain effect was tested to evaluate the bathymetric patterns of the polychaete species richness in the Upper and Lower Gulf of California as a possible hypothesis to explain the species richness gradient, exploring the overlapping of species depth ranges towards the middle continental shelf. The bathymetric gradient of the number of species was estimated with the depth ranges of 554 polychaete species, and the mid-domain effect was tested using a Monte Carlo simulation program at bands of 10 m depth. The Upper (251 species) and Lower (491 species) Gulf regions showed clear differences in their faunal composition (Jaccard similarity index = 0.34); the species richness pattern was characterized by a highly significant presence of polychaetes with short depth ranges (< 10 m). The richness distribution could be described as a cubic polynomial curve, but the maximum values in both Gulf regions (141 and 317 species, respectively for Upper and Lower Gulf regions) are strongly biased to shallow waters (40 m). This is not consistent with the peak of diversity at 60-70 m predicted by the model. The observed patterns cannot be reproduced by the mid-domain effect, suggesting the existence of non-random factors affecting the species richness gradients in the Gulf.

  1. Large-scale patterns of epiphytic lichen species richness: photobiont-dependent response to climate and forest structure.

    PubMed

    Marini, Lorenzo; Nascimbene, Juri; Nimis, Pier Luigi

    2011-09-15

    Lichens are composite organisms consisting of a symbiotic association of a fungus with a photosynthetic partner. Although the photobiont type is a key life-history trait, tests of the potential differential role of the main photobiont types in shaping large-scale patterns of lichen species richness are still absent. The aim of the study was to test the influences of forest structure and climate on epiphytic lichen species richness across Italy and to see whether these relationships change for groups of species sharing different photobiont types. Regional species richness of epiphytic lichens divided into three main photobiont types (i.e. chlorococcoid green algae, cyanobacteria, and Trentepohlia algae) was retrieved for each of the 20 administrative regions. Multiple linear regression was used to quantify the effect of climate and forest structure, and their potential interaction, on the regional species richness for the three photobiont types, accounting also for the effect of regional area. Regional species richness was associated with both climate and forest structure variables but the relationships with both factors were largely photobiont dependent. Regional area and precipitation were the only predictors included in all the models, confirming the strong dependence of lichens on atmospheric water supply, irrespective of the photobiont type. Number of species with chlorococcoid green algae were further positively associated with cover of high forest, whilst lichens with Trentepohlia were further enhanced by warm temperatures. Cyanolichen species richness was only related to area and precipitation. Our study shed light on the relative importance of climate and forest structure on lichen species richness patterns at the macroscale, showing a differential response of the photobiont types to various environmental determinants. This differential response suggested that the current and future impacts of global change on lichens cannot be generalized and that species

  2. Local and Landscape Correlates of Spider Activity Density and Species Richness in Urban Gardens.

    PubMed

    Otoshi, Michelle D; Bichier, Peter; Philpott, Stacy M

    2015-08-01

    Urbanization is a major threat to arthropod biodiversity and abundance due to reduction and loss of suitable natural habitat. Green spaces and small-scale agricultural areas may provide habitat and resources for arthropods within densely developed cities. We studied spider activity density (a measure of both abundance and degree of movement) and diversity in urban gardens in Santa Cruz, Santa Clara, and Monterey counties in central California, USA. We sampled for spiders with pitfall traps and sampled 38 local site characteristics for 5 mo in 19 garden sites to determine the relative importance of individual local factors. We also analyzed 16 landscape variables at 500-m and 1-km buffers surrounding each garden to determine the significance of landscape factors. We identified individuals from the most common families to species and identified individuals from other families to morphospecies. Species from the families Lycosidae and Gnaphosidae composed 81% of total adult spider individuals. Most of the significant factors that correlated with spider activity density and richness were local rather than landscape factors. Spider activity density and richness increased with mulch cover and flowering plant species, and decreased with bare soil. Thus, changes in local garden management have the potential to promote diversity of functionally important spiders in urban environments. PMID:26314049

  3. Species richness and adaptive capacity in animal communities: lessons from China.

    PubMed

    Mackinnon, John

    2008-06-01

    Climate change is already threatening the long-term viability of many important protected areas, and as global warming accelerates this will increase. Lowered water tables, melting permafrost, changing vegetation zones, combined with the fragmentary distribution of wilderness areas, will cause a wave of local extinctions as species fail to adapt to changing conditions in time or fail to move as climate zones advance across the face of the continents. Ecologists can predict and even model likely scenarios, but can we do anything to help safeguard valuable biodiversity or must we passively document Earth's changes and accept these losses? Studies of the extraordinary species richness of the Hengduan Mountains and the Qionglai Mountain ranges of South-West China and of the Changbaishan Mountains in North-East China give us some optimism. This paper provides an explanation for the high species richness in these ranges and identifies design principles that can be used in the selection of protected areas or in the revision of existing protected area boundaries to enhance their ecological resilience and allow them to maintain higher levels of biological diversity under conditions of climate change or other disturbance. PMID:21396057

  4. Elucidation of the chemical environment for zinc species in an electron-rich zinc-incorporated zeolite

    SciTech Connect

    Wang, Jing-Feng; Wang, Kai-Xue; Wang, Jian-Qiang; Li, Lu; Jiang, Yan-Mei; Guo, Xing-Xing; Chen, Jie-Sheng

    2013-06-15

    An electron-rich zinc-modified zeolite has been prepared by the incorporation of zinc vapor into the channels of a dehydrated HY (protonated zeolite Y). The chemical environment of the zinc species in the electron-rich zeolite has been elucidated on the basis of X-ray absorption spectroscopy. The formation of univalent zinc (Zn{sup +}) within the electron-rich zeolite was observed upon the irradiation of X-ray from either a synchrotron radiation source or a conventional X-ray diffractometer. The X-ray irradiation initiated the electron transfer from the electron-rich framework of zeolite Y to the nearby Zn{sup 2+} cations, generating Zn{sup +} species. The variation of the coordination environment of the zinc species upon interaction with water molecules has also been investigated. - Graphical abstract: The chemical environment of the zinc species in an electorn-rich zeolite has been elucidated on the basis of X-ray absorption spectroscopy. - Highlights: • An electron-rich zinc-incorporated zeolite has been prepared by chemical vapor reaction. • Univalent zinc is detected after the electron-rich zeolite is irradiated with X-ray. • The chemical environment of the zinc species is elucidated by X-ray absorption spectroscopy. • The coordination environment of the zinc species changes upon interaction with water molecules.

  5. Plant species richness drives the density and diversity of Collembola in temperate grassland

    NASA Astrophysics Data System (ADS)

    Sabais, Alexander C. W.; Scheu, Stefan; Eisenhauer, Nico

    2011-05-01

    Declining biodiversity is one of the most important aspects of anthropogenic global change phenomena, but the implications of plant species loss for soil decomposers are little understood. We used the experimental grassland community of the Jena Experiment to assess the response of density and diversity of Collembola to varying plant species richness, plant functional group richness and plant functional group identity. We sampled the experimental plots in spring and autumn four years after establishment of the experimental plant communities. Collembola density and diversity significantly increased with plant species and plant functional group richness highlighting the importance of the singular hypothesis for soil invertebrates. Generally, grasses and legumes beneficially affected Collembola density and diversity, whereas effects of small herbs usually were detrimental. These impacts were largely consistent in spring and autumn. By contrast, in the presence of small herbs the density of hemiedaphic Collembola and the diversity of Isotomidae increased in spring whereas they decreased in autumn. Beneficial impacts of plant diversity as well as those of grasses and legumes were likely due to increased root and microbial biomass, and elevated quantity and quality of plant residues serving as food resources for Collembola. By contrast, beneficial impacts of small herbs in spring probably reflect differences in microclimatic conditions, and detrimental effects in autumn likely were due to low quantity and quality of resources. The results point to an intimate relationship between plants and the diversity of belowground biota, even at small spatial scales, contrasting the findings of previous studies. The pronounced response of soil animals in the present study was presumably due to the fact that plant communities had established over several years. As decomposer invertebrates significantly impact plant performance, changes in soil biota density and diversity are likely

  6. Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island

    PubMed Central

    Birnbaum, Philippe; Ibanez, Thomas; Pouteau, Robin; Vandrot, Hervé; Hequet, Vanessa; Blanchard, Elodie; Jaffré, Tanguy

    2015-01-01

    High-elevation tropical islands are ideally suited for examining the factors that determine species distribution, given the complex topographies and climatic gradients that create a wide variety of habitats within relatively small areas. New Caledonia, a megadiverse Pacific archipelago, has long focussed the attention of botanists working on the spatial and environmental ranges of specific groups, but few studies have embraced the entire tree flora of the archipelago. In this study we analyse the distribution of 702 native species of rainforest trees of New Caledonia, belonging to 195 genera and 80 families, along elevation and rainfall gradients on ultramafic (UM) and non-ultramafic (non-UM) substrates. We compiled four complementary data sources: (i) herbarium specimens, (ii) plots, (iii) photographs and (iv) observations, totalling 38 936 unique occurrences distributed across the main island. Compiled into a regular 1-min grid (1.852 × 1.852 km), this dataset covered ∼22 % of the island. The studied rainforest species exhibited high environmental tolerance; 56 % of them were not affiliated to a substrate type and they exhibited wide elevation (average 891 ± 332 m) and rainfall (average 2.2 ± 0.8 m year−1) ranges. Conversely their spatial distribution was highly aggregated, which suggests dispersal limitation. The observed species richness was driven mainly by the density of occurrences. However, at the highest elevations or rainfalls, and particularly on UM, the observed richness tends to be lower, independently of the sampling effort. The study highlights the imbalance of the dataset in favour of higher values of rainfall and of elevation. Projected onto a map, under-represented areas are a guide as to where future sampling efforts are most required to complete our understanding of rainforest tree species distribution. PMID:26162898

  7. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    PubMed Central

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  8. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants.

    PubMed

    Ossola, Alessandro; Nash, Michael A; Christie, Fiona J; Hahs, Amy K; Livesley, Stephen J

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  9. Environmental correlates for tree occurrences, species distribution and richness on a high-elevation tropical island.

    PubMed

    Birnbaum, Philippe; Ibanez, Thomas; Pouteau, Robin; Vandrot, Hervé; Hequet, Vanessa; Blanchard, Elodie; Jaffré, Tanguy

    2015-01-01

    High-elevation tropical islands are ideally suited for examining the factors that determine species distribution, given the complex topographies and climatic gradients that create a wide variety of habitats within relatively small areas. New Caledonia, a megadiverse Pacific archipelago, has long focussed the attention of botanists working on the spatial and environmental ranges of specific groups, but few studies have embraced the entire tree flora of the archipelago. In this study we analyse the distribution of 702 native species of rainforest trees of New Caledonia, belonging to 195 genera and 80 families, along elevation and rainfall gradients on ultramafic (UM) and non-ultramafic (non-UM) substrates. We compiled four complementary data sources: (i) herbarium specimens, (ii) plots, (iii) photographs and (iv) observations, totalling 38 936 unique occurrences distributed across the main island. Compiled into a regular 1-min grid (1.852 × 1.852 km), this dataset covered ∼22 % of the island. The studied rainforest species exhibited high environmental tolerance; 56 % of them were not affiliated to a substrate type and they exhibited wide elevation (average 891 ± 332 m) and rainfall (average 2.2 ± 0.8 m year(-1)) ranges. Conversely their spatial distribution was highly aggregated, which suggests dispersal limitation. The observed species richness was driven mainly by the density of occurrences. However, at the highest elevations or rainfalls, and particularly on UM, the observed richness tends to be lower, independently of the sampling effort. The study highlights the imbalance of the dataset in favour of higher values of rainfall and of elevation. Projected onto a map, under-represented areas are a guide as to where future sampling efforts are most required to complete our understanding of rainforest tree species distribution. PMID:26162898

  10. Effects of Management on Lichen Species Richness, Ecological Traits and Community Structure in the Rodnei Mountains National Park (Romania)

    PubMed Central

    Ardelean, Ioana Violeta; Keller, Christine; Scheidegger, Christoph

    2015-01-01

    Lichens are valuable bio-indicators for evaluating the consequences of human activities that are increasingly changing the earth’s ecosystems. Since a major objective of national parks is the preservation of biodiversity, our aim is to analyse how natural resource management, the availability of lichen substrates and environmental parameters influence lichen diversity in Rodnei Mountains National Park situated in the Eastern Carpathians. Three main types of managed vegetation were investigated: the transhumance systems in alpine meadows, timber exploitation in mixed and pure spruce forests, and the corresponding conserved sites. The data were sampled following a replicated design. For the analysis, we considered not only all lichen species, but also species groups from different substrates such as soil, trees and deadwood. The lichen diversity was described according to species richness, red-list status and substrate-specialist species richness. The variation in species composition was related to the environmental variables. Habitat management was found to negatively influence species richness and alter the lichen community composition, particularly for threatened and substrate-specialist species. It reduced the mean level of threatened species richness by 59%, when all lichen species were considered, and by 81%, when only epiphytic lichens were considered. Management-induced disturbance significantly decreased lichen species richness in forest landscapes with long stand continuity. The diversity patterns of the lichens indicate a loss of species richness and change in species composition in areas where natural resources are still exploited inside the borders of the national park. It is thus imperative for protected areas, in particular old-growth forests and alpine meadows, to receive more protection than they have received in the past to ensure populations of the characteristic species remain viable in the future. PMID:26717517

  11. Effects of Management on Lichen Species Richness, Ecological Traits and Community Structure in the Rodnei Mountains National Park (Romania).

    PubMed

    Ardelean, Ioana Violeta; Keller, Christine; Scheidegger, Christoph

    2015-01-01

    Lichens are valuable bio-indicators for evaluating the consequences of human activities that are increasingly changing the earth's ecosystems. Since a major objective of national parks is the preservation of biodiversity, our aim is to analyse how natural resource management, the availability of lichen substrates and environmental parameters influence lichen diversity in Rodnei Mountains National Park situated in the Eastern Carpathians. Three main types of managed vegetation were investigated: the transhumance systems in alpine meadows, timber exploitation in mixed and pure spruce forests, and the corresponding conserved sites. The data were sampled following a replicated design. For the analysis, we considered not only all lichen species, but also species groups from different substrates such as soil, trees and deadwood. The lichen diversity was described according to species richness, red-list status and substrate-specialist species richness. The variation in species composition was related to the environmental variables. Habitat management was found to negatively influence species richness and alter the lichen community composition, particularly for threatened and substrate-specialist species. It reduced the mean level of threatened species richness by 59%, when all lichen species were considered, and by 81%, when only epiphytic lichens were considered. Management-induced disturbance significantly decreased lichen species richness in forest landscapes with long stand continuity. The diversity patterns of the lichens indicate a loss of species richness and change in species composition in areas where natural resources are still exploited inside the borders of the national park. It is thus imperative for protected areas, in particular old-growth forests and alpine meadows, to receive more protection than they have received in the past to ensure populations of the characteristic species remain viable in the future. PMID:26717517

  12. Correlation between the habitats productivity and species richness (amphibians and reptiles) in Portugal through remote sensed data

    NASA Astrophysics Data System (ADS)

    Teodoro, A. C.; Sillero, N.; Alves, S.; Duarte, L.

    2013-10-01

    Several biogeographic theories propose that the species richness depends on the structure and ecosystems diversity. The habitat productivity, a surrogate for these variables, can be evaluated through satellite imagery, namely using vegetation indexes (e.g. NDVI). We analyzed the correlation between species richness (from the Portuguese Atlas of Amphibians and Reptiles) and NDVI (from Landsat, MODIS, and Vegetation images). The species richness database contains more than 80000 records, collected from bibliographic sources (at 1 or 10 km of spatial resolution) and fieldwork sampling stations (recorded with GPS devices). Several study areas were chosen for Landsat images (three subsets), and all Portugal for MODIS and Vegetation images. The Landsat subareas had different climatic and habitat characteristics, located in the north, center and south of Portugal. Different species richness datasets were used depending on the image spatial resolution: data with metric resolution were used for Landsat, and with 1 km resolution, for MODIS and Vegetation images. The NDVI indexes and all the images were calculated/processed in an open source software (Quantum GIS). Several plug-ins were applied in order to automatize several procedures. We did not find any correlation between the species richness of amphibians and reptiles (not even after separating both groups by species of Atlantic and Mediterranean affinity) and the NDVI calculated with Landsat, MODIS and Vegetation images. Our results may fail to find a relationship because as the species richness is not correlated with only one variable (NDVI), and thus other environmental variables must be considered.

  13. Water Mites (Acari: Hydrachnida) of Ozark Streams - Abundance, Species Richness, and Potential as Environmental Indicators

    NASA Astrophysics Data System (ADS)

    Radwell, A. J.; Brown, A. V.

    2005-05-01

    Because water mites are tightly linked to other stream metazoans through parasitism and predation, they are potentially effective indicators of environmental quality. Meiofauna (80 μm to 1 mm) were sampled from headwater riffles of 11 Ozark streams to determine relative abundance and densities of major meiofauna taxa. Water mites comprised 15.3% of the organisms collected exceeded only by chironomids (50.2%) and oligochaetes (17.8%), and mean water mite density among the 11 streams was 265 organisms per liter. The two streams that differed the most in environmental quality were sampled using techniques suitable for identification of species. An estimated 32 species from 20 genera and 13 families were found in the least disturbed stream; an estimated 19 species from 13 genera and 8 families were found in the most disturbed stream. This preliminary finding supports the notion that water mite species richness declines in response to environmental disturbance. Many species could only be identified as morphospecies of particular genera, but the ongoing taxonomic revision of Hydrachnida is expected to provide needed information. A collaborative effort between those interested in taxonomy/systematics of water mites and ecologists interested in the significance of water mites in aquatic communities could prove mutually beneficial.

  14. Staged invasions across disparate grasslands: effects of seed provenance, consumers and disturbance on productivity and species richness.

    PubMed

    Maron, John L; Auge, Harald; Pearson, Dean E; Korell, Lotte; Hensen, Isabell; Suding, Katharine N; Stein, Claudia

    2014-04-01

    Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed and undisturbed subplots in and out of rodent exclosures with seeds of native or exotic species in grasslands in Montana, California and Germany. Seed addition enhanced aboveground biomass and species richness compared with no-seeds-added controls, with exotics having disproportionate effects on productivity compared with natives. Disturbance enhanced the effects of seed addition on productivity and species richness, whereas rodents reduced productivity, but only in Germany and California. Our results demonstrate that experimental introduction of novel species can alter ecosystem function and community structure, but that local filters such as competition and herbivory influence the magnitude of these impacts. PMID:24467348

  15. Two common species dominate the species-rich Euglossine bee fauna of an Atlantic Rainforest remnant in Pernambuco, Brazil.

    PubMed

    Oliveira, R; Pinto, C E; Schlindwein, C

    2015-11-01

    Nowadays, the northern part of the Atlantic Rainforest of Brazil is largely destroyed and forest remnants rarely exceed 100 ha. In a 118 ha forest fragment within a state nature reserve of Pernambuco (Reserva Ecológica Gurjaú), we surveyed the orchid bee fauna (Apidae, Euglossini) using eight different scent baits to attract males. Once a month during one year, the bees were actively collected with entomological nets, from November 2002 to October 2003 by two collectors. We collected 2,908 orchid bee males belonging to 23 species, one of the highest richness values of the Northern Atlantic Rainforest. Bees of only two species, Euglossa carolina (50%) and Eulaema nigrita (25%), which occurred throughout the year, accounted for three quarter of the collected individuals. Both species are typical for open or disturbed areas. Rainforest remnants like those of Gurjaú within the predominant sugar cane monocultures in the coastal plains of the northern Atlantic Rainforest play an important role in orchid bee conservation and maintenance of biodiversity. PMID:26602351

  16. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands.

    PubMed

    Gaitán, Juan J; Bran, Donaldo; Oliva, Gabriel; Maestre, Fernando T; Aguiar, Martín R; Jobbágy, Esteban; Buono, Gustavo; Ferrante, Daniela; Nakamatsu, Viviana; Ciari, Georgina; Salomone, Jorge; Massara, Virginia

    2014-10-01

    Drought is an increasingly common phenomenon in drylands as a consequence of climate change. We used 311 sites across a broad range of environmental conditions in Patagonian rangelands to evaluate how drought severity and temperature (abiotic factors) and vegetation structure (biotic factors) modulate the impact of a drought event on the annual integral of normalized difference vegetation index (NDVI-I), our surrogate of ecosystem functioning. We found that NDVI-I decreases were larger with both increasing drought severity and temperature. Plant species richness (SR) and shrub cover (SC) attenuated the effects of drought on NDVI-I. Grass cover did not affect the impacts of drought on NDVI-I. Our results suggest that warming and species loss, two important imprints of global environmental change, could increase the vulnerability of Patagonian ecosystems to drought. Therefore, maintaining SR through appropriate grazing management can attenuate the adverse effects of climate change on ecosystem functioning. PMID:25339654

  17. Plant species richness and shrub cover attenuate drought effects on ecosystem functioning across Patagonian rangelands

    PubMed Central

    Gaitán, Juan J.; Bran, Donaldo; Oliva, Gabriel; Maestre, Fernando T.; Aguiar, Martín R.; Jobbágy, Esteban; Buono, Gustavo; Ferrante, Daniela; Nakamatsu, Viviana; Ciari, Georgina; Salomone, Jorge; Massara, Virginia

    2014-01-01

    Drought is an increasingly common phenomenon in drylands as a consequence of climate change. We used 311 sites across a broad range of environmental conditions in Patagonian rangelands to evaluate how drought severity and temperature (abiotic factors) and vegetation structure (biotic factors) modulate the impact of a drought event on the annual integral of normalized difference vegetation index (NDVI-I), our surrogate of ecosystem functioning. We found that NDVI-I decreases were larger with both increasing drought severity and temperature. Plant species richness (SR) and shrub cover (SC) attenuated the effects of drought on NDVI-I. Grass cover did not affect the impacts of drought on NDVI-I. Our results suggest that warming and species loss, two important imprints of global environmental change, could increase the vulnerability of Patagonian ecosystems to drought. Therefore, maintaining SR through appropriate grazing management can attenuate the adverse effects of climate change on ecosystem functioning. PMID:25339654

  18. Untangling human and environmental effects on geographical gradients of mammal species richness: a global and regional evaluation.

    PubMed

    Torres-Romero, Erik Joaquín; Olalla-Tárraga, Miguel Á

    2015-05-01

    Different hypotheses (geographical, ecological, evolutionary or a combination of them) have been suggested to account for the spatial variation in species richness. However, the relative importance of environment and human impacts in explaining these patterns, either globally or at the biogeographical region level, remains largely unexplored. Here, we jointly evaluate how current environmental conditions and human impacts shape global and regional gradients of species richness in terrestrial mammals. We processed IUCN global distributional data for 3939 mammal species and a set of seven environmental and two human impact variables at a spatial resolution of 96.5 × 96.5 km. We used simple, multiple and partial regression techniques to evaluate environmental and human effects on species richness. Actual evapotranspiration (AET) is the main driver of mammal species richness globally. Together with our results at the biogeographical realm level, this lends strong support for the water-energy hypothesis (i.e. global diversity gradients are best explained by the interaction of water and energy, with a latitudinal shift in the relative importance of ambient energy vs. water availability as we move from the poles to the equator). While human effects on species richness are not easily detected at a global scale due to the large proportion of shared variance with the environment, these effects significantly emerge at the regional level. In the Nearctic, Palearctic and Oriental regions, the independent contribution of human impacts is almost as important as current environmental conditions in explaining richness patterns. The intersection of human impacts with climate drives the geographical variation in mammal species richness in the Palearctic, Nearctic and Oriental regions. Using a human accessibility variable, we show, for the first time, that the zones most accessible to humans are often those where we find lower mammal species richness. PMID:25355656

  19. Roles of Spatial Scale and Rarity on the Relationship between Butterfly Species Richness and Human Density in South Africa

    PubMed Central

    Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F.; Beale, Colin M.

    2015-01-01

    Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation. PMID:25915899

  20. Chemical-specific adjustment factors (inter-species toxicokinetics) to establish the ADI for steviol glycosides.

    PubMed

    Roberts, Ashley; Lynch, Barry; Rogerson, Rebecca; Renwick, Andrew; Kern, Hua; Coffee, Matthew; Cuellar-Kingston, Nicole; Eapen, Alex; Crincoli, Christine; Pugh, George; Bhusari, Sachin; Purkayastha, Sidd; Carakostas, Michael

    2016-08-01

    The acceptable daily intake (ADI) of commercially available steviol glycosides is currently 0-4 mg/kg body weight (bw)/day, based on application of a 100-fold uncertainty factor to a no-observed-adverse-effect-level value from a chronic rat study. Within the 100-fold uncertainty factor is a 10-fold uncertainty factor to account for inter-species differences in toxicokinetics (4-fold) and toxicodynamics (2.5-fold). Single dose pharmacokinetics of stevioside were studied in rats (40 and 1000 mg/kg bw) and in male human subjects (40 mg/kg bw) to generate a chemical-specific, inter-species toxicokinetic adjustment factor. Tmax values for steviol were at ∼8 and ∼20 h after administration in rats and humans, respectively. Peak concentrations of steviol were similar in rats and humans, while steviol glucuronide concentrations were significantly higher in humans. Glucuronidation in rats was not saturated over the dose range 40-1000 mg/kg bw. The AUC0-last for steviol was approximately 2.8-fold greater in humans compared to rats. Chemical-specific adjustment factors for extrapolating toxicokinetics from rat to human of 1 and 2.8 were established based on Cmax and AUC0-last data respectively. Because these factors are lower than the default value of 4.0, a higher ADI for steviol glycosides of between 6 and 16 mg/kg bw/d is justified. PMID:27181453

  1. Positive selection in the leucine-rich repeat domain of Gro1 genes in Solanum species.

    PubMed

    Ruggieri, Valentino; Nunziata, Angelina; Barone, Amalia

    2014-12-01

    In pathogen resistant plants, solvent-exposed residues in the leucine-rich repeat (LRR) proteins are thought to mediate resistance by recognizing plant pathogen elicitors. In potato, the gene Gro1-4 confers resistance to Globodera rostochiensis. The investigation of variability in different copies of this gene represents a good model for the verification of positive selection mechanisms. Two datasets of Gro1 LRR sequences were constructed, one derived from the Gro1-4 gene, belonging to different cultivated and wild Solanum species, and the other belonging to paralogues of a resistant genotype. Analysis of nonsynonymous to synonymous substitution rates (K(a)/K(s)) highlighted 14 and six amino acids with K(a)/K(s) >1 in orthologue and paralogue datasets, respectively. Selection analysis revealed that the leucine-rich regions accumulate variability in a very specific way, and we found that some combinations of amino acids in these sites might be involved in pathogen recognition. The results confirm previous studies on positive selection in the LRR domain of R protein in Arabidopsis and other model plants and extend these to wild Solanum species. Moreover, positively selected sites in the Gro1 LRR domain show that coevolution mainly occurred in two regions on the internal surface of the three-dimensional horseshoe structure of the domain, albeit with different evolutionary forces between paralogues and orthologues. PMID:25572234

  2. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient.

    PubMed

    Yang, Zhiyong; Liu, Xueqi; Zhou, Mohua; Ai, Dexiecuo; Wang, Gang; Wang, Youshi; Chu, Chengjin; Lundholm, Jeremy T

    2015-01-01

    Environmental heterogeneity is among the most important factors governing community structure. Besides the widespread evidence supporting positive relationships between richness and environmental heterogeneity, negative and unimodal relationships have also been reported. However, few studies have attempted to test the role of the heterogeneity on species richness after removing the confounding effect of resource availability or environmental severity. Here we constructed an individual-based spatially explicit model incorporating a long-recognized tradeoff between competitive ability and stress-tolerance ability of species. We explored the impact of the level of resource availability (i.e. the position of the community along a gradient of environmental severity) on the heterogeneity-diversity relationship (HDR). The results indicate that the shape of HDR depends on the community position along the environmental gradient: at either end of the gradient of environmental severity, a positive HDR occurred, whereas at the intermediate levels of the gradient, a unimodal HDR emerged. Our exploration demonstrates that resource availability/environmental severity should be considered as a potential factor influencing the shape of the HDR. Our theoretical predictions represent hypotheses in need of further empirical study. PMID:26508413

  3. Species-richness patterns of the living collections of the world's botanic gardens: a matter of socio-economics?

    PubMed Central

    Golding, Janice; Güsewell, Sabine; Kreft, Holger; Kuzevanov, Victor Y.; Lehvävirta, Susanna; Parmentier, Ingrid; Pautasso, Marco

    2010-01-01

    Background and Aims The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity–area and diversity–age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown. Methods Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling. Key Results The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness. Conclusions Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens. PMID:20237117

  4. Patterns in species richness and assemblage structure of native mussels in the Upper Mississippi River

    USGS Publications Warehouse

    Zigler, Steven J.; Newton, Teresa J.; Davis, Mike; Rogala, James T.

    2012-01-01

    1. To evaluate patterns in mussel assemblages in the Upper Mississippi River (UMR), data from systematic surveys of mussels conducted in three large reaches (Navigation Pools 5, 6, and 18) from 2005–2007 were analysed. 2. Nonmetric multi-dimensional scaling analyses and permutation tests indicated that assemblages differed among reaches. The mussel assemblage in Pool 18 was substantially different from the assemblage in Pool 5 and moderately different from the assemblage in Pool 6, whereas assemblages in Pools 5 and 6 were similar. Assemblages in broadly defined, flowing aquatic habitats did not substantially differ. 3. The dissimilarity of Pool 18 was primarily the result of Pool 18 having higher abundances of three Quadrula species (Q. quadrula, Q. pustulosa, and Q. nodulata), and lower abundances of Amblema plicata and Fusconaia flava. 4. Rarefaction analyses showed that species richness and species density were higher in Pool 18 compared with the other two pools. 5. Large-scale patterns in mussel assemblages may be related to other longitudinal trends in the system including geomorphology, water quality, and abundances of fish species that serve as hosts for glochidial larvae. 6. The results suggest that management goals and actions in the UMR may need to account for important differences in mussel assemblages that occur among reaches.

  5. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    USGS Publications Warehouse

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  6. Generalised Linear Spatial Model for Tree Species Richness in Eastern US Forest using FIA plot data and Climate variables.

    NASA Astrophysics Data System (ADS)

    Kwon, Y.

    2015-12-01

    Large-scale patterns of woody plant species diversity have long been studied yet it is still one of the most controversial issues in biogeography. At continental to global scale, energy availability measured by potential evapotranspiration (PET) (i.e. PET-only model) and related water-energy dynamics model (i.e. Wang's model based on China's woody plant richness) has been two primary determinants for species richness. We identified several issues in existing modeling approaches that 1) species richness are derived from species range map not a plot data, 2) they over-predicted richness in Florida peninsular at the cost of R square values for better overall model fit and 3) they lack thorough examination for spatial autocorrelation of residuals. The plot-level forest inventory and analysis (FIA) program data set (total 2,745,363 tally trees from 79,145 ground plots in the eastern US forest) used for species richness showed different pattern to range-map based richness. We applied Elastic-Net regularization for variable selections then used spatial Poisson Generalized Linear Model (GLM) and to handle spatial autocorrelations. Elastic-Net approach produced Frost frequency days (FRS), PET, AET, and seasonality of precipitation (PSN, defined as the coefficient of variation of monthly mean precipitation) as best explanatory variables and produced good model fit (R2 of 0.67) without over-prediction for Florida peninsular. Partial regression revealed that PSN successfully accounted for very low species richness in Florida. The seasonality of precipitation as climatic variability explained climatic stability permitted species specialization than greater seasonality. Also, we compared our best model with two other richness models (i.e. PET-only and Wang's model) and demonstrated that spatial autocorrelation was highest for the use of just PET-only, intermediate for Wang's model, and lowest for ours.

  7. Morphometric Relationship, Phylogenetic Correlation, and Character Evolution in the Species-Rich Genus Aphis (Hemiptera: Aphididae)

    PubMed Central

    Kim, Hyojoong; Lee, Wonhoon; Lee, Seunghwan

    2010-01-01

    Background The species-rich genus Aphis consists of more than 500 species, many of them host-specific on a wide range of plants, yet very similar in general appearance due to convergence toward particular morphological types. Most species have been historically clustered into four main phenotypic groups (gossypii, craccivora, fabae, and spiraecola groups). To confirm the morphological hypotheses between these groups and to examine the characteristics that determine them, multivariate morphometric analyses were performed using 28 characters measured/counted from 40 species. To infer whether the morphological relationships are correlated with the genetic relationships, we compared the morphometric dataset with a phylogeny reconstructed from the combined dataset of three mtDNA and one nuclear DNA regions. Principal Findings Based on a comparison of morphological and molecular datasets, we confirmed morphological reduction or regression in the gossypii group unlike in related groups. Most morphological characteristics of the gossypii group were less variable than for the other groups. Due to these, the gossypii group could be morphologically well separated from the craccivora, fabae, and spiraecola groups. In addition, the correlation of the rates of evolution between morphological and DNA datasets was highly significant in their diversification. Conclusions The morphological separation between the gossypii group and the other species-groups are congruent with their phylogenetic relationships. Analysis of trait evolution revealed that the morphological traits found to be significant based on the morphometric analyses were confidently correlated with the phylogeny. The dominant patterns of trait evolution resulting in increased rates of short branches and temporally later evolution are likely suitable for the modality of Aphis speciation because they have adapted species-specifically, rapidly, and more recently on many different host plants. PMID:20657654

  8. [Ant diversity (Hymenoptera: Formicidae) from capões in Brazilian Pantanal: relationship between species richness and structural complexity].

    PubMed

    Corrêa, Michele M; Fernandes, Wedson D; Leal, Inara R

    2006-01-01

    Species richness of epigeic ants was surveyed in forest islands named capões of Brazilian Pantanal and related with their structural complexity. The ants were collected using pitfall traps in 28 capões from Rio Negro Farm, in Aquidauana municipality, Mato-Grosso do Sul state, Brazil. The structural complexity of capões was evaluated by measuring vegetation density and litter quantity near the pit-fall traps. Seventy-one species, distributed in 26 genera and seven sub-families were found. Ectatomma edentatum Roger (Formicidae: Ectatomminae) and one species of Pheidole were the most frequent species. Species richness was positively correlated only with herbaceous vegetation density of capões, supporting the idea that the increase in environmental heterogeneity diminishes species competition, allowing species co-occurrence. PMID:17273701

  9. Stream salamander species richness and abundance in relation to environmental factors in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Grant, E.H.C.; Jung, R.E.; Rice, K.C.

    2005-01-01

    Stream salamanders are sensitive to acid mine drainage and may be sensitive to acidification and low acid neutralizing capacity (ANC) of a watershed. Streams in Shenandoah National Park, Virginia, are subject to episodic acidification from precipitation events. We surveyed 25 m by 2 m transects located on the stream bank adjacent to the water channel in Shenandoah National Park for salamanders using a stratified random sampling design based on elevation, aspect and bedrock geology. We investigated the relationships of four species (Eurycea bislineata, Desmognathus fuscus, D. monticola and Gyrinophilus porphyriticus) to habitat and water quality variables. We did not find overwhelming evidence that stream salamanders are affected by the acid-base status of streams in Shenandoah National Park. Desmognathus fuscus and D. monticola abundance was greater both in streams that had a higher potential to neutralize acidification, and in higher elevation (>700 m) streams. Neither abundance of E. bislineata nor species richness were related to any of the habitat variables. Our sampling method preferentially detected the adult age class of the study species and did not allow us to estimate population sizes. We suggest that continued monitoring of stream salamander populations in SNP will determine the effects of stream acidification on these taxa.

  10. Fish composition and species richness in eastern South American coastal lagoons: additional support for the freshwater ecoregions of the world.

    PubMed

    Petry, A C; Guimarães, T F R; Vasconcellos, F M; Hartz, S M; Becker, F G; Rosa, R S; Goyenola, G; Caramaschi, E P; Díaz de Astarloa, J M; Sarmento-Soares, L M; Vieira, J P; Garcia, A M; Teixeira de Mello, F; de Melo, F A G; Meerhoff, M; Attayde, J L; Menezes, R F; Mazzeo, N; Di Dario, F

    2016-07-01

    The relationships between fish composition, connectivity and morphometry of 103 lagoons in nine freshwater ecoregions (FEOW) between 2·83° S and 37·64° S were evaluated in order to detect possible congruence between the gradient of species richness and similarities of assemblage composition. Most lagoons included in the study were <2 km(2) , with a maximum of 3975 km(2) in surface area. Combined surface area of all lagoons included in the study was 5411 km(2) . Number of species varied locally from one to 76. A multiple regression revealed that latitude, attributes of morphometry and connectivity, and sampling effort explained a large amount of variability in species richness. Lagoon area was a good predictor of species richness except in low latitude ecoregions, where lagoons are typically small-sized and not affected by marine immigrants, and where non-native fish species accounted for a significant portion of species richness. Relationships between species and area in small-sized lagoons (<2 km(2) ) is highly similar to the expected number in each ecoregion, with systems located between 18·27° S and 30·15° S attaining higher levels of species richness. Similarities in species composition within the primary, secondary and peripheral or marine divisions revealed strong continental biogeographic patterns only for species less tolerant or intolerant to salinity. Further support for the FEOW scheme in the eastern border of South America is therefore provided, and now includes ecotonal systems inhabited simultaneously by freshwater and marine species of fishes. PMID:27401481

  11. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia.

    PubMed

    Li, Rong; Kraft, Nathan J B; Yu, Haiying; Li, Heng

    2015-12-01

    One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad-leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad-leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning. PMID:26371469

  12. Species richness in Atlantic deep-sea fishes assessed in terms of the mid-domain effect and Rapoport's rule

    NASA Astrophysics Data System (ADS)

    Kendall, Valerie J.; Haedrich, Richard L.

    2006-03-01

    A decrease in species richness with increasing latitude has been documented for a broad range of taxonomic groups. A number of hypotheses relating to biological, environmental, and historical factors have been proposed to explain this phenomenon, and the mid-domain effect (MDE) has been proposed in the form of a null model. This model considers only the geometry of spatial gradients and species' range extents, excluding any assumptions of environmental, biological or historical causes, and predicts that species richness will peak in the centre of a domain in which species occur when their ranges are randomly distributed. This model has been applied to observed latitudinal, elevational and depth gradients as a test to quantify the extent to which non-random processes influence species richness patterns in comparison to those based on geographical boundary constraints alone. We apply the MDE model to empirical datasets for the ranges of the bottom-living fish species occurring in the Faroe-Iceland Ridge, Denmark Strait, Southern New England and Northern Gulf of Mexico regions of the North Atlantic Ocean. The observed patterns show a decline in richness with depth, and do not match the richness patterns produced by the null model. Therefore it can be said that non-random processes have resulted in the observed patterns. Applied to bathymetric ranges, Rapoport's rule predicts that richness decreases and range size increases with depth and latitude. The rule explained decreasing fish species richness with depth and between latitudes, but did not appear to explain increasing range size with depth.

  13. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness?

    PubMed Central

    Dong, Li-Jia; Yu, Hong-Wei; He, Wei-Ming

    2015-01-01

    Whether plant invasions pose a great threat to native plant diversity is still hotly debated due to conflicting findings. More importantly, we know little about the mechanisms of invasion impacts on native plant richness. We examined how Solidago canadensis invasion influenced native plants using data from 291 pairs of invaded and uninvaded plots covering an entire invaded range, and quantified the relative contributions of climate, recipient communities, and S. canadensis to invasion impacts. There were three types of invasion consequences for native plant species richness (i.e., positive, neutral, and negative impacts). Overall, the relative contributions of recipient communities, S. canadensis and climate to invasion impacts were 71.39%, 21.46% and 7.15%, respectively; furthermore, the roles of recipient communities, S. canadensis and climate were largely ascribed to plant diversity, density and cover, and precipitation. In terms of direct effects, invasion impacts were negatively linked to temperature and native plant communities, and positively to precipitation and soil microbes. Soil microbes were crucial in the network of indirect effects on invasion impacts. These findings suggest that the characteristics of recipient communities are the most important determinants of invasion impacts and that invasion impacts may be a continuum across an entire invaded range. PMID:26573017

  14. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots

    PubMed Central

    Neubauer, Thomas A.; Harzhauser, Mathias; Georgopoulou, Elisavet; Kroh, Andreas; Mandic, Oleg

    2015-01-01

    Continental aquatic species richness hotspots are unevenly distributed across the planet. In present-day Europe, only two centers of biodiversity exist (Lake Ohrid on the Balkans and the Caspian Sea). During the Neogene, a wide variety of hotspots developed in a series of long-lived lakes. The mechanisms underlying the presence of richness hotspots in different geological periods have not been properly examined thus far. Based on Miocene to Recent gastropod distributions, we show that the existence and evolution of such hotspots in inland-water systems are tightly linked to the geodynamic history of the European continent. Both past and present hotspots are related to the formation and persistence of long-lived lake systems in geological basins or to isolation of existing inland basins and embayments from the marine realm. The faunal evolution within hotspots highly depends on warm climates and surface area. During the Quaternary icehouse climate and extensive glaciations, limnic biodiversity sustained a severe decline across the continent and most former hotspots disappeared. The Recent gastropod distribution is mainly a geologically young pattern formed after the Last Glacial Maximum (19 ky) and subsequent formation of postglacial lakes. The major hotspots today are related to long-lived lakes in preglacially formed, permanently subsiding geological basins. PMID:26305934

  15. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots.

    PubMed

    Neubauer, Thomas A; Harzhauser, Mathias; Georgopoulou, Elisavet; Kroh, Andreas; Mandic, Oleg

    2015-09-15

    Continental aquatic species richness hotspots are unevenly distributed across the planet. In present-day Europe, only two centers of biodiversity exist (Lake Ohrid on the Balkans and the Caspian Sea). During the Neogene, a wide variety of hotspots developed in a series of long-lived lakes. The mechanisms underlying the presence of richness hotspots in different geological periods have not been properly examined thus far. Based on Miocene to Recent gastropod distributions, we show that the existence and evolution of such hotspots in inland-water systems are tightly linked to the geodynamic history of the European continent. Both past and present hotspots are related to the formation and persistence of long-lived lake systems in geological basins or to isolation of existing inland basins and embayments from the marine realm. The faunal evolution within hotspots highly depends on warm climates and surface area. During the Quaternary icehouse climate and extensive glaciations, limnic biodiversity sustained a severe decline across the continent and most former hotspots disappeared. The Recent gastropod distribution is mainly a geologically young pattern formed after the Last Glacial Maximum (19 ky) and subsequent formation of postglacial lakes. The major hotspots today are related to long-lived lakes in preglacially formed, permanently subsiding geological basins. PMID:26305934

  16. An appropriate plot area for analyzing canopy cover and tree species richness in Zagros forests.

    PubMed

    Adeli, Kamran; Fallah, Asghar; Kooch, Yahya

    2008-01-01

    In order to make the sampling procedure more efficient and more accurate to study the tree species richness and canopy cover, the appropriate plot size was calculated in the this study. The sampling was carried out using 48 four-hectare plots, each with 13 sub-plots of different plot sizes and 7 one-hectare plots, each with 7 sub-plots. The result of this study showed that 300 ARE plot size was determined as the best area for 1-5% density class, 125 ARE plots for 5-10% class, 150 ARE for 10-25% class, 100 ARE for 25-50% class and 75 ARE plot size to sample >50% density class, in 95% confidence level. Consequently, using 100 ARE sampling plots is suggested for all density classes in central Zagros forests. PMID:18819601

  17. Determinants of parasite species richness on small taxonomical and geographical scales: Lamellodiscus monogeneans of northwestern Mediterranean sparid fish.

    PubMed

    Desdevises, Y

    2006-09-01

    Determinants of parasite species richness have been investigated in a host-parasite system comprising fish of the family Sparidae and their monogenean gill ectoparasites of the genus Lamellodiscus. This study was carried out on a small geographical scale in the northwestern Mediterranean Sea. Host phylogenetic relationships were taken into account by phylogenetic eigenvector regression which required the reconstruction of a phylogenetic tree for the sparid fish species using mtDNA sequences. Several ecological variables potentially acting on Lamellodiscus species richness were considered. Host body size and host migratory behaviour appeared to be the main determinants of parasite species richness in this system. It is concluded that structuring of monogenean communities is controlled more by ecological than evolutionary factors. PMID:16923265

  18. Species richness and abundance of ectomycorrhizal basidiomycete sporocarps on a moisture gradient in the Tsuga heterophylla zone

    USGS Publications Warehouse

    O'Dell, Thomas E.; Ammirati, Joseph F.; Schreiner, Edward G.

    1999-01-01

    Sporocarps of epigeous ectomycorrhizal fungi and vegetation data were collected from eight Tsuga heterophylla (Raf.) Sarg. - Pseudotsuga menziesii (Mirb.) Franco stands along a wet to dry gradient in Olympic National Park, Washington, U.S.A. One hundred and fifty species of ectomycorrhizal fungi were collected from a total sample area of 2.08 ha. Over 2 years, fungal species richness ranged from 19 to 67 taxa per stand. Sporocarp standing crop ranged from 0 to 3.8 kg/ha, averaging 0.58 kg/ha, 0.06 kg/ha in spring and 0.97 kg/ha in fall. Sporocarp standing crop and fungal species richness were correlated with precipitation. These results demonstrated that ectomycorrhizal fungal sporocarp abundance and species richness can be partly explained in terms of an environmental gradient.

  19. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    USGS Publications Warehouse

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  20. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    NASA Astrophysics Data System (ADS)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-08-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03-0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  1. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    USGS Publications Warehouse

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  2. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus

    PubMed Central

    Benskin, Clare McW H; Rhodes, Glenn; Pickup, Roger W; Mainwaring, Mark C; Wilson, Kenneth; Hartley, Ian R

    2015-01-01

    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts. PMID:25750710

  3. Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Millar, Tom J.; Heays, Alan N.; Walsh, Catherine; van Dishoeck, Ewine F.; Cherchneff, Isabelle

    2016-03-01

    Context. Thanks to the advent of Herschel and ALMA, new high-quality observations of molecules present in the circumstellar envelopes of asymptotic giant branch (AGB) stars are being reported that reveal large differences from the existing chemical models. New molecular data and more comprehensive models of the chemistry in circumstellar envelopes are now available. Aims: The aims are to determine and study the important formation and destruction pathways in the envelopes of O-rich AGB stars and to provide more reliable predictions of abundances, column densities, and radial distributions for potentially detectable species with physical conditions applicable to the envelope surrounding IK Tau. Methods: We use a large gas-phase chemical model of an AGB envelope including the effects of CO and N2 self-shielding in a spherical geometry and a newly compiled list of inner-circumstellar envelope parent species derived from detailed modeling and observations. We trace the dominant chemistry in the expanding envelope and investigate the chemistry as a probe for the physics of the AGB phase by studying variations of abundances with mass-loss rates and expansion velocities. Results: We find a pattern of daughter molecules forming from the photodissociation products of parent species with contributions from ion-neutral abstraction and dissociative recombination. The chemistry in the outer zones differs from that in traditional PDRs in that photoionization of daughter species plays a significant role. With the proper treatment of self-shielding, the N → N2 and C+→ CO transitions are shifted outward by factors of 7 and 2, respectively, compared with earlier models. An upper limit on the abundance of CH4 as a parent species of (≲2.5 × 10-6 with respect to H2) is found for IK Tau, and several potentially observable molecules with relatively simple chemical links to other parent species are determined. The assumed stellar mass-loss rate, in particular, has an impact on the

  4. Species richness and relative abundance of breeding birds in forests of the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Nelms, C.O.; Twedt, D.J.

    1993-01-01

    In 1992, the Vicksburg Field Research Station of the National Wetlands Research Center initiated research on the ecology of migratory birds within forests of the Mississippi Alluvial Valley (MAV). The MAV was historically a nearly contiguous bottomland hardwood forest, however, only remnants remain. These remnants are fragmented and often influenced by drainage projects, silviculture, agriculture, and urban development. Our objectives are to assess species richness and relative abundance, and to relate these to the size, quality, and composition of forest stands. Species richness and relative abundance were estimated for 53 randomly selected forest sites using 1 to 8 point counts per site, depending on the size of the forest fragment. However, statistical comparisons among sites will be restricted to an equal number ofpoint counts within the sites being compared. Point counts, lasting five minutes, were conducted from 11 May to 29 June 1992, foltowing Ralph, Sauer, and Droege (Point Count Standards; memo dated 9 March 1992). Vegetation was measured at the first three points on each site using a modification of the methods employed by Martin and Roper (Condor 90: 5 1-57; 1988). During 252 counts, 7 1 species were encountered, but only 62 species were encountered within a 50-m radius of point center. The mean number of species encountered within 50 m of a point, was 7.3 (s.d. = 2.7) and the mean number of individuals was 11.2 (s.d. = 4.2). The mean number of species detected at any distance was 9.6 (s.d, = 2.8) and the mean number of individuals was 15.6 (s.d. = 7.9). The most frequently encountered warblers in the MAV were Prothonotary Warbler and Northern Parula. Rarely encountered warblers were American Redstart and Worm-eating Warbler. The genera, Quercus, Ulmus, Carya, and Celtis were each encountered at 80 or more of the 152 points at which vegetation was sampled. Species most frequentlyencountered were: sugarberry (Celtis laevagata), water hickory (Caqa

  5. Comparison of species-rich cover crop mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Donkó, Adam; Miglécz, Tamas; Valkó, Orsolya; Török, Peter; Deák, Balazs; Kelemen, Andras; Zanathy, Gabor; Drexler, Dora

    2014-05-01

    In case of vine growing, agricultural practices of the past decades - as mechanical cultivation on steep vineyard slopes - can endanger the soil of vineyards. Moreover, climate change scenarios predict heavier rainstorms, which can also promote the degradation of the soil. These are some of the reasons why sustainable floor management plays an increasingly important role in viticulture recently. The use of cover crops in the inter-row has a special importance, especially on steep slopes and in case of organic farming to provide conditions for environmental friendly soil management. Species-rich cover crop seed mixtures may help to prevent erosion and create easier cultivation circumstances. Furthermore they have a positive effect on soil structure, soil fertility and ecosystem functions. However, it is important to find suitable seed mixtures for specific production sites, consisting ideally of native species from local provenance, adapted to the local climate/vine region/vineyard. Requirements for suitable cover crop species are as follows: they should save the soil from erosion and also from compaction caused by the movement of workers and machines, they should not compete significantly with the grapevines, or influence produce quality. We started to develop and apply several species-rich cover crop seed mixtures in spring 2012. During the experiments, three cover crop seed mixtures (Biocont-Ecovin mixture, mixture of legumes, mixture of grasses and herbs) were compared in vineyards of the Tokaj and Szekszárd vine regions of Hungary. Each mixture was sown in three consecutive inter-rows at each experimental site (all together 10 sites). Besides botanical measurements, yield, must quality, and pruning weight was studied in every treatment. The botanical survey showed that the following species of the mixtures established successfully and prospered during the years 2012 and 2013: Coronilla varia, Lotus corniculatus, Medicago lupulina, Onobrychis viciifolia

  6. Behavioural Adjustment in Response to Increased Predation Risk: A Study in Three Duck Species

    PubMed Central

    Zimmer, Cédric; Boos, Mathieu; Bertrand, Frédéric; Robin, Jean-Patrice; Petit, Odile

    2011-01-01

    Predation directly triggers behavioural decisions designed to increase immediate survival. However, these behavioural modifications can have long term costs. There is therefore a trade-off between antipredator behaviours and other activities. This trade-off is generally considered between vigilance and only one other behaviour, thus neglecting potential compensations. In this study, we considered the effect of an increase in predation risk on the diurnal time-budget of three captive duck species during the wintering period. We artificially increased predation risk by disturbing two groups of 14 mallard and teals at different frequencies, and one group of 14 tufted ducks with a radio-controlled stressor. We recorded foraging, vigilance, preening and sleeping durations the week before, during and after disturbance sessions. Disturbed groups were compared to an undisturbed control group. We showed that in all three species, the increase in predation risk resulted in a decrease in foraging and preening and led to an increase in sleeping. It is worth noting that contrary to common observations, vigilance did not increase. However, ducks are known to be vigilant while sleeping. This complex behavioural adjustment therefore seems to be optimal as it may allow ducks to reduce their predation risk. Our results highlight the fact that it is necessary to encompass the whole individual time-budget when studying behavioural modifications under predation risk. Finally, we propose that studies of behavioural time-budget changes under predation risk should be included in the more general framework of the starvation-predation risk trade-off. PMID:21533055

  7. Batrachochytrium dendrobatidis and the collapse of anuran species richness and abundance in the Upper Manu National Park, Southeastern Peru.

    PubMed

    Catenazzi, Alessandro; Lehr, Edgar; Rodriguez, Lily O; Vredenburg, Vance T

    2011-04-01

    Amphibians are declining worldwide, but these declines have been particularly dramatic in tropical mountains, where high endemism and vulnerability to an introduced fungal pathogen, Batrachochytrium dendrobatidis (Bd), is associated with amphibian extinctions. We surveyed frogs in the Peruvian Andes in montane forests along a steep elevational gradient (1200-3700 m). We used visual encounter surveys to sample stream-dwelling and arboreal species and leaf-litter plots to sample terrestrial-breeding species. We compared species richness and abundance among the wet seasons of 1999, 2008, and 2009. Despite similar sampling effort among years, the number of species (46 in 1999) declined by 47% between 1999 and 2008 and by 38% between 1999 and 2009. When we combined the number of species we found in 2008 and 2009, the decline from 1999 was 36%. Declines of stream-dwelling and arboreal species (a reduction in species richness of 55%) were much greater than declines of terrestrial-breeding species (reduction of 20% in 2008 and 24% in 2009). Similarly, abundances of stream-dwelling and arboreal frogs were lower in the combined 2008-2009 period than in 1999, whereas densities of frogs in leaf-litter plots did not differ among survey years. These declines may be associated with the infection of frogs with Bd. B. dendrobatidis prevalence correlated significantly with the proportion of species that were absent from the 2008 and 2009 surveys along the elevational gradient. Our results suggest Bd may have arrived at the site between 1999 and 2007, which is consistent with the hypothesis that this pathogen is spreading in epidemic waves along the Andean cordilleras. Our results also indicate a rapid decline of frog species richness and abundance in our study area, a national park that contains many endemic amphibian species and is high in amphibian species richness. PMID:21054530

  8. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis

    PubMed Central

    Ritchie, Lauren E.; Sturino, Joseph M.; Carroll, Raymond J.; Rooney, Lloyd W.; Azcarate-Peril, M. Andrea; Turner, Nancy D.

    2015-01-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. PMID:25764457

  9. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis.

    PubMed

    Ritchie, Lauren E; Sturino, Joseph M; Carroll, Raymond J; Rooney, Lloyd W; Azcarate-Peril, M Andrea; Turner, Nancy D

    2015-03-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. PMID:25764457

  10. Vascular plant species richness in relation to altitudinal and slope gradients in mountain landscapes of central norway

    NASA Astrophysics Data System (ADS)

    Holten, Jarle I.

    Local plant ecological investigations in the central Norwegian mountains in 1992-1997 have shown some interesting features regarding the variability of vascular plant species richness along altitudinal gradients. The material reveals two peaks of vascular plant species richness with increasing elevation, a lowland peak at 0-400 m a.s.l. and a peak at the timberline area (upper part of the northern boreal zone), around the inflection line. Mountains with highly acidic bedrock have a vegetation discontinuity around the transition between discontinuous and continuous permafrost (1500 m in the Dovrefjell area), with a change from dwarf shrubs to more graminoid life forms. The angle of slope is decisive for soil-forming processes. The instability of steep slopes prevents the formation and accumulation of organic top-soils. The data show a high, positive correlation between the slope of habitat plots and the richness of vascular plant species, in both the forested and the alpine zones. A working hypothesis is put forward that, due to high substratum instability, steep terrain encourages high species richness due to the greater openness of habitats and the higher pH of the top-soils. It is suggested that this effect of local topography on species richness is strongest around the inflection line.

  11. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow

    PubMed Central

    Xu, Danghui; Fang, Xiangwen; Zhang, Renyi; Gao, Tianpeng; Bu, Haiyan; Du, Guozhen

    2015-01-01

    Fertilization, especially with nitrogen (N), increases aboveground primary productivity (APP), but reduces plant species richness at some level. Silicon (Si) fertilization alone, or with addition of N or phosphorus (P), has multiple direct and indirect beneficial effects on plant growth and development, both for individuals and the whole community. This study aimed to examine the effects of Si, N, P, NSi and PSi combinations on APP and species richness of the community and of four functional groups in an alpine meadow. The results showed that plots fertilized with Si in combination with either N or P had higher APP than when fertilized with N or P alone. Addition of N or P increased APP, and the higher APP occurred when the highest level of N was added, indicating co-limitation of N and P, with N being most limiting. Silicon fertilization alone or with addition of N increased the APP of grasses and forbs. Nitrogen addition decreased the community species richness; Si with addition of N alleviated the loss of species richness of the whole community and the forbs group. For the four functional groups, N or P addition increased the species richness of grasses and decreased that of forbs. Our findings highlight the importance of Si in improving APP and alleviating N fertilization-induced biodiversity loss in grasslands, and will help improve our ability to predict community composition and biomass dynamics in alpine meadow ecosystems subject to changing nutrient availability. PMID:26574603

  12. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model

    PubMed Central

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-01-01

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543–2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic–Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. PMID:26977060

  13. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model.

    PubMed

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-04-01

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543-2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic-Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. PMID:26977060

  14. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow.

    PubMed

    Xu, Danghui; Fang, Xiangwen; Zhang, Renyi; Gao, Tianpeng; Bu, Haiyan; Du, Guozhen

    2015-01-01

    Fertilization, especially with nitrogen (N), increases aboveground primary productivity (APP), but reduces plant species richness at some level. Silicon (Si) fertilization alone, or with addition of N or phosphorus (P), has multiple direct and indirect beneficial effects on plant growth and development, both for individuals and the whole community. This study aimed to examine the effects of Si, N, P, NSi and PSi combinations on APP and species richness of the community and of four functional groups in an alpine meadow. The results showed that plots fertilized with Si in combination with either N or P had higher APP than when fertilized with N or P alone. Addition of N or P increased APP, and the higher APP occurred when the highest level of N was added, indicating co-limitation of N and P, with N being most limiting. Silicon fertilization alone or with addition of N increased the APP of grasses and forbs. Nitrogen addition decreased the community species richness; Si with addition of N alleviated the loss of species richness of the whole community and the forbs group. For the four functional groups, N or P addition increased the species richness of grasses and decreased that of forbs. Our findings highlight the importance of Si in improving APP and alleviating N fertilization-induced biodiversity loss in grasslands, and will help improve our ability to predict community composition and biomass dynamics in alpine meadow ecosystems subject to changing nutrient availability. PMID:26574603

  15. The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness

    NASA Astrophysics Data System (ADS)

    Goetz, Scott J.; Sun, Mindy; Zolkos, Scott; Hansen, Andy; Dubayah, Ralph

    2014-03-01

    Recent advances in remote sensing and ecological modeling warrant a timely and robust investigation of the ecological variables that underlie large-scale patterns of breeding bird species richness, particularly in the context of intensifying land use and climate change. Our objective was to address this need using an array of bioclimatic and remotely sensed data sets representing vegetation properties and structure, and other aspects of the physical environment. We first build models of bird species richness across breeding bird survey (BBS) routes, and then spatially predict richness across the coterminous US at moderately high spatial resolution (1 km). Predictor variables were derived from various sources and maps of species richness were generated for four groups (guilds) of birds with different breeding habitat affiliation (forest, grassland, open woodland, scrub/shrub), as well as all guilds combined. Predictions of forest bird distributions were strong (R2 = 0.85), followed by grassland (0.76), scrub/shrub (0.63) and open woodland (0.60) species. Vegetation properties were generally the strongest determinants of species richness, whereas bioclimatic and lidar-derived vertical structure metrics were of variable importance and dependent upon the guild type. Environmental variables (climate and the physical environment) were also frequently selected predictors, but canopy structure variables were not as important as expected based on more local to regional scale studies. Relatively sparse sampling of canopy structure metrics from the satellite lidar sensor may have reduced their importance relative to other predictor variables across the study domain. We discuss these results in the context of the ecological drivers of species richness patterns, the spatial scale of bird diversity analyses, and the potential of next generation space-borne lidar systems relevant to vegetation and ecosystem studies. This study strengthens current understanding of bird species

  16. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Gang; Slik, J. W. Ferry; Ma, Ke-Ping

    2016-03-01

    The millions of plant specimens that have been collected and stored in Chinese herbaria over the past ~110 years have recently been digitized and geo-referenced. Here we use this unique collection data set for species distribution modeling exercise aiming at mapping & explaining the botanical richness; delineating China’s phytogeographical regions and investigating the environmental drivers of the dissimilarity patterns. We modeled distributions of 6,828 woody plants using MaxEnt and remove the collection bias using null model. The continental China was divided into different phytogeographical regions based on the dissimilarity patterns. An ordination and Getis-Ord Gi* hotspot spatial statistics were used to analysis the environmental drivers of the dissimilarity patterns. We found that the annual precipitation and temperature stability were responsible for observed species diversity. The mechanisms causing dissimilarity pattern seems differ among biogeographical regions. The identified environmental drivers of the dissimilarity patterns for southeast, southwest, northwest and northeast are annual precipitation, topographic & temperature stability, water deficit and temperature instability, respectively. For effective conservation of China’s plant diversity, identifying the historical refuge and protection of high diversity areas in each of the identified floristic regions and their subdivisions will be essential.

  17. Projected impacts of climate change on regional capacities for global plant species richness.

    PubMed

    Sommer, Jan Henning; Kreft, Holger; Kier, Gerold; Jetz, Walter; Mutke, Jens; Barthlott, Wilhelm

    2010-08-01

    Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8 degrees C scenario, but to decrease significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras. PMID:20335215

  18. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China.

    PubMed

    Zhang, Ming-Gang; Slik, J W Ferry; Ma, Ke-Ping

    2016-01-01

    The millions of plant specimens that have been collected and stored in Chinese herbaria over the past ~110 years have recently been digitized and geo-referenced. Here we use this unique collection data set for species distribution modeling exercise aiming at mapping &explaining the botanical richness; delineating China's phytogeographical regions and investigating the environmental drivers of the dissimilarity patterns. We modeled distributions of 6,828 woody plants using MaxEnt and remove the collection bias using null model. The continental China was divided into different phytogeographical regions based on the dissimilarity patterns. An ordination and Getis-Ord Gi* hotspot spatial statistics were used to analysis the environmental drivers of the dissimilarity patterns. We found that the annual precipitation and temperature stability were responsible for observed species diversity. The mechanisms causing dissimilarity pattern seems differ among biogeographical regions. The identified environmental drivers of the dissimilarity patterns for southeast, southwest, northwest and northeast are annual precipitation, topographic &temperature stability, water deficit and temperature instability, respectively. For effective conservation of China's plant diversity, identifying the historical refuge and protection of high diversity areas in each of the identified floristic regions and their subdivisions will be essential. PMID:26928763

  19. Drought responses of Arrhenatherum elatius grown in plant assemblages of varying species richness

    NASA Astrophysics Data System (ADS)

    Otieno, Dennis; Kreyling, Juergen; Purcell, Andrew; Herold, Nadine; Grant, Kerstin; Tenhunen, John; Beierkuhnlein, Carl; Jentsch, Anke

    2012-02-01

    Evidence exists that plant community diversity influences productivity of individual members and their resistance and resilience during and after perturbations. We simulated drought within the long-term EVENT experimental site in the Ecological-Botanical Garden, University of Bayreuth to understand how Arrhenatherum elatius (L.) responds to water stress when grown in three different plant assemblages. The set up consisted of five replications for each factorial combination of drought and plant assemblages differing in functional diversity. Leaf water potential (ΨL), leaf gas exchange, natural δ13C, plant biomass and cover were measured. Imposed drought had different effects on A. elatius, depending on plant assemblage composition. Severe water stress was however, avoided by slowing down the rate of decline in ΨL, and this response was modified by community composition. High ΨL was associated with high stomatal conductance and leaf photosynthesis. Biomass production of A. elatius increased due to drought stress only in the least diverse assemblage, likely due to increased tillering and competitive advantage against neighbors in the drought-treated plants. Our results indicate that beneficial traits among plant species in a community may be responsible for the enhanced capacity to survive drought stress. Resistance to drought may, therefore, not be linked to species richness, but rather to the nature of interaction that exists between the community members.

  20. Projected impacts of climate change on regional capacities for global plant species richness

    PubMed Central

    Sommer, Jan Henning; Kreft, Holger; Kier, Gerold; Jetz, Walter; Mutke, Jens; Barthlott, Wilhelm

    2010-01-01

    Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8°C scenario, but to decrease significantly (−9.4%) under the ‘business as usual’ A1FI/+4.0°C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras. PMID:20335215

  1. The chemical kinetics and thermodynamics of sodium species in oxygen-rich hydrogen flames

    NASA Technical Reports Server (NTRS)

    Hynes, A. J.; Steinberg, M.; Schofield, K.

    1984-01-01

    Results are presented which, it is claimed, lead to a correction of previous misconceptions over the relative importance and kinetics of NaO2. It is shown that its rapid conversion to NaO and NaOH is such that it can severely perturb the NaOH/Na ratio and produce significant concentration overshoots over that predicted from the balance of the reaction of Na with H2O. This becomes increasingly the case in flames of large O2 concentrations and temperatures below 2500 K; and the corresponding large rate constants for the termolecular formation of the other alkali peroxides imply that similar considerations will be necessary for them. Depending on the rate constants for the exothermic conversions of MO2 to MO or MOH, the steady-state concentrations of MO2 could be more or less significant than for sodium. Owing to numerous reactions that produce these conversions, the MOH species will probably be the dominant species in all cases in oxygen-rich hydrogen or hydrocarbon flames, with MO concentrations at not greater than 1 percent of the bound metal.

  2. Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants

    PubMed Central

    Carvalheiro, Luísa Gigante; Kunin, William E; Keil, Petr; Aguirre-Gutiérrez, Jesus; Ellis, Willem Nicolaas; Fox, Richard; Groom, Quentin; Hennekens, Stephan; Landuyt, Wouter; Maes, Dirk; Meutter, Frank; Michez, Denis; Rasmont, Pierre; Ode, Baudewijn; Potts, Simon Geoffrey; Reemer, Menno; Roberts, Stuart Paul Masson; Schaminée, Joop; WallisDeVries, Michiel F; Biesmeijer, Jacobus Christiaan

    2013-01-01

    Concern about biodiversity loss has led to increased public investment in conservation. Whereas there is a widespread perception that such initiatives have been unsuccessful, there are few quantitative tests of this perception. Here, we evaluate whether rates of biodiversity change have altered in recent decades in three European countries (Great Britain, Netherlands and Belgium) for plants and flower visiting insects. We compared four 20-year periods, comparing periods of rapid land-use intensification and natural habitat loss (1930–1990) with a period of increased conservation investment (post-1990). We found that extensive species richness loss and biotic homogenisation occurred before 1990, whereas these negative trends became substantially less accentuated during recent decades, being partially reversed for certain taxa (e.g. bees in Great Britain and Netherlands). These results highlight the potential to maintain or even restore current species assemblages (which despite past extinctions are still of great conservation value), at least in regions where large-scale land-use intensification and natural habitat loss has ceased. PMID:23692632

  3. Using species distribution modeling to delineate the botanical richness patterns and phytogeographical regions of China

    PubMed Central

    Zhang, Ming-Gang; Slik, J. W. Ferry; Ma, Ke-Ping

    2016-01-01

    The millions of plant specimens that have been collected and stored in Chinese herbaria over the past ~110 years have recently been digitized and geo-referenced. Here we use this unique collection data set for species distribution modeling exercise aiming at mapping & explaining the botanical richness; delineating China’s phytogeographical regions and investigating the environmental drivers of the dissimilarity patterns. We modeled distributions of 6,828 woody plants using MaxEnt and remove the collection bias using null model. The continental China was divided into different phytogeographical regions based on the dissimilarity patterns. An ordination and Getis-Ord Gi* hotspot spatial statistics were used to analysis the environmental drivers of the dissimilarity patterns. We found that the annual precipitation and temperature stability were responsible for observed species diversity. The mechanisms causing dissimilarity pattern seems differ among biogeographical regions. The identified environmental drivers of the dissimilarity patterns for southeast, southwest, northwest and northeast are annual precipitation, topographic & temperature stability, water deficit and temperature instability, respectively. For effective conservation of China’s plant diversity, identifying the historical refuge and protection of high diversity areas in each of the identified floristic regions and their subdivisions will be essential. PMID:26928763

  4. Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: Implications for management and conservation

    USGS Publications Warehouse

    Nislow, K.H.; Hudy, M.; Letcher, B.H.; Smith, E.P.

    2011-01-01

    1.Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream-dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population- and community-level effects can be difficult to detect. 2.In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above- and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3.Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4.Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at

  5. Inference about species richness and community structure using species-specific occupancy models in the National Swiss Breeding Bird Survey MUB

    USGS Publications Warehouse

    Kery, M.; Royle, J. Andrew

    2009-01-01

    Species richness is the most widely used biodiversity measure. Virtually always, it cannot be observed but needs to be estimated because some species may be present but remain undetected. This fact is commonly ignored in ecology and management, although it will bias estimates of species richness and related parameters such as occupancy, turnover or extinction rates. We describe a species community modeling strategy based on species-specific models of occurrence, from which estimates of important summaries of community structure, e.g., species richness, occupancy, or measures of similarity among species or sites, are derived by aggregating indicators of occurrence for all species observed in the sample, and for the estimated complement of unobserved species. We use data augmentation for an efficient Bayesian approach to estimation and prediction under this model based on MCMC in WinBUGS. For illustration, we use the Swiss breeding bird survey (MHB) that conducts 2?3 territory-mapping surveys in a systematic sample of 267 1 km2 units on quadrat-specific routes averaging 5.1 km to obtain species-specific estimates of occupancy, and estimates of species richness of all diurnal species free of distorting effects of imperfect detectability. We introduce into our model species-specific covariates relevant to occupancy (elevation, forest cover, route length) and sampling (season, effort). From 1995 to 2004, 185 diurnal breeding bird species were known in Switzerland, and an additional 13 bred 1?3 times since 1900. 134 species were observed during MHB surveys in 254 quadrats surveyed in 2001, and our estimate of 169.9 (95% CI 151?195) therefore appeared sensible. The observed number of species ranged from 4 to 58 (mean 32.8), but with an estimated 0.7?11.2 (mean 2.6) further, unobserved species, the estimated proportion of detected species was 0.48?0.98 (mean 0.91). As is well known, species richness declined at higher elevation and fell above the timberline, and most

  6. Plant Trait Assembly Affects Superiority of Grazer's Foraging Strategies in Species-Rich Grasslands

    PubMed Central

    Mládek, Jan; Mládková, Pavla; Hejcmanová, Pavla; Dvorský, Miroslav; Pavlu, Vilém; De Bello, Francesco; Duchoslav, Martin; Hejcman, Michal; Pakeman, Robin J.

    2013-01-01

    Background Current plant – herbivore interaction models and experiments with mammalian herbivores grazing plant monocultures show the superiority of a maximizing forage quality strategy (MFQ) over a maximizing intake strategy (MI). However, there is a lack of evidence whether grazers comply with the model predictions under field conditions. Methodology/Findings We assessed diet selection of sheep (Ovis aries) using plant functional traits in productive mesic vs. low-productivity dry species-rich grasslands dominated by resource-exploitative vs. resource-conservative species respectively. Each grassland type was studied in two replicates for two years. We investigated the first grazing cycle in a set of 288 plots with a diameter of 30 cm, i.e. the size of sheep feeding station. In mesic grasslands, high plot defoliation was associated with community weighted means of leaf traits referring to high forage quality, i.e. low leaf dry matter content (LDMC) and high specific leaf area (SLA), with a high proportion of legumes and the most with high community weighted mean of forage indicator value. In contrast in dry grasslands, high community weighted mean of canopy height, an estimate of forage quantity, was the best predictor of plot defoliation. Similar differences in selection on forage quality vs. quantity were detected within plots. Sheep selected plants with higher forage indicator values than the plot specific community weighted mean of forage indicator value in mesic grasslands whereas taller plants were selected in dry grasslands. However, at this scale sheep avoided legumes and plants with higher SLA, preferred plants with higher LDMC while grazing plants with higher forage indicator values in mesic grasslands. Conclusions Our findings indicate that MFQ appears superior over MI only in habitats with a predominance of resource-exploitative species. Furthermore, plant functional traits (LDMC, SLA, nitrogen fixer) seem to be helpful correlates of forage quality

  7. Relationship of Productivity to Species Richness in the Xinjiang Temperate Grassland

    PubMed Central

    2016-01-01

    The relationship between species richness (SR) and aboveground net primary productivity (ANPP) is still a central and debated issue in community ecology. Previous studies have often emphasized the relationship of alpha diversity (number of species identity) to the mean ANPP with respect to the SR-ANPP relationship while neglecting the contribution of beta diversity (dissimilarity in species composition) to the mean ANPP and to the stability of ANPP (coefficient of ANPP: CV of ANPP). In this study, we used alpha and beta diversity, mean ANPP and the CV of ANPP collected from 159 sites and belonging to three vegetation types in the Xinjiang temperate grassland to first examine their trends along climatic factors and among different vegetation types and then test the relationship among alpha (beta) diversity and mean ANPP and the CV of ANPP. Our results showed that in the Xinjiang temperate grasslands, alpha diversity was positively and linearly correlated with MAP but unimodally correlated with MAT. Meanwhile, beta diversity was unimodally correlated with MAP but linearly correlated with MAT. Relative to desert steppe, meadow steppe and typical steppe had the highest alpha and beta diversity, respectively. Except for ANPP exhibiting a quadratic relationship with MAP, no significant relationship was found among ANPP, the CV of ANPP and climatic factors. ANPP and the CV of ANPP also exhibited no apparent patterns in variation among different vegetation types. Our results further showed that mean ANPP was closely associated with alpha diversity. Both linear and unimodal relationships were detected between alpha diversity and mean ANPP, but their particular form was texture-dependent. Meanwhile, the CV of ANPP was positively correlated with beta diversity. Our results indicated that in addition to incorporating alpha diversity and mean ANPP, incorporating beta diversity and the CV of ANPP could expand our understanding of the SR-ANPP relationship. PMID:27100676

  8. Cross-Cordillera exchange mediated by the Panama Canal increased the species richness of local freshwater fish assemblages.

    PubMed

    Smith, Scott A; Bell, Graham; Bermingham, Eldredge

    2004-09-22

    Completion of the Panama Canal in 1914 breached the continental divide and set into motion a natural experiment of unprecedented magnitude by bringing previously isolated freshwater fish communities into contact. The construction of a freshwater corridor connecting evolutionarily isolated communities in Pacific and Caribbean watersheds dramatically increased the rate of dispersal, without directly affecting species interactions. Here, we report that a large fraction of species have been able to establish themselves on the other side of the continental divide, whereas no species have become extinct, leading to a local increase in species richness. Our results suggest that communities are not saturated and that competitive exclusion does not occur over the time-scale previously envisioned. Moreover, the results of this unintentional experiment demonstrate that community composition and species richness were regulated by the regional process of dispersal, rather than by local processes such as competition and predation. PMID:15347510

  9. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)

    PubMed Central

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    . chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests. PMID:26496189

  10. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico).

    PubMed

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    . chihuahuana trees and P. chihuahuana tree community and but to specific spatial scales measured by the univariate L-function. The spatial distribution pattern of P. chihuahuana trees was found to be independent of patches of other tree species measured by the bivariate L-function. The spatial distribution was not significantly related to tree density, diameter distribution or tree species diversity. The index of Clark and Evans decreased significantly from the southern to northern plots containing all tree species. Self-thinning due to intra and inter-specific competition-induced mortality is probably the main cause of the decrease in aggregation intensity during the course of population development in this tree community. We recommend the use of larger sampling plots (> 0.25 ha) in uneven-aged and species-rich forest ecosystems to detect less obvious, but important, relationships between spatial tree pattern and functioning and diversity in these forests. PMID:26496189

  11. Data gaps in anthropogenically driven local-scale species richness change studies across the Earth's terrestrial biomes.

    PubMed

    Murphy, Grace E P; Romanuk, Tamara N

    2016-05-01

    There have been numerous attempts to synthesize the results of local-scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local-scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome-driver combinations we have identified as most critical in terms of where local-scale species richness change studies are lacking include the following: land-use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local-scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe. PMID:27069589

  12. The botanist effect revisited: plant species richness, county area, and human population size in the United States.

    PubMed

    Pautasso, Marco; McKinney, Michael L

    2007-10-01

    The "botanist effect" is thought to be the reason for higher plant species richness in areas where botanists are disproportionately present as an artefactual consequence of a more thorough sampling. We examined whether this was the case for U.S. counties. We collated the number of species of vascular plants, human population size, and the area of U.S. counties. Controlling for spatial autocorrelation and county area, plant species richness increased with human population size and density in counties with and without universities and/or botanical gardens, with no significant differences in the relation between the two subsets. This is consistent with previous findings and further evidence of a broad-scale positive correlation between species richness and human population presence, which has important consequences for the experience of nature by inhabitants of densely populated regions. Combined with the many reports of a negative correlation between the two variables at a local scale, the positive relation between plant species richness in U.S. counties and human population presence stresses the need for the conservation of seminatural areas in urbanized ecosystems and for the containment of urban and suburban sprawl. PMID:17883498

  13. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    PubMed Central

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  14. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    PubMed

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  15. Habitat and landscape correlates of presence, density, and species richness of birds wintering in forest fragments in Ohio

    USGS Publications Warehouse

    Doherty, P.F., Jr.; Grubb, T.C., Jr.

    2000-01-01

    We investigated the distribution of wintering woodland bird species in 47 very small, isolated, woodland fragments (0.54-6.01 ha) within an agricultural landscape in north-central Ohio. Our objectives were to determine correlations between temporal, habitat, and landscape variables and avian presence, density, and species richness within the smallest woodlots occupied by such species. Our results suggest that even common species are sensitive to variation in habitat, landscape, and season. Woodlot area explained the most variation in presence, density, and species richness. Shrub cover was also an important predictor variable for presence of the smallest resident birds. Shrub cover might function as both a refuge from predators and as a windbreak, reducing thermal costs in a flat, open landscape. Landscape factors related to isolation and connectedness were also correlated with species presence and density. The species composition of the community changed through the winter, as did the density of individual species, suggesting that the winter season may play an important role in determining the distributions of bird populations across woodlots. The models presented here for Ohio birds in this specific landscape may have biological inference for other species in similar landscapes.

  16. Decline in the species richness contribution of Echinodermata to the macrobenthos in the shelf seas of China

    NASA Astrophysics Data System (ADS)

    Jin, Shaofei; Wang, Yongli; Xia, Jiangjiang; Xiao, Ning; Zhang, Junlong; Xiong, Zhe

    Echinoderms play crucial roles in the structure of marine macrobenthic communities. They are sensitive to excess absorption of CO2 by the ocean, which induces ocean acidification and ocean warming. In the shelf seas of China, the mean sea surface temperature has a faster warming rate compared with the mean rate of the global ocean, and the apparent decrease in pH is due not only to the increased CO2 absorption in seawater, but also eutrophication. However, little is known about the associated changes in the diversity of echinoderms and their roles in macrobenthic communities in the seas of China. In this study, we conducted a meta-analysis of 77 case studies in 51 papers to examine the changes in the contribution of echinoderm species richness to the macrobenthos in the shelf seas of China since the 1980s. The relative species richness (RSR) was considered as the metric to evaluate these changes. Trends analysis revealed significant declines in RSR in the shelf seas of China, the Yellow Sea, and the East China Sea from 1997 to 2009. Compared with the RSR before 1997, no significant changes in mean RSR were found after 1997, except in the Bohai Sea. In addition, relative change in the RSR of echinoderms and species richness of macrobenthos led to more changes (decrease or increase) in their respective biomasses. Our results imply that changes in species richness may alter the macrobenthic productivity of the marine benthic ecosystem.

  17. A CONCEPTUAL FRAMEWORK FOR SELECTING AND ANALYZING STRESSOR DATA TO STUDY SPECIES RICHNESS AT LARGE SPATIAL SCALES

    EPA Science Inventory

    In this paper we develop a conceptual framework for selecting stressor data and anlyzing their relationship to geographic patterns of species richness at large spatial scales. Aspects of climate and topography, which are not stressors per se, have been most strongly linked with g...

  18. POSTFLAME BEHAVIOR OF NITROGENOUS SPECIES IN THE PRESENCE OF FUEL SULFUR: I. RICH, MOIST, CO/AR/O2

    EPA Science Inventory

    The paper gives results of experimental measurements of NO, N2, and other nitrogenous species in the postflame games of rich (phi = 2.17) premixed laminar CO/Ar/O2 (trace H2) flames, with fuel nitrogen as NO, C2N2, and NH3 and fuel sulfur as SO2, which allowed the nitrogen balanc...

  19. Controls on pathogen species richness in plants introduced and native ranges: roles of residence time, range size and host traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of hosts to new geographic regions allows them to escape many pathogens, raising two questions. How quickly do introduced hosts accumulate pathogens? Do the same factors control pathogen accumulation as in the native range? We analyzed fungal and viral pathogen species richness on 124 p...

  20. Spatial heterogeneity in aboveground net primary production and species richness at multiple scales in the Chihuahuan Desert

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We analyzed patterns in spatial heterogeneity and the processes driving these patterns in two ecosystem properties, aboveground net primary production (ANPP) and species richness, at multiple scales in the Chihuahuan Desert. We used long-term data (1990-2009) to examine the importance of a suite of...

  1. What is the form of the productivity-animal-species-richness relationship? A critical review and meta-analysis.

    PubMed

    Cusens, Jarrod; Wright, Shane D; McBride, Paul D; Gillman, Len N

    2012-10-01

    The nature of the relationship between productivity and species richness has remained controversial for at least two decades. Recently authors have favored the suggestion that the form of this relationship is highly variable and scale dependent. However, this conclusion is not universally accepted. Here we present the results of a meta-analysis of animal productivity-species-richness relationships (PSRR) in terrestrial and freshwater ecosystems. Initially, 374 separate cases from 273 published studies were identified as potential tests of the animal PSRR. After critically assessing each study, 115 cases were accepted as robust tests of the relationship, and of these 95 had data available for formal meta-analysis. Contrary to expectation, we found no support for the form of the relationship being scale dependent; positive relationships predominated at all scales (geographical extents and grains). Furthermore, positive relationships were the most common form of the animal PSRR in both terrestrial and freshwater ecosystems and among vertebrates, invertebrates, homeotherms and poikilotherms. Therefore, our results also contrast with previous reviews that suggest no particular form of the PSRR is predominant. We demonstrate that the method used for classifying the form of PSRRs is critical to the result and that previous reviews may have been too liberal toward classifying the form of relationships as unimodal. The tendency for positive relationships between productivity and species richness across diverse animal taxa has important implications for understanding the mechanisms behind the latitudinal gradient in species richness. PMID:23185885

  2. Declines in abundance and species richness of birds following a major flood on the upper Mississippi River

    USGS Publications Warehouse

    Knutson, M.G.; Klaas, E.E.

    1997-01-01

    We examined the abundance and species richness of birds breeding in floodplain forests of the Upper Mississippi River in 1992 through 1994, and used a two-way ANOVA with repeated measures to identify effects of a 1993 flood on the bird community. Sixty-five study plots were divided into treatment and control plots based on whether they were flooded in 1993. Among 84 species observed on all plots, 41 species decreased in abundance from 1992 to 1994, 13 increased, 5 were unchanged. Sample sizes were inadequate to evaluate trends for 25 species. Species richness declined over the three-year period. Of 36 species tested with the ANOVA, 20 had a significant main effect of Year. Cool, wet conditions may have contributed to poor reproductive success in 1993, and resulted in widespread decline in floodplain bird abundance during the year following the flood. Bird abundance increased on most unflooded plots in 1993, probably because birds were displaced from flooded plots. This pattern was most striking for neotropical migrants, species preferring habitat edges, lower canopy nesters, and species that forage in the air. We suggest that periodic major flooding may maintain suitable floodplain habitat for Prothonotary Warblers (Protonotaria citrea) in the face of competition from House Wrens (Troglodytes aedon) for nest sites.

  3. Species Accumulation Curves and Incidence-Based Species Richness Estimators to Appraise the Diversity of Cultivable Yeasts from Beech Forest Soils

    PubMed Central

    Yurkov, Andrey M.; Kemler, Martin; Begerow, Dominik

    2011-01-01

    Background Yeast-like fungi inhabit soils throughout all climatic zones in a great abundance. While recent estimations predicted a plethora of prokaryotic taxa in one gram of soil, similar data are lacking for fungi, especially yeasts. Methodology/Principal Findings We assessed the diversity of soil yeasts in different forests of central Germany using cultivation-based techniques with subsequent identification based on rDNA sequence data. Based on experiments using various pre-cultivation sample treatment and different cultivation media we obtained the highest number of yeasts by analysing mixed soil samples with a single nutrient-rich medium. Additionally, several species richness estimators were applied to incidence-based data of 165 samples. All of them predicted a similar range of yeast diversity, namely 14 to 16 species. Randomized species richness curves reached saturation in all applied estimators, thus indicating that the majority of species is detected after approximately 30 to 50 samples analysed. Conclusions/Significance In this study we demonstrate that robust species identification as well as mathematical approaches are essential to reliably estimate the sampling effort needed to describe soil yeast communities. This approach has great potential for optimisation of cultivation techniques and allows high throughput analysis in the future. PMID:21858201

  4. A Multi-scale Spatial Analysis of Native and Exotic Plant Species Richness Within a Mixed-Disturbance Oak Savanna Landscape

    NASA Astrophysics Data System (ADS)

    Schetter, Timothy A.; Walters, Timothy L.; Root, Karen V.

    2013-09-01

    Impacts of human land use pose an increasing threat to global biodiversity. Resource managers must respond rapidly to this threat by assessing existing natural areas and prioritizing conservation actions across multiple spatial scales. Plant species richness is a useful measure of biodiversity but typically can only be evaluated on small portions of a given landscape. Modeling relationships between spatial heterogeneity and species richness may allow conservation planners to make predictions of species richness patterns within unsampled areas. We utilized a combination of field data, remotely sensed data, and landscape pattern metrics to develop models of native and exotic plant species richness at two spatial extents (60- and 120-m windows) and at four ecological levels for northwestern Ohio's Oak Openings region. Multiple regression models explained 37-77 % of the variation in plant species richness. These models consistently explained more variation in exotic richness than in native richness. Exotic richness was better explained at the 120-m extent while native richness was better explained at the 60-m extent. Land cover composition of the surrounding landscape was an important component of all models. We found that percentage of human-modified land cover (negatively correlated with native richness and positively correlated with exotic richness) was a particularly useful predictor of plant species richness and that human-caused disturbances exert a strong influence on species richness patterns within a mixed-disturbance oak savanna landscape. Our results emphasize the importance of using a multi-scale approach to examine the complex relationships between spatial heterogeneity and plant species richness.

  5. A multi-scale study of Orthoptera species richness and human population size controlling for sampling effort

    NASA Astrophysics Data System (ADS)

    Cantarello, Elena; Steck, Claude E.; Fontana, Paolo; Fontaneto, Diego; Marini, Lorenzo; Pautasso, Marco

    2010-03-01

    Recent large-scale studies have shown that biodiversity-rich regions also tend to be densely populated areas. The most obvious explanation is that biodiversity and human beings tend to match the distribution of energy availability, environmental stability and/or habitat heterogeneity. However, the species-people correlation can also be an artefact, as more populated regions could show more species because of a more thorough sampling. Few studies have tested this sampling bias hypothesis. Using a newly collated dataset, we studied whether Orthoptera species richness is related to human population size in Italy’s regions (average area 15,000 km2) and provinces (2,900 km2). As expected, the observed number of species increases significantly with increasing human population size for both grain sizes, although the proportion of variance explained is minimal at the provincial level. However, variations in observed Orthoptera species richness are primarily associated with the available number of records, which is in turn well correlated with human population size (at least at the regional level). Estimated Orthoptera species richness (Chao2 and Jackknife) also increases with human population size both for regions and provinces. Both for regions and provinces, this increase is not significant when controlling for variation in area and number of records. Our study confirms the hypothesis that broad-scale human population-biodiversity correlations can in some cases be artefactual. More systematic sampling of less studied taxa such as invertebrates is necessary to ascertain whether biogeographical patterns persist when sampling effort is kept constant or included in models.

  6. Bioengineer effects on understory species richness, diversity, and composition change along an environmental stress gradient: Experimental and mensurative evidence

    NASA Astrophysics Data System (ADS)

    Watt, Cortney A.; Scrosati, Ricardo A.

    2013-05-01

    Canopy-forming bioengineer species are commonly assumed to increase local species richness and diversity. We tested this notion by investigating the effects of fucoid seaweed canopies on understory communities along rocky intertidal elevation gradients in Atlantic Canada. Such gradients exhibit increasing thermal extremes and variation from low to high elevations, and are broadly used in stress gradient studies. A manipulative experiment created canopy and no-canopy treatments at the low, middle, and high intertidal zones, eliminating all species (except fucoid canopies) from replicate quadrats. After recolonization, overall richness and diversity (considering all primary producers and consumers) were higher under canopies than uncovered by canopies at the high and middle zones, but no effects occurred at the low zone. Similarly, species composition was affected by canopies at the high and middle zones, but not at the low zone. A mensurative study that surveyed the full range of canopy cover (0-100%) using nearly five times more quadrats from pristine areas yielded the same results: richness and diversity increased with canopy cover at the high and middle zones (approaching stabilization toward high cover values), but no effects occurred at the low zone. Lack of canopy effects at low elevations is related to mild habitat conditions, which canopies are unable to modify, while positive effects at higher elevations relate to the capacity of canopies to ameliorate harsh conditions. This is the first time that a combined experimental and mensurative approach shows that the same bioengineer species affect overall species richness, diversity, and composition differently along a stress gradient. Overall, protecting canopy-forming bioengineers to preserve local biodiversity should be most effective in stressful environments.

  7. Ohio USA stoneflies (Insecta, Plecoptera): species richness estimation, distribution of functional niche traits, drainage affiliations, and relationships to other states

    PubMed Central

    DeWalt, R. Edward; Cao, Yong; Tweddale, Tari; Grubbs, Scott A.; Hinz, Leon; Pessino, Massimo; Robinson, Jason L.

    2012-01-01

    Abstract Ohio is an eastern USA state that historically was >70% covered in upland and mixed coniferous forest; about 60% of it glaciated by the Wisconsinan glacial episode. Its stonefly fauna has been studied in piecemeal fashion until now. The assemblage of Ohio stoneflies was assessed from over 4,000 records accumulated from 18 institutions, new collections, and trusted literature sources. Species richness totaled 102 with estimators Chao2 and ICE Mean predicting 105.6 and 106.4, respectively. Singletons and doubletons totaled 18 species. All North American families were represented with Perlidae accounted for the highest number of species at 34. The family Peltoperlidae contributed a single species. Most species had univoltine–fast life cycles with the vast majority emerging in summer, although there was a significant component of winter stoneflies. Nine United States Geological Survey hierarchical drainage units level 6 (HUC6) were used to stratify specimen data. Species richness was significantly related to the number of unique HUC6 locations, but there was no relationship with HUC6 drainage area. A nonparametric multidimensional scaling analysis found that larger HUC6s in the western part of the state had similar assemblages with lower species richness that were found to align with more savanna and wetland habitat. Other drainages having richer assemblages were aligned with upland deciduous and mixed coniferous forests of the east and south where slopes were higher. The Ohio assemblage was most similar to the well–studied fauna of Indiana (88 spp.) and Kentucky (108 spp.), two neighboring states. Many rare species and several high quality stream reaches should be considered for greater protection. PMID:22539876

  8. Drought tolerance and osmotic adjustment of four deciduous tree species under altered precipitation: Preliminary results

    SciTech Connect

    Shirshac, T.L.; Gebre, G.M.; Hanson, P.J.; Tschaplinski, T.J.

    1994-12-31

    The degree and biochemical basis of drought tolerance and osmotic adjustment of dogwood (Cornus florida L.), white oak (Quercus alba L.), chestnut oak (Quercus prinus L.), and red maple (Acer rubrum L.) is being assessed in a mature hardwood forest using three hydrologic regimes: ambient, wet (+33% throughfall), and dry ({minus}33% throughfall). Currently, leaf water potential, osmotic potential at saturation, and metabolite concentrations are determined monthly for trees under the three treatments. First year results show that within the dry treatment, dogwood demonstrated the highest osmotic potential at saturation ({minus}1.2 MPa), indicating the greatest sensitivity to water stress. Increasing tolerance was evident in red maple ({minus}1.4 MPa), white oak ({minus}1.6 MPa), and chestnut oak ({minus}1.9 MPa). In June, dogwood displayed a 0.12 MPa adjustment to drought, relative to the ambient control. In July, chestnut oak displayed a 0.18 MPa adjustment. This osmotic adjustment resulted primarily from fructose and glucose accumulation in dogwood, and shikimic acid and sucrose accumulation in chestnut oak.

  9. New Uintan primates from Texas and their implications for North American patterns of species richness during the Eocene.

    PubMed

    Williams, Blythe A; Kirk, E Christopher

    2008-12-01

    New omomyid fossils from the Purple Bench locality of the Devil's Graveyard Formation, middle Eocene (Uintan) of southwest Texas, are described. One specimen represents a new genus and species, herein named Diablomomys dalquesti. This new species is allocated to the tribe Omomyini, sister taxon to Omomys and Chumashius. A second specimen represents a range extension of the Utah species Mytonius hopsoni to the Trans-Pecos region of Texas. Previously, only one omomyid species (Omomys carteri) had been documented from Purple Bench and other late Uintan localities in the Devil's Graveyard Formation. These new omomyid fossils are of particular significance because Purple Bench is stratigraphically intermediate between the older late Bridgerian/early Uintan localities and the younger Duchesnean localities of Trans-Pecos Texas. With a more southerly location in the continental United States, the Devil's Graveyard Formation amplifies our understanding of patterns of North American primate richness at a time when the higher-latitude sites of the western interior were undergoing significant climatic cooling and increases in seasonality with commensurate faunal reorganization. Although the Uintan (approximately 46.5-40Ma) was a time in which anaptomorphine richness decreased dramatically, the results of this analysis suggest that Uintan omomyine richness is higher than was previously appreciated, particularly at lower latitudes. PMID:18835008

  10. A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex.

    PubMed

    Foley, D H; Wilkerson, R C; Cooper, R D; Volovsek, M E; Bryan, J H

    2007-04-01

    The Australasian Annulipes Complex is the most species-rich among Anopheles mosquitoes, with at least 15 sibling species suspected. Members of this complex are the most likely vectors of malaria in the past in southern Australia and are involved in the spread of myxomatosis among rabbits. In this, the first comprehensive molecular study of the Annulipes Complex, 23 ITS2 rDNA variants were detected from collections throughout Australia and Papua New Guinea, including diagnostic variants for the previously identified An. annulipes species A-G. Specimens of each ITS2 variant were sequenced for portions of the mitochondrial COI, COII and nuclear EF-1alpha genes. Partitioned Bayesian and Maximum Parsimony analyses confirmed the monophyly of the Annulipes Complex and revealed at least 17 clades that we designate species A-Q. These species belong to two major clades, one in the north and one mainly in the south, suggesting that climate was a driver of species radiation. We found that 65% (11) of the 17 sibling species recorded here had unique COI sequences, suggesting that DNA barcoding will be useful for diagnosing species within the Annulipes Complex. A comparison of the taxa revealed morphological characters that may be diagnostic for some species. Our results substantially increase the size of the subgenus Cellia in Australasia, and will assist species-level studies of the Annulipes Complex. PMID:17126567

  11. The Impact of Land Abandonment on Species Richness and Abundance in the Mediterranean Basin: A Meta-Analysis

    PubMed Central

    Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam; Huntsinger, Lynn

    2014-01-01

    Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no “one-size-fits-all” conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity. PMID:24865979

  12. The impact of land abandonment on species richness and abundance in the Mediterranean Basin: a meta-analysis.

    PubMed

    Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam; Huntsinger, Lynn

    2014-01-01

    Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no "one-size-fits-all" conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity. PMID:24865979

  13. Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape

    NASA Astrophysics Data System (ADS)

    Hájek, Michal; Dudová, Lydie; Hájková, Petra; Roleček, Jan; Moutelíková, Jitka; Jamrichová, Eva; Horsák, Michal

    2016-02-01

    The south-western part of the White Carpathians (Czech Republic, Slovakia) is known for its exceptional grassland diversity and occurrence of many species with disjunct distribution patterns, including isolated populations of continental forest-steppe species. The north-eastern part of the mountain range lacks many of these species and has clearly lower maxima of grassland species richness. While climatic and edaphic conditions of both regions largely overlap, their specific environmental history has been hypothesized to explain the exceptional richness in the south-western part. We explored an entire-Holocene record (9650 BC onwards), the first one from the north-eastern part, to find out whether differences in history may explain regional patterns of species rarity and richness. We analysed pollen, macrofossils and molluscs and dated the sequence with 13 radiocarbon dates. We further reconstructed past human activities using available archaeological evidence. Based on this analysis, the Early-Holocene landscape was reconstructed as semi-open with broad-leaved trees (elm and lime) appearing already around 9500 BC. Lime reached a relative abundance of as much as 60% around 8700 BC. All analysed proxies support the existence of dense lime-dominated woodland during the forest optimum starting after climate moistening around 6800 BC, some 2200 years before the first signs of slight forest opening in the Late Neolithic. During the Bronze and Iron Ages, human pressure increased, which led to a decrease in lime and an increase in oak, hornbeam, grasses and grassland snails; nevertheless, forests still dominated the landscape and beech spread when human impact temporarily decreased. Colonisation after AD 1350 created the modern grassland-rich landscape. All available evidence confirmed an early post-Glacial expansion of broad-leaved trees, supporting the hypothesis on their glacial refugia in the Carpathians, as well as presence of closed-canopy forest well before the

  14. Summer Ephemeroptera, Plecoptera, and Trichoptera (EPT) species richness and community structure in the lower Illinois River basin of Illinois

    USGS Publications Warehouse

    DeWalt, R.E.; Webb, D.W.; Harris, M.A.

    1999-01-01

    Ephemeroptera, Plecoptera, and Trichoptera (EPT) species richness is useful for monitoring stream health, but no published studies in Illinois quantitatively document EPT richness or assemblage structure. The objectives of this study were to characterize adult EPT richness and structure and relate these to relative water quality at eight stream sites (160-69,300 km3 area) in the lower Illinois River basin. Adults were ultra-violet light trapped in June, July, and August 1997. Nutrient enrichment by nitrate and nitrite nitrogen was strongly evident, especially in smaller drainages, while critical loss of stable habitat was observed in larger water bodies. Seventy EPT species were identified from 17,889 specimens. Trichoptera were by far the most speciose (41 species), followed by Ephemeroptera (26), and Plecoptera (3). Caddisflies also dominated species richness across sites, contributing 18.0 of the average 28.9 total EPT species collected. Site EPT richness varied significantly (F = 5.51, p = 0.003, df = 7), with smaller drainages supporting greater richness, generally. Differences were also evident for months (F = 21.7, p = 0.0001, df = 2), with June being lower (11.8 average) than either July (20.6) or August (18.1) values. Hilsenhoff biotic index (HBI) scores did not vary significantly across sites (F = 0.7, p = 0.7, df = 7), but were different across months (F = 5.4, p = 0.02, df = 2). June (4.23) and July (4.53) means were not different, but both were lower (of better quality) than August (5.33) scores. The relationship of EPT to HBI scores was not investigated statistically due to problems of sample size and interdependence of monthly samples, but graphical analysis suggested no consistent relationship. This suggested a decoupling of the HBI from the EPT and implied that the gain in taxonomic resolution achieved by using adults outstripped the resolution of the HBI. Use of the HBI to characterize adult aquatic insect communities is discouraged. New state

  15. Long-term CO{sub 2} enrichment of a pasture community: Species richness, dominance, and succession

    SciTech Connect

    Potvin, C.; Vasseur, L.

    1997-04-01

    The present study addresses responses of a pasture community to CO{sub 2} enrichment in situ. It focused on two levels of organization. We examined changes in both community properties and species-specific responses during long-term exposure to high CO{sub 2} concentration. The underlying hypothesis is that CO{sub 2} enrichment could change community composition. At the community level, we observed higher species richness and lesser dominance under enriched than ambient CO{sub 2}. Two species were apparently central in explaining our results. Agropyran repens and Plantago major. The cover of this first species increased only under ambient CO{sub 2}. Conversely, the cover of the latter species decreased under ambient CO{sub 2} but remained stable under enriched CO{sub 2}. Species were pooled into dicots and monocots to examine space acquisition. Changes in monocot cover through time were more tightly coupled with that of dicots under ambient than high CO{sub 2}. Enrichment with CO{sub 2} appeared to have a positive effect on the early-successional species, preventing the complete dominance by late-successional species. In fact, under elevated CO{sub 2} early-and late-successional species were coexisting. Therefore, our results suggest the possibility that succession patterns might be altered by CO{sub 2} enrichment apparently because enriched CO{sub 2} stimulates the growth of dicots. 40 refs., 6 figs., 4 tabs.

  16. Environmental Quality and Fertility: The Effects of Plant Density, Species Richness, and Plant Diversity on Fertility Limitation *

    PubMed Central

    Brauner-Otto, Sarah R.

    2013-01-01

    The relationship between the environment and population has been of concern for centuries and climate change is making this an even more pressing area of study. In poor rural areas declining environmental conditions may elicit changes in family related behaviors. This paper explores this relationship in rural Nepal looking specifically at how plant density, species richness, and plant diversity are related to women’s fertility limitation behavior. Taking advantage of a unique data set with detailed micro-level environmental measures and individual fertility behavior I link geographically weighted measures of flora at one point in time to women’s later contraceptive use as a way to examine this complex relationship. I find a significant, positive relationship between plant density, species richness, and plant diversity and the timing of contraceptive use. Women in poor environmental conditions are less likely to terminate childbearing, or do so later, and therefore more likely to have larger families. PMID:25593378

  17. Spatial patterns in species richness and the geometric constraint simulation model: a global analysis of mid-domain effect in Falconiformes

    NASA Astrophysics Data System (ADS)

    Valle de Britto Rangel, Thiago Fernando Lopes; Felizola Diniz-Filho, José Alexandre

    2003-09-01

    Recently, the hypothesis that the geographic distribution of species could be influenced by the shape of the domains' edge, the so-called mid-domain effect (MDE), was included as one of the five credible hypotheses for the spatial gradients in species richness, despite the controversy surrounding its validity. To evaluate the MDE at global scale, we simulated the random placement of the ranges of the species of Falconiformes worldwide, comparing predicted and observed species richness, calculated for the entire species pool or based on species with small, medium and large geographic ranges. Richness was also correlated with broad-scale net primary productivity estimates (NPP—a surrogate variable expressing the effect of available energy). Our tests showed that MDE is not a good predictor of species richness at a global scale, with maximum explanation power around 14%, and that other hypotheses based on history and climate should be invocated to explain these patterns.

  18. Species richness matters for the quality of ecosystem services: a test using seed dispersal by frugivorous birds

    PubMed Central

    García, Daniel; Martínez, Daniel

    2012-01-01

    The positive link between biodiversity and ecosystem functioning is a current paradigm in ecological science. However, little is known of how different attributes of species assemblages condition the quality of many services in real ecosystems affected by human impact. We explore the links between the attributes of a frugivore assemblage and the quantitative and qualitative components of its derived ecosystem service, seed dispersal, along a landscape-scale gradient of anthropogenic forest loss. Both the number and the richness of seeds being dispersed were positively related to frugivore abundance and richness. Seed dispersal quality, determined by the fine-scale spatial patterns of seed deposition, mostly depended on frugivore richness. In fact, richness was the only attribute of the frugivore assemblage affecting the probability of seed dispersal into deforested areas of the landscape. The positive relationships between frugivore richness per se (i.e. independent of frugivore abundance and composition) and all components of seed dispersal suggest the existence of functional complementarity and/or facilitation between frugivores. These links also point to the whole assemblage of frugivores as a conservation target, if we aim to preserve a complete seed dispersal service and, hence, the potential for vegetation regeneration and recovery, in human-impacted landscapes. PMID:22456879

  19. Increasing species richness of the macrozoobenthic fauna on tidal flats of the Wadden Sea by local range expansion and invasion of exotic species

    NASA Astrophysics Data System (ADS)

    Beukema, J. J.; Dekker, R.

    2011-06-01

    A 40-y series of consistently collected samples (15 fixed sampling sites, constant sampled area of 15 × 0.95 m2, annual sampling only in late-winter/early-spring seasons, and consistent sieving and sorting procedures; restriction to 50 easily recognizable species) of macrozoobenthos on Balgzand, a tidal flat area in the westernmost part of the Wadden Sea (The Netherlands), revealed significantly increasing trends of species richness. Total numbers of species annually encountered increased from ~28 to ~38. Mean species density (number of species found per sampling site) increased from ~13 to ~18 per 0.95 m2. During the 40 years of the 1970-2009 period of observation, 4 exotic species invaded the area: (in order of first appearance) Ensis directus, Marenzelleria viridis, Crassostrea gigas, and Hemigrapsus takanoi. Another 5 species recently moved to Balgzand from nearby (subtidal) locations. Together, these 9 new species on the tidal flats explained by far most of the increase in total species numbers, but accounted for only one-third of the observed increase in species density (as a consequence of the restricted distribution of most of them). Species density increased particularly by a substantial number of species that showed increasing trends in the numbers of tidal flat sites they occupied. Most of these wider-spreading species were found to suffer from cold winters. During the 40-y period of observation, winter temperatures rose by about 2°C and cold winters became less frequent. The mean number of cold-sensitive species found per site significantly increased by almost 2 per 0.95 m2. Among the other species (not sensitive to low winter temperatures), 6 showed a rising and 2 a declining trend in number of occupied sites, resulting in a net long-term increase in species density amounting to another gain of 1.6 per 0.95 m2. Half of the 50 studied species did not show such long-term trend, nor were invaders. Thus, each of 3 groups (local or alien invaders

  20. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species.

    PubMed

    Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W

    2014-02-01

    Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates. PMID:24634733

  1. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species

    PubMed Central

    Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W

    2014-01-01

    Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates. PMID:24634733

  2. Factors determining parasite community richness and species composition in black snook Centropomus nigrescens (Centropomidae) from coastal lagoons in Guerrero, Mexico.

    PubMed

    Violante-González, Juan; Mendoza-Franco, Edgar F; Rojas-Herrera, Agustín; Gil Guerrero, Salvador

    2010-06-01

    Species richness and composition were determined for parasite communities in the black snook Centropomus nigrescens collected from five coastal lagoons in the Guerrero state, Mexico. A total of 354 fish were collected between December 2007 and November 2008. Twenty-four species of parasite were identified: 2 monogeneans, 12 digeneans, 4 acanthocephalans, 1 cestode, 4 nematodes, and 1 pentastomid. The communities consisted mainly of autogenic parasites, and all were dominated by the digenean Paracrytogonimus yamagutii. Community species composition was similar among lagoons, although the influence of local conditions prevented them from being identical. Host traits such as predator feeding habits, body size, and vagility contributed to parasite community structure and species composition. PMID:20336316

  3. Effects of habitat-forming species richness, evenness, identity, and abundance on benthic intertidal community establishment and productivity.

    PubMed

    Lemieux, Julie; Cusson, Mathieu

    2014-01-01

    In a context of reduced global biodiversity, the potential impacts from the loss of habitat-forming species (HFS) on ecosystem structure and functioning must be established. These species are often the main community primary producers and have a major role in the establishment of organisms through facilitation processes. This study focuses on macroalgae and mussels as HFS within an intertidal zone along the St. Lawrence estuary (Quebec, Canada). Over a 16-week period, we manipulated the in situ diversity profile (richness, evenness, identity, and abundance) of the dominant HFS (Fucus distichus edentatus, F. vesiculosus, and Mytilus spp.) in order to define their role in both the establishment of associated species and community primary production. Contrary to expectation, no general change in HFS richness, evenness, abundance, or identity on associated species community establishment was observed. However, over the study period, the HFS diversity profile modified the structure within the trophic guilds, which may potentially affect further community functions. Also, our results showed that the low abundance of HFS had a negative impact on the primary productivity of the community. Our results suggest that HFS diversity profiles have a limited short-term role in our study habitat and may indicate that biological forcing in these intertidal communities is less important than environmental conditions. As such, there was an opportunistic establishment of species that ensured rapid colonization regardless of the absence, or the diversity profile, of facilitators such as HFS. PMID:25313459

  4. Effects of Habitat-Forming Species Richness, Evenness, Identity, and Abundance on Benthic Intertidal Community Establishment and Productivity

    PubMed Central

    Lemieux, Julie; Cusson, Mathieu

    2014-01-01

    In a context of reduced global biodiversity, the potential impacts from the loss of habitat-forming species (HFS) on ecosystem structure and functioning must be established. These species are often the main community primary producers and have a major role in the establishment of organisms through facilitation processes. This study focuses on macroalgae and mussels as HFS within an intertidal zone along the St. Lawrence estuary (Quebec, Canada). Over a 16-week period, we manipulated the in situ diversity profile (richness, evenness, identity, and abundance) of the dominant HFS (Fucus distichus edentatus, F. vesiculosus, and Mytilus spp.) in order to define their role in both the establishment of associated species and community primary production. Contrary to expectation, no general change in HFS richness, evenness, abundance, or identity on associated species community establishment was observed. However, over the study period, the HFS diversity profile modified the structure within the trophic guilds, which may potentially affect further community functions. Also, our results showed that the low abundance of HFS had a negative impact on the primary productivity of the community. Our results suggest that HFS diversity profiles have a limited short-term role in our study habitat and may indicate that biological forcing in these intertidal communities is less important than environmental conditions. As such, there was an opportunistic establishment of species that ensured rapid colonization regardless of the absence, or the diversity profile, of facilitators such as HFS. PMID:25313459

  5. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community

    PubMed Central

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  6. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community.

    PubMed

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  7. Feather mites (Acari, Astigmata) from Azorean passerines (Aves, Passeriformes): lower species richness compared to European mainland

    PubMed Central

    Rodrigues, Pedro; Mironov, Sergey; Sychra, Oldrich; Resendes, Roberto; Literak, Ivan

    2015-01-01

    Ten passerine species were examined on three islands of the Azores (North Atlantic) during 2013 and 2014 in order to identify their feather mite assemblages. We recorded 19 feather mite species belonging to four families of the superfamily Analgoidea (Analgidae, Proctophyllodidae, Psoroptoididae and Trouessartiidae). A high prevalence of feather mite species was recorded on the majority of the examined host species. Only three passerine species (Sylvia atricapilla, Regulus regulus and Serinus canaria) presented the same full complex of mite species as commonly occurs in the plumage of their closest relatives in continental Europe. Passer domesticus presented the same limited fauna of feather mites living in the plumage as do its co-specifics in continental Europe. Carduelis carduelis bears the same feather mite species as do most of its continental populations in Europe, but it lacks one mite species occurring on this host in Egypt. Turdus merula, Pyrrhula murina and Fringilla coelebs are missing several mite species common to their continental relatives. This diminution could be explained by the founder effect, whereby a limited number of colonizing individuals did not transport the full set of feather mite species, or by the extinction of some mite species after initially having reached the Azores. The only individual of Motacilla cinerea sampled in this study presented a new host record for the mite species Trouessartia jedliczkai. PMID:25665827

  8. Feather mites (Acari, Astigmata) from Azorean passerines (Aves, Passeriformes): lower species richness compared to European mainland.

    PubMed

    Rodrigues, Pedro; Mironov, Sergey; Sychra, Oldrich; Resendes, Roberto; Literak, Ivan

    2015-01-01

    Ten passerine species were examined on three islands of the Azores (North Atlantic) during 2013 and 2014 in order to identify their feather mite assemblages. We recorded 19 feather mite species belonging to four families of the superfamily Analgoidea (Analgidae, Proctophyllodidae, Psoroptoididae and Trouessartiidae). A high prevalence of feather mite species was recorded on the majority of the examined host species. Only three passerine species (Sylvia atricapilla, Regulus regulus and Serinus canaria) presented the same full complex of mite species as commonly occurs in the plumage of their closest relatives in continental Europe. Passer domesticus presented the same limited fauna of feather mites living in the plumage as do its co-specifics in continental Europe. Carduelis carduelis bears the same feather mite species as do most of its continental populations in Europe, but it lacks one mite species occurring on this host in Egypt. Turdus merula, Pyrrhula murina and Fringilla coelebs are missing several mite species common to their continental relatives. This diminution could be explained by the founder effect, whereby a limited number of colonizing individuals did not transport the full set of feather mite species, or by the extinction of some mite species after initially having reached the Azores. The only individual of Motacilla cinerea sampled in this study presented a new host record for the mite species Trouessartia jedliczkai. PMID:25665827

  9. Richness and Diversity of Bacterioplankton Species along an Estuarine Gradient in Moreton Bay, Australia

    PubMed Central

    Hewson, Ian; Fuhrman, Jed A.

    2004-01-01

    Bacterioplankton community diversity was investigated in the subtropical Brisbane River-Moreton Bay estuary, Australia (27°25′S, 153°5′E). Bacterial communities were studied using automated rRNA intergenic spacer analysis (ARISA), which amplifies 16S-23S ribosomal DNA internally transcribed spacer regions from mixed-community DNA and detects the separated products on a fragment analyzer. Samples were collected from eight sites throughout the estuary and east to the East Australian Current (Coral Sea). Bacterioplankton communities had the highest operational taxonomic unit (OTU) richness, as measured by ARISA at eastern bay stations (S [total richness] = 84 to 85 OTU) and the lowest richness in the Coral Sea (S = 39 to 59 OTU). Richness correlated positively with bacterial abundance; however, there were no strong correlations between diversity and salinity, NO3− and PO43− concentrations, or chlorophyll a concentration. Bacterioplankton communities at the riverine stations were different from communities in the bay or Coral Sea. The main differences in OTU richness between stations were in taxa that each represented 0.1% (the detection limit) to 0.5% of the total amplified DNA, i.e., the “tail” of the distribution. We found that some bacterioplankton taxa are specific to distinct environments while others have a ubiquitous distribution from river to sea. Bacterioplankton richness and diversity patterns in the estuary are potentially a consequence of greater niche availability, mixing of local and adjacent environment communities, or intermediate disturbance. Furthermore, these results contrast with previous reports of spatially homogeneous bacterioplankton communities in other coastal waters. PMID:15184140

  10. Do species distribution models predict species richness in urban and natural green spaces? A case study using amphibians

    EPA Science Inventory

    Urban green spaces are potentially important to biodiversity conservation because they represent habitat islands in a mosaic of development, and could harbor high biodiversity or provide connectivity to nearby habitat. Presence only species distribution models (SDMs) represent a ...

  11. Reservoirs of richness: least disturbed tropical forests are centres of undescribed species diversity.

    PubMed

    Giam, Xingli; Scheffers, Brett R; Sodhi, Navjot S; Wilcove, David S; Ceballos, Gerardo; Ehrlich, Paul R

    2012-01-01

    In the last few decades, there has been a remarkable discovery of new species of plants, invertebrates and vertebrates, in what have been called the new age of discovery. However, owing to anthropogenic impacts such as habitat conversion, many of the still unknown species may go extinct before being scientifically documented (i.e. 'crypto-extinctions'). Here, by applying a mathematical model of species descriptions which accounts for taxonomic effort, we show that even after 250 years of taxonomic classification, about 3050 amphibians and at least 160 land mammal species remain to be discovered and described. These values represent, respectively, 33 and 3 per cent of the current species total for amphibians and land mammals. We found that tropical moist forests of the Neotropics, Afrotropics and Indomalaya probably harbour the greatest numbers of undescribed species. Tropical forests with minimal anthropogenic disturbance are predicted to have larger proportions of undescribed species. However, the protected area coverage is low in many of these key biomes. Moreover, undescribed species are likely to be at a greater risk of extinction compared with known species because of small geographical ranges among other factors. By highlighting the key areas of undescribed species diversity, our study provides a starting template to rapidly document these species and protect them through better habitat management. PMID:21593037

  12. Large tree species richness is associated with topography, forest structure and spectral heterogeneity in a neotropical rainforest

    NASA Astrophysics Data System (ADS)

    Fricker, G. A.; Wolf, J. A.; Gillespie, T.; Meyer, V.; Hubbell, S. P.; Santo, F. E.; Saatchi, S. S.

    2013-12-01

    Large tropical canopy trees contain the majority of forest biomass in addition to being the primary producers in the forest ecosystem in terms of both food and structural habitat. The spatial distributions of large tropical trees are non-randomly distributed across environmental gradients in light, water and nutrients. These environmental gradients are a result of the biophysical processes related to topography and three-dimensional forest structure. In this study we examine large (>10 cm) diameter tree species richness across Barro Colorado Nature Monument in a tropical moist forest in Panama using active and passive remote sensing. Airborne light detection and ranging and high-resolution satellite imagery were used to quantify spectral heterogeneity, sub-canopy topography and vertical canopy structure across existing vegetation plots to model the extent to which remote sensing variables can be used to explain variation in large tree species richness. Plant species richness data was calculated from the stem mapped 50-ha forest dynamics plot on Barro Colorado Island in addition to 8 large tree plots across the Barro Colorado Nature Monument at 1.0 ha and 0.25 ha spatial scales. We investigated four statistical models to predict large tree species richness including spectral, topographic, vertical canopy structure and a combined ';global' model which includes all remote sensing derived variables. The models demonstrate that remote sensing derived variables can capture a significant fraction (R2= 0.54 and 0.36) of observed variation in tree species richness across the 1.0 and 0.25 ha spatial scales respectively. A selection of remote sensing derived predictor variables. A) World View-2 satellite imagery in RGB/true color. B) False color image of the principal component analysis. C) Normalized Difference Vegetation Index (NDVI). D) Simple Ratio Index. E) Quickbird satellite imagery in RGB/true color. F) False color image of the principal component analysis. G) NDVI. H

  13. Geographic analysis of species richness and community attributes of forest birds from survey data in the mid-Atlantic integrated assessment region

    USGS Publications Warehouse

    Cam, E.; Sauer, J.R.; Nichols, J.D.; Hines, J.E.; Flather, C.H.

    2000-01-01

    Species richness of local communities is a state variable commonly used in community ecology and conservation biology. Investigation of spatial and temporal variations in richness and identification of factors associated with these variations form a basis for specifying management plans, evaluating these plans, and for testing hypotheses of theoretical interest. However, estimation of species richness is not trivial: species can be missed by investigators during sampling sessions. Sampling artifacts can lead to erroneous conclusions on spatial and temporal variation in species richness. Here we use data from the North American Breeding Bird Survey to estimate parameters describing the state of bird communities in the Mid-Atlantic Assessment (MAIA) region: species richness, extinction probability, turnover and relative species richness. We use a recently developed approach to estimation of species richness and related parameters that does not require the assumption that all the species are detected during sampling efforts. The information presented here is intended to visualize the state of bird communities in the MAIA region. We provide information on 1975 and 1990. We also quantified the changes between these years. We summarized and mapped the community attributes at a scale of management interest (watershed units).

  14. Response to comments on "Productivity is a poor predictor of plant species richness"

    USGS Publications Warehouse

    Grace, James B.; Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Anderson, T. Michael; Bakker, Jonathan D.; Brown, Cynthia S.; Buckley, Yvonne M.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hagenah, Nicole; Jin, Virginia L.; Kirkman, Kevin P.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Orrock, John L.; Prover, Suzanne M.; Stevens, Carly J.; Wragg, Peter D.; Yang, Louie H.

    2012-01-01

    Pan et al. claim that our results actually support a strong linear positive relationship between productivity and richness, whereas Fridley et al. contend that the data support a strong humped relationship. These responses illustrate how preoccupation with bivariate patterns distracts from a deeper understanding of the multivariate mechanisms that control these important ecosystem properties.

  15. Response to comments on "Productivity is a poor predictor of plant species richness"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pan et al. claim that the results by Adler et al. (Reports, 23 Sept 2011, p. 1750) actually support a strong linear positive relationship between productivity and richness, while Fridley et al. contend that the data support a strong humped relationship. These responses illustrate how the preoccupati...

  16. Lasers on the Landscape: Quantifying 3-D ecosystem structure to map continuous surfaces of carbon, avian species richness, and tree species distributions

    NASA Astrophysics Data System (ADS)

    Vierling, L. A.; Finch, S.; Vierling, K. T.; Strand, E. K.; Hudak, A. T.; Vogeler, J.; Martinuzzi, S.; Eitel, J.; Falkowski, M. J.

    2012-12-01

    Quantifying ecosystem services and species diversity at multiple spatial scales is central to the sustainable management of global natural resources. Many attempts to quantify ecosystem services and species diversity have focused on single services or taxonomic groups, used proxy relationships rather than primary data, and/or failed to adequately assess broad spatial extents with a grain size fine enough to link with individual human decisions and local knowledge. It is thus important to establish objective, repeatable monitoring tools from the parcel to the landscape scale to meet management and policy needs, and to assist with targeting areas for conservation where high collective ecosystem service values (i.e. "hotspots") occur. To meet this need, we combined detailed field observations with LiDAR-derived ecosystem structural variables and statistical modeling techniques to map continuous surfaces of aboveground carbon, bird species richness, and tree diversity across a ~20,000 ha north Idaho case study landscape. Plot-level values of carbon (range: 0-584 Mg/ha), bird species richness (range: 0-23 species/0.04 ha), and tree species variety (range: 0-6 species/0.04 ha) were extrapolated across the landscape using imputation enabled by LiDAR-based relationships. Each quantity was then transformed to normalized values ranging from 0 to 1 to enable the three quantities to be combined for hotspot identification. We found that the scale of analysis strongly affected the magnitude of hotspots containing high carbon and biodiversity values: the maximum hotspot value decreased by 32% when grain size was increased from 100m to 1500m. In addition, we found that preferentially weighting one ecosystem property relative to the others (a situation common to many management scenarios) changed the location and magnitude of hotspots across the landscape. Our results indicate that LiDAR-derived ecosystem structure provides information that is useful for mapping numerous ecosystem

  17. [Seasonal evaluation of mammal species richness and abundance in the "Mário Viana" municipal reserve, Mato Grosso, Brasil].

    PubMed

    Rocha, Ednaldo Cândido; Silva, Elias; Martins, Sebastião Venâncio; Barreto, Francisco Cândido Cardoso

    2006-09-01

    We evaluated seasonal species presence and richness, and abundance of medium and large sized mammalian terrestrial fauna in the "Mário Viana" Municipal Biological Reserve, Nova Xavantina, Mato Grosso, Brazil. During 2001, two monthly visits were made to an established transect, 2,820 m in length. Records of 22 mammal species were obtained and individual footprint sequences quantified for seasonal calculation of species richness and relative abundance index (x footprints/km traveled). All 22 species occurred during the rainy season, but only 18 during the dry season. Pseudalopex vetulus (Lund, 1842) (hoary fox), Eira barbara (Linnaeus, 1758) (tayra), Puma concolor (Linnaeus, 1771) (cougar) and Hydrochaeris hydrochaeris (Linnaeus, 1766) (capybara) were only registered during the rainy season. The species diversity estimated using the Jackknife procedure in the dry season (19.83, CI = 2.73) was smaller than in the rainy season (25.67, CI = 3.43). Among the 18 species common in the two seasons, only four presented significantly different abundance indexes: Dasypus novemcinctus Linnaeus, 1758 (nine-banded armadillo), Euphractus sexcinctus (Linnaeus, 1758) (six-banded armadillo), Dasyprocta azarae Lichtenstein, 1823 (Azara's Agouti) and Tapirus terrestris (Linnaeus, 1758) (tapir). On the other hand, Priodontes maximus (Kerr, 1792) (giant armadillo) and Leopardus pardalis (Linnaeus, 1758) (ocelot) had identical abundance index over the two seasons. Distribution of species abundance in the sampled area followed the expected pattern for communities in equilibrium, especially in the rainy season, suggesting that the environment still maintains good characteristics for mammal conservation. The present study shows that the reserve, although only 470 ha in size, plays an important role for conservation of mastofauna of the area as a refuge in an environment full of anthropic influence (mainly cattle breeding in exotic pasture). PMID:18491629

  18. Is the use-impact on native caatinga species in Brazil reduced by the high species richness of medicinal plants?

    PubMed

    de Albuquerque, Ulysses Paulino; de Oliveira, Rosilane Ferreira

    2007-08-15

    A study of the diversity of uses of medicinal plants and the traditional knowledge associated with the caatinga vegetation was undertaken in the semi-arid region of Pernambuco State, NE Brazil. We tested the utilitarian redundancy model (as an analogy to the ecological redundancy hypothesis) in evaluating the implications of the use of medicinal plants by rural communities to examine whether the presence of numerous species with analogous functions (identical therapeutic applications, for example) would reduce the use-impact on native species in the neighboring caatinga vegetation. Various techniques were used to collect information concerning medicinal plants and their applications from 19 residents considered "local specialists". The vegetation was sampled to determine the abundance of woody plants. Approximately 106 plants that fall into 67 local therapeutic categories were identified. Despite the fact that exotic species compose a significant fraction of the local medicinal flora, the native species represented the greatest percentage of local uses and indications. Amburana cearensis, Myracrodruon urundeuva, Anadenanthera colubrina, Sideroxylon obtusifolium, and Ziziphus joazeiro, for example, are highly sought after plants, and represent key species in terms of conservation and sustainable management. Our model of utilitarian redundancy has important consequences for testing ethnobotanical hypotheses, as well as for indicating strategies for biodiversity conservation. PMID:17616289

  19. Phenological adjustment in arctic bird species: relative importance of snow melt and ecological factors

    USGS Publications Warehouse

    Liebezeit, Joseph R.; Gurney, K. E. B.; Budde, Michael E.; Zack, Steve; Ward, David H.

    2014-01-01

    Previous studies have documented advancement in clutch initiation dates (CIDs) in response to climate change, most notably for temperate-breeding passerines. Despite accelerated climate change in the Arctic, few studies have examined nest phenology shifts in arctic breeding species. We investigated whether CIDs have advanced for the most abundant breeding shorebird and passerine species at a long-term monitoring site in arctic Alaska. We pooled data from three additional nearby sites to determine the explanatory power of snow melt and ecological variables (predator abundance, green-up) on changes in breeding phenology. As predicted, all species (semipalmated sandpiper, Calidris pusilla, pectoral sandpiper, Calidris melanotos, red-necked phalarope, Phalaropus lobatus, red phalarope, Phalaropus fulicarius, Lapland longspur, Calcarius lapponicus) exhibited advanced CIDs ranging from 0.40 to 0.80 days/year over 9 years. Timing of snow melt was the most important variable in explaining clutch initiation advancement (“climate/snow hypothesis”) for four of the five species, while green-up was a much less important explanatory factor. We found no evidence that high predator abundances led to earlier laying dates (“predator/re-nest hypothesis”). Our results support previous arctic studies in that climate change in the cryosphere will have a strong impact on nesting phenology although factors explaining changes in nest phenology are not necessarily uniform across the entire Arctic. Our results suggest some arctic-breeding shorebird and passerine species are altering their breeding phenology to initiate nesting earlier enabling them to, at least temporarily, avoid the negative consequences of a trophic mismatch.

  20. Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot

    PubMed Central

    Rakotoarinivo, Mijoro; Blach-Overgaard, Anne; Baker, William J.; Dransfield, John; Moat, Justin; Svenning, Jens-Christian

    2013-01-01

    The distribution of rainforest in many regions across the Earth was strongly affected by Pleistocene ice ages. However, the extent to which these dynamics are still important for modern-day biodiversity patterns within tropical biodiversity hotspots has not been assessed. We employ a comprehensive dataset of Madagascan palms (Arecaceae) and climate reconstructions from the last glacial maximum (LGM; 21 000 years ago) to assess the relative role of modern environment and LGM climate in explaining geographical species richness patterns in this major tropical biodiversity hotspot. We found that palaeoclimate exerted a strong influence on palm species richness patterns, with richness peaking in areas with higher LGM precipitation relative to present-day even after controlling for modern environment, in particular in northeastern Madagascar, consistent with the persistence of tropical rainforest during the LGM primarily in this region. Our results provide evidence that diversity patterns in the World's most biodiverse regions may be shaped by long-term climate history as well as contemporary environment. PMID:23427173

  1. Fine-scale community and genetic structure are tightly linked in species-rich grasslands

    PubMed Central

    Whitlock, Raj; Bilton, Mark C.; Grime, J. Phil; Burke, Terry

    2011-01-01

    Recent evidence indicates that grassland community structure and species diversity are influenced by genetic variation within species. We review what is known regarding the impact of intraspecific diversity on grassland community structure, using an ancient limestone pasture as a focal example. Two genotype-dependent effects appear to modify community structure in this system. First, the abundance of individual constituent species can depend upon the combined influence of direct genetic effects stemming from individuals within the population. Second, the outcome of localized interspecific interactions occurring within the community can depend on the genotypes of participating individuals (indicating indirect genetic effects). Only genotypic interactions are thought to be capable of allowing the long-term coexistence of both genotypes and species. We discuss the implications of these effects for the maintenance of diversity in grasslands. Next, we present new observations indicating that losses of genotypic diversity from each of two species can be predicted by the abundance of other coexisting species within experimental grassland communities. These results suggest genotype-specific responses to abundance in other coexisting species. We conclude that both direct and indirect genetic effects are likely to shape community structure and species coexistence in grasslands, implying tight linkage between fine-scale genetic and community structure. PMID:21444309

  2. Investigating the influence of geospatial attributes on spider species richness and diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maintenance of biodiversity is an important aspect of the long-term sustainability of agricultural production. Maintaining biodiversity, especially in regards to predator species, promotes natural pest control and many other ecosystem services. Spiders (Araneae) often prey upon common pest speci...

  3. Comparing species decisions in a dichotomous choice task: adjusting task parameters improves performance in monkeys.

    PubMed

    Prétôt, Laurent; Bshary, Redouan; Brosnan, Sarah F

    2016-07-01

    In comparative psychology, both similarities and differences among species are studied to better understand the evolution of their behavior. To do so, we first test species in tasks using similar procedures, but if differences are found, it is important to determine their underlying cause(s) (e.g., are they due to ecology, cognitive ability, an artifact of the study, and/or some other factor?). In our previous work, primates performed unexpectedly poorly on an apparently simple two-choice discrimination task based on the natural behavior of cleaner fish, while the fish did quite well. In this task, if the subjects first chose one of the options (ephemeral) they received both food items, but if they chose the other (permanent) option first, the ephemeral option disappeared. Here, we test several proposed explanations for primates' relatively poorer performance. In Study 1, we used a computerized paradigm that differed from the previous test by removing interaction with human experimenters, which may be distracting, and providing a more standardized testing environment. In Study 2, we adapted the computerized paradigm from Study 1 to be more relevant to primate ecology. Monkeys' overall performance in these adapted tasks matched the performance of the fish in the original study, showing that with the appropriate modifications they can solve the task. We discuss these results in light of comparative research, which requires balancing procedural similarity with considerations of how the details of the task or the context may influence how different species perceive and solve tasks differently. PMID:27086302

  4. Physical factors affecting the abundance and species richness of fishes in the shallow waters of the southern Bothnian Sea (Sweden)

    NASA Astrophysics Data System (ADS)

    Thorman, Staffan

    1986-03-01

    The relationship between the composition of the fish assemblages and the abiotic environment in seven shallow areas within the same geographical range in the southern Bothnian Sea were studied in May, July, September and November 1982. Eighteen species were found in the areas and the major species were Pungitius pungitius (L.), Pomatoschistus minutus (Pallas), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The main purpose of the study was to examine the possible effects of exposure, organic contents in sediments and habitat heterogeneity on species richness and abundance of the assemblages. There was a negative correlation between the organic contents of the sediment and exposure. There were no significant correlations between exposure, organic contents, size of the areas and species numbers but habitat heterogeneity was positively correlated with species number. There were no correlations between fish abundance and heterogeneity of the areas. Negative correlations occurred between the exposure of the areas and fish abundance. The amounts of the pooled benthic fauna were negatively correlated to the exposure. The species/area hypothesis finds no support in the results, because there was no correlation between habitat heterogeneity of an area and its size. The effective fetch combined with the heterogeneity measurement of the areas seemed to be useful indicators of the species composition and fish abundance. Habitat heterogeneity and exposure were the most important structuring factors of these shallow water fish assemblages during the ice-free period and within the local geographical range. The assemblages consist of a mixture of species with marine or limnic origin and they have probably not evolved in the Bothnian Sea or together. They are most likely regulated by their physiological plasticity and not by interactions with other species.

  5. Parasite species richness and intensity of interspecific interactions increase with latitude in two wide-ranging hosts.

    PubMed

    Torchin, Mark E; Miura, Osamu; Hechinger, Ryan F

    2015-11-01

    Although the latitudinal diversity gradient is a well-known and general pattern, the mechanisms structuring it remain elusive. Two key issues limit differentiating these. First, habitat type usually varies with latitude, precluding a standardized evaluation of species richness. Second, broad-scale and local factors hypothesized to shape diversity patterns covary with one another, making it difficult to tease apart independent effects. Examining communities of parasites in widely distributed hosts can eliminate some of these confounding factors. We quantified diversity and interspecific interactions for trematode parasites infecting two similar snail species across 27 degrees of latitude from 43 locations in tropical and temperate oceans. Counter to typical patterns, we found that species richness, levels of parasitism, and intensity of intraguild predation increased with latitude. Because speciation rates are precluded from driving diversity gradients in this particular system, the reversed gradients are likely due to local ecological factors, specifically, increased productivity and stability. We highlight how this system may serve as a useful tool to provide insight into what processes drive diversity gradients in general. PMID:27070022

  6. Evolution of Epiphytism and Fruit Traits Act Unevenly on the Diversification of the Species-Rich Genus Peperomia (Piperaceae).

    PubMed

    Frenzke, Lena; Goetghebeur, Paul; Neinhuis, Christoph; Samain, Marie-Stéphanie; Wanke, Stefan

    2016-01-01

    The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself. PMID:27555851

  7. Evolution of Epiphytism and Fruit Traits Act Unevenly on the Diversification of the Species-Rich Genus Peperomia (Piperaceae)

    PubMed Central

    Frenzke, Lena; Goetghebeur, Paul; Neinhuis, Christoph; Samain, Marie-Stéphanie; Wanke, Stefan

    2016-01-01

    The species-rich genus Peperomia (Black Pepper relatives) is the only genus among early diverging angiosperms where epiphytism evolved. The majority of fruits of Peperomia release sticky secretions or exhibit hook-shaped appendages indicative of epizoochorous dispersal, which is in contrast to other flowering plants, where epiphytes are generally characterized by fruit morphological adaptations for anemochory or endozoochory. We investigate fruit characters using Cryo-SEM. Comparative phylogenetic analyses are applied for the first time to include life form and fruit character information to study diversification in Peperomia. Likelihood ratio tests uncover correlated character evolution. We demonstrate that diversification within Peperomia is not homogenous across its phylogeny, and that net diversification rates increase by twofold within the most species-rich subgenus. In contrast to former land plant studies that provide general evidence for increased diversification in epiphytic lineages, we demonstrate that the evolution of epiphytism within Peperomia predates the diversification shift. An epiphytic-dependent diversification is only observed for the background phylogeny. An elevated frequency of life form transitions between epiphytes and terrestrials and thus evolutionary flexibility of life forms is uncovered to coincide with the diversification shift. The evolution of fruits showing dispersal related structures is key to diversification in the foreground region of the phylogeny and postdates the evolution of epiphytism. We conclude that the success of Peperomia, measured in species numbers, is likely the result of enhanced vertical and horizontal dispersal ability and life form flexibility but not the evolution of epiphytism itself. PMID:27555851

  8. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil.

    PubMed

    Silva, A C; Higuchi, P; van den Berg, E

    2010-08-01

    In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes. PMID:20730335

  9. USING SELF-ORGANIZING MAPS TO EXPLORE PATTERNS IN SPECIES RICHNESS AND PROTECTION

    EPA Science Inventory

    The combination of species distributions with abiotic and landscape variables using Geographic Information Systems can be used to help prioritize areas for biodiversity protection, although the number of variables and complexity of the relationships between them can prove difficu...

  10. Sample size and the detection of a hump-shaped relationship between biomass and species richness in Mediterranean wetlands

    USGS Publications Warehouse

    Espinar, J.L.

    2006-01-01

    Questions: What is the observed relationship between biomass and species richness across both spatial and temporal scales in communities of submerged annual macrophytes? Does the number of plots sampled affect detection of hump-shaped pattern? Location: Don??ana National Park, southwestern Spain. Methods: A total of 102 plots were sampled during four hydrological cycles. In each hydrological cycle, the plots were distributed randomly along an environmental flooding gradient in three contrasted microhabitats located in the transition zone just below the upper marsh. In each plot (0.5 m x 0.5 m), plant density and above- and below-ground biomass of submerged vegetation were measured. The hump-shaped model was tested by using a generalized linear model (GLM). A bootstrap procedure was used to test the effect of the number of plots on the ability to detect hump-shaped patterns. Result: The area exhibited low species density with a range of 1 - 9 species and low values of biomass with a range of 0.2 - 87.6 g-DW / 0.25 m2. When data from all years and all microhabitats were combined, the relationships between biomass and species richness showed a hump-shaped pattern. The number of plots was large enough to allow detection of the hump-shaped pattern across microhabitats but it was too small to confirm the hump-shaped pattern within each individual microhabitat. Conclusion: This study provides evidence of hump-shaped patterns across microhabitats when GLM analysis is used. In communities of submerged annual macrophytes in Mediterranean wetlands, the highest species density occurs in intermediate values of biomass. The bootstrap procedure indicates that the number of plots affects the detection of hump-shaped patterns. ?? IAVS; Opulus Press.

  11. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages

    PubMed Central

    Waheed, Zarinah; van Mil, Harald G. J.; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W.

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species