Science.gov

Sample records for adjusted vegetation index

  1. Suitability of the normalized difference vegetation index and the adjusted transformed soil-adjusted vegetation index for spatially characterizing loggerhead shrike habitats in North American mixed prairie

    NASA Astrophysics Data System (ADS)

    Shen, Li; He, Yuhong; Guo, Xulin

    2013-01-01

    Habitat loss has become one major cause of prairie loggerhead shrike population decline, which is associated with some important grassland biophysical features. However, our understanding of what and how biophysical variables can spatially characterize shrike habitats is poor. The purpose of this study is to investigate the suitability of two vegetation indices (VIs) for spatially characterizing shrike habitats in North American mixed prairies. Our research, conducted in Grasslands National Park of Canada, is based on the normalized difference vegetation index (NDVI) and the adjusted transformed soil-adjusted vegetation index (ATSAVI) as derived from both in situ measurements and SPOT imagery for three types of nesting categories at three spatial scales. Our results demonstrated that shrikes in mixed North American prairies prefer sparsely vegetated areas with a leaf area index less than 2.01 and shrub cover of around 25%. Our results also demonstrated that ATSAVI is superior to NDVI in estimating vegetation abundance and structure. Loggerhead shrikes seems to prefer habitats characterized by NDVI ranging from 0.562 to 0.616 and ATSAVI ranging from 0.319 to 0.372 with the spatial scale varying from 100 to 20 m. ATSAVI also had better performance in detecting the spatial variation of shrike habitats due to its higher sensitivity to background information.

  2. Introducing a rain-adjusted vegetation index (RAVI) for improvement of long-term trend analyses in vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Wessollek, Christine; Karrasch, Pierre; Osunmadewa, Babatunde

    2015-10-01

    It seems to be obvious that precipitation has a major impact on greening during the rainy season in semi-arid regions. First results1 imply a strong dependence of NDVI on rainfall. Therefore it will be necessary to consider specific rainfall events besides the known ordinary annual cycle. Based on this fundamental idea, the paper will introduce the development of a rain adjusted vegetation index (RAVI). The index is based on the enhancement of the well-known normalized difference vegetation index (NDVI2) by means of TAMSAT rainfall data and includes a 3-step procedure of determining RAVI. Within the first step both time series were analysed over a period of 29 years to find best cross correlation values between TAMSAT rainfall and NDVI signal itself. The results indicate the strongest correlation for a weighted mean rainfall for a period of three months before the corresponding NDVI value. Based on these results different mathematical models (linear, logarithmic, square root, etc.) are tested to find a functional relation between the NDVI value and the 3-months rainfall period before (0.8). Finally, the resulting NDVI-Rain-Model can be used to determine a spatially individual correction factor to transform every NDVI value into an appropriate rain adjusted vegetation index (RAVI).

  3. A Novel Moisture Adjusted Vegetation Index (MAVI) to Reduce Background Reflectance and Topographical Effects on LAI Retrieval

    PubMed Central

    Zhu, Gaolong; Ju, Weimin; Chen, J. M.; Liu, Yibo

    2014-01-01

    A new moisture adjusted vegetation index (MAVI) is proposed using the red, near infrared, and shortwave infrared (SWIR) reflectance in band-ratio form in this paper. The effectiveness of MAVI in retrieving leaf area index (LAI) is investigated using Landsat-5 data and field LAI measurements in two forest and two grassland areas. The ability of MAVI to retrieve forest LAI under different background conditions is further evaluated using canopy reflectance of Jack Pine and Black Spruce forests simulated by the 4-Scale model. Compared with several commonly used two-band vegetation index, such as normalized difference vegetation index, soil adjusted vegetation index, modified soil adjusted vegetation index, optimized soil adjusted vegetation index, MAVI is a better predictor of LAI, on average, which can explain 70% of variations of LAI in the four study areas. Similar to other SWIR-related three-band vegetation index, such as modified normalized difference vegetation index (MNDVI) and reduced simple ratio (RSR), MAVI is able to reduce the background reflectance effects on forest canopy LAI retrieval. MAVI is more suitable for retrieving LAI than RSR and MNDVI, because it avoids the difficulty in properly determining the maximum and minimum SWIR values required in RSR and MNDVI, which improves the robustness of MAVI in retrieving LAI of different land cover types. Moreover, MAVI is expressed as ratios between different spectral bands, greatly reducing the noise caused by topographical variations, which makes it more suitable for applications in mountainous area. PMID:25025128

  4. A novel moisture adjusted vegetation index (MAVI) to reduce background reflectance and topographical effects on LAI retrieval.

    PubMed

    Zhu, Gaolong; Ju, Weimin; Chen, J M; Liu, Yibo

    2014-01-01

    A new moisture adjusted vegetation index (MAVI) is proposed using the red, near infrared, and shortwave infrared (SWIR) reflectance in band-ratio form in this paper. The effectiveness of MAVI in retrieving leaf area index (LAI) is investigated using Landsat-5 data and field LAI measurements in two forest and two grassland areas. The ability of MAVI to retrieve forest LAI under different background conditions is further evaluated using canopy reflectance of Jack Pine and Black Spruce forests simulated by the 4-Scale model. Compared with several commonly used two-band vegetation index, such as normalized difference vegetation index, soil adjusted vegetation index, modified soil adjusted vegetation index, optimized soil adjusted vegetation index, MAVI is a better predictor of LAI, on average, which can explain 70% of variations of LAI in the four study areas. Similar to other SWIR-related three-band vegetation index, such as modified normalized difference vegetation index (MNDVI) and reduced simple ratio (RSR), MAVI is able to reduce the background reflectance effects on forest canopy LAI retrieval. MAVI is more suitable for retrieving LAI than RSR and MNDVI, because it avoids the difficulty in properly determining the maximum and minimum SWIR values required in RSR and MNDVI, which improves the robustness of MAVI in retrieving LAI of different land cover types. Moreover, MAVI is expressed as ratios between different spectral bands, greatly reducing the noise caused by topographical variations, which makes it more suitable for applications in mountainous area. PMID:25025128

  5. A novel moisture adjusted vegetation index (MAVI) to reduce background reflectance and topographical effects on LAI retrieval.

    PubMed

    Zhu, Gaolong; Ju, Weimin; Chen, J M; Liu, Yibo

    2014-01-01

    A new moisture adjusted vegetation index (MAVI) is proposed using the red, near infrared, and shortwave infrared (SWIR) reflectance in band-ratio form in this paper. The effectiveness of MAVI in retrieving leaf area index (LAI) is investigated using Landsat-5 data and field LAI measurements in two forest and two grassland areas. The ability of MAVI to retrieve forest LAI under different background conditions is further evaluated using canopy reflectance of Jack Pine and Black Spruce forests simulated by the 4-Scale model. Compared with several commonly used two-band vegetation index, such as normalized difference vegetation index, soil adjusted vegetation index, modified soil adjusted vegetation index, optimized soil adjusted vegetation index, MAVI is a better predictor of LAI, on average, which can explain 70% of variations of LAI in the four study areas. Similar to other SWIR-related three-band vegetation index, such as modified normalized difference vegetation index (MNDVI) and reduced simple ratio (RSR), MAVI is able to reduce the background reflectance effects on forest canopy LAI retrieval. MAVI is more suitable for retrieving LAI than RSR and MNDVI, because it avoids the difficulty in properly determining the maximum and minimum SWIR values required in RSR and MNDVI, which improves the robustness of MAVI in retrieving LAI of different land cover types. Moreover, MAVI is expressed as ratios between different spectral bands, greatly reducing the noise caused by topographical variations, which makes it more suitable for applications in mountainous area.

  6. Global Enhanced Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona

  7. Differentiating between Land Use and Climate-driven Change using Long-term Vegetation Index Trends adjusted for Precipitation on the Mongolian Plateau

    NASA Astrophysics Data System (ADS)

    John, R.; Chen, J.; Kim, Y.; Yang, Z.; Xiao, J.; Shao, C.; Batkhishig, O.

    2014-12-01

    The Mongolian plateau is undergoing consistent warming in addition to an increase in extreme climatic events. Land cover/land use change has accelerated over the past three decades, owing to post liberalization socio-economic changes in Inner Mongolia, China (IM) Mongolia (MG) which have different political systems. Extensive anthropomorphic modifications of ecosystems have the ability to alter the structure and function of ecosystems and ecological processes such as the carbon and water cycle and it is therefore important to differentiate between such changes from climate-driven changes. This study identified climate-driven and human-induced changes in vegetation cover on the Mongolian plateau across desert, grassland and forest biomes as well as administrative divisions. We applied non-parametric trend tests on time series of vegetation index datasets that include MODIS EVI, Vegetation Index and Phenology (VIP) EVI2, and GIMMS 3g as well as precipitation and temperature obtained from TRMM and MERRA reanalysis datasets. We then correlated the VI trends with the climate drivers to determine and isolate primary climate drivers. VI residuals obtained from the regression of composites of peak season maximum VI and JJA monthly accumulated rainfall were analyzed for detection of trends in vegetation greenness not explained by rainfall dynamics over different time periods (2000-2012, and 1981 to 2010). In addition, we obtained trends in socioeconomic variables like total livestock and population density which were closely correlated with VI residual trends adjusted for rainfall. Some administrative subdivisions in IM and MG showed a decreasing trend in residuals that could be attributed to anthropogenic activity such as grazing, or urbanization, while other subdivisions showed an increasing trend in residuals increasing trend in residuals suggest that vegetation cover has improved and perhaps be attributed to restoration and conservation efforts.

  8. Comparison of Topographic Effects between the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI)

    NASA Astrophysics Data System (ADS)

    Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.

    2007-12-01

    Vegetation indices play an important role in monitoring variations in vegetation. The Enhanced Vegetation Index (EVI) proposed by the MODIS Land Discipline Group and the Normalized Difference Vegetation Index (NDVI) are both global-based vegetation indices aimed at providing consistent spatial and temporal information regarding global vegetation. However, many environmental factors such as atmospheric conditions and soil background may produce errors in these indices. The topographic effect is another very important factor, especially when the indices are used in areas of rough terrain. In this paper, we analyzed differences in the topographic effect between the EVI and the NDVI based on a non-Lambertian model and using two airborne-based images with a spatial resolution of 1.5m acquired from a mountainous area covered by a homogeneous Japanese cypress plantation. The results indicate that the soil adjustment factor "L" in the EVI makes it more sensitive to topographic conditions than is the NDVI. Based on these results, we strongly recommend that the topographic effect be removed from the EVI--as well as from other vegetation indices that similarly include a term without a band ratio format (e.g., the PVI and SAVI)--when these indices are used in conjunction with a high spatial resolution image of an area of rough terrain, where the topographic effect on the vegetarian indices having only a band ratio format (e.g., the NDVI) can usually be ignored.

  9. Be aware of the Adjusted Treatment Index.

    PubMed

    Langford, Melvyn

    2015-10-01

    The authors of the interim report relating to the Review of Operational Productivity in NHS providers, published in June of this year, are, as many will know, developing a set of Adjusted Treatment Index (ATI) metrics, and are also to publish a model of their interpretation of what an estates department should look like in terms of its operational productivity and cost. This article argues that the underlying reason for the past failures was the creation of static 'point-value' metrics similar to the ATIs proposed, and that this can only be overcome by designing and populating a series of non-linear dynamic simulation models with feedback control of an organisation's estate in relation to its asset base and condition with respect to time, together with the resultant financial capital and revenue consequences. It concludes by calling on IHEEM's Council to urgently make representation to the authors of the June 2015 report, and suggests that the Institute's members be fully involved in the design, testing, and interpretation, of the estates model and ATIs. IHEEM's Technology Platforms are ideally placed to play a central role in this. PMID:26750025

  10. A short note on calculating the adjusted SAR index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple algebraic technique is presented for computing the adjusted SAR Index proposed by Suarez (1981). The statistical formula presented in this note facilitates the computation of the adjusted SAR without the use of either a look-up table, custom computer software or the need to compute exact a...

  11. 10 CFR 765.12 - Inflation index adjustment procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Inflation index adjustment procedures. 765.12 Section 765.12 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND... Department shall adjust annually, using the CPI-U as defined in this part, amounts paid to an active...

  12. 10 CFR 765.12 - Inflation index adjustment procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Inflation index adjustment procedures. 765.12 Section 765.12 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND... Department shall adjust annually, using the CPI-U as defined in this part, amounts paid to an active...

  13. 10 CFR 765.12 - Inflation index adjustment procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Inflation index adjustment procedures. 765.12 Section 765.12 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND... Department shall adjust annually, using the CPI-U as defined in this part, amounts paid to an active...

  14. 10 CFR 765.12 - Inflation index adjustment procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Inflation index adjustment procedures. 765.12 Section 765.12 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND... Department shall adjust annually, using the CPI-U as defined in this part, amounts paid to an active...

  15. 10 CFR 765.12 - Inflation index adjustment procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Inflation index adjustment procedures. 765.12 Section 765.12 Energy DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND... Department shall adjust annually, using the CPI-U as defined in this part, amounts paid to an active...

  16. A MODIS-based vegetation index climatology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our motivation here is to provide information for the NASA Soil Moisture Active Passive (SMAP) satellite soil moisture retrieval algorithms (launch in 2014). Vegetation attenuates the signal and the algorithms must correct for this effect. One approach is to use data that describes the canopy water ...

  17. [Impact of moss soil crust on vegetation indexes interpretation].

    PubMed

    Fang, Shi-bo; Zhang, Xin-shi

    2011-03-01

    Vegetation indexes were the most common and the most important parameters to characterizing large-scale terrestrial ecosystems. It is vital to get precise vegetation indexes for running land surface process models and computation of NPP change, moisture and heat fluxes over surface. Biological soil crusts (BSC) are widely distributed in arid and semi-arid, polar and sub-polar regions. The spectral characteristics of dry and wet BSCs were quite different, which could produce much higher vegetation indexes value for the wet BSC than for the dry BSC as reported. But no research was reported about whether the BSC would impact on regional vegetation indexes and how much dry and wet BSC had impact on regional vegetation indexes. In the present paper, the most common vegetation index NDVI were used to analyze how the moss soil crusts (MSC) dry and wet changes affect regional NDVI values. It was showed that 100% coverage of the wet MSC have a much higher NDVI value (0.657) than the dry MSC NDVI value (0.320), with increased 0.337. Dry and wet MSC NDVI value reached significant difference between the levels of 0.000. In the study area, MSC, which had the average coverage of 12.25%, would have a great contribution to the composition of vegetation index. Linear mixed model was employed to analyze how the NDVI would change in regional scale as wet MSC become dry MSC inversion. The impact of wet moss crust than the dry moss crust in the study area can make the regional NDVI increasing by 0.04 (14.3%). Due to the MSC existence and rainfall variation in arid and semi-arid zones, it was bound to result in NDVI change instability in a short time in the region. For the wet MSC's spectral reflectance curve is similar to those of the higher plants, misinterpretation of the vegetation dynamics could be more severe due to the "maximum value composite" (MVC) technique used to compose the global vegetation maps in the study of vegetation dynamics. The researches would be useful for

  18. Low-loss polymer films with adjustable refractive index.

    PubMed

    Ramaswamy, V; Weber, H P

    1973-07-01

    Solution-deposited polymer films with continuously adjustable refractive index (1.489-1.563) are made by blending in solution two polymers: polymethyl methacrylate (PMMA) and styrene-acrylonitrile copolymer (SAN). The dependence of index of refraction on composition was found to be linear, indicating the compatibility of the two polymers on a molecular basis. In films ~2 microm thick losses less than 0.2 dB/cm were measured. For thicker films (3.5 microm) an increased scattering loss was observed in high SAN content films.

  19. Radiative transfer in shrub savanna sites in Niger: Preliminary results from HAPEX-Sahel. Part 3: Optical dynamics and vegetation index sensitivity to biomass and plant cover

    NASA Technical Reports Server (NTRS)

    vanLeeuwen, W. J. D.; Huete, A. R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (6) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large 6 dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone.

  20. Analysis of Vegetation Index Variations and the Asian Monsoon Climate

    NASA Technical Reports Server (NTRS)

    Shen, Sunhung; Leptoukh, Gregory G.; Gerasimov, Irina

    2012-01-01

    Vegetation growth depends on local climate. Significant anthropogenic land cover and land use change activities over Asia have changed vegetation distribution as well. On the other hand, vegetation is one of the important land surface variables that influence the Asian Monsoon variability through controlling atmospheric energy and water vapor conditions. In this presentation, the mean and variations of vegetation index of last decade at regional scale resolution (5km and higher) from MODIS have been analyzed. Results indicate that the vegetation index has been reduced significantly during last decade over fast urbanization areas in east China, such as Yangtze River Delta, where local surface temperatures were increased significantly in term of urban heat Island. The relationship between vegetation Index and climate (surface temperature, precipitation) over a grassland in northern Asia and over a woody savannas in southeast Asia are studied. In supporting Monsoon Asian Integrated Regional Study (MAIRS) program, the data in this study have been integrated into Giovanni, the online visualization and analysis system at NASA GES DISC. Most images in this presentation are generated from Giovanni system.

  1. Spectral vegetation indexes and the remote sensing of biophysical parameters

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.; Goward, Samuel N.

    1992-01-01

    Combinations of remotely sensed data from different spectral bands have been combined into spectral vegetation indexes (SVIs) and used to determine biophysical parameters. The characteristics of two-band SVIs made up of visible and near-infrared reflectances are examined. Two canopy reflectance models, a turbid media model and a geometrical model, are used to study the effects of different canopy structures on the measurement of leaf area index and the fraction of photosynthetically intercepted active radiation.

  2. Normalized difference vegetation index (NDVI) variation among cultivars and environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although Nitrogen (N) is an essential nutrient for crop production, large preplant applications of fertilizer N can result in off-field loss that causes environmental concerns. Canopy reflectance is being investigated for use in variable rate (VR) N management. Normalized difference vegetation index...

  3. [Construction of age group vegetation index and preliminary application].

    PubMed

    Xu, Zhang-hua; Li, Cong-hui; Liu, Jian; Yu, Kun-yong; Gong, Cong-hong; Tang, Meng-ya

    2014-06-01

    In the present paper, one remote sensing index-age group vegetation index (AGVI) was put forward, and its feasibility was verified. Taking 518 groups of pine forest age group data collected in 13 counties (cities) of Sanming, Jiangle, Shaxian, Nanping, Huaan, Yunxiao, Nanping, Anxi, Putian, Changting, Jianyang, Ningde and Fuqing, Fujian Province and HJ-1 CCD multi-spectral image at the same time-phase as the basis, the spectrum differences of blue, green, red, near infrared and NDVI of each age group were analyzed, showing the characteristics of young forest>middle-aged forest>over-mature forest>mature forest>near mature forest at near infrared band and mature forest>near mature forest>over-mature forest>young forest>middle-aged forest at NDVI, thus the age group vegetation index (AGVI) was constructed; the index could increase the absolute and relative spectrum differences among age groups. For the pine forest AGVI, cluster analysis was conducted with K-mean method, showing that the division accuracy of pine forest age group was 80.45%, and the accurate rate was 90.41%. Therefore, the effectiveness of age group vegetation index constructed was confirmed.

  4. Normalized Difference Vegetation Index for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the Normalized Difference Vegetation Index (NDVI), or "greenness" of the Fanno Creek floodplain study area. Aerial photography was used to isolate areas of vegetation based on comparing different bandwidths within the imagery. In this case, the NDVI is calculated as the quotient of the near infrared band minus the red band divided by the near infared plus the red band. NDVI = (NIR - R)/(NIR + R).

  5. 76 FR 8368 - Price Index Adjustments for Contribution and Expenditure Limits and Lobbyist Bundling Disclosure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-14

    ... Price Index Adjustments for Contribution and Expenditure Limits and Lobbyist Bundling Disclosure Threshold AGENCY: Federal Election Commission. ACTION: Notice of adjustments to contribution and expenditure...'' or ``the Commission'') is adjusting certain contribution and expenditure limits and the...

  6. 78 FR 8530 - Price Index Adjustments for Contribution and Expenditure Limitations and Lobbyist Bundling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... Price Index Adjustments for Contribution and Expenditure Limitations and Lobbyist Bundling Disclosure Threshold AGENCY: Federal Election Commission. ACTION: Notice of adjustments to contribution and expenditure...'' or ``the Commission'') is adjusting certain contribution and expenditure limitations and the...

  7. A special vegetation index for the weed detection in sensor based precision agriculture.

    PubMed

    Langner, Hans-R; Böttger, Hartmut; Schmidt, Helmut

    2006-06-01

    Many technologies in precision agriculture (PA) require image analysis and image- processing with weed and background differentiations. The detection of weeds on mulched cropland is one important image-processing task for sensor based precision herbicide applications. The article introduces a special vegetation index, the Difference Index with Red Threshold (DIRT), for the weed detection on mulched croplands. Experimental investigations in weed detection on mulched areas point out that the DIRT performs better than the Normalized Difference Vegetation Index (NDVI). The result of the evaluation with four different decision criteria indicate, that the new DIRT gives the highest reliability in weed/background differentiation on mulched areas. While using the same spectral bands (infrared and red) as the NDVI, the new DIRT is more suitable for weed detection than the other vegetation indices and requires only a small amount of additional calculation power. The new vegetation index DIRT was tested on mulched areas during automatic ratings with a special weed camera system. The test results compare the new DIRT and three other decision criteria: the difference between infrared and red intensity (Diff), the soil-adjusted quotient between infrared and red intensity (Quotient) and the NDVI. The decision criteria were compared with the definition of a worse case decision quality parameter Q, suitable for mulched croplands. Although this new index DIRT needs further testing, the index seems to be a good decision criterion for the weed detection on mulched areas and should also be useful for other image processing applications in precision agriculture. The weed detection hardware and the PC program for the weed image processing were developed with funds from the German Federal Ministry of Education and Research (BMBF).

  8. a Proposed New Vegetation Index, the Total Ratio Vegetation Index (trvi), for Arid and Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Fadaei, H.; Suzuki, R.; Sakai, T.; Torii, K.

    2012-07-01

    Vegetation indices that provide important key to predict amount vegetation in forest such as percentage vegetation cover, aboveground biomass, and leaf-area index. Arid and semi-arid areas are not exempt of this rule. Arid and semi-arid areas of northeast Iran cover about 3.4 million ha and are populated by two main tree species, the broadleaf Pistacia vera (pistachio) and the conifer Juniperus excelsa ssp. polycarpos (Persian juniper). Natural stands of pistachio in Iran are not only environmentally important but also genetically essential as seed sources for pistachio production in orchards. We investigated the relationships between tree density and vegetation indices in the arid and semi-arid regions in the northeast of Iran by analysing Advanced Land Observing Satellite (ALOS) data PRISM is a panchromatic radiometer with a 2.5 m spatial resolution at nadir, and has one band with a wavelength of 0.52-0.77 μm (JAXA EORC). AVNIR-2 is a visible and near infrared radiometer for observing land and coastal zones with a 10 m spatial resolution at nadir, and has four multispectral bands: blue (0.42-0.50 μm), green (0.52-0.60 μm), red (0.61-0.69 μm), and near infrared (0.76-0.89 μm) (JAXA EORC). In this study, we estimated various vegetation indices using maximum filtering algorithm (5×5) and examined. This study carried out of juniper forests and natural pistachio stand using Advanced Land Observing Satellite (ALOS) and field inventories. Have been compared linear regression model of vegetation indices and proposed new vegetation index for arid and semi-arid regions. Also, we estimated the densities of juniper forests and natural pistachio stands using remote sensing to help in the sustainable management and production of pistachio in Iran. We present a new vegetation index for arid and semi-arid regions with sparse forest cover, the Total Ratio Vegetation Index (TRVI), and we investigate the relationship of the new index to tree density by analysing data from the

  9. Scaling effects on area-averaged fraction of vegetation cover derived using a linear mixture model with two-band spectral vegetation index constraints

    NASA Astrophysics Data System (ADS)

    Obata, Kenta; Huete, Alfredo R.

    2014-01-01

    This study investigated the mechanisms underlying the scaling effects that apply to a fraction of vegetation cover (FVC) estimates derived using two-band spectral vegetation index (VI) isoline-based linear mixture models (VI isoline-based LMM). The VIs included the normalized difference vegetation index, a soil-adjusted vegetation index, and a two-band enhanced vegetation index (EVI2). This study focused in part on the monotonicity of an area-averaged FVC estimate as a function of spatial resolution. The proof of monotonicity yielded measures of the intrinsic area-averaged FVC uncertainties due to scaling effects. The derived results demonstrate that a factor ξ, which was defined as a function of "true" and "estimated" endmember spectra of the vegetated and nonvegetated surfaces, was responsible for conveying monotonicity or nonmonotonicity. The monotonic FVC values displayed a uniform increasing or decreasing trend that was independent of the choice of the two-band VI. Conditions under which scaling effects were eliminated from the FVC were identified. Numerical simulations verifying the monotonicity and the practical utility of the scaling theory were evaluated using numerical experiments applied to Landsat7-Enhanced Thematic Mapper Plus (ETM+) data. The findings contribute to developing scale-invariant FVC estimation algorithms for multisensor and data continuity.

  10. Assessment of regional biomass-soil relationships using vegetation indexes

    SciTech Connect

    Lozano-Garcia, D.F.; Fernandez, R.N.; Johannsen, C.J. )

    1991-03-01

    This paper reports on data from the NOAA-10 Advanced Very High Resolution Radiometer (AVHRR) collected over the midwestern United States for the 1987 and 1988 growing seasons. A Normalized Difference Vegetation Index (NDVI) transformation was performed using the two optical bands of the sensor (0.58-0.68 {mu}m and 0.72-1.10 {mu}m). The NDVI is related to the amount of active photosynthetic biomass present on the ground. Samples of NDVI values over 45 fields representing 8 soil associations throughout the State of Indiana were collected to assess the effect of soil conditions and acquisition data on the spectral response of the vegetation, as shown by the NDVI's.

  11. [Research on Accuracy and Stability of Inversing Vegetation Chlorophyll Content by Spectral Index Method].

    PubMed

    Jiang, Hai-ling; Yang, Hang; Chen, Xiao-ping; Wang, Shu-dong; Li, Xue-ke; Liu, Kai; Cen, Yi

    2015-04-01

    Spectral index method was widely applied to the inversion of crop chlorophyll content. In the present study, PSR3500 spectrometer and SPAD-502 chlorophyll fluorometer were used to acquire the spectrum and relative chlorophyll content (SPAD value) of winter wheat leaves on May 2nd 2013 when it was at the jointing stage of winter wheat. Then the measured spectra were resampled to simulate TM multispectral data and Hyperion hyperspectral data respectively, using the Gaussian spectral response function. We chose four typical spectral indices including normalized difference vegetation index (NDVD, triangle vegetation index (TVI), the ratio of modified transformed chlorophyll absorption ratio index (MCARI) to optimized soil adjusted vegetation index (OSAVI) (MCARI/OSAVI) and vegetation index based on universal pattern decomposition (VIUPD), which were constructed with the feature bands sensitive to the vegetation chlorophyll. After calculating these spectral indices based on the resampling TM and Hyperion data, the regression equation between spectral indices and chlorophyll content was established. For TM, the result indicates that VIUPD has the best correlation with chlorophyll (R2 = 0.819 7) followed by NDVI (R2 = 0.791 8), while MCARI/OSAVI and TVI also show a good correlation with R2 higher than 0.5. For the simulated Hyperion data, VIUPD again ranks first with R2 = 0.817 1, followed by MCARI/OSAVI (R2 = 0.658 6), while NDVI and TVI show very low values with R2 less than 0.2. It was demonstrated that VIUPD has the best accuracy and stability to estimate chlorophyll of winter wheat whether using simulated TM data or Hyperion data, which reaffirms that VIUPD is comparatively sensor independent. The chlorophyll estimation accuracy and stability of MCARI/OSAVI also works well, partly because OSAVI could reduce the influence of backgrounds. Two broadband spectral indices NDVI and TVI are weak for the chlorophyll estimation of simulated Hyperion data mainly because of

  12. 5 CFR 591.224 - How does OPM adjust price indexes between surveys?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... this, OPM uses the annual or biennial change in the Consumer Price Index (CPI) for the COLA area... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false How does OPM adjust price indexes between...-Of-Living Allowances § 591.224 How does OPM adjust price indexes between surveys? (a) OPM...

  13. Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity

    USGS Publications Warehouse

    Stapanian, Martin A.; Mack, John; Adams, Jean V.; Gara, Brian; Micacchion, Mick

    2013-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas in the USA. Knowledge of the best predictors of VIBIs would enable management agencies to make better decisions regarding mitigation site selection and performance monitoring criteria. We use a novel statistical technique to develop predictive models for an established index of wetland vegetation integrity (Ohio VIBI), using as independent variables 20 indices and metrics of habitat quality, wetland disturbance, and buffer area land use from 149 wetlands in Ohio, USA. For emergent and forest wetlands, predictive models explained 61% and 54% of the variability, respectively, in Ohio VIBI scores. In both cases the most important predictor of Ohio VIBI score was a metric that assessed habitat alteration and development in the wetland. Of secondary importance as a predictor was a metric that assessed microtopography, interspersion, and quality of vegetation communities in the wetland. Metrics and indices assessing disturbance and land use of the buffer area were generally poor predictors of Ohio VIBI scores. Our results suggest that vegetation integrity of emergent and forest wetlands could be most directly enhanced by minimizing substrate and habitat disturbance within the wetland. Such efforts could include reducing or eliminating any practices that disturb the soil profile, such as nutrient enrichment from adjacent farm land, mowing, grazing, or cutting or removing woody plants.

  14. Vegetation index correction to reduce background effects in orchards with high spatial resolution imagery

    NASA Astrophysics Data System (ADS)

    Van Beek, Jonathan; Tits, Laurent; Somers, Ben; Deckers, Tom; Janssens, Pieter; Coppin, Pol

    2014-10-01

    High spatial resolution satellite imagery provides an alternative for time consuming and labor intensive in situ measurements of biophysical variables, such as chlorophyll and water content. However, despite the high spatial resolution of current satellite sensors, mixtures of canopies and backgrounds will be present, hampering the estimation of biophysical variables. Traditional correction methodologies use spectral differences between canopies and backgrounds, but fail with spectrally similar canopies and backgrounds. In this study, the lack of a generic solution to reduce background effects is tackled. Through synthetic imagery, the mixture problem was demonstrated with regards to the estimation of biophysical variables. A correction method was proposed, rescaling vegetation indices based on the canopy cover fraction. Furthermore, the proposed method was compared to traditional background correction methodologies (i.e. soil-adjusted vegetation indices and signal unmixing) for different background scenarios. The results of a soil background scenario showed the inability of soil-adjusted vegetation indices to reduce background admixture effects, while signal unmixing and the proposed method removed background influences for chlorophyll (ΔR2 = ~0.3; ΔRMSE = ~1.6 μg/cm2) and water (ΔR2 = ~0.3; ΔRMSE = ~0.5 mg/cm2) related vegetation indices. For the weed background scenario, signal unmixing was unable to remove the background influences for chlorophyll content (ΔR2 = -0.1; ΔRMSE = -0.6 μg/cm 2 ), while the proposed correction method reduced background effects (ΔR2= 0.1; ΔRMSE = 0.4 μg/cm2). Overall, the proposed vegetation index correction method reduced the background influence irrespective of background type, making useful comparison between management blocks possible.

  15. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.

    2015-11-01

    The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days, respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation and increasing temperature at the early growing period because of global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.

  16. Analysis of the dynamics of African vegetation using the normalized difference vegetation index

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.

    1986-01-01

    Images at a resolution of 8 km are currently being generated for the whole of Africa, displaying the normalized difference vegetation index (NDVI). These images have undergone a process of temporal compositing to reduce the effects of cloud cover and atmospheric variation. When the NDVI is plotted against time, different cover types are shown to have characteristic profiles corresponding closely with their phenology. The resultant pattern of NDVI values displayed on the images is analyzed in terms of the cover types present and local variations in rainfall. Comparison between images for 1983 and 1984 overall showed considerable similarities, but significant differences were observed in the northward extent of the greening wave in the Sahel, the greening up of the Kalahari Desert and East African communities. It is concluded that vegetation monitoring using NDVI images needs to be associated with scene stratification according to cover type.

  17. Monitoring Rangeland Health With MODIS Vegetation Index Data

    NASA Astrophysics Data System (ADS)

    Brown, J. F.

    2004-12-01

    Rangelands cover approximately one third of the land area of the conterminous U.S. These lands supply much of the forage for the U.S. cattle industry. Large area monitoring of these vast expanses of range has proved challenging since most of these lands are in the western U.S., are relatively sparsely populated, and are not well covered by meteorological weather stations. Improvements in the spatial and temporal precision of rangeland health information would be useful both for the cattle industry and for scientific studies of soil erosion, water runoff, ecosystem health, and carbon cycling. Optical multispectral remote sensing data from satellites are an objective source of synoptic, timely information for monitoring rangeland health. The objective of this study is to develop and evaluate a method for measuring and monitoring rangeland health over large areas. In the past, data collected by the Advanced Very High Resolution Radiometer has proved useful for this purpose, however the basic 1 km spatial resolution is not ideal when scaling up from ground observations. This study assesses MODIS 250 meter resolution vegetation index data for this purpose. MODIS data not only have finer spatial resolution and improved geolocation, but they also exhibit enhanced vegetation sensitivity and minimized variations associated with external atmospheric and non-atmospheric effects. Ground data collected over 51 sites in western South Dakota over four years are used as training for regression tree models of range health. Range health maps for the growing season derived from the models are presented and evaluated.

  18. Test of Multi-spectral Vegetation Index for Floating and Canopy-forming Submerged Vegetation

    PubMed Central

    Cho, Hyun Jung; Kirui, Philemon; Natarajan, Harene

    2008-01-01

    Remote sensing of terrestrial vegetation has been successful thanks to the unique spectral characteristics of green vegetation, low reflectance in red and high reflectance in Near-InfraRed (NIR). These spectral characteristics were used to develop vegetation indices, including Normalized Difference Vegetation Index (NDVI). However, the NIR absorption by water and light scattering from suspended particles reduces the practical application of such indices in aquatic vegetation studies, especially for the Submerged Aquatic Vegetation (SAV) that grows below water surface. We experimentally tested if NDVI can be used to depict canopies of aquatic plants in shallow waters. A 100-gallon-outdoor tank was lined with black pond liners, a black panel or SAV shoots were mounted on the bottom, and filled with water up to 0.5 m. We used a GER 1500 spectroradiometer to collect spectral data over floating waterhyacinth (Eichhornia crassipes) and also over the tanks that contain SAV and black panel at varying water depths. The measured upwelling radiance was converted to % reflectance; and we integrated the hyperspectral reflectance to match the Red and NIR bands of three satellite sensors: Landsat 7 ETM, SPOT 5 HRG, and ASTER. NDVI values ranged 0.6–0.65 when the SAV canopy was at the water level, then they decreased linearly (slope of 0.013 NDVI/meter) with water depth increases in clear water. When corrected for water attenuation using the data obtained from the black panel, the NDVI values significantly increased at all depths that we tested (0.1 – 0.5 m). Our results suggest the conventional NDVI: (1) can be used to depict SAV canopies at water surface; (2) is not a good indicator for SAV that is adapted to live underwater or other aquatic plants that are submerged during flooding even at shallow waters (0.3 m); and (3) the index values can significantly improve if information on spectral reflectance attenuation caused by water volume increases is collected simultaneously

  19. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 1; Theory

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Schull, Mitchell A.; Samanta, Arindam; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramakrishna R.; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The generation of multi-decade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR) data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products. The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits decoupling of the structural and radiometric components and obeys the energy conservation law. The approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty, which accounts for varying information content of the remote sensing measurements, i.e., Normalized Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher

  20. An efficient unsupervised index based approach for mapping urban vegetation from IKONOS imagery

    NASA Astrophysics Data System (ADS)

    Anchang, Julius Y.; Ananga, Erick O.; Pu, Ruiliang

    2016-08-01

    Despite the increased availability of high resolution satellite image data, their operational use for mapping urban land cover in Sub-Saharan Africa continues to be limited by lack of computational resources and technical expertise. As such, there is need for simple and efficient image classification techniques. Using Bamenda in North West Cameroon as a test case, we investigated two completely unsupervised pixel based approaches to extract tree/shrub (TS) and ground vegetation (GV) cover from an IKONOS derived soil adjusted vegetation index. These included: (1) a simple Jenks Natural Breaks classification and (2) a two-step technique that combined the Jenks algorithm with agglomerative hierarchical clustering. Both techniques were compared with each other and with a non-linear support vector machine (SVM) for classification performance. While overall classification accuracy was generally high for all techniques (>90%), One-Way Analysis of Variance tests revealed the two step technique to outperform the simple Jenks classification in terms of predicting the GV class. It also outperformed the SVM in predicting the TS class. We conclude that the unsupervised methods are technically as good and practically superior for efficient urban vegetation mapping in budget and technically constrained regions such as Sub-Saharan Africa.

  1. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].

    PubMed

    Zhang, Yuan-Dong; Zhang, Xiao-He; Liu, Shi-Rong

    2011-02-01

    Based on the 1982-2006 NDVI remote sensing data and meteorological data of Southwest China, and by using GIS technology, this paper interpolated and extracted the mean annual temperature, annual precipitation, and drought index in the region, and analyzed the correlations of the annual variation of NDVI in different vegetation types (marsh, shrub, bush, grassland, meadow, coniferous forest, broad-leaved forest, alpine vegetation, and cultural vegetation) with corresponding climatic factors. In 1982-2006, the NDVI, mean annual temperature, and annual precipitation had an overall increasing trend, and the drought index decreased. Particularly, the upward trend of mean annual temperature was statistically significant. Among the nine vegetation types, the NDVI of bush and mash decreased, and the downward trend was significant for bush. The NDVI of the other seven vegetation types increased, and the upward trend was significant for coniferous forest, meadow, and alpine vegetation, and extremely significant for shrub. The mean annual temperature in the areas with all the nine vegetation types increased significantly, while the annual precipitation had no significant change. The drought index in the areas with marsh, bush, and cultural vegetation presented an increasing trend, that in the areas with meadow and alpine vegetation decreased significantly, and this index in the areas with other four vegetation types had an unobvious decreasing trend. The NDVI of shrub and coniferous forest had a significantly positive correlation with mean annual temperature, and that of shrub and meadow had significantly negative correlation with drought index. Under the conditions of the other two climatic factors unchanged, the NDVI of coniferous forest, broad-leaved forest, and alpine vegetation showed the strongest correlation with mean annual temperature, that of grass showed the strongest correlation with annual precipitation, and the NDVI of mash, shrub, grass, meadow, and cultural

  2. Estimating Leaf Area Index from Terrestrial Lidar and Satellite Based Vegetation Indices Using Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Ilangakoon, N. T.; Gorsevski, P.; Simic, A.

    2014-12-01

    Leaf area index (LAI) is an important indicator of ecosystem conditions and a key biophysical variable to many ecosystem models. The LAI in this study was measured by Leica ScanStation C 10 Terrestrial Laser Scanner (TLS) and a hand-held Li-Cor LAI-2200 Plant Canopy Analyzer for understanding differences derived from the two sensors. A total of six different LAI estimates were generated using different methods for the comparisons. The results suggested that there was a reasonable agreement (i.e., correlations r > 0.50) considering a total of 30 plots and use of very different in situ foliage measurements. . The predicted LAI from spectral vegetation indices including WDVI, DVI, NDVI, SAVI, and PVI3 which were derived from Landsat TM imagery were used to identify statistical relationships and for the development of the Bayesian inference model. The Bayesian Linear Regression (BLR) approach was used to scale up LAI estimates and to produce continuous field surfaces for the Oak Openings Region in NW Ohio. The results from the BLR provided details about the parameter uncertainties but also insight about the potential that different LAIs can be used to predict foliage that has been adjusted by removing the wooden biomass with reasonable accuracy. For instance, the modeled residuals associated with the LAI estimates from TLS orthographic projection that consider only foliage had the lowest overall model uncertainty with lowest error and residual dispersion range among the six spatial LAI estimates. The deviation from the mean LAI prediction map derived from the six estimates hinted that sparse and open areas that relate to vegetation structure were associated with the highest error. However, although in many studies TLS has been shown to hold a great potential for quantifying vegetation structure, in this study the quantified relationship between LAI and the vegetation indices did not yield any statistical relationship that needs to be further explored.

  3. [Bioremediation of river water quality by consecutively adjustable submerged vegetation net].

    PubMed

    Wu, Hai-Long; Huo, Yuan-Zi; Shao, Liu; Wang, Yang-Yang; Yu, Ke-Feng; He, Pei-Min; Wen, Wen-Ke

    2012-09-01

    A series of consecutively adjustable submerged vegetation nets were constructed in a polluted shallow river with a length of about 200 m and nearby the water resource protection area of Taihu Lake in East China, forming an aquatic vegetation consisted of submerged plant species Cabomba caroliniana, Vallisneria natans, Elodea nuttallii, Hydrilla verticillata, and Potamogeton crispus. The water quality indices including total nitrogen (TN), ammonium nitrogen (NH4(+)-N), nitrite nitrogen (NO2(-)-N), nitrate nitrogen (NO3(-)-N), total phosphorus (TP), and phosphate (PO4(3-)-P) were monitored, and the bioremediation effect of the vegetation nets was evaluated. After setting up the vegetation nets, the Secchi depth (SD) of the river changed from 0.5 m to 1.7-1.8 m, and the TN and TP concentrations 15 and 20 days after the nets constructed decreased by 35.6% and 66.3%, and 29.4% and 63.2%, respectively. After five months, the concentrations of NH4(+)-N, NO2(-)-N, NO3(-)-N, TN, TP, and PO4(3-)-P decreased by 92.4%, 76.8%, 72.7%, 73.9%, 90.5%, and 92.0%, respectively. This study showed that consecutively adjustable submerged vegetation net could be a potential approach for treating polluted river waters, particularly for the bioremediation of polluted small landscape shallow water bodies.

  4. Estimating surface soil moisture from satellite microwave measurements and a satellite derived vegetation index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; Chang, Alfred; Golus, Robert E.

    1988-01-01

    Normalized 18-GHz microwave brightness temperatures, T(B), and a vegetation index determined from satellite radiometer data are combined with climatically modeled surface moisture estimates to constrain a simple physically based soil moisture model. It is found that the normalized T(B) values correlated well with soil moisture when the data were segregated by vegetation index range, but less so when all the data were combined. By using the vegetation index parameter, the model is shown to account for about 70 percent of the variability in modeled surface soil moisture.

  5. Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index Composites

    USGS Publications Warehouse

    ,

    2005-01-01

    The Advanced Very High Resolution Radiometer (AVHRR) is a broad-band scanner with four to six bands, depending on the model. The AVHRR senses in the visible, near-, middle-, and thermal- infrared portions of the electromagnetic spectrum. This sensor is carried on a series of National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), beginning with the Television InfraRed Observation Satellite (TIROS-N) in 1978. Since 1989, the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has been mapping the vegetation condition of the United States and Alaska using satellite information from the AVHRR sensor. The vegetation condition composites, more commonly called greenness maps, are produced every week using the latest information on the growth and condition of the vegetation. One of the most important aspects of USGS greenness mapping is the historical archive of information dating back to 1989. This historical stretch of information has allowed the USGS to determine a 'normal' vegetation condition. As a result, it is possible to compare the current week's vegetation condition with normal vegetation conditions. An above normal condition could indicate wetter or warmer than normal conditions, while a below normal condition could indicate colder or dryer than normal conditions. The interpretation of departure from normal will depend on the season and geography of a region.

  6. Assessment of regional biomass-soil relationships using vegetation indexes

    NASA Technical Reports Server (NTRS)

    Lozano-Garcia, D. Fabian; Fernandez, R. Norberto; Johannsen, Chris J.

    1991-01-01

    The development of photosynthetic active biomass in different ecological conditions, as indicated by normalized difference vegetation indices (NDVIs) is compared by performing a stratified sampling (based on soil assocations) on data acquired over Indiana. Data from the NOAA-10 AVHRR were collected for the 1987 and 1988 growing seasons. An NDVI transformation was performed using the two optical bands of the sensor (0.58-0.68 microns and 0.72-1.10 microns). The NDVI is related to the amount of active photosynthetic biomass present on the ground. Samples of NDVI values over 45 fields representing eight soil associations throughout Indiana were collected to assess the effect of soil conditions and acquisition date on the spectral response of the vegetation, as shown by the NDVIs. Statistical analysis of results indicate that land-cover types (forest, forest/pasture, and crops), soil texture, and soil water-holding capacity have an important effect on vegetation biomass changes as measured by AVHRR data. Acquisition dates should be selected with condideration of the phenological stages of vegetation. Sampling of AVHRR data over extended areas should be stratified according to physiographic units rather than man-made boundaries. This will provide more homogeneous samples for statistical analysis.

  7. Estimation of leaf area index using an angular vegetation index based on in situ measurements and CHRIS/PROBA data

    NASA Astrophysics Data System (ADS)

    Wang, Lijuan; Zhang, Guimin; Lin, Hui; Liang, Liang; Niu, Zheng

    2016-06-01

    The Normalized Difference Vegetation Index (NDVI) is widely used for Leaf Area Index (LAI) estimation. It is well documented that the NDVI is extremely subject to the saturation problem when LAI reaches a high value. A new multi-angular vegetation index, the Hotspot-darkspot Difference Vegetation Index (HDVI) is proposed to estimate the high density LAI. The HDVI, defined as the difference between the hot and dark spot NDVI, relative to the dark spot NDVI, was proposed based on the Analytical two-layer Canopy Reflectance Model (ACRM) model outputs. This index is validated using both in situ experimental data in wheat and data from the multi-angular optical Compact High-Resolution Imaging Spectrometer (CHRIS) satellite. Both indices, the Hotspot-Darkspot Index (HDS) and the NDVI were also selected to analyze the relationship with LAI, and were compared with new index HDVI. The results show that HDVI is an appropriate proxy of LAI with higher determination coefficients (R2) for both the data from the in situ experiment (R2=0.7342, RMSE=0.0205) and the CHRIS data (R2=0.7749, RMSE=0.1013). Our results demonstrate that HDVI can make better the occurrence of saturation limits with the information of multi-angular observation, and is more appropriate for estimating LAI than either HDS or NDVI at high LAI values. Although the new index needs further evaluation, it also has the potential under the condition of dense canopies. It provides the effective improvement to the NDVI and other vegetation indices that are based on the red and NIR spectral bands.

  8. The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation

    USGS Publications Warehouse

    Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C.

    2008-01-01

    The development of new tools that provide timely, detailed-spatial-resolution drought information is essential for improving drought preparedness and response. This paper presents a new method for monitoring drought-induced vegetation stress called the Vegetation Drought Response Index (VegDRI). VegDRI integrates traditional climate-based drought indicators and satellite-derived vegetation index metrics with other biophysical information to produce a I km map of drought conditions that can be produced in near-real time. The initial VegDRI map results for a 2002 case study conducted across seven states in the north-central United States illustrates the utility of VegDRI for improved large-area drought monitoring. Copyright ?? 2008 by Bellwether Publishing, Ltd. All rights reserved.

  9. What's Happened to the Price of College? Quality-Adjusted Net Price Indexes for Four Year Colleges

    ERIC Educational Resources Information Center

    Schwartz, Amy Ellen; Scafidi, Benjamin

    2004-01-01

    Hedonic models of the price of college to construct quality-adjusted net price indexes for U.S. four-year colleges were estimated. A 22 percent decline in the estimated price index is reported by adjusting for financial aid, while quality adjusting results lead to a smaller decline, for academic years 1990-91 to 1994-95.

  10. 5 CFR 591.228 - How does OPM convert the price index plus adjustment factor to a COLA rate?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false How does OPM convert the price index plus... Differential-Nonforeign Areas Cost-Of-Living Allowances § 591.228 How does OPM convert the price index plus adjustment factor to a COLA rate? (a) OPM converts the price index plus the adjustment factor to a COLA...

  11. 75 FR 750 - Consumer Price Index Adjustments of Oil Pollution Act of 1990 Limits of Liability-Vessels and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ...--Vessels and Deepwater Ports'' (73 FR 54997) CPI-U Consumer Price Index--All Urban Consumers, Not... Federal Register, at 73 FR 54997, entitled ``Consumer Price Index Adjustments of Oil Pollution Act of 1990... SECURITY Coast Guard 33 CFR Part 138 RIN 1625-AB25 Consumer Price Index Adjustments of Oil Pollution......

  12. A Rapidly Prototyped Vegetation Dryness Index Developed for Wildfire Risk Assessment at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ross, Kenton; Graham, William D.; Prados, Donald; Spruce, Joseph

    2006-01-01

    A remote sensing index was developed to allow improved monitoring of vegetation dryness conditions on a regional basis. This remote sensing index was rapidly prototyped at Stennis Space Center in response to drought conditions in the local area in spring 2006.

  13. Variability of the seasonally integrated normalized difference vegetation index across the north slope of Alaska in the 1990s

    USGS Publications Warehouse

    Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W.

    2003-01-01

    The interannual variability and trend of above-ground photosynthetic activity of Arctic tundra vegetation in the 1990s is examined for the north slope region of Alaska, based on the seasonally integrated normalized difference vegetation index (SINDVI) derived from local area coverage (LAC) National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data. Smaller SINDVI values occurred during the three years (1992-1994) following the volcanic eruption of Mt Pinatubo. Even after implementing corrections for this stratospheric aerosol effect and adjusting for changes in radiometric calibration coefficients, an apparent increasing trend of SINDVI in the 1990s is evident for the entire north slope. The most pronounced increase was observed for the foothills physiographical province.

  14. Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data

    USGS Publications Warehouse

    Gallo, K.; Ji, L.; Reed, B.; Eidenshink, J.; Dwyer, J.

    2005-01-01

    The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems. ?? 2005 Elsevier Inc. All rights reserved.

  15. Consistency of vegetation index seasonality across the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Maeda, Eduardo Eiji; Moura, Yhasmin Mendes; Wagner, Fabien; Hilker, Thomas; Lyapustin, Alexei I.; Wang, Yujie; Chave, Jérôme; Mõttus, Matti; Aragão, Luiz E. O. C.; Shimabukuro, Yosio

    2016-10-01

    Vegetation indices (VIs) calculated from remotely sensed reflectance are widely used tools for characterizing the extent and status of vegetated areas. Recently, however, their capability to monitor the Amazon forest phenology has been intensely scrutinized. In this study, we analyze the consistency of VIs seasonal patterns obtained from two MODIS products: the Collection 5 BRDF product (MCD43) and the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC). The spatio-temporal patterns of the VIs were also compared with field measured leaf litterfall, gross ecosystem productivity and active microwave data. Our results show that significant seasonal patterns are observed in all VIs after the removal of view-illumination effects and cloud contamination. However, we demonstrate inconsistencies in the characteristics of seasonal patterns between different VIs and MODIS products. We demonstrate that differences in the original reflectance band values form a major source of discrepancy between MODIS VI products. The MAIAC atmospheric correction algorithm significantly reduces noise signals in the red and blue bands. Another important source of discrepancy is caused by differences in the availability of clear-sky data, as the MAIAC product allows increased availability of valid pixels in the equatorial Amazon. Finally, differences in VIs seasonal patterns were also caused by MODIS collection 5 calibration degradation. The correlation of remote sensing and field data also varied spatially, leading to different temporal offsets between VIs, active microwave and field measured data. We conclude that recent improvements in the MAIAC product have led to changes in the characteristics of spatio-temporal patterns of VIs seasonality across the Amazon forest, when compared to the MCD43 product. Nevertheless, despite improved quality and reduced uncertainties in the MAIAC product, a robust biophysical interpretation of VIs seasonality is still missing.

  16. Comparisons among a new soil index and other two- and four-dimensional vegetation indices

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J. (Principal Investigator)

    1982-01-01

    The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in LANDSAT MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS 5 and MSS 6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation.

  17. Comparisons among a new soil index and other two- and four-dimensional vegetation indices

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Richardson, A. J.

    1982-01-01

    The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in Landsat MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS5 and MSS6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation. Previously announced in STAR as N83-14567

  18. Implied adjusted volatility functions: Empirical evidence from Australian index option market

    NASA Astrophysics Data System (ADS)

    Harun, Hanani Farhah; Hafizah, Mimi

    2015-02-01

    This study aims to investigate the implied adjusted volatility functions using the different Leland option pricing models and to assess whether the use of the specified implied adjusted volatility function can lead to an improvement in option valuation accuracy. The implied adjusted volatility is investigated in the context of Standard and Poor/Australian Stock Exchange (S&P/ASX) 200 index options over the course of 2001-2010, which covers the global financial crisis in the mid-2007 until the end of 2008. Both in- and out-of-sample resulted in approximately similar pricing error along the different Leland models. Results indicate that symmetric and asymmetric models of both moneyness ratio and logarithmic transformation of moneyness provide the overall best result in both during and post-crisis periods. We find that in the different period of interval (pre-, during and post-crisis) is subject to a different implied adjusted volatility function which best explains the index options. Hence, it is tremendously important to identify the intervals beforehand in investigating the implied adjusted volatility function.

  19. Growing Degree Vegetation Production Index (GDVPI): A Novel and Data-Driven Approach to Delimit Season Cycles

    NASA Astrophysics Data System (ADS)

    Graham, W. D.; Spruce, J.; Ross, K. W.; Gasser, J.; Grulke, N.

    2014-12-01

    Growing Degree Vegetation Production Index (GDVPI) is a parametric approach to delimiting vegetation seasonal growth and decline cycles using incremental growing degree days (GDD), and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) 8-day composite cumulative integral data. We obtain a specific location's daily minimum and maximum temperatures from the nearest National Oceanic and Atmospheric Administration (NOAA) weather stations posted on the National Climate Data Center (NCDC) Climate Data Online (CDO) archive and compute GDD. The date range for this study is January 1, 2000 through December 31, 2012. We employ a novel process, a repeating logistic product (RLP), to compensate for short-term weather variability and data drops from the recording stations and fit a curve to the median daily GDD values, adjusting for asymmetry, amplitude, and phase shift that minimize the sum of squared errors when comparing the observed and predicted GDD. The resulting curve, here referred to as the surrogate GDD, is the time-temperature phasing parameter used to convert Cartesian NDVI values into polar coordinate pairs, multiplying the NDVI values as the radial by the cosine and sine of the surrogate GDD as the angular. Depending on the vegetation type and the original NDVI curve, the polar NDVI curve may be nearly circular, kidney-shaped, or pear-shaped in the case of conifers, deciduous, or agriculture, respectively. We examine the points of tangency about the polar coordinate NDVI curve, identifying values of 1, 0, -1, or infinity, as each of these represent natural inflection points. Lines connecting the origin to each tangent point illustrate and quantify the parametrically segmentation of the growing season based on the GDD and NDVI ostensible dependency. Furthermore, the area contained by each segment represents the apparent vegetation production. A particular benefit is that the inflection points are determined

  20. Statistical analysis of land surface temperature-vegetation indexes relationship through thermal remote sensing.

    PubMed

    Kumar, Deepak; Shekhar, Sulochana

    2015-11-01

    Vegetation coverage has a significant influence on the land surface temperature (LST) distribution. In the field of urban heat islands (UHIs) based on remote sensing, vegetation indexes are widely used to estimate the LST-vegetation relationship. This paper devises two objectives. The first analyzes the correlation between vegetation parameters/indicators and LST. The subsequent computes the occurrence of vegetation parameter, which defines the distribution of LST (for quantitative analysis of urban heat island) in Kalaburagi (formerly Gulbarga) City. However, estimation work has been done on the valuation of the relationship between different vegetation indexes and LST. In addition to the correlation between LST and the normalized difference vegetation index (NDVI), the normalized difference build-up index (NDBI) is attempted to explore the impacts of the green land to the build-up land on the urban heat island by calculating the evaluation index of sub-urban areas. The results indicated that the effect of urban heat island in Kalaburagi city is mainly located in the sub-urban areas or Rurban area especially in the South-Eastern and North-Western part of the city. The correlation between LST and NDVI, indicates the negative correlation. The NDVI suggests that the green land can weaken the effect on urban heat island, while we perceived the positive correlation between LST and NDBI, which infers that the built-up land can strengthen the effect of urban heat island in our case study. Although satellite data (e.g., Landsat TM thermal bands data) has been applied to test the distribution of urban heat islands, but the method still needs to be refined with in situ measurements of LST in future studies.

  1. Global trends in vegetation phenology from 32-year GEOV1 leaf area index time series

    NASA Astrophysics Data System (ADS)

    Verger, Aleixandre; Baret, Frédéric; Weiss, Marie; Filella, Iolanda; Peñuelas, Josep

    2013-04-01

    Phenology is a critical component in understanding ecosystem response to climate variability. Long term data records from global mapping satellite platforms are valuable tools for monitoring vegetation responses to climate change at the global scale. Phenology satellite products and trend detection from satellite time series are expected to contribute to improve our understanding of climate forcing on vegetation dynamics. The capacity of monitoring ecosystem responses to global climate change was evaluated in this study from the 32-year time series of global Leaf Area Index (LAI) which have been recently produced within the geoland2 project. The long term GEOV1 LAI products were derived from NOAA/AVHRR (1981 to 2000) and SPOT/VGT (1999 to the present) with specific emphasis on consistency and continuity. Since mid-November, GEOV1 LAI products are freely available to the scientific community at geoland2 portal (www.geoland2.eu/core-mapping-services/biopar.html). These products are distributed at a dekadal time step for the period 1981-2000 and 2000-2012 at 0.05° and 1/112°, respectively. The use of GEOV1 data covering a long time period and providing information at dense time steps are expected to increase the reliability of trend detection. In this study, GEOV1 LAI time series aggregated at 0.5° spatial resolution are used. The CACAO (Consistent Adjustment of the Climatology to Actual Observations) method (Verger et al, 2013) was applied to characterize seasonal anomalies as well as identify trends. For a given pixel, CACAO computes, for each season, the time shift and the amplitude difference between the current temporal profile and the climatology computed over the 32 years. These CACAO parameters allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. Interannual variations in the timing of the Start of Season and End of Season, Season Length and LAI level in the peak of the

  2. A Candidate Vegetation Index of Biological Integrity Based on Species Dominance and Habitat Fidelity

    USGS Publications Warehouse

    Gara, Brian D; Stapanian, Martin A.

    2015-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas of the USA and are used in some states to make critical management decisions. An underlying concept of all VIBIs is that they respond negatively to disturbance. The Ohio VIBI (OVIBI) is calculated from 10 metrics, which are different for each wetland vegetation class. We present a candidate vegetation index of biotic integrity based on floristic quality (VIBI-FQ) that requires only two metrics to calculate an overall score regardless of vegetation class. These metrics focus equally on the critical ecosystem elements of diversity and dominance as related to a species’ degree of fidelity to habitat requirements. The indices were highly correlated but varied among vegetation classes. Both indices responded negatively with a published index of wetland disturbance in 261 Ohio wetlands. Unlike VIBI-FQ, however, errors in classifying wetland vegetation may lead to errors in calculating OVIBI scores. This is especially critical when assessing the ecological condition of rapidly developing ecosystems typically associated with wetland restoration and creation projects. Compared to OVIBI, the VIBI-FQ requires less field work, is much simpler to calculate and interpret, and can potentially be applied to all habitat types. This candidate index, which has been “standardized” across habitats, would make it easier to prioritize funding because it would score the “best” and “worst” of all habitats appropriately and allow for objective comparison across different vegetation classes.

  3. Vegetation index methods for estimating evapotranspiration by remote sensing

    USGS Publications Warehouse

    Glenn, Edward P.; Nagler, Pamela L.; Huete, Alfredo R.

    2010-01-01

    Evapotranspiration (ET) is the largest term after precipitation in terrestrial water budgets. Accurate estimates of ET are needed for numerous agricultural and natural resource management tasks and to project changes in hydrological cycles due to potential climate change. We explore recent methods that combine vegetation indices (VI) from satellites with ground measurements of actual ET (ETa) and meteorological data to project ETa over a wide range of biome types and scales of measurement, from local to global estimates. The majority of these use time-series imagery from the Moderate Resolution Imaging Spectrometer on the Terra satellite to project ET over seasons and years. The review explores the theoretical basis for the methods, the types of ancillary data needed, and their accuracy and limitations. Coefficients of determination between modeled ETa and measured ETa are in the range of 0.45–0.95, and root mean square errors are in the range of 10–30% of mean ETa values across biomes, similar to methods that use thermal infrared bands to estimate ETa and within the range of accuracy of the ground measurements by which they are calibrated or validated. The advent of frequent-return satellites such as Terra and planed replacement platforms, and the increasing number of moisture and carbon flux tower sites over the globe, have made these methods feasible. Examples of operational algorithms for ET in agricultural and natural ecosystems are presented. The goal of the review is to enable potential end-users from different disciplines to adapt these methods to new applications that require spatially-distributed ET estimates.

  4. 75 FR 49411 - Consumer Price Index Adjustments of Oil Pollution Act of 1990 Limits of Liability-Vessels and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Index Adjustments of Oil Pollution Act of 1990 Limits of Liability--Vessels and Deepwater Ports'' (74 FR... Number 1625-0046 entitled ``Financial Responsibility for Water Pollution (Vessels).'' The approval for... SECURITY Coast Guard 33 CFR Part 138 RIN 1625-AB25 Consumer Price Index Adjustments of Oil Pollution Act...

  5. Effects of vegetation types on soil moisture estimation from the normalized land surface temperature versus vegetation index space

    NASA Astrophysics Data System (ADS)

    Zhang, Dianjun; Zhou, Guoqing

    2015-12-01

    Soil moisture (SM) is a key variable that has been widely used in many environmental studies. Land surface temperature versus vegetation index (LST-VI) space becomes a common way to estimate SM in optical remote sensing applications. Normalized LST-VI space is established by the normalized LST and VI to obtain the comparable SM in Zhang et al. (Validation of a practical normalized soil moisture model with in situ measurements in humid and semiarid regions [J]. International Journal of Remote Sensing, DOI: 10.1080/01431161.2015.1055610). The boundary conditions in the study were set to limit the point A (the driest bare soil) and B (the wettest bare soil) for surface energy closure. However, no limitation was installed for point D (the full vegetation cover). In this paper, many vegetation types are simulated by the land surface model - Noah LSM 3.2 to analyze the effects on soil moisture estimation, such as crop, grass and mixed forest. The locations of point D are changed with vegetation types. The normalized LST of point D for forest is much lower than crop and grass. The location of point D is basically unchanged for crop and grass.

  6. On the terminology of the spectral vegetation index (NIR – SWIR)/(NIR + SWIR)

    USGS Publications Warehouse

    Ji, Lel; Zhang, Li; Wylie, Bruce K.; Rover, Jennifer R.

    2011-01-01

    The spectral vegetation index (ρNIR – ρSWIR)/(ρNIR + ρSWIR), where ρNIR and ρSWIR are the near-infrared (NIR) and shortwave-infrared (SWIR) reflectances, respectively, has been widely used to indicate vegetation moisture condition. This index has multiple names in the literature, including infrared index (II), normalized difference infrared index (NDII), normalized difference water index (NDWI), normalized difference moisture index (NDMI), land surface water index (LSWI), and normalized burn ratio (NBR), etc. After reviewing each term’s definition, associated sensors, and channel specifications, we found that the index consists of three variants, differing only in the SWIR region (1.2–1.3 µm, 1.55–1.75 µm, or 2.05–2.45 µm). Thus, three terms are sufficient to represent these three SWIR variants; other names are redundant and therefore unnecessary. Considering the spectral representativeness, the term’s popularity, and the “rule of priority” in scientific nomenclature, NDWI, NDII, and NBR, each corresponding to the three SWIR regions, are more preferable terms.

  7. Cloud-Vegetation Interaction: Use of Normalized Difference Cloud Index for Estimation of Cloud Optical Thickness

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhint, Y.; Davis, A.; Wiscombe, W.; Pilewskie, P.

    1999-01-01

    A new technique to retrieve cloud optical depth for broken clouds above green vegetation using ground-based zenith radiance measurements is developed. By analogy with the Normalized Difference Vegetation Index NDVI), the Normalized Difference Cloud Index (NDCI) is defined as a ratio between the difference and the sum of two zenith radiances measured for two narrow spectral bands in the visible and near-IR regions. The very different spectral behavior of cloud liquid water drops and green vegetation is the key physics behind the NDCI. It provides extra tools to remove the radiative effects of the 3D cloud structure. Numerical calculations based on fractal clouds and real measurements of NDCI and cloud liquid water path confirm the improvements.

  8. Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbance

    NASA Astrophysics Data System (ADS)

    Lanorte, Antonio; Lasaponara, Rosa; Lovallo, Michele; Telesca, Luciano

    2014-02-01

    The time dynamics of SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) time series are analyzed by using the statistical approach of the Fisher-Shannon (FS) information plane to assess and monitor vegetation recovery after fire disturbance. Fisher-Shannon information plane analysis allows us to gain insight into the complex structure of a time series to quantify its degree of organization and order. The analysis was carried out using 10-day Maximum Value Composites of NDVI (MVC-NDVI) with a 1 km × 1 km spatial resolution. The investigation was performed on two test sites located in Galizia (North Spain) and Peloponnese (South Greece), selected for the vast fires which occurred during the summer of 2006 and 2007 and for their different vegetation covers made up mainly of low shrubland in Galizia test site and evergreen forest in Peloponnese. Time series of MVC-NDVI have been analyzed before and after the occurrence of the fire events. Results obtained for both the investigated areas clearly pointed out that the dynamics of the pixel time series before the occurrence of the fire is characterized by a larger degree of disorder and uncertainty; while the pixel time series after the occurrence of the fire are featured by a higher degree of organization and order. In particular, regarding the Peloponneso fire, such discrimination is more evident than in the Galizia fire. This suggests a clear possibility to discriminate the different post-fire behaviors and dynamics exhibited by the different vegetation covers.

  9. Nanomaterials for the cleaning and pH adjustment of vegetable-tanned leather

    NASA Astrophysics Data System (ADS)

    Baglioni, Michele; Bartoletti, Angelica; Bozec, Laurent; Chelazzi, David; Giorgi, Rodorico; Odlyha, Marianne; Pianorsi, Diletta; Poggi, Giovanna; Baglioni, Piero

    2016-02-01

    Leather artifacts in historical collections and archives are often contaminated by physical changes such as soiling, which alter their appearance and readability, and by chemical changes which occur on aging and give rise to excessive proportion of acids that promote hydrolysis of collagen, eventually leading to gelatinization and loss of mechanical properties. However, both cleaning and pH adjustment of vegetable-tanned leather pose a great challenge for conservators, owing to the sensitivity of these materials to the action of solvents, especially water-based formulations and alkaline chemicals. In this study, the cleaning of historical leather samples was optimized by confining an oil-in-water nanostructured fluid in a highly retentive chemical hydrogel, which allows the controlled release of the cleaning fluid on sensitive surfaces. The chemical gel exhibits optimal viscoelasticity, which facilitates its removal after the application without leaving residues on the object. Nanoparticles of calcium hydroxide and lactate, dispersed in 2-propanol, were used to adjust the pH up to the natural value of leather, preventing too high alkalinity which causes swelling of fibers and denaturation of the collagen. The treated samples were characterized using scanning electron microscopy, controlled environment dynamic mechanical analysis, and infrared spectroscopy. The analytical assessment validated the use of tools derived from colloid and materials science for the preservation of collagen-based artifacts.

  10. On the characterization of vegetation recovery after fire disturbance using Fisher-Shannon analysis and SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Lanorte, Antonio; Lovallo, Michele; Telesca, Luciano

    2015-04-01

    Time series can fruitfully support fire monitoring and management from statistical analysis of fire occurrence (Tuia et al. 2008) to danger estimation (lasaponara 2005), damage evaluation (Lanorte et al 2014) and post fire recovery (Lanorte et al. 2014). In this paper, the time dynamics of SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) time series are analyzed by using the statistical approach of the Fisher-Shannon (FS) information plane to assess and monitor vegetation recovery after fire disturbance. Fisher-Shannon information plane analysis allows us to gain insight into the complex structure of a time series to quantify its degree of organization and order. The analysis was carried out using 10-day Maximum Value Composites of NDVI (MVC-NDVI) with a 1 km × 1 km spatial resolution. The investigation was performed on two test sites located in Galizia (North Spain) and Peloponnese (South Greece), selected for the vast fires which occurred during the summer of 2006 and 2007 and for their different vegetation covers made up mainly of low shrubland in Galizia test site and evergreen forest in Peloponnese. Time series of MVC-NDVI have been analyzed before and after the occurrence of the fire events. Results obtained for both the investigated areas clearly pointed out that the dynamics of the pixel time series before the occurrence of the fire is characterized by a larger degree of disorder and uncertainty; while the pixel time series after the occurrence of the fire are featured by a higher degree of organization and order. In particular, regarding the Peloponneso fire, such discrimination is more evident than in the Galizia fire. This suggests a clear possibility to discriminate the different post-fire behaviors and dynamics exhibited by the different vegetation covers. Reference Lanorte A, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to

  11. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada.

    PubMed

    Jiang, Rengui; Xie, Jiancang; He, Hailong; Kuo, Chun-Chao; Zhu, Jiwei; Yang, Mingxiang

    2016-09-01

    As one of the most popular vegetation indices to monitor terrestrial vegetation productivity, Normalized Difference Vegetation Index (NDVI) has been widely used to study the plant growth and vegetation productivity around the world, especially the dynamic response of vegetation to climate change in terms of precipitation and temperature. Alberta is the most important agricultural and forestry province and with the best climatic observation systems in Canada. However, few studies pertaining to climate change and vegetation productivity are found. The objectives of this paper therefore were to better understand impacts of climate change on vegetation productivity in Alberta using the NDVI and provide reference for policy makers and stakeholders. We investigated the following: (1) the variations of Alberta's smoothed NDVI (sNDVI, eliminated noise compared to NDVI) and two climatic variables (precipitation and temperature) using non-parametric Mann-Kendall monotonic test and Thiel-Sen's slope; (2) the relationships between sNDVI and climatic variables, and the potential predictability of sNDVI using climatic variables as predictors based on two predicted models; and (3) the use of a linear regression model and an artificial neural network calibrated by the genetic algorithm (ANN-GA) to estimate Alberta's sNDVI using precipitation and temperature as predictors. The results showed that (1) the monthly sNDVI has increased during the past 30 years and a lengthened growing season was detected; (2) vegetation productivity in northern Alberta was mainly temperature driven and the vegetation in southern Alberta was predominantly precipitation driven for the period of 1982-2011; and (3) better performances of the sNDVI-climate relationships were obtained by nonlinear model (ANN-GA) than using linear (regression) model. Similar results detected in both monthly and summer sNDVI prediction using climatic variables as predictors revealed the applicability of two models for

  12. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Jiang, Rengui; Xie, Jiancang; He, Hailong; Kuo, Chun-Chao; Zhu, Jiwei; Yang, Mingxiang

    2016-09-01

    As one of the most popular vegetation indices to monitor terrestrial vegetation productivity, Normalized Difference Vegetation Index (NDVI) has been widely used to study the plant growth and vegetation productivity around the world, especially the dynamic response of vegetation to climate change in terms of precipitation and temperature. Alberta is the most important agricultural and forestry province and with the best climatic observation systems in Canada. However, few studies pertaining to climate change and vegetation productivity are found. The objectives of this paper therefore were to better understand impacts of climate change on vegetation productivity in Alberta using the NDVI and provide reference for policy makers and stakeholders. We investigated the following: (1) the variations of Alberta's smoothed NDVI (sNDVI, eliminated noise compared to NDVI) and two climatic variables (precipitation and temperature) using non-parametric Mann-Kendall monotonic test and Thiel-Sen's slope; (2) the relationships between sNDVI and climatic variables, and the potential predictability of sNDVI using climatic variables as predictors based on two predicted models; and (3) the use of a linear regression model and an artificial neural network calibrated by the genetic algorithm (ANN-GA) to estimate Alberta's sNDVI using precipitation and temperature as predictors. The results showed that (1) the monthly sNDVI has increased during the past 30 years and a lengthened growing season was detected; (2) vegetation productivity in northern Alberta was mainly temperature driven and the vegetation in southern Alberta was predominantly precipitation driven for the period of 1982-2011; and (3) better performances of the sNDVI-climate relationships were obtained by nonlinear model (ANN-GA) than using linear (regression) model. Similar results detected in both monthly and summer sNDVI prediction using climatic variables as predictors revealed the applicability of two models for

  13. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada.

    PubMed

    Jiang, Rengui; Xie, Jiancang; He, Hailong; Kuo, Chun-Chao; Zhu, Jiwei; Yang, Mingxiang

    2016-09-01

    As one of the most popular vegetation indices to monitor terrestrial vegetation productivity, Normalized Difference Vegetation Index (NDVI) has been widely used to study the plant growth and vegetation productivity around the world, especially the dynamic response of vegetation to climate change in terms of precipitation and temperature. Alberta is the most important agricultural and forestry province and with the best climatic observation systems in Canada. However, few studies pertaining to climate change and vegetation productivity are found. The objectives of this paper therefore were to better understand impacts of climate change on vegetation productivity in Alberta using the NDVI and provide reference for policy makers and stakeholders. We investigated the following: (1) the variations of Alberta's smoothed NDVI (sNDVI, eliminated noise compared to NDVI) and two climatic variables (precipitation and temperature) using non-parametric Mann-Kendall monotonic test and Thiel-Sen's slope; (2) the relationships between sNDVI and climatic variables, and the potential predictability of sNDVI using climatic variables as predictors based on two predicted models; and (3) the use of a linear regression model and an artificial neural network calibrated by the genetic algorithm (ANN-GA) to estimate Alberta's sNDVI using precipitation and temperature as predictors. The results showed that (1) the monthly sNDVI has increased during the past 30 years and a lengthened growing season was detected; (2) vegetation productivity in northern Alberta was mainly temperature driven and the vegetation in southern Alberta was predominantly precipitation driven for the period of 1982-2011; and (3) better performances of the sNDVI-climate relationships were obtained by nonlinear model (ANN-GA) than using linear (regression) model. Similar results detected in both monthly and summer sNDVI prediction using climatic variables as predictors revealed the applicability of two models for

  14. Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index

    NASA Astrophysics Data System (ADS)

    Lhermitte, S.; Verbesselt, J.; Verstraeten, W. W.; Veraverbeke, S.; Coppin, P.

    Several remote sensing studies have discussed the potential of satellite imagery as an alternative for extensive field sampling to quantify fire-vegetation impact over large areas. Most studies depend on Landsat image availability with infrequent image acquisition dates and consequently are limited for assessing intra-annual fire-vegetation dynamics or comparing different fire plots and dates. The control pixel based regeneration index (pRI) derived from SPOT-VEGETATION (VGT) normalized difference vegetation index (NDVI) is used in this study as an alternative to the traditional bi-temporal Landsat approach based on the normalized burn ratio (NBR). The major advantage of the pRI is the use of unburnt control plots which allow the expression of the intra-annual variation due to regeneration processes without external influences. In the comparison of Landsat and VGT data, (i) the inter-annual differences between the bi-temporal and control plot approach were contrasted and (ii) metrics of pRI were derived and compared with the inter-annual dynamics of both VGT and Landsat data. Results of these comparisons, demonstrate the overall similarity between NBR and NDVI data, stress the importance of the elimination of external influences (e.g., phenological variations), and emphasize the failure of including post-fire vegetation responses in bi-temporal Landsat assessments, especially in quickly recovering ecotypes with a strong annual phenological cycle such as savanna. This highlights the importance of using high frequency multi-temporal approaches to estimate fire-vegetation impact in temporally dynamic vegetation types.

  15. [Construction of vegetation shadow index (SVI) and application effects in four remote sensing images].

    PubMed

    Xu, Zhang-Hua; Liu, Jian; Yu, Kun-Yong; Liu, Tao; Gong, Cong-Hong; Tang, Meng-Ya; Xie, Wan-Jun; Li, Zeng-Lu

    2013-12-01

    Taking the images of Landsat TM, ALOS AVNIR-2, CBERS-02B CCD and HJ-1 CCD as the experimental data, for increasing the differences among shaded area, bright area and water further, the present paper construed a novel vegetation index-Shaded Vegetation Index(SVI), which can not only keep the absolute differences among bright area, shaded area and water area in the near-infrared band, but also can enlarge NDVI, eliminate the possible mixes, and change the histogram "skewed" phenomenon of NDVI, so the vegetation index value is closer to normal distribution, and more in line with the filed condition; this new index was applied to the surface features of large difference of the near-infrared radiation characteristics. Verified by accuracy assessment for the bright area, shaded area and water area recognition effects with SVI, it was showed that the overall classification accuracies of these images were up to 98. 89%, 100%, 97.78% and 97.78% respectively, with the overall Kappa statistics of 0.9833, 1, 0.9667, and 0.966 7, indicating that SVI has excellent detection effects for bright area, shaded area and water area; the statistical comparison of sub-images between SVI and NDVI also illustrated the reliability and effectiveness of SVI, which can be applied in the shadow removal for remote sensing images.

  16. [Construction of vegetation shadow index (SVI) and application effects in four remote sensing images].

    PubMed

    Xu, Zhang-Hua; Liu, Jian; Yu, Kun-Yong; Liu, Tao; Gong, Cong-Hong; Tang, Meng-Ya; Xie, Wan-Jun; Li, Zeng-Lu

    2013-12-01

    Taking the images of Landsat TM, ALOS AVNIR-2, CBERS-02B CCD and HJ-1 CCD as the experimental data, for increasing the differences among shaded area, bright area and water further, the present paper construed a novel vegetation index-Shaded Vegetation Index(SVI), which can not only keep the absolute differences among bright area, shaded area and water area in the near-infrared band, but also can enlarge NDVI, eliminate the possible mixes, and change the histogram "skewed" phenomenon of NDVI, so the vegetation index value is closer to normal distribution, and more in line with the filed condition; this new index was applied to the surface features of large difference of the near-infrared radiation characteristics. Verified by accuracy assessment for the bright area, shaded area and water area recognition effects with SVI, it was showed that the overall classification accuracies of these images were up to 98. 89%, 100%, 97.78% and 97.78% respectively, with the overall Kappa statistics of 0.9833, 1, 0.9667, and 0.966 7, indicating that SVI has excellent detection effects for bright area, shaded area and water area; the statistical comparison of sub-images between SVI and NDVI also illustrated the reliability and effectiveness of SVI, which can be applied in the shadow removal for remote sensing images. PMID:24611403

  17. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data.

    PubMed

    Patel, N R; Parida, B R; Venus, V; Saha, S K; Dadhwal, V K

    2012-12-01

    The most commonly used normalized difference vegetation index (NDVI) from remote sensing often fall short in real-time drought monitoring due to a lagged vegetation response to drought. Therefore, research recently emphasized on the use of combination of surface temperature and NDVI which provides vegetation and moisture conditions simultaneously. Since drought stress effects on agriculture are closely linked to actual evapotranspiration, we used a vegetation temperature condition index (VTCI) which is more closely related to crop water status and holds a key place in real-time drought monitoring and assessment. In this study, NDVI and land surface temperature (T (s)) from MODIS 8-day composite data during cloud-free period (September-October) were adopted to construct an NDVI-T (s) space, from which the VTCI was computed. The crop moisture index (based on estimates of potential evapotranspiration and soil moisture depletion) was calculated to represent soil moisture stress on weekly basis for 20 weather monitoring stations. Correlation and regression analysis were attempted to relate VTCI with crop moisture status and crop performance. VTCI was found to accurately access the degree and spatial extent of drought stress in all years (2000, 2002, and 2004). The temporal variation of VTCI also provides drought pattern changes over space and time. Results showed significant and positive relations between CMI (crop moisture index) and VTCI observed particularly during prominent drought periods which proved VTCI as an ideal index to monitor terminal drought at regional scale. VTCI had significant positive relationship with yield but weakly related to crop anomalies. Duration of terminal drought stress derived from VTCI has a significant negative relationship with yields of major grain and oilseeds crops, particularly, groundnut. PMID:22200944

  18. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data.

    PubMed

    Patel, N R; Parida, B R; Venus, V; Saha, S K; Dadhwal, V K

    2012-12-01

    The most commonly used normalized difference vegetation index (NDVI) from remote sensing often fall short in real-time drought monitoring due to a lagged vegetation response to drought. Therefore, research recently emphasized on the use of combination of surface temperature and NDVI which provides vegetation and moisture conditions simultaneously. Since drought stress effects on agriculture are closely linked to actual evapotranspiration, we used a vegetation temperature condition index (VTCI) which is more closely related to crop water status and holds a key place in real-time drought monitoring and assessment. In this study, NDVI and land surface temperature (T (s)) from MODIS 8-day composite data during cloud-free period (September-October) were adopted to construct an NDVI-T (s) space, from which the VTCI was computed. The crop moisture index (based on estimates of potential evapotranspiration and soil moisture depletion) was calculated to represent soil moisture stress on weekly basis for 20 weather monitoring stations. Correlation and regression analysis were attempted to relate VTCI with crop moisture status and crop performance. VTCI was found to accurately access the degree and spatial extent of drought stress in all years (2000, 2002, and 2004). The temporal variation of VTCI also provides drought pattern changes over space and time. Results showed significant and positive relations between CMI (crop moisture index) and VTCI observed particularly during prominent drought periods which proved VTCI as an ideal index to monitor terminal drought at regional scale. VTCI had significant positive relationship with yield but weakly related to crop anomalies. Duration of terminal drought stress derived from VTCI has a significant negative relationship with yields of major grain and oilseeds crops, particularly, groundnut.

  19. Spatio-temporal patterns in vegetation start of season across the island of Ireland using the MERIS Global Vegetation Index

    NASA Astrophysics Data System (ADS)

    O'Connor, Brian; Dwyer, Edward; Cawkwell, Fiona; Eklundh, Lars

    2012-03-01

    Spring phenophases such as the beginning of leaf unfolding, measured in the Irish gardens of the International Phenological Garden (IPG) network, indicate an earlier spring occurrence hence a longer growing season. However, these measurements are limited to selected species of trees at a few point locations in the southern half of the country. The aim of this study was to develop a methodology, based on satellite remote sensing, to measure the vegetation start of season (SOS) across the whole island of Ireland on an annual basis, complementary to existing ground-based methods. The SOS metric was extracted for each year in a 7-year time series of 10-day composited, 1.2 km reduced resolution MERIS Global Vegetation Index (MGVI) data from 2003 to 2009, based on curve fitting, using the time series analysis software, TIMESAT. Spatio-temporal variability in the SOS was detected across the island on an annual basis and highlighted in a series of anomaly images showing variation from the 7-year mean SOS. The 2006 SOS was late across the island while there were strong geographical gradients to the SOS anomalies in 2009 when it occurred later in the south and earlier in the north. There was a mix of early and late anomaly values throughout the country in the other years. Qualitatively, the spatial patterns in the timing of the SOS were related to the distribution of landcover types as indicated by the CORINE Land Cover map (CLC). Three statistically separable groups of CLC classes were derived from differences in the SOS, namely agricultural and forest land cover types, peat bogs, and natural and semi-natural vegetation types. These groups demonstrated that vegetation in cultivated areas like pastures has a significantly earlier SOS than in areas of unmanaged vegetation such as peat bogs. An initial climate analysis indicated that an anomalously cold winter and spring in 2005/2006 delayed the 2006 SOS countrywide; while a cold winter followed by a mild spring in 2009 caused

  20. Adjustment to the Curve Number Nrcs-Cn to Account for the Vegetation Effect on the Hydrological Processes

    NASA Astrophysics Data System (ADS)

    Gonzalez, A.; Temimi, M.; Khanbilvardi, R.

    2012-12-01

    The objective of this work is to develop an approach that makes use of remotely sensed Greenness Fraction (GF) as a proxy for the vegetation density to automatically adjust the Curve Number model (NRCS-CN) to account for the effect of the changes in vegetation growth on hydrological processes. Daily gauged precipitation-runoff pairs (1948 to 2003) from the MOdel Parameter Estimation EXperiment dataset (MOPEX) over 26 watersheds across the U.S. were used to estimate monthly averaged CNs (CNsim) and then compared to the monthly GF. An adjustment factor was then proposed for the typical static CN inputs which do not account for the vegetation growth over time; the result was a vegetation-adjusted CN (CNveg adj). The improvement in the performance of the NRCS-CN methodology was assessed. The results evidence how the CNveg adj compensates the underestimation of the standard CN (CNstd). The ratio of the estimated runoff using the CNstd (Qstd) to the observed runoff (Qobs) was 0.36; while with the CNveg adj (Qveg adj) was 0.98. The correlation coefficient of simulated and observed runoff when using CNstd and CNveg adj, was 0.42 and 0.92, respectively. Likewise, the Nash-Sutcliffe coefficient of Qstd was -0.92 and 0.85 for Qveg adj. This implies that the adjustment to the CN is crucial for improved hydrological modeling and, therefore, for flood and flash flood monitoring and forecasting.

  1. A Methodology for Soil Moisture Retrieval from Land Surface Temperature, Vegetation Index, Topography and Soil Type

    NASA Astrophysics Data System (ADS)

    Pradhan, N. R.

    2015-12-01

    Soil moisture conditions have an impact upon hydrological processes, biological and biogeochemical processes, eco-hydrology, floods and droughts due to changing climate, near-surface atmospheric conditions and the partition of incoming solar and long-wave radiation between sensible and latent heat fluxes. Hence, soil moisture conditions virtually effect on all aspects of engineering / military engineering activities such as operational mobility, detection of landmines and unexploded ordinance, natural material penetration/excavation, peaking factor analysis in dam design etc. Like other natural systems, soil moisture pattern can vary from completely disorganized (disordered, random) to highly organized. To understand this varying soil moisture pattern, this research utilized topographic wetness index from digital elevation models (DEM) along with vegetation index from remotely sensed measurements in red and near-infrared bands, as well as land surface temperature (LST) in the thermal infrared bands. This research developed a methodology to relate a combined index from DEM, LST and vegetation index with the physical soil moisture properties of soil types and the degree of saturation. The advantage in using this relationship is twofold: first it retrieves soil moisture content at the scale of soil data resolution even though the derived indexes are in a coarse resolution, and secondly the derived soil moisture distribution represents both organized and disorganized patterns of actual soil moisture. The derived soil moisture is used in driving the hydrological model simulations of runoff, sediment and nutrients.

  2. Calibration of UAS imagery inside and outside of shadows for improved vegetation index computation

    NASA Astrophysics Data System (ADS)

    Bondi, Elizabeth; Salvaggio, Carl; Montanaro, Matthew; Gerace, Aaron D.

    2016-05-01

    Vegetation health and vigor can be assessed with data from multi- and hyperspectral airborne and satellite- borne sensors using index products such as the normalized difference vegetation index (NDVI). Recent advances in unmanned aerial systems (UAS) technology have created the opportunity to access these same image data sets in a more cost effective manner with higher temporal and spatial resolution. Another advantage of these systems includes the ability to gather data in almost any weather condition, including complete cloud cover, when data has not been available before from traditional platforms. The ability to collect in these varied conditions, meteorological and temporal, will present researchers and producers with many new challenges. Particularly, cloud shadows and self-shadowing by vegetation must be taken into consideration in imagery collected from UAS platforms to avoid variation in NDVI due to changes in illumination within a single scene, and between collection flights. A workflow is presented to compensate for variations in vegetation indices due to shadows and variation in illumination levels in high resolution imagery collected from UAS platforms. Other calibration methods that producers may currently be utilizing produce NDVI products that still contain shadow boundaries and variations due to illumination, whereas the final NDVI mosaic from this workflow does not.

  3. Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Slayback, D. A.; Pinzon, J. E.; Los, S. O.; Myneni, R. B.; Taylor, M. G.

    2001-01-01

    Normalized difference vegetation index data from the polar-orbiting National Oceanic and Atmospheric Administration meteorological satellites from 1982 to 1999 show significant variations in photosynthetic activity and growing season length at latitudes above 35 degrees N. Two distinct periods of increasing plant growth are apparent: 1982-1991 and 1992-1999, separated by a reduction from 1991 to 1992 associated with global cooling resulting from the volcanic eruption of Mt. Pinatubo in June 1991. The average May to September normalized difference vegetation index from 45 degrees N to 75 degrees N increased by 9% from 1982 to 1991, decreased by 5% from 1991 to 1992, and increased by 8% from 1992 to 1999. Variations in the normalized difference vegetation index were associated with variations in the start of the growing season of -5.6, +3.9, and -1.7 days respectively, for the three time periods. Our results support surface temperature increases within the same period at higher northern latitudes where temperature limits plant growth.

  4. RGB picture vegetation indexes for High-Throughput Phenotyping Platforms (HTPPs)

    NASA Astrophysics Data System (ADS)

    Kefauver, Shawn C.; El-Haddad, George; Vergara-Diaz, Omar; Araus, José Luis

    2015-10-01

    Extreme and abnormal weather events, as well as the more gradual meteorological changes associated with climate change, often coincide with not only increased abiotic risks (such as increases in temperature and decreases in precipitation), but also increased biotic risks due to environmental conditions that favor the rapid spread of crop pests and diseases. Durum wheat is by extension the most cultivated cereal in the south and east margins of the Mediterranean Basin. It is of strategic importance for Mediterranean agriculture to develop new varieties of durum wheat with greater production potential, better adaptation to increasingly adverse environmental conditions (drought) and better grain quality. Similarly, maize is the top staple crop for low-income populations in Sub-Saharan Africa and is currently suffering from the appearance of new diseases, which, together with increased abiotic stresses from climate change, are challenging the very sustainability of African societies. Current constraints in field phenotyping remain a major bottleneck for future breeding advances, but RGB-based High-Throughput Phenotyping Platforms (HTPPs) have shown promise for rapidly developing both disease-resistant and weather-resilient crops. RGB cameras have proven costeffective in studies assessing the effect of abiotic stresses, but have yet to be fully exploited to phenotype disease resistance. Recent analyses of durum wheat in Spain have shown RGB vegetation indexes to outperform multispectral indexes such as NDVI consistently in disease and yield prediction. Towards HTTP development for breeding maize disease resistance, some of the same RGB picture vegetation indexes outperformed NDVI (Normalized Difference Vegetation Index), with R2 values up to 0.65, compared to 0.56 for NDVI. . Specifically, hue, a*, u*, and Green Area (GA), as produced by FIJI and BreedPix open source software, performed similar to or better than NDVI in predicting yield and disease severity conditions

  5. Identifying high production, low production and degraded rangelands in Senegal with normalized difference vegetation index data

    USGS Publications Warehouse

    Tappan, G. Gray; Wood, Lynette; Moore, Donald G.

    1993-01-01

    Seasonal herbaceous vegetation production on Senegal's native rangelands exhibits high spatial and temporal variability. This variability can be monitored using normalized difference vegetation index (NDVI) data computed from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) image data. Although annual fluctuations in rainfall account for some of the variability, numerous long-term production patterns are evident in the AVHRR time-series data. Different n productivity reflect variations in the region's climate, topography, soils, and land use. Areas of overgrazing and intensive cultivation have caused long-term soil and vegetation degradation. Rangelands of high and low productivity, and degraded rangelands were identified using NDVI. Time-series image data from 1987 though 1992 were used to map relative rangeland productivity. The results were compared to detailed resource maps on soils, vegetation and land use. Much of the variation in rangeland productivity correlated well to the known distribution of resources. The study developed an approach that identified a number of areas of degraded soils and low vegetation production.

  6. Analysis of regional-scale vegetation dynamics of Mexico using stratified AVHRR NDVI data. [Normalized Difference Vegetaion Index

    NASA Technical Reports Server (NTRS)

    Turcotte, Kevin M.; Kramber, William J.; Venugopal, Gopalan; Lulla, Kamlesh

    1989-01-01

    Previous studies have shown that a good relationship exists between AVHRR Normalized Difference Vegetation Index (NDVI) measurements, and both regional-scale patterns of vegetation seasonality and productivity. Most of these studies used known samples of vegetation types. An alternative approach, and the objective was to examine the above relationships by analyzing one year of AVHRR NDVI data that was stratified using a small-scale vegetation map of Mexico. The results show that there is a good relationship between AVHRR NDVI measurements and regional-scale vegetation dynamics of Mexico.

  7. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    PubMed

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  8. Limited Area Coverage/High Resolution Picture Transmission (LAC/HRPT) data vegetative index calculation processor user's manual

    NASA Technical Reports Server (NTRS)

    Obrien, S. O. (Principal Investigator)

    1980-01-01

    The program, LACVIN, calculates vegetative indexes numbers on limited area coverage/high resolution picture transmission data for selected IJ grid sections. The IJ grid sections were previously extracted from the full resolution data tapes and stored on disk files.

  9. [Estimating canopy water content in wheat based on new vegetation water index].

    PubMed

    Cheng, Xiao-juan; Yang, Gui-jun; Xu, Xin-gang; Chen, Tian-en; Li, Zhen-hai; Feng, Hai-kuan; Wang, Dong

    2014-12-01

    Moisture content is an important indicator for crop water stress condition, timely and effective monitoring crop water content is of great significance for evaluate crop water deficit balance and guide agriculture irrigation. In order to improve the saturated problems of different forms of typical NDWI (Normalized Different Water Index), we tried to introduce EVI (Enhanced Vegetation Index) to build new vegetation water indices (NDWI#) to estimate crop water content. Firstly, PROSAIL model was used to study the saturation sensitivity of NDWI, and NDWI# to canopy water content and LAI (Leaf Area Index). Then, the estimated model and verified model were estimated using the spectral data and moisture data in the field. The result showed that the new indices have significant relationships with canopy water content. In particular, by implementing modified standardized for NDWI1450, NDWI1940, NDWI2500. The result indicated that newly developed indices with visible-infrared and shortwave infrared spectral feature may have greater advantage for estimation winter canopy water content.

  10. Mathematical modeling riparian vegetation zonation in semiarid conditions based on a transpiration index.

    NASA Astrophysics Data System (ADS)

    Real, Joaquin; Morales, Marco; Garcia, Alicia; Garofano, Virginia; Martinez-Capel, Francisco; Frances, Felix

    2010-05-01

    actual evapotranspiration of the riparian plants. This tank represents a portion of soil of the superficial root layer. The lower capacity limit of this tank is the permanent wilting moisture of the soil sample. On the other hand the upper capacity limit is the field capacity moisture. The tank's input flows are the precipitation, the root water rise and the capillary water rise. In contrast output flows are the actual evapotranspiration and the excess water of the tank. The most relevant model parameters are the soil retention curves, vegetation functional type parameters (specially related to root depths and the transpiration efficiency factors) and the daily hidro-meteorological data, which are water table elevation, precipitation and potential evapotranspiration. The model runs for a limited amount of vegetation functional types. In our simulations the following four functional types were used: Riparian Herbs; Riparian Juveniles and Small Scrubs, Riparian Trees and Big Shrubs; and Terrestrial Vegetation. The general model output variable is an evapotranspiration index based in the quotient between the current and the potential evapotranspiration. This index is used to determine the suitability of the simulated vegetation functional types to certain environmental conditions. Secondly, a sensitivity analysis was made for determining the most relevant model parameters. Finally the model has been calibrated and validated using as objective function a confusion matrix which compares the observed and the simulated riparian vegetation zonation. The calibration/validation processes have been carried out in seven study sites of the Jucar River Basin District. Four of those sites have a natural flow regime and three of them a regulated flow regime due to the presence of dams. Results have shown that the model is capable of providing effective simulations in compared to the observed riparian vegetation.

  11. The normalized difference vegetation index of small Douglas-fir canopies with varying chlorophyll concentrations

    SciTech Connect

    Yoder, B.J.; Waring, R.H. . Dept. of Forest Science)

    1994-07-01

    In an experiment with miniature canopies of 1-m-tall Douglas-fir (Pseudotsuga menziesii) seedlings, the authors modified leaf area index, light absorption capacity, and photosynthetic potential by altering the concentration of chlorophyll in foliage and by controlling the density of seedlings. They measured canopy photosynthesis and light transmission in controlled-environment chambers and then transferred seedlings to a hemispheric illumination system where they measured canopy reflectance. They found that altering the visible band used for computation of a normalized vegetation index substantially changed the correlations between the index and canopy properties. For example, the normalized index was best correlated to light absorption capacity when they used a narrow red band and least correlated when they used a narrow green band. The cause of these differences is chlorophyll. The green regions of reflectance spectra were much more sensitive to changes in chlorophyll concentration compared with the red or near-infrared regions. Increased chlorophyll concentration was also related to increased photosynthetic potential when canopies had been grown under full sunlight. However, they found no statistically significant relationship between leaf chlorophyll concentration and canopy light absorption.

  12. Crop Surveillance Demonstration Using a Near-Daily MODIS Derived Vegetation Index Time Series

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Ryan, Robert E.; Blonski, Slawomir; Prados, Don

    2005-01-01

    Effective response to crop disease outbreaks requires rapid identification and diagnosis of an event. A near-daily vegetation index product, such as a Normalized Difference Vegetation Index (NDVI), at moderate spatial resolution may serve as a good method for monitoring quick-acting diseases. NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flown on the Terra and Aqua satellites has the temporal, spatial, and spectral properties to make it an excellent coarse-resolution data source for rapid, comprehensive surveillance of agricultural areas. A proof-of-concept wide area crop surveillance system using daily MODIS imagery was developed and tested on a set of San Joaquin cotton fields over a growing season. This area was chosen in part because excellent ground truth data were readily available. Preliminary results indicate that, at least in the southwestern part of the United States, near-daily NDVI products can be generated that show the natural variations in the crops as well as specific crop practices. Various filtering methods were evaluated and compared with standard MOD13 NDVI MODIS products. We observed that specific chemical applications that produce defoliation, which would have been missed using the standard 16-day product, were easily detectable with the filtered daily NDVI products.

  13. Impacts of Pixel Deformation and Misregistration on Cross-calibration of Vegetation Index Data Records

    NASA Astrophysics Data System (ADS)

    Miura, T.; Suzuki, T.; Yoshioka, H.

    2007-12-01

    The development of a long-term, seamless vegetation index (VI) data record requires data assemblage from multiple sensors and their cross-calibration. The latter could be performed by directly comparing data from an overlapping period of observations on a per-pixel or per-window (e.g., 5-by-5 window) basis. Due to differences in orbital, scanning, geolocation accuracy characteristics of sensors, however, pairs of observations to be cross- compared had different footprint sizes/scales and were acquired at slightly different locations, resulting in different coverage of surface areas. In this study, we characterized the effects of these footprint deformation and misregistration on cross-sensor VI comparisons. The objectives were to establish error bounds in cross- calibration results due to these effects and to develop recommendation for reducing the impacts of pixel deformation and misregistration on cross-calibration. Orbital, scanning, and geolocation error characteristics of three satellite sensors, Terra Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA-14 Advanced Very High Resolution Radiometer (AVHRR), and SPOT-4 VEGETATION, were modeled and footprints of these three sensors were predicted for a 16-day compositing period (June 1998 and June 2002) over agricultural fields in Bondville, IL. An atmospherically-corrected Landsat Enhanced Thematic Mapper (ETM) image acquired within the compositing period was acquired and spatially aggregated to simulate normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) values for the modeled observation/footprint conditions. The results showed that root mean square errors (RMSE) of the NDVI and EVI values varied from day to day with the mean RMSE values of 0.02 for the NDVI and 0.015 for the EVI. After examining a series of spatial averaging with various window sizes, we found that taking 5-by-5 to 7-by-7 averages of neighboring pixels would effectively reduce RMSE to obtain reliable cross

  14. Relationships between evaprorative fraction and remotely sensed vegetation index and microwave brightness temperature for semiarid rangelands

    NASA Technical Reports Server (NTRS)

    Kustas, W. P.; Schimugge, T. J.; Humes, K. S.; Jackson, T. J.; Parry, R.; Weltz, M. A.; Moran, M. S.

    1993-01-01

    Measurements of the microwave brightness temperature (TB) with the Pushbroom Microwave Radiometer (PBMR) over the Walnut Gulch Experiment Watershed were made on selected days during the MONSOON 90 field campaign. The PBMR is an L-band instrument (21-cm wavelength) that can provide estimates of near-surface soil moisture over a variety of surfaces. Aircraft observations in the visible and near-infrared wavelengths collected on selected days also were used to compute a vegetation index. Continuous micrometeorological measurements and daily soil moisture samples were obtained at eight locations during experimental period. Two sites were instrumented with time domain reflectometry probes to monitor the soil moisture profile. The fraction of available energy used for evapotranspiration was computed by taking the ratio of latent heat flux (LE) to the sum of net radiation (Rn) and soil heat flux (G). This ratio is commonly called the evaporative fraction (EF) and normally varies between 0 and 1 under daytime convective conditions with minimal advection. A wide range of environmental conditions existed during the field campaign, resulting in average EF values for the study area varying from 0.4 to 0.8 and values of TB ranging from 220 to 280 K. Comparison between measured TB and EF for the eight locations showed an inverse relationship. Other days were included in the analysis by estimating TB with the soil moisture data. Because transpiration from the vegetation is more strongly coupled to root zone soil moisture, significant scatter in this relationship existed at high values of TB or dry near-surface soil moisture conditions. The variation in EF under dry near-surface soil moisture conditions was correlated to the amount of vegetation cover estimated with a remotely sensed vegetation index. These findings indicate that information obtained from optical and microwave data can be used for quantifying the energy balance of semiarid areas. The microwave data can indicate

  15. Estimating riparian and agricultural evapotranspiration by reference crop evapotranspiration and MODIS Enhanced Vegetation Index

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Nguyen, Uyen; Scott, Russell; Doody, Tania

    2013-01-01

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in irrigation districts. We developed an algorithm for estimating actual evapotranspiration (ETa) based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectrometer (MODIS) sensor on the EOS-1 Terra satellite and locally-derived measurements of reference crop ET (ETo). The algorithm was calibrated with five years of ETa data from three eddy covariance flux towers set in riparian plant associations on the upper San Pedro River, Arizona, supplemented with ETa data for alfalfa and cotton from the literature. The algorithm was based on an equation of the form ETa = ETo [a(1 − e−bEVI) − c], where the term (1 − e−bEVI) is derived from the Beer-Lambert Law to express light absorption by a canopy, with EVI replacing leaf area index as an estimate of the density of light-absorbing units. The resulting algorithm capably predicted ETa across riparian plants and crops (r2 = 0.73). It was then tested against water balance data for five irrigation districts and flux tower data for two riparian zones for which season-long or multi-year ETa data were available. Predictions were within 10% of measured results in each case, with a non-significant (P = 0.89) difference between mean measured and modeled ETa of 5.4% over all validation sites. Validation and calibration data sets were combined to present a final predictive equation for application across crops and riparian plant associations for monitoring individual irrigation districts or for conducting global water use assessments of mixed agricultural and riparian biomes.

  16. Use of Radar Vegetation Index (RVI) in Passive Microwave Algorithms for Soil Moisture Estimates

    NASA Astrophysics Data System (ADS)

    Rowlandson, T. L.; Berg, A. A.

    2013-12-01

    The Soil Moisture Active Passive (SMAP) satellite will provide a unique opportunity for the estimation of soil moisture by having simultaneous radar and radiometer measurements available. As with the Soil Moisture and Ocean Salinity (SMOS) satellite, the soil moisture algorithms will need to account for the contribution of vegetation to the brightness temperature. Global maps of vegetation volumetric water content (VWC) are difficult to obtain, and the SMOS mission has opted to estimate the optical depth of standing vegetation by using a relationship between the VWC and the leaf area index (LAI). LAI is estimated from optical remote sensing or through soil-vegetation-atmosphere transfer modeling. During the growing season, the VWC of agricultural crops can increase rapidly, and if cloud cover exists during an optical acquisition, the estimation of LAI may be delayed, resulting in an underestimation of the VWC and overestimation of the soil moisture. Alternatively, the radar vegetation index (RVI) has shown strong correlation and linear relationship with VWC for rice and soybeans. Using the SMAP radar to produce RVI values that are coincident to brightness temperature measurements may eliminate the need for LAI estimates. The SMAP Validation Experiment 2012 (SMAPVEX12) was a cal/val campaign for the SMAP mission held in Manitoba, Canada, during a 6-week period in June and July, 2012. During this campaign, soil moisture measurements were obtained for 55 fields with varying soil texture and vegetation cover. Vegetation was sampled from each field weekly to determine the VWC. Soil moisture measurements were taken coincident to overpasses by an aircraft carrying the Passive and Active L-band System (PALS) instrumentation. The aircraft flew flight lines at both high and low altitudes. The low altitude flight lines provided a footprint size approximately equivalent to the size of the SMAPVEX12 field sites. Of the 55 field sites, the low altitude flight lines provided

  17. Land Cover Change Detection from MODIS Vegetation Index Time Series Data

    NASA Astrophysics Data System (ADS)

    Mithal, V.; O'Connor, Z.; Steinhaeuser, K.; Boriah, S.; Kumar, V.; Potter, C. S.; Klooster, S. A.

    2012-12-01

    Quantifiable knowledge about changes occurring in land cover and land use at a global scale is key to effective planning for sustainable use of diminishing natural resources such as forest cover and agricultural land. Accurate and timely information about land cover and land use changes is therefore of significant interest to earth and climate scientists as well as policy and decision makers. Recently, global time series data sets, such as Moderate Resolution Imaging Spectroradiometer Enhanced Vegetation Index (EVI), have become publicly available and have been used to identify changes in vegetation cover. In this talk, we will discuss our work that analyzes the MODIS EVI time series data sets for global land cover change detection. Our group has developed a suite of time series change detection methods that are used to identify EVI time series with patterns indicative of land cover disturbance such as abrupt or gradual change, or changes in the recurring annual vegetation pattern. These algorithms can successfully identify different land cover change events such as deforestation, forest fires, agricultural conversions, and degradation due to insect damage at a global scale. In context of land cover monitoring, one of the significant challenges is posed by the differences in inter-annual variability and noise characteristics of different land cover types. These data characteristics can significantly impact change detection performance especially in land cover types such as farms, grasslands and tropical forests. We will discuss our recent work that incorporates a bootstrap-based normalization of change detection scores to account for the natural variability present in vegetation time series data. We studied the strengths and weakness of our proposed normalizing approaches in the context of characteristics of land cover data such as seasonality and noise and showed that relative performance of normalization approaches vary significantly depending on the

  18. Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia

    NASA Astrophysics Data System (ADS)

    Esau, Igor; Miles, Victoria V.; Davy, Richard; Miles, Martin W.; Kurchatova, Anna

    2016-08-01

    Exploration and exploitation of oil and gas reserves of northern West Siberia has promoted rapid industrialization and urban development in the region. This development leaves significant footprints on the sensitive northern environment, which is already stressed by the global warming. This study reports the region-wide changes in the vegetation cover as well as the corresponding changes in and around 28 selected urbanized areas. The study utilizes the normalized difference vegetation index (NDVI) from high-resolution (250 m) MODIS data acquired for summer months (June through August) over 15 years (2000-2014). The results reveal the increase of NDVI (or "greening") over the northern (tundra and tundra-forest) part of the region. Simultaneously, the southern, forested part shows the widespread decrease of NDVI (or "browning"). These region-wide patterns are, however, highly fragmented. The statistically significant NDVI trends occupy only a small fraction of the region. Urbanization destroys the vegetation cover within the developed areas and at about 5-10 km distance around them. The studied urbanized areas have the NDVI values by 15 to 45 % lower than the corresponding areas at 20-40 km distance. The largest NDVI reduction is typical for the newly developed areas, whereas the older areas show recovery of the vegetation cover. The study reveals a robust indication of the accelerated greening near the older urban areas. Many Siberian cities become greener even against the wider browning trends at their background. Literature discussion suggests that the observed urban greening could be associated not only with special tending of the within-city green areas but also with the urban heat islands and succession of more productive shrub and tree species growing on warmer sandy soils.

  19. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    PubMed

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) < alert limit, (2) < exposure limit, (3) hourly time-weighted averages (TWAs) of work and recovery, and (4) a caution zone for an exposure > exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered.

  20. Heat index and adjusted temperature as surrogates for wet bulb globe temperature to screen for occupational heat stress.

    PubMed

    Bernard, Thomas E; Iheanacho, Ivory

    2015-01-01

    Ambient temperature and relative humidity are readily ava-ilable and thus tempting metrics for heat stress assessment. Two methods of using air temperature and relative humidity to create an index are Heat Index and Adjusted Temperature. The purposes of this article are: (1) to examine how well Heat Index and Adjusted Temperature estimated the wet bulb globe temperature (WBGT) index, and (2) to suggest how Heat Index and Adjusted Temperature can be used to screen for heat stress level. Psychrometric relationships were used to estimate values of actual WBGT for conditions of air temperature, relative humidity, and radiant heat at an air speed of 0.5 m/s. A relationship between Heat Index [°F] and WBGT [°C] was described by WBGT = -0.0034 HI(2) + 0.96 HI - 34. At lower Heat Index values, the equation estimated WBGTs that were ± 2 °C-WBGT around the actual value, and to about ± 0.5 °C-WBGT for Heat Index values > 100 °F. A relationship between Adjusted Temperature [°F] and WBGT [°C] was described by WBGT = 0.45 Tadj - 16. The actual WBGT was between 1 °C-WBGT below the estimated value and 1.4 °C-WBGT above. That is, there was a slight bias toward overestimating WBGT from Adjusted Temperature. Heat stress screening tables were constructed for metabolic rates of 180, 300, and 450 W. The screening decisions were divided into four categories: (1) < alert limit, (2) < exposure limit, (3) hourly time-weighted averages (TWAs) of work and recovery, and (4) a caution zone for an exposure > exposure limit at rest. The authors do not recommend using Heat Index or Adjusted Temperature instead of WBGT, but they may be used to screen for circumstances when a more detailed analysis using WBGT is appropriate. A particular weakness is accounting for radiant heat; and neither air speed nor clothing was considered. PMID:25616731

  1. The Occupational Mix Adjustment to the Medicare Hospital Wage Index: Why the Rural Impact Is Less than Expected

    ERIC Educational Resources Information Center

    Reiter, Kristin L.; Slifkin, Rebecca; Holmes, George M.

    2008-01-01

    Context: Rural hospitals are heavily dependent on Medicare for their long-term financial solvency. A recent change to Medicare prospective payment system reimbursement--the occupational mix adjustment (OMA) to the wage index--has attracted a great deal of attention in rural policy circles. Purpose: This paper explores variation in the OMA across…

  2. Long-term channel adjustment and geomorphic feature creation by vegetation in a lowland, low energy river

    NASA Astrophysics Data System (ADS)

    Grabowski, Robert; Gurnell, Angela

    2016-04-01

    Physical habitat restoration is increasingly being used to improve the ecological status of rivers. This is particularly true for lowland streams which are perceived to lack sufficient energy to create new features or to flush out fine sediment derived from agricultural and urban sources. However, this study has found that even in low-energy, base-flow dominated chalk streams, physical habitat improvement can happen naturally without direct human intervention. Furthermore this positive change is achieved by components of the river that are often regarded as management problems: in-stream macrophytes (i.e. weed), riparian trees, woody debris, and most importantly fine sediment. This project investigated the long-term changes in channel planform for the River Frome (Dorset, UK) over the last 120 years and the role of aquatic and riparian vegetation in driving this change. Agricultural census data, historical maps, recent aerial images and field observations were analysed within a process-based, hierarchical framework for hydromorphological assessment, developed in the EU FP7 REFORM project, to investigate the source and timing of fine sediment production in the catchment, to quantify the reach-scale geomorphic response, and to identify vegetation-related bedforms that could be responsible for the adjustment. The analysis reveals that the channel has narrowed and become more sinuous in the last 50-60 years. The timing of this planform adjustment correlates with substantial changes in land use and agricultural practices (post-World War II) that are known to increase soil erosion and sediment connectivity. The field observations and recent aerial images suggest that the increased delivery of fine sediment to the channel has been translated into geomorphic adjustment and diversification though the interactions between vegetation, water flow and sediment. Emergent aquatic macrophytes are retaining fine sediment, leading to the development of submerged shelves that aggrade

  3. Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index.

    PubMed

    Li, Zheng; Zhou, Tao; Zhao, Xiang; Huang, Kaicheng; Gao, Shan; Wu, Hao; Luo, Hui

    2015-07-01

    Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation's responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April-October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages. PMID:26184243

  4. Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index.

    PubMed

    Li, Zheng; Zhou, Tao; Zhao, Xiang; Huang, Kaicheng; Gao, Shan; Wu, Hao; Luo, Hui

    2015-07-08

    Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation's responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April-October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages.

  5. On the relationship between thermal emissivity and the Normalized Difference Vegetation Index for natural surfaces

    NASA Technical Reports Server (NTRS)

    Van De Griend, A. A.; Owe, M.

    1993-01-01

    The spatial variation of both the thermal emissivity (8-14 microns) and Normalized Difference Vegetation Index (NDVI) was measured for a series of natural surfaces within a savanna environment in Botswana. The measurements were performed with an emissivity-box and with a combined red and near-IR radiometer, with spectral bands corresponding to NOAA/AVHRR. It was found that thermal emissivity was highly correlated with NDVI after logarithmic transformation, with a correlation coefficient of R = 0.94. This empirical relationship is of potential use for energy balance studies using thermal IR remote sensing. The relationship was used in combination with AVHRR (GAC), AVHRR (LAC), and Landsat (TM) data to demonstrate and compare the spatial variability of various spatial scales.

  6. Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data

    USGS Publications Warehouse

    Gallo, K.; Ji, L.; Reed, B.; Dwyer, J.; Eidenshink, J.

    2004-01-01

    Normalized difference vegetation index (NDVI) data derived from visible and near-infrared data acquired by the MODIS and AVHRR sensors were compared over the same time periods and a variety of land cover classes within the conterminous USA. The relationship between the AVHRR derived NDVI values and those of future sensors is critical to continued long term monitoring of land surface properties. The results indicate that the 16-day composite values are quite similar over the 23 intervals of 2001 that were analyzed, and a linear relationship exists between the NDVI values from the two sensors. The composite AVHRR NDVI data were associated with over 90% of the variation in the MODIS NDVI values. Copyright 2004 by the American Geophysical Union.

  7. VIP Data Explorer: A Tool for Exploring 30 years of Vegetation Index and Phenology Observations

    NASA Astrophysics Data System (ADS)

    Barreto-munoz, A.; Didan, K.; Rivera-Camacho, J.; Yitayew, M.; Miura, T.; Tsend-Ayush, J.

    2011-12-01

    Continuous acquisition of global satellite imagery over the years has contributed to the creation of long term data records from AVHRR, MODIS, TM, SPOT-VGT and other sensors. These records account for 30+ years, as these archives grow, they become invaluable tools for environmental, resources management, and climate studies dealing with trends and changes from local, regional to global scale. In this project, the Vegetation Index and Phenology Lab (VIPLab) is processing 30 years of daily global surface reflectance data into an Earth Science Data Record of Vegetation Index and Phenology metrics. Data from AVHRR (N07,N09,N11 and N14) and MODIS (AQUA and TERRA collection 5) for the periods 1981-1999 and 2000-2010, at CMG resolution were processed into one seamless and sensor independent data record using various filtering, continuity and gap filling techniques (Tsend-Ayush et al., AGU 2011, Rivera-Camacho et al, AGU 2011). An interactive online tool (VIP Data Explorer) was developed to support the visualization, qualitative and quantitative exploration, distribution, and documentation of these records using a simple web 2.0 interface. The VIP Data explorer (http://vip.arizona.edu/viplab_data_explorer) can display any combination of multi temporal and multi source data, enable the quickly exploration and cross comparison of the various levels of processing of this data. It uses the Google Earth (GE) model and was developed using the GE API for images rendering, manipulation and geolocation. These ESDRs records can be quickly animated in this environment and explored for visual trends and anomalies detection. Additionally the tool enables extracting and visualizing any land pixel time series while showing the different levels of processing it went through. User can explore this ESDR database within this data explorer GUI environment, and any desired data can be placed into a dynamic "cart" to be ordered and downloaded later. More functionalities are planned and will be

  8. Error correction of the Normalized Difference Vegetation Index and Brightness Temperature calculated from the AVHRR observations

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed Zahidur

    This thesis investigates Normalized Difference Vegetation Index (NDVI) and Brightness Temperature (BT) stability in the NOAA/NESDIS Global Vegetation Index (GVI) data during 1982-2003. This data was collected from five NOAA series satellites. We have proposed to apply Empirical distribution function (EDF) to improve the stability of the NDVI and BT data derived from the AVHRR sensor on NOAA polar orbiting satellite. The instability of data results from orbit degradation as well as the circuit drifts over the life or a satellite. Degradation of NDVI and BT over time and shifts of NDVI and BT between the satellites was estimated China data set, for it includes a wide variety or different ecosystems represented globally. It was found that data for the years 1988, 1992, 1993, 1994, 1995 and 2000 are not stable enough compared to other years because of satellite orbit drift, AVHRR sensor degradation, and also Mt Pinatubo volcanic eruption in 1992. We assume data from NOAA-7(1982, 1983), NOAA-9 (1985, 1986), NOAA-11(1989, 1990), NOAA-14(1996, 1997), and NOAA-16 (2001, 2002) to be standard because theses satellite's equator crossing time falls between 1330 and 1500. Data from this particular period of the day maximized the value of coefficients. The crux of the proposed correction procedure consists of dividing standard year's data sets into two subsets. The subset 1(standard data correction sets) is used for correcting unstable years and then corrected data for this years compared with the standard data in the subset 2 (standard data validation sets). In this dissertation, we apply EDF to correct this deficiency of data for the affected years. We normalize or correct data by the method of empirical distribution functions compared with the standard. Using these normalized values, we estimate new NDVI and BT time series which provides NDVI and BT data for these years that match in subset 2 that is used for data validation.

  9. Monitoring Thermal Status of Ecosystems with MODIS Land-Surface Temperature and Vegetation Index Products

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    2002-01-01

    The global land-surface temperature (LST) and normalized difference vegetation index (NDVI) products retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data in 2001 were used in this study. The yearly peak values of NDVI data at 5km grids were used to define six NDVI peak zones from -0.2 to 1 in steps of 0.2, and the monthly NDVI values at each grid were sorted in decreasing order, resulting in 12 layers of NDVI images for each of the NDVI peak zones. The mean and standard deviation of daytime LSTs and day-night LST differences at the grids corresponding to the first layer of NDVI images characterize the thermal status of terrestrial ecosystems in the NDVI peak zones. For the ecosystems in the 0.8-1 NDVI peak zone, daytime LSTs distribute from 0-35 C and day-night LST differences distribute from -2 to 22 C. The daytime LSTs and day-night LST differences corresponding to the remaining layers of NDVI images show that the growth of vegetation is limited at low and high LSTs. LSTs and NDVI may be used to monitor photosynthetic activity and drought, as shown in their applications to a flood-irrigated grassland in California and an unirrigated grassland in Nevada.

  10. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates

    NASA Technical Reports Server (NTRS)

    Running, Steven W.; Nemani, Ramakrishna R.

    1988-01-01

    Weekly AVHRR Normalized Difference Vegetation Index (NDVI) values for 1983-1984 for seven sites of diverse climate in North America were correlated with results of an ecosystem simulation model of a hypothetical forest stand for the corresponding period at each site. The tendency of raw NDVI data to overpredict photosynthesis and transpiration on water limited sites was shown to be partially corrected by using an aridity index of annual radiation/annual precipitation. The results suggest that estimates of vegetation productivity using the global vegetation index are only accurate as annual integrations, unless unsubsampled local area coverage NDVI data can be tested against forest photosynthesis, transpiration and aboveground net primary production data measured at shorter time intervals.

  11. Global assessment of Vegetation Index and Phenology Lab (VIP) and Global Inventory Modeling and Mapping Studies (GIMMS) version 3 products

    NASA Astrophysics Data System (ADS)

    Marshall, M.; Okuto, E.; Kang, Y.; Opiyo, E.; Ahmed, M.

    2015-06-01

    Earth observation based long-term global vegetation index products are used by scientists from a wide range of disciplines concerned with global change. Inter-comparison studies are commonly performed to keep the user community informed on the consistency and accuracy of such records as they evolve. In this study, we compared two new records: (1) Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index Version 3 (NDVI3g) and (2) Vegetation Index and Phenology Lab (VIP) Version 3 NDVI (NDVI3v) and Enhanced Vegetation Index 2 (EVI3v). We evaluated the two records via three experiments that addressed the primary use of such records in global change research: (1) prediction of the Leaf Area Index (LAI) used in light-use efficiency modeling, (2) estimation of vegetation climatology in Soil-Vegetation-Atmosphere Transfer models, and (3) trend analysis of the magnitude and phenology of vegetation productivity. Experiment one, unlike previous inter-comparison studies, was performed with a unique Landsat 30 m spatial resolution and in situ LAI database for major crop types on five continents. Overall, the two records showed a high level of agreement both in direction and magnitude on a monthly basis, though VIP values were higher and more variable and showed lower correlations and higher error with in situ LAI. The records were most consistent at northern latitudes during the primary growing season and southern latitudes and the tropics throughout much of the year, while the records were less consistent at northern latitudes during green-up and senescence and in the great deserts of the world throughout much of the year. The two records were also highly consistent in terms of trend direction/magnitude, showing a 30+ year increase (decrease) in NDVI over much of the globe (tropical rainforests). The two records were less consistent in terms of timing due to the poor correlation of the records during start and end of growing season.

  12. Biomarker signature in tropical wetland: lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment.

    PubMed

    Tareq, Shafi M; Tanaka, Noriyuki; Ohta, Keiichi

    2004-05-25

    Organic matter of a peat core (3.60 m, 7428 years BP) collected from Rawa Danau, west Java, Indonesia, was analyzed to evaluate the early diagenetic fates of lignin in a tropical wetland and to reconstruct past vegetation and climate changes. Vertical profiles of (Ad/Al)v, (Ad/Al)s, and lambda(8) show that the lignin composition is well preserved in a sub-aqueous environment under reducing conditions. The sedimentary terrigenous plant material at Rawa Danau is comprised predominantly of angiosperm wood. For this kind of tropical, diverse, and dynamic ecosystem, a new vegetation change index called lignin phenol vegetation index (LPVI): LPVI is defined using the lignin phenol composition. This index can sensitively detect terrestrial vegetation changes as well as environmental conditions forcing such changes. The LPVI of the Rawa Danau peat core provides better resolution than other lignin parameters used previously, and reveals four major vegetation change events since the mid-late Holocene. In comparison to other geochemical data (i.e. elemental carbon, isotopes, and hydrocarbons), the LPVI is more sensitive and is able to trace even minor vegetation and climate changes and thus could improve biogeochemical interpretations of peat records. PMID:15081699

  13. Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index

    PubMed Central

    Li, Zheng; Zhou, Tao; Zhao, Xiang; Huang, Kaicheng; Gao, Shan; Wu, Hao; Luo, Hui

    2015-01-01

    Drought is expected to increase in frequency and severity due to global warming, and its impacts on vegetation are typically extensively evaluated with climatic drought indices, such as multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). We analyzed the covariation between the SPEIs of various time scales and the anomalies of the normalized difference vegetation index (NDVI), from which the vegetation type-related optimal time scales were retrieved. The results indicated that the optimal time scales of needle-leaved forest, broadleaf forest and shrubland were between 10 and 12 months, which were considerably longer than the grassland, meadow and cultivated vegetation ones (2 to 4 months). When the optimal vegetation type-related time scales were used, the SPEI could better reflect the vegetation’s responses to water conditions, with the correlation coefficients between SPEIs and NDVI anomalies increased by 5.88% to 28.4%. We investigated the spatio-temporal characteristics of drought and quantified the different responses of vegetation growth to drought during the growing season (April–October). The results revealed that the frequency of drought has increased in the 21st century with the drying trend occurring in most of China. These results are useful for ecological assessments and adapting management steps to mitigate the impact of drought on vegetation. They are helpful to employ water resources more efficiently and reduce potential damage to human health caused by water shortages. PMID:26184243

  14. Modelling spatial and temporal vegetation variability with the Climate Constrained Vegetation Index: evidence of CO2 fertilisation and of water stress in continental interiors

    NASA Astrophysics Data System (ADS)

    Los, S. O.

    2015-06-01

    A model was developed to simulate spatial, seasonal and interannual variations in vegetation in response to temperature, precipitation and atmospheric CO2 concentrations; the model addresses shortcomings in current implementations. The model uses the minimum of 12 temperature and precipitation constraint functions to simulate NDVI. Functions vary based on the Köppen-Trewartha climate classification to take adaptations of vegetation to climate into account. The simulated NDVI, referred to as the climate constrained vegetation index (CCVI), captured the spatial variability (0.82 < r <0.87), seasonal variability (median r = 0.83) and interannual variability (median global r = 0.24) in NDVI. The CCVI simulated the effects of adverse climate on vegetation during the 1984 drought in the Sahel and during dust bowls of the 1930s and 1950s in the Great Plains in North America. A global CO2 fertilisation effect was found in NDVI data, similar in magnitude to that of earlier estimates (8 % for the 20th century). This effect increased linearly with simple ratio, a transformation of the NDVI. Three CCVI scenarios, based on climate simulations using the representative concentration pathway RCP4.5, showed a greater sensitivity of vegetation towards precipitation in Northern Hemisphere mid latitudes than is currently implemented in climate models. This higher sensitivity is of importance to assess the impact of climate variability on vegetation, in particular on agricultural productivity.

  15. 77 FR 9925 - Price Index Adjustments for Expenditure Limitations and Lobbyist Bundling Disclosure Threshold

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... From the Federal Register Online via the Government Publishing Office FEDERAL ELECTION COMMISSION...: Federal Election Commission. ACTION: Notice of adjustments to expenditure limitations and lobbyist bundling disclosure threshold. SUMMARY: As mandated by provisions of the Federal Election Campaign Act...

  16. Concurrent Validity for an Activity Vector Analysis Index of Social Adjustment.

    ERIC Educational Resources Information Center

    Plante, Thomas G.; Goldfarb, Lori A.

    1984-01-01

    Administered the Activity Vector Analysis (AVA) and the Sixteen Personality Factor Questionnaire (16PF) (N=144 adults) to examine the concurrent validity of the AVA. Results supported the validity of the AVA's social adjustment measure. (LLL)

  17. Predicting maize yield in Zimbabwe using dry dekads derived from remotely sensed Vegetation Condition Index

    NASA Astrophysics Data System (ADS)

    Kuri, Farai; Murwira, Amon; Murwira, Karin S.; Masocha, Mhosisi

    2014-12-01

    Maize is a key crop contributing to food security in Southern Africa yet accurate estimates of maize yield prior to harvesting are scarce. Timely and accurate estimates of maize production are essential for ensuring food security by enabling actionable mitigation strategies and policies for prevention of food shortages. In this study, we regressed the number of dry dekads derived from VCI against official ground-based maize yield estimates to generate simple linear regression models for predicting maize yield throughout Zimbabwe over four seasons (2009-10, 2010-11, 2011-12, and 2012-13). The VCI was computed using Normalized Difference Vegetation Index (NDVI) time series dataset from the SPOT VEGETATION sensor for the period 1998-2013. A significant negative linear relationship between number of dry dekads and maize yield was observed in each season. The variation in yield explained by the models ranged from 75% to 90%. The models were evaluated with official ground-based yield data that was not used to generate the models. There is a close match between the predicted yield and the official yield statistics with an error of 33%. The observed consistency in the negative relationship between number of dry dekads and ground-based estimates of maize yield as well as the high explanatory power of the regression models suggest that VCI-derived dry dekads could be used to predict maize yield before the end of the season thereby making it possible to plan strategies for dealing with food deficits or surpluses on time.

  18. Using normalized difference vegetation index to estimate carbon fluxes from small rotationally grazed pastures

    USGS Publications Warehouse

    Skinner, R.H.; Wylie, B.K.; Gilmanov, T.G.

    2011-01-01

    Satellite-based normalized difference vegetation index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. However, the usefulness of satellite-based images for monitoring rotationally-grazed pastures in the northeastern United States might be limited because paddock size is often smaller than the resolution limits of the satellite image. This research compared NDVI data from satellites with data obtained using a ground-based system capable of fine-scale (submeter) NDVI measurements. Gross primary productivity was measured by eddy covariance on two pastures in central Pennsylvania from 2003 to 2008. Weekly 250-m resolution satellite NDVI estimates were also obtained for each pasture from the moderate resolution imaging spectroradiometer (MODIS) sensor. Ground-based NDVI data were periodically collected in 2006, 2007, and 2008 from one of the two pastures. Multiple-regression and regression-tree estimates of GPP, based primarily on MODIS 7-d NDVI and on-site measurements of photosynthetically active radiation (PAR), were generally able to predict growing-season GPP to within an average of 3% of measured values. The exception was drought years when estimated and measured GPP differed from each other by 11 to 13%. Ground-based measurements improved the ability of vegetation indices to capture short-term grazing management effects on GPP. However, the eMODIS product appeared to be adequate for regional GPP estimates where total growing-season GPP across a wide area would be of greater interest than short-term management-induced changes in GPP at individual sites.

  19. Marsh collapse thresholds for coastal Louisiana estimated using elevation and vegetation index data

    USGS Publications Warehouse

    Couvillion, Brady R.; Beck, Holly

    2013-01-01

    Forecasting marsh collapse in coastal Louisiana as a result of changes in sea-level rise, subsidence, and accretion deficits necessitates an understanding of thresholds beyond which inundation stress impedes marsh survival. The variability in thresholds at which different marsh types cease to occur (i.e., marsh collapse) is not well understood. We utilized remotely sensed imagery, field data, and elevation data to help gain insight into the relationships between vegetation health and inundation. A Normalized Difference Vegetation Index (NDVI) dataset was calculated using remotely sensed data at peak biomass (August) and used as a proxy for vegetation health and productivity. Statistics were calculated for NDVI values by marsh type for intermediate, brackish, and saline marsh in coastal Louisiana. Marsh-type specific NDVI values of 1.5 and 2 standard deviations below the mean were used as upper and lower limits to identify conditions indicative of collapse. As marshes seldom occur beyond these values, they are believed to represent a range within which marsh collapse is likely to occur. Inundation depth was selected as the primary candidate for evaluation of marsh collapse thresholds. Elevation relative to mean water level (MWL) was calculated by subtracting MWL from an elevation dataset compiled from multiple data types including light detection and ranging (lidar) and bathymetry. A polynomial cubic regression was used to examine a random subset of pixels to determine the relationship between elevation (relative to MWL) and NDVI. The marsh collapse uncertainty range values were found by locating the intercept of the regression line with the 1.5 and 2 standard deviations below the mean NDVI value for each marsh type. Results indicate marsh collapse uncertainty ranges of 30.7–35.8 cm below MWL for intermediate marsh, 20–25.6 cm below MWL for brackish marsh, and 16.9–23.5 cm below MWL for saline marsh. These values are thought to represent the ranges of

  20. Simulating Visible/Infrared Imager Radiometer Suite Normalized Difference Vegetation Index Data Using Hyperion and MODIS

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; Russell, Jeffrey; Ryan, Robert E.

    2006-01-01

    The success of MODIS (the Moderate Resolution Imaging Spectrometer) in creating unprecedented, timely, high-quality data for vegetation and other studies has created great anticipation for data from VIIRS (the Visible/Infrared Imager Radiometer Suite). VIIRS will be carried onboard the joint NASA/Department of Defense/National Oceanic and Atmospheric Administration NPP (NPOESS (National Polar-orbiting Operational Environmental Satellite System) Preparatory Project). Because the VIIRS instruments will have lower spatial resolution than the current MODIS instruments 400 m versus 250 m at nadir for the channels used to generate Normalized Difference Vegetation Index data, scientists need the answer to this question: how will the change in resolution affect vegetation studies? By using simulated VIIRS measurements, this question may be answered before the VIIRS instruments are deployed in space. Using simulated VIIRS products, the U.S. Department of Agriculture and other operational agencies can then modify their decision support systems appropriately in preparation for receipt of actual VIIRS data. VIIRS simulations and validations will be based on the ART (Application Research Toolbox), an integrated set of algorithms and models developed in MATLAB(Registerd TradeMark) that enables users to perform a suite of simulations and statistical trade studies on remote sensing systems. Specifically, the ART provides the capability to generate simulated multispectral image products, at various scales, from high spatial hyperspectral and/or multispectral image products. The ART uses acquired ( real ) or synthetic datasets, along with sensor specifications, to create simulated datasets. For existing multispectral sensor systems, the simulated data products are used for comparison, verification, and validation of the simulated system s actual products. VIIRS simulations will be performed using Hyperion and MODIS datasets. The hyperspectral and hyperspatial properties of Hyperion

  1. Estimating Sahelian and East African soil moisture using the Normalized Difference Vegetation Index

    NASA Astrophysics Data System (ADS)

    McNally, A.; Funk, C.; Husak, G. J.; Michaelsen, J.; Cappelaere, B.; Demarty, J.; Pellarin, T.; Young, T. P.; Caylor, K. K.; Riginos, C.; Veblen, K. E.

    2013-06-01

    Rainfall gauge networks in Sub-Saharan Africa are inadequate for assessing Sahelian agricultural drought, hence satellite-based estimates of precipitation and vegetation indices such as the Normalized Difference Vegetation Index (NDVI) provide the main source of information for early warning systems. While it is common practice to translate precipitation into estimates of soil moisture, it is difficult to quantitatively compare precipitation and soil moisture estimates with variations in NDVI. In the context of agricultural drought early warning, this study quantitatively compares rainfall, soil moisture and NDVI using a simple statistical model to translate NDVI values into estimates of soil moisture. The model was calibrated using in-situ soil moisture observations from southwest Niger, and then used to estimate root zone soil moisture across the African Sahel from 2001-2012. We then used these NDVI-soil moisture estimates (NSM) to quantify agricultural drought, and compared our results with a precipitation-based estimate of soil moisture (the Antecedent Precipitation Index, API), calibrated to the same in-situ soil moisture observations. We also used in-situ soil moisture observations in Mali and Kenya to assess performance in other water-limited locations in sub Saharan Africa. The separate estimates of soil moisture were highly correlated across the semi-arid, West and Central African Sahel, where annual rainfall exhibits a uni-modal regime. We also found that seasonal API and NDVI-soil moisture showed high rank correlation with a crop water balance model, capturing known agricultural drought years in Niger, indicating that this new estimate of soil moisture can contribute to operational drought monitoring. In-situ soil moisture observations from Kenya highlighted how the rainfall-driven API needs to be recalibrated in locations with multiple rainy seasons (e.g., Ethiopia, Kenya, and Somalia). Our soil moisture estimates from NDVI, on the other hand, performed

  2. [Estimation and Visualization of Nitrogen Content in Citrus Canopy Based on Two Band Vegetation Index (TBVI)].

    PubMed

    Wang, Qiao-nan; Ye, Xu-jun; Li, Jin-meng; Xiao, Yu-zhao; He, Yong

    2015-03-01

    Nitrogen is a necessary and important element for the growth and development of fruit orchards. Timely, accurate and nondestructive monitoring of nitrogen status in fruit orchards would help maintain the fruit quality and efficient production of the orchard, and mitigate the pollution of water resources caused by excessive nitrogen fertilization. This study investigated the capability of hyperspectral imagery for estimating and visualizing the nitrogen content in citrus canopy. Hyperspectral images were obtained for leaf samples in laboratory as well as for the whole canopy in the field with ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland). The spectral datas for each leaf sample were represented by the average spectral data extracted from the selected region of interest (ROI) in the hyperspectral images with the aid of ENVI software. The nitrogen content in each leaf sample was measured by the Dumas combustion method with the rapid N cube (Elementar Analytical, Germany). Simple correlation analysis and the two band vegetation index (TBVI) were then used to develop the spectra data-based nitrogen content prediction models. Results obtained through the formula calculation indicated that the model with the two band vegetation index (TBVI) based on the wavelengths 811 and 856 nm achieved the optimal estimation of nitrogen content in citrus leaves (R2 = 0.607 1). Furthermore, the canopy image for the identified TBVI was calculated, and the nitrogen content of the canopy was visualized by incorporating the model into the TBVI image. The tender leaves, middle-aged leaves and elder leaves showed distinct nitrogen status from highto low-levels in the canopy image. The results suggested the potential of hyperspectral imagery for the nondestructive detection and diagnosis of nitrogen status in citrus canopy in real time. Different from previous studies focused on nitrogen content prediction at leaf level, this study succeeded in predicting and visualizing the nutrient

  3. [A novel vegetation index (MPRI) of corn canopy by vehicle-borne dynamic prediction].

    PubMed

    Li, Shu-qiang; Li, Min-zan; Sun, Hong

    2014-06-01

    Ground-based remote sensing system is a significant way to understand the growth of corn and provide accurate and scientific data for precision agriculture. The vehicle-borne system is one of the most important tools for corn canopy monitoring. However, the vehicle-borne growth monitoring system cannot maintain steady operations due to the row spacing of corn. The reflectance of corn canopy, which was used to construct the model for the chlorophyll content, was disturbed by the reflectance of soil background. The background interference with the reflectance could not be removed effectively, which would result in a deviation in the growth monitoring. In order to overcome this problem, a novel vegetation index named MPRI was developed in the present paper. The tests were carried out by the vehicle-borne system on the cornfield. The sensors which configured the vehicle-borne system had 4 bands, being respectively 550, 650, 766 and 850 nm. It would obtain the spectral data while the vehicle moved along the row direction. The sampling rate was about 1 point per second. The GPS receiver obtained the location information at the same rate. MPRI was made up by the reflectance ratio of 660 and 550 nm. It was very effective to analyze the information about the reflectance of the canopy. The results of experiments showed that the MPRI of soil was the positive value and the MPRI of canopy was the negative value. So it is easier to distinguish the spectral information about soil and corn canopy by MPRI. The results indicated that: it had satisfactory forecasting accuracy for the chlorophyll content by using the MPRI on the moving monitoring. The R2 of the prediction model was about 0.72. The R2 Of the model of NDVI, which was used to represent the chlorophyll content, was only 0.24. It indicates that MPRI had good measurement results for the dynamic measurement process. It provided the novel measurement way to get the canopy reflectance spectra and the better vegetation index to

  4. [Estimation and Visualization of Nitrogen Content in Citrus Canopy Based on Two Band Vegetation Index (TBVI)].

    PubMed

    Wang, Qiao-nan; Ye, Xu-jun; Li, Jin-meng; Xiao, Yu-zhao; He, Yong

    2015-03-01

    Nitrogen is a necessary and important element for the growth and development of fruit orchards. Timely, accurate and nondestructive monitoring of nitrogen status in fruit orchards would help maintain the fruit quality and efficient production of the orchard, and mitigate the pollution of water resources caused by excessive nitrogen fertilization. This study investigated the capability of hyperspectral imagery for estimating and visualizing the nitrogen content in citrus canopy. Hyperspectral images were obtained for leaf samples in laboratory as well as for the whole canopy in the field with ImSpector V10E (Spectral Imaging Ltd., Oulu, Finland). The spectral datas for each leaf sample were represented by the average spectral data extracted from the selected region of interest (ROI) in the hyperspectral images with the aid of ENVI software. The nitrogen content in each leaf sample was measured by the Dumas combustion method with the rapid N cube (Elementar Analytical, Germany). Simple correlation analysis and the two band vegetation index (TBVI) were then used to develop the spectra data-based nitrogen content prediction models. Results obtained through the formula calculation indicated that the model with the two band vegetation index (TBVI) based on the wavelengths 811 and 856 nm achieved the optimal estimation of nitrogen content in citrus leaves (R2 = 0.607 1). Furthermore, the canopy image for the identified TBVI was calculated, and the nitrogen content of the canopy was visualized by incorporating the model into the TBVI image. The tender leaves, middle-aged leaves and elder leaves showed distinct nitrogen status from highto low-levels in the canopy image. The results suggested the potential of hyperspectral imagery for the nondestructive detection and diagnosis of nitrogen status in citrus canopy in real time. Different from previous studies focused on nitrogen content prediction at leaf level, this study succeeded in predicting and visualizing the nutrient

  5. How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims to assess the relationship between Leaf Area Index (LAI) and remotely sensed Vegetation Indices (VIs) for major crops, based on a globally explicit dataset of in situ LAI measurements over a significant set of locations. We used a total of 1394 LAI measurements from 29 sites spannin...

  6. Assessing agricultural drought in summer over Oklahoma Mesonet sites using the water-related vegetation index from MODIS

    NASA Astrophysics Data System (ADS)

    Bajgain, Rajen; Xiao, Xiangming; Basara, Jeffrey; Wagle, Pradeep; Zhou, Yuting; Zhang, Yao; Mahan, Hayden

    2016-08-01

    Agricultural drought, a common phenomenon in most parts of the world, is one of the most challenging natural hazards to monitor effectively. Land surface water index (LSWI), calculated as a normalized ratio between near infrared (NIR) and short-wave infrared (SWIR), is sensitive to vegetation and soil water content. This study examined the potential of a LSWI-based, drought-monitoring algorithm to assess summer drought over 113 Oklahoma Mesonet stations comprising various land cover and soil types in Oklahoma. Drought duration in a year was determined by the number of days with LSWI <0 (DNLSWI) during summer months (June-August). Summer rainfall anomalies and LSWI anomalies followed a similar seasonal dynamics and showed strong correlations (r 2 = 0.62-0.73) during drought years (2001, 2006, 2011, and 2012). The DNLSWI tracked the east-west gradient of summer rainfall in Oklahoma. Drought intensity increased with increasing duration of DNLSWI, and the intensity increased rapidly when DNLSWI was more than 48 days. The comparison between LSWI and the US Drought Monitor (USDM) showed a strong linear negative relationship; i.e., higher drought intensity tends to have lower LSWI values and vice versa. However, the agreement between LSWI-based algorithm and USDM indicators varied substantially from 32 % (D 2 class, moderate drought) to 77 % (0 and D 0 class, no drought) for different drought intensity classes and varied from ˜30 % (western Oklahoma) to >80 % (eastern Oklahoma) across regions. Our results illustrated that drought intensity thresholds can be established by counting DNLSWI (in days) and used as a simple complementary tool in several drought applications for semi-arid and semi-humid regions of Oklahoma. However, larger discrepancies between USDM and the LSWI-based algorithm in arid regions of western Oklahoma suggest the requirement of further adjustment in the algorithm for its application in arid regions.

  7. On the relationship between some production parameters and a vegetation index in viticulture

    NASA Astrophysics Data System (ADS)

    Santangelo, Tanino; Di Lorenzo, R.; La Loggia, G.; Maltese, A.

    2013-10-01

    The use and timing of many agronomical practices such as the scheduling of irrigation and harvesting are dependent on accurate vineyard sampling of qualitative and productive parameters. Crop forecasting also depends on the representativeness of vineyard samples during the whole phenological period. This manuscript summarizes the last two years of precision viticulture in Sicily (Italy); agronomic campaigns were carried out in 2012 and 2013 within the "Tenute Rapitalà" and "Donnafugata" farms. Normalized Difference Vegetation Index derived from satellite images (RapidEye) acquired at berry set, pre-veraison and ripening phenological stages (occurred at June, July and August respectively) have been related to production parameters (sugar and anthocyanins contents) at harvesting of a selected red autochthonous cultivar (Nero D'Avola). The research aims to assess how robust are prediction models based on simple linear regression analysis, in particular: 1) whether there is a suitable period for acquiring the remote sensing image to evaluate these parameters at harvesting, when their knowledge is required; 2) if these relationships are consistent between years or need to be re-calibrated; 3) the models transferability to other vineyard of the same cultivar.

  8. Assessment of Iranian Agroclimatological Zone Classification by Using TVDI (Temperature Vegetation Dryness Index)

    NASA Astrophysics Data System (ADS)

    Asadi, Ebrahim; Lopez-Baeza, Ernesto; Coll Pajaron, M. Amparo; Kouzehgaran, Saeedeh; Haghighat, Masoud

    2016-07-01

    Agricultural zoning is an important tool for authorities to plan and decide about development of the agricultural sector, environmental sustainability issues and plan and provide irrigation and rural infrastructures. Previous different methods have suggested the definition of agroclimatological zones in big areas in Iran, but most of them are not easy to be validated or there are not clear criteria to evaluate whether the zones are correctly defined or not. The current {it Iranian Meteorological Organisation} classification is composed of six significant agroclimatological zones defined using the fundamental climate elements of temperature and precipitation obtained from 30 years data from 180 synoptic stations interpolated using regression kriging methods. Elevation was derived from SRTM (Shuttle Radar Topography Mission) digital elevation model of 90 m resolution. In this paper we assess the homogeneity of each of these conventionally defined agroclimatological zones using {bf TVDI (Temperature Vegetation Dryness Index)} values obtained from MODIS land surface temperature and NDVI operational products of the last three years between 2013 and 2015.

  9. Estimating Sugarcane Yield Potential Using an In-Season Determination of Normalized Difference Vegetative Index

    PubMed Central

    Lofton, Josh; Tubana, Brenda S.; Kanke, Yumiko; Teboh, Jasper; Viator, Howard; Dalen, Marilyn

    2012-01-01

    Estimating crop yield using remote sensing techniques has proven to be successful. However, sugarcane possesses unique characteristics; such as, a multi-year cropping cycle and plant height-limiting for midseason fertilizer application timing. Our study objective was to determine if sugarcane yield potential could be estimated using an in-season estimation of normalized difference vegetative index (NDVI). Sensor readings were taken using the GreenSeeker® handheld sensor from 2008 to 2011 in St. Gabriel and Jeanerette, LA, USA. In-season estimates of yield (INSEY) values were calculated by dividing NDVI by thermal variables. Optimum timing for estimating sugarcane yield was between 601–750 GDD. In-season estimated yield values improved the yield potential (YP) model compared to using NDVI. Generally, INSEY value showed a positive exponential relationship with yield (r2 values 0.48 and 0.42 for cane tonnage and sugar yield, respectively). When models were separated based on canopy structure there was an increase the strength of the relationship for the erectophile varieties (r2 0.53 and 0.47 for cane tonnage and sugar yield, respectively); however, the model for planophile varieties weakened slightly. Results of this study indicate using an INSEY value for predicting sugarcane yield shows potential of being a valuable management tool for sugarcane producers in Louisiana. PMID:22969359

  10. [Kriging analysis of vegetation index depression in peak cluster karst area].

    PubMed

    Yang, Qi-Yong; Jiang, Zhong-Cheng; Ma, Zu-Lu; Cao, Jian-Hua; Luo, Wei-Qun; Li, Wen-Jun; Duan, Xiao-Fang

    2012-04-01

    In order to master the spatial variability of the normal different vegetation index (NDVI) of the peak cluster karst area, taking into account the problem of the mountain shadow "missing" information of remote sensing images existing in the karst area, NDVI of the non-shaded area were extracted in Guohua Ecological Experimental Area, in Pingguo County, Guangxi applying image processing software, ENVI. The spatial variability of NDVI was analyzed applying geostatistical method, and the NDVI of the mountain shadow areas was predicted and validated. The results indicated that the NDVI of the study area showed strong spatial variability and spatial autocorrelation resulting from the impact of intrinsic factors, and the range was 300 m. The spatial distribution maps of the NDVI interpolated by Kriging interpolation method showed that the mean of NDVI was 0.196, apparently strip and block. The higher NDVI values distributed in the area where the slope was greater than 25 degrees of the peak cluster area, while the lower values distributed in the area such as foot of the peak cluster and depression, where slope was less than 25 degrees. Kriging method validation results show that interpolation has a very high prediction accuracy and could predict the NDVI of the shadow area, which provides a new idea and method for monitoring and evaluation of the karst rocky desertification.

  11. [Assessment of chlorophyll content using a new vegetation index based on multi-angular hyperspectral image data].

    PubMed

    Liao, Qin-hong; Zhang, Dong-yan; Wang, Ji-hua; Yang, Gui-jun; Yang, Hao; Coburn, Craig; Wong, Zhijie; Wang, Da-cheng

    2014-06-01

    The fast estimation of chlorophyll content is significant for understanding the crops growth, monitoring the disease and insect, and assessing the yield of crops. This study gets the hyperspectral imagery data by using a self-developed multi-angular acquisition system during the different maize growth period, the reflectance of maize canopy was extracted accurately from the hyperspectral images under different view angles in the principal plane. The hot-dark-spot index (HDS) of red waveband was calculated through the analysis of simulated values by ACRM model and measured values, then this index was used to modify the vegetation index (TCARI), thus a new vegetation index (HD-TCARI) based on the multi-angular observation was proposed. Finally, the multi-angular hyperspectral imagery data was used to validate the vegetation indexes. The result showed that HD-TCARI could effectively reduce the LAI effects on the assessment of chlorophyll content. When the chlorophyll content was greater than 30 μg x cm(-2), the correlation (R2) between HD-TCARI and LAI was only 26.88%-28.72%. In addition, the HD-TCARI could resist the saturation of vegetation index during the assessment of high chlorophyll content. When the LAI varled from 1 to 6, the linear relation between HD-TCARI and chlorophyll content could be improved by 9% compared with TCARI. The ground validation of HD-TCARI by multi-angular hyperspectral image showed that the linear relation between HD-TCARI and chlorophyll content (R2 = 66.74%) was better than the TCARI (R2 = 39.92%), which indicated that HD-TCARI has good potentials for estimating the chlorophyll content.

  12. [Markov process of vegetation cover change in arid area of northwest China based on FVC index].

    PubMed

    Wang, Zhi; Chang, Shun-li; Shi, Qing-dong; Ma, Ke; Liang, Feng-chao

    2010-05-01

    Based on the fractional vegetation cover (FVC) data of 1982-2000 NOAA/AVHRR (National Oceanic and Atmospheric Administration/ the Advanced Very High Resolution Radiometer) images, the whole arid area of Northwest China was divided into three sub-areas, and then, the vegetation cover in each sub-area was classified by altitude. Furthermore, the Markov process of vegetation cover change was analyzed and tested through calculating the limit probability of any two years and the continuous and interval mean transition matrixes of vegetation cover change with 8 km x 8 km spatial resolution. By this method, the Markov process of vegetation cover change and its indicative significance were approached. The results showed that the vegetation cover change in the study area was controlled by some random processes and affected by long-term stable driving factors, and the transitional change of vegetation cover was a multiple Markov process. Therefore, only using two term image data, no matter they were successive or intervallic, Markov process could not accurately estimate the trend of vegetation cover change. As for the arid area of Northwest China, more than 10 years successive data could basically reflect all the factors affecting regional vegetation cover change, and using long term average transition matrix data could reliably simulate and predict the vegetation cover change. Vegetation cover change was a long term dynamic balance. Once the balance was broken down, it should be a long time process to establish a new balance.

  13. 5 CFR 591.227 - What adjustment factors does OPM add to the price indexes?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... availability of goods and services, and quality of life in the COLA area relative to the DC area. The following... the price indexes? 591.227 Section 591.227 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ALLOWANCES AND DIFFERENTIALS Cost-of-Living Allowance and Post...

  14. 5 CFR 591.227 - What adjustment factors does OPM add to the price indexes?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... availability of goods and services, and quality of life in the COLA area relative to the DC area. The following... the price indexes? 591.227 Section 591.227 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ALLOWANCES AND DIFFERENTIALS Cost-of-Living Allowance and Post...

  15. 5 CFR 591.227 - What adjustment factors does OPM add to the price indexes?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... availability of goods and services, and quality of life in the COLA area relative to the DC area. The following... the price indexes? 591.227 Section 591.227 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ALLOWANCES AND DIFFERENTIALS Cost-of-Living Allowance and Post...

  16. 5 CFR 591.227 - What adjustment factors does OPM add to the price indexes?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... availability of goods and services, and quality of life in the COLA area relative to the DC area. The following... the price indexes? 591.227 Section 591.227 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ALLOWANCES AND DIFFERENTIALS Cost-of-Living Allowance and Post...

  17. 5 CFR 591.227 - What adjustment factors does OPM add to the price indexes?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... availability of goods and services, and quality of life in the COLA area relative to the DC area. The following... the price indexes? 591.227 Section 591.227 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ALLOWANCES AND DIFFERENTIALS Cost-of-Living Allowance and Post...

  18. Shelter Index and a simple wind speed parameter to characterize vegetation control of sand transport threshold and Flu

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Nield, J. M.; Nickling, W. G.; Furtak-Cole, E.

    2014-12-01

    Wind erosion and dust emissions occur in many dryland environments from a range of surfaces with different types and amounts of vegetation. Understanding how vegetation modulates these processes remains a research challenge. Here we present results from a study that examines the relationship between an index of shelter (SI=distance from a point to the nearest upwind vegetation/vegetation height) and particle threshold expressed as the ratio of wind speed measured at 0.45 times the mean plant height divided by the wind speed at 17 m when saltation commences, and saltation flux. The results are used to evaluate SI as a parameter to characterize the influence of vegetation on local winds and sediment transport conditions. Wind speed, wind direction, saltation activity and point saltation flux were measured at 35 locations in defined test areas (~13,000 m2) in two vegetation communities: mature streets of mesquite covered nebkhas and incipient nebkhas dominated by low mesquite plants. Measurement positions represent the most open areas, and hence those places most susceptible to wind erosion among the vegetation elements. Shelter index was calculated for each measurement position for each 10° wind direction bin using digital elevation models for each site acquired using terrestrial laser scanning. SI can show the susceptibility to wind erosion at different time scales, i.e., event, seasonal, or annual, but in a supply-limited system it can fail to define actual flux amounts due to a lack of knowledge of the distribution of sediment across the surface of interest with respect to the patterns of SI.

  19. [Effects of vegetation cover and normalized difference moisture index on thermal landscape pattern: a case study of Guangzhou, South China].

    PubMed

    Wang, Gang; Guan, Dong-Sheng

    2012-09-01

    By using Landsat-5 TM images, the land surface temperature (LST), vegetation cover, and normalized difference moisture index (NDMI) in different areas of Guangzhou were extracted, and the effects of vegetation cover and NDMI on the land surface temperature of the City were studied, based on the landscape ecological methodologies. There existed good linear correlations among the vegetation cover, land surface temperature, and NDMI, but the correlation coefficients for any two of the three items differed obviously with different areas. If the vegetation cover in different areas of Guangzhou was improved to the same level, urban center had the best cooling effect, followed by the suburbs in the north edge of urban center. The forest parks in different areas of the City also had different cooling effect on the surrounding environment. The difference of the average temperature between the 960-1080 m buffer zone and the inner park were 4.69 degrees C in Baiyun Mountain, 1.27 degrees C in Mazaishan, and 0.41 degrees C in Liuxihe. High vegetation cover could increase the thermal landscape heterogeneity and the aggregation among different landscapes, and promote the energy exchange between the lower temperature patches and higher temperature patches, playing an important role in controlling hot island effect. NDMI and vegetation cover had the same effects on the formation of thermal landscape pattern.

  20. Estimating switchgrass productivity in the Great Plains using satellite vegetation index and site environmental variables

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.

    2015-01-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to develop a data-driven multiple regression switchgrass productivity model and identify the optimal climate and environment conditions for the highly productive switchgrass in the Great Plains (GP). Environmental and climate variables used in the study include elevation, soil organic carbon, available water capacity, climate, and seasonal weather. Satellite-derived growing season averaged Normalized Difference Vegetation Index (GSN) was used as a proxy for switchgrass productivity. Multiple regression analyses indicate that there are strong correlations between site environmental variables and switchgrass productivity (r = 0.95). Sufficient precipitation and suitable temperature during the growing season (i.e., not too hot or too cold) are favorable for switchgrass growth. Elevation and soil characteristics (e.g., soil available water capacity) are also an important factor impacting switchgrass productivity. An anticipated switchgrass biomass productivity map for the entire GP based on site environmental and climate conditions and switchgrass productivity model was generated. Highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study can help land managers and biofuel plant investors better understand the general environmental and climate conditions influencing switchgrass growth and make optimal land use decisions regarding switchgrass development in the GP.

  1. Rural cases of equine West Nile virus encephalomyelitis and the normalized difference vegetation index

    USGS Publications Warehouse

    Ward, M.P.; Ramsay, B.H.; Gallo, K.

    2005-01-01

    Data from an outbreak (August to October, 2002) of West Nile virus (WNV) encephalomyelitis in a population of horses located in northern Indiana was scanned for clusters in time and space. One significant (p = 0.04) cluster of case premises was detected, occurring between September 4 and 10 in the south-west part of the study area (85.70??N, 45.50??W). It included 10 case premises (3.67 case premises expected) within a radius of 2264 m. Image data were acquired by the Advanced Very High Resolution Radiometer (AVHRR) sensor onboard a National Oceanic and Atmospheric Administration polar-orbiting satellite. The Normalized Difference Vegetation Index (NDVI) was calculated from visible and near-infrared data of daily observations, which were composited to produce a weekly-1km2 resolution raster image product. During the epidemic, a significant (p<0.01) decrease (0.025 per week) in estimated NDVI was observed at all case and control premise sites. The median estimated NDVI (0.659) for case premises within the cluster identified was significantly (p<0.01) greater than the median estimated NDVI for other case (0.571) and control (0.596) premises during the same period. The difference in median estimated NDVI for case premises within this cluster, compared to cases not included in this cluster, was greatest (5.3% and 5.1%, respectively) at 1 and 5 weeks preceding occurrence of the cluster. The NDVI may be useful for identifying foci of WNV transmission. ?? Mary Ann Liebert, Inc.

  2. Rural cases of equine West Nile virus encephalomyelitis and the normalized difference vegetation index.

    PubMed

    Ward, Michael P; Ramsay, Bruce H; Gallo, Kevin

    2005-01-01

    Data from an outbreak (August to October, 2002) of West Nile virus (WNV) encephalomyelitis in a population of horses located in northern Indiana was scanned for clusters in time and space. One significant (p = 0.04) cluster of case premises was detected, occurring between September 4 and 10 in the south-west part of the study area (85.70 degrees N, 45.50 degrees W). It included 10 case premises (3.67 case premises expected) within a radius of 2264 m. Image data were acquired by the Advanced Very High Resolution Radiometer (AVHRR) sensor onboard a National Oceanic and Atmospheric Administration polar-orbiting satellite. The Normalized Difference Vegetation Index (NDVI) was calculated from visible and near-infrared data of daily observations, which were composited to produce a weekly-1km(2) resolution raster image product. During the epidemic, a significant (p < 0.01) decrease (0.025 per week) in estimated NDVI was observed at all case and control premise sites. The median estimated NDVI (0.659) for case premises within the cluster identified was significantly (p < 0.01) greater than the median estimated NDVI for other case (0.571) and control (0.596) premises during the same period. The difference in median estimated NDVI for case premises within this cluster, compared to cases not included in this cluster, was greatest (5.3% and 5.1%, respectively) at 1 and 5 weeks preceding occurrence of the cluster. The NDVI may be useful for identifying foci of WNV transmission.

  3. The use of remotely sensed surface temperature and a spectral vegetation index for evaluating heat fluxes over the Konza Prairie

    NASA Technical Reports Server (NTRS)

    Hope, A. S.; Mcdowell, T. P.

    1990-01-01

    The relationship between surface temperature T(s) and the normalized difference vegetation index (NDVI) is examined to determine whether it can be used to characterize latent heat fluxes (LEs). The regression of T(s) on NDVI is studied in the context of surface heat fluxes over the prairie with a limited data set for four flux-measurement sites. The 17 flux-measurement stations at the sites provided data that are consistently significant at the 99-percent confidence level for the regression of T(s) on NDVI. Variations in the regression slopes are found to correlate with variations in the ground heat flux but not with LE. Important components of the regression of T(s) on NDVI include fractional vegetation cover and surface-soil moisture conditions. The relationship is important for determining the relative contributions of the soil and vegetation components of an area's total evaporative flux.

  4. A Methodology for Surface Soil Moisture and Vegetation Optical Depth Retrieval Using the Microwave Polarization Difference Index

    NASA Technical Reports Server (NTRS)

    Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.

  5. Use of Normalized Difference Vegetation Index (NDVI) habitat models to predict breeding birds on the San Pedro River, Arizona

    USGS Publications Warehouse

    McFarland, Tiffany Marie; van Riper, Charles

    2013-01-01

    Successful management practices of avian populations depend on understanding relationships between birds and their habitat, especially in rare habitats, such as riparian areas of the desert Southwest. Remote-sensing technology has become popular in habitat modeling, but most of these models focus on single species, leaving their applicability to understanding broader community structure and function largely untested. We investigated the usefulness of two Normalized Difference Vegetation Index (NDVI) habitat models to model avian abundance and species richness on the upper San Pedro River in southeastern Arizona. Although NDVI was positively correlated with our bird metrics, the amount of explained variation was low. We then investigated the addition of vegetation metrics and other remote-sensing metrics to improve our models. Although both vegetation metrics and remotely sensed metrics increased the power of our models, the overall explained variation was still low, suggesting that general avian community structure may be too complex for NDVI models.

  6. Global assessment of Vegetation Index and Phenology Lab (VIP) and Global Inventory Modeling and Mapping Studies (GIMMS) version 3 products

    NASA Astrophysics Data System (ADS)

    Marshall, M.; Okuto, E.; Kang, Y.; Opiyo, E.; Ahmed, M.

    2016-02-01

    Earth observation-based long-term global vegetation index products are used by scientists from a wide range of disciplines concerned with global change. Inter-comparison studies are commonly performed to keep the user community informed on the consistency and accuracy of such records as they evolve. In this study, we compared two new records: (1) Global Inventory Modeling and Mapping Studies (GIMMS) normalized difference vegetation index version 3 (NDVI3g) and (2) Vegetation Index and Phenology Lab (VIP) version 3 NDVI (NDVI3v) and enhanced vegetation index 2 (EVI3v). We evaluated the two records via three experiments that addressed the primary use of such records in global change research: (1) leaf area index (LAI), (2) vegetation climatology, and (3) trend analysis of the magnitude and timing of vegetation productivity. Unlike previous global studies, a unique Landsat 30 m spatial resolution and in situ LAI database for major crop types on five continents was used to evaluate the performance of not only NDVI3g and NDVI3v but also EVI3v. The performance of NDVI3v and EVI3v was worse than NDVI3g using the in situ data, which was attributed to the fusion of GIMMS and MODIS data in the VIP record. EVI3v has the potential to contribute biophysical information beyond NDVI3g and NDVI3v to global change studies, but we caution its use due to the poor performance of EVI3v in this study. Overall, the records were most consistent at northern latitudes during the primary growing season and southern latitudes and the tropics throughout much of the year, while the records were less consistent at northern latitudes during green-up and senescence, and in the great deserts of the world throughout much of the year. These patterns led to general agreement (disagreement) between trends in the magnitude (timing) of NDVI over the study period. Bias in inter-calibration of the VIP record at northernmost latitudes was suspected to contribute most to these discrepancies.

  7. Soil moisture status estimation over Three Gorges area with Landsat TM data based on temperature vegetation dryness index

    NASA Astrophysics Data System (ADS)

    Xu, Lina; Niu, Ruiqing; Li, Jiong; Dong, Yanfang

    2011-12-01

    Soil moisture is the important indicator of climate, hydrology, ecology, agriculture and other parameters of the land surface and atmospheric interface. Soil moisture plays an important role on the water and energy exchange at the land surface/atmosphere interface. Remote sensing can provide information on large area quickly and easily, so it is significant to do research on how to monitor soil moisture by remote sensing. This paper presents a method to assess soil moisture status using Landsat TM data over Three Gorges area in China based on TVDI. The potential of Temperature- Vegetation Dryness Index (TVDI) from Landsat TM data in assessing soil moisture was investigated in this region. After retrieving land surface temperature and vegetation index a TVDI model based on the features of Ts-NDVI space is established. And finally, soil moisture status is estimated according to TVDI. It shows that TVDI has the advantages of stability and high accuracy to estimating the soil moisture status.

  8. The effect of water vapour on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data

    NASA Technical Reports Server (NTRS)

    Justice, Christopher O.; Eck, T. F.; Tanre, Didier; Holben, B. N.

    1991-01-01

    The near-infrared channel of the NOAA advanced very high resolution radiometer (AVHRR) contains a water vapor absorption band that affects the determination of the normalized difference vegetation index (NDVI). Daily and seasonal variations in atmospheric water vapor within the Sahel are shown to affect the use of the NDVI for the estimation of primary production. This water vapor effect is quantified for the Sahel by radiative transfer modeling and empirically using observations made in Mali in 1986.

  9. Estimating riparian and agricultural actual evapotranspiration by reference evapotranspiration and MODIS Enhanced Vegetation Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dryland river basins frequently support both irrigated agriculture and riparian vegetation and remote sensing methods are needed to monitor water use by both crops and natural vegetation in these districts. We developed a general algorithm for estimating actual evapotranspiration (ETa) based on the ...

  10. Fruit and vegetable intake and body mass index in a large sample of middle-aged Australian men and women.

    PubMed

    Charlton, Karen; Kowal, Paul; Soriano, Melinda M; Williams, Sharon; Banks, Emily; Vo, Kha; Byles, Julie

    2014-06-17

    Dietary guidelines around the world recommend increased intakes of fruits and non-starchy vegetables for the prevention of chronic diseases and possibly obesity. This study aimed to describe the association between body mass index (BMI) and habitual fruit and vegetable consumption in a large sample of 246,995 Australian adults aged 45 + year who had been recruited for the "45 and Up" cohort study. Fruit and vegetable intake was assessed using validated short questions, while weight and height were self-reported. Multinomial logistic regression was used, by sex, to assess the association between fruit and vegetable intake and BMI. Compared to the referent normal weight category (BMI 18.5 to 24.9), the odds ratio (OR) of being in the highest vegetable intake quartile was 1.09 (95% confidence interval (CI) 1.04-1.14) for overweight women (BMI 25.0-29.9) and 1.18 (95% CI 1.12-1.24) for obese women. The association was in the opposite direction for fruit for overweight (OR 0.85; 95% CI 0.80-0.90) and obese women (OR 0.75; 95% CI 0.69-0.80). Obese and overweight women had higher odds of being in the highest intake quartile for combined fruit and vegetable intake, and were more likely to meet the "2 and 5" target or to have five or more serves of fruit and vegetables per day. In contrast, overweight men were less likely to be in high intake quartiles and less likely to meet recommended target of 5 per day, but there was no consistent relationship between obesity and fruit and vegetable intake. Underweight women and underweight men were less likely to be in the highest intake quartiles or to meet the recommended targets. These data suggest that improving adherence to dietary targets for fruit and vegetables may be a dietary strategy to overcome overweight among men, but that overweight and obese women are already adhering to these targets. The association between fruit and vegetable intake and underweight in adults suggests that improving fruit and vegetables intakes are

  11. Spatial-Temporal Pattern of Vegetation Index Change and the Relationship to Land Surface Temperature in Zoige

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Jiang, W. G.; Tang, Z. H.; Jia, K.

    2016-06-01

    The Zoige wetland is the largest alpine peat wetland in China, and it has been degrading since 1960s. MODIS Enhance Vegetation Index (EVI) and Land Surface Temperature (LST) products in late august from 2000 to 2014 were employed to explore vegetation index and land surface temperature change tendency and to perform Temperature Vegetation Dryness Index (TVDI). The correlation between the annual mean of EVI and annual mean of LST was also calculated at pixel scale. The main purpose of this study is to explore the relationship between wetland degradation and climate change. The main conclusions are as follows: (1) Average EVI in Zoige plateau tended to be decreasing from 2000 to 2014, especially after 2007. In wetland areas, the annual mean of EVI were negative, while the slope were positive. It showed that the water storage of wetlands in Zoige plateau had been decreasing in the past 15 years and will keep decreasing in the future. (2) Overall, LST in the whole Zoige plateau had been increasing since 2000. While the minimum TVDI increased from 2000 to 2008 and then decreased. The change of TVDI suggested that drought should be a main factor that lead to wetland degradation in Zoige. (3) The uneven distribution of the correlation between EVI and LST suggested that LST is also one of the main reasons of wetland degradation.

  12. Central Amazon Forest Enhanced Vegetation Index Seasonality Driven by Strongly Seasonal Leaf Flush

    NASA Astrophysics Data System (ADS)

    Wu, J.; Nelson, B. W.; Lopes, A. P.; Graca, P. M. L. D. A.; Tavares, J. V.; Prohaska, N.; Martins, G.; Saleska, S. R.

    2015-12-01

    We used an RGB camera mounted 50m above an upland forest canopy to quantify leaf phenology during 12 months for 267 upper canopy tree crowns at the Amazon Tall Tower site (59.0005ºW, 2.1433ºS). Daily images under overcast sky were selected and radiometrically intercalibrated to remove any seasonal bias from incoming radiant color balance. Seasonality of crown color was then recovered for each individual crown by plotting its greenness timeline (green chromatic coordinate). We detected rapid large-amplitude positive and negative changes in greenness. Rapid increase was attributed to leaf flush and occurred in 85% of all crowns, with 80% showing a single flush per year. The theory of photoperiod control of equatorial tropical forest leaf phenology predicts two annual peaks of leaf flush, so is not supported. Rapid negative change occurred in 42% of individuals and was caused by massive pre-flush leaf abscission (31% of all trees) or other non-green pre-flushing states (11%). Crown flushing was concentrated in the five driest months (55% of trees) compared to the five wettest months (10%). Enhanced Vegetation Index (EVI) for each of three crown phenostages was obtained from a single high spatial resolution QuickBird satellite image.These phenostages were identified using only the visible bands of QuickBird so they could be related to the same crown stages seen in the RGB tower camera images. Relative frequencies of the three crown level phenostages were monitored with the tower camera, allowing a monthly estimate of landscape-scale EVI. Free of the seasonal effects on orbital sensors from clouds, cloud shadows, aerosols or solar illumination angle and corrected for seasonal change in light quality, the camera- and QuickBird derived EVI served as an independent verification of MODIS EVI seasonality. Camera-based EVI was highly consistent with view- and solar-angle corrected MAIAC-EVI of a 3x3 km footprint centered on the tower (R = 0.95 between the two monthly curves

  13. Evaluation of vegetation post-fire resilience in the Alpine region using descriptors derived from MODIS spectral index time series

    NASA Astrophysics Data System (ADS)

    Di Mauro, Biagio; Fava, Francesco; Busetto, Lorenzo; Crosta, Giovanni Franco; Colombo, Roberto

    2013-04-01

    In this study a method based on the analysis of MODerate-resolution Imaging Spectroradiometer (MODIS) time series is proposed to estimate the post-fire resilience of mountain vegetation (broadleaf forest and prairies) in the Italian Alps. Resilience is defined herewith as the ability of a dynamical system to counteract disturbances. It can be quantified by the amount of time the disturbed system takes to resume, in statistical terms, an ecological functionality comparable with its undisturbed behavior. Satellite images of the Normalized Difference Vegetation Index (NDVI) and of the Enhanced Vegetation Index (EVI) with spatial resolution of 250m and temporal resolution of 16 days in the 2000-2012 time period were used. Wildfire affected areas in the Lombardy region between the years 2000 and 2010 were analysed. Only large fires (affected area >40ha) were selected. For each burned area, an undisturbed adjacent control site was located. Data pre-processing consisted in the smoothing of MODIS time series for noise removal and then a double logistic function was fitted. Land surface phenology descriptors (proxies for growing season start/end/length and green biomass) were extracted in order to characterize the time evolution of the vegetation. Descriptors from a burned area were compared to those extracted from the respective control site by means of the one-way analysis of variance. According to the number of subsequent years which exhibit statistically meaningful difference between burned and control site, five classes of resilience were identified and a set of thematic maps was created for each descriptor. The same method was applied to all 84 aggregated events and to events aggregated by main land cover. EVI index results more sensitive to fire impact than NDVI index. Analysis shows that fire causes both a reduction of the biomass and a variation in the phenology of the Alpine vegetation. Results suggest an average ecosystem resilience of 6-7 years. Moreover

  14. Preliminary comparison of landscape pattern-normalized difference vegetation index (NDVI) relationships to central plains stream conditions

    USGS Publications Warehouse

    Griffith, J.A.; Martinko, E.A.; Whistler, J.L.; Price, K.P.

    2002-01-01

    We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.

  15. Vegetation biomass, leaf area index, and NDVI patterns and relationships along two latitudinal transects in arctic tundra

    NASA Astrophysics Data System (ADS)

    Epstein, H. E.; Walker, D. A.; Raynolds, M. K.; Kelley, A. M.; Jia, G.; Ping, C.; Michaelson, G.; Leibman, M. O.; Kaarlejärvi, E.; Khomutov, A.; Kuss, P.; Moskalenko, N.; Orekhov, P.; Matyshak, G.; Forbes, B. C.; Yu, Q.

    2009-12-01

    Analyses of vegetation properties along climatic gradients provide first order approximations as to how vegetation might respond to a temporally dynamic climate. Until recently, no systematic study of tundra vegetation had been conducted along bioclimatic transects that represent the full latitudinal extent of the arctic tundra biome. Since 1999, we have been collecting data on arctic tundra vegetation and soil properties along two such transects, the North American Arctic Transect (NAAT) and the Yamal Arctic Transect (YAT). The NAAT spans the arctic tundra from the Low Arctic of the North Slope of Alaska to the polar desert of Cape Isachsen on Ellef Ringnes Island in the Canadian Archipelago. The Yamal Arctic Transect located in northwest Siberia, Russia, presently ranges from the forest-tundra transition at Nadym to the High Arctic tundra on Belyy Ostrov off the north coast of the Yamal Peninsula. The summer warmth indices (SWI - sum of mean monthly temperatures greater than 0°C) range from approximately 40 °C months to 3 °C months from south to north. For largely zonal sites along these transects, we systematically collected leaf area index (LAI-2000 Plant Canopy Analyzer), normalized difference vegetation index (NDVI - PSII hand-held spectro-radiometer), and vegetation biomass (clip harvests). Site-averaged LAI ranges from 1.08 to 0 along the transects, yet can be highly variable at the landscape scale. Site-averaged NDVI ranges from 0.67 to 0.26 along the transects, and is less variable than LAI at the landscape scale. Total aboveground live biomass ranges from approximately 700 g m-2 to < 50 g m-2 along the NAAT, and from approximately 1100 g m-2 to < 400 g m-2 along the YAT (not including tree biomass at Nadym). LAI and NDVI are highly correlated logarithmically (r = 0.80) for the entire dataset. LAI is significantly related to total aboveground (live plus dead) vascular plant biomass, although there is some variability in the data (r = 0.63). NDVI is

  16. DEVELOPMENT OF AN INDEX OF ALIEN SPECIES INVASIVENESS: AN AID TO ASSESSING RIPARIAN VEGETATION CONDITION

    EPA Science Inventory

    Many riparian areas are invaded by alien plant species that negatively affect native species composition, community dynamics and ecosystem properties. We sampled vegetation along reaches of 31 low order streams in eastern Oregon, and characterized species assemblages at patch an...

  17. Generating Vegetation Leaf Area Index Earth System Data Record from Multiple Sensors. Part 2; Implementation, Analysis and Validation

    NASA Technical Reports Server (NTRS)

    Ganguly, Sangram; Samanta, Arindam; Schull, Mitchell A.; Shabanov, Nikolay V.; Milesi, Cristina; Nemani, Ramajrushna R,; Knyazikhin, Yuri; Myneni, Ranga B.

    2008-01-01

    The evaluation of a new global monthly leaf area index (LAI) data set for the period July 1981 to December 2006 derived from AVHRR Normalized Difference Vegetation Index (NDVI) data is described. The physically based algorithm is detailed in the first of the two part series. Here, the implementation, production and evaluation of the data set are described. The data set is evaluated both by direct comparisons to ground data and indirectly through inter-comparisons with similar data sets. This indirect validation showed satisfactory agreement with existing LAI products, importantly MODIS, at a range of spatial scales, and significant correlations with key climate variables in areas where temperature and precipitation limit plant growth. The data set successfully reproduced well-documented spatio-temporal trends and inter-annual variations in vegetation activity in the northern latitudes and semi-arid tropics. Comparison with plot scale field measurements over homogeneous vegetation patches indicated a 7% underestimation when all major vegetation types are taken into account. The error in mean values obtained from distributions of AVHRR LAI and high-resolution field LAI maps for different biomes is within 0.5 LAI for six out of the ten selected sites. These validation exercises though limited by the amount of field data, and thus less than comprehensive, indicated satisfactory agreement between the LAI product and field measurements. Overall, the intercomparison with short-term LAI data sets, evaluation of long term trends with known variations in climate variables, and validation with field measurements together build confidence in the utility of this new 26 year LAI record for long term vegetation monitoring and modeling studies.

  18. A survey of drought and Variation of Vegetation by statistical indexes and remote sensing (Case study: Jahad forest in Bandar Abbas)

    NASA Astrophysics Data System (ADS)

    Tamassoki, E.; Soleymani, Z.; Bahrami, F.; Abbasgharemani, H.

    2014-06-01

    The damages of drought as a climatic and creeping phenomenon are very enormous specially in deserts. Necessity of management and conflict with it is clear. In this case vegetation are damaged too, and even are changed faster. This paper describes the process of vegetation changes and surveys it with drought indexes such as statistical and remote sensing indexes and correlation between temperature and relative humidity by Geographical Information System (GIS) and Remote Sensing (RS) in forest park of Bandar Abbas in successive years. At the end the regression and determination-coefficient for showing the importance of droughts survey are computed. Results revealed that the correlation between vegetation and indexes was 0.5. The humidity had maximum correlation and when we close to 2009 the period of droughts increase and time intervals decrease that influence vegetation enormously and cause the more area lost its vegetation.

  19. Relations between productivity, climate, and normalized difference vegetation index in the central Great Plains

    NASA Astrophysics Data System (ADS)

    Wang, Jue

    Understanding the influences of climate on productivity remains a major challenge in landscape ecology. Satellite remote sensing of normalized difference vegetation index (NDVI) provides a useful tool to study landscape patterns, based on generalization of local measurements, and to examine relations between climate and variation in productivity. This dissertation examines temporal and spatial relations between NDVI, productivity, and climatic factors over the course of nine years in the central Great Plains. Two general findings emerge: (1) integrated NDVI is a reliable measure of production, as validated with ground-based productivity measurements; and (2) precipitation is the primary factor that determines spatial and temporal patterns of NDVI. NDVI, integrated over appropriate time intervals, is strongly correlated with ground productivity measurements in forests, grasslands, and croplands. Most tree productivity measurements (tree ring size, tree diameter growth, and seed production) are strongly correlated with NDVI integrated for a period during the early growing season; foliage production is most strongly correlated with NDVI integrated over the entire growing season; and tree height growth corresponds with NDVI integrate during the previous growing season. Similarly, productivity measurements for herbaceous plants (grassland biomass and crop yield) are strongly correlated with NDVI. Within the growing season, the temporal pattern of grassland biomass production covaries with NDVI, with a four-week lag time. Across years, grassland biomass production covaries with NDVI integrated from part to all of the current growing season. Corn and wheat yield are most strongly related to NDVI integrated from late June to early August and from late April to mid-May, respectively. Precipitation strongly influences both temporal and spatial patterns of NDVI, while temperature influences NDVI only during the early and late growing season. In terms of temporal patterns

  20. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Nemani, Ramakrishna R.; Running, Steven W.

    1989-01-01

    Infrared surface temperatures from satellite sensors have been used to infer evaporation and soil moisture distribution over large areas. However, surface energy partitioning to latent versus sensible heat changes with surface vegetation cover and water availability. The hypothesis that the relationship between surface temperature and canopy density is sensitivite to seasonal changes in canopy resistance of conifer forests is presently tested. Surface temperature and canopy density were computed for a 20 x 25 km forested region in Montana, from the NOAA/AVHRR for 8 days during the summer of 1985. A forest ecosystem model, FOREST-BGC, simulated canopy resistance for the same period. For all eight days, surface temperatures had high association with canopy density, measured as Normalized Difference Vegetation Index, implying that latent heat exchange is the major cause of spatial variations in surface radiant tmeperatures.

  1. Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia

    PubMed Central

    Kim, Kyoung Min; Jang, Hak Chul; Lim, Soo

    2016-01-01

    Aging processes are inevitably accompanied by structural and functional changes in vital organs. Skeletal muscle, which accounts for 40% of total body weight, deteriorates quantitatively and qualitatively with aging. Skeletal muscle is known to play diverse crucial physical and metabolic roles in humans. Sarcopenia is a condition characterized by significant loss of muscle mass and strength. It is related to subsequent frailty and instability in the elderly population. Because muscle tissue is involved in multiple functions, sarcopenia is closely related to various adverse health outcomes. Along with increasing recognition of the clinical importance of sarcopenia, several international study groups have recently released their consensus on the definition and diagnosis of sarcopenia. In practical terms, various skeletal muscle mass indices have been suggested for assessing sarcopenia: appendicular skeletal muscle mass adjusted for height squared, weight, or body mass index. A different prevalence and different clinical implications of sarcopenia are highlighted by each definition. The discordances among these indices have emerged as an issue in defining sarcopenia, and a unifying definition for sarcopenia has not yet been attained. This review aims to compare these three operational definitions and to introduce an optimal skeletal muscle mass index that reflects the clinical implications of sarcopenia from a metabolic perspective. PMID:27334763

  2. Validation of Vegetation Index Time Series from Suomi NPP Visible Infrared Imaging Radiometer Suite Using Tower Radiation Flux Measurements

    NASA Astrophysics Data System (ADS)

    Miura, T.; Kato, A.; Wang, J.; Vargas, M.; Lindquist, M.

    2015-12-01

    Satellite vegetation index (VI) time series data serve as an important means to monitor and characterize seasonal changes of terrestrial vegetation and their interannual variability. It is, therefore, critical to ensure quality of such VI products and one method of validating VI product quality is cross-comparison with in situ flux tower measurements. In this study, we evaluated the quality of VI time series derived from Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (NPP) spacecraft by cross-comparison with in situ radiation flux measurements at select flux tower sites over North America and Europe. VIIRS is a new polar-orbiting satellite sensor series, slated to replace National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer in the afternoon overpass and to continue the highly-calibrated data streams initiated with Moderate Resolution Imaging Spectrometer of National Aeronautics and Space Administration's Earth Observing System. The selected sites covered a wide range of biomes, including croplands, grasslands, evergreen needle forest, woody savanna, and open shrublands. The two VIIRS indices of the Top-of-Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI) and the atmospherically-corrected, Top-of-Canopy (TOC) Enhanced Vegetation Index (EVI) (daily, 375 m spatial resolution) were compared against the TOC NDVI and a two-band version of EVI (EVI2) calculated from tower radiation flux measurements, respectively. VIIRS and Tower VI time series showed comparable seasonal profiles across biomes with statistically significant correlations (> 0.60; p-value < 0.01). "Start-of-season (SOS)" phenological metric values extracted from VIIRS and Tower VI time series were also highly compatible (R2 > 0.95), with mean differences of 2.3 days and 5.0 days for the NDVI and the EVI, respectively. These results indicate that VIIRS VI time series can capture seasonal evolution of

  3. Estimating wide-area evapotranspiration at multiple scales using optical vegetation index methods

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Glenn, E.; Jarchow, C.; Barreto-munoz, A.; Didan, K.; Nouri, H.; Anderson, S.; Doody, T.

    2015-12-01

    We provide three examples of remotely sensed evapotranspiration (ET) from our research using optical methods at different spatial scales and applied to (i) urban landscapes, (ii) riparian vegetation in Mexico in response to river flows, and (iii) riparian vegetation in Australia in response to different flood frequencies. In the first example, we will compare ground methods for estimating ET by horticultural plants with scaled estimates of ET using both WV2 NDVI imagery and MODIS EVI which were used to determine water requirements of urban gardens in Adelaide, South Australia. In the second example, we will present the impacts of a 2014 environmental flow, released to the Colorado River delta in Mexico, on vegetation greenness and estimated ET using Landsat and MODIS data. Lastly, we will show the results for scaling sap flow transpiration of Red Gum (Eucalyptus camaldulensis) and associated vegetation along the Murrumbidgee River (a tributary of the River Murray) to MODIS-based estimates of evapotranspiration in the wider riparian reaches along the river. These three applications range in spatial scales from a few hectares for urban gardens, to several thousand hectares for the riparian ecosystem in Mexico, to a regional scale of a hundred thousand hectares for the Red Gum forest in Australia. Remote sensing methods can produce accurate estimates of ET across wide temporal and spatial scales, limited mainly by the accuracy of the ground methods by which they are calibrated and validated.

  4. Analysis of smoke and cloud impact on seasonal and interannual variations in normalized difference vegetation index in Amazon

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Dye, D. G.

    2004-12-01

    Normalized difference vegetation index (NDVI) derived from National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) is a unique measurement of long-term variations in global vegetation dynamics. The NDVI data have been used for the detection of the seasonal and interannual variations in vegetation. However, as reported in several studies, NDVI decreases with the increase in clouds and/or smoke aerosol contaminated in the pixels. This study assesses the smoke and clouds effect on long-term Global Inventory Modeling and Mapping Studies (GIMMS) and Pathfinder AVHRR Land (PAL) NDVI data in Amazon. This knowledge will help developing the correction method in the tropics in the future. To assess the smoke and cloud effects on GIMMS and PAL, we used another satellite-derived data sets; NDVI derived from SPOT/VEGETATION (VGT) data and Aerosol Index (AI) derived from Total Ozone Mapping Spectrometer (TOMS). Since April 1998, VGT has measured the earth surface globally including in Amazon. The advantage of the VGT is that it has blue channel where the smoke and cloud can be easily detected. By analyzing the VGT NDVI and comparing with the AVHRR-based NDVI, we inferred smoke and cloud effect on the AVHRR-based NDVI. From the results of the VGT analysis, we found the large NDVI seasonality in South and Southeastern Amazon. In these areas, the NDVI gradually increased from April to July and decreased from August to October. However the sufficient NDVI data were not existed from August to November when the smoke and cloud pixels were masked using blue reflectance. Thus it is said that the smoke and clouds mainly cause the large decreases in NDVI between August and November and NDVI has little vegetation signature in these months. Also we examined the interannual variations in NDVI and smoke aerosol. Then the decrease in NDVI is well consistent with the increase in the increase in AI. Our results suggest that the months between April

  5. Mean and inter-year variation of growing-season normalized difference vegetation index for the Sahel 1981-1989

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Newcomb, W. W.; Los, S. O.; Prince, S. D.

    1991-01-01

    Images are presented that show the mean and coefficient of variation of nine years (1981-1989) of NOAA AVHRR normalized difference vegetation index (NDVI) data for the growing season (July-October) in Africa, north of the equator. The variation in the growing season NDVI is represented by the coefficient of variation image that shows the large variation in the Sahelian growing season between years. It is concluded that these images illustrate some aspects of the perspective being brought to regional and continental scale processes by coarse resolution satellite sensors and the potential of these sensors to provide consistent, long-term datasets.

  6. Satellite-derived leaf-area-index and vegetation maps as input to global carbon cycle models - A hierarchical approach

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Macdonald, R. B.; Mehta, N. C.

    1986-01-01

    A hierarchical procedure for developing a leaf area index (LAI) map of deciduous boreal forests is studied. The collection of spectral reflectance data from the Boundary Waters Canoe area in Minnesota using helicopter-, high-altitude aircraft-, and Landsat-mounted spectral sensors is described. The relationship between LAI and biomass and the reflectance ratio is analyzed. The sensitivity of canopy reflectance in the visible and infrared to the LAI of the canopy for various boreal forest species is evaluated. The data reveal that Landsat data are useful for producing LAI maps of deciduous forest areas and the maps provide data which clarifies the function of vegetation in the global carbon cycle models.

  7. Study of vegetation index selection and changing detection thresholds in land cover change detection assessment using change vector analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Duy; Tran, Giang

    2012-07-01

    In recent years, Vietnamese rapidly developing economy has led to speedy changes in land cover. The study of changing detection of land cover plays an important role in making the strategy of the managers. There are two main approaches in changing detection research by using remote sensing and GIS: post- classification change detection analysis approach and pre-classification changing spectral determination approach. Each has their own different advantages and disadvantages. The second one is further divided into: Image Differencing, Multi-date Principal Component Analysis (MPCA); Change Vector Analysis (CVA). In this study, researchers introduce CVA method. This method is based on two important index to show the primary feature of land cover, such as: vegetation index (NDVI-) and barren land index (-BI). Ability to apply methods of CVA has been mentioned in the studies [1, 2, 3, and 4]. However, in these studies did not mention the NDVI index selection and changing detection threshold in changing detection assessment? This paper proposes application to solve these two problems.

  8. Estimation of Anticipated Performance Index and Air Pollution Tolerance Index and of vegetation around the marble industrial areas of Potwar region: bioindicators of plant pollution response.

    PubMed

    Noor, Mehwish Jamil; Sultana, Shazia; Fatima, Sonia; Ahmad, Mushtaq; Zafar, Muhammad; Sarfraz, Maliha; Balkhyour, Masour A; Safi, Sher Zaman; Ashraf, Muhammad Aqeel

    2015-06-01

    Mitigating industrial air pollution is a big challenge, in such scenario screening of plants as a bio monitor is extremely significant. It requires proper selection and screening of sensitive and tolerant plant species which are bio indicator and sink for air pollution. The present study was designed to evaluate the Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API) of the common flora. Fifteen common plant species from among trees, herb and shrubs i.e. Chenopodium album (Chenopodiaceae), Parthenium hysterophorus (Asteraceae), Amaranthus viridis (Amaranthaceae), Lantana camara (Verbenaceaea), Ziziphus nummulari (Rhamnaceae), Silibum merianum (Asteraceae), Cannabis sativa (Cannabinaceae), Calatropis procera (Asclepediaceae), Ricinus communis (Euphorbiaceae), Melia azadirachta (Meliaceae), Psidium guajava (Myrtaceae), Eucalyptus globules (Myrtaceae), Broussonetia papyrifera (Moraceae), Withania somnifera (Solanaceae) and Sapium sabiferum (Euphorbiaceae) were selected growing frequently in vicinity of Marble industries in Potwar region. APTI and API of selected plant species were analyzed by determining important biochemical parameter i.e. total chlorophyll, ascorbic acid, relative water content and pH etc. Furthermore the selected vegetation was studied for physiological, economic, morphological and biological characteristics. The soil of studied sites was analyzed. It was found that most the selected plant species are sensitive to air pollution. However B. papyrifera, E. globulus and R. communis shows the highest API and therefore recommended for plantation in marble dust pollution stress area.

  9. Estimation of Anticipated Performance Index and Air Pollution Tolerance Index and of vegetation around the marble industrial areas of Potwar region: bioindicators of plant pollution response.

    PubMed

    Noor, Mehwish Jamil; Sultana, Shazia; Fatima, Sonia; Ahmad, Mushtaq; Zafar, Muhammad; Sarfraz, Maliha; Balkhyour, Masour A; Safi, Sher Zaman; Ashraf, Muhammad Aqeel

    2015-06-01

    Mitigating industrial air pollution is a big challenge, in such scenario screening of plants as a bio monitor is extremely significant. It requires proper selection and screening of sensitive and tolerant plant species which are bio indicator and sink for air pollution. The present study was designed to evaluate the Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API) of the common flora. Fifteen common plant species from among trees, herb and shrubs i.e. Chenopodium album (Chenopodiaceae), Parthenium hysterophorus (Asteraceae), Amaranthus viridis (Amaranthaceae), Lantana camara (Verbenaceaea), Ziziphus nummulari (Rhamnaceae), Silibum merianum (Asteraceae), Cannabis sativa (Cannabinaceae), Calatropis procera (Asclepediaceae), Ricinus communis (Euphorbiaceae), Melia azadirachta (Meliaceae), Psidium guajava (Myrtaceae), Eucalyptus globules (Myrtaceae), Broussonetia papyrifera (Moraceae), Withania somnifera (Solanaceae) and Sapium sabiferum (Euphorbiaceae) were selected growing frequently in vicinity of Marble industries in Potwar region. APTI and API of selected plant species were analyzed by determining important biochemical parameter i.e. total chlorophyll, ascorbic acid, relative water content and pH etc. Furthermore the selected vegetation was studied for physiological, economic, morphological and biological characteristics. The soil of studied sites was analyzed. It was found that most the selected plant species are sensitive to air pollution. However B. papyrifera, E. globulus and R. communis shows the highest API and therefore recommended for plantation in marble dust pollution stress area. PMID:25503327

  10. A Rapidly Prototyped Vegetation Dryness Index Evaluated for Wildfire Risk Assessment at Stennis Space Center

    NASA Technical Reports Server (NTRS)

    Ross, Kenton; Graham, William; Prados, Don; Spruce, Joseph

    2007-01-01

    MVDI, which effectively involves the differencing of NDMI and NDVI, appears to display increased noise that is consistent with a differencing technique. This effect masks finer variations in vegetation moisture, preventing MVDI from fulfilling the requirement of giving decision makers insight into spatial variation of fire risk. MVDI shows dependencies on land cover and phenology which also argue against its use as a fire risk proxy in an area of diverse and fragmented land covers. The conclusion of the rapid prototyping effort is that MVDI should not be implemented for SSC decision support.

  11. Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions

    NASA Astrophysics Data System (ADS)

    Fang, Shibo; Yu, Weiguo; Qi, Yue

    2015-06-01

    Similar to vascular plants, non-vascular plant mosses have different periods of seasonal growth. There has been little research on the spectral variations of moss soil crust (MSC) over different growth periods. Few studies have paid attention to the difference in spectral characteristics between wet MSC that is photosynthesizing and dry MSC in suspended metabolism. The dissimilarity of MSC spectra in wet and dry conditions during different seasons needs further investigation. In this study, the spectral reflectance of wet MSC, dry MSC and the dominant vascular plant (Artemisia) were characterized in situ during the summer (July) and autumn (September). The variations in the normalized difference vegetation index (NDVI), biological soil crust index (BSCI) and CI (crust index) in different seasons and under different soil moisture conditions were also analyzed. It was found that (1) the spectral characteristics of both wet and dry MSCs varied seasonally; (2) the spectral features of wet MSC appear similar to those of the vascular plant, Artemisia, whether in summer or autumn; (3) both in summer and in autumn, much higher NDVI values were acquired for wet than for dry MSC (0.6 ∼ 0.7 vs. 0.3 ∼ 0.4 units), which may lead to misinterpretation of vegetation dynamics in the presence of MSC and with the variations in rainfall occurring in arid and semi-arid zones; and (4) the BSCI and CI values of wet MSC were close to that of Artemisia in both summer and autumn, indicating that BSCI and CI could barely differentiate between the wet MSC and Artemisia.

  12. Refractive index detection range adjustable liquid-core fiber optic sensor based on surface plasmon resonance and a nano-porous silica coating

    NASA Astrophysics Data System (ADS)

    Chen, Yuzhi; Li, Xuejin; Zhou, Huasheng; Hong, Xueming; Geng, Youfu

    2016-09-01

    A liquid-core fiber optic surface plasmon resonance sensor with an adjustable nano-porous silica coating is first presented in this paper. By adjusting the refractive index of the nano-porous silica coating, the sensor can be used in different refractive index detection ranges. A low refractive index interval of 1.33-1.34 and a high refractive index interval of 1.42-1.44 are taken as examples to be investigated. Results show that our sensor works well in these two intervals by using appropriate nano-porous silica coatings. The highest sensitivities of the low and high refractive index intervals are obtained to be 5840 nm/RIU and 5120 nm/RIU, respectively. In addition, the sensing performances and the working wavelengths can be adjusted to meet different working requirements by changing the refractive index of the nano-porous silica coating. We also take the single mode incidence cases to explain the effects of different single incident light modes on the sensing performances.

  13. Refractive index detection range adjustable liquid-core fiber optic sensor based on surface plasmon resonance and a nano-porous silica coating

    NASA Astrophysics Data System (ADS)

    Chen, Yuzhi; Li, Xuejin; Zhou, Huasheng; Hong, Xueming; Geng, Youfu

    2016-09-01

    A liquid-core fiber optic surface plasmon resonance sensor with an adjustable nano-porous silica coating is first presented in this paper. By adjusting the refractive index of the nano-porous silica coating, the sensor can be used in different refractive index detection ranges. A low refractive index interval of 1.33–1.34 and a high refractive index interval of 1.42–1.44 are taken as examples to be investigated. Results show that our sensor works well in these two intervals by using appropriate nano-porous silica coatings. The highest sensitivities of the low and high refractive index intervals are obtained to be 5840 nm/RIU and 5120 nm/RIU, respectively. In addition, the sensing performances and the working wavelengths can be adjusted to meet different working requirements by changing the refractive index of the nano-porous silica coating. We also take the single mode incidence cases to explain the effects of different single incident light modes on the sensing performances.

  14. Estimates of evapotranspiration for riparian sites (Eucalyptus) in the Lower Murray -Darling Basin using ground validated sap flow and vegetation index scaling techniques

    NASA Astrophysics Data System (ADS)

    Doody, T.; Nagler, P. L.; Glenn, E. P.

    2014-12-01

    Water accounting is becoming critical globally, and balancing consumptive water demands with environmental water requirements is especially difficult in in arid and semi-arid regions. Within the Murray-Darling Basin (MDB) in Australia, riparian water use has not been assessed across broad scales. This study therefore aimed to apply and validate an existing U.S. riparian ecosystem evapotranspiration (ET) algorithm for the MDB river systems to assist water resource managers to quantify environmental water needs over wide ranges of niche conditions. Ground-based sap flow ET was correlated with remotely sensed predictions of ET, to provide a method to scale annual rates of water consumption by riparian vegetation over entire irrigation districts. Sap flux was measured at nine locations on the Murrumbidgee River between July 2011 and June 2012. Remotely sensed ET was calculated using a combination of local meteorological estimates of potential ET (ETo) and rainfall and MODIS Enhanced Vegetation Index (EVI) from selected 250 m resolution pixels. The sap flow data correlated well with MODIS EVI. Sap flow ranged from 0.81 mm/day to 3.60 mm/day and corresponded to a MODIS-based ET range of 1.43 mm/day to 2.42 mm/day. We found that mean ET across sites could be predicted by EVI-ETo methods with a standard error of about 20% across sites, but that ET at any given site could vary much more due to differences in aquifer and soil properties among sites. Water use was within range of that expected. We conclude that our algorithm developed for US arid land crops and riparian plants is applicable to this region of Australia. Future work includes the development of an adjusted algorithm using these sap flow validated results.

  15. Use of the Normalized Difference Vegetation Index to Assess Vegetative Nutritive Value in Halophytic Graminoid Habitat across Alaska's Arctic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Hogrefe, K. R.; Ward, D. H.; Budde, M. E.; Ruthrauff, D. R.; Hupp, J. W.

    2015-12-01

    Climate change will likely alter the seasonal nutrient abundance and general distribution of halophytic graminoid (salt marsh) habitat across the Arctic Coastal Plain. Halophytic graminoids are key forage for newly hatched Black Brant, Lesser Snow and Greater White-fronted Geese and the timing and degree of seasonal nutrient abundance in these plants is critical for gosling growth and survival. After 5 years of research (culminating in 2015) under the USGS Alaska Science Center's Changing Arctic Ecosystems Initiative, we found strong relationships between the Normalized Difference Vegetation Index (NDVI) and nutrient abundance (N g/m2) and availability (%N) in halophytic graminoid habitat. The relationships between NDVI and nutrient abundance and availability were strong whether using NDVI derived from high (spectrometer), moderate (WorldView-2 satellite) or low (eMODIS satellite) resolution data. Correlations established and validated at one location were used to predict nutrient abundance using NDVI readings from other locations, allowing interpretation of satellite derived NDVI in terms of nutrient abundance across broad areas of mapped salt marsh habitat. Further, NDVI seasonal timelines were used to predict the timing of peak nutrient availability using the period of most rapid increase in NDVI value. Currently, we are using WorldView-2 imagery to create vegetation maps of the central Arctic coastal zone (~20 km inland) of Alaska, covering approximately 1000 km of coastline, with a focus on identifying all salt marshes. Such maps will enable monitoring programs and allow for modeling to predict spatial and temporal changes in halophytic graminoid habitat and the nutrients available to geese in the early stages of life.

  16. Spectral Reflectance and Vegetation Index Changes in Deciduous Forest Foliage Following Tree Removal: Potential for Deforestation Monitoring

    NASA Astrophysics Data System (ADS)

    Peng, D.; Hu, Y.; Li, Z.

    2016-05-01

    It is important to detect and quantify deforestation to guide strategic decisions regarding environment, socioeconomic development, and climate change. In the present study, we conducted a field experiment to examine spectral reflectance and vegetation index changes in poplar and locust tree foliage with different leaf area indices over the course of three sunny days, following tree removal from the canopy. The spectral reflectance of foliage from harvested trees was measured using an ASD FieldSpec Prospectroradiometer; synchronous meteorological data were also obtained. We found that reflectance in short-wave infrared and red-edge reflectance was more time sensitive after tree removal than reflectance in other spectral regions, and that the normalized difference water index (NDWI) and the red-edge chlorophyll index (CIRE) were the preferred indicators of these changes from several indices evaluated. Synthesized meteorological environments were found to influence water and chlorophyll contents after tree removal, and this subsequently changed the spectral canopy reflectance. Our results indicate the potential for such tree removal to be detected with NDWI or CIRE from the second day of a deforestation event.

  17. A 30-Year Multi-Sensor Vegetation Index and Land Surface Phenology Data Record: Methods Challenges and Potentials

    NASA Astrophysics Data System (ADS)

    Didan, K.; Barreto-munoz, A.; Miura, T.; Tsend-Ayush, J.

    2013-12-01

    During the last five years the Vegetation Index and Phenology Lab. (vip.arizona.edu) embarked on an effort to process a global multi-sensor Earth Science Data Record of NDVI, EVI2, and land surface Phenology. Data from AVHRR, MODIS, and SPOT-VGT, covering the period 1981 to present, were processed into a seamless and sensor independent record using a suite of community algorithms for data filtering, across-sensor continuity, Vegetation Index (NDVI and EVI2), land surface Phenology, and spatial and temporal gap filling. Currently at Version 3.0 these ESDRs are suitable for the study of land surface vegetation dynamics, long term change and trends, anomalies, and can support various ecosystem and climate modeling efforts by providing key parameters. While adapting the various algorithms to processing this new data record many challenges emerged, ranging from excessive missing and poor quality data to complex and temporally dependent divergence across the various sensors making continuity quite difficult. The first step to addressing these challenges was the adoption of very strict and low tolerance to noise data filters, where the intrinsic input data quality is used along with the long term expected dynamic range to screen for outliers and poor quality. A sophisticated and explicit per-pixel and seasonally dependent across-sensor translation algorithm was developed to address the continuity more properly. To generate the land surface phenology we adapted various community algorithms to work with and take advantage of this new record. Both the standard MODIS Vegetation dynamic algorithm and an in-house homogeneous cluster algorithm were applied to the data. We've also completed a spatially and temporally explicit error and uncertainty characterization of this record. Results indicate a VI error in the range of 5-10% VI units and a 5-40 days error in the date dependent phenology parameters, with an average error of 15 days. This VIP record accounts now for more than

  18. Consumption Frequency of Foods Away from Home Linked with Higher Body Mass Index and Lower Fruit and Vegetable Intake among Adults: A Cross-Sectional Study

    PubMed Central

    Seguin, Rebecca A.; Aggarwal, Anju; Vermeylen, Francoise; Drewnowski, Adam

    2016-01-01

    Introduction. Consumption of foods prepared away from home (FAFH) has grown steadily since the 1970s. We examined the relationship between FAFH and body mass index (BMI) and fruit and vegetable (FV) consumption. Methods. Frequency of FAFH, daily FV intake, height and weight, and sociodemographic data were collected using a telephone survey in 2008-2009. Participants included a representative sample of 2,001 adult men and women (mean age 54 ± 15 years) residing in King County, WA, with an analytical sample of 1,570. Frequency of FAFH was categorized as 0-1, 2–4, or 5+ times per week. BMI was calculated from self-reported height and weight. We examined the relationship between FAFH with FV consumption and BMI using multivariate models. Results. Higher frequency of FAFH was associated with higher BMI, after adjusting for age, income, education, race, smoking, marital status, and physical activity (women: p = 0.001; men: p = 0.003). There was a negative association between frequency of FAFH and FV consumption. FAFH frequency was significantly (p < 0.001) higher among males than females (43.1% versus 54.0% eating out 0-1 meal per week, resp.). Females reported eating significantly (p < 0.001) more FV than males. Conclusion. Among adults, higher frequency of FAFH was related to higher BMI and less FV consumption. PMID:26925111

  19. Seasonality of Rotavirus in South Asia: A Meta-Analysis Approach Assessing Associations with Temperature, Precipitation, and Vegetation Index

    PubMed Central

    Jagai, Jyotsna S.; Sarkar, Rajiv; Castronovo, Denise; Kattula, Deepthi; McEntee, Jesse; Ward, Honorine; Kang, Gagandeep; Naumova, Elena N.

    2012-01-01

    Background Rotavirus infection causes a significant proportion of diarrhea in infants and young children worldwide leading to dehydration, hospitalization, and in some cases death. Rotavirus infection represents a significant burden of disease in developing countries, such as those in South Asia. Methods We conducted a meta-analysis to examine how patterns of rotavirus infection relate to temperature and precipitation in South Asia. Monthly rotavirus data were abstracted from 39 published epidemiological studies and related to monthly aggregated ambient temperature and cumulative precipitation for each study location using linear mixed-effects models. We also considered associations with vegetation index, gathered from remote sensing data. Finally, we assessed whether the relationship varied in tropical climates and humid mid-latitude climates. Results Overall, as well as in tropical and humid mid-latitude climates, low temperature and precipitation levels are significant predictors of an increased rate of rotaviral diarrhea. A 1°C decrease in monthly ambient temperature and a decrease of 10 mm in precipitation are associated with 1.3% and 0.3% increase above the annual level in rotavirus infections, respectively. When assessing lagged relationships, temperature and precipitation in the previous month remained significant predictors and the association with temperature was stronger in the tropical climate. The same association was seen for vegetation index; a seasonal decline of 0.1 units results in a 3.8% increase in rate of rotavirus. Conclusions In South Asia the highest rate of rotavirus was seen in the colder, drier months. Meteorological characteristics can be used to better focus and target public health prevention programs. PMID:22693594

  20. Classifying cropping area of middle Heihe River Basin in China using multitemporal Normalized Difference Vegetation Index data

    NASA Astrophysics Data System (ADS)

    Han, Huibang; Ma, Mingguo; Wang, Xufeng; Ma, Shoucun

    2014-01-01

    Accurate information regarding the structure of crops is critical for the improvement and optimization of land surface models. Multitemporal remote sensing imagery is more effective to determine the crop structure than the single-temporal images because they contain phenological information. Crop structure was extracted based on time series of moderate-resolution imaging spectroradiometer (MODIS) data in the middle Heihe River Basin. A time series of Normalized Difference Vegetation Index (NDVI) data with a 3-day temporal resolution was composed based on daily MODIS reflectance products (MOD 09) from January to December 2011. A total of 120 scenes of composited imagery were integrated into an image data cube of NDVI time series, which was used to extract crop structure for the study area. The spectral curves of corn, wheat, rape, vegetables, and other crops are based on both in situ measurements and visual interpretation. The major crop types were classified by using the adaptive boosting (Adaboost) and support vector machine (SVM) algorithms. The results show that the classification accuracy of Adaboost and SVM was 86.01% and 70.28%, respectively, with Kappa coefficients of 0.8351 and 0.6438, respectively. Summarizing the classification methods used in this study effectively characterize the spatial distribution of the main crops.

  1. Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Luguang; Feng, Zhiming; Sheldon, Sage; Xiao, Xiangming

    2016-06-01

    Mapping rice cropping systems with optical imagery in multiple cropping regions is challenging due to cloud contamination and data availability; development of a phenology-based algorithm with a reduced data demand is essential. In this study, the Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) was proposed based on two temporal windows in which the NDVI values of single and early (or late) rice display inverse changes, and then applied to discriminate rice cropping systems. The Poyang Lake Region (PLR), characterized by a typical cropping system of single cropping rice (SCR, or single rice) and double cropping rice (DCR, including early rice and late rice), was selected as a testing area. The results showed that NDVI data derived from Landsat time-series at eight to sixteen days captures the temporal development of paddy rice. There are two key phenological stages during the overlapping growth period in which the NDVI values of SCR and DCR change inversely, namely the ripening phase of early rice and the growing phase of single rice as well as the ripening stage of single rice and the growing stage of late rice. NDVI derived from scenes in two temporal windows, specifically early August and early October, was used to construct the RNDVI for discriminating rice cropping systems in the polder area of the PLR, China. Comparison with ground truth data indicates high classification accuracy. The RNDVI approach highlights the inverse variations of NDVI values due to the difference of rice growth between two temporal windows. This makes the discrimination of rice cropping systems straightforward as it only needs to distinguish whether the candidate rice type is in the period of growth (RNDVI<0) or senescence (RNDVI>0).

  2. Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches

    NASA Astrophysics Data System (ADS)

    Corenblit, Dov; Tabacchi, Eric; Steiger, Johannes; Gurnell, Angela M.

    2007-09-01

    Until recently, one-way relationships between flow dynamics, geomorphology and plant ecology were considered dominantly when studying the functioning of river systems, whereby fluvial landforms and hydrogeomorphic processes drive the evolution of riparian plant communities. However, biological communities may significantly control geomorphic processes and have strong impacts on landform dynamics. In order to fully identify the processes linked to river dynamics (changes in time and space of fluvial landforms and associated plant communities), conceptual multidisciplinary progress is clearly needed. To understand the mutual interactions and feedbacks between fluvial landforms and vegetation community dynamics, this paper presents a detailed literature review of fluvial geomorphology, riparian plant ecology and hydraulic engineering knowledge. The historical and recent development of ecological plant succession theory toward the integration of hydrogeomorphic disturbances is discussed as well as the integration of vegetation within geomorphology as a significant landform control factor, incorporating both hydrogeomorphic controls on riparian vegetation dynamics and mechanical impacts of vegetation structures on flow properties and sediment dynamics. Recent progress in ecology, hydraulic engineering and fluvial geomorphology emphasises interdependence between biological and physical forms and processes. Based on this literature review, a 'fluvial biogeomorphic succession' concept is proposed to link fluvial landform and riparian vegetation community evolution within a bi-directional model. The succession of fluvial landforms and associated vegetation communities is composed of four main critical phases that represent a shift in the relative dominance of hydrogeomorphic and ecological processes as a response to biostabilisation and passive bioconstruction processes. The positive feedbacks associated with this shift lead to the development of characteristic

  3. Assessing of Subpixel Land Surface Temperature from Multi-Windows Correlation of Vegetation Index-Radiometric Temperature

    NASA Astrophysics Data System (ADS)

    Xiong, J.; Wang, W.; Hashimoto, H.; Zhang, G.; Ganguly, S.; Nemani, R. R.

    2012-12-01

    Land surface temperature (LST) is a very important physical parameter to various scientific studies. Due to a relatively lower thermal radiation emitted by land surfaces, most satellite sensors are not capable of providing as much finer-scale image in thermal bands as in visible and short infrared ones. For many landscapes, variability in LST is driven primarily by vegetation cover amount. Tradtionally, the relationship between a vegetation index/variable (e.g., the Normalized Difference Vegetation Index, NDVI) and radiometric surface temperature can be addressed by a polynomial or power function. However, such degree of correlation varies widely among the different landscapes and leads to great uncertainty in scaled values. Based on the Stefan-Boltzmann law, this study proposed scaling approaches for LST to retrieve optimized VI-LST correlation with variable-size sliding windows. To take advantage of simultaneous, multi-resolution observations at coincident nadirs by the Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) and the MODerate-resolution Imaging Spectroradiometer (MODIS), LST products from these two sensors were collected for part of the North China. Firstly, resampled 1km MODIS / LST and MODIS NDVI, MODIS SAVI and fv are analyzed to calculate correlation coefficient according to various size windows. Secondly, dividing or aggregating the windows to achieve the biggest correlation coefficient within new windows, called "dynamic optimization", is carried out following the first step results. Finally, the VIs/TS relationships were employed to estimate the 250 m resolution subpixel temperature with inputs of VIs and optimized windows. Coincident nadirs 90-m ASTER LST data, which was scaled up to 250m on the basis of the scale invariance of thermal radiance, was used for verifying the estimated subpixel temperature. The results show that the estimated temperature distribution was well consistent with that of ASTER LST data after terrain

  4. Comparison of sap flux, moisture flux tower and MODIS enhanced vegetation index methods for estimating riparian evapotranspiration

    USGS Publications Warehouse

    Nagler, Pamela L.; Glenn, Edward P.; Morino, Kiyomi; Neale, Christopher M.U; Cosh, Michael H.

    2010-01-01

    Riparian evapotranspiration (ET) was measured on a salt cedar (Tamarix spp.) dominated river terrace on the Lower Colorado River from 2007 to 2009 using tissue-heat-balance sap flux sensors at six sites representing very dense, medium dense, and sparse stands of plants. Salt cedar ET varied markedly across sites, and sap flux sensors showed that plants were subject to various degrees of stress, detected as mid-day depression of transpiration and stomatal conductance. Sap flux results were scaled from the leaf level of measurement to the stand level by measuring plant-specific leaf area index and fractional ground cover at each site. Results were compared to Bowen ratio moisture tower data available for three of the sites. Sap flux sensors and flux tower results ranked the sites the same and had similar estimates of ET. A regression equation, relating measured ET of salt cedar and other riparian plants and crops on the Lower Colorado River to the Enhanced Vegetation Index from the MODIS sensor on the Terra satellite and reference crop ET measured at meteorological stations, was able to predict actual ET with an accuracy or uncertainty of about 20%, despite between-site differences for salt cedar. Peak summer salt cedar ET averaged about 6 mm d-1 across sites and methods of measurement.

  5. Empirical Relationship Between Leaf Biomass of Red Pine Forests and Enhanced Vegetation Index in South Korea Using LANDSAT-5 TM

    NASA Astrophysics Data System (ADS)

    Gusso, A.; Lee, J.; Son, Y.; Son, Y. M.

    2016-06-01

    Research on forest carbon (C) dynamics has been undertaken due to the importance of forest ecosystems in national C inventories. Currently, the C sequestration of South Korean forests surpasses that of other countries. In South Korea, Pinus densiflora (red pine) is the most abundant tree species. Thus, understanding the growth rate and biomass evolution of red pine forest in South Korea is important for estimating the forest C dynamics. In this paper, we derived empirical relationship between foliage biomass and the no blue band enhanced vegetation index (EVI-2) profile using both field work and multi-temporal Landsat-5 TM remote sensing data to estimate the productivity of forest biomass in South Korea. Our analysis combined a set of 84 Landsat-5 TM images from 28 different dates between 1986 and 2008 to study red pine forest development over time. Field data were collected from 30 plots (0.04 ha) that were irregularly distributed over South Korea. Individual trees were harvested by destructive sampling, and the age of trees were determined by the number of tree rings. The results are realistic (R2&thinsp=&thinsp0.81, p < 0.01) and suggest that the EVI-2 index is able to adequately represent the development profile of foliage biomass in red pine forest growth.

  6. Trends in the normalized difference vegetation index (NDVI) associated with urban development in arctic and subarctic Western Siberia

    NASA Astrophysics Data System (ADS)

    Outten, S.; Miles, V.; Ezau, I.

    2015-12-01

    Changes in normalized difference vegetation index (NDVI) in the high Arctic have been reliably documented, with widespread "greening" (increase in NDVI), specifically along the northern rim of Eurasia and Alaska. Whereas in West Siberia south of 65N, widespread "browning" (decrease in NDVI) has been noted, although the causes remain largely unclear. In this study we report results of statistical analysis of the spatial and temporal changes in NDVI around 28 major urban areas in the arctic and subarctic Western Siberia. Exploration and exploitation of oil and gas reserves has led to rapid industrialization and urban development in the region. This development has significant impact on the environment and particularly in the vegetation cover in and around the urbanized areas. The analysis is based on 15 years (2000-2014) of high-resolution (250 m) Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired for summer months (June through August) over the entire arctic and subarctic Western Siberian region. The analysis shows that the NDVI background trends are generally in agreement with the trends reported in previous coarse-resolution NDVI studies. Our study reveals greening over the arctic (tundra and tundra-forest) part of the region. Simultaneously, the southern (boreal taiga forest) part is browning, with the more densely vegetation areas or areas with highest NDVI, particularly along Ob River showing strong negative trend. The unexpected and interesting finding of the study is statistically robust indication of the accelerated increase of NDVI ("greening") in the older urban areas. Many Siberian cities become greener even against the decrease in the NDVI background. Moreover, interannual variations of urban NDVI are not coherent with the NDVI background variability. We also find that in tundra zones, NDVI values are higher in a 5-10 km buffer zone around the city edge than in rural areas (40 km distance from the city edge), and in taiga in a 5-10 km

  7. Phenome-wide association studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index

    PubMed Central

    Cronin, Robert M.; Field, Julie R.; Bradford, Yuki; Shaffer, Christian M.; Carroll, Robert J.; Mosley, Jonathan D.; Bastarache, Lisa; Edwards, Todd L.; Hebbring, Scott J.; Lin, Simon; Hindorff, Lucia A.; Crane, Paul K.; Pendergrass, Sarah A.; Ritchie, Marylyn D.; Crawford, Dana C.; Pathak, Jyotishman; Bielinski, Suzette J.; Carrell, David S.; Crosslin, David R.; Ledbetter, David H.; Carey, David J.; Tromp, Gerard; Williams, Marc S.; Larson, Eric B.; Jarvik, Gail P.; Peissig, Peggy L.; Brilliant, Murray H.; McCarty, Catherine A.; Chute, Christopher G.; Kullo, Iftikhar J.; Bottinger, Erwin; Chisholm, Rex; Smith, Maureen E.; Roden, Dan M.; Denny, Joshua C.

    2014-01-01

    Phenome-wide association studies (PheWAS) have demonstrated utility in validating genetic associations derived from traditional genetic studies as well as identifying novel genetic associations. Here we used an electronic health record (EHR)-based PheWAS to explore pleiotropy of genetic variants in the fat mass and obesity associated gene (FTO), some of which have been previously associated with obesity and type 2 diabetes (T2D). We used a population of 10,487 individuals of European ancestry with genome-wide genotyping from the Electronic Medical Records and Genomics (eMERGE) Network and another population of 13,711 individuals of European ancestry from the BioVU DNA biobank at Vanderbilt genotyped using Illumina HumanExome BeadChip. A meta-analysis of the two study populations replicated the well-described associations between FTO variants and obesity (odds ratio [OR] = 1.25, 95% Confidence Interval = 1.11–1.24, p = 2.10 × 10−9) and FTO variants and T2D (OR = 1.14, 95% CI = 1.08–1.21, p = 2.34 × 10−6). The meta-analysis also demonstrated that FTO variant rs8050136 was significantly associated with sleep apnea (OR = 1.14, 95% CI = 1.07–1.22, p = 3.33 × 10−5); however, the association was attenuated after adjustment for body mass index (BMI). Novel phenotype associations with obesity-associated FTO variants included fibrocystic breast disease (rs9941349, OR = 0.81, 95% CI = 0.74–0.91, p = 5.41 × 10−5) and trends toward associations with non-alcoholic liver disease and gram-positive bacterial infections. FTO variants not associated with obesity demonstrated other potential disease associations including non-inflammatory disorders of the cervix and chronic periodontitis. These results suggest that genetic variants in FTO may have pleiotropic associations, some of which are not mediated by obesity. PMID:25177340

  8. An index of unhealthy lifestyle is associated with coronary heart disease mortality rates for small areas in England after adjustment for deprivation.

    PubMed

    Scarborough, P; Allender, S; Rayner, M; Goldacre, M

    2011-03-01

    Indices of socio-economic deprivation are often used as a proxy for differences in the health behaviours of populations within small areas, but these indices are a measure of the economic environment rather than the health environment. Sets of synthetic estimates of the ward-level prevalence of low fruit and vegetable consumption, obesity, raised blood pressure, raised cholesterol and smoking were combined to develop an index of unhealthy lifestyle. Multi-level regression models showed that this index described about 50% of the large-scale geographic variation in CHD mortality rates in England, and substantially adds to the ability of an index of deprivation to explain geographic variations in CHD mortality rates.

  9. Interannual Variations and Trends in Global Land Surface Phenology Derived from Enhanced Vegetation Index During 1982-2010

    NASA Technical Reports Server (NTRS)

    Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue

    2014-01-01

    Land swiace phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstmted to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This srudy detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examIned across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and OSL varied considerably during 1982-2010 across the globe. Generally, the interarmual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative OSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3

  10. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982-2010

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue

    2014-05-01

    Land surface phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstrated to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This study detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examined across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and GSL varied considerably during 1982-2010 across the globe. Generally, the interannual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative GSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3

  11. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982-2010.

    PubMed

    Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue

    2014-05-01

    Land surface phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstrated to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This study detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examined across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and GSL varied considerably during 1982-2010 across the globe. Generally, the interannual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative GSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3

  12. Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982-2010.

    PubMed

    Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue

    2014-05-01

    Land surface phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstrated to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This study detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examined across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and GSL varied considerably during 1982-2010 across the globe. Generally, the interannual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative GSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3

  13. Relating seasonal dynamics of enhanced vegetation index to the recycling of water in two endorheic river basins in north-west China

    NASA Astrophysics Data System (ADS)

    Matin, M. A.; Bourque, C. P.-A.

    2015-08-01

    This study associates the dynamics of enhanced vegetation index in lowland desert oases to the recycling of water in two endorheic (hydrologically closed) river basins in Gansu Province, north-west China, along a gradient of elevation zones and land cover types. Each river basin was subdivided into four elevation zones representative of (i) oasis plains and foothills, and (ii) low-, (iii) mid-, and (iv) high-mountain elevations. Comparison of monthly vegetation phenology with precipitation and snowmelt dynamics within the same basins over a 10-year period (2000-2009) suggested that the onset of the precipitation season (cumulative % precipitation > 7-8 %) in the mountains, typically in late April to early May, was triggered by the greening of vegetation and increased production of water vapour at the base of the mountains. Seasonal evolution of in-mountain precipitation correlated fairly well with the temporal variation in oasis-vegetation coverage and phenology characterised by monthly enhanced vegetation index, yielding coefficients of determination of 0.65 and 0.85 for the two basins. Convergent cross-mapping of related time series indicated bi-directional causality (feedback) between the two variables. Comparisons between same-zone monthly precipitation amounts and enhanced vegetation index provided weaker correlations. Start of the growing season in the oases was shown to coincide with favourable spring warming and discharge of meltwater from low- to mid-elevations of the Qilian Mountains (zones 1 and 2) in mid-to-late March. In terms of plant requirement for water, mid-seasonal development of oasis vegetation was seen to be controlled to a greater extent by the production of rain in the mountains. Comparison of water volumes associated with in-basin production of rainfall and snowmelt with that associated with evaporation seemed to suggest that about 90 % of the available liquid water (i.e. mostly in the form of direct rainfall and snowmelt in the mountains

  14. Normalized Difference Vegetation Index as a tool for wheat yield estimation: a case study from Faisalabad, Pakistan.

    PubMed

    Sultana, Syeda Refat; Ali, Amjed; Ahmad, Ashfaq; Mubeen, Muhammad; Zia-Ul-Haq, M; Ahmad, Shakeel; Ercisli, Sezai; Jaafar, Hawa Z E

    2014-01-01

    For estimation of grain yield in wheat, Normalized Difference Vegetation Index (NDVI) is considered as a potential screening tool. Field experiments were conducted to scrutinize the response of NDVI to yield behavior of different wheat cultivars and nitrogen fertilization at agronomic research area, University of Agriculture Faisalabad (UAF) during the two years 2008-09 and 2009-10. For recording the value of NDVI, Green seeker (Handheld-505) was used. Split plot design was used as experimental model in, keeping four nitrogen rates (N1 = 0 kg ha(-1), N2 = 55 kg ha(-1), N3 = 110 kg ha(-1), and N4 = 220 kg ha(-1)) in main plots and ten wheat cultivars (Bakkhar-2001, Chakwal-50, Chakwal-97, Faisalabad-2008, GA-2002, Inqlab-91, Lasani-2008, Miraj-2008, Sahar-2006, and Shafaq-2006) in subplots with four replications. Impact of nitrogen and difference between cultivars were forecasted through NDVI. The results suggested that nitrogen treatment N4 (220 kg ha(-1)) and cultivar Faisalabad-2008 gave maximum NDVI value (0.85) at grain filling stage among all treatments. The correlation among NDVI at booting, grain filling, and maturity stages with grain yield was positive (R(2) = 0.90; R(2) = 0.90; R(2) = 0.95), respectively. So, booting, grain filling, and maturity can be good depictive stages during mid and later growth stages of wheat crop under agroclimatic conditions of Faisalabad and under similar other wheat growing environments in the country. PMID:25045744

  15. [Vegetable oil-induced acute respiratory distress syndrome (ARDS) in near drowning: evaluation based on extravascular lung water index].

    PubMed

    Yoshida, Takeshi; Rinka, Hiroshi; Kaji, Arito

    2008-06-01

    Lipoid pneumonia usually presents after chronic recurrent ingestion of oily substances or accidental aspiration during "fire-eating" demonstrations. Massive exposure by near drowning extremely rare and potentially fatal. We present here a case of survival after total immersion in oil in her workplace. A 66-year-old woman who nearly drowned in a vat of vegetable oil was admitted as an emergency case with severe hypoxia after rescue. Chest computed tomography (CT) findings showed bilateral ground-glass opacity, consolidation, and the case fulfilled the criteria for acute respiratory distress syndrome (ARDS). Bronchoscopy and bronchoalveolar lavage performed on admission indicated oil droplets and marked neutrophilia (67%), which made us diagnose ARDS induced by lipoid pneumonia. We commenced treatment with pulsed steroids and strictly managed fluid balance under mechanical ventilation. Despite immediate improvement in oxygenation, the value of extravascular lung water index (EVLWI) measured by the PiCCO system consistently remained over 30 ml/Kg through her clinical course. We concluded that lipoid pneumonia is characterized by prolonged elevatation of pulmonary vascular permeability.

  16. Effects of N fertilization on the relationship between photosynthetic light use efficiency and photochemical reflectance index of wetland vegetation

    NASA Astrophysics Data System (ADS)

    Cheng, Qian; Wu, Xiuju

    2010-11-01

    Monitoring of light use efficient (LUE) over space and time is a critical component of climate change research as it is a major determinant of the amount of carbon accumulated by terrestrial ecosystems. PRI (Photochemical reflectance index) has provide a fast and reliable method for estimating photosynthetic light use efficiency across species. The aim of this study was to evaluate the use of ground-based canopy reflectance measurements to detect changes in physiology of wetland vegetation in response to experimental nitrogen (N) treatment. In this paper, Bulrush with different nitrogen fertilization were selected to research the influence of varied fertilization levels on the relationship between PRI and LUE. The results proved that leaf chlorophyll contents as well as canopy PRI increased with the increase in nitrogen fertilization. For different nitrogen fertilization of Bulrush, the regression coefficients R2 varied respectively. Therefore, PRI not only can be a reliable indicator of LUE but also can reflect the growing situation of Bulrush with different precisions of LUE assessment.

  17. Evaluation of the relation between evapotranspiration and normalized difference vegetation index for downscaling the simplified surface energy balance model

    USGS Publications Warehouse

    Haynes, Jonathan V.; Senay, Gabriel B.

    2012-01-01

    The Simplified Surface Energy Balance (SSEB) model uses satellite imagery to estimate actual evapotranspiration (ETa) at 1-kilometer resolution. SSEB ETa is useful for estimating irrigation water use; however, resolution limitations restrict its use to regional scale applications. The U.S. Geological Survey investigated the downscaling potential of SSEB ETa from 1 kilometer to 250 meters by correlating ETa with the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer instrument (MODIS). Correlations were studied in three arid to semiarid irrigated landscapes of the Western United States (Escalante Valley near Enterprise, Utah; Palo Verde Valley near Blythe, California; and part of the Columbia Plateau near Quincy, Washington) during several periods from 2002 to 2008. Irrigation season ETa-NDVI correlations were lower than expected, ranging from R2 of 0.20 to 0.61 because of an eastward 2-3 kilometer shift in ETa data. The shift is due to a similar shift identified in the land-surface temperature (LST) data from the MODIS Terra satellite, which is used in the SSEB model. Further study is needed to delineate the Terra LST shift, its effect on SSEB ETa, and the relation between ETa and NDVI.

  18. Online Measurement of Soil Organic Carbon as Correlated with Wheat Normalised Difference Vegetation Index in a Vertisol Field

    PubMed Central

    Tekin, Yücel; Ulusoy, Yahya; Tümsavaş, Zeynal; Mouazen, Abdul M.

    2014-01-01

    This study explores the potential of visible and near infrared (vis-NIR) spectroscopy for online measurement of soil organic carbon (SOC). It also attempts to explore correlations and similarities between the spatial distribution of SOC and normalized differential vegetation index (NDVI) of a wheat crop. The online measurement was carried out in a clay vertisol field covering 10 ha of area in Karacabey, Bursa, Turkey. Kappa statistics were carried out between different SOC and NDVI data to investigate potential similarities. Calibration model of SOC in full cross-validationresulted in a good accuracy (R2 = 0.75, root mean squares error of prediction (RMSEP) = 0.17%, and ratio of prediction deviation (RPD) = 1.81). The validation of the calibration model using laboratory spectra provided comparatively better prediction accuracy (R2 = 0.70, RMSEP = 0.15%, and RPD = 1.78), as compared to the online measured spectra (R2 = 0.60, RMSEP = 0.20%, and RPD = 1.41). Although visual similarity was clear, low similarity indicated by a low Kappa value of 0.259 was observed between the online vis-NIR predicted full-point (based on all points measured in the field, e.g., 6486 points) map of SOC and NDVI map. PMID:25097882

  19. The Oslo Health Study: a Dietary Index estimating high intake of soft drinks and low intake of fruits and vegetables was positively associated with components of the metabolic syndrome.

    PubMed

    Høstmark, Arne Torbjørn

    2010-12-01

    A previous finding that soft drink intake is associated with increased serum triglycerides and decreased high-density-lipoprotein (HDL) cholesterol, both components of the metabolic syndrome (MetS), raises the question of whether other aspects of an unhealthy diet might be associated with MetS. Main MetS requirements are central obesity and 2 of the following: increased triglycerides, low HDL, increased systolic or diastolic blood pressure, and elevated fasting blood glucose. Of the 18 770 participants in the Oslo Health Study, there were 13 170 respondents (5997 men and 7173 women) with data on MetS factors (except fasting glucose) and on the components used to determine the Dietary Index score (calculated as the intake estimate of soft drinks divided by the sum of intake estimates of fruits and vegetables). MetSRisk was calculated as the sum of arbitrarily weighted factors positively associated with MetS divided by HDL cholesterol. Using regression analyses, the association of the Dietary Index with MetSRisk, with the number of MetS requirements present, and with the complete MetS was studied. In young, middle-aged, and senior men and women, there was, in general, a positive association (p < 0.001) between the Dietary Index and the MetS estimates, which persisted in regression models adjusted for sex, age, time since the last meal, intake of cheese, intake of fatty fish, intake of coffee, intake of alcohol, smoking, physical activity, education, and birthplace. Thus, an index reflecting a high intake of soft drinks and a low intake of fruit and vegetables was positively and independently associated with aspects of MetS.

  20. [Estimation of vegetation water content from Landsat 8 OLI data].

    PubMed

    Zheng, Xing-ming; Ding, Yan-ling; Zhao, Kai; Jiang, Tao; Li, Xiao-feng; Zhang, Shi-yi; Li, Yang-yang; Wu, Li-li; Sun, Jian; Ren, Jian-hua; Zhang, Xuan-xuan

    2014-12-01

    The present paper aims to analyze the capabilities and limitations for retrieving vegetation water content from Landsat8 OLI (Operational Land Imager) sensor-new generation of earth observation program. First, the effect of soil background on canopy reflectance and the sensitive band to vegetation water content were analyzed based on simulated dataset from ProSail model. Then, based on vegetation water indices from Landsat8 OLI and field vegetation water content during June 1 2013 to August 14 2013, the best vegetation water index for estimating vegetation water content was found through comparing 12 different indices. The results show that: (1) red, near infrared and two shortwave infrared bands of OLI sensor are sensitive to the change in vegetation water content, and near infrared band is the most sensitive one; (2) At low vegetation coverage, solar radiation reflected by soil background will reach to spectral sensor and influence the relationship between vegetation water index and vegetation water content, and simulation results from ProSail model also show that soil background reflectance has a significant impact on vegetation canopy reflectance in both wet and dry soil conditions, so the optimized soil adjusted vegetation index (OSAVI) was used in this paper to remove the effect of soil background on vegetation water index and improve its relationship with vegetation water content; (3) for the 12 vegetation water indices, the relationship between MSI2 and vegetation water content is the best with the R-square of 0.948 and the average error of vegetation water content is 0.52 kg · m(-2); (4) it is difficult to estimate vegetation water content from vegetation water indices when vegetation water content is larger than 2 kg · m(-2) due to spectral saturation of these indices.

  1. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest

    USGS Publications Warehouse

    Chen, X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.; Huang, C.; Shi, H.

    2011-01-01

    It is challenging to detect burn severity and vegetation recovery because of the relatively long time period required to capture the ecosystem characteristics. Multitemporal remote sensing data can providemultitemporal observations before, during and after a wildfire, and can improve the change detection accuracy. The goal of this study is to examine the correlations between multitemporal spectral indices and field-observed burn severity, and to provide a practical method to estimate burn severity and vegetation recovery. The study site is the Jasper Fire area in the Black Hills National Forest, South Dakota, that burned during August and September 2000. Six multitemporal Landsat images acquired from 2000 (pre-fire), 2001 (post-fire), 2002, 2003, 2005 and 2007 were used to assess burn severity. The normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), normalized burn ratio (NBR), integrated forest index (IFI) and the differences of these indices between the pre-fire and post-fire years were computed and analysed with 66 field-based composite burn index (CBI) plots collected in 2002. Results showed that differences of NDVI and differences of EVI between the pre-fire year and the first two years post-fire were highly correlated with the CBI scores. The correlations were low beyond the second year post-fire. Differences of NBR had good correlation with CBI scores in all study years. Differences of IFI had low correlation with CBI in the first year post-fire and had good correlation in later years. A CBI map of the burnt area was produced using regression tree models and the multitemporal images. The dynamics of four spectral indices from 2000 to 2007 indicated that both NBR and IFI are valuable for monitoring long-term vegetation recovery. The high burn severity areas had a much slower recovery than the moderate and low burn areas. ?? 2011 Taylor & Francis.

  2. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: a case study for submerged aquatic vegetation

    USGS Publications Warehouse

    Zajac, Zuzanna; Stith, Bradley M.; Bowling, Andrea C.; Langtimm, Catherine A.; Swain, Eric D.

    2015-01-01

    Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust

  3. Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology.

    PubMed

    Lopes, Marta S; Reynolds, Matthew P

    2012-06-01

    The green area displayed by a crop is a good indicator of its photosynthetic capacity, while chlorophyll retention or 'stay-green' is regarded as a key indicator of stress adaptation. Remote-sensing methods were tested to estimate these parameters in diverse wheat genotypes under different growing conditions. Two wheat populations (a diverse set of 294 advanced lines and a recombinant inbred line population of 169 sister lines derived from the cross between Seri and Babax) were grown in Mexico under three environments: drought, heat, and heat combined with drought. In the two populations studied here, a moderate heritable expression of stay-green was found-when the normalized difference vegetation index (NDVI) at physiological maturity was estimated using the regression of NDVI over time from the mid-stages of grain-filling to physiological maturity-and for the rate of senescence during the same period. Under heat and heat combined with drought environments, stay-green calculated as NDVI at physiological maturity and the rate of senescence, showed positive and negative correlations with yield, respectively. Moreover, stay-green calculated as an estimation of NDVI at physiological maturity and the rate of senescence regressed on degree days give an independent measurement of stay-green without the confounding effect of phenology. On average, in both populations under heat and heat combined with drought environments CTgf and stay-green variables accounted for around 30% of yield variability in multiple regression analysis. It is concluded that stay-green traits may provide cumulative effects, together with other traits, to improve adaptation under stress further.

  4. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: a case study for submerged aquatic vegetation

    PubMed Central

    Zajac, Zuzanna; Stith, Bradley; Bowling, Andrea C; Langtimm, Catherine A; Swain, Eric D

    2015-01-01

    Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust

  5. Use of vegetation index and surface temperature to estimate soil moisture in a semi-arid catchment in Brazil with limited monitoring

    NASA Astrophysics Data System (ADS)

    Rebello, V. P. A.; Cunha, T. M.; Rotunno Filho, O. C.; Barbosa, M. C.; Franklin, M. R.; Lakshmi, V.

    2014-12-01

    During the last two decades, there have been numerous studies using remote sensing to study catchment energy and water balance. A well-known example is the combination of surface temperature (Ts) and the normalized difference vegetation index (NDVI), which can provide information on vegetation and moisture conditions at the land surface. Since the soil moisture is a key variable in hydrological modeling, this information is potentially useful in large watersheds and remote areas in developing countries, where little infrastructure and few resources still make continuous in-situ monitoring of environmental variables a difficult task, as well as in semi arid areas, where the lack of water may represent an obstacle to the regional economic and sustainable development. The basic methodology is to calculate soil moisture indexes by the scatter plots of NDVI and Ts and to analyze the Ts/NDVI slope, in order to estimate temporal patterns of soil moisture. We will utilize the standard vegetation index and surface temperature products from MODIS and NOAA - AVHRR, and the results will be compared with soil moisture derived from a hydrological model (Soil Moisture Accounting Procedure). This work will focus on a 18200 km² semi-arid catchment in Northeastern Brazil.

  6. Study of atmospheric and bidirectional effects on surface reflectance and vegetation index time series: Application to NOAA AVHRR and preparation for future space missions

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    The objectives of the investigation, namely 'to characterize the atmospheric and directional effects on surface reflectance and vegetation index using the First International Satellite Cloud Climatology Project (ISLCSP) Field Experiment (FIFE) data set, develop new algorithms to obtain better Advanced Very High Resolution Radiometer (AVHRR) indices, and define possible improvements for future satellite missions', were addressed in three separate, yet complementary studies. First, it was shown, from theoretical calculations, that visible and near infrared reflectances combined linearly at optimum (one or two) viewing angles relate linearly to the fraction of photosynthetically available radiation absorbed by plants, f(sub par), can be used independently of the type of foliage and substrate, eliminate the effects of sub-pixel spatial heterogeneity, and improve the accuracy of the f(sub par) estimates when compared to the Normalized Difference Vegetation Index, NDVI. Second, it was demonstrated that NDVI, even though it is not a linear combination of radiances or reflectances, can be spatially integrated without significant loss of information from scales of 300 to 1000 m. Third, AVHRR visible and near-infrared reflectances over the FIFE site, separating temporal and bidirectional components and determining the model parameters through an original iterative scheme was successfully modeled. It appears that NDVI generated from the top-of-atmosphere reflectances normalized by the bidirectional effects (as determined in the scheme) is a better vegetation index than maximum NDVI. Details about the three studies are presented.

  7. Comparison of Vegetation Water Use Using the Horton Index in a Sub-arctic, Alaskan Boreal Forest Environment Using Hydrograph Analysis

    NASA Astrophysics Data System (ADS)

    Bolton, W. R.; Cable, J.

    2012-12-01

    The sub-arctic environment is in the zone of discontinuous permafrost. The extreme energy influx from winter to summer has a strong influence on water storage and release processes at the watershed scale. For example, the seven months of snow accumulation are followed by a short 2-week period of snow ablation in which approximately 1/3 of the annual precipitation is released into the system. In permafrost soils, the soils begin to thaw immediately at the conclusion of snow melt, increasing the storage capacity of the soils. The storage capacity of the soils reaches a maximum in late summer then rapidly decreases during the freeze-back period in October. In permafrost-free soils dominated by deciduous vegetation, the trees appear to have a major role in taking up and transpiring liquid precipitation to back to the atmosphere. Conversely, in permafrost soils dominated by coniferous vegetation, the trees appear to have a more minor role in the cycling of liquid water during precipitation events. The overarching goal of our research is to quantify the relative roles of vegetation water use and soil storage dynamics associated with permafrost presence/absence in determining the magnitude and timing of water pathways in the sub-Arctic boreal forest. As part of this goal, we quantified the Horton Index - a metric used to describe vegetation water use relative to available soil water - in two small sub-basins of the Caribou-Poker Creeks Research Watershed, located near Fairbanks, Alaska. The C2 (5.2 km2) and C3 (5.7km2) sub-basins are underlain by approximately 2 and 53% permafrost, and are dominated by deciduous (Betula neoalaskana and Populus tremuloides) and coniferous vegetation (Picea mariana), respectively. Catchment scale calculations of the Horton Index are made using stream flow analysis and during snow-free precipitation events over an 11-year period. In each sub-basin, the Horton Index varies with time with the greatest variation occurring in the spring and fall

  8. Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland

    NASA Astrophysics Data System (ADS)

    Ren, Shilong; Chen, Xiaoqiu; An, Shuai

    2016-08-01

    Plant phenology is a key link for controlling interactions between climate change and biogeochemical cycles. Satellite-derived normalized difference vegetation index (NDVI) has been extensively used to detect plant phenology at regional scales. Here, we introduced a new vegetation index, plant senescence reflectance index (PSRI), and determined PSRI-derived start (SOS) and end (EOS) dates of the growing season using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2011 in the Inner Mongolian Grassland. Then, we validated the reliability of PSRI-derived SOS and EOS dates using NDVI-derived SOS and EOS dates. Moreover, we conducted temporal and spatial correlation analyses between PSRI-derived SOS/EOS date and climatic factors and revealed spatiotemporal patterns of PSRI-derived SOS and EOS dates across the entire research region at pixel scales. Results show that PSRI has similar performance with NDVI in extracting SOS and EOS dates in the Inner Mongolian Grassland. Precipitation regime is the key climate driver of interannual variation of grassland phenology, while temperature and precipitation regimes are the crucial controlling factors of spatial differentiation of grassland phenology. Thus, PSRI-derived vegetation phenology can effectively reflect land surface vegetation dynamics and its response to climate change. Moreover, a significant linear trend of PSRI-derived SOS and EOS dates was detected only at small portions of pixels, which is consistent with that of greenup and brownoff dates of herbaceous plant species in the Inner Mongolian Grassland. Overall, PSRI is a useful and robust metric in addition to NDVI for monitoring land surface grassland phenology.

  9. Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro

    2013-01-01

    Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.

  10. Coastwide Reference Monitoring System (CRMS) Vegetation Volume Index: An assessment tool for marsh habitat focused on the three-dimensional structure at CRMS vegetation monitoring stations

    USGS Publications Warehouse

    Wood, William B.; Visser, Jenneke M.; Piazza, Sarai C.; Sharp, Leigh Anne; Hundy, Laura C.; McGinnis, Tommy E.

    2015-01-01

    The VV and VVI will be used to establish trends, to make comparisons, and to evaluate restoration projects. Assessments that rely on the VVI will be included in appropriate Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) project reports and analyses. Implementation of the VVI will give coastal managers a new tool to design, implement, and monitor coastal restoration projects. A yearly trajectory of site, project, basin, and coastwide VVI will be posted on the CRMS Web site as data are collected. The primary purpose of the tool is to assess CWPPRA restoration project effectiveness, but it will also be useful in identifying areas in need of restoration and in coastwide vegetation assessments.

  11. Coastwide Reference Monitoring System (CRMS) Vegetation Volume Index: An assessment tool for marsh habitat focused on the three-dimensional structure at CRMS vegetation monitoring stations

    USGS Publications Warehouse

    Wood, William B.; Visser, Jenneke M.; Piazza, Sarai C.; Sharp, Leigh Anne; Hundy, Laura C.; McGinnis, Tommy E.

    2015-12-04

    The VV and VVI will be used to establish trends, to make comparisons, and to evaluate restoration projects. Assessments that rely on the VVI will be included in appropriate Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) project reports and analyses. Implementation of the VVI will give coastal managers a new tool to design, implement, and monitor coastal restoration projects. A yearly trajectory of site, project, basin, and coastwide VVI will be posted on the CRMS Web site as data are collected. The primary purpose of the tool is to assess CWPPRA restoration project effectiveness, but it will also be useful in identifying areas in need of restoration and in coastwide vegetation assessments.

  12. Estimates of phytomass and net primary productivity in terrestrial ecosystems of the former Soviet Union identified by classified Global Vegetation Index

    SciTech Connect

    Gaston, G.G.; Kolchugina, T.P.

    1995-12-01

    Forty-two regions with similar vegetation and landcover were identified in the former Soviet Union (FSU) by classifying Global Vegetation Index (GVI) images. Image classes were described in terms of vegetation and landcover. Image classes appear to provide more accurate and precise descriptions for most ecosystems when compared to general thematic maps. The area of forest lands were estimated at 1,330 Mha and the actual area of forest ecosystems at 875 Mha. Arable lands were estimated to be 211 Mha. The area of the tundra biome was estimated at 261 Mha. The areas of the forest-tundra/dwarf forest, taiga, mixed-deciduous forest and forest-steppe biomes were estimated t 153, 882, 196, and 144 Mha, respectively. The areas of desert-semidesert biome and arable land with irrigated land and meadows, were estimated at 126 and 237 Mha, respectively. Vegetation and landcover types were associated with the Bazilevich database of phytomass and NPP for vegetation in the FSU. The phytomass in the FSU was estimated at 97.1 Gt C, with 86.8 in forest vegetation, 9.7 in natural non-forest and 0.6 Gt C in arable lands. The NPP was estimated at 8.6 Gt C/yr, with 3.2, 4.8, and 0.6 Gt C/yr of forest, natural non-forest, and arable ecosystems, respectively. The phytomass estimates for forests were greater than previous assessments which considered the age-class distribution of forest stands in the FSU. The NPP of natural ecosystems estimated in this study was 23% greater than previous estimates which used thematic maps to identify ecosystems. 47 refs., 4 figs., 2 tabs.

  13. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    USGS Publications Warehouse

    Ji, Lei; Zhang, Li; Rover, Jennifer R.; Wylie, Bruce K.; Chen, Xuexia

    2014-01-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  14. Geostatistical estimation of signal-to-noise ratios for spectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Ji, Lei; Zhang, Li; Rover, Jennifer; Wylie, Bruce K.; Chen, Xuexia

    2014-10-01

    In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation biophysical parameters. An ideal vegetation index should contain the maximum level of signal related to specific biophysical characteristics and the minimum level of noise such as background soil influences and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index remains a challenge, because it requires a large number of field measurements or laboratory experiments. In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral vegetation indices. Based on the sample semivariogram of vegetation index images, we used the standardized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient technique for estimating signal and noise components in vegetation indices.

  15. Osmotic adjustment and the growth response of seven vegetable crops following water-deficit stress. [Phaseolus vulgaris L. ; Beta vulgaris L. ; Abelmoschus esculentus; Pisum sativum L. ; Capsicum annuum L. ; Spinacia oleracea L. ; Lycopersicon esculentum Mill

    SciTech Connect

    Wullschleger, S.D. ); Oosterhuis, D.M. )

    1991-09-01

    Growth-chamber studies were conducted to examine the ability of seven vegetable crops- Blue Lake beam (Phaseolus vulgaris L.) Detroit Dark Red beet (Beta vulgaris L.) Burgundy okra (Abelmoschus esculentus) (Moench), Little Marvel pea (Pisum sativum L), California Wonder bell pepper (Capsicum annuum L), New Zealand spinach (Spinacia oleracea L), and Beefsteak tomato (Lycopersicon esculentum Mill.) - to adjust osmotically in response to water-deficit stress. Water stress was imposed by withholding water for 3 days, and the adjustment of leaf and root osmotic potentials upon relief of the stress and rehydration were monitored with thermocouple psychrometers. Despite similar reductions in leaf water potential and stomatal conductance among the species studied reductions in lead water potential an stomatal conductance among the species, crop-specific differences were observed in leak and root osmotic adjustment. Leaf osmotic adjustment was observed for bean, pepper, and tomato following water-deficit stress. Root osmotic adjustment was significant in bean, okra, pea and tomato. Furthermore, differences in leaf and root osmotic adjustment were also observed among five tomato cultivars. Leaf osmotic adjustment was not associated with the maintenance of leaf growth following water-deficit stress, since leaf expansion of water-stressed bean and pepper, two species capable of osmotic adjustment, was similar to that of spinach, which exhibited no leaf osmotic adjustment.

  16. Preliminary Study on the Radar Vegetation Index (RVI) Application to Actual Paddy Fields by ALOS/PALSAR Full-polarimetry SAR Data

    NASA Astrophysics Data System (ADS)

    Yamada, Y.

    2015-04-01

    Kim and van Zyl (2001) proposed a kind of radar vegetation index (RVI). RVI = 4*min(λ1, λ2, λ3) / (λ1 + λ2 + λ3) They modified the equation as follows. (2009) RVI = 8 * σ0hv / (σ0hh + σ0vv +σ0hv ) by L-band full-polarimetric SAR data. They applied it into rice crop and soybean. (Y.Kim, T.Jackson et al., 2012) They compared RVI for L-, C- and X-bands to crop growth data, LAI and NDVI. They found L-band RVI was well correlated with Vegetation Water Content, LAI and NDVI. But the field data were collected by the multifrequency polarimetric scatterometer. The platform height was 4.16 meters from the ground. The author tried to apply the method to actual paddy fields near Tsukuba science city in Japan using ALOS/PALSAR, full-polarimetry L-band SAR data. The staple crop in Eastern Asia is rice and paddy fields are dominant land use. A rice-planting machine comes into wide use in this areas. The young rice plants were bedded regularly ridged line in the paddy fields by the machine. The space between two ridges of rice plants is about 30 cm and the wave length of PALSAR sensor is about 23 cm. Hence the Bragg scattering will appear depending upon the direction of the ridges of paddy fields. Once the Bragg scattering occurs, the backscattering values from the pixels should be very high comparing the surrounding region. Therefore the radar vegetation index (RVI) would be saturated. The RVI did not follow the increasing of vegetation anymore. Japan has launched ALOS-2 satellite and it has PALSAR-2, L-band SAR. Therefore RVI application product by PALSAR-2 will be watched with deep interest.

  17. The relationship between surface temperature and a spectral vegetation index of a tallgrass prairie - Effects of burning and other landscape controls

    NASA Technical Reports Server (NTRS)

    Hope, A. S.; Mcdowell, T. P.

    1992-01-01

    Site-to-site variability in the relation between remotely-sensed surface temperatures (Ts) and the normalized difference spectral vegetation index (NDVI) of a tallgrass prairie was investigated. The primary objective was to determine whether the proportion of burnt/unburnt area within a sub-scene affected the Ts-NDVI regression slope (SL). Regression analyses confirmed that burn treatments, particularly on steep slopes, were responsible for most of the observed variability in SL while soil moisture content and the forested areas also had a significant effect on SL.

  18. The environmental vegetation index: A tool potentially useful for arid land management. [Texas and Mexico, plant growth stress due to water deficits

    NASA Technical Reports Server (NTRS)

    Gray, T. I., Jr.; Mccrary, D. G. (Principal Investigator)

    1981-01-01

    The NOAA-6 AVHRR data sets acquired over South Texas and Mexico during the spring of 1980 and after Hurricane Allen passed inland are analyzed. These data were processed to produce the Gray-McCrary Index (GMI's) for each pixel location over the selected area, which area contained rangeland and cropland, both irrigated and nonirrigated. The variations in the GMI's appear to reflect well the availability of water for vegetation. The GMI area maps are shown to delineate and to aid in defining the duration of drought; suggesting the possibility that time changes over a selected area could be useful for irrigation management.

  19. Laparoscopic adjustable banded roux-en-y gastric bypass as a primary procedure for the super-super-obese (body mass index > 60 kg/m2)

    PubMed Central

    2010-01-01

    Background Currently, there is no consensus opinion regarding the optimal procedure of choice in super-super-morbid obesity (Body mass index, BMI > 60 kg/m2). Roux-en-Y gastric bypass (RYGB) is associated with failure to achieve or maintain 50% excess weight loss (EWL) or BMI < 35 in approximately 15% of patients. Also, percent EWL is significantly less after 1-year in the super-super-obese group as compared with the less obese group and many patients are still technically considered to be obese (lowest post-surgical BMI > 35) following RYGB surgery in this group. The addition of adjustable gastric band (AGB) to RYGB has been reported as a revisional procedure but this combined bariatric procedure has not been explored as a primary operation. Methods In a primary laparoscopic RYGB, an AGB is drawn around the gastric pouch through a small opening between the blood vessels on the lesser curve and the gastric pouch. The band is then fixed by suturing the gastric remnant to the gastric pouch both above and below the band to prevent slippage. Results Between November 2009 and March 2010, 6 consecutive super-super-obese patients underwent a primary laparoscopic adjustable banded Roux-en-Y gastric bypass procedure at our institution. One male patient (21 years, BMI 70 kg/m²) developed a pneumonia postoperatively. No other postoperative complications were observed. Conclusion To the best of our knowledge, this is the first series of patients that underwent a laparoscopic adjustable banded RYGB as a primary operation for the super-super obese in the indexed literature. With the combined procedure, a sequential action mechanism for weight loss is to be expected. The restrictive, malabsorptive and hormonal working mechanism of the RYGB will induce weight loss from the start reaching a stabilised plateau of weight after 12 - 18 months. At that time, filling of the band can be started resulting in further gastric pouch restriction and increased weight loss. Moreover, besides

  20. Interactions between river stage and wetland vegetation detected with a Seasonality Index derived from LANDSAT images in the Apalachicola delta, Florida

    NASA Astrophysics Data System (ADS)

    la Cecilia, Daniele; Toffolon, Marco; Woodcock, Curtis E.; Fagherazzi, Sergio

    2016-03-01

    The distribution of swamp floodplain vegetation and its evolution in the lower non-tidal reaches of the Apalachicola River, Florida USA, is mapped using Landsat Thematic Mapper and Enhanced Thematic Mapper Plus (TM/ETM+) images captured over a period of 29 years. A newly developed seasonality index (SI), the ratio of the NDVI in winter months to the summer months, shows that the hardwood swamp, dominated by bald cypress and water tupelo, is slowly replaced by bottomland hardwood forest. This forest shift is driven by lower water levels in the Apalachicola River in the last 30 years, and predominantly occurs in the transitional area between low floodplains and high river banks. A negative correlation between maximum summer NDVI and water levels in winter suggests the growth of more vigorous vegetation in the vicinity of sloughs during years with low river flow. A negative correlation with SI further indicates that these vegetation patches are possibly replaced by species typical of drier floodplain conditions.

  1. [Accuracy comparison of BJ-1, HJ and Landsat data in the retrieval of grassland vegetation coverage, leaf area index and above ground biomass].

    PubMed

    Wang, Hong-Yan; Li, Xiao-Song; Zhang, Jin; Gao, Zhi-Hai

    2013-10-01

    Domestic satellites BJ-1, HJ and the most widely used satellite Landsat were selected to systematically compare their abilities and differences on the estimation of the biophysical parameters of grassland in sandstorm source region in Beijing and Tianjin, with the combination of field-measured fractional coverage, leaf area index and aboveground biomass data. The result shows: (1) In terms of the surface reflectance, HJ-1B and Landsat have a higher correlation with biophysical parameters in red band, compared with BJ-1, while BJ-1's near infra-red band was obviously superior to HJ-1B and Landsat, (2) with respect to the vegetation indices, Landsat performed best, HJ-1B was the second, and BJ-1 was the worst, (3) compared with vegetation indices, multiple regression model can raise the estimation accuracy, BJ-1 based model improved significantly, while Landsat and HJ-1B based models were less obvious. Among them, the highest accuracy was acquired for leaf area index estimation through the BJ-1 based model (R2 = 0.61, RMSEP = 0.15). In general, domestic satellites have their own unique features, which remain a huge potential to be further tapped. PMID:24409740

  2. Analysis of Leaf Area Index and Fraction of PAR Absorbed by Vegetation Products from the Terra MODIS Sensor: 2000-2005

    NASA Technical Reports Server (NTRS)

    Yang, Wenze; Huang, Dong; Tan, Bin; Stroeve, Julienne C.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2006-01-01

    The analysis of two years of Collection 3 and five years of Collection 4 Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) data sets is presented in this article with the goal of understanding product quality with respect to version (Collection 3 versus 4), algorithm (main versus backup), snow (snow-free versus snow on the ground), and cloud (cloud-free versus cloudy) conditions. Retrievals from the main radiative transfer algorithm increased from 55% in Collection 3 to 67% in Collection 4 due to algorithm refinements and improved inputs. Anomalously high LAI/FPAR values observed in Collection 3 product in some vegetation types were corrected in Collection 4. The problem of reflectance saturation and too few main algorithm retrievals in broadleaf forests persisted in Collection 4. The spurious seasonality in needleleaf LAI/FPAR fields was traced to fewer reliable input data and retrievals during the boreal winter period. About 97% of the snow covered pixels were processed by the backup Normalized Difference Vegetation Index-based algorithm. Similarly, a majority of retrievals under cloudy conditions were obtained from the backup algorithm. For these reasons, the users are advised to consult the quality flags accompanying the LAI and FPAR product.

  3. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    NASA Astrophysics Data System (ADS)

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  4. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    PubMed Central

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2016-01-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting. PMID:27667901

  5. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    PubMed Central

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2016-01-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  6. Application of Advanced Very High Resolution Radiometer vegetation index to study atmosphere-biosphere exchange of CO2

    NASA Technical Reports Server (NTRS)

    Fung, I. Y.; Tucker, C. J.; Prentice, K. C.

    1987-01-01

    Normalized difference vegetation indices derived from radiances measured by the Advanced Very High Resolution Radiometer were used to prescribe the phasing of terrestrial photosynthesis. The satellite data were combined with field data on soil respiration and a global map of net primary productivity to obtain the seasonal exchange of CO2 between the atmosphere and the terrestrial biosphere. The monthly fluxes of CO2 thus obtained were employed as source/sink functions in a global three-dimensional atmospheric tracer transport model to simulate the annual oscillations of CO2 in the atmosphere. The results demonstrate that satellite data of high spatial and temporal resolution can be used to provide quantitative information about seasonal and longer-term variations of photosynthetic activity on a global scale.

  7. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems

    USGS Publications Warehouse

    Glenn, E.P.; Neale, C. M. U.; Hunsaker, D.J.; Nagler, P.L.

    2011-01-01

    Crop coefficients were developed to determine crop water needs based on the evapotranspiration (ET) of a reference crop under a given set of meteorological conditions. Starting in the 1980s, crop coefficients developed through lysimeter studies or set by expert opinion began to be supplemented by remotely sensed vegetation indices (VI) that measured the actual status of the crop on a field-by-field basis. VIs measure the density of green foliage based on the reflectance of visible and near infrared (NIR) light from the canopy, and are highly correlated with plant physiological processes that depend on light absorption by a canopy such as ET and photosynthesis. Reflectance-based crop coefficients have now been developed for numerous individual crops, including corn, wheat, alfalfa, cotton, potato, sugar beet, vegetables, grapes and orchard crops. Other research has shown that VIs can be used to predict ET over fields of mixed crops, allowing them to be used to monitor ET over entire irrigation districts. VI-based crop coefficients can help reduce agricultural water use by matching irrigation rates to the actual water needs of a crop as it grows instead of to a modeled crop growing under optimal conditions. Recently, the concept has been applied to natural ecosystems at the local, regional and continental scales of measurement, using time-series satellite data from the MODIS sensors on the Terra satellite. VIs or other visible-NIR band algorithms are combined with meteorological data to predict ET in numerous biome types, from deserts, to arctic tundra, to tropical rainforests. These methods often closely match ET measured on the ground at the global FluxNet array of eddy covariance moisture and carbon flux towers. The primary advantage of VI methods for estimating ET is that transpiration is closely related to radiation absorbed by the plant canopy, which is closely related to VIs. The primary disadvantage is that they cannot capture stress effects or soil

  8. Radiometric quality and performance of TIMESAT for smoothing moderate resolution imaging spectroradiometer enhanced vegetation index time series from western Bahia State, Brazil

    NASA Astrophysics Data System (ADS)

    Borges, Elane F.; Sano, Edson E.; Medrado, Euzébio

    2014-01-01

    The launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra and Aqua platforms in 1999 and 2002, respectively, with temporal resolutions of 1 to 2 days opened the possibility of using a longtime series of satellite images to map land use and land cover classes from different regions of the Earth, to study vegetation phenology, and to monitor regional and global climate change, among other applications. The main objectives of this study were twofold: to analyze the radiometric quality of the time series of enhanced vegetation index (EVI) products derived from the Terra MODIS sensor in western Bahia State, Brazil, and to identify the most appropriate filter to smooth MODIS EVI time series of the study area among those available in the public domain, the TIMESAT algorithm. The 2000 to 2011 time period was considered (a total of 276 scenes). The radiometric quality was analyzed based on the pixel reliability data set available in the MOD13Q1 product. The performances of the three smoothing filters available within TIMESAT (double logistic, Savitzky-Golay, and asymmetric Gaussian) were analyzed using the Graybill's F test and Willmott statistics. Five percent of the MODIS pixels from the study area were cloud-affected, almost all of which were from the rainy season. The double logistic filter presented the best performance.

  9. A Satellite-Based Estimation of Evapotranspiration Using Vegetation Index-Temperature Trapezoid Concept: A Case Study in Southern Florida, U.S.A.

    NASA Astrophysics Data System (ADS)

    Yagci, A. L.; Santanello, J. A., Jr.; Jones, J. W.

    2015-12-01

    One of the key surface variables for hydrological applications, monitoring of natural and anthropogenic water consumption, closing energy balance and water budgets and drought identification is evapotranspiration (ET). There is currently a strong need for high temporal and spatial resolution ET products for climate and hydrological modelers. A satellite-based retrieval method based on vegetation index-temperature trapezoid (VITT) concept has been developed. This model has the ability to generate accurate ET estimates at high temporal and spatial resolutions by taking advantage of key remotely sensed parameters such as vegetation indices (VIs) and land surface temperature (LST) acquired by satellites as well as routinely-measured meteorological variables such as air temperature (Ta) and net radiation. For local-scale applications, the model has been successfully implemented in Python programming language and tested using Landsat satellite products at an eddy covariance flux tower in Florida. It is fully functional and automated such that there is no need of user intervention to run the model. The model development for continental-scale applications using VI and LST products from NASA satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) is currently in progress. The results for local-scale application and early results for continental-scale (US) will be presented and discussed.

  10. Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO/sub 2/

    SciTech Connect

    Fung, I.Y.; Tucker, C.J.; Prentice, K.C.

    1987-03-20

    Normalized difference vegetation indices derived from radiances measured by the Advanced Very High Resolution Radiometer aboard the NOAA 7 polar-orbiting satellite were used to prescribe the phasing of terrestrial photosynthesis. The satellite data were combined with field data on soil respiration and a global map of net primary productivity to obtain the seasonal exchange of CO/sub 2/ between the atmosphere and the terrestrial biosphere. The monthly fluxes of CO/sub 2/ thus obtained were employed as source/sink functions in a global three-dimensional atmospheric tracer transport model to simulate the annual oscillations of CO/sub 2/ in the atmosphere. Reasonable agreement was found between the simulated and observed annual cycles of atmospheric CO/sub 2/ at the locations of the remote monitoring stations. The results demonstrate that satellite data of high spatial and temporal resolution can be used to provide quantitative information about seasonal and longer-term variations of photosynthetic activity on a global scale. Atmospheric CO/sub 2/ observations and a three-dimensional atmospheric model have been used to validate the translation of the nondimensional satellite data into dimensional carbon fluxes. Direct calibration will require extensive ground truth and field measurements at ecosystem scales.

  11. Analysis of Vegetation and Atmospheric Correction Indices for Landsat Images

    NASA Technical Reports Server (NTRS)

    Bush, Tasha R.; Desai, M.

    1997-01-01

    Vegetation and Atmospheric Indices are mathematical combinations of remote sensing bands which are useful in distinguishing the various values of the spectral reflectance. In this paper we study how the applications of various atmospherically corrected indices and vegetation indices can aide in retrieving the amount of surface reflectance from a remotely sensed image. Specifically, this paper studies and compares three vegetation indices and one atmospherically resistant index. These indices include the Normalized Difference Vegetation Index (NDVI), the Soil Adjusted Vegetation Index (SAVI), the Green Vegetation Index (GVI), and the Atmospherically Resistant Vegetation Index (ARVI), respectively. The algorithms attempt to estimate the optical characteristics of Thematic Mapper (TM) imagery. It will be shown that the NDVI algorithm followed by the ARVI correcting algorithm provided significant improvements in the tonal qualities of the retrieved images. The results are presented on 1987 TM images over the Kennedy Space Center (KSC) and are compared with a set of United States Geological Survey (U.S.G.S) maps.

  12. An enhanced vegetation index time series for the Amazon based on combined gap-filling approaches and quality datasets

    NASA Astrophysics Data System (ADS)

    Bernardes, Sergio

    2010-10-01

    Vegetation indices from MODIS data are subject to residual atmospheric noise, affecting processes requiring data continuity and analyses. This work reconstructed a time series of MODIS EVI mosaics for the Amazon using a novel combination of curve-fitting and spatiotemporal gap-filling. TIMESAT was used for initial curve fitting and gap filling, using a Double Logistic method and MODIS Usefulness values as weights. Pixels with large temporal gaps were handled by a spatiotemporal gap filling approach. The method scans Julian Days before and after the image being gap filled, searching for a good quality pixel (Pg) at the location of the pixel to be replaced. If Pg is found, a window is defined around it and a search for good quality pixels (Px) with spectral characteristics similar to Pg is performed. Window size increases during processing and pixel similarity uses Euclidean distance based on MOD13A2 reflectances. A good quality EVI value for the image being gap filled and at the location analogous to the minimum distance Px replaces the low quality pixel. Results from the spatiotemporal gap filling were then used in TIMESAT for smoothing. An evaluation strategy of the spatiotemporal approach involved flagging 5,000 randomly selected good-quality pixels as low-quality, running the algorithm and regressing the results with the original EVI values (R2= 0.62). The combined strategy was able to find replacement pixels and reduce spikes for images with high cloud cover and was used to rebuild a time series of EVI over the Amazon region for the period 2000-2010.

  13. Monitoring the recovery of Juncus roemerianus marsh burns with the normalized difference vegetation index and Landsat Thematic Mapper data

    USGS Publications Warehouse

    Ramsey, Elijah W., III; Sapkota, S.K.; Barnes, F.G.; Nelson, G.A.

    2002-01-01

    Nine atmospherically corrected Landsat Thematic Mapper images were used to generate mean normalized difference vegetation indices (NDVI) at 11 burn sites throughout a coastal Juncus roemerianus marsh in St. Marks National Wildlife Refuge, Florida. Time-since-burn, the time lapse from the date of burn to the date of image collection, was related to variation in mean NDVI over time. Regression analysis showed that NDVI increased for about 300 to 400 days immediately after the burn, overshooting the typical mean NDVI of a nonburned marsh. For about another 500 to 600 days NDVI decreased until reaching a nearly constant NDVI of about 0.40. During the phase of increasing NDVI the ability to predict time-since-burn was within about ??60 days. Within the decreasing phase this dropped to about ??88 days. Examination of each burn site revealed some nonburn related influences on NDVI (e.g., seasonality). Normalization of burn NDVI by site-specific nonburn control NDVI eliminated most influences. However, differential responses at the site-specific level remained related to either storm impacts or secondary burning. At these sites, collateral data helped clarify the abnormal changes in NDVI. Accounting for these abnormalities, site-specific burn recovery trends could be broadly standardized into four general phases: Phase 1-preburn, Phase 2-initial recovery (increasing NDVI), Phase 3-late recovery (decreasing NDVI), and Phase 4-final coalescence (unchanging NDVI). Phase 2 tended to last about 300 to 500 days, Phase 3 an additional 500 to 600 days, and finally reaching Phase 4, 900 to 1,000 days after burn.

  14. Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions

    NASA Astrophysics Data System (ADS)

    Xie, Qiaoyun; Huang, Wenjiang; Dash, Jadunandan; Song, Xiaoyu; Huang, Linsheng; Zhao, Jinling; Wang, Renhong

    2015-12-01

    Leaf area index (LAI) is an important indicator for monitoring crop growth conditions and forecasting grain yield. Many algorithms have been developed for remote estimation of the leaf area index of vegetation, such as using spectral vegetation indices, inversion of radiative transfer models, and supervised learning techniques. Spectral vegetation indices, mathematical combination of reflectance bands, are widely used for LAI estimation due to their computational simplicity and their applications ranged from the leaf scale to the entire globe. However, in many cases, their applicability is limited to specific vegetation types or local conditions due to species specific nature of the relationship used to transfer the vegetation indices to LAI. The overall objective of this study is to investigate the most suitable vegetation index for estimating winter wheat LAI under eight different types of fertilizer and irrigation conditions. Regression models were used to estimate LAI using hyperspectral reflectance data from the Pushbroom Hyperspectral Imager (PHI) and in-situ measurements. Our results showed that, among six vegetation indices investigated, the modified soil-adjusted vegetation index (MSAVI) and the normalized difference vegetation index (NDVI) exhibited strong and significant relationships with LAI, and thus were sensitive across different nitrogen and water treatments. The modified triangular vegetation index (MTVI2) confirmed its potential on crop LAI estimation, although second to MSAVI and NDVI in our study. The enhanced vegetation index (EVI) showed moderate performance. However, the ratio vegetation index (RVI) and the modified simple ratio index (MSR) predicted the least accurate estimations of LAI, exposing the simple band ratio index's weakness under different treatment conditions. The results support the use of vegetation indices for a quick and effective LAI mapping procedure that is suitable for winter wheat under different management practices.

  15. Mapping swamp timothy (Cripsis schenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    SciTech Connect

    Rahilly, P.J.A.; Li, D.; Guo, Q.; Zhu, J.; Ortega, R.; Quinn, N.W.T.; Harmon, T.C.

    2010-01-15

    This work examines the potential to predict the seed productivity of a key wetland plant species using spectral reflectance values and spectral vegetation indices. Specifically, the seed productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, managed for waterfowl habitat, in California's San Joaquin Valley. Spectral reflectance values were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected vegetation data. Vegetation data were collected and analyzed from 156 plots for total aboveground biomass, total aboveground swamp timothy biomass, and total swamp timothy seed biomass. The SVI investigated included the Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global Environment Monitoring Index (GEMI). We evaluated the correlation of the various SVI with in situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases, the June image provided better predictive capacity relative to May, a result that underscores the importance of timing imagery to coincide with more favorable vegetation maturity. The north pond with the June image using SR and the exponential function (R{sup 2}=0.603) proved to be the best predictor of swamp timothy seed productivity. The June image for the south pond was less predictive, with TSAVI and the exponential function providing the best correlation (R{sup 2}=0.448). This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy germination. The results of this work suggest that spectral reflectance can be used to estimate seed productivity in managed seasonal

  16. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN

    NASA Astrophysics Data System (ADS)

    Shwetha, H. R.; Kumar, D. Nagesh

    2016-07-01

    Land Surface Temperature (LST) with high spatio-temporal resolution is in demand for hydrology, climate change, ecology, urban climate and environmental studies, etc. Moderate Resolution Imaging Spectroradiometer (MODIS) is one of the most commonly used sensors owing to its high spatial and temporal availability over the globe, but is incapable of providing LST data under cloudy conditions, resulting in gaps in the data. In contrast, microwave measurements have a capability to penetrate under clouds. The current study proposes a methodology by exploring this property to predict high spatio-temporal resolution LST under cloudy conditions during daytime and nighttime without employing in-situ LST measurements. To achieve this, Artificial Neural Networks (ANNs) based models are employed for different land cover classes, utilizing Microwave Polarization Difference Index (MPDI) at finer resolution with ancillary data. MPDI was derived using resampled (from 0.25° to 1 km) brightness temperatures (Tb) at 36.5 GHz channel of dual polarization from Advance Microwave Scanning Radiometer (AMSR)-Earth Observing System and AMSR2 sensors. The proposed methodology is tested over Cauvery basin in India and the performance of the model is quantitatively evaluated through performance measures such as correlation coefficient (r), Nash Sutcliffe Efficiency (NSE) and Root Mean Square Error (RMSE). Results revealed that during daytime, AMSR-E(AMSR2) derived LST under clear sky conditions corresponds well with MODIS LST resulting in values of r ranging from 0.76(0.78) to 0.90(0.96), RMSE from 1.76(1.86) K to 4.34(4.00) K and NSE from 0.58(0.61) to 0.81(0.90) for different land cover classes. During nighttime, r values ranged from 0.76(0.56) to 0.87(0.90), RMSE from 1.71(1.70) K to 2.43(2.12) K and NSE from 0.43(0.28) to 0.80(0.81) for different land cover classes. RMSE values found between predicted LST and MODIS LST during daytime under clear sky conditions were within acceptable

  17. Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Leibman, M. O.; Epstein, H. E.; Forbes, B. C.; Bhatt, U. S.; Raynolds, M. K.; Comiso, J. C.; Gubarkov, A. A.; Khomutov, A. V.; Jia, G. J.; Kaarlejärvi, E.; Kaplan, J. O.; Kumpula, T.; Kuss, P.; Matyshak, G.; Moskalenko, N. G.; Orekhov, P.; Romanovsky, V. E.; Ukraientseva, N. G.; Yu, Q.

    2009-10-01

    The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

  18. Remote sensing (normalized difference vegetation index) classification of risk versus minimal risk habitats for human exposure to Ixodes pacificus (Acari: Ixodidae) nymphs in Mendocino County, California.

    PubMed

    Eisen, Rebecca J; Eisen, Lars; Lane, Robert S

    2005-01-01

    In California, Ixodes pacificus Cooley & Kohls nymphs have been implicated as the primary bridging vectors to humans of the spirochetal bacterium causing Lyme disease (Borrelia burgdorferi). Because the nymphs typically do not ascend emergent vegetation, risk of human exposure is minimal in grasslands, chaparral, and woodland-grass. Instead, woodlands with a ground cover dominated by leaf litter (hereinafter referred to as woodland-leaf) have emerged as a primary risk habitat for exposure to B. burgdorferi-infected nymphs. As a means of differentiating woodland-leaf habitats from others with minimal risk (e.g., chaparral, grassland, and woodland-grass), we constructed a maximum likelihood model of these habitat types within a 7,711-ha area in southeastern Mendocino County based on the normalized difference vegetation index derived from Landsat 5 Thematic Mapper imagery (based on a 30 by 30-m pixel size) over four seasons. The overall accuracy of the model to discriminate woodland-leaf, woodland-grass, open grassland, and chaparral was 83.85% (Kappa coefficient of 0.78). Validation of the accuracy of the model to classify woodland-leaf yielded high values both for producer accuracy (93.33% of validated woodland-leaf pixels correctly classified by the model) and user accuracy (96.55% of model-classified validation pixels correctly categorized as woodland-leaf). Woodland-leaf habitats were found to be highly aggregated within the examined area. In conclusion, our model successfully used remotely sensed data as a predictor of habitats where humans are at risk for Lyme disease in the far-western United States. PMID:15691012

  19. Development and testing of an index of biotic integrity based on submersed and floating vegetation and its application to assess reclamation wetlands in Alberta's oil sands area, Canada.

    PubMed

    Rooney, Rebecca C; Bayley, Suzanne E

    2012-01-01

    We developed and tested a plant-based index of biological integrity (IBI) and used it to evaluate the existing reclamation wetlands in Alberta's oil sands mining region. Reclamation plans call for >15,000 ha of wetlands to be constructed, but currently, only about 25 wetlands are of suitable age for evaluation. Reclamation wetlands are typically of the shallow open water type and range from fresh to sub-saline. Tailings-contaminated wetlands in particular may have problems with hydrocarbon- and salt-related toxicity. From 60 initial candidate metrics in the submersed aquatic and floating vegetation communities, we selected five to quantify biological integrity. The IBI included two diversity-based metrics: the species richness of floating vegetation and the percent of total richness contributed by Potamogeton spp. It also included three relative abundance-based metrics: that of Ceratophyllum demersum, of floating leafed species and of alkali-tolerant species. We evaluated the contribution of nonlinear metrics to IBI performance but concluded that the correlation between IBI scores and wetland condition was not improved. The method used to score metrics had an influence on the IBI sensitivity. We conclude that continuous scoring relative to the distribution of values found in reference sites was superior. This scoring approach provided good sensitivity and resolution and was grounded in reference condition theory. Based on these IBI scores, both tailings-contaminated and tailings-free reclamation wetlands have significantly lower average biological integrity than reference wetlands (ANOVA: F(2,59) = 34.7, p = 0.000000000107).

  20. Integrating vegetation index time series and meteorological data to understand the effect of the land use/land cover (LULC) in the climatic seasonality of the Brazilian Cerrado

    NASA Astrophysics Data System (ADS)

    Lins, D. B.; Zullo, J.; Friedel, M. J.

    2013-12-01

    The Cerrado (savanna ecosystem) of São Paulo state (Brazil) represent a complex mosaic of different typologies of uses, actors and biophysical and social restrictions. Originally, 14% of the state of São Paulo area was covered by the diversity of Cerrado phytophysiognomies. Currently, only 1% of this original composition remains fragmented into numerous relicts of biodiversity, mainly concentrated in the central-eastern of the state. A relevant part of the fragments are found in areas of intense coverage change by human activities, whereas the greatest pressure comes from sugar cane cultivation, either by direct replacement of Cerrado vegetation or occupying pasture areas in the fragments edges. As a result, new local level dynamics has been introduced, directly or indirectly, affecting the established of processes in climate systems. In this study, the main goal is analyzing the relationship between the Cerrado landscape changing and the climate dynamics in regional and local areas. The multi-temporal MODIS 250 m Vegetation Index (VI) datasets (period of 2000 to 2012) are integrated with precipitation data of the correspondent period (http://www.agritempo.gov.br/),one of the most important variable of the spatial phytophysiognomies distribution. The integration of meteorological data enable the development of an integrated approach to understand the relationship between climatic seasonality and the changes in the spatial patterns. A procedure to congregated diverse dynamics information is the Self Organizing Map (SOM, Kohonen, 2001), a technique that relies on unsupervised competitive learning (Kohonen and Somervuo 2002) to recognize patterns. In this approach, high-dimensional data are represented on two dimensions, making possible to obtain patterns that takes into account information from different natures. Observed advances will contribute to bring machine-learning techniques as a valid tool to provide improve in land use/land cover (LULC) analyzes at

  1. Remote sensing (normalized difference vegetation index) classification of risk versus minimal risk habitats for human exposure to Ixodes pacificus (Acari: Ixodidae) nymphs in Mendocino County, California.

    PubMed

    Eisen, Rebecca J; Eisen, Lars; Lane, Robert S

    2005-01-01

    In California, Ixodes pacificus Cooley & Kohls nymphs have been implicated as the primary bridging vectors to humans of the spirochetal bacterium causing Lyme disease (Borrelia burgdorferi). Because the nymphs typically do not ascend emergent vegetation, risk of human exposure is minimal in grasslands, chaparral, and woodland-grass. Instead, woodlands with a ground cover dominated by leaf litter (hereinafter referred to as woodland-leaf) have emerged as a primary risk habitat for exposure to B. burgdorferi-infected nymphs. As a means of differentiating woodland-leaf habitats from others with minimal risk (e.g., chaparral, grassland, and woodland-grass), we constructed a maximum likelihood model of these habitat types within a 7,711-ha area in southeastern Mendocino County based on the normalized difference vegetation index derived from Landsat 5 Thematic Mapper imagery (based on a 30 by 30-m pixel size) over four seasons. The overall accuracy of the model to discriminate woodland-leaf, woodland-grass, open grassland, and chaparral was 83.85% (Kappa coefficient of 0.78). Validation of the accuracy of the model to classify woodland-leaf yielded high values both for producer accuracy (93.33% of validated woodland-leaf pixels correctly classified by the model) and user accuracy (96.55% of model-classified validation pixels correctly categorized as woodland-leaf). Woodland-leaf habitats were found to be highly aggregated within the examined area. In conclusion, our model successfully used remotely sensed data as a predictor of habitats where humans are at risk for Lyme disease in the far-western United States.

  2. Development Of Index To Assess Drought Conditions Using Geospatial Data A Case Study Of Jaisalmer District, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Chhajer, Vaidehi; Prabhakar, Sumati; Rama Chandra Prasad, P.

    2015-12-01

    The Jaisalmer district of Rajasthan province of India was known to suffer with frequent drought due to poor and delayed monsoon, abnormally high summer-temperature and insufficient water resources. However flood-like situation prevails in the drought prone Jaisalmer district of Rajasthan as torrential rains are seen to affect the region in the recent years. In the present study, detailed analysis of meteorological, hydrological and satellite data of the Jaisalmer district has been carried out for the years 2006-2008. Standardized Precipitation Index (SPI), Consecutive Dry Days (CDD) and Effective Drought Index (EDI) have been used to quantify the precipitation deficit. Standardized Water-Level Index (SWI) has been developed to assess ground-water recharge-deficit. Vegetative drought indices like Vegetation Condition Index (VCI), Temperature Condition Index (TCI), Vegetation Health Index (VHI), Normalized Difference Vegetation Index (NDVI) and Modified Soil-Adjusted Vegetation Index 2 have been calculated. We also introduce two new indices Soil based Vegetation Condition Index (SVCI) and Composite Drought Index (CDI) specifically for regions like Jaisalmer where aridity in soil and affects vegetation and water-level.

  3. LEAF AREA INDEX CHANGE DETECTION OF UNDERSTORY VEGETATION IN THE ALBEMARLE-PAMLICO BASIN USING IKOMOS AND LANDSAT ETM+ SATELLITE DATA

    EPA Science Inventory

    The advent of remotely sensed data from satellite platforms has enabled the research community to examine vegetative spatial distributions over regional and global scales. This assessment of ecosystem condition through the synoptic monitoring of terrestrial vegetation extent, bio...

  4. LEAF AREA INDEX (LAI) CHANGES DETECTION OF UNDERSTORY VEGETATION IN THE ALBEMARLE-PAMLICO BASIN IKONOS AND LANDSAT ETM+ SATELLITE DATA

    EPA Science Inventory

    The advent of remotely sensed data from satellite platforms has enabled the research community to examine vegetative spatial distributions over regional and global scales. This assessment of ecosystem condition through the synoptic monitoring of terrestrial vegetation extent, bio...

  5. The 2010 Russian Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with the Normalized Differential Vegetation Index (NDVI)

    NASA Technical Reports Server (NTRS)

    Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J. -E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y.

    2015-01-01

    We examine satellite-based measurements of chlorophyll solar-induced fluorescence (SIF) over the region impacted by the Russian drought and heat wave of 2010. Like the popular Normalized Difference Vegetation Index (NDVI) that has been used for decades to measure photosynthetic capacity, SIF measurements are sensitive to the fraction of absorbed photosynthetically-active radiation (fPAR). However, in addition, SIF is sensitive to the fluorescence yield that is related to the photosynthetic yield. Both SIF and NDVI from satellite data show drought-related declines early in the growing season in 2010 as compared to other years between 2007 and 2013 for areas dominated by crops and grasslands. This suggests an early manifestation of the dry conditions on fPAR. We also simulated SIF using a global land surface model driven by observation-based meteorological fields. The model provides a reasonable simulation of the drought and heat impacts on SIF in terms of the timing and spatial extents of anomalies, but there are some differences between modeled and observed SIF. The model may potentially be improved through data assimilation or parameter estimation using satellite observations of SIF (as well as NDVI). The model simulations also offer the opportunity to examine separately the different components of the SIF signal and relationships with Gross Primary Productivity (GPP).

  6. Crop Species Recognition and Discrimination Paddy-Rice from Reaped-Fields by the Radar Vegetation Index (rvi) of ALOS-2/PALSAR2

    NASA Astrophysics Data System (ADS)

    Yamada, Y.

    2016-06-01

    The Japanese ALOS-2 satellite was launched on May 24th, 2014. It has the L-band SAR, PALSAR-2. Kim,Y. and van Zyl, J.J. proposed a kind of Radar Vegetation Index (RVI) as RVI = 8 * σ0hv / (σ0hh + σ0vv + 2* σ0hv) by L-band full-polarimetric radar data. Kim, Y. and Jackson, T.J., et al. applied the equation into rice and soybean by multi-frequency polarimetric scatterometer above 4.16 meters from the ground. Their report showed the L-band was the most promising wave length for estimating LAI and NDVI from RVI. The author tried to apply the analysis to the actual paddy field areas, both Inashiki region and Miyagi region in the eastern main island, "Honshu", areas of Japan by ALOS-2/PALSAR-2 full-polarimetry data in the summer season, the main crop growing time, of 2015. Judging from conventional methods, it will be possible to discriminate paddy rice growing fields from reaped fields or the other crops growing fields by the PALSAR-2 data. But the RVI value is vaguely related to such land use or biomass at the present preliminary experiment. The continuous research by the additional PALSAR-2 full-polarimetry data should be desired.

  7. Fully-automated estimation of actual to potential evapotranspiration in the Everglades using Landsat and air temperature data as inputs to the Vegetation Index-Temperature Trapezoid method

    NASA Astrophysics Data System (ADS)

    Yagci, A. L.; Jones, J. W.

    2014-12-01

    While the greater Everglades contains a vast wetland, evapotranspiration (ET) is a major source of water "loss" from the system. Like other ecosystems, the Everglades is vulnerable to drought. Everglades restoration science and resource management requires information on the spatial and temporal distribution of ET. We developed a fully-automated ET model using the Vegetation Index-Temperature Trapezoid concept. The model was tested and evaluated against in-situ ET observations collected at the Shark River Slough Mangrove Forest eddy-covariance tower in Everglades National Park (Sitename / FLUXNET ID: Florida Everglades Shark River Slough Mangrove Forest / US-Skr). It uses Landsat Surface Reflectance Climate Data from Landsat 5, and Landsat 5 thermal and air temperature data from the Daily Gridded Surface Dataset to output the ratio of actual evapotranspiration (AET) and potential evapotranspiration (PET). When multiplied with a PET estimate, this output can be used to estimate ET at high spatial resolution. Furthermore, it can be used to downscale coarse resolution ET and PET products. Two example outputs covering the agricultural lands north of the major Everglades wetlands extracted from two different dates are shown below along with a National Land Cover Database image from 2011. The irrigated and non-irrigated farms are easily distinguishable from the background (i.e., natural land covers). Open water retained the highest AET/PET ratio. Wetlands had a higher AET/PET ratio than farmlands. The main challenge in this study area is prolonged cloudiness during the growing season.

  8. Accurate detection of spatio-temporal variability of plant phenology by using satellite-observed daily green-red vegetation index (GRVI) in Japan

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Saitoh, T. M.; Nasahara, K. N.; Inoue, T.; Suzuki, R.

    2015-12-01

    To evaluate the spatio-temporal variability of biodiversity and ecosystem functioning and service in deciduous forests, accurate detection of the timing of plant phenology such as leaf-flushing, -coloring, and -falling is important from plot to continental scales. Here, (1) we detected the spatio-temporal variability in the timing of start (SGS) and end of growing season (EGS) in Japan from 2001 to 2014 by analyzing Terra and Aqua/MODIS satellite-observed daily green-red vegetation index (GRVI) with a 500-m spatial resolution. (2) We examined the characteristics of timing of SGS and EGS in deciduous forests along vertical (altitude) and horizontal (latitude) gradients and their sensitivity to air temperature. (3) We evaluated the relationship between the spatial distribution of leaf-coloring phenology derived from Landsat-8/OLI satellite-observed GRVI with a 30-m spatial resolution on 23 November 2014 and leaf-coloring information published on web sites in Kanagawa Prefecture, Japan. We found that (1) changes along the vertical and horizontal gradients in the timing of SGS tended to be larger than those of EGS; (2) the sensitivity of the timing of SGS to air temperature was much more than that of EGS; and (3) leaf-coloring information published on web sites covering multiple points was useful for verification of leaf-coloring phenology derived from satellite-observed GRVI in relation to the altitude gradient in mountainous regions.

  9. Functional analysis of Normalized Difference Vegetation Index curves reveals overwinter mule deer survival is driven by both spring and autumn phenology

    PubMed Central

    Hurley, Mark A.; Hebblewhite, Mark; Gaillard, Jean-Michel; Dray, Stéphane; Taylor, Kyle A.; Smith, W. K.; Zager, Pete; Bonenfant, Christophe

    2014-01-01

    Large herbivore populations respond strongly to remotely sensed measures of primary productivity. Whereas most studies in seasonal environments have focused on the effects of spring plant phenology on juvenile survival, recent studies demonstrated that autumn nutrition also plays a crucial role. We tested for both direct and indirect (through body mass) effects of spring and autumn phenology on winter survival of 2315 mule deer fawns across a wide range of environmental conditions in Idaho, USA. We first performed a functional analysis that identified spring and autumn as the key periods for structuring the among-population and among-year variation of primary production (approximated from 1 km Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index (NDVI)) along the growing season. A path analysis showed that early winter precipitation and direct and indirect effects of spring and autumn NDVI functional components accounted for 45% of observed variation in overwinter survival. The effect size of autumn phenology on body mass was about twice that of spring phenology, while direct effects of phenology on survival were similar between spring and autumn. We demonstrate that the effects of plant phenology vary across ecosystems, and that in semi-arid systems, autumn may be more important than spring for overwinter survival. PMID:24733951

  10. The use of multi-temporal Landsat Normalized Difference Vegetation Index (NDVI) data for mapping fuels in Yosemite National Park, USA

    USGS Publications Warehouse

    Van Wagtendonk, Jan W.; Root, Ralph R.

    2003-01-01

    The objective of this study was to test the applicability of using Normalized Difference Vegetation Index (NDVI) values derived from a temporal sequence of six Landsat Thematic Mapper (TM) scenes to map fuel models for Yosemite National Park, USA. An unsupervised classification algorithm was used to define 30 unique spectral-temporal classes of NDVI values. A combination of graphical, statistical and visual techniques was used to characterize the 30 classes and identify those that responded similarly and could be combined into fuel models. The final classification of fuel models included six different types: short annual and perennial grasses, tall perennial grasses, medium brush and evergreen hardwoods, short-needled conifers with no heavy fuels, long-needled conifers and deciduous hardwoods, and short-needled conifers with a component of heavy fuels. The NDVI, when analysed over a season of phenologically distinct periods along with ancillary data, can elicit information necessary to distinguish fuel model types. Fuels information derived from remote sensors has proven to be useful for initial classification of fuels and has been applied to fire management situations on the ground.

  11. Seasonal relationship between normalized difference vegetation index and abundance of the Phlebotomus kala-azar vector in an endemic focus in Bihar, India.

    PubMed

    Bhunia, Gouri S; Kesari, Shreekant; Chatterjee, Nandini; Mandal, Rakesh; Kumar, Vijay; Das, Pradeep

    2012-11-01

    Remote sensing was applied for the collection of spatio-temporal data to increase our understanding of the potential distribution of the kala-azar vector Phlebotomus argentipes in endemic areas of the Vaishali district of Bihar, India. We produced monthly distribution maps of the normalized difference vegetation index (NDVI) based on data from the thematic mapper (TM) sensor onboard the Landsat-5 satellite. Minimum, maximum and mean NDVI values were computed for each month and compared with the concurrent incidence of kala-azar and the vector density. Maximum and mean NDVI values (R2 = 0.55 and R2 = 0.60, respectively), as well as the season likelihood ratio (X2 = 17.51; P <0.001), were found to be strongly associated with kala-azar, while the correlation with between minimum NDVI values and kala-azar was weak (R2 = 0.25). Additionally, a strong association was found between the mean and maximum NDVI values with seasonal vector abundance (R2 = 0.60 and R2 = 0.55, respectively) but there was only a marginal association between minimum NDVI value and the spatial distribution of kala-azar vis-à-vis P. argentipes density. PMID:23242680

  12. Seasonal relationship between normalized difference vegetation index and abundance of the Phlebotomus kala-azar vector in an endemic focus in Bihar, India.

    PubMed

    Bhunia, Gouri S; Kesari, Shreekant; Chatterjee, Nandini; Mandal, Rakesh; Kumar, Vijay; Das, Pradeep

    2012-11-01

    Remote sensing was applied for the collection of spatio-temporal data to increase our understanding of the potential distribution of the kala-azar vector Phlebotomus argentipes in endemic areas of the Vaishali district of Bihar, India. We produced monthly distribution maps of the normalized difference vegetation index (NDVI) based on data from the thematic mapper (TM) sensor onboard the Landsat-5 satellite. Minimum, maximum and mean NDVI values were computed for each month and compared with the concurrent incidence of kala-azar and the vector density. Maximum and mean NDVI values (R2 = 0.55 and R2 = 0.60, respectively), as well as the season likelihood ratio (X2 = 17.51; P <0.001), were found to be strongly associated with kala-azar, while the correlation with between minimum NDVI values and kala-azar was weak (R2 = 0.25). Additionally, a strong association was found between the mean and maximum NDVI values with seasonal vector abundance (R2 = 0.60 and R2 = 0.55, respectively) but there was only a marginal association between minimum NDVI value and the spatial distribution of kala-azar vis-à-vis P. argentipes density.

  13. Functional analysis of normalized difference vegetation index curves reveals overwinter mule deer survival is driven by both spring and autumn phenology.

    PubMed

    Hurley, Mark A; Hebblewhite, Mark; Gaillard, Jean-Michel; Dray, Stéphane; Taylor, Kyle A; Smith, W K; Zager, Pete; Bonenfant, Christophe

    2014-01-01

    Large herbivore populations respond strongly to remotely sensed measures of primary productivity. Whereas most studies in seasonal environments have focused on the effects of spring plant phenology on juvenile survival, recent studies demonstrated that autumn nutrition also plays a crucial role. We tested for both direct and indirect (through body mass) effects of spring and autumn phenology on winter survival of 2315 mule deer fawns across a wide range of environmental conditions in Idaho, USA. We first performed a functional analysis that identified spring and autumn as the key periods for structuring the among-population and among-year variation of primary production (approximated from 1 km Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index (NDVI)) along the growing season. A path analysis showed that early winter precipitation and direct and indirect effects of spring and autumn NDVI functional components accounted for 45% of observed variation in overwinter survival. The effect size of autumn phenology on body mass was about twice that of spring phenology, while direct effects of phenology on survival were similar between spring and autumn. We demonstrate that the effects of plant phenology vary across ecosystems, and that in semi-arid systems, autumn may be more important than spring for overwinter survival.

  14. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum).

    PubMed

    Vicente, Mateus Henrique; Zsögön, Agustin; de Sá, Ariadne Felicio Lopo; Ribeiro, Rafael V; Peres, Lázaro E P

    2015-04-01

    Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution. PMID:25659332

  15. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum).

    PubMed

    Vicente, Mateus Henrique; Zsögön, Agustin; de Sá, Ariadne Felicio Lopo; Ribeiro, Rafael V; Peres, Lázaro E P

    2015-04-01

    Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.

  16. Adjusting spectral indices for spectral response function differences of very high spatial resolution sensors simulated from field spectra.

    PubMed

    Cundill, Sharon L; van der Werff, Harald M A; van der Meijde, Mark

    2015-03-13

    The use of data from multiple sensors is often required to ensure data coverage and continuity, but differences in the spectral characteristics of sensors result in spectral index values being different. This study investigates spectral response function effects on 48 spectral indices for cultivated grasslands using simulated data of 10 very high spatial resolution sensors, convolved from field reflectance spectra of a grass covered dike (with varying vegetation condition). Index values for 48 indices were calculated for original narrow-band spectra and convolved data sets, and then compared. The indices Difference Vegetation Index (DVI), Global Environmental Monitoring Index (GEMI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation Index (MSAVI2) and Soil-Adjusted Vegetation Index (SAVI), which include the difference between the near-infrared and red bands, have values most similar to those of the original spectra across all 10 sensors (1:1 line mean 1:1R2 > 0.960 and linear trend mean ccR2 > 0.997). Additionally, relationships between the indices' values and two quality indicators for grass covered dikes were compared to those of the original spectra. For the soil moisture indicator, indices that ratio bands performed better across sensors than those that difference bands, while for the dike cover quality indicator, both the choice of bands and their formulation are important.

  17. Adjusting Spectral Indices for Spectral Response Function Differences of Very High Spatial Resolution Sensors Simulated from Field Spectra

    PubMed Central

    Cundill, Sharon L.; van der Werff, Harald M. A.; van der Meijde, Mark

    2015-01-01

    The use of data from multiple sensors is often required to ensure data coverage and continuity, but differences in the spectral characteristics of sensors result in spectral index values being different. This study investigates spectral response function effects on 48 spectral indices for cultivated grasslands using simulated data of 10 very high spatial resolution sensors, convolved from field reflectance spectra of a grass covered dike (with varying vegetation condition). Index values for 48 indices were calculated for original narrow-band spectra and convolved data sets, and then compared. The indices Difference Vegetation Index (DVI), Global Environmental Monitoring Index (GEMI), Enhanced Vegetation Index (EVI), Modified Soil-Adjusted Vegetation Index (MSAVI2) and Soil-Adjusted Vegetation Index (SAVI), which include the difference between the near-infrared and red bands, have values most similar to those of the original spectra across all 10 sensors (1:1 line mean 1:1R2 > 0.960 and linear trend mean ccR2 > 0.997). Additionally, relationships between the indices’ values and two quality indicators for grass covered dikes were compared to those of the original spectra. For the soil moisture indicator, indices that ratio bands performed better across sensors than those that difference bands, while for the dike cover quality indicator, both the choice of bands and their formulation are important. PMID:25781511

  18. Improving spatial representation of soil moisture by integration of microwave observations and the temperature-vegetation-drought index derived from MODIS products

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Ling, Ziwei; Wang, Yang; Zeng, Hui

    2016-03-01

    The microwave observations of land surface soil moisture have been widely used for studying environmental change at large spatial scales. However, the coarse spatial resolution of the products limits their local-scale applications. In this paper, we developed a new method, which integrates the coarse spatial resolution soil moisture derived from microwave sensors and the temperature-vegetation-drought-index (TVDI) derived from the Moderate-resolution Imaging Spectroradiometer (MODIS) products, to spatially downscale soil moisture data from 25-km resolution to 1-km resolution. First, we assessed the quality of the remotely sensed soil moisture by comparing their values with field measured soil moisture at three temporal scales and two spatial scales. Second, we analyzed the robustness of the developed approach namely the PKU method by comparing its performance with the results of three published methods (i.e., the triangle-based method, the Merlin method, and the UCLA method) at the Magqu soil moisture monitoring network located in the northeastern Tibetan grasslands. The modeling results showed that by integrating the contextual information from the relatively fine spatial resolution MODIS products, spatial soil moisture representations were significantly improved. The PKU method produced the most accurate spatially disaggregated soil moisture among the four methods. In conclusion, the PKU method developed in this study is a practical and efficient approach for improving spatial representations of the coarse spatial resolution soil moisture data derived from microwave remote sensors. Within the PKU method, our refined method for estimating the parameters of the dry-edge outperforms the traditional method.

  19. The relationship of hyper-spectral vegetation indices with leaf area index (LAI) over the growth cycle of wheat and chickpea at 3 nm spectral resolution

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Vijayan, D.; Prasad, T. S.

    2006-01-01

    Hyperspectral ratio and normalized difference vegetation indices were computed from the 3 nm bandwidth ground-based spectral data taken in 400-950 nm wave length region over the crop growth cycle (CGC) of wheat and chickpea. Synthesized broad band Landsat TM-RVI, TM-NDVI and TM-SAVI were also computed using this narrow bandwidth spectral observations. Regression analysis was carried out for these indices with leaf area index (LAI) for wheat and chickpea over CGC and the r2 values were found poor in 0.2-0.53 range for wheat and in 0.41-0.82 range for chickpea. Significant relationship with LAI were found for wheat ( r2 in 0.86-0.97 range) when growth and decline phases were analyzed independently. Here, r2 values for chickpea were less than that for wheat. The high difference in rate of change of slope for hRVI is a good discriminator for high ET (wheat) and low ET (chickpea) crops. To find out the potential hyperspectral ratios and normalized difference indices that could provide strong relationship with LAI, a correlation-based analysis was carried out for LAI with all the possible combinations of ratios and normalized difference indices in 400-950 nm region (at 3 nm spectral interval) independently for growth and decline phases of LAI and found that in addition to traditional near-IR and red pairs, the pairs within near-IR, near-IR and visible extending to near-IR were also significantly related to LAI.

  20. Multi-Temporal Crop Surface Models Combined with the RGB Vegetation Index from Uav-Based Images for Forage Monitoring in Grassland

    NASA Astrophysics Data System (ADS)

    Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G.

    2016-06-01

    Remote sensing of crop biomass is important in regard to precision agriculture, which aims to improve nutrient use efficiency and to develop better stress and disease management. In this study, multi-temporal crop surface models (CSMs) were generated from UAV-based dense imaging in order to derive plant height distribution and to determine forage mass. The low-cost UAV-based RGB imaging was carried out in a grassland experiment at the University of Bonn, Germany, in summer 2015. The test site comprised three consecutive growths including six different nitrogen fertilizer levels and three replicates, in sum 324 plots with a size of 1.5×1.5 m. Each growth consisted of six harvesting dates. RGB-images and biomass samples were taken at twelve dates nearly biweekly within two growths between June and September 2015. Images were taken with a DJI Phantom 2 in combination of a 2D Zenmuse gimbal and a GoPro Hero 3 (black edition). Overlapping images were captured in 13 to 16 m and overview images in approximately 60 m height at 2 frames per second. The RGB vegetation index (RGBVI) was calculated as the normalized difference of the squared green reflectance and the product of blue and red reflectance from the non-calibrated images. The post processing was done with Agisoft PhotoScan Professional (SfM-based) and Esri ArcGIS. 14 ground control points (GCPs) were located in the field, distinguished by 30 cm × 30 cm markers and measured with a RTK-GPS (HiPer Pro Topcon) with 0.01 m horizontal and vertical precision. The errors of the spatial resolution in x-, y-, z-direction were in a scale of 3-4 cm. From each survey, also one distortion corrected image was georeferenced by the same GCPs and used for the RGBVI calculation. The results have been used to analyse and evaluate the relationship between estimated plant height derived with this low-cost UAV-system and forage mass. Results indicate that the plant height seems to be a suitable indicator for forage mass. There is a

  1. [Structural adjustment, cultural adjustment?].

    PubMed

    Dujardin, B; Dujardin, M; Hermans, I

    2003-12-01

    Over the last two decades, multiple studies have been conducted and many articles published about Structural Adjustment Programmes (SAPs). These studies mainly describe the characteristics of SAPs and analyse their economic consequences as well as their effects upon a variety of sectors: health, education, agriculture and environment. However, very few focus on the sociological and cultural effects of SAPs. Following a summary of SAP's content and characteristics, the paper briefly discusses the historical course of SAPs and the different critiques which have been made. The cultural consequences of SAPs are introduced and are described on four different levels: political, community, familial, and individual. These levels are analysed through examples from the literature and individual testimonies from people in the Southern Hemisphere. The paper concludes that SAPs, alongside economic globalisation processes, are responsible for an acute breakdown of social and cultural structures in societies in the South. It should be a priority, not only to better understand the situation and its determining factors, but also to intervene and act with strategies that support and reinvest in the social and cultural sectors, which is vital in order to allow for individuals and communities in the South to strengthen their autonomy and identify.

  2. Investigation of environmental change pattern in Japan. Investigation of the ecological environment index from observation of the regional vegetation cover and their growing condition

    NASA Technical Reports Server (NTRS)

    Maruyasu, T. (Principal Investigator); Nakajima, I.

    1977-01-01

    The author has identified the following significant results. Practical use of recognition results of LANDSAT data as the base map of the field survey or the retouching work of vegetation and land use has the effective benefit to cut down the cost, labor, and time lower than 10% of a conventional method. Correct and detailed vegetation maps were prepared using combined interpretation of repetition of data of different seasons at warm and temperate forested areas.

  3. Estimation for sparse vegetation information in desertification region based on Tiangong-1 hyperspectral image.

    PubMed

    Wu, Jun-Jun; Gao, Zhi-Hai; Li, Zeng-Yuan; Wang, Hong-Yan; Pang, Yong; Sun, Bin; Li, Chang-Long; Li, Xu-Zhi; Zhang, Jiu-Xing

    2014-03-01

    In order to estimate the sparse vegetation information accurately in desertification region, taking southeast of Sunite Right Banner, Inner Mongolia, as the test site and Tiangong-1 hyperspectral image as the main data, sparse vegetation coverage and biomass were retrieved based on normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), combined with the field investigation data. Then the advantages and disadvantages between them were compared. Firstly, the correlation between vegetation indexes and vegetation coverage under different bands combination was analyzed, as well as the biomass. Secondly, the best bands combination was determined when the maximum correlation coefficient turned up between vegetation indexes (VI) and vegetation parameters. It showed that the maximum correlation coefficient between vegetation parameters and NDVI could reach as high as 0.7, while that of SAVI could nearly reach 0.8. The center wavelength of red band in the best bands combination for NDVI was 630nm, and that of the near infrared (NIR) band was 910 nm. Whereas, when the center wavelength was 620 and 920 nm respectively, they were the best combination for SAVI. Finally, the linear regression models were established to retrieve vegetation coverage and biomass based on Tiangong-1 VIs. R2 of all models was more than 0.5, while that of the model based on SAVI was higher than that based on NDVI, especially, the R2 of vegetation coverage retrieve model based on SAVI was as high as 0.59. By intersection validation, the standard errors RMSE based on SAVI models were lower than that of the model based on NDVI. The results showed that the abundant spectral information of Tiangong-1 hyperspectral image can reflect the actual vegetaion condition effectively, and SAVI can estimate the sparse vegetation information more accurately than NDVI in desertification region.

  4. [Estimation models of vegetation fractional coverage (VFC) based on remote sensing image at different radiometric correction levels].

    PubMed

    Gu, Zhu-Jun; Zeng, Zhi-Yuan; Shi, Xue-Zheng; Yu, Dong-Sheng; Zheng, Wei; Zhang, Zhen-Long; Hu, Zi-Fu

    2008-06-01

    The images of post atmospheric correction reflectance (PAC), top of atmosphere reflectance (TOA), and digital number (DN) of a SPOT5 HRG remote sensing image of Nanjing, China were used to derive four vegetation indices (VIs), i. e., normalized difference vegetation index (NDVI), transformed vegetation index (TVI), soil-adjusted vegetation index (SAVI), and modified soil-adjusted vegetation index (MSAVI), and 36 VI-VFC relationship models were established based on these VIs and the VFC data obtained from ground measurement. The results showed that among the models established, the cubic polynomial models based on NDVI and TVI from PAC were the best, followed by those based on SAVI and MSAVI from DN, with the accuracy being slightly higher than that of the former two models when VFC > 0.8. The accuracy of these four models was higher in middle-densely vegetated areas (VFC = 0.4-0.8) than in sparsely vegetated areas (VFC = 0-0.4). All the established models could be used in other places via the introduction of calibration models. In VI-VFC modeling, using VIs derived from different radiometric correction levels of remote sensing image could help mining valuable information from remote sensing image, and thus, improving the accuracy of VFC estimation.

  5. Exploiting differential vegetation phenology for satellite-based mapping of semiarid grass vegetation in the southwestern United States and northern Mexico

    USGS Publications Warehouse

    Dye, Dennis G.; Middleton, Barry R.; Vogel, John M.; Wu, Zhuoting; Velasco, Miguel G.

    2016-01-01

    We developed and evaluated a methodology for subpixel discrimination and large-area mapping of the perennial warm-season (C4) grass component of vegetation cover in mixed-composition landscapes of the southwestern United States and northern Mexico. We describe the methodology within a general, conceptual framework that we identify as the differential vegetation phenology (DVP) paradigm. We introduce a DVP index, the Normalized Difference Phenometric Index (NDPI) that provides vegetation type-specific information at the subpixel scale by exploiting differential patterns of vegetation phenology detectable in time-series spectral vegetation index (VI) data from multispectral land imagers. We used modified soil-adjusted vegetation index (MSAVI2) data from Landsat to develop the NDPI, and MSAVI2 data from MODIS to compare its performance relative to one alternate DVP metric (difference of spring average MSAVI2 and summer maximum MSAVI2), and two simple, conventional VI metrics (summer average MSAVI2, summer maximum MSAVI2). The NDPI in a scaled form (NDPIs) performed best in predicting variation in perennial C4 grass cover as estimated from landscape photographs at 92 sites (R2 = 0.76, p < 0.001), indicating improvement over the alternate DVP metric (R2 = 0.73, p < 0.001) and substantial improvement over the two conventional VI metrics (R2 = 0.62 and 0.56, p < 0.001). The results suggest DVP-based methods, and the NDPI in particular, can be effective for subpixel discrimination and mapping of exposed perennial C4 grass cover within mixed-composition landscapes of the Southwest, and potentially for monitoring of its response to drought, climate change, grazing and other factors, including land management. With appropriate adjustments, the method could potentially be used for subpixel discrimination and mapping of grass or other vegetation types in other regions where the vegetation components of the landscape exhibit contrasting seasonal patterns of phenology.

  6. A MODIS-based begetation index climatology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Passive microwave soil moisture algorithms must account for vegetation attenuation of the signal in the retrieval process. One approach to accounting for vegetation is to use vegetation indices such as the Normalized Difference Vegetation Index (NDVI) to estimate the vegetation optical depth. The pa...

  7. NDVI saturation adjustment: a new approach for improving cropland performance estimates in the Greater Platte River Basin, USA

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.; Phuyal, Khem P.; Ji, Lei

    2013-01-01

    In this study, we developed a new approach that adjusted normalized difference vegetation index (NDVI) pixel values that were near saturation to better characterize the cropland performance (CP) in the Greater Platte River Basin (GPRB), USA. The relationship between NDVI and the ratio vegetation index (RVI) at high NDVI values was investigated, and an empirical equation for estimating saturation-adjusted NDVI (NDVIsat_adjust) based on RVI was developed. A 10-year (2000–2009) NDVIsat_adjust data set was developed using 250-m 7-day composite historical eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. The growing season averaged NDVI (GSN), which is a proxy for ecosystem performance, was estimated and long-term NDVI non-saturation- and saturation-adjusted cropland performance (CPnon_sat_adjust, CPsat_adjust) maps were produced over the GPRB. The final CP maps were validated using National Agricultural Statistics Service (NASS) crop yield data. The relationship between CPsat_adjust and the NASS average corn yield data (r = 0.78, 113 samples) is stronger than the relationship between CPnon_sat_adjust and the NASS average corn yield data (r = 0.67, 113 samples), indicating that the new CPsat_adjust map reduces the NDVI saturation effects and is in good agreement with the corn yield ground observations. Results demonstrate that the NDVI saturation adjustment approach improves the quality of the original GSN map and better depicts the actual vegetation conditions of the GPRB cropland systems.

  8. Evaluating the Use of the Case Mix Index for Risk Adjustment of Healthcare-Associated Infection Data: An Illustration using Clostridium difficile Infection Data from the National Healthcare Safety Network.

    PubMed

    Thompson, Nicola D; Edwards, Jonathan R; Dudeck, Margaret A; Fridkin, Scott K; Magill, Shelley S

    2016-01-01

    BACKGROUND Case mix index (CMI) has been used as a facility-level indicator of patient disease severity. We sought to evaluate the potential for CMI to be used for risk adjustment of National Healthcare Safety Network (NHSN) healthcare-associated infection (HAI) data. METHODS NHSN facility-wide laboratory-identified Clostridium difficile infection event data from 2012 were merged with the fiscal year 2012 Inpatient Prospective Payment System (IPPS) Impact file by CMS certification number (CCN) to obtain a CMI value for hospitals reporting to NHSN. Negative binomial regression was used to evaluate whether CMI was significantly associated with healthcare facility-onset (HO) CDI in univariate and multivariate analysis. RESULTS Among 1,468 acute care hospitals reporting CDI data to NHSN in 2012, 1,429 matched by CCN to a CMI value in the Impact file. CMI (median, 1.49; interquartile range, 1.36-1.66) was a significant predictor of HO CDI in univariate analysis (P<.0001). After controlling for community onset CDI prevalence rate, medical school affiliation, hospital size, and CDI test type use, CMI remained highly significant (P<.0001), with an increase of 0.1 point in CMI associated with a 3.4% increase in the HO CDI incidence rate. CONCLUSIONS CMI was a significant predictor of NHSN HO CDI incidence. Additional work to explore the feasibility of using CMI for risk adjustment of NHSN data is necessary. Infect. Control Hosp. Epidemiol. 2015;37(1):19-25. PMID:26486597

  9. Exploring the Relationship Between Water Flux and Vegetation Water Status Using Time Series Data of Evapotranspiration and Modis Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Riaño, D.; Ustin, S.

    2012-12-01

    In agricultural practices, evapotranspiration (ET) data obtained from weather stations or flux towers are used to monitor crop water use and schedule irrigation over the growing season. Recent advances in remote sensing have shown that satellite data (e.g., MODIS) can be used to quantify the amount of water held in vegetation canopies. However, the relationship between how much water has been used through the ET process and how much water is maintained in vegetation canopies remains unclear. This study aimed to investigate how vegetation canopy water content is related to ET for almond orchards in the southern San Joaquin Valley of California. MODIS Nadir BRDF-Adjusted Reflectance 8-day 500 m data for the growing season of 2011 (March ~ November of 2011) were used to derive a number of vegetation indices as spectral indicators of canopy water content, including the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the Normalized Difference Water Index (NDWI), the Normalized Difference Infrared Index using MODIS Band 6 (NDII) and the Normalized Difference Infrared Index using MODIS Band 7 (NDII7). These times series of MODIS indices were then compared to flux tower-based ET measurements temporally integrated from half-hourly to 8 days for the same time period. Our results showed all vegetation indices could account for more than 70% of variation in the ET data and the two infrared indices (NDII and NDII7) explained more than the other three indices. The relationships between vegetation indices and ET were generally positive and rate of ET change increased while the water content in almond canopies increased. The seasonal trajectory of ET could be fitted by a Gaussian function, with the ET peaking at day of year (DOY) 179. All vegetation indices exhibited broader peaking periods than ET due to insensitivity of spectral signals to fully developed canopies. The Gaussian function fitted to the NDII trajectory had the peaking day closest

  10. White Light Emission from Vegetable Extracts.

    PubMed

    Singh, Vikram; Mishra, Ashok K

    2015-06-17

    A mixture of extracts from two common vegetables, red pomegranate and turmeric, when photoexcited at 380 nm, produced almost pure white light emission (WLE) with Commission Internationale d'Eclairage (CIE) chromaticity index (0.35, 0.33) in acidic ethanol. It was also possible to obtain WLE in polyvinyl alcohol film (0.32, 0.25), and in gelatin gel (0.26, 0.33) using the same extract mixture. The colour temperature of the WLE was conveniently tunable by simply adjusting the concentrations of the component emitters. The primary emitting pigments responsible for contributing to WLE were polyphenols and anthocyanins from pomegranate, and curcumin from turmeric. It was observed that a cascade of Forster resonance energy transfer involving polyphenolics, curcumin and anthocyanins played a crucial role in obtaining a CIE index close to pure white light. The optimized methods of extraction of the two primary emitting pigments from their corresponding plant sources are simple, cheap and fairly green.

  11. Forecasting vegetation greenness with satellite and climate data

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2004-01-01

    A new and unique vegetation greenness forecast (VGF) model was designed to predict future vegetation conditions to three months through the use of current and historical climate data and satellite imagery. The VGF model is implemented through a seasonality-adjusted autoregressive distributed-lag function, based on our finding that the normalized difference vegetation index is highly correlated with lagged precipitation and temperature. Accurate forecasts were obtained from the VGF model in Nebraska grassland and cropland. The regression R2 values range from 0.97-0.80 for 2-12 week forecasts, with higher R2 associated with a shorter prediction. An important application would be to produce real-time forecasts of greenness images.

  12. Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China

    PubMed Central

    Hao, Pengyu; Wang, Li; Niu, Zheng

    2015-01-01

    A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies, multiple voting (M-voting) and probabilistic fusion (P-fusion), for crop classification using NDVI time series were tested with different training sample sizes at both pixel and object levels, and two representative counties in north Xinjiang were selected as study area. The single classifiers employed in this research included Random Forest (RF), Support Vector Machine (SVM), and See 5 (C 5.0). The results indicated that classification performance improved (increased the mean overall accuracy by 5%~10%, and reduced standard deviation of overall accuracy by around 1%) substantially with the training sample number, and when the training sample size was small (50 or 100 training samples), hybrid classifiers substantially outperformed single classifiers with higher mean overall accuracy (1%~2%). However, when abundant training samples (4,000) were employed, single classifiers could achieve good classification accuracy, and all classifiers obtained similar performances. Additionally, although object-based classification did not improve accuracy, it resulted in greater visual appeal, especially in study areas with a heterogeneous cropping pattern. PMID:26360597

  13. Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China.

    PubMed

    Hao, Pengyu; Wang, Li; Niu, Zheng

    2015-01-01

    A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies, multiple voting (M-voting) and probabilistic fusion (P-fusion), for crop classification using NDVI time series were tested with different training sample sizes at both pixel and object levels, and two representative counties in north Xinjiang were selected as study area. The single classifiers employed in this research included Random Forest (RF), Support Vector Machine (SVM), and See 5 (C 5.0). The results indicated that classification performance improved (increased the mean overall accuracy by 5%~10%, and reduced standard deviation of overall accuracy by around 1%) substantially with the training sample number, and when the training sample size was small (50 or 100 training samples), hybrid classifiers substantially outperformed single classifiers with higher mean overall accuracy (1%~2%). However, when abundant training samples (4,000) were employed, single classifiers could achieve good classification accuracy, and all classifiers obtained similar performances. Additionally, although object-based classification did not improve accuracy, it resulted in greater visual appeal, especially in study areas with a heterogeneous cropping pattern.

  14. Fruit and vegetable consumption and risk factors for cardiovascular disease.

    PubMed

    Mirmiran, Parvin; Noori, Nazanin; Zavareh, Maryam Beheshti; Azizi, Fereidoun

    2009-04-01

    The international guidelines issued by the World Health Organization recommend reduction in dietary saturated fat and cholesterol intakes as means to prevent hypercholesterolemia and cardiovascular disease (CVD); however, only limited data are available on the benefits of fruit and vegetable consumption on CVD risk factors in a community-based population. The aim of this study was to examine whether, and to what extent, intake of fruits and vegetables is inversely associated with CVD risk factors in adults. In this population-based cross-sectional study, a representative sample of 840 Tehranian adults (male and female) aged 18 to 74 years was randomly selected in 1998. Multivariate logistic regression adjusted for lifestyle and nutritional confounders was used in 2 models. After adjusting for confounders, dietary fruit and vegetable were found to be significantly and inversely associated with CVD risk factors. Adjusted odds ratio for high low-density lipoprotein concentrations were 1.00, 0.88, 0.81, and 0.75 (P for trend < .01) in the first model, which was adjusted for age, sex, keys score, body mass index, energy intake, smoking status, dietary cholesterol, and history of diabetes mellitus and coronary artery disease, a trend which was not appreciably altered by additional adjustment for education, physical activity, and saturated, polyunsaturated, and total fat intakes. This association was observed across categories of smoking status, physical activity, and tertiles of the Keys score. Exclusion of subjects with prevalent diabetes mellitus or coronary artery disease did not alter these results significantly. Consumption of fruits and vegetables is associated with lower concentrations of total and low-density lipoprotein cholesterol and with the risk of CVD per se in a dose-response manner.

  15. Combining ground-based measurements and satellite-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    NASA Astrophysics Data System (ADS)

    Uyeda, K. A.; Stow, D. A.; Roberts, D. A.; Riggan, P. J.

    2015-12-01

    Multi-temporal satellite imagery can provide valuable information on patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, I test the relationship between annual biomass estimated using shrub growth rings and metrics of seasonal growth derived from Moderate Resolution Imaging Spectroradiometer (MODIS) spectral vegetation indices (SVIs) for a small area of southern California chaparral to evaluate the potential for mapping biomass at larger spatial extents. The site had most recently burned in 2002, and annual biomass accumulation measurements were available from years 5 - 11 post-fire. I tested metrics of seasonal growth using six SVIs (Normalized Difference Vegetation Index, Enhanced Vegetation Index, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Normalized Difference Infrared Index 6, and Vegetation Atmospherically Resistant Index). While additional research would be required to determine which of these metrics and SVIs are most promising over larger spatial extents, several of the seasonal growth metrics/ SVI combinations have a very strong relationship with annual biomass, and all SVIs have a strong relationship with annual biomass for at least one of the seasonal growth metrics.

  16. Shaft adjuster

    DOEpatents

    Harry, H.H.

    1988-03-11

    Abstract and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus. 3 figs.

  17. Shaft adjuster

    DOEpatents

    Harry, Herbert H.

    1989-01-01

    Apparatus and method for the adjustment and alignment of shafts in high power devices. A plurality of adjacent rotatable angled cylinders are positioned between a base and the shaft to be aligned which when rotated introduce an axial offset. The apparatus is electrically conductive and constructed of a structurally rigid material. The angled cylinders allow the shaft such as the center conductor in a pulse line machine to be offset in any desired alignment position within the range of the apparatus.

  18. Prognostic value of the age-adjusted International Prognostic Index in chemosensitive recurrent or refractory non-Hodgkin's lymphomas treated with high-dose BEAM therapy and autologous stem cell transplantation.

    PubMed

    Jabbour, E; Peslin, N; Arnaud, P; Ferme, C; Carde, P; Vantelon, J M; Bocaccio, C; Bourhis, J H; Koscielny, S; Ribrag, V

    2005-06-01

    High-dose therapy (HDT) is now recommended for patients under 60 years of age with chemosensitive relapsed aggressive non-Hodgkin's lymphoma. However, approximately half of these patients will be cured by HDT. Prognostic factors are needed to predict which patients with chemosensitive lymphoma to second-line therapy could benefit from HDT. We retrospectively investigated the prognostic value of the widely used age-adjusted International Prognostic Index (AA-IPI) calculated at the time of relapse (35 patients) or just before second-line salvage therapy for primary refractory disease (5 patients). The median age was 51 years (range 18-64 years). Thirty-six patients had diffuse large B-cell lymphoma. Salvage cytoreductive therapy before HDT was DHAP/ESHAP (cytarabine, cysplatin, etoposide, steroids) in 17 patients, VIM3-Ara-c/MAMI (high-dose cytarabine, ifosfamide, methyl-gag, amsacrine) in 17 patients, CHOP (cyclophosphamide, doxorubicin, vincristine, prednisone) or reinforced CHOP in 4 patients, high-dose cyclophosphamide and etoposide in 2 patients. The HDT regimen consisted of BEAM (carmusine, cytarabine, etoposide, melphalan) in all cases. Eleven patients were in partial remission and 29 in complete remission at the time of HDT. Ten patients had an IPI >1, 16 had relapsed early (<6 months after first-line therapy) or disease was refractory to first-line therapy (5 of the 16 patients). The median follow-up was 6.07 years (range 1.24-9.74 years). Overall survival was not statistically different in patients with refractory disease or in those who relapsed early compared with late failures (>6 months after first-line chemotherapy) (P=1), but the AA-IPI >1 was associated with a poor outcome (P=0.03). In conclusion, the AA-IPI could have a prognostic value in patients with chemosensitive recurrent lymphoma treated with BEAM HDT.

  19. Association between flavonoid-rich fruit and vegetable consumption and total serum bilirubin.

    PubMed

    Loprinzi, Paul D; Mahoney, Sara E

    2015-03-01

    Emerging work demonstrates that serum bilirubin is a novel biomarker implicated in cardiovascular and metabolic diseases. However, we have a limited understanding of the influence of flavonoid-rich fruit and vegetable consumption on bilirubin levels, which was the purpose of this study. Data from the 2003 to 2006 National Health and Nutrition Examination survey were used (n = 1783; 18-85 years of age), with analyses performed in 2014. Total serum bilirubin was measured from a blood sample. Using a food frequency questionnaire (FFQ), a flavonoid index variable was created summing the frequency of consumption of flavonoid-rich foods. After adjustments, greater consumption of flavonoid-rich fruits and vegetables was positively associated with bilirubin levels. Our findings suggest an association between flavonoid-rich fruit and vegetable consumption and bilirubin levels. If confirmed by prospective and experimental studies, then regular consumption of flavonoid-rich fruits and vegetables should be promoted to increase levels of bilirubin.

  20. A land data assimilation system for simultaneous simulation of soil moisture and vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Sawada, Yohei; Koike, Toshio; Walker, Jeffrey P.

    2015-06-01

    Despite the importance of the coupling between vegetation dynamics and root-zone soil moisture in land-atmosphere interactions, there is no land data assimilation system (LDAS) that currently addresses this issue, limiting the capacity to positively impact weather and seasonal forecasting. We develop a new LDAS that can improve the skill of an ecohydrological model to simulate simultaneously surface soil moisture, root-zone soil moisture, and vegetation dynamics by assimilating passive microwave observations that are sensitive to both surface soil moisture and terrestrial biomass. This LDAS first calibrates both hydrological and ecological parameters of a land surface model, which explicitly simulates vegetation growth and senescence. Then, it adjusts the model states of soil moisture and leaf area index (LAI) sequentially using a genetic particle filter. We can adjust the subsurface soil moisture, which is not observed directly by satellites, because we simulate the interactions between vegetation dynamics and subsurface water dynamics. From a point-scale evaluation, we succeed in improving the performance of our land surface model and generate ensembles of the model state whose distribution reflects the combined information in the land surface model and satellite observations. We show that the adjustment of the subsurface soil moisture significantly improves the capacity to simulate vegetation dynamics in seasonal forecast timescales. This LDAS can contribute to the generation of ensemble initial conditions of surface and subsurface soil moisture and LAI for a probabilistic framework of weather and seasonal forecasting.

  1. Vegetative response to water availability on the San Carlos Apache Reservation

    USGS Publications Warehouse

    Petrakis, Roy; Wu, Zhuoting; McVay, Jason; Middleton, Barry R.; Dye, Dennis G.; Vogel, John M.

    2016-01-01

    On the San Carlos Apache Reservation in east-central Arizona, U.S.A., vegetation types such as ponderosa pine forests, pinyon-juniper woodlands, and grasslands have significant ecological, cultural, and economic value for the Tribe. This value extends beyond the tribal lands and across the Western United States. Vegetation across the Southwestern United States is susceptible to drought conditions and fluctuating water availability. Remotely sensed vegetation indices can be used to measure and monitor spatial and temporal vegetative response to fluctuating water availability conditions. We used the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived Modified Soil Adjusted Vegetation Index II (MSAVI2) to measure the condition of three dominant vegetation types (ponderosa pine forest, woodland, and grassland) in response to two fluctuating environmental variables: precipitation and the Standardized Precipitation Evapotranspiration Index (SPEI). The study period covered 2002 through 2014 and focused on a region within the San Carlos Apache Reservation. We determined that grassland and woodland had a similar moderate to strong, year-round, positive relationship with precipitation as well as with summer SPEI. This suggests that these vegetation types respond negatively to drought conditions and are more susceptible to initial precipitation deficits. Ponderosa pine forest had a comparatively weaker relationship with monthly precipitation and summer SPEI, indicating that it is more buffered against short-term drought conditions. This research highlights the response of multiple, dominant vegetation types to seasonal and inter-annual water availability. This research demonstrates that multi-temporal remote sensing imagery can be an effective tool for the large scale detection of vegetation response to adverse impacts from climate change and support potential management practices such as increased monitoring and management of drought-affected areas. Different

  2. Relation of raw and cooked vegetable consumption to blood pressure: the INTERMAP Study

    PubMed Central

    Chan, Q; Stamler, J; Brown, I J; Daviglus, M L; Van Horn, L; Dyer, A R; Oude Griep, L M; Miura, K; Ueshima, H; Zhao, L; Nicholson, J K; Holmes, E; Elliott, P

    2014-01-01

    Inverse associations have been reported of overall vegetable intake to blood pressure (BP); whether such relations prevail for both raw and cooked vegetables has not been examined. Here we report cross-sectional associations of vegetable intakes with BP for 2195 Americans ages 40–59 in the International Study of Macro/Micronutrients and Blood Pressure (INTERMAP) using four standardized multi-pass 24-h dietary recalls and eight BP measurements. Relations to BP of raw and cooked vegetables consumption, and main individual constituents were assessed by multiple linear regression. Intakes of both total raw and total cooked vegetables considered separately were inversely related to BP in multivariate-adjusted models. Estimated average systolic BP differences associated with two s.d. differences in raw vegetable intake (68 g per 1000 kcal) and cooked vegetable intake (92 g per 1000 kcal) were −1.9 mm Hg (95% confidence interval (CI): −3.1, −0.8; P=0.001) and −1.3 mm Hg (95% CI: −2.5, −0.2; P=0.03) without body mass index (BMI) in the full model; −1.3 mm Hg (95% CI: −2.4, −0.2; P=0.02) and −0.9 mm Hg (95% CI: −2.0, 0.2; P=0.1) with additional adjustment for BMI. Among commonly consumed individual raw vegetables, tomatoes, carrots, and scallions related significantly inversely to BP. Among commonly eaten cooked vegetables, tomatoes, peas, celery, and scallions related significantly inversely to BP. PMID:24257514

  3. Relation of raw and cooked vegetable consumption to blood pressure: the INTERMAP Study.

    PubMed

    Chan, Q; Stamler, J; Brown, I J; Daviglus, M L; Van Horn, L; Dyer, A R; Oude Griep, L M; Miura, K; Ueshima, H; Zhao, L; Nicholson, J K; Holmes, E; Elliott, P

    2014-06-01

    Inverse associations have been reported of overall vegetable intake to blood pressure (BP); whether such relations prevail for both raw and cooked vegetables has not been examined. Here we report cross-sectional associations of vegetable intakes with BP for 2195 Americans ages 40-59 in the International Study of Macro/Micronutrients and Blood Pressure (INTERMAP) using four standardized multi-pass 24-h dietary recalls and eight BP measurements. Relations to BP of raw and cooked vegetables consumption, and main individual constituents were assessed by multiple linear regression. Intakes of both total raw and total cooked vegetables considered separately were inversely related to BP in multivariate-adjusted models. Estimated average systolic BP differences associated with two s.d. differences in raw vegetable intake (68 g per 1000 kcal) and cooked vegetable intake (92 g per 1000 kcal) were -1.9 mm Hg (95% confidence interval (CI): -3.1, -0.8; P=0.001) and -1.3 mm Hg (95% CI: -2.5, -0.2; P=0.03) without body mass index (BMI) in the full model; -1.3 mm Hg (95% CI: -2.4, -0.2; P=0.02) and -0.9 mm Hg (95% CI: -2.0, 0.2; P=0.1) with additional adjustment for BMI. Among commonly consumed individual raw vegetables, tomatoes, carrots, and scallions related significantly inversely to BP. Among commonly eaten cooked vegetables, tomatoes, peas, celery, and scallions related significantly inversely to BP.

  4. Sea Surface Temperature and Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values.

  5. Monitoring of maize chlorophyll content based on multispectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Sun, Hong; Li, Minzan; Zheng, Lihua; Zhang, Yane; Zhang, Yajing

    2012-11-01

    In order to estimate the nutrient status of maize, the multi-spectral image was used to monitor the chlorophyll content in the field. The experiments were conducted under three different fertilizer treatments (High, Normal and Low). A multispectral CCD camera was used to collect ground-based images of maize canopy in green (G, 520~600nm), red (R, 630~690nm) and near-infrared (NIR, 760~900nm) band. Leaves of maize were randomly sampled to detect the chlorophyll content by UV-Vis spectrophotometer. The images were processed following image preprocessing, canopy segmentation and parameter calculation: Firstly, the median filtering was used to improve the visual contrast of image. Secondly, the leaves of maize canopy were segmented in NIR image. Thirdly, the average gray value (GIA, RIA and NIRIA) and the vegetation indices (DVI, RVI, NDVI, et al.) widely used in remote sensing were calculated. A new vegetation index, combination of normalized difference vegetation index (CNDVI), was developed. After the correlation analysis between image parameter and chlorophyll content, six parameters (GIA, RIA, NIRIA, GRVI, GNDVI and CNDVI) were selected to estimate chlorophyll content at shooting and trumpet stages respectively. The results of MLR predicting models showed that the R2 was 0.88 and the adjust R2 was 0.64 at shooting stage; the R2 was 0.77 and the adjust R2 was 0.31 at trumpet stage. It was indicated that vegetation indices derived from multispectral image could be used to monitor the chlorophyll content. It provided a feasible method for the chlorophyll content detection.

  6. Multi-index time series monitoring of drought and fire effects on desert grasslands

    USGS Publications Warehouse

    Villarreal, Miguel; Norman, Laura M.; Buckley, Steven; Wallace, Cynthia S.A.; Coe, Michelle A.

    2016-01-01

    The Western United States is expected to undergo both extended periods of drought and longer wildfire seasons under forecasted global climate change and it is important to understand how these disturbances will interact and affect recovery and composition of plant communities in the future. In this research paper we describe the temporal response of grassland communities to drought and fire in southern Arizona, where land managers are using repeated, prescribed fire as a habitat restoration tool. Using a 25-year atlas of fire locations, we paired sites with multiple fires to unburned control areas and compare satellite and field-based estimates of vegetation cover over time. Two hundred and fifty Landsat TM images, dating from 1985–2011, were used to derive estimates of Total Vegetation Fractional Cover (TVFC) of live and senescent grass using the Soil-Adjusted Total Vegetation Index (SATVI) and post-fire vegetation greenness using the Normalized Difference Vegetation Index (NDVI). We also implemented a Greenness to Cover Index that is the difference of time-standardized SATVI-TVFC and NDVI values at a given time and location to identify post-fire shifts in native, non-native, and annual plant cover. The results highlight anomalous greening and browning during drought periods related to amounts of annual and non-native plant cover present. Results suggest that aggressive application of prescribed fire may encourage spread of non-native perennial grasses and annual plants, particularly during droughts.

  7. High tea and vegetable consumption is associated with low ADMA generation in older healthy subjects.

    PubMed

    Goralczyk, Tadeusz; Tisonczyk, Joanna; Fijorek, Kamil; Undas, Anetta

    2012-08-01

    Asymmetric dimethylarginine (ADMA) has been recognized as a marker of cardiovascular risk. We sought to investigate whether consumption of tea, coffee, fruit or vegetables is associated with ADMA. In 148 consecutive apparently healthy subjects (104 men and 44 women aged 40 to 70), daily tea, coffee, fruit and vegetable consumption was ascertained by questionnaire. Plasma ADMA, symmetric dimethylarginine (SDMA), and l-arginine levels were measured by high-performance liquid chromatography. Median tea and coffee consumption was 2 cups/d, while vegetable and fruit intake was 152 (120-179)g/d and 120 (108-134)g/d, respectively. Median plasma ADMA, SDMA and arginine were 0.47 (0.43-0.53)μmol/L, 0.59 (0.54-0.66)μmol/L and 86 (68-101)μmol/L, respectively. ADMA correlated inversely with tea (r = -0.70, P < .0001) and vegetable consumption (r = -0.50, P < .0001) even after adjustment for age, sex, body mass index, smoking status, and potential dietary and biochemical parameters. No association between ADMA and fruit consumption was found. ADMA correlated positively with coffee intake (r = 0.37, P < .0001), although these associations were less potent after adjustment for dietary factors. Higher tea and vegetable intake is associated with lower plasma ADMA levels in healthy middle-aged subjects.

  8. Estimating vegetation dryness to optimize fire risk assessment with spot vegetation satellite data in savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Verbesselt, J.; Somers, B.; Lhermitte, S.; van Aardt, J.; Jonckheere, I.; Coppin, P.

    2005-10-01

    The lack of information on vegetation dryness prior to the use of fire as a management tool often leads to a significant deterioration of the savanna ecosystem. This paper therefore evaluated the capacity of SPOT VEGETATION time-series to monitor the vegetation dryness (i.e., vegetation moisture content per vegetation amount) in order to optimize fire risk assessment in the savanna ecosystem of Kruger National Park in South Africa. The integrated Relative Vegetation Index approach (iRVI) to quantify the amount of herbaceous biomass at the end of the rain season and the Accumulated Relative Normalized Difference vegetation index decrement (ARND) related to vegetation moisture content were selected. The iRVI and ARND related to vegetation amount and moisture content, respectively, were combined in order to monitor vegetation dryness and optimize fire risk assessment in the savanna ecosystems. In situ fire activity data was used to evaluate the significance of the iRVI and ARND to monitor vegetation dryness for fire risk assessment. Results from the binary logistic regression analysis confirmed that the assessment of fire risk was optimized by integration of both the vegetation quantity (iRVI) and vegetation moisture content (ARND) as statistically significant explanatory variables. Consequently, the integrated use of both iRVI and ARND to monitor vegetation dryness provides a more suitable tool for fire management and suppression compared to other traditional satellite-based fire risk assessment methods, only related to vegetation moisture content.

  9. Vegetable and fruit consumption and risk of renal cell carcinoma: results from the Netherlands cohort study.

    PubMed

    van Dijk, Boukje A C; Schouten, Leo J; Kiemeney, Lambertus A L M; Goldbohm, R Alexandra; van den Brandt, Piet A

    2005-11-20

    Vegetable and fruit consumption is generally inversely associated with various cancer types, including renal cell carcinoma (RCC). The Netherlands cohort study on diet and cancer (NLCS) consists of 120,852 men and women, aged 55-69 years, who filled out a self-administered questionnaire that includes 150-item food-frequency questions and additional questions on lifestyle factors, at baseline in 1986. A case-cohort approach was used. After 9.3 years of follow-up, 275 microscopically confirmed incident cases were identified. Subjects with incomplete or inconsistent dietary data were excluded, leaving 260 RCC cases for analyses on fruit consumption and 249 RCC cases for analyses on vegetable consumption. Incidence rate ratios (RR) and corresponding 95% confidence intervals (CI) were estimated using Cox proportional hazard models. RRs for exposure variables are expressed per increment of 25 g/day and are adjusted for age, sex, smoking, body mass index and history of hypertension at baseline. The RRs for vegetable consumption were further adjusted for fruit consumption and vice versa. Total vegetable and fruit consumption (RR: 1.00; 95% CI 0.97-1.02), vegetable (RR: 1.00, 95% CI 0.96-1.06) and fruit consumption (RR: 1.00; 95% CI 0.97-1.03) were not associated with RCC risk. Also, no association existed for botanical subgroups of vegetables and fruit. For 30 individual vegetables and fruits, we observed one that significantly increased RR (mandarin consumption, RR: 1.76; 95% CI 1.28-2.42), which must be regarded cautiously because of multiple testing. These results suggest the absence of an association between vegetable and/or fruit consumption and RCC risk.

  10. An Unbalance Adjustment Method for Development Indicators

    ERIC Educational Resources Information Center

    Tarabusi, Enrico Casadio; Guarini, Giulio

    2013-01-01

    This paper analyzes some aggregation aspects of the procedure for constructing a composite index on a multidimensional socio-economic phenomenon such as development, the main focus being on the unbalance among individual dimensions. First a theoretical framework is set up for the unbalance adjustment of the index. Then an aggregation function is…

  11. Indexing Images.

    ERIC Educational Resources Information Center

    Rasmussen, Edie M.

    1997-01-01

    Focuses on access to digital image collections by means of manual and automatic indexing. Contains six sections: (1) Studies of Image Systems and their Use; (2) Approaches to Indexing Images; (3) Image Attributes; (4) Concept-Based Indexing; (5) Content-Based Indexing; and (6) Browsing in Image Retrieval. Contains 105 references. (AEF)

  12. Comparative analysis of different uni- and multi-variate methods for estimation of vegetation water content using hyper-spectral measurements

    NASA Astrophysics Data System (ADS)

    Mirzaie, M.; Darvishzadeh, R.; Shakiba, A.; Matkan, A. A.; Atzberger, C.; Skidmore, A.

    2014-02-01

    Assessment of vegetation water content is critical for monitoring vegetation condition, detecting plant water stress, assessing the risk of forest fires and evaluating water status for irrigation. The main objective of this study was to investigate the performance of various mono- and multi-variate statistical methods for estimating vegetation water content (VWC) from hyper-spectral data. Hyper-spectral data is influenced by multi-collinearity because of a large number of (independent) spectral bands being modeled by a small number of (dependent) biophysical variables. Therefore, some full spectrum methods that are known to be suitable for analyzing multi-collinear data set were chosen. Canopy spectral reflectance was obtained with a GER 3700 spectro-radiometer (400-2400 nm) in a laboratory setting and VWC was measured by calculating wet/dry weight difference per unit of ground area (g/m2) of each plant canopy (n = 95). Three multivariate statistical methods were applied to estimate VWC: (1) partial least square regression, (2) artificial neural network and (3) principal component regression. They were selected to minimize the problem related to multi-collinearity. For comparison, uni-variate techniques including narrow band ratio water index (RWI), normalized difference water index (NDWI), second soil adjusted vegetation index (SAVI2) and transferred soil adjusted vegetation index (TSAVI) were applied. For each type of vegetation index, all two-band combinations were evaluated to determine the best band combination. Validation of the methods was based on the cross validation procedure and using three statistical indicators: R2, RMSE and relative RMSE. The cross-validated results identified PLSR as the regression model providing the most accurate estimates of VWC among the various methods. The result revealed that this model is highly recommended for use with multi-collinear datasets (RCV2=0.94, RRMSECV = 0.23). Principal component regression exhibited the lowest

  13. Integration of biomass data in the dynamic vegetation model ORCHIDEE

    NASA Astrophysics Data System (ADS)

    Delbart, N.; Viovy, N.; Ciais, P.; Le Toan, T.

    2009-04-01

    Dynamic vegetation models (DVMs) are aimed at estimating exchanges between the terrestrial vegetated surface and the atmosphere, and the spatial distribution of natural vegetation types. For this purpose, DVMs use the climatic data alone to feed the vegetation process equations. As dynamic models, they can also give predictions under the current and the future climatic conditions. However, they currently lack accuracy in locating carbon stocks, sinks and sources, and in getting the correct magnitude. Consequently they have been essentially used to compare the vegetation responses under different scenarii. The assimilation of external data such as remote sensing data has been shown to improve the simulations. For example, the land cover maps are used to force the correct distribution of plant functional types (PFTs), and the leaf area index data is used to force the photosynthesis processes. This study concerns the integration of biomass data within the DVM ORCHIDEE. The objective here is to have the living carbon stocks with the correct magnitude and the correct location. Carbon stocks depend on interplay of carbon assimilated by photosynthesis, and carbon lost by respiration, mortality and disturbance. Biomass data can therefore be used as one essential constraint on this interplay. In this study, we use a large database provided by in-situ measurements of carbon stocks and carbon fluxes of old growth forests to constraint this interplay. For each PFT, we first adjust the simulated photosynthesis by reducing the mean error with the in situ measurements. Then we proceed similarly to adjust the autotrophic respiration. We then compare the biomass measured, and adjust the mortality processes in the model. Second, when processes are adjusted for each PFT to minimize the mean error on the carbon stock, biomass measurements can be assimilated. This assimilation is based on the hypothesis that the main variable explaining the biomass level at a given location is the age

  14. A prospective 1-5 year outcome study in first-admitted and readmitted schizophrenic patients; relationship to heredity, premorbid adjustment, duration of disease and education level at index admission and neuroleptic treatment.

    PubMed

    Wieselgren, I M; Lindstrom, L H

    1996-01-01

    In a prospective outcome study, 120 DSM-III-R schizophrenic patients were followed for up to 5 years after index admission, when a comprehensive clinical and demographical examination was undertaken with the aim to find early prognostic factors for outcome. They were 86 males (72%) and 34 females (28%), and 66 (55%) were first-admitted and never before treated at index admission from a geographically defined area. Outcome was evaluated 1, 3 and 5 years after index admission by use of a Strauss-Carpenter outcome scale. At year five, 101 patients could be evaluated. Seven (7%) patients had committed suicide during the 5 years' follow-up period. 30% of the patients was considered to have a good, 14% a poor and 56% an intermediate outcome. It was found that 58% had not been in hospital during the last year, 27% were employed on the open market, 25% met friends regularly and 38% had no or only mild symptoms at the five years' follow-up evaluation. Females had a significantly better outcome than males. High education level and absence of premorbid deviant behaviour at index admission predicted a good outcome whereas problems in school (with friends and/or teachers) reported by relatives predicted poor outcome. No relationship was found between outcome and age at onset of the disorder and no gender difference in age at onset of the disorder. Patients with a family history of schizophrenia improved more between year one and five as compared with those without a family history, but heredity in itself was not an important factor for outcome. At 5 years after index admission, 40% of patients were on classical neuroleptics and 33% on clozapine whereas 19% were without medication. Of the total sample of 101 patients, 10% were drug-free and had a very good outcome at the 5 years' evaluation. The data indicate that there is a substantial subgroup of schizophrenic patients with a good prognosis and they can be characterized by female sex (even in a group without gender difference

  15. White Light Emission from Vegetable Extracts

    NASA Astrophysics Data System (ADS)

    Singh, Vikram; Mishra, Ashok K.

    2015-06-01

    A mixture of extracts from two common vegetables, red pomegranate and turmeric, when photoexcited at 380 nm, produced almost pure white light emission (WLE) with Commission Internationale d’Eclairage (CIE) chromaticity index (0.35, 0.33) in acidic ethanol. It was also possible to obtain WLE in polyvinyl alcohol film (0.32, 0.25), and in gelatin gel (0.26, 0.33) using the same extract mixture. The colour temperature of the WLE was conveniently tunable by simply adjusting the concentrations of the component emitters. The primary emitting pigments responsible for contributing to WLE were polyphenols and anthocyanins from pomegranate, and curcumin from turmeric. It was observed that a cascade of Forster resonance energy transfer involving polyphenolics, curcumin and anthocyanins played a crucial role in obtaining a CIE index close to pure white light. The optimized methods of extraction of the two primary emitting pigments from their corresponding plant sources are simple, cheap and fairly green.

  16. White Light Emission from Vegetable Extracts.

    PubMed

    Singh, Vikram; Mishra, Ashok K

    2015-01-01

    A mixture of extracts from two common vegetables, red pomegranate and turmeric, when photoexcited at 380 nm, produced almost pure white light emission (WLE) with Commission Internationale d'Eclairage (CIE) chromaticity index (0.35, 0.33) in acidic ethanol. It was also possible to obtain WLE in polyvinyl alcohol film (0.32, 0.25), and in gelatin gel (0.26, 0.33) using the same extract mixture. The colour temperature of the WLE was conveniently tunable by simply adjusting the concentrations of the component emitters. The primary emitting pigments responsible for contributing to WLE were polyphenols and anthocyanins from pomegranate, and curcumin from turmeric. It was observed that a cascade of Forster resonance energy transfer involving polyphenolics, curcumin and anthocyanins played a crucial role in obtaining a CIE index close to pure white light. The optimized methods of extraction of the two primary emitting pigments from their corresponding plant sources are simple, cheap and fairly green. PMID:26083264

  17. White Light Emission from Vegetable Extracts

    PubMed Central

    Singh, Vikram; Mishra, Ashok K.

    2015-01-01

    A mixture of extracts from two common vegetables, red pomegranate and turmeric, when photoexcited at 380 nm, produced almost pure white light emission (WLE) with Commission Internationale d’Eclairage (CIE) chromaticity index (0.35, 0.33) in acidic ethanol. It was also possible to obtain WLE in polyvinyl alcohol film (0.32, 0.25), and in gelatin gel (0.26, 0.33) using the same extract mixture. The colour temperature of the WLE was conveniently tunable by simply adjusting the concentrations of the component emitters. The primary emitting pigments responsible for contributing to WLE were polyphenols and anthocyanins from pomegranate, and curcumin from turmeric. It was observed that a cascade of Forster resonance energy transfer involving polyphenolics, curcumin and anthocyanins played a crucial role in obtaining a CIE index close to pure white light. The optimized methods of extraction of the two primary emitting pigments from their corresponding plant sources are simple, cheap and fairly green. PMID:26083264

  18. Fermented Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wide variety of fermented foods of the world can be classified by the materials obtained from the fermentation, such as alcohol (beer, wine), organic acid such as lactic acid and acetic acid (vegetables, dairy), carbon dioxide (bread), and amino acids or peptides from protein (fish fermentations...

  19. Urban Vegetation Cover and Vegetation Change in Accra, Ghana: Connection to Housing Quality.

    PubMed

    Stow, Douglas A; Weeks, John R; Toure, Sory; Coulter, Lloyd L; Lippitt, Christopher D; Ashcroft, Eric

    2013-01-01

    The objectives are to (1) quantify, map, and analyze vegetation cover distributions and changes across Accra, Ghana, for 2002 and 2010; and (2) examine the statistical relationship between vegetation cover and a housing quality index (HQI) for 2000 at the neighborhood level. Pixel-level vegetation cover maps derived using threshold classification of 2002 and 2010 QuickBird normalized difference vegetation index images have very high overall accuracies and yield an estimate of 5.9 percent vegetation cover reduction over the study area between 2002 and 2010. A high degree of variance in vegetation cover for individual dates is explained by HQI at the neighborhood level, although minimal covariability between absolute or relative vegetation cover change and HQI for 2000 was observed.

  20. Estimating wheat growth with radar vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we computed the Radar Vegetation Index (RVI) using observations made with a ground based multi-frequency polarimetric scatterometer system over an entire wheat growth period. The temporal variations of the backscattering coefficients for L-, C-, and X-band, RVI, vegetation water conte...

  1. 76 FR 16037 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... Surface Transportation Board Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2011 Rail Cost Adjustment Factor (RCAF) and cost index filed by the Association of...

  2. 77 FR 37958 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... Surface Transportation Board Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2012 rail cost adjustment factor (RCAF) and cost index filed by the Association of...

  3. 75 FR 58019 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... Surface Transportation Board Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2010 Rail Cost Adjustment Factor (RCAF) and cost index filed by the Association of...

  4. 78 FR 17764 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... Surface Transportation Board Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the second quarter 2013 Rail Cost Adjustment Factor (RCAF) and cost index filed by the Association of...

  5. 76 FR 80448 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Surface Transportation Board Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the first quarter 2012 rail cost adjustment factor (RCAF) and cost index filed by the Association of American Railroads....

  6. 76 FR 37191 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Surface Transportation Board Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2011 Rail Cost Adjustment Factor (RCAF) and cost index filed by the Association of...

  7. 78 FR 59093 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... Surface Transportation Board Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2013 rail cost adjustment factor (RCAF) and cost index filed by the Association of...

  8. 75 FR 35877 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... TRANSPORTATION Surface Transportation Board Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the third quarter 2010 rail cost adjustment factor (RCAF) and cost index filed by the Association of...

  9. 78 FR 37660 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... Surface Transportation Board Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board approves the third quarter 2013 Rail Cost Adjustment Factor (RCAF) and cost index filed by the Association of American...

  10. 76 FR 59483 - Quarterly Rail Cost Adjustment Factor

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... Surface Transportation Board Quarterly Rail Cost Adjustment Factor AGENCY: Surface Transportation Board, DOT. ACTION: Approval of rail cost adjustment factor. SUMMARY: The Board has approved the fourth quarter 2011 Rail Cost Adjustment Factor (RCAF) and cost index filed by the Association of...

  11. Monitoring vegetation phenology using MODIS

    USGS Publications Warehouse

    Zhang, Xiayong; Friedl, Mark A.; Schaaf, Crystal B.; Strahler, Alan H.; Hodges, John C.F.; Gao, Feng; Reed, Bradley C.; Huete, Alfredo

    2003-01-01

    Accurate measurements of regional to global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate–biosphere interactions. Since the mid-1980s, satellite data have been used to study these processes. In this paper, a new methodology to monitor global vegetation phenology from time series of satellite data is presented. The method uses series of piecewise logistic functions, which are fit to remotely sensed vegetation index (VI) data, to represent intra-annual vegetation dynamics. Using this approach, transition dates for vegetation activity within annual time series of VI data can be determined from satellite data. The method allows vegetation dynamics to be monitored at large scales in a fashion that it is ecologically meaningful and does not require pre-smoothing of data or the use of user-defined thresholds. Preliminary results based on an annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS) data for the northeastern United States demonstrate that the method is able to monitor vegetation phenology with good success.

  12. Development of a New Land Data Assimilation System for Improvement of Forecasting both Soil Moisture and Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Sawada, Y.; Koike, T.

    2014-12-01

    To improve the skill of reproducing land-atmosphere interactions in weather, seasonal, and climate prediction systems, it is necessary to simulate correctly and simultaneously the soil moisture and terrestrial biomass in land surface models. Despite the importance of the interactions between subsurface soil moisture and vegetation dynamics on the climate system both in global and regional scales, a land data assimilation approach that can effectively address these water and vegetation growth interactions has yet to be established. We develop a new land data assimilation system that can improve to simultaneously simulate surface and subsurface soil moisture and vegetation growth by assimilating a microwave observation that is sensitive to both surface soil moisture and terrestrial biomass. Our new system, Coupled Land and Vegetation Data Assimilation System (CLVDAS) comprises an eco-hydrological model that has a physically-based and sophisticated soil hydrology scheme and dynamic vegetation model that can estimate vegetation growth and senescence, and radiative transfer model that can convert land surface conditions into brightness temperatures in the microwave region. The CLVDAS firstly optimizes hydrological and ecological unknown parameters in the model at the same time by using the shuffled complex evolution method. Secondly, the model states of surface soil moisture, root-zone soil moisture, and leaf area index are adjusted by using genetic particle filter. We can justify to adjust the root-zone soil moisture from a microwave observation of the earth surface since we explicitly model subsurface water - vegetation dynamics interactions. From the point-scale evaluation at the in-situ observation sites in Mali, Mongolia, the United States, and Australia, we confirm the CLVDAS significantly improve the skill of simulating vertical soil moisture distribution and vegetation dynamics by assimilating microwave brightness temperatures from Advanced Microwave Scanning

  13. 12 CFR 34.22 - Index.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY REAL ESTATE LENDING AND APPRAISALS Adjustable-Rate... an index or combination of indices to which changes in the interest rate will be linked. This index... national bank may use as an index any measure of rates of interest that meets these requirements. The...

  14. 12 CFR 34.22 - Index.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY REAL ESTATE LENDING AND APPRAISALS Adjustable-Rate... an index or combination of indices to which changes in the interest rate will be linked. This index... national bank may use as an index any measure of rates of interest that meets these requirements. The...

  15. Evaluation of a native vegetation masking technique

    NASA Technical Reports Server (NTRS)

    Kinsler, M. C.

    1984-01-01

    A crop masking technique based on Ashburn's vegetative index (AVI) was used to evaluate native vegetation as an indicator of crop moisture condition. A mask of the range areas (native vegetation) was generated for each of thirteen Great Plains LANDSAT MSS sample segments. These masks were compared to the digitized ground truth and accuracies were computed. An analysis of the types of errors indicates a consistency in errors among the segments. The mask represents a simple quick-look technique for evaluating vegetative cover.

  16. ADJUSTABLE DOUBLE PULSE GENERATOR

    DOEpatents

    Gratian, J.W.; Gratian, A.C.

    1961-08-01

    >A modulator pulse source having adjustable pulse width and adjustable pulse spacing is described. The generator consists of a cross coupled multivibrator having adjustable time constant circuitry in each leg, an adjustable differentiating circuit in the output of each leg, a mixing and rectifying circuit for combining the differentiated pulses and generating in its output a resultant sequence of negative pulses, and a final amplifying circuit for inverting and square-topping the pulses. (AEC)

  17. On the evaluation of vegetation resilience in Southern Italy by using satellite VEGETATION, MODIS, TM time series

    NASA Astrophysics Data System (ADS)

    Coluzzi, C.; Didonna, I.

    2009-04-01

    Satellite technologies can be profitably used for investigating the dynamics of vegetation re-growth after disturbance at different temporal and spatial scales. Nevertheless, disturbance -induced dynamical processes are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. The remote sensing of vegetation has been traditionally carried out by using vegetation indices, which are quantitative measures, based on vegetation spectral properties, that attempt to measure biomass or vegetative vigor. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf area index and the fraction of photosynthetically active radiation absorbed by vegetation. Therefore variations in NDVI values become indicative of variations in vegetation composition and dynamics. In this study, we analyze the mutiscale satellite temporal series ( 1998 to 2008) of NDVI and other vegetation indices from SPOT VEGETATION and Landsat TM data acquired for some significant test areas affetced and unaffected (Southern Italy) by different type of environmenta diturbances (drought, salinity, pollution, etc). Our objective is to characterize quantitatively the resilient effect of vegetation cover at different temporal and

  18. On the evaluation of vegetation resilience in Southern Italy by using VEGETATION, MODIS, TM satellite time series

    NASA Astrophysics Data System (ADS)

    Didonna, I.; Coluzzi, R.

    2009-04-01

    Satellite technologies can be profitably used for investigating the dynamics of vegetation re-growth after disturbance at different temporal and spatial scales. Nevertheless, disturbance -induced dynamical processes are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. The remote sensing of vegetation has been traditionally carried out by using vegetation indices, which are quantitative measures, based on vegetation spectral properties, that attempt to measure biomass or vegetative vigor. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf area index and the fraction of photosynthetically active radiation absorbed by vegetation. Variations in NDVI values become indicative of variations in vegetation composition and dynamics. In this study, we analyze the mutiscale satellite temporal series ( 2000 to 2008) of NDVI and other vegetation indices from SPOT VEGETATION, MODIS and Landsat TM data acquired for some significant test areas affetced and unaffected (Southern Italy) by different types of environmental diturbances (drought, salinity, pollution, etc). Our objective was to characterize quantitatively the resilient effect of vegetation cover at differen temporal and

  19. The heat rate index indicator

    SciTech Connect

    Lasasso, M.; Runyan, B.; Napoli, J.

    1995-06-01

    This paper describes a method of tracking unit performance through the use of a reference number called the Heat Rate Index Indicator. The ABB Power Plant Controls OTIS performance monitor is used to determine when steady load conditions exist and then to collect controllable and equipment loss data which significantly impact thermal efficiency. By comparing these loss parameters to those found during the previous heat balance, it is possible to develop a new adjusted heat rate curve. These impacts on heat rate are used to changes the shape of the tested heat rate curve by the appropriate percentages over a specified load range. Mathcad is used to determine the Heat Rate Index by integrating for the areas beneath the adjusted heat rate curve and a heat rate curve that represents the unit`s ideal heat rate curve is the Heat Rate Index. An index of 1.0 indicates that the unit is operating at an ideal efficiency, while an index of less than 1.0 indicates that the unit is operating at less than ideal conditions. A one per cent change in the Heat Rate Index is equivalent to a one percent change in heat rate. The new shape of the adjusted heat rate curve and the individual curves generated from the controllable and equipment loss parameters are useful for determining performance problems in specific load ranges.

  20. Leaf area index retrieval using gap fractions obtained from high resolution satellite data: Comparisons of approaches, scales and atmospheric effects

    NASA Astrophysics Data System (ADS)

    Gonsamo, Alemu

    2010-08-01

    This study is aimed at demonstrating the feasibility of the large scale LAI inversion algorithms using red and near infrared reflectance obtained from high resolution satellite imagery. Radiances in digital counts were obtained in 10 m resolution acquired on cloud free day of August 23, 2007, by the SPOT 5 high resolution geometric (HRG) instrument on mostly temperate hardwood forest located in the Great Lakes - St. Lawrence forest in Southern Quebec. Normalized difference vegetation index (NDVI), scaled difference vegetation index (SDVI) and modified soil-adjusted vegetation index (MSAVI) were applied to calculate gap fractions. LAI was inverted from the gap fraction using the common Beer-Lambert's law of light extinction under forest canopy. The robustness of the algorithm was evaluated using the ground-based LAI measurements and by applying the methods for the independently simulated reflectance data using PROSPECT + SAIL coupled radiative transfer models. Furthermore, the high resolution LAI was compared with MODIS LAI product. The effects of atmospheric corrections and scales were investigated for all of the LAI retrieval methods. NDVI was found to be not suitable index for large scale LAI inversion due to the sensitivity to scale and atmospheric effects. SDVI was virtually scale and atmospheric correction invariant. MSAVI was also scale invariant. Considering all sensitivity analysis, MSAVI performed best followed by SDVI for robust LAI inversion from high resolution imagery.

  1. Diet quality, measured by fruit and vegetable intake, predicts weight change in young women.

    PubMed

    Aljadani, Haya M; Patterson, Amanda; Sibbritt, David; Hutchesson, Melinda J; Jensen, Megan E; Collins, Clare E

    2013-01-01

    This study investigates the relationship between diet quality and weight gain in young women. Young women (n = 4,287, with 1,356 women identified as plausible subsample aged 27.6 ± 1.5 years at baseline) sampled from the Australian Longitudinal Study on Women's Health study completed food frequency questionnaires in 2003, which were used to evaluate diet quality using three indices: Australian Recommended Food Score (ARFS), Australian Diet Quality Index (Aus-DQI), and Fruit and Vegetable Index (FAVI). Weight was self-reported in 2003 and 2009. Multivariate linear regression was used to examine the association between tertiles of each diet quality index and weight change from 2003 to 2009. The ARFS and FAVI were significant predictors of 6-year weight change in this group of young women, while Aus-DQI did not predict weight change (P > 0.05). In the fully adjusted model, those who were in the top tertile of the ARFS significantly gained lower weight gain compared with the lower tertile for the plausible TEI sub-sample (β = -1.6 kg (95% CI: -2.67 to -0.56), P = 0.003). In the fully adjustment model, young women were classified in the highest FAVI tertile and gained significantly less weight than those in the lowest tertile for the plausible TEI (β = -1.6 kg (95% CI: -2.4 to -0.3) P = 0.01). In conclusion, overall diet quality measured by the ARFS and the frequency and variety of fruit and vegetable consumption may predict long-term weight gain in young women. Therefore, health promotion programs encouraging frequent consumption of a wide variety of fruits and vegetables are warranted.

  2. Diet Quality, Measured by Fruit and Vegetable Intake, Predicts Weight Change in Young Women

    PubMed Central

    Aljadani, Haya M.; Patterson, Amanda; Sibbritt, David; Hutchesson, Melinda J.; Jensen, Megan E.; Collins, Clare E.

    2013-01-01

    This study investigates the relationship between diet quality and weight gain in young women. Young women (n = 4,287, with 1,356 women identified as plausible subsample aged 27.6 ± 1.5 years at baseline) sampled from the Australian Longitudinal Study on Women's Health study completed food frequency questionnaires in 2003, which were used to evaluate diet quality using three indices: Australian Recommended Food Score (ARFS), Australian Diet Quality Index (Aus-DQI), and Fruit and Vegetable Index (FAVI). Weight was self-reported in 2003 and 2009. Multivariate linear regression was used to examine the association between tertiles of each diet quality index and weight change from 2003 to 2009. The ARFS and FAVI were significant predictors of 6-year weight change in this group of young women, while Aus-DQI did not predict weight change (P > 0.05). In the fully adjusted model, those who were in the top tertile of the ARFS significantly gained lower weight gain compared with the lower tertile for the plausible TEI sub-sample (β = −1.6 kg (95% CI: −2.67 to −0.56), P = 0.003). In the fully adjustment model, young women were classified in the highest FAVI tertile and gained significantly less weight than those in the lowest tertile for the plausible TEI (β = −1.6 kg (95% CI: −2.4 to −0.3) P = 0.01). In conclusion, overall diet quality measured by the ARFS and the frequency and variety of fruit and vegetable consumption may predict long-term weight gain in young women. Therefore, health promotion programs encouraging frequent consumption of a wide variety of fruits and vegetables are warranted. PMID:24062946

  3. Estimating leaf area index in spring wheat using alternative remote sensing approaches

    NASA Astrophysics Data System (ADS)

    Ouattara, Adama

    The reflectance based vegetation indices commonly used to infer leaf area index (LAI) are affected by external factors such as soil background, and view and illumination angles. Simulation of a modified SUITS directional reflectance model, MODSUITS, showed that there are some combinations of near infrared and red reflectance that correlate with LAI while minimizing the effects of these factors. We proposed the MSAVI3 (Modified Soil Adjusted Vegetation Index) that is suited in minimizing soil brightness effect particularly for soils with soil line slope greater than unity. This index decreases the residual soil effect caused by the multiple scattering between the soil background and the plant at intermediate LAI values. The MODSUITS model predicts that soil brightness affects less canopy transmittance than reflectance. Hence in determining LAI, transmittance based indices should be less dependent on soil brightness. We assumed that the transmission coefficient is linearly related to the logarithm of LAI. Therefore, the extinction coefficient for diffuse visible radiation varied between 0.70 and 0.75 for the 42 genotypes. Similarly, from the ratio of near infrared to red transmittance, the difference in spectral extinction coefficient under total incidence oscillated between 0.40 and 0.52. The consistency in the extinction coefficients among the 42 genotypes and across geographical locations suggest that LAI of spring wheat can only be inferred from the diffuse transmission coefficient. Moreover, we found that the normalized transmittance vegetation index (NTVI), which is conceptually similar to the common normalized difference vegetation index (NDVI), is linearly related to the LAI up to a value of 6. Leaf area index was also assessed from the analysis of digitized infrared color films. While the difference vegetation index (DVI) is related to growth or LAI, the low spectral sensitivity of the CIR film, particularly in the red band, limits its ability to resolve

  4. 14 CFR 254.6 - Periodic adjustments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Periodic adjustments. 254.6 Section 254.6 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC... the Consumer Price Index for All Urban Consumers as of July of each review year to calculate...

  5. Consumption Patterns of Fruit and Vegetable Juices and Dietary Nutrient Density among French Children and Adults

    PubMed Central

    Francou, Aurée; Hebel, Pascale; Braesco, Véronique; Drewnowski, Adam

    2015-01-01

    Background: Fruit and vegetable consumption is a marker of higher-quality diets; less is known about the contribution of 100% fruit and vegetable juices (FVJ) to diet quality. Objective: To explore FVJ consumption patterns in relation to dietary nutrient density among French children (aged 3–14 years old) and adults (≥21 years old). Methods: Analyses were based on the nationally representative 2013 CCAF (Comportements et Consommations Alimentaires en France) survey of 1930 respondents, stratified by age group, FVJ consumption, and socioeconomic status (SES). Dietary nutrient density was based on the Nutrient Rich Food (NRF9.3) index, adjusted for gender and age. Results: Mean total consumption of fruits and vegetables was 2.6 servings/day for children and 3.8 servings/day for adults. Mean population consumption of FVJ was 83 mL/day for children and 54.6 mL/day for adults, equivalent to 0.4 servings/day and 0.3 servings/day respectively. FVJ consumers had higher quality diets than did non-consumers, after adjusting for covariates. The respective NRF9.3 values were 486.4 ± 4.3 vs. 428.7 ± 7.5 for children and 460.7 ± 4.4 vs. 435.4 ± 4.4 for adults. FVJ consumers had similar or higher intakes of fruits and vegetables than did non-consumers. The socioeconomic gradient for FVJ consumption was much weaker (p < 0.046) than for whole fruit (p < 0.01). Conclusions: In a nationally representative sample of French children and adults, fruit and vegetable consumption fell short of recommended values. Higher FVJ consumption was associated with higher-quality diets and better compliance with the French National Plan for Nutrition and Health (PNNS). PMID:26213964

  6. Gully evolution and geomorphic adjustments of badlands to recent afforestation

    NASA Astrophysics Data System (ADS)

    Ballesteros-Cánovas, Juan Antonio; Stoffel, Markus; Francisco Martín-Duque, Jose; Corona, Christophe; Lucia, Ana; María Bodoque, Jose

    2016-04-01

    Badlands and gullied areas are among the geomorphic environments with the highest erosion rates worldwide, however records on their evolution are very scarce and often limited to presumed initial conditions and the known present state. In this communication, we present a unique and very dense and annual record and outstanding example of erosion processes in a Mediterranean environment in Central Spain, where badland and gullying processes on sandy slopes of a set of mesas have been presumably triggered by quarrying activities since Medieval times. The gully channel evolution here analyzed provides an exceptional example of a larger setting of geomorphic. Besides the analysis of geomorphic adjustments to historical land-use changes induced by historical quarrying and gullying dynamics, we also quantified the impact of current geomorphic adjustments to 20th century afforestation by combining multiproxy such as aerial photography, historical archives, and large dataset of exposed roots to date, quantify, and reconstruct the morphology of a rapidly evolving channel in a gullied catchment. In this analysis, more than 150 exposed roots were analyzed to quantify and report channel incision; widening and gully retreatment rates during the last decades, as well as to quantify sheet erosion on different soil units. Our results suggest that, rather than stabilizing gully evolution, the afforestation carried out during 1960s has played an important role in water-sediment balance and connectivity and would have triggered the initiation of channel incision processes in the 1980s. Therefore, we observe that the channel incision match with a significant increase of the vegetation cover, which leads a significant decrease in sheet erosion rates. Based on our long-term annual gully reconstruction, we observed that sediment delivery does not correlate with the estimated intensity of precipitation (Fourier index). Instead, we observe abrupt morphological changes in the gully are

  7. Vegetation Interaction Enhances Interdecadal Climate Variability in the Sahel

    NASA Technical Reports Server (NTRS)

    Zeng, Ning; Neelin, J. David; Lau, William K.-M.

    1999-01-01

    The role of naturally varying vegetation in influencing the climate variability in the Sahel is explored in a coupled atmosphere-land-vegetation model. The Sahel rainfall variability is influenced by sea surface temperature (SST) variations in the oceans. Land-surface feedback is found to increase this variability both on interannual and interdecadal time scales. Interactive vegetation enhances the interdecadal variation significantly, but can reduce year to year variability due to a phase lag introduced by the relatively slow vegetation adjustment time. Variations in vegetation accompany the changes in rainfall, in particular, the multi-decadal drying trend from the 1950s to the 80s.

  8. High Vegetable Fats Intake Is Associated with High Resting Energy Expenditure in Vegetarians.

    PubMed

    Montalcini, Tiziana; De Bonis, Daniele; Ferro, Yvelise; Carè, Ilaria; Mazza, Elisa; Accattato, Francesca; Greco, Marta; Foti, Daniela; Romeo, Stefano; Gulletta, Elio; Pujia, Arturo

    2015-07-17

    It has been demonstrated that a vegetarian diet may be effective in reducing body weight, however, the underlying mechanisms are not entirely clear. We investigated whether there is a difference in resting energy expenditure between 26 vegetarians and 26 non-vegetarians and the correlation between some nutritional factors and inflammatory markers with resting energy expenditure. In this cross-sectional study, vegetarians and non-vegetarians were matched by age, body mass index and gender. All underwent instrumental examinations to assess the difference in body composition, nutrient intake and resting energy expenditure. Biochemical analyses and 12 different cytokines and growth factors were measured as an index of inflammatory state. A higher resting energy expenditure was found in vegetarians than in non-vegetarians (p = 0.008). Furthermore, a higher energy from diet, fibre, vegetable fats intake and interleukin-β (IL-1β) was found between the groups. In the univariate and multivariable analysis, resting energy expenditure was associated with vegetarian diet, free-fat mass and vegetable fats (p < 0.001; Slope in statistic (B) = 4.8; β = 0.42). After adjustment for cytokines, log10 interleukin-10 (IL-10) still correlated with resting energy expenditure (p = 0.02). Resting energy expenditure was positively correlated with a specific component of the vegetarian's diet, i.e., vegetable fats. Furthermore, we showed that IL-10 was positively associated with resting energy expenditure in this population.

  9. High Vegetable Fats Intake Is Associated with High Resting Energy Expenditure in Vegetarians

    PubMed Central

    Montalcini, Tiziana; De Bonis, Daniele; Ferro, Yvelise; Carè, Ilaria; Mazza, Elisa; Accattato, Francesca; Greco, Marta; Foti, Daniela; Romeo, Stefano; Gulletta, Elio; Pujia, Arturo

    2015-01-01

    It has been demonstrated that a vegetarian diet may be effective in reducing body weight, however, the underlying mechanisms are not entirely clear. We investigated whether there is a difference in resting energy expenditure between 26 vegetarians and 26 non-vegetarians and the correlation between some nutritional factors and inflammatory markers with resting energy expenditure. In this cross-sectional study, vegetarians and non-vegetarians were matched by age, body mass index and gender. All underwent instrumental examinations to assess the difference in body composition, nutrient intake and resting energy expenditure. Biochemical analyses and 12 different cytokines and growth factors were measured as an index of inflammatory state. A higher resting energy expenditure was found in vegetarians than in non-vegetarians (p = 0.008). Furthermore, a higher energy from diet, fibre, vegetable fats intake and interleukin-β (IL-1β) was found between the groups. In the univariate and multivariable analysis, resting energy expenditure was associated with vegetarian diet, free-fat mass and vegetable fats (p < 0.001; Slope in statistic (B) = 4.8; β = 0.42). After adjustment for cytokines, log10 interleukin-10 (IL-10) still correlated with resting energy expenditure (p = 0.02). Resting energy expenditure was positively correlated with a specific component of the vegetarian’s diet, i.e., vegetable fats. Furthermore, we showed that IL-10 was positively associated with resting energy expenditure in this population. PMID:26193314

  10. INDEXING MECHANISM

    DOEpatents

    Kock, L.J.

    1959-09-22

    A device is presented for loading and unloading fuel elements containing material fissionable by neutrons of thermal energy. The device comprises a combination of mechanical features Including a base, a lever pivotally attached to the base, an Indexing plate on the base parallel to the plane of lever rotation and having a plurality of apertures, the apertures being disposed In rows, each aperture having a keyway, an Index pin movably disposed to the plane of lever rotation and having a plurality of apertures, the apertures being disposed in rows, each aperture having a keyway, an index pin movably disposed on the lever normal to the plane rotation, a key on the pin, a sleeve on the lever spaced from and parallel to the index pin, a pair of pulleys and a cable disposed between them, an open collar rotatably attached to the sleeve and linked to one of the pulleys, a pin extending from the collar, and a bearing movably mounted in the sleeve and having at least two longitudinal grooves in the outside surface.

  11. Fruit and vegetable intake and urinary levels of prostaglandin E₂ metabolite in postmenopausal women.

    PubMed

    Kim, Sangmi; Rimando, Joseph; Sandler, Dale P

    2015-01-01

    Prostaglandin E2 (PGE2) is an inflammatory mediator that plays key roles in promoting tumor development and progression. Urinary concentration of a major PGE2 metabolite (PGE-M) has been recently proposed as a promising cancer biomarker. Using dietary intake data from 600 postmenopausal women aged 50-74 years, we examined cross-sectional relationships between fruit and vegetable intake and urinary levels of PGE-M, determined using liquid chromatography/tandem mass spectrometry. After multivariable adjustment, increasing consumption of fruits, but not vegetables, was associated with reduced levels of urinary PGE-M (P for linear trend = 0.02), with geometric means of 5.8 [95% confidence interval (CI): 5.2-6.6] in the lowest quintile versus 4.8 (95% CI: 4.3-5.4) in the highest quintile (Q5) of fruit consumption. A better quality diet, indicated by higher scores on the Healthy Eating Index, was also associated with decreased PGE-M (P for linear trend <0.01). The lack of association with vegetable intake may be related to variation in antioxidant capacities of the major dietary sources of fruits and vegetables for the study participants. Our findings suggest that urinary PGE-M may be modifiable by a healthy diet that follows current national dietary guideline. Further studies are warranted to assess potential utility of urinary PGE-M in assessing cancer prevention efficacy.

  12. Prevalent vegetation growth enhancement in urban environment.

    PubMed

    Zhao, Shuqing; Liu, Shuguang; Zhou, Decheng

    2016-05-31

    Urbanization, a dominant global demographic trend, leads to various changes in environments (e.g., atmospheric CO2 increase, urban heat island). Cities experience global change decades ahead of other systems so that they are natural laboratories for studying responses of other nonurban biological ecosystems to future global change. However, the impacts of urbanization on vegetation growth are not well understood. Here, we developed a general conceptual framework for quantifying the impacts of urbanization on vegetation growth and applied it in 32 Chinese cities. Results indicated that vegetation growth, as surrogated by satellite-observed vegetation index, decreased along urban intensity across all cities. At the same time, vegetation growth was enhanced at 85% of the places along the intensity gradient, and the relative enhancement increased with urban intensity. This growth enhancement offset about 40% of direct loss of vegetation productivity caused by replacing productive vegetated surfaces with nonproductive impervious surfaces. In light of current and previous field studies, we conclude that vegetation growth enhancement is prevalent in urban settings. Urban environments do provide ideal natural laboratories to observe biological responses to environmental changes that are difficult to mimic in manipulative experiments. However, one should be careful in extrapolating the finding to nonurban environments because urban vegetation is usually intensively managed, and attribution of the responses to diverse driving forces will be challenging but must be pursued.

  13. Misperception of self-reported adherence to the fruit, vegetable and fish guidelines in older Dutch adults.

    PubMed

    Dijkstra, S C; Neter, J E; Brouwer, I A; Huisman, M; Visser, M

    2014-11-01

    In this study we investigated (the degree of) misperception of adherence to the fruit, vegetable and fish guidelines in older Dutch adults and examined to what extent misperception is associated with socio-economic position (SEP) and other demographic, lifestyle and nutrition-related characteristics. The sample included 1057 community dwelling adults, aged 55-85 years, who participated in the Longitudinal Aging Study Amsterdam. Respondents completed a lifestyle questionnaire which included a food frequency questionnaire to calculate fruit, vegetable and fish intake. After current dietary guidelines were explained, respondents were asked to indicate whether they believed they adhered to the fruit, vegetable and fish guidelines. Characteristics potentially associated with misperception included level of income and education, lifestyle factors, nutritional knowledge, as well as attitude, social support and self-efficacy toward healthy eating. In the total sample, 69.1% of the older adults reported to adhere to the fruit guideline, 77.5% to the vegetable guideline, and 36.4% to the fish guideline. Based on the calculated intake data, 82.6% adhered to the fruit guideline, 65.5% to the vegetable guideline and 33.8% to the fish guideline. Overestimation of adherence was most common for the vegetable guideline (18.7%). Multivariate analysis, adjusted for level of income as well as for attitude and self-efficacy toward healthy eating, showed that lower educated respondents were more likely to overestimate their adherence to the vegetable guideline (relative index of inequality (RII): 2.97 (95% CI: 1.47-6.01)). Overestimation rates for fish (3.4%) and fruit (2.3%) were lower and not associated with any of the characteristics. This study showed that overestimation in older adults was common for adherence to the vegetable guideline and especially in those with a lower education level, but not for adherence to the fruit and fish guideline.

  14. Investigating the Utility of a GPA Institutional Adjustment Index

    ERIC Educational Resources Information Center

    Didier, Thomas; Kreiter, Clarence D.; Buri, Russell; Solow, Catherine

    2006-01-01

    Background: Grading standards vary widely across undergraduate institutions. If, during the medical school admissions process, GPA is considered without reference to the institution attended, it will disadvantage applicants from undergraduate institutions employing rigorous grading standards. Method: A regression-based GPA institutional equating…

  15. Radar response of vegetation: An overview

    NASA Technical Reports Server (NTRS)

    Ulaby, Fawwaz T.; Dobson, M. Craig

    1993-01-01

    This document contains a number of viewgraphs on surface and vegetation backscattering. A classification of vegetation based on general scattering properties is presented. Radar scattering mechanisms are discussed, and backscattering and reflection coefficients for soil back scattering models are given. Radar response to vegetation is presented, with the objectives to discriminate and classify vegetation; to estimate biomass, leaf area index (LAI), and soil moisture; and to monitor changes, including deforestation and growth. Both theory and observation (laboratory, field, air SAR, and European Remote Sensing Satellite (ERS-1) observations) are used to present backscatter coefficients and other data for various vegetation types. ERS-1 results include class statistics, comparison with theory, and biomass response and seasonal variation (LAI) for deciduous and coniferous forests.

  16. Potential for early warning of maalria in India using NOAA-AVHRR based vegetation health indices

    NASA Astrophysics Data System (ADS)

    Dhiman, R. C.; Kogan, Felix; Singh, Neeru; Singh, R. P.; Dash, A. P.

    Malaria is still a major public health problem in India with about 1 82 million cases annually and 1000 deaths As per World Health Organization WHO estimates about 1 3 million Disability Adjusted Life Years DALYs are lost annually due to malaria in India Central peninsular region of India is prone to malaria outbreaks Meteorological parameters changes in ecological conditions development of resistance in mosquito vectors development of resistance in Plasmodium falciparum parasite and lack of surveillance are the likely reasons of outbreaks Based on satellite data and climatic factors efforts have been made to develop Early Warning System EWS in Africa but there is no headway in this regard in India In order to find out the potential of NOAA satellite AVHRR derived Vegetation Condition Index VCI Temperature Condition Index TCI and a cumulative indicator Vegetation Health Index VHI were attempted to find out their potential for development of EWS Studies were initiated by analysing epidemiological data of malaria vis-a-vis VCI TCI and VHI from Bikaner and Jaisalmer districts of Rajasthan and Tumkur and Raichur districts of Karnataka Correlation coefficients between VCI and monthly malaria cases for epidemic years were computed Positive correlation 0 67 has been found with one-month lag between VCI and malaria incidence in respect of Tumkur while a negative correlation with TCI -0 45 is observed In Bikaner VCI is found to be negatively related -0 71 with malaria cases in epidemic year of 1994 Weekly

  17. Vegetation dynamics and climate variability-associated biophysical process in West Africa

    NASA Astrophysics Data System (ADS)

    Song, G.; Xue, Y.; Cox, P. M.

    2012-12-01

    West Africa is a bioclimatic zone of predominantly annual grasses with shrubs and trees with a steep gradient in climate, soils, vegetation, fauna, land use and human utilization. West Africa ecosystem region suffered from the most severe and longest drought in the world during the Twentieth Century since the later 1960s. This study systematically investigates how climate variability and anomalies in West Africa affect the regional terrestrial ecosystem, including plant functional types' (PFT) spatial distribution and temporal variations and vegetation characteristics, through biophysical and photosynthesis processes at different scales. We use the offline Simplified Simple Biosphere Version 4/ Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), which is a fully coupled biophysical-dynamic vegetation (DVM) model to adequately incorporate the complex non-linear coupling dynamics between ecosystem and climate variability. The biophysical parameters in SSiB4 are adjusted with TRIFFID-produced vegetation parameter values, which ensure adequate biophysical process coupling. A 59-year simulation from 1948 was conducted using the meteorological forcing, which consists of substantial seasonal, interannual, and interdecal variability and long term dry trend. The results show that the simulated PFT's and leaf area index (LAI) correspond well to climate variability and are consistent with satellite derived vegetation conditions. The simulated inter-decadal variability in vegetation conditions is consistent with the Sahel drought in the 1970s and the 1980s and partial recovery in the 1990s and the 2000s (fig1). To further understand the biophysical mechanism of interactions of water, carbon, radiation, and vegetation dynamics, analyses are conducted to find relationships between vegetation variability and environmental conditions. It is found that the vegetation characteristics simulated by SSiB4/TRIFFID responds primarily to five

  18. SLIT ADJUSTMENT CLAMP

    DOEpatents

    McKenzie, K.R.

    1959-07-01

    An electrode support which permits accurate alignment and adjustment of the electrode in a plurality of planes and about a plurality of axes in a calutron is described. The support will align the slits in the electrode with the slits of an ionizing chamber so as to provide for the egress of ions. The support comprises an insulator, a leveling plate carried by the insulator and having diametrically opposed attaching screws screwed to the plate and the insulator and diametrically opposed adjusting screws for bearing against the insulator, and an electrode associated with the plate for adjustment therewith.

  19. 42 CFR 413.231 - Adjustment for wages.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Disease (ESRD) Services and Organ Procurement Costs § 413.231 Adjustment for wages. (a) CMS adjusts the... and wage-related costs in the geographic area in which the ESRD facility is located. (b) The application of the wage index is made on the basis of the location of the ESRD facility in an urban or...

  20. 42 CFR 413.231 - Adjustment for wages.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Disease (ESRD) Services and Organ Procurement Costs § 413.231 Adjustment for wages. (a) CMS adjusts the... and wage-related costs in the geographic area in which the ESRD facility is located. (b) The application of the wage index is made on the basis of the location of the ESRD facility in an urban or...

  1. 42 CFR 413.231 - Adjustment for wages.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Disease (ESRD) Services and Organ Procurement Costs § 413.231 Adjustment for wages. (a) CMS adjusts the... and wage-related costs in the geographic area in which the ESRD facility is located. (b) The application of the wage index is made on the basis of the location of the ESRD facility in an urban or...

  2. 76 FR 47177 - Publication of Housing Price Inflation Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... of the Secretary Publication of Housing Price Inflation Adjustment AGENCY: Office of the Under.... The law requires the Department of Defense to adjust this amount annually to reflect inflation and to publish the new amount in the Federal Register. We have applied the inflation index required by...

  3. Obtaining Feedback for Indexing from Highlighted Text.

    ERIC Educational Resources Information Center

    Villarroel, Miguel; Fuente, Pablo de la; Pedrero, Alberto; Vegas, Jesus; Adiego, Joaquin

    2002-01-01

    Discussion of weighted index terms in information retrieval focuses on a method for adjusting index weights by processing text in digital libraries that has been highlighted by users. Considers weights in query processing; feedback sources; active reading while accessing digital documents; collaborative information retrieval; and improving index…

  4. Remotely Adjustable Hydraulic Pump

    NASA Technical Reports Server (NTRS)

    Kouns, H. H.; Gardner, L. D.

    1987-01-01

    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  5. Weighted triangulation adjustment

    USGS Publications Warehouse

    Anderson, Walter L.

    1969-01-01

    The variation of coordinates method is employed to perform a weighted least squares adjustment of horizontal survey networks. Geodetic coordinates are required for each fixed and adjustable station. A preliminary inverse geodetic position computation is made for each observed line. Weights associated with each observed equation for direction, azimuth, and distance are applied in the formation of the normal equations in-the least squares adjustment. The number of normal equations that may be solved is twice the number of new stations and less than 150. When the normal equations are solved, shifts are produced at adjustable stations. Previously computed correction factors are applied to the shifts and a most probable geodetic position is found for each adjustable station. Pinal azimuths and distances are computed. These may be written onto magnetic tape for subsequent computation of state plane or grid coordinates. Input consists of punch cards containing project identification, program options, and position and observation information. Results listed include preliminary and final positions, residuals, observation equations, solution of the normal equations showing magnitudes of shifts, and a plot of each adjusted and fixed station. During processing, data sets containing irrecoverable errors are rejected and the type of error is listed. The computer resumes processing of additional data sets.. Other conditions cause warning-errors to be issued, and processing continues with the current data set.

  6. Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations

    PubMed Central

    Schymanski, Stanislaus J.; Roderick, Michael L.; Sivapalan, Murugesu

    2015-01-01

    Vegetation has different adjustable properties for adaptation to its environment. Examples include stomatal conductance at short time scale (minutes), leaf area index and fine root distributions at longer time scales (days–months) and species composition and dominant growth forms at very long time scales (years–decades–centuries). As a result, the overall response of evapotranspiration to changes in environmental forcing may also change at different time scales. The vegetation optimality model simulates optimal adaptation to environmental conditions, based on the assumption that different vegetation properties are optimized to maximize the long-term net carbon profit, allowing for separation of different scales of adaptation, without the need for parametrization with observed responses. This paper discusses model simulations of vegetation responses to today's elevated atmospheric CO2 concentrations (eCO2) at different temporal scales and puts them in context with experimental evidence from free-air CO2 enrichment (FACE) experiments. Without any model tuning or calibration, the model reproduced general trends deduced from FACE experiments, but, contrary to the widespread expectation that eCO2 would generally decrease water use due to its leaf-scale effect on stomatal conductance, our results suggest that eCO2 may lead to unchanged or even increased vegetation water use in water-limited climates, accompanied by an increase in perennial vegetation cover. PMID:26019228

  7. Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations.

    PubMed

    Schymanski, Stanislaus J; Roderick, Michael L; Sivapalan, Murugesu

    2015-05-27

    Vegetation has different adjustable properties for adaptation to its environment. Examples include stomatal conductance at short time scale (minutes), leaf area index and fine root distributions at longer time scales (days-months) and species composition and dominant growth forms at very long time scales (years-decades-centuries). As a result, the overall response of evapotranspiration to changes in environmental forcing may also change at different time scales. The vegetation optimality model simulates optimal adaptation to environmental conditions, based on the assumption that different vegetation properties are optimized to maximize the long-term net carbon profit, allowing for separation of different scales of adaptation, without the need for parametrization with observed responses. This paper discusses model simulations of vegetation responses to today's elevated atmospheric CO2 concentrations (eCO2) at different temporal scales and puts them in context with experimental evidence from free-air CO2 enrichment (FACE) experiments. Without any model tuning or calibration, the model reproduced general trends deduced from FACE experiments, but, contrary to the widespread expectation that eCO2 would generally decrease water use due to its leaf-scale effect on stomatal conductance, our results suggest that eCO2 may lead to unchanged or even increased vegetation water use in water-limited climates, accompanied by an increase in perennial vegetation cover.

  8. Objective and Subjective Attractiveness and Early Adolescent Adjustment.

    ERIC Educational Resources Information Center

    Jovanovic, Jasna; And Others

    1989-01-01

    Used data from Pennsylvania Early Adolescent Transitions Study to assess how objective physical attractiveness (PA), indexed by appraisals from others, and subjective PA, indexed by self-appraisals, related to each other and to early adolescent adjustment. Findings indicated low relationship between objective and subjective PA; only subjective PA…

  9. Glycemic Index and Diabetes

    MedlinePlus

    ... dried beans and legumes (like kidney beans and lentils), all non-starchy vegetables, some starchy vegetables like ... corn, yam, lima/butter beans, peas, legumes and lentils Most fruits, non-starchy vegetables and carrots Medium ...

  10. Effects of experimental protocol on global vegetation model accuracy: a comparison of simulated and observed vegetation patterns for Asia

    USGS Publications Warehouse

    Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.

    2009-01-01

    Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.

  11. Fruit and vegetables and cancer risk.

    PubMed

    Key, T J

    2011-01-01

    The possibility that fruit and vegetables may help to reduce the risk of cancer has been studied for over 30 years, but no protective effects have been firmly established. For cancers of the upper gastrointestinal tract, epidemiological studies have generally observed that people with a relatively high intake of fruit and vegetables have a moderately reduced risk, but these observations must be interpreted cautiously because of potential confounding by smoking and alcohol. For lung cancer, recent large prospective analyses with detailed adjustment for smoking have not shown a convincing association between fruit and vegetable intake and reduced risk. For other common cancers, including colorectal, breast and prostate cancer, epidemiological studies suggest little or no association between total fruit and vegetable consumption and risk. It is still possible that there are benefits to be identified: there could be benefits in populations with low average intakes of fruit and vegetables, such that those eating moderate amounts have a lower cancer risk than those eating very low amounts, and there could also be effects of particular nutrients in certain fruits and vegetables, as fruit and vegetables have very varied composition. Nutritional principles indicate that healthy diets should include at least moderate amounts of fruit and vegetables, but the available data suggest that general increases in fruit and vegetable intake would not have much effect on cancer rates, at least in well-nourished populations. Current advice in relation to diet and cancer should include the recommendation to consume adequate amounts of fruit and vegetables, but should put most emphasis on the well-established adverse effects of obesity and high alcohol intakes.

  12. Fruit and vegetables and cancer risk.

    PubMed

    Key, T J

    2011-01-01

    The possibility that fruit and vegetables may help to reduce the risk of cancer has been studied for over 30 years, but no protective effects have been firmly established. For cancers of the upper gastrointestinal tract, epidemiological studies have generally observed that people with a relatively high intake of fruit and vegetables have a moderately reduced risk, but these observations must be interpreted cautiously because of potential confounding by smoking and alcohol. For lung cancer, recent large prospective analyses with detailed adjustment for smoking have not shown a convincing association between fruit and vegetable intake and reduced risk. For other common cancers, including colorectal, breast and prostate cancer, epidemiological studies suggest little or no association between total fruit and vegetable consumption and risk. It is still possible that there are benefits to be identified: there could be benefits in populations with low average intakes of fruit and vegetables, such that those eating moderate amounts have a lower cancer risk than those eating very low amounts, and there could also be effects of particular nutrients in certain fruits and vegetables, as fruit and vegetables have very varied composition. Nutritional principles indicate that healthy diets should include at least moderate amounts of fruit and vegetables, but the available data suggest that general increases in fruit and vegetable intake would not have much effect on cancer rates, at least in well-nourished populations. Current advice in relation to diet and cancer should include the recommendation to consume adequate amounts of fruit and vegetables, but should put most emphasis on the well-established adverse effects of obesity and high alcohol intakes. PMID:21119663

  13. On the use of satellite VEGETATION time series for vegetation disturbance recovery assessment

    NASA Astrophysics Data System (ADS)

    Lanorte, A.; Coluzzi, R.; de Santis, F.; Didonna, I.

    2009-04-01

    The characterization of vegetation reaction to disturbance is of primary importance since changes in the status or types of vegetation play an active role in ecological processes (such as productivity level, creation of altered patches, modification in vegetation structure and shifts in vegetation cover composition), as well as in land surface processes (such as surface energy, water balance, carbon cycle). The assessment of disturbance impacts on ecological resources requires investigations performed at different temporal and spatial scales, from local up to regional level. In such a context, satellite technologies can be profitably used for investigating the dynamics of vegetation after disturbance at different temporal and spatial scales; although, dynamical processes induced by disturbance are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. In this study, a time series of normalized difference vegetation index (NDVI) data derived from SPOT-VEGETATION was used to examine the recovery characteristics of drought and fire affected vegetation in some test areas of the Mediterranean ecosystems of Southern Italy. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf

  14. The relationship between phytomass, NDVI and vegetation communities on Svalbard

    NASA Astrophysics Data System (ADS)

    Johansen, Bernt; Tømmervik, Hans

    2014-04-01

    Several studies have shown a close relationship between vegetation fertility and different vegetation indices extracted from satellite data. The vegetation fertility in Arctic is at overall scales highly related to temperature. At lower scales surface material, snow cover, hydrology and anthropogenic effects (geese, reindeer) are determinant in constituting the different vegetation communities. The extent and occurrence of different vegetation communities are expressed in vegetation maps. On Svalbard a vegetation map covering the entire archipelago has recently been developed. The map is differentiated into 18 map units showing large areas of non- and sparsely vegetated ground. The most favorable vegetation is seen as productive marshes and moss tundra communities in the lowland. Various mathematical combinations of spectral channels in satellite images have been applied as sensitive indicators of the presence and condition of green vegetation. Today the normalized difference vegetation index (NDVI) is mostly used to display this information. NDVI is an indicator of the density of chlorophyll in leaf tissue calculated from the red and near infrared bands: NDVI = (NIR - RED)/(NIR + RED). NDVI gives values between -1 and +1 where vegetated areas in general yield high positive values, while non-vegetated ground is found on the negative side.

  15. Few favorable associations between fruit and vegetable intake and biomarkers for chronic disease risk in American adults.

    PubMed

    Fisk, Paul S; Middaugh, Amanda L; Rhee, Yeong S; Brunt, Ardith R

    2011-08-01

    Using 24-hour dietary recall data from the National Health and Nutrition Examination Survey 1999 to 2006, the possible link between fruit and vegetable intake and chronic disease risk was assessed. C-reactive protein (CRP), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), fasting plasma glucose (FPG), total cholesterol, and glycosylated hemoglobin were selected as biomarkers for chronic disease risk. It is hypothesized that individuals who consume more fruits and vegetables will have reduced chronic disease risk because of the healthful benefits of these foods. The objective of this study was to examine the relationship between fruit and vegetable consumption on selected biomarkers for chronic disease risk. Although some associations were significant for FPG, HDL-C, and low-density lipoprotein cholesterol in some of the models, no trend was present. After adjusting for demographic factors, socioeconomic factors, lifestyle factors, body mass index, total energy intake, and the presence of at least 1 of our 5 predetermined comorbidities, no associations of reduced or increased risk were observed in any quartiles of combined fruit and vegetable intake. Fruit and vegetable intakes were weakly associated with an increased HDL-C level and decreased FPG, glycosylated hemoglobin, and C-reactive protein levels in some of the models; however, no association was observed in the final model. Because selected biomarkers of future disease risk remained in reference ranges at both high and low intake and no significance was observed in the final model, no protective association was observed between fruit and vegetable intake and biomarkers for chronic disease risk. However, fruit and vegetable consumption is recommended as part of an overall healthy diet and to displace other energy-dense foods for weight maintenance, which can lead to a decrease in future disease risk.

  16. Development of a dynamic Natural Resources Conservation Service Curve Number (NRCS-CN) to account for the vegetation and soil moisture effect on hydrological processes

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvarez, Alvaro

    This study proposes an approach that makes use of remote sensing-based products to automatically adjust the Natural Resources Conservation Service Curve Number (NRCS-CN or simply CN) hydrological model to improve runoff estimates. The CN is adjusted to account for the effect of vegetation density changes and soil moisture content on hydrological processes. The proposed approach consists of two stages; first, we propose a new method to integrate the effect of vegetation growth on hydrological processes in the determination of CN, which does not include this factor according to its standard version. Second, we investigate the adjustment of CN based on antecedent soil moisture conditions prior to rainfall events. Then, we have integrated the changes in a hydrological model to assess their impact, specifically, on FFG as their determination is based on the CN method. The MOdel Parameter Estimation EXperiment database (MOPEX ) is used to develop and test the proposed approach. The information used includes data from over 9 watersheds across the U.S., which includes the daily gauged precipitation (P) and runoff (Q ) observations from 1948 to 2003. The normalized difference vegetation index (NDVI), derived from a 5-year (1985-1990) Advanced Very High Resolution Radiometer (AVHRR) observations, has been used to estimate the Greenness Fraction (GF) as a proxy for the vegetation density. The vegetation growth throughout the year was assessed via estimation of monthly averaged CNs using P-Q pairs which were then compared to the monthly averaged GF. The improvement in the performance of the CN methodology was assessed with respect to the standard approach, which does not account for the vegetation growth over time and only uses static inputs related to soil texture and land use. The results evidenced how the vegetation-adjusted CN (CNveg adj) compensates the underestimation of the standard CN (CNstd). The correlation coefficient (R2) between the simulated and observed runoff

  17. Airborne observations of vegetation and implications for biogenic emission characterization.

    PubMed

    Hawes, Amy K; Solomon, Susan; Portmann, Robert W; Daniel, John S; Langford, Andrew O; Miller, H LeRoy; Eubank, Charles S; Goldan, Paul; Wiedinmyer, Christine; Atlas, Elliot; Hansel, Armin; Wisthaler, Armin

    2003-12-01

    Measuring hydrocarbons from aircraft represents one way to infer biogenic emissions at the surface. The focus of this paper is to show that complementary remote sensing information can be provided by optical measurements of a vegetation index, which is readily measured with high temporal coverage using reflectance data. We examine the similarities between the vegetation index and in situ measurements of the chemicals isoprene, methacrolein, and alpha-pinene to estimate whether the temporal behavior of the in situ measurements of these chemicals could be better understood by the addition of the vegetation index. Data were compared for flights conducted around Houston in August and September 2000. The three independent sets of chemical measurements examined correspond reasonably well with the vegetation index curves for the majority of flight days. While low values of the vegetation index always correspond to low values of the in situ chemical measurements, high values of the index correspond to both high and low values of the chemical measurements. In this sense it represents an upper limit when compared with in situ data (assuming the calibration constant is adequately chosen). This result suggests that while the vegetation index cannot represent a purely predictive quantity for the in situ measurements, it represents a complementary measurement that can be useful in understanding comparisons of various in situ observations, particularly when these observations occur with relatively low temporal frequency. In situ isoprene measurements and the vegetation index were also compared to an isoprene emission inventory to provide additional insight on broad issues relating to the use of vegetation indices in emission database development.

  18. Optical phantoms with adjustable subdiffusive scattering parameters.

    PubMed

    Krauter, Philipp; Nothelfer, Steffen; Bodenschatz, Nico; Simon, Emanuel; Stocker, Sabrina; Foschum, Florian; Kienle, Alwin

    2015-10-01

    A new epoxy-resin-based optical phantom system with adjustable subdiffusive scattering parameters is presented along with measurements of the intrinsic absorption, scattering, fluorescence, and refractive index of the matrix material. Both an aluminium oxide powder and a titanium dioxide dispersion were used as scattering agents and we present measurements of their scattering and reduced scattering coefficients. A method is theoretically described for a mixture of both scattering agents to obtain continuously adjustable anisotropy values g between 0.65 and 0.9 and values of the phase function parameter γ in the range of 1.4 to 2.2. Furthermore, we show absorption spectra for a set of pigments that can be added to achieve particular absorption characteristics. By additional analysis of the aging, a fully characterized phantom system is obtained with the novelty of g and γ parameter adjustment. PMID:26473589

  19. Retrieval of wheat growth parameters with radar vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Radar Vegetation Index (RVI) has a low sensitivity to changes in environmental conditions and has the potential as a tool to monitor the vegetation growth. In this study, we expand on previous research by investigating the radar response over a wheat canopy. RVI was computed using observations m...

  20. Estimating salinity stress in sugarcane fields with spaceborne hyperspectral vegetation indices

    NASA Astrophysics Data System (ADS)

    Hamzeh, S.; Naseri, A. A.; AlaviPanah, S. K.; Mojaradi, B.; Bartholomeus, H. M.; Clevers, J. G. P. W.; Behzad, M.

    2013-04-01

    The presence of salt in the soil profile negatively affects the growth and development of vegetation. As a result, the spectral reflectance of vegetation canopies varies for different salinity levels. This research was conducted to (1) investigate the capability of satellite-based hyperspectral vegetation indices (VIs) for estimating soil salinity in agricultural fields, (2) evaluate the performance of 21 existing VIs and (3) develop new VIs based on a combination of wavelengths sensitive for multiple stresses and find the best one for estimating soil salinity. For this purpose a Hyperion image of September 2, 2010, and data on soil salinity at 108 locations in sugarcane (Saccharum officina L.) fields were used. Results show that soil salinity could well be estimated by some of these VIs. Indices related to chlorophyll absorption bands or based on a combination of chlorophyll and water absorption bands had the highest correlation with soil salinity. In contrast, indices that are only based on water absorption bands had low to medium correlations, while indices that use only visible bands did not perform well. From the investigated indices the optimized soil-adjusted vegetation index (OSAVI) had the strongest relationship (R2 = 0.69) with soil salinity for the training data, but it did not perform well in the validation phase. The validation procedure showed that the new salinity and water stress indices (SWSI) implemented in this study (SWSI-1, SWSI-2, SWSI-3) and the Vogelmann red edge index yielded the best results for estimating soil salinity for independent fields with root mean square errors of 1.14, 1.15, 1.17 and 1.15 dS/m, respectively. Our results show that soil salinity could be estimated by satellite-based hyperspectral VIs, but validation of obtained models for independent data is essential for selecting the best model.

  1. CRMS vegetation analytical team framework: Methods for collection, development, and use of vegetation response variables

    USGS Publications Warehouse

    Cretini, Kari F.; Visser, Jenneke M.; Krauss, Ken W.; Steyer, Gregory D.

    2011-01-01

    This document identifies the main objectives of the Coastwide Reference Monitoring System (CRMS) vegetation analytical team, which are to provide (1) collection and development methods for vegetation response variables and (2) the ways in which these response variables will be used to evaluate restoration project effectiveness. The vegetation parameters (that is, response variables) collected in CRMS and other coastal restoration projects funded under the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) are identified, and the field collection methods for these parameters are summarized. Existing knowledge on community and plant responses to changes in environmental drivers (for example, flooding and salinity) from published literature and from the CRMS and CWPPRA monitoring dataset are used to develop a suite of indices to assess wetland condition in coastal Louisiana. Two indices, the floristic quality index (FQI) and a productivity index, are described for herbaceous and forested vegetation. The FQI for herbaceous vegetation is tested with a long-term dataset from a CWPPRA marsh creation project. Example graphics for this index are provided and discussed. The other indices, an FQI for forest vegetation (that is, trees and shrubs) and productivity indices for herbaceous and forest vegetation, are proposed but not tested. New response variables may be added or current response variables removed as data become available and as our understanding of restoration success indicators develops. Once indices are fully developed, each will be used by the vegetation analytical team to assess and evaluate CRMS/CWPPRA project and program effectiveness. The vegetation analytical teams plan to summarize their results in the form of written reports and/or graphics and present these items to CRMS Federal and State sponsors, restoration project managers, landowners, and other data users for their input.

  2. Global-scale analysis of vegetation indices for moderate resolution monitoring of terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Huete, Alfredo R.; Didan, Kamel; van Leeuwen, Willem J. D.; Vermote, Eric F.

    1999-12-01

    Vegetation indices have emerged as important tools in the seasonal and inter-annual monitoring of the Earth's vegetation. They are radiometric measures of the amount and condition of vegetation. In this study, the Sea-viewing Wide Field-of-View sensor (SeaWiFS) is used to investigate coarse resolution monitoring of vegetation with multiple indices. A 30-day series of SeaWiFS data, corrected for molecular scattering and absorption, was composited to cloud-free, single channel reflectance images. The normalized difference vegetation index (NDVI) and an optimized index, the enhanced vegetation index (EVI), were computed over various 'continental' regions. The EVI had a normal distribution of values over the continental set of biomes while the NDVI was skewed toward higher values and saturated over forested regions. The NDVI resembled the skewed distributions found in the red band while the EVI resembled the normal distributions found in the NIR band. The EVI minimized smoke contamination over extensive portions of the tropics. As a result, major biome types with continental regions were discriminable in both the EVI imagery and histograms, whereas smoke and saturation considerably degraded the NDVI histogram structure preventing reliable discrimination of biome types.

  3. Non-Starchy Vegetables

    MedlinePlus

    ... the non-starchy vegetables . Starchy vegetables like potatoes, corn and peas are included in the " Grains and ... or Chinese spinach Artichoke Artichoke hearts Asparagus Baby corn Bamboo shoots Beans (green, wax, Italian) Bean sprouts ...

  4. Fruits and vegetables (image)

    MedlinePlus

    A healthy diet includes adding vegetables and fruit every day. Vegetables like broccoli, green beans, leafy greens, zucchini, cauliflower, cabbage, carrots, and tomatoes are low in calories and high in fiber, ...

  5. The potential of climate change adjustment in crops: A synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter covers a study on various field crops like cereals, legumes, oil seeds, vegetables, cash crops, underutilized crops, and energy crops and their genetic adjustment to changing climates. More than 30 major field crops have been covered in different chapters of this book, which highlight h...

  6. Reduced risk of pre-eclampsia with organic vegetable consumption: results from the prospective Norwegian Mother and Child Cohort Study

    PubMed Central

    Torjusen, Hanne; Brantsæter, Anne Lise; Haugen, Margaretha; Alexander, Jan; Bakketeig, Leiv S; Lieblein, Geir; Stigum, Hein; Næs, Tormod; Swartz, Jackie; Holmboe-Ottesen, Gerd; Roos, Gun; Meltzer, Helle Margrete

    2014-01-01

    Objective Little is known about the potential health effects of eating organic food either in the general population or during pregnancy. The aim of this study was to examine associations between organic food consumption during pregnancy and the risk of pre-eclampsia among nulliparous Norwegian women. Design Prospective cohort study. Setting Norway, years 2002–2008. Participants 28 192 pregnant women (nulliparous, answered food frequency questionnaire and general health questionnaire in mid-pregnancy and no missing information on height, body weight or gestational weight gain). Main outcome measure Relative risk was estimated as ORs by performing binary logistic regression with pre-eclampsia as the outcome and organic food consumption as the exposure. Results The prevalence of pre-eclampsia in the study sample was 5.3% (n=1491). Women who reported to have eaten organic vegetables ‘often’ or ‘mostly’ (n=2493, 8.8%) had lower risk of pre-eclampsia than those who reported ‘never/rarely’ or ‘sometimes’ (crude OR=0.76, 95% CI 0.61 to 0.96; adjusted OR=0.79, 95% CI 0.62 to 0.99). The lower risk associated with high organic vegetable consumption was evident also when adjusting for overall dietary quality, assessed as scores on a healthy food pattern derived by principal component analysis. No associations with pre-eclampsia were found for high intake of organic fruit, cereals, eggs or milk, or a combined index reflecting organic consumption. Conclusions These results show that choosing organically grown vegetables during pregnancy was associated with reduced risk of pre-eclampsia. Possible explanations for an association between pre-eclampsia and use of organic vegetables could be that organic vegetables may change the exposure to pesticides, secondary plant metabolites and/or influence the composition of the gut microbiota. PMID:25208850

  7. Monitoring East African vegetation using AVHRR data

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Holben, B. N.; Gwynne, M. D.

    1986-01-01

    NOAA Advanced Very High Resolution Radiometer satellite data are applied to regional vegetation monitoring in East Africa. Normalized Difference Vegetation Index (NDVI) data for a one-year period from May 1983 are used to examine the phenology of a range of vegetation types. The integrated NDVI data for the same period are compared with an ecoclimatic zone map of the region and show marked similarities. Particular emphasis is placed on quantifying the phenology of the Acacia Commiphora bushlands. Considerable variation was found in the phenology of the bushlands as determined by the satellite NDVI, and is explained through the high spatial variability in the distribution of rainfall and the resulting green-up of the vegetation. The relationship between rainfall and NDVI is further examined for selected meteorological stations existing within the bushland. A preliminary estimate is made of the length of growing season using an NDVI thresholding technique.

  8. Mobile Technology for Vegetable Consumption: A Randomized Controlled Pilot Study in Overweight Adults

    PubMed Central

    Mathur, Maya; King, Abby C

    2016-01-01

    Background Mobile apps present a potentially cost-effective tool for delivering behavior change interventions at scale, but no known studies have tested the efficacy of apps as a tool to specifically increase vegetable consumption among overweight adults. Objective The purpose of this pilot study was to assess the initial efficacy and user acceptability of a theory-driven mobile app to increase vegetable consumption. Methods A total of 17 overweight adults aged 42.0 (SD 7.3) years with a body mass index (BMI) of 32.0 (SD 3.5) kg/m2 were randomized to the use of Vegethon (a fully automated theory-driven mobile app enabling self-monitoring of vegetable consumption, goal setting, feedback, and social comparison) or a wait-listed control condition. All participants were recruited from an ongoing 12-month weight loss trial (parent trial). Researchers who performed data analysis were blinded to condition assignment. The primary outcome measure was daily vegetable consumption, assessed using an adapted version of the validated Harvard Food Frequency Questionnaire administered at baseline and 12 weeks after randomization. An analysis of covariance was used to assess differences in 12-week vegetable consumption between intervention and control conditions, controlling for baseline. App usability and satisfaction were measured via a 21-item post-intervention questionnaire. Results Using intention-to-treat analyses, all enrolled participants (intervention: 8; control: 9) were analyzed. Of the 8 participants randomized to the intervention, 5 downloaded the app and logged their vegetable consumption a mean of 0.7 (SD 0.9) times per day, 2 downloaded the app but did not use it, and 1 never downloaded it. Consumption of vegetables was significantly greater among the intervention versus control condition at the end of the 12-week pilot study (adjusted mean difference: 7.4 servings; 95% CI 1.4-13.5; P=.02). Among secondary outcomes defined a priori, there was significantly greater

  9. Simple, Internally Adjustable Valve

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.

    1990-01-01

    Valve containing simple in-line, adjustable, flow-control orifice made from ordinary plumbing fitting and two allen setscrews. Construction of valve requires only simple drilling, tapping, and grinding. Orifice installed in existing fitting, avoiding changes in rest of plumbing.

  10. Self Adjusting Sunglasses

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Corning Glass Works' Serengeti Driver sunglasses are unique in that their lenses self-adjust and filter light while suppressing glare. They eliminate more than 99% of the ultraviolet rays in sunlight. The frames are based on the NASA Anthropometric Source Book.

  11. Rural to Urban Adjustment

    ERIC Educational Resources Information Center

    Abramson, Jane A.

    Personal interviews with 100 former farm operators living in Saskatoon, Saskatchewan, were conducted in an attempt to understand the nature of the adjustment process caused by migration from rural to urban surroundings. Requirements for inclusion in the study were that respondents had owned or operated a farm for at least 3 years, had left their…

  12. Self adjusting inclinometer

    DOEpatents

    Hunter, Steven L.

    2002-01-01

    An inclinometer utilizing synchronous demodulation for high resolution and electronic offset adjustment provides a wide dynamic range without any moving components. A device encompassing a tiltmeter and accompanying electronic circuitry provides quasi-leveled tilt sensors that detect highly resolved tilt change without signal saturation.

  13. Natural vegetation inventory

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J.

    1973-01-01

    Unique characteristics of ERTS imagery can be used to inventory natural vegetation. While satellite images can seldom be interpreted and identified directly in terms of vegetation types, such types can be inferred by interpretation of physical terrain features and through an understanding of the ecology of the vegetation.

  14. Advanced Very High Resolution Radiometer (AVHRR) data evaluation for use in monitoring vegetation. Volume 1: Channels 1 and 2

    NASA Technical Reports Server (NTRS)

    Horvath, N. C.; Gray, T. I.; Mccrary, D. G. (Principal Investigator)

    1982-01-01

    Data from the National Oceanic and Atmospheric Administration satellite system (NOAA-6 satellite) were analyzed to study their nonmeteorological uses. A file of charts, graphs, and tables was created form the products generated. It was found that the most useful data lie between pixel numbers 400 and 2000 on a given scan line. The analysis of the generated products indicates that the Gray-McCrary Index can discern vegetation and associated daily and seasonal changes. The solar zenith-angle correction used in previous studies was found to be a useful adjustment to the index. The METSAT system seems best suited for providing large-area analyses of surface features on a daily basis.

  15. Vegetative resistance to flow in south Florida; summary of vegetation sampling at sites NESRS3 and P33, Shark River slough, November, 1996

    USGS Publications Warehouse

    Carter, Virginia; Reel, J.T.; Rybicki, N.B.; Ruhl, H.A.; Gammon, P.T.; Lee, J.K.

    1999-01-01

    The U.S. Geological Survey is one of many agencies participating in the effort to restore the South Florida Everglades. We are sampling and characterizing the vegetation at selected sites in the Everglades as part of a study to quantify vegetative flow resistance. The objectives of the vegetation sampling are (1) to provide detailed information on species composition, vegetation characteristics, vegetation structure, and biomass for quantification of vegetative resistance to flow, and (2) to use this information to classify the vegetation and to improve existing vegetation maps for use with numerical models of surface-water flow. Vegetation was sampled at two sites in the Shark River Slough in November, 1996. The data collected and presented here include those for live and dead standing sawgrass, other dead material, periphyton biomass, vegetation characteristics and structure, and leaf area index.

  16. Vegetative resistance to flow in South Florida; summary of vegetation sampling at sites NESRS3 and P33, Shark River slough, April 1996

    USGS Publications Warehouse

    Carter, Virginia; Ruhl, H.A.; Rybicki, N.B.; Reel, J.T.; Gammon, P.T.

    1999-01-01

    The U.S. Geological Survey is one of many agencies participating in the effort to restore the south Florida Everglades. We are sampling and characterizing the vegetation at selected sites in the Everglades as part of a study to quantify vegetative flow resistance. The objectives of the vegetative sampling are (1) to provide detailed information on species composition, vegetative characteristics, vegetative structure, and biomass for quantification of vegetative resistance to flow, and (2) to use this information to classify the vegetation and to improve existing vegetation maps for use with numerical models of surface-water flow. Vegetative sampling was conducted in the Shark River Slough in April, 1996. The data collected and presented here include live, dead, and periphyton biomass, vegetation characteristics and structure, and leaf area index.

  17. 45 CFR Subject Index to Title Ix... - Subject Index to Title IX Preamble and Regulation 1

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 1 Index Subject Index to Title IX Preamble and Regulation 1 Public Welfare DEPARTMENT OF HEALTH AND... obligation, 86.4(b) Form, 86.4(c) Athletics, ; 86.41 Adjustment period, ; 86.41(d) Contact sport defined, 86... responsible employee”, 86.8(a) (b) H Health and Insurance Benefits and Services, ; 86.39, 86.56...

  18. Vegetable oil fuel standards

    SciTech Connect

    Pryde, E.H.

    1982-01-01

    Suggested standards for vegetable oils and ester fuels, as well as ASTM specifications for No. 2 diesel oil are given. The following physical properties were discussed: cetane number, cloud point, distillation temperatures, flash point, pour point, turbidity, viscosity, free fatty acids, iodine value, phosphorus, and wax. It was apparent that vegetable oils and their esters cannot meet ASTM specifications D975 for No. 2 diesel oil for use in the diesel engine. Vegetable oil modification or engine design modification may make it possible eventually for vegetable oils to become suitable alternative fuels. Vegetable oils must be recognized as experimental fuels until modifications have been tested thoroughly and generally accepted. 1 table. (DP)

  19. Urinary arsenic concentration adjustment factors and malnutrition.

    PubMed

    Nermell, Barbro; Lindberg, Anna-Lena; Rahman, Mahfuzar; Berglund, Marika; Persson, Lars Ake; El Arifeen, Shams; Vahter, Marie

    2008-02-01

    This study aims at evaluating the suitability of adjusting urinary concentrations of arsenic, or any other urinary biomarker, for variations in urine dilution by creatinine and specific gravity in a malnourished population. We measured the concentrations of metabolites of inorganic arsenic, creatinine and specific gravity in spot urine samples collected from 1466 individuals, 5-88 years of age, in Matlab, rural Bangladesh, where arsenic-contaminated drinking water and malnutrition are prevalent (about 30% of the adults had body mass index (BMI) below 18.5 kg/m(2)). The urinary concentrations of creatinine were low; on average 0.55 g/L in the adolescents and adults and about 0.35 g/L in the 5-12 years old children. Therefore, adjustment by creatinine gave much higher numerical values for the urinary arsenic concentrations than did the corresponding data expressed as microg/L, adjusted by specific gravity. As evaluated by multiple regression analyses, urinary creatinine, adjusted by specific gravity, was more affected by body size, age, gender and season than was specific gravity. Furthermore, urinary creatinine was found to be significantly associated with urinary arsenic, which further disqualifies the creatinine adjustment. PMID:17900556

  20. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].

    PubMed

    Gao, Lin; Li, Chang-chun; Wang, Bao-shan; Yang Gui-jun; Wang, Lei; Fu, Kui

    2016-01-01

    With the innovation of remote sensing technology, remote sensing data sources are more and more abundant. The main aim of this study was to analyze retrieval accuracy of soybean leaf area index (LAI) based on multi-source remote sensing data including ground hyperspectral, unmanned aerial vehicle (UAV) multispectral and the Gaofen-1 (GF-1) WFV data. Ratio vegetation index (RVI), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), difference vegetation index (DVI), and triangle vegetation index (TVI) were used to establish LAI retrieval models, respectively. The models with the highest calibration accuracy were used in the validation. The capability of these three kinds of remote sensing data for LAI retrieval was assessed according to the estimation accuracy of models. The experimental results showed that the models based on the ground hyperspectral and UAV multispectral data got better estimation accuracy (R² was more than 0.69 and RMSE was less than 0.4 at 0.01 significance level), compared with the model based on WFV data. The RVI logarithmic model based on ground hyperspectral data was little superior to the NDVI linear model based on UAV multispectral data (The difference in E(A), R² and RMSE were 0.3%, 0.04 and 0.006, respectively). The models based on WFV data got the lowest estimation accuracy with R2 less than 0.30 and RMSE more than 0.70. The effects of sensor spectral response characteristics, sensor geometric location and spatial resolution on the soybean LAI retrieval were discussed. The results demonstrated that ground hyperspectral data were advantageous but not prominent over traditional multispectral data in soybean LAI retrieval. WFV imagery with 16 m spatial resolution could not meet the requirements of crop growth monitoring at field scale. Under the condition of ensuring the high precision in retrieving soybean LAI and working efficiently, the approach to acquiring agricultural information by UAV remote

  1. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].

    PubMed

    Gao, Lin; Li, Chang-chun; Wang, Bao-shan; Yang Gui-jun; Wang, Lei; Fu, Kui

    2016-01-01

    With the innovation of remote sensing technology, remote sensing data sources are more and more abundant. The main aim of this study was to analyze retrieval accuracy of soybean leaf area index (LAI) based on multi-source remote sensing data including ground hyperspectral, unmanned aerial vehicle (UAV) multispectral and the Gaofen-1 (GF-1) WFV data. Ratio vegetation index (RVI), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), difference vegetation index (DVI), and triangle vegetation index (TVI) were used to establish LAI retrieval models, respectively. The models with the highest calibration accuracy were used in the validation. The capability of these three kinds of remote sensing data for LAI retrieval was assessed according to the estimation accuracy of models. The experimental results showed that the models based on the ground hyperspectral and UAV multispectral data got better estimation accuracy (R² was more than 0.69 and RMSE was less than 0.4 at 0.01 significance level), compared with the model based on WFV data. The RVI logarithmic model based on ground hyperspectral data was little superior to the NDVI linear model based on UAV multispectral data (The difference in E(A), R² and RMSE were 0.3%, 0.04 and 0.006, respectively). The models based on WFV data got the lowest estimation accuracy with R2 less than 0.30 and RMSE more than 0.70. The effects of sensor spectral response characteristics, sensor geometric location and spatial resolution on the soybean LAI retrieval were discussed. The results demonstrated that ground hyperspectral data were advantageous but not prominent over traditional multispectral data in soybean LAI retrieval. WFV imagery with 16 m spatial resolution could not meet the requirements of crop growth monitoring at field scale. Under the condition of ensuring the high precision in retrieving soybean LAI and working efficiently, the approach to acquiring agricultural information by UAV remote

  2. Precision adjustable stage

    DOEpatents

    Cutburth, Ronald W.; Silva, Leonard L.

    1988-01-01

    An improved mounting stage of the type used for the detection of laser beams is disclosed. A stage center block is mounted on each of two opposite sides by a pair of spaced ball bearing tracks which provide stability as well as simplicity. The use of the spaced ball bearing pairs in conjunction with an adjustment screw which also provides support eliminates extraneous stabilization components and permits maximization of the area of the center block laser transmission hole.

  3. Adjustable vane windmills

    SciTech Connect

    Ducker, W.L.

    1982-09-14

    A system of rotatably and pivotally mounted radially extended bent supports for radially extending windmill rotor vanes in combination with axially movable radially extended control struts connected to the vanes with semi-automatic and automatic torque and other sensing and servo units provide automatic adjustment of the windmill vanes relative to their axes of rotation to produce mechanical output at constant torque or at constant speed or electrical quantities dependent thereon.

  4. Adjustable vane windmills

    SciTech Connect

    Ducker, W.L.

    1980-01-15

    A system of rotatably and pivotally mounted radially extended bent supports for radially extending windmill rotor vanes in combination with axially movable radially extended control struts connected to the vanes with semi-automatic and automatic torque and other sensing and servo units provide automatic adjustment of the windmill vanes relative to their axes of rotation to produce mechanical output at constant torque or at constant speed or electrical quantities dependent thereon.

  5. Adjustable vane windmills

    SciTech Connect

    Ducker, W.L.

    1982-09-07

    A system of rotatably and pivotally mounted radially extended bent supports for radially extending windmill rotor vanes in combination with axially movable radially extended control struts connected to the vanes with semi-automatic and automatic torque and other sensing and servo units provide automatic adjustment of the windmill vanes relative to their axes of rotation to produce mechanical output at constant torque or at constant speed or electrical quantities dependent thereon.

  6. Adjustable Autonomy Testbed

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Schrenkenghost, Debra K.

    2001-01-01

    The Adjustable Autonomy Testbed (AAT) is a simulation-based testbed located in the Intelligent Systems Laboratory in the Automation, Robotics and Simulation Division at NASA Johnson Space Center. The purpose of the testbed is to support evaluation and validation of prototypes of adjustable autonomous agent software for control and fault management for complex systems. The AA T project has developed prototype adjustable autonomous agent software and human interfaces for cooperative fault management. This software builds on current autonomous agent technology by altering the architecture, components and interfaces for effective teamwork between autonomous systems and human experts. Autonomous agents include a planner, flexible executive, low level control and deductive model-based fault isolation. Adjustable autonomy is intended to increase the flexibility and effectiveness of fault management with an autonomous system. The test domain for this work is control of advanced life support systems for habitats for planetary exploration. The CONFIG hybrid discrete event simulation environment provides flexible and dynamically reconfigurable models of the behavior of components and fluids in the life support systems. Both discrete event and continuous (discrete time) simulation are supported, and flows and pressures are computed globally. This provides fast dynamic simulations of interacting hardware systems in closed loops that can be reconfigured during operations scenarios, producing complex cascading effects of operations and failures. Current object-oriented model libraries support modeling of fluid systems, and models have been developed of physico-chemical and biological subsystems for processing advanced life support gases. In FY01, water recovery system models will be developed.

  7. [Vegetation landscape health assessment in Changshan Archipelago, North Yellow Sea].

    PubMed

    Suo, An-ning; Sun, Yong-guang; Li, Bin-yong; Lin, Yong; Zhang, Yong-hua

    2015-04-01

    Island vegetation is an important component of island ecosystem. Multi-targets of island ecosystem health integrated with landscape ecology theory were employed to construct the index system for island vegetation health assessment in terms of landscape vigor, landscape stressing intensity and landscape stability. The Changshan Archipelago in the North Yellow Sea was chosen as a case to apply the island vegetation health assessment index system. The results showed that the overall vegetation health status in Changshan Archipelago was good and had a big island variation. The vegetation health index for Haiyang Island and Zhangzi Island was above 0.80, belonging to first eco-health level area, whereas that for Dachangshan Island, Xiaochangshan Island and Dawangjia Island ranged from 0.70 to 0.80, which could be categorized as the second eco-health level area. Guanglu Island and Shichen Island could be termed as the third eco-health level area with the vegetation health index below 0.70. The distance of island to mainland, area of island together with industrial structure were the main driving forces for the variation of vegetation landscape heath between different islands.

  8. Assessing mesquite-grass vegetation condition from Landsat

    USGS Publications Warehouse

    McDaniel, Kirk C.; Haas, Robert H.

    1982-01-01

    Landsat multispectral scanner (MSS) band values, band ratios, and vegetation index models were compared with selected rangeland vegetation parameters collected at six test sites within the honey mesquitellotebushlmixed grass association in north-central Texas. The comparisons at four dates showed that two vegetation index models, TV16 and GVI, are highly correlated (P = 0.01) with green yield, green cover, and plant moisture content. The green vegetation index (GVZ) developed by Kauth and Thomas (1976), was highly correlated and superior to other models in relationship to wet green yield, dry green yield, and cured vegetation cover. TV16, developed by Rouse et al. (1974), was more highly correlated with green vegetation cover and vegetation moisture content. Both TV16 and GVI are superior to other models in their relationship with green cover. None of the Landsat MSS parameters tested was significantly correlated with dry total yield, percent bare ground, or moisture of the soil measured at the surface or at a 20 cm depth. I t is concluded that Landsat MSS data are sensitive to seasonal changes in vegetation growth conditions and inherent ecological differences within a relatively unqorm vegetationlsoil system.

  9. Post-fire vegetation recovery in Portugal based on spot/vegetation data

    NASA Astrophysics Data System (ADS)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2010-04-01

    A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

  10. Sensitivity Analysis of Remote Sensing Data: Comparing the Response of Vegetation Indices in Tropical Areas.

    NASA Astrophysics Data System (ADS)

    Bonifaz, R.

    2005-12-01

    During the past two decades, satellite remote sensing systems possessing high temporal resolution, but typically moderate or coarse spatial resolution, have increasingly been used to characterize and map vegetation dynamics. Assessing the seasonality of tropical vegetation has, however, been especially challenging. Tropical regimes of temperature and precipitation are generally less variable and pronounced than those in other biomes, and variations in plant growth are often more subtle. Using samples from selected tropical land cover types (tropical rain forest, tropical grasses, tropical deciduous forest, mixed forest and agricultural areas), sensitivity analysis will be carried out comparing different 'greenness' indices such as the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI) and the Wide Dynamic Range Vegetation Index (WDRVI) derived from the MODIS/TERRA sensor. This analysis will potentially allow the selection of the best index to describe the particular behavior of tropical vegetation for further characterization of seasonal changes of such areas.

  11. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2003-01-01

    The Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR) has been widely used to monitor moisture-related vegetation condition. The relationship between vegetation vigor and moisture availability, however, is complex and has not been adequately studied with satellite sensor data. To better understand this relationship, an analysis was conducted on time series of monthly NDVI (1989–2000) during the growing season in the north and central U.S. Great Plains. The NDVI was correlated to the Standardized Precipitation Index (SPI), a multiple-time scale meteorological-drought index based on precipitation. The 3-month SPI was found to have the best correlation with the NDVI, indicating lag and cumulative effects of precipitation on vegetation, but the correlation between NDVI and SPI varies significantly between months. The highest correlations occurred during the middle of the growing season, and lower correlations were noted at the beginning and end of the growing season in most of the area. A regression model with seasonal dummy variables reveals that the relationship between the NDVI and SPI is significant in both grasslands and croplands, if this seasonal effect is taken into account. Spatially, the best NDVI–SPI relationship occurred in areas with low soil water-holding capacity. Our most important finding is that NDVI is an effective indicator of vegetation-moisture condition, but seasonal timing should be taken into consideration when monitoring drought with the NDVI.

  12. Fire in a Changing Climate: Stochastic versus Threshold-constrained Ignitions in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Sheehan, T.; Bachelet, D. M.; Ferschweiler, K.

    2015-12-01

    The MC2 dynamic global vegetation model fire module simulates fire occurrence, area burned, and fire impacts including mortality, biomass burned, and nitrogen volatilization. Fire occurrence is based on fuel load levels and vegetation-specific thresholds for three calculated fire weather indices: fine fuel moisture code (FFMC) for the moisture content of fine fuels; build-up index (BUI) for the total amount of fuel available for combustion; and energy release component (ERC) for the total energy available to fire. Ignitions are assumed (i.e. the probability of an ignition source is 1). The model is run with gridded inputs and the fraction of each grid cell burned is limited by a vegetation-specific fire return period (FRP) and the number of years since the last fire occurred in the grid cell. One consequence of assumed ignitions FRP constraint is that similar fire behavior can take place over large areas with identical vegetation type. In regions where thresholds are often exceeded, fires occur frequently (annually in some instances) with a very low fraction of a cell burned. In areas where fire is infrequent, a single hot, dry climate event can result in intense fire over a large region. Both cases can potentially result in large areas with uniform vegetation type and age. To better reflect realistic fire occurrence, we have developed a stochastic fire occurrence model that: a) uses a map of relative ignition probability and a multiplier to alter overall ignition occurrence; b) adjusts the original fixed fire thresholds with ignition success probabilities based on fire weather indices; and c) calculates spread by using a probability based on slope and wind direction. A Monte Carlo method is used with all three algorithms to determine occurrence. The new stochastic ignition approach yields more variety in fire intensity, a smaller annual total of cells burned, and patchier vegetation.

  13. Developing Remote Sensing Methodology to Characterize Savanna Vegetation Structure and Composition for Rangeland Monitoring and Conservation Applications

    NASA Astrophysics Data System (ADS)

    Tsalyuk, M.; Kelly, M.; Getz, W.

    2012-12-01

    identify additional six sub-classes based on the dominant species in each class: Colophospermum mopane woodland, Colophospermum mopane shrubland, Cataphractes alexandri woodland, Acacia nebrownii shrubland, mixed Combretum species woodland and Terminalia prunioides woodland. Second, we used quantitative methods to relate satellite-based vegetation indices to the biometric properties measured on the ground. We found a correlation among measured height, diameter and canopy cover of woody vegetation and used this to improve the correlation between cover and Normalized Difference Vegetation Index (NDVI). We showed that the Soil Adjusted Total Vegetation Index (SATVI) and Normalized Difference Water Index (NDWI) were related to both greenness and density at a site. In order to measure grass biomass in the field, we calibrated Disc Pasture Mater by clipping, weighing and drying grass in 1m^2 plots, in the dry and wet seasons, with resulting R^2 of 0.87 and 0.83, respectively. MODIS-derived leaf area index (LAI) data was best correlated with dry grass biomass. We used these correlations to produce detailed maps of each vegetation parameter for the whole park. These maps will provide a baseline to employ historical imagery to better understand the effects of the park's management and changing grazing pressure on vegetation structure.

  14. A case study on the urban impervious surface distribution based on a BCI index

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolin; Sun, Genyun; Wang, Zhenjie

    2015-12-01

    Endmember selection is the key to success in pixel unmixing which plays an important role in urban impervious surface abundance extraction. During the extraction, however, there has been a problem for the discrimination of impervious surfaces and soils because of their similarity in spectral. This increase the difficulty in distinguishes impervious surface and soil in endmember selection. To address this issue, in the current study, the biophysical composition index (BCI) and soil adjusted vegetation index (SAVI) were introduced to enhance the information of impervious surface and bare soil in the study area. Then, by selecting high albedo, low albedo, soil and vegetation endmembers with the utilization of the histogram of the indices and minimum noise fraction (MNF) scatter plot, we applied spectral mixture analysis (SMA) to extract impervious surface abundance. The scene of multispectral Landsat TM image was acquired allowing for the interpretation and analysis of impervious surfaces distribution. Experiments and comparisons indicate that this method performs well in estimating subpixel impervious surface distribution with relatively high precision and small bias.

  15. Sea Surface Temperature and Vegetation Index from MODIS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a composite MODIS image showing the 'green wave' of spring in North America and sea surface temperature in the ocean, collected over an 8-day period during the first week in April 2000. On land, the darker green pixels show where the most green foliage is being produced due to photosynthetic activity. Yellows on land show where there is little or no productivity and red is a boundary zone. In the ocean, orange and yellows show warmer waters and blues show colder values. (MODIS Data Type: MODIS-PFM)

  16. Adjustment of directly measured adipose tissue volume in infants

    PubMed Central

    Gale, C; Santhakumaran, S; Wells, J C K; Modi, N

    2014-01-01

    Background: Direct measurement of adipose tissue (AT) using magnetic resonance imaging is increasingly used to characterise infant body composition. Optimal techniques for adjusting direct measures of infant AT remain to be determined. Objectives: To explore the relationships between body size and direct measures of total and regional AT, the relationship between AT depots representing the metabolic load of adiposity and to determine optimal methods of adjusting adiposity in early life. Design: Analysis of regional AT volume (ATV) measured using magnetic resonance imaging in longitudinal and cross-sectional studies. Subjects: Healthy term infants; 244 in the first month (1–31 days), 72 in early infancy (42–91 days). Methods: The statistical validity of commonly used indices adjusting adiposity for body size was examined. Valid indices, defined as mathematical independence of the index from its denominator, to adjust ATV for body size and metabolic load of adiposity were determined using log-log regression analysis. Results: Indices commonly used to adjust ATV are significantly correlated with body size. Most regional AT depots are optimally adjusted using the index ATV/(height)3 in the first month and ATV/(height)2 in early infancy. Using these indices, height accounts for<2% of the variation in the index for almost all AT depots. Internal abdominal (IA) ATV was optimally adjusted for subcutaneous abdominal (SCA) ATV by calculating IA/SCA0.6. Conclusions: Statistically optimal indices for adjusting directly measured ATV for body size are ATV/height3 in the neonatal period and ATV/height2 in early infancy. The ratio IA/SCA ATV remains significantly correlated with SCA in both the neonatal period and early infancy; the index IA/SCA0.6 is statistically optimal at both of these ages. PMID:24662695

  17. Subsea adjustable choke valves

    SciTech Connect

    Cyvas, M.K. )

    1989-08-01

    With emphasis on deepwater wells and marginal offshore fields growing, the search for reliable subsea production systems has become a high priority. A reliable subsea adjustable choke is essential to the realization of such a system, and recent advances are producing the degree of reliability required. Technological developments have been primarily in (1) trim material (including polycrystalline diamond), (2) trim configuration, (3) computer programs for trim sizing, (4) component materials, and (5) diver/remote-operated-vehicle (ROV) interfaces. These five facets are overviewed and progress to date is reported. A 15- to 20-year service life for adjustable subsea chokes is now a reality. Another factor vital to efficient use of these technological developments is to involve the choke manufacturer and ROV/diver personnel in initial system conceptualization. In this manner, maximum benefit can be derived from the latest technology. Major areas of development still required and under way are listed, and the paper closes with a tabulation of successful subsea choke installations in recent years.

  18. Climate Change Implications to Vegetation Production in Alaska

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S.R.

    2008-01-01

    Investigation of long-term meteorological satellite data revealed statistically significant vegetation response to climate drivers of temperature, precipitation and solar radiation with exclusion of fire disturbance in Alaska. Abiotic trends were correlated to satellite remote sensing observations of normalized difference vegetation index to understand biophysical processes that could impact ecosystem carbon storage. Warming resulted in disparate trajectories for vegetation growth due to precipitation and photosynthetically active radiation variation. Interior spruce forest low lands in late summer through winter had precipitation deficit which resulted in extensive fire disturbance and browning of undisturbed vegetation with reduced post-fire recovery while Northern slope moist alpine tundra had increased production due to warmer-wetter conditions during the late 1990s and early 2000s. Coupled investigation of Alaska s vegetation response to warming climate found spatially dynamic abiotic processes with vegetation browning not a result from increased fire disturbance.

  19. Vegetation fire proneness in Europe

    NASA Astrophysics Data System (ADS)

    Pereira, Mário; Aranha, José; Amraoui, Malik

    2015-04-01

    Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by

  20. Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and MODIS NDVI Time Series - a Comparison with In Situ Measurements

    PubMed Central

    Fontana, Fabio; Rixen, Christian; Jonas, Tobias; Aberegg, Gabriel; Wunderle, Stefan

    2008-01-01

    This study evaluates the ability to track grassland growth phenology in the Swiss Alps with NOAA-16 Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) time series. Three growth parameters from 15 alpine and subalpine grassland sites were investigated between 2001 and 2005: Melt-Out (MO), Start Of Growth (SOG), and End Of Growth (EOG). We tried to estimate these phenological dates from yearly NDVI time series by identifying dates, where certain fractions (thresholds) of the maximum annual NDVI amplitude were crossed for the first time. For this purpose, the NDVI time series were smoothed using two commonly used approaches (Fourier adjustment or alternatively Savitzky-Golay filtering). Moreover, AVHRR NDVI time series were compared against data from the newer generation sensors SPOT VEGETATION and TERRA MODIS. All remote sensing NDVI time series were highly correlated with single point ground measurements and therefore accurately represented growth dynamics of alpine grassland. The newer generation sensors VGT and MODIS performed better than AVHRR, however, differences were minor. Thresholds for the determination of MO, SOG, and EOG were similar across sensors and smoothing methods, which demonstrated the robustness of the results. For our purpose, the Fourier adjustment algorithm created better NDVI time series than the Savitzky-Golay filter, since latter appeared to be more sensitive to noisy NDVI time series. Findings show that the application of various thresholds to NDVI time series allows the observation of the temporal progression of vegetation growth at the selected sites with high consistency. Hence, we believe that our study helps to better understand large-scale vegetation growth dynamics above the tree line in the European Alps.

  1. An empirical, graphical, and analytical study of the relationship between vegetation indices. [derived from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Lautenschlager, L.; Perry, C. R., Jr. (Principal Investigator)

    1981-01-01

    The development of formulae for the reduction of multispectral scanner measurements to a single value (vegetation index) for predicting and assessing vegetative characteristics is addressed. The origin, motivation, and derivation of some four dozen vegetation indices are summarized. Empirical, graphical, and analytical techniques are used to investigate the relationships among the various indices. It is concluded that many vegetative indices are very similar, some being simple algebraic transforms of others.

  2. Adolescent Mothers' Adjustment to Parenting.

    ERIC Educational Resources Information Center

    Samuels, Valerie Jarvis; And Others

    1994-01-01

    Examined adolescent mothers' adjustment to parenting, self-esteem, social support, and perceptions of baby. Subjects (n=52) responded to questionnaires at two time periods approximately six months apart. Mothers with higher self-esteem at Time 1 had better adjustment at Time 2. Adjustment was predicted by Time 2 variables; contact with baby's…

  3. Vegetation shifts observed in arctic tundra 17 years after fire

    USGS Publications Warehouse

    Barrett, Kirsten; Rocha, Adrian V.; van de Weg, Martine Janet; Shaver, Gaius

    2012-01-01

    With anticipated climate change, tundra fires are expected to occur more frequently in the future, but data on the long-term effects of fire on tundra vegetation composition are scarce. This study addresses changes in vegetation structure that have persisted for 17 years after a tundra fire on the North Slope of Alaska. Fire-related shifts in vegetation composition were assessed from remote-sensing imagery and ground observations of the burn scar and an adjacent control site. Early-season remotely sensed imagery from the burn scar exhibits a low vegetation index compared with the control site, whereas the late-season signal is slightly higher. The range and maximum vegetation index are greater in the burn scar, although the mean annual values do not differ among the sites. Ground observations revealed a greater abundance of moss in the unburned site, which may account for the high early growing season normalized difference vegetation index (NDVI) anomaly relative to the burn. The abundance of graminoid species and an absence of Betula nana in the post-fire tundra sites may also be responsible for the spectral differences observed in the remotely sensed imagery. The partial replacement of tundra by graminoid-dominated ecosystems has been predicted by the ALFRESCO model of disturbance, climate and vegetation succession.

  4. Soil and vegetation surveillance

    SciTech Connect

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  5. Adjusting benefits transfer values for inflation

    NASA Astrophysics Data System (ADS)

    Eiswerth, Mark E.; Douglass Shaw, W.

    This paper analyzes assumptions that are implicitly made in updating estimates of nominal values for environmental goods produced by previous valuation studies, especially adjustments made through use of the consumer price index (CPI). The paper illustrates that the underlying form of preferences for the selected values from a past study may have a significant influence on the updated environmental values. We show why care is necessary in updating past welfare or value estimates in the face of changes in the demand and supply for environmental amenities when using the CPI.

  6. Indexing Consistency and Quality.

    ERIC Educational Resources Information Center

    Zunde, Pranas; Dexter, Margaret E.

    A measure of indexing consistency is developed based on the concept of 'fuzzy sets'. It assigns a higher consistency value if indexers agree on the more important terms than if they agree on less important terms. Measures of the quality of an indexer's work and exhaustivity of indexing are also proposed. Experimental data on indexing consistency…

  7. Evapotranspiration estimation in heterogeneous urban vegetation

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Nouri, H.; Beecham, S.; Anderson, S.; Sutton, P.; Chavoshi, S.

    2015-12-01

    Finding a valid approach to measure the water requirements of mixed urban vegetation is a challenge. Evapotranspiration (ET) is the main component of a plant's water requirement. A better understanding of the ET of urban vegetation is essential for sustainable urbanisation. Increased implementation of green infrastructure will be informed by this work. Despite promising technologies and sophisticated facilities, ET estimation of urban vegetation remains insufficiently characterized. We reviewed the common field, laboratory and modelling techniques for ET estimation, mostly agriculture and forestry applications. We opted for 3 approaches of ET estimation: 1) an observational-based method using adjustment factors applied to reference ET, 2) a field-based method of Soil Water Balance (SWB) and 3) a Remote Sensing (RS)-based method. These approaches were applied to an experimental site to evaluate the most suitable ET estimation approach for an urban parkland. To determine in-situ ET, 2 lysimeters and 4 Neutron Moisture Meter probes were installed. Based on SWB principles, all input water (irrigation, precipitation and upward groundwater movements) and output water (ET, drainage, soil moisture and runoff) were measured monthly for 14 months. The observation based approach and the ground-based approach (SWB) were compared. Our predictions were compared to the actual irrigation rates (data provided by the City Council). Results suggest the observational-based method is the most appropriate urban ET estimation. We examined the capability of RS to estimate ET for urban vegetation. Image processing of 5 WorldView2 satellite images enabled modelling of the relationship between urban vegetation and vegetation indices derived from high resolution images. Our results indicate that an ETobservational-based -NDVI modelling approach is a reliable method of ET estimation for mixed urban vegetation. It also has the advantage of not depending on extensive field data collection.

  8. a Novel Ihs-Ga Fusion Method Based on Enhancement Vegetated Area

    NASA Astrophysics Data System (ADS)

    Niazi, S.; Mokhtarzade, M.; Saeedzadeh, F.

    2015-12-01

    Pan sharpening methods aim to produce a more informative image containing the positive aspects of both source images. However, the pan sharpening process usually introduces some spectral and spatial distortions in the resulting fused image. The amount of these distortions varies highly depending on the pan sharpening technique as well as the type of data. Among the existing pan sharpening methods, the Intensity-Hue-Saturation (IHS) technique is the most widely used for its efficiency and high spatial resolution. When the IHS method is used for IKONOS or QuickBird imagery, there is a significant color distortion which is mainly due to the wavelengths range of the panchromatic image. Regarding the fact that in the green vegetated regions panchromatic gray values are much larger than the gray values of intensity image. A novel method is proposed which spatially adjusts the intensity image in vegetated areas. To do so the normalized difference vegetation index (NDVI) is used to identify vegetation areas where the green band is enhanced according to the red and NIR bands. In this way an intensity image is obtained in which the gray values are comparable to the panchromatic image. Beside the genetic optimization algorithm is used to find the optimum weight parameters in order to gain the best intensity image. Visual and statistical analysis proved the efficiency of the proposed method as it significantly improved the fusion quality in comparison to conventional IHS technique. The accuracy of the proposed pan sharpening technique was also evaluated in terms of different spatial and spectral metrics. In this study, 7 metrics (Correlation Coefficient, ERGAS, RASE, RMSE, SAM, SID and Spatial Coefficient) have been used in order to determine the quality of the pan-sharpened images. Experiments were conducted on two different data sets obtained by two different imaging sensors, IKONOS and QuickBird. The result of this showed that the evaluation metrics are more promising for

  9. Prenatal and Postnatal Fruit and Vegetable Intake Among US Women: Associations with WIC Participation.

    PubMed

    Stallings, Tiffany L; Gazmararian, Julie A; Goodman, Michael; Kleinbaum, David

    2016-08-01

    Objective Evaluate variation in fruit and vegetable intake by Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) participation and poverty status among pregnant, and postpartum women participating in the Infant Feeding Practice Study II (IFPSII). Methods IFPSII (2005-2007) followed US women from third trimester through 1 year postpartum through mailed questionnaires measuring income, WIC participation, breastfeeding; and dietary history questionnaires (DHQ) assessing prenatal/postnatal fruit and vegetable consumption. Poverty measurements used U.S. Census Bureau Federal Poverty thresholds to calculate percent of poverty index ratio (PIR) corresponding to WIC's financial eligibility (≤185 % PIR). Comparison groups: WIC recipients; WIC eligible (≤185 % PIR), but non-recipients; and women not financially WIC eligible (>185 % PIR). IFPSII participants who completed at least one DHQ were included. Intake variation among WIC/poverty groups was assessed by Kruskal-Wallis tests and between groups by Mann-Whitney Wilcoxon tests and logistic regression. Mann-Whitney Wilcoxon tests examined postnatal intake by breastfeeding. Results Prenatal vegetable intake significantly varied by WIC/poverty groups (p = 0.04) with WIC recipients reporting significantly higher intake than women not financially WIC eligible (p = 0.02); association remained significant adjusting for confounders [odds ratio 0.66 (95 % confidence interval: 0.49-0.90)]. Prenatal fruit and postnatal consumption did not significantly differ by WIC/poverty groups. Postnatal intake was significantly higher among breastfeeding than non-breastfeeding women (fruit: p < 0.0001; vegetable: p = 0.006). Conclusions for Practice Most intakes did not significantly differ by WIC/poverty groups and thus prompts research on WIC recipient's dietary behaviors, reasons for non-participation in WIC, and the influence of the recent changes to the WIC food package.

  10. Viscosity Index Improvers and Thickeners

    NASA Astrophysics Data System (ADS)

    Stambaugh, R. L.; Kinker, B. G.

    The viscosity index of an oil or an oil formulation is an important physical parameter. Viscosity index improvers, VIIs, are comprised of five main classes of polymers: polymethylmethacrylates (PMAs), olefin copolymers (OCPs), hydrogenated poly(styrene-co-butadiene or isoprene) (HSD/SIP/HRIs), esterified polystyrene-co-maleic anhydride (SPEs) and a combination of PMA/OCP systems. The chemistry, manufacture, dispersancy and utility of each class are described. The comparative functions, properties, thickening ability, dispersancy and degradation of VIIs are discussed. Permanent and temporary shear thinning of VII-thickened formulations are described and compared. The end-use performance and choice of VI improvers is discussed in terms of low- and high-temperature viscosities, journal bearing oil film thickness, fuel economy, oil consumption, high-temperature pumping efficiency and deposit control. Discussion of future developments concludes that VI improvers will evolve to meet new challenges of increased thermal-oxidative degradation from increased engine operating temperatures, different base stocks of either synthetic base oils or vegetable oil-based, together with alcohol- or vegetable oil-based fuels. VI improvers must also evolve to deal with higher levels of fuel dilution and new types of sludge and also enhanced low-temperature requirements.

  11. Site-specific risk assessment in contaminated vegetable gardens.

    PubMed

    Sipter, Emese; Rózsa, Eniko; Gruiz, Katalin; Tátrai, Erzsébet; Morvai, Veronika

    2008-04-01

    A field survey was carried on in Gyöngyösoroszi, Hungary, near to an abandoned lead/zinc mine to analyse the metal contamination of flooded and non-flooded vegetable gardens, and to evaluate the health risks to local population. Contamination levels of arsenic, cadmium, lead, mercury and zinc were measured in soil and homegrown vegetable samples and bioconcentration factors and hazard indices were calculated. The high metal contents of flooded vegetable gardens were caused by floods, the results indicated significant differences between flooded and non-flooded vegetable gardens. The most accumulating vegetable was sorrel, the most mobile elements were cadmium and lead. Arsenic was not available for vegetables. The health risk was calculated for two exposure routes: ingestion of soil and ingestion of vegetables. The site-specific exposure parameters were established after a population based survey and a special equation was created to calculate the health risk due to homegrown vegetable consumption. The highest risk was associated with ingestion of vegetables, the most hazardous element being lead. The hazard index did not exceed the threshold value of one in flooded or non-flooded gardens. The analyses of health risk indicated that despite the high metal concentrations of soil the contamination of vegetable gardens does not pose an unacceptable risk to the inhabitants of the village. PMID:18191173

  12. Use of spectral channels and vegetation indices from satellite VEGETATION time series for the Post-Fire vegetation recovery estimation

    NASA Astrophysics Data System (ADS)

    Coluzzi, Rosa; Lasaponara, Rosa; Montesano, Tiziana; Lanorte, Antonio; de Santis, Fortunato

    2010-05-01

    Satellite data can help monitoring the dynamics of vegetation in burned and unburned areas. Several methods can be used to perform such kind of analysis. This paper is focused on the use of different satellite-based parameters for fire recovery monitoring. In particular, time series of single spectral channels and vegetation indices from SPOT-VEGETATION have investigated. The test areas is the Mediterranean ecosystems of Southern Italy. For this study we considered: 1) the most widely used index to follow the process of recovery after fire: normalized difference vegetation index (NDVI) obtained from the visible (Red) and near infrared (NIR) by using the following formula NDVI = (NIR_Red)/(NIR + Red), 2) moisture index MSI obtained from the near infrared and Mir for characterization of leaf and canopy water content. 3) NDWI obtained from the near infrared and Mir as in the case of MSI, but with the normalization (as the NDVI) to reduce the atmospheric effects. All analysis for this work was performed on ten-daily normalized difference vegetation index (NDVI) image composites (S10) from the SPOT- VEGETATION (VGT) sensor. The final data set consisted of 279 ten-daily, 1 km resolution NDVI S1O composites for the period 1 April 1998 to 31 December 2005 with additional surface reflectance values in the blue (B; 0.43-0.47,um), red (R; 0.61-0.68,um), near-infrared (NIR; 0.78-0.89,um) and shortwave-infrared (SWIR; 1.58-1.75,um) spectral bands, and information on the viewing geometry and pixel status. Preprocessing of the data was performed by the Vlaamse Instelling voor Technologisch Onderzoek (VITO) in the framework of the Global Vegetation Monitoring (GLOVEG) preprocessing chain. It consisted of the Simplified Method for Atmospheric Correction (SMAC) and compositing at ten-day intervals based on the Maximum Value Compositing (MVC) criterion. All the satellite time series were analysed using the Detrended Fluctuation Analysis (DFA) to estimate post fire vegetation recovery

  13. Vegetable variety is a key to improved diet quality in low-income women in California.

    PubMed

    Keim, Nancy L; Forester, Shavawn M; Lyly, Marika; Aaron, Grant J; Townsend, Marilyn S

    2014-03-01

    Primary prevention education interventions, including those sponsored by the US Department of Agriculture for low-income families, encourage and support increases in vegetable intake. Promoting vegetable variety as a focal point for behavior change may be a useful strategy to increase vegetable consumption. A simple vegetable variety evaluation tool might be useful to replace the time-intensive 24-hour dietary recall. The purpose of our study was to determine whether vegetable variety is associated with vegetable consumption and diet quality among US Department of Agriculture program participants. Variety of vegetable intake and measures of total vegetable intake, diet quality, and diet cost were evaluated. Low-income, female participants (N=112) aged 20 to 55 years with body mass index 17.7 to 68.5 who were the primary food purchasers/preparers for their households were recruited from four California counties representing rural, urban, and suburban areas. Energy density and Healthy Eating Index-2005 were used to assess diet quality. Vegetable variety was based on number of different vegetables consumed per week using a food frequency questionnaire, and three groups were identified as: low variety, ≤5 different vegetables per week; moderate variety, 6 to 9 vegetables per week; and high variety, ≥10 vegetables per week. Compared with the low-variety group, participants in the high-variety group ate a greater quantity of vegetables per day (P<0.001); their diets had a higher Healthy Eating Index score (P<0.001) and lower energy density (P<0.001); and costs of their daily diet and vegetable use were higher (P<0.001). Thus, greater vegetable variety was related to better overall diet quality, a larger quantity of vegetables consumed, and increased diet cost. PMID:24095620

  14. Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data

    NASA Astrophysics Data System (ADS)

    Gu, Yingxin; Hunt, Eric; Wardlow, Brian; Basara, Jeffrey B.; Brown, Jesslyn F.; Verdin, James P.

    2008-11-01

    The evaluation of the relationship between satellite-derived vegetation indices (normalized difference vegetation index and normalized difference water index) and soil moisture improves our understanding of how these indices respond to soil moisture fluctuations. Soil moisture deficits are ultimately tied to drought stress on plants. The diverse terrain and climate of Oklahoma, the extensive soil moisture network of the Oklahoma Mesonet, and satellite-derived indices from the Moderate Resolution Imaging Spectroradiometer (MODIS) provided an opportunity to study correlations between soil moisture and vegetation indices over the 2002-2006 growing seasons. Results showed that the correlation between both indices and the fractional water index (FWI) was highly dependent on land cover heterogeneity and soil type. Sites surrounded by relatively homogeneous vegetation cover with silt loam soils had the highest correlation between the FWI and both vegetation-related indices (r~0.73), while sites with heterogeneous vegetation cover and loam soils had the lowest correlation (r~0.22).

  15. On the use of satellite VEGETATION time series for monitoring post fire vegetation recovery

    NASA Astrophysics Data System (ADS)

    de Santis, F.; Didonna, I.

    2009-04-01

    Fire is one of the most critical factors of disturbance in worldwide ecosystems. The effects of fires on soil, plants, landscape and ecosystems depend on many factors, among them fire frequency, fire severity and plant resistance. The characterization of vegetation post-fire behaviour is a fundamental issue to model and evaluate the fire resilience, which the ability of vegetation to recover after fire. Recent changes in fire regime, due to abandonment of local land use practice and climate change, can induce significant variations in vegetation fire resilience. In the Mediterranean-type communities, post fire vegetation trends have been analysed in a wide range of habitats, although pre- and post-fire investigation has been widely performed at stand level. But, factors controlling regeneration at the landscape scale are less well known. In this study, a time series of normalized difference vegetation index (NDVI) data derived from SPOT-VEGETATION was used to examine the recovery characteristics of fire affected vegetation in some test areas of the Mediterranean ecosystems of Southern Italy. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) data from 1998 to 2005 were analyzed in order to evaluate the resilient effects in a some significant test sites of southern Italy. In particular, we considered: (i) one stable area site, one site affected by one fire during the investigated time window, (iii) one site affected by two consecutive fires during the investigated time window. In order to eliminate the phenological fluctuations, for each decadal composition of each pixel, we focused on the departure NDVId = [NDVI - ]/, where is the decadal mean and  is the decadal standard deviation. The decadal mean and the standard deviation were calculated for each decade, e.g. 1st

  16. [Estimation models for vegetation water content at both leaf and canopy levels].

    PubMed

    Shen, Yan; Niu, Zheng; Yan, Chunyan

    2005-07-01

    Based on spectral indices method, this paper utilized the water content (Cw) and reflectance data of 67 fresh different type leaves from LOPEX' 93 database to establish the statistical model between leaf Cw and spectral indices at leaf level through 47 samples, and to test the model with the other 20 samples. The results suggested that fuel moisture content (FMC) and equivalent water thickness (EWT) as Cw demonstrators were different in reflectance spectral curves. The difference between FMC and EWT was large when they were utilized to retrieve the leaf Cw. The correlation coefficient between EWT and each spectral index was higher than FMC, but the forecast precision of FMC was better than that of EWT. The 7 spectral indices could all retrieve the leaf FMC accurately, but only the Ratio975, II and SR were suitable to estimate the leaf EWT. Spectral indices linear model on the strength of optimal subset regressions had the highest precision to retrieve the leaf Cw. Ratio975 might be the universal spectral index to estimate the leaf Cw. At canopy level, the simulated canopy spectra under different leaf area index (LAI) and Cw were derived from the PROSPECT and SAILH coupling models. In order to eliminate background influence and to precisely retrieve the Cw, soil-adjusted water index (SAWI) was proposed at the first time to indicate the information of near-infrared and short-wave infrared canopy reflectance. The ratio of SAWI and other spectral indices could dramatically eliminate the soil background, and effectively retrieve the vegetation Cw at canopy level. Spectral index (Ratio975 - 0.96)/(SAWI + 0.2) as improved Ratio975 could be used to compute the canopy Cw more precisely when LAI was ranging from 0.3 to 8.0 and Cw from 0.0001 to 0. 07cm. PMID:16252855

  17. Vegetable Production System (Veggie)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Smith, Trent M.

    2016-01-01

    The Vegetable Production System (Veggie) was developed by Orbital Technologies Corp. to be a simple, easily stowed, and high growth volume yet low resource facility capable of producing fresh vegetables on the International Space Station (ISS). In addition to growing vegetables in space, Veggie can support a variety of experiments designed to determine how plants respond to microgravity, provide real-time psychological benefits for the crew, and conduct outreach activities. Currently, Veggie provides the largest volume available for plant growth on the ISS.

  18. Delay Adjusted Incidence Infographic

    Cancer.gov

    This Infographic shows the National Cancer Institute SEER Incidence Trends. The graphs show the Average Annual Percent Change (AAPC) 2002-2011. For Men, Thyroid: 5.3*,Liver & IBD: 3.6*, Melanoma: 2.3*, Kidney: 2.0*, Myeloma: 1.9*, Pancreas: 1.2*, Leukemia: 0.9*, Oral Cavity: 0.5, Non-Hodgkin Lymphoma: 0.3*, Esophagus: -0.1, Brain & ONS: -0.2*, Bladder: -0.6*, All Sites: -1.1*, Stomach: -1.7*, Larynx: -1.9*, Prostate: -2.1*, Lung & Bronchus: -2.4*, and Colon & Rectum: -3/0*. For Women, Thyroid: 5.8*, Liver & IBD: 2.9*, Myeloma: 1.8*, Kidney: 1.6*, Melanoma: 1.5, Corpus & Uterus: 1.3*, Pancreas: 1.1*, Leukemia: 0.6*, Brain & ONS: 0, Non-Hodgkin Lymphoma: -0.1, All Sites: -0.1, Breast: -0.3, Stomach: -0.7*, Oral Cavity: -0.7*, Bladder: -0.9*, Ovary: -0.9*, Lung & Bronchus: -1.0*, Cervix: -2.4*, and Colon & Rectum: -2.7*. * AAPC is significantly different from zero (p<.05). Rates were adjusted for reporting delay in the registry. www.cancer.gov Source: Special section of the Annual Report to the Nation on the Status of Cancer, 1975-2011.

  19. [Causal relationship between assertiveness and adjustment in children: A short-term longitudinal study].

    PubMed

    Eguchi, Megumi; Hamaguchi, Yoshikazu

    2015-08-01

    This study examined the causal relationships between assertiveness and both internal and external adjustment in children. Elementary school children in grades four through six (N = 284) participated in the study, which used a short-term longitudinal design. The children completed questionnaires twice during a 6-months period. They responded to assertiveness questionnaires that included two components: "self-expression" and "consideration of others". They also completed a self-esteem scale as an index of internal adjustment, and the Class Life Satisfaction scale as an index of external adjustment. There was a positive causative relationship between "self-expression" and internal adjustment and between "consideration for others" and external adjustment. In addition, the effects on adjustment varied according to the type of assertiveness. Cluster analysis and MANOVA indicated that the group with high "self-expression" and "consideration for others" had high internal and external adjustment, while the children with poor assertiveness showed the lowest degree of adaptivity. PMID:26402950

  20. [Journal selection and indexing for Index Medicus and Chinese periodicals indexed in Index Medicus].

    PubMed

    Zhou, Qing-Hui; Ling, Chang-Quan; Bai, Yu-Jin; Yin, Hui-Xia

    2005-01-01

    Index Medicus/MEDLINE/PubMed published by U. S. National Library of Medicine (NLM) is the most important and commonly used biomedical literature retrieval system in the world. According to the"List of Journals Indexed in Index Medicus (2004)", 4,098 journals are indexed for Index Medicus, including 70 journals from mainland China and Hong Kong and 9 journals from Taiwan. Journal of Chinese Integrative Medicine established in May, 2003 is indexed in Index Medicus in 2004. This article outlines the critical elements of journal selection for Index Medicus/MEDLINE and the journal selection process for indexing at NLM, and introduces some measures for the Journal of Chinese Integrative Medicine being indexed in Index Medicus/MEDLINE.

  1. 44 CFR 206.47 - Cost-share adjustments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... effective for disasters declared on or after May 21, 1999, $75 per capita of State population; (2) Effective... population; (3) Effective for disasters declared after January 1, 2001, $100 per capita of State population... of State population, adjusted annually for inflation using the Consumer Price Index for All...

  2. 44 CFR 206.47 - Cost-share adjustments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... effective for disasters declared on or after May 21, 1999, $75 per capita of State population; (2) Effective... population; (3) Effective for disasters declared after January 1, 2001, $100 per capita of State population... of State population, adjusted annually for inflation using the Consumer Price Index for All...

  3. Nanometer-thick flat lens with adjustable focus

    SciTech Connect

    Son, T. V.; Haché, A.; Ba, C. O. F.; Vallée, R.

    2014-12-08

    We report laser beam focusing by a flat, homogeneous film with a thickness of less than 100 nm. The effect relies on refractive index changes occurring in vanadium dioxide as it undergoes a phase transition from insulator to metal. Phase front curvature is achieved by means of temperature gradients, and adjustable focal lengths from infinity to 30 cm are attained.

  4. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. [North America

    NASA Technical Reports Server (NTRS)

    Goward, S. N.; Tucker, C. J.; Dye, D. G.

    1985-01-01

    Spectral vegetation index measurements derived from remotely sensed observations show great promise as a means to improve knowledge of land vegetation patterns. The daily, global observations acquired by the advanced very high resolution radiometer, a sensor on the current series of U.S. National Oceanic and Atmospheric Administration meteorological satellites, may be particularly well suited for global studies of vegetation. Preliminary results from analysis of North American observations, extending from April to November 1982, show that the vegetation index patterns observed correspond to the known seasonality of North American natural and cultivated vegetation. Integration of the observations over the growing season produced measurements that are related to net primary productivity patterns of the major North American natural vegetation formations. Regions of intense cultivation were observed as anomalous areas in the integrated growing season measurements. Significant information on seasonality, annual extent and interannual variability of vegetation photosynthetic activity at continental and global scales can be derived from these satellite observations.

  5. Vegetable oil fuels

    SciTech Connect

    Not Available

    1982-01-01

    Fifty contributions (presentations) involving more than one hundred people worldwide were given at the International Conference on Plant and Vegetable Oils as Fuels. The proceedings were in Fargo, North Dakota, from August 2-4, 1982. The conference helped to promote renewable fuels, bio-oils, from plant and vegetable oils. Separate abstracts were prepared for 44 items for inclusion in the Energy Data Base.

  6. Vegetation and soils

    USGS Publications Warehouse

    Burke, M.K.; King, S.L.; Eisenbies, M.H.; Gartner, D.

    2000-01-01

    Intro paragraph: Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in hypothesis generation about factors influencing community variation, and helps refine models of community structure. Hierarchical classification of communities is particularly useful for showing relationships among samples (Gauche 1982).

  7. Monitoring global vegetation

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.

    1981-01-01

    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.

  8. Adherence to a Healthy Nordic Food Index Is Associated with a Lower Risk of Type-2 Diabetes—The Danish Diet, Cancer and Health Cohort Study

    PubMed Central

    Lacoppidan, Sandra Amalie; Kyrø, Cecilie; Loft, Steffen; Helnæs, Anne; Christensen, Jane; Hansen, Camilla Plambeck; Dahm, Christina Catherine; Overvad, Kim; Tjønneland, Anne; Olsen, Anja

    2015-01-01

    Background: Type-2 diabetes (T2D) prevalence is rapidly increasing worldwide. Lifestyle factors, in particular obesity, diet, and physical activity play a significant role in the etiology of the disease. Of dietary patterns, particularly the Mediterranean diet has been studied, and generally a protective association has been identified. However, other regional diets are less explored. Objective: The aim of the present study was to investigate the association between adherence to a healthy Nordic food index and the risk of T2D. The index consists of six food items: fish, cabbage, rye bread, oatmeal, apples and pears, and root vegetables. Methods: Data was obtained from a prospective cohort study of 57,053 Danish men and women aged 50–64 years, at baseline, of whom 7366 developed T2D (median follow-up: 15.3 years). The Cox proportional hazards model was used to assess the association between the healthy Nordic food index and risk of T2D, adjusted for potential confounders. Results: Greater adherence to the healthy Nordic food index was significantly associated with lower risk of T2D after adjusting for potential confounders. An index score of 5−6 points (high adherence) was associated with a statistically significantly 25% lower T2D risk in women (HR: 0.75, 95%CI: 0.61–0.92) and 38% in men (HR: 0.62; 95%CI: 0.53–0.71) compared to those with an index score of 0 points (poor adherence). Conclusion: Adherence to a healthy Nordic food index was found to be inversely associated with risk of T2D, suggesting that regional diets other than the Mediterranean may also be recommended for prevention of T2D. PMID:26506373

  9. Indexing Consistency and Quality.

    ERIC Educational Resources Information Center

    Zunde, Pranas; Dexter, Margaret E.

    Proposed is a measure of indexing consistency based on the concept of "fuzzy sets." By this procedure a higher consistency value is assigned if indexers agree on the more important terms than if they agree on less important terms. Measures of the quality of an indexer's work and exhaustivity of indexing are also proposed. Experimental data on…

  10. Comparative Index Terms.

    ERIC Educational Resources Information Center

    Rasheed, Muhammad Abdur

    1989-01-01

    Describes a study that compared indexing terms suggested by authors of articles in "The American Journal of the Medical Science" and indexing terms assigned to the same articles in MEDLARS. Case studies are used to examine the differences between author and indexer indexing. (CLB)

  11. Quaker Resources Online Index.

    ERIC Educational Resources Information Center

    Beke-Harrigan, Heidi

    The Quaker Resources Online Index is a World Wide Web-based index, including author, title, subject, and meeting indexes, that provides access to Quaker materials available on the Web. Given the current failings and shortcomings of search engines and automated key word searches, this index brings together information from a variety of sources and…

  12. Nucleic acid indexing

    DOEpatents

    Guilfoyle, Richard A.; Guo, Zhen

    1999-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  13. Nucleic acid indexing

    DOEpatents

    Guilfoyle, Richard A.; Guo, Zhen

    2001-01-01

    A restriction site indexing method for selectively amplifying any fragment generated by a Class II restriction enzyme includes adaptors specific to fragment ends containing adaptor indexing sequences complementary to fragment indexing sequences near the termini of fragments generated by Class II enzyme cleavage. A method for combinatorial indexing facilitates amplification of restriction fragments whose sequence is not known.

  14. Treatment of vegetable oils

    SciTech Connect

    Bessler, T.R.

    1986-05-13

    A process is described for preparing an injectable vegetable oil selected from the group consisting of soybean oil and sunflower oil and mixtures thereof which comprise: (a) first treating the vegetable oil at a temperature of 80/sup 0/C to about 130/sup 0/C with an acid clay; (b) deodorizing the vegetable oil with steam at a temperature of 220/sup 0/C to about 280/sup 0/C and applying a vacuum to remove volatilized components; (c) treating the deodorized vegetable oil, at a temperature of from about 10/sup 0/C to about 60/sup 0/C, with an acid clay to reduce the content of a member selected from the group consisting of diglycerides, tocopherol components, and trilinolenin and mixtures thereof, wherein the acid clay is added in a weight ratio to the deoderized vegetable oil of from about 1:99 to about 1:1; and (d) thereafter conducting a particulate filtration to remove a substantial portion of the acid clay from the vegetable oil, wherein the filtration is accomplished with filters having a pore size of from about 0.1 to 0.45 microns, thereby obtaining the injectable oil.

  15. [Inversion of leaf area index during different growth stages in winter wheat].

    PubMed

    Zhao, Juan; Huang, Wen-jiang; Zhang, Yao-hong; Jing, Yuan-shu

    2013-09-01

    Being orientated to the low prescion of crop leaf area index (LAI) inversion using the same spectral vegetation index during different crop growth stages, the present paper analyzed the precision of LAI inversion by employing NDVI(normalized difference vegetation index). Ten vegetation indices were chosen including six broad-band vegetation indices and four narrow-band vegetation indices responding to vegetation cover to inverse LAI in different growth stages. Several conclusions were drawn according to the analysis. The determinant coefficient (R2) and root mean square error (RMSE) between LAI inversion value and true value were 0.5585 and 0.3209 respectively during the whole growth duraton. The mSR (modified simple ratio index) index was appropriate to inverse of LAI during earlier growth stages (before jointing stage) in winter wheat. The R2 and RMSE between LAI inversion value and true value were 0.7287 and 0.2971 respectively. The SR (simple ratio index) index was suitable enough to inverse of LAI during medium growth stages (from joingting stagess to heading stages). The R2 and RMSE between LAI inversion value and true value were 0.6546 and 0.3061 respectively. The NDVI (normalized difference vegetation index) index was proven to be fine to inverse LAI during later growth stages(from heading stage to ripening stage). The R2 and RMSE between LAI inversion value and true value were 0.6794 and 0.3164 respectively. Therefore it was indicated that the results of LAI inversion was much better inverse of winter wheat LAI choosing different vegetation indices during differen growth stages for winter wheat according to the change of vegetation cover and canopy reflectance than merely with NDVI to inverse LAI in the whole growth stages. It was concluded that the precision of LAI inversion was significantly improved with segmented models based on different vegetation indices.

  16. a Robust Pct Method Based on Complex Least Squares Adjustment Method

    NASA Astrophysics Data System (ADS)

    Haiqiang, F.; Jianjun, Z.; Changcheng, W.; Qinghua, X.; Rong, Z.

    2013-07-01

    Polarization Coherence Tomography (PCT) method has the good performance in deriving the vegetation vertical structure. However, Errors caused by temporal decorrelation and vegetation height and ground phase always propagate to the data analysis and contaminate the results. In order to overcome this disadvantage, we exploit Complex Least Squares Adjustment Method to compute vegetation height and ground phase based on Random Volume over Ground and Volume Temporal Decorrelation (RVoG + VTD) model. By the fusion of different polarimetric InSAR data, we can use more observations to obtain more robust estimations of temporal decorrelation and vegetation height, and then, we introduce them into PCT to acquire more accurate vegetation vertical structure. Finally the new approach is validated on E-SAR data of Oberpfaffenhofen, Germany. The results demonstrate that the robust method can greatly improve accusation of vegetation vertical structure.

  17. Advances in Remote Sensing for Vegetation Dynamics and Agricultural Management

    NASA Technical Reports Server (NTRS)

    Tucker, Compton; Puma, Michael

    2015-01-01

    Spaceborne remote sensing has led to great advances in the global monitoring of vegetation. For example, the NASA Global Inventory Modeling and Mapping Studies (GIMMS) group has developed widely used datasets from the Advanced Very High Resolution Radiometer (AVHRR) sensors as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) map imagery and normalized difference vegetation index datasets. These data are valuable for analyzing vegetation trends and variability at the regional and global levels. Numerous studies have investigated such trends and variability for both natural vegetation (e.g., re-greening of the Sahel, shifts in the Eurasian boreal forest, Amazonian drought sensitivity) and crops (e.g., impacts of extremes on agricultural production). Here, a critical overview is presented on recent developments and opportunities in the use of remote sensing for monitoring vegetation and crop dynamics.

  18. Grassland birds orient nests relative to nearby vegetation

    USGS Publications Warehouse

    Hoekman, S.T.; Ball, I.J.; Fondell, T.E.

    2002-01-01

    We studied orientation of nest sites relative to nearby vegetation for dabbling ducks (Cinnamon Teal, Anas cyanoptera; Blue-winged Teal, A. discors; Gadwall, A. strepera; Mallard, A. platyrhynchos; and Northern Shoveler, A. clypeata) and Short-eared Owls (Asio flammeus) in ungrazed grassland habitat during 1995-1997 in westcentral Montana. We estimated an index of vegetation height and density in intercardinal directions (NE, SE, SW, NW) immediately around nests. All species oriented nests with the least vegetation to the southeast and the most vegetation to either the southwest or northwest. Furthermore, maximum vegetation around nests shifted from the southwest to the northwest with increasing nest initiation date, apparently as a response of individuals tracking seasonal change in the afternoon solar path. Thus, nests were relatively exposed to solar insolation during cool morning hours but were shaded from intense insolation in the afternoon throughout the breeding season. We suggest that nest microhabitat was selected in part to moderate the thermal environment.

  19. A COMPARISON OF THE SALINITY REGIME ALONG THE TEXAS COAST WITH TERRESTRIAL VEGETATION GREENNESS AND WATER USE IN THE GALVESTON BAY WATERSHED USING REMOTING SENSING

    EPA Science Inventory

    Variability in vegetation greenness was determined for the Galveston Bay watershed using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (A VHRR) flown on NOAA satellites. NDVI variability was compared with reg...

  20. Soil, water, and vegetation conditions in south Texas

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Everitt, J. H.; Gerbermann, A. H. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The best wavelengths in the 0.4 to 2.5 micron interval were determined for detecting lead toxicity and ozone damage, distinguishing succulent from woody species, and detecting silverleaf sunflower. A perpendicular vegetation index, a measure of the distance from the soil background line, in MSS 5 and MSS 7 data space, of pixels containing vegetation was developed and tested as an indicator of vegetation development and crop vigor. A table lookup procedure was devised that permits rapid identification of soil background and green biomass or phenological development in LANDSAT scenes without the need for training data.

  1. Associations among parent acculturation, child BMI, and child fruit and vegetable consumption in a Hispanic sample.

    PubMed

    Morello, Monica I; Madanat, Hala; Crespo, Noe C; Lemus, Hector; Elder, John

    2012-12-01

    The objective of this study was to investigate the association of parent acculturation with child fruit and vegetable consumption and obesity, as measured by body mass index (BMI). Participants included 250 Mexican-American and other Hispanic families living within San Diego County. Height and weight measurements were collected to calculate the age- and sex-specific BMI for each child and parent, and parents completed self-administered surveys. Child BMI z-score was significantly related to parent BMI after controlling for parent acculturation and parent birth place (β = 0.05, p < 0.01). Child fruit consumption was significantly associated with parent acculturation (β = -0.02, p = 0.01) and parent BMI (β = 0.02, p = 0.04) after adjusting for the other variables in the model. Child vegetable consumption was not significantly related to parent acculturation. Findings suggest that parental weight status may be more predictive of child obesity than acculturation, and highlight the need to examine culturally relevant behavioral and psychosocial factors related to childhood obesity and dietary behaviors.

  2. 77 FR 34125 - Indexing the Annual Operating Revenues of Railroads

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-08

    ... Surface Transportation Board Indexing the Annual Operating Revenues of Railroads The Surface... used by the railroads to adjust their gross annual operating revenues for classification purposes. This indexing methodology insures that railroads are classified based on real business expansion and not...

  3. 78 FR 21007 - Indexing the Annual Operating Revenues of Railroads

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... TRANSPORTATION Surface Transportation Board Indexing the Annual Operating Revenues of Railroads The Surface... used by the railroads to adjust their gross annual operating revenues for classification purposes. This indexing methodology insures that railroads are classified based on real business expansion and not...

  4. 75 FR 57553 - Indexing the Annual Operating Revenues of Railroads

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Surface Transportation Board Indexing the Annual Operating Revenues of Railroads The Surface... used by the railroads to adjust their gross annual operating revenues for classification purposes. This indexing methodology insures that railroads are classified based on real business expansion and not...

  5. 76 FR 52384 - Indexing the Annual Operating Revenues of Railroads

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ... Surface Transportation Board Indexing the Annual Operating Revenues of Railroads The Surface... used by the railroads to adjust their gross annual operating revenues for classification purposes. This indexing methodology insures that railroads are classified based on real business expansion and not...

  6. Seasonal vegetation differences from ERTS imagery

    NASA Technical Reports Server (NTRS)

    Ashley, M. D.; Rea, J.

    1975-01-01

    Knowledge of the times when crop and forest vegetation experience seasonally related changes in development is important in understanding growth and yield relationships. This article describes how densitometry of earth resources technology satellite (ERTS-1) multispectral scanner (MSS) imagery can be used to identify such phenological events. Adjustments for instrument calibration, aperture size, gray-scale differences between overpasses, and normalization of changing solar elevation are considered in detail. Seasonal vegetation differences can be identified by densitometry of band 5 (0.6-0.7 microns) and band 7 (0.8-1.1 microns) MSS imagery. Band-to-band ratios of the densities depicted the changes more graphically than the individual band readings.

  7. New spectral vegetation indices based on the near-infrared shoulder wavelengths for remote detection of grassland phytomass

    PubMed Central

    VESCOVO, LORIS; WOHLFAHRT, GEORG; BALZAROLO, MANUELA; PILLONI, SEBASTIAN; SOTTOCORNOLA, MATTEO; RODEGHIERO, MIRCO; GIANELLE, DAMIANO

    2013-01-01

    This article examines the possibility of exploiting ground reflectance in the near-infrared (NIR) for monitoring grassland phytomass on a temporal basis. Three new spectral vegetation indices (infrared slope index, ISI; normalized infrared difference index, NIDI; and normalized difference structural index, NDSI), which are based on the reflectance values in the H25 (863–881 nm) and the H18 (745–751 nm) Chris Proba (mode 5) bands, are proposed. Ground measurements of hyperspectral reflectance and phytomass were made at six grassland sites in the Italian and Austrian mountains using a hand-held spectroradiometer. At full canopy cover, strong saturation was observed for many traditional vegetation indices (normalized difference vegetation index (NDVI), modified simple ratio (MSR), enhanced vegetation index (EVI), enhanced vegetation index 2 (EVI 2), renormalized difference vegetation index (RDVI), wide dynamic range vegetation index (WDRVI)). Conversely, ISI and NDSI were linearly related to grassland phytomass with negligible inter-annual variability. The relationships between both ISI and NDSI and phytomass were however site specific. The WinSail model indicated that this was mostly due to grassland species composition and background reflectance. Further studies are needed to confirm the usefulness of these indices (e.g. using multispectral specific sensors) for monitoring vegetation structural biophysical variables in other ecosystem types and to test these relationships with aircraft and satellite sensors data. For grassland ecosystems, we conclude that ISI and NDSI hold great promise for non-destructively monitoring the temporal variability of grassland phytomass. PMID:24347746

  8. An objective methodology for potential vegetation reconstruction constrained by climate

    NASA Astrophysics Data System (ADS)

    Levavasseur, G.; Vrac, M.; Roche, D. M.; Paillard, D.; Guiot, J.

    2013-05-01

    Reconstructions of modern Potential Natural Vegetation (PNV) are widely used in climate modelling and vegetation survey as a starting point for studies (historical changes of land-use, past or future vegetation distribution modelling, etc.). A PNV distribution is often related to vegetation models, which are based on empirical relationships between vegetation (or pollen data in paleoecological studies) and climate. Vegetation models are used to directly simulate a PNV distribution or to correct vegetation types derived from remotely-sensed observations in human-impacted regions. Consequently, these methods are quite subjective and include biases from models. This article proposes a new approach to build a high-resolution PNV map using a statistical model. As vegetation is a nominal variable, our method consists in applying a multinomial logistic regression (MLR). MLR build statistical relationships between BIOME 6000 data covering Europe and several climatological variables from the Climate Research Unit (CRU). The PNV reconstructed by MLR appears similar to those reconstructed from remotely-sensed data or simulated by a vegetation model (BIOME 4) except in southern Europe with the establishment of warm-temperate forests. MLR produces a realistic PNV distribution, which is the closest to BIOME 6000 data and provides the vegetation distribution in each grid-cell of our map. Moreover, MLR allows us to compute an uncertainty index that appears as a convenient tool to highlight the regions lacking some data toimprove the PNV distribution. The MLR method does not suffer any dynamic biases or subjective corrections and is a fast and objective alternative to the other methods. MLR provides an independent reference for vegetation models that is entirely based on vegetation and climatological data.

  9. Mood Adjustment via Mass Communication.

    ERIC Educational Resources Information Center

    Knobloch, Silvia

    2003-01-01

    Proposes and experimentally tests mood adjustment approach, complementing mood management theory. Discusses how results regarding self-exposure across time show that patterns of popular music listening among a group of undergraduate students differ with initial mood and anticipation, lending support to mood adjustment hypotheses. Describes how…

  10. Spousal Adjustment to Myocardial Infarction.

    ERIC Educational Resources Information Center

    Ziglar, Elisa J.

    This paper reviews the literature on the stresses and coping strategies of spouses of patients with myocardial infarction (MI). It attempts to identify specific problem areas of adjustment for the spouse and to explore the effects of spousal adjustment on patient recovery. Chapter one provides an overview of the importance in examining the…

  11. Parental Divorce and Children's Adjustment.

    PubMed

    Lansford, Jennifer E

    2009-03-01

    This article reviews the research literature on links between parental divorce and children's short-term and long-term adjustment. First, I consider evidence regarding how divorce relates to children's externalizing behaviors, internalizing problems, academic achievement, and social relationships. Second, I examine timing of the divorce, demographic characteristics, children's adjustment prior to the divorce, and stigmatization as moderators of the links between divorce and children's adjustment. Third, I examine income, interparental conflict, parenting, and parents well-being as mediators of relations between divorce and children's adjustment. Fourth, I note the caveats and limitations of the research literature. Finally, I consider notable policies related to grounds for divorce, child support, and child custody in light of how they might affect children s adjustment to their parents divorce.

  12. Heavy metals bioconcentration from soil to vegetables and assessment of health risk caused by their ingestion.

    PubMed

    Garg, V K; Yadav, Poonam; Mor, Suman; Singh, Balvinder; Pulhani, Vandana

    2014-03-01

    The present study was undertaken to assess the non-carcinogenic human health risk of heavy metals through the ingestion of locally grown and commonly used vegetables viz. Raphanus sativus (root vegetable), Daucus carota (root vegetable), Benincasa hispida (fruit vegetable) and Brassica campestris leaves (leafy vegetable) in a semi-urbanized area of Haryana state, India. Heavy metal quantification of soil and vegetable samples was done using flame atomic absorption spectrophotometer. Lead, cadmium and nickel concentration in vegetable samples varied in range of 0.12-6.54 mg kg(-1), 0.02-0.67 mg kg(-1) and <0.05-0.41 mg kg(-1), respectively. Cadmium and lead concentration in some vegetable samples exceeded maximum permissible limit given by World Health Organization/Food and Agriculture Organization and Indian standards. Much higher concentrations of Pb (40-190.5 mg kg(-1)), Cd (0.56-9.85 mg kg(-1)) and Ni (3.21-45.87 mg kg(-1)) were reported in corresponding vegetable fields' soils. Correlation analysis revealed the formation of three primary clusters, i.e. Cu-Cd, Cd-Pb and Ni-Zn in vegetable fields' soils further supported by cluster analysis and principal component analysis. Bioconcentration factor revealed that heavy metals' uptake was more by leafy vegetable than root and fruit vegetables. Hazard index of all the vegetables was less than unity; thus, the ingestion of these vegetables is unlikely to pose health risks to the target population.

  13. Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012

    NASA Astrophysics Data System (ADS)

    Xu, Hao-jie; Wang, Xin-ping; Zhang, Xiao-xiao

    2016-10-01

    Climate change scenarios predict that Central Asia may experience an increase in the frequency and magnitude of temperature and precipitation extremes by the end of the 21st century, but the response regularity of different types of vegetation to climate extremes is uncertain. Based on remote-sensed vegetation index and in-situ meteorological data for the period of 2000-2012, we examined the diverse responses of vegetation to climate mean/extremes and differentiated climatic and anthropogenic influence on the vegetation in Central Asia. Our results showed that extensive vegetation degradation was related to summer water deficit as a result of the combined effect of decreased precipitation and increased potential evapotranspiration. Water was a primary climatic driver for vegetation changes regionally, and human-induced changes in vegetation confined mainly to local areas. Responses of vegetation to water stress varied in different vegetation types. Grasslands were most responsive to water deficit followed by forests and desert vegetation. Climate extremes caused significant vegetation changes, and different vegetation types had diverse responses to climate extremes. Grasslands represented a symmetric response to wet and dry periods. Desert vegetation was more responsive during wet years than in dry years. Forests responded more strongly to dry than to wet years due to a severe drought occurred in 2008. This study has important implications for predicting how vegetation ecosystems in drylands respond to climate mean/extremes under future scenarios of climate change.

  14. Adjustment versus no adjustment when using adjustable sutures in strabismus surgery

    PubMed Central

    Liebermann, Laura; Hatt, Sarah R.; Leske, David A.; Holmes, Jonathan M.

    2013-01-01

    Purpose To compare long-term postoperative outcomes when performing an adjustment to achieve a desired immediate postoperative alignment versus simply tying off at the desired immediate postoperative alignment when using adjustable sutures for strabismus surgery. Methods We retrospectively identified 89 consecutive patients who underwent a reoperation for horizontal strabismus using adjustable sutures and also had a 6-week and 1-year outcome examination. In each case, the intent of the surgeon was to tie off and only to adjust if the patient was not within the intended immediate postoperative range. Postoperative success was predefined based on angle of misalignment and diplopia at distance and near. Results Of the 89 patients, 53 (60%) were adjusted and 36 (40%) were tied off. Success rates were similar between patients who were simply tied off immediately after surgery and those who were adjusted. At 6 weeks, the success rate was 64% for the nonadjusted group versus 81% for the adjusted group (P = 0.09; difference of 17%; 95% CI, −2% to 36%). At 1 year, the success rate was 67% for the nonadjusted group versus 77% for the adjusted group (P = 0.3; difference of 11%; 95% CI, −8% to 30%). Conclusions Performing an adjustment to obtain a desired immediate postoperative alignment did not yield inferior long-term outcomes to those obtained by tying off to obtain that initial alignment. If patients were who were outside the desired immediate postoperative range had not been not adjusted, it is possible that their long-term outcomes would have been worse, therefore, overall, an adjustable approach may be superior to a nonadjustable approach. PMID:23415035

  15. Accumulation and health risk of heavy metals in vegetables from harmless and organic vegetable production systems of China.

    PubMed

    Chen, Yong; Hu, Wenyou; Huang, Biao; Weindorf, David C; Rajan, Nithya; Liu, Xiaoxiao; Niedermann, Silvana

    2013-12-01

    Heavy metal accumulation in vegetables is a growing concern for public health. Limited studies have elucidated the heavy metal accumulation characteristics and health risk of different vegetables produced in different facilities such as greenhouses and open-air fields and under different management modes such as harmless and organic. Given the concern over the aforementioned factors related to heavy metal accumulation, this study selected four typical greenhouse vegetable production bases, short-term harmless greenhouse vegetable base (SHGVB), middle-term harmless greenhouse vegetable base (MHGVB), long-term harmless greenhouse vegetable base (LHGVB), and organic greenhouse vegetable base (OGVB), in Nanjing City, China to study heavy metal accumulation in different vegetables and their associated health risks. Results showed that soils and vegetables from SHGVB and OGVB apparently accumulated fewer certain heavy metals than those from other bases, probably due to fewer planting years and special management, respectively. Greenhouse conditions significantly increased certain soil heavy metal concentrations relative to open-air conditions. However, greenhouse conditions did not significantly increase concentrations of As, Cd, Cu, Hg, and Zn in leaf vegetables. In fact, under greenhouse conditions, Pb accumulation was effectively reduced. The main source of soil heavy metals was the application of large amounts of low-grade fertilizer. There was larger health risk for producers' children to consume vegetables from the three harmless vegetable bases than those of residents' children. The hazard index (HI) over a large area exceeded 1 for these two kinds of children in the MHGVB and LHGVB. There was also a slight risk in the SHGVB for producers' children solely. However, the HI of the whole area of the OGVB for two kinds of children was below 1, suggesting low risk of heavy metal exposure through the food chain. Notably, the contribution rate of Cu and Zn to the HI were

  16. CENDI Indexing Workshop

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The CENDI Indexing Workshop held at NASA Headquarters, Two Independence Square, 300 E Street, Washington, DC, on September 21-22, 1994 focused on the following topics: machine aided indexing, indexing quality, an indexing pilot project, the MedIndEx Prototype, Department of Energy/Office of Scientific and Technical Information indexing activities, high-tech coding structures, category indexing schemes, and the Government Information Locator Service. This publication consists mostly of viewgraphs related to the above noted topics. In an appendix is a description of the Government Information Locator Service.

  17. Two aspects of feedforward postural control: anticipatory postural adjustments and anticipatory synergy adjustments

    PubMed Central

    Klous, Miriam; Mikulic, Pavle

    2011-01-01

    We used the framework of the uncontrolled manifold hypothesis to explore the relations between anticipatory synergy adjustments (ASAs) and anticipatory postural adjustments (APAs) during feedforward control of vertical posture. ASAs represent a drop in the index of a multimuscle-mode synergy stabilizing the coordinate of the center of pressure in preparation to an action. ASAs reflect early changes of an index of covariation among variables reflecting muscle activation, whereas APAs reflect early changes in muscle activation levels averaged across trials. The assumed purpose of ASAs is to modify stability of performance variables, whereas the purpose of APAs is to change magnitudes of those variables. We hypothesized that ASAs would be seen before APAs and that this finding would be consistent with regard to the muscle-mode composition defined on the basis of different tasks and phases of action. Subjects performed a voluntary body sway task and a quick, bilateral shoulder flexion task under self-paced and reaction time conditions. Surface muscle activity of 12 leg and trunk muscles was analyzed to identify sets of 4 muscle modes for each task and for different phases within the shoulder flexion task. Variance components in the muscle-mode space and indexes of multimuscle-mode synergy stabilizing shift of the center of pressure were computed. ASAs were seen ∼100–150 ms prior to the task initiation, before APAs. The results were consistent with respect to different sets of muscle modes defined over the two tasks and different shoulder flexion phases. We conclude that the preparation for a self-triggered postural perturbation is associated with two types of anticipatory adjustments, ASAs and APAs. They reflect different feedforward processes within the hypothetical hierarchical control scheme, resulting in changes in patterns of covariation of elemental variables and in their patterns averaged across trials, respectively. The results show that synergies

  18. Personality, acculturation, and psychosocial adjustment of Chinese international students in Germany.

    PubMed

    Zhang, Jingyu; Mandl, Heinz; Wang, Erping

    2010-10-01

    The effect of personality traits and acculturation variables on crosscultural adjustment were investigated in 139 Chinese students in Germany (52% girls; M age = 25.3 yr., SD = 2.9). Participants were surveyed by house visits to their dormitories. Several scales were administered: (a) Big Five Inventory; (b) Vancouver Index of Acculturation; (c) sociocultural adjustment, general and academic; and (d) psychological adjustment, i.e., depression, self-esteem, and life satisfaction. Results showed that Neuroticism and Openness were two shared predictors of sociocultural adjustment. Agreeableness and mainstream acculturation were only related to general adjustment, while Conscientiousness was only related to academic adjustment. All facets of psychological adjustment were related to Neuroticism and Consciousness, while positive components (self-esteem and life satisfaction) were also related to Extraversion and Openness. No influence of heritage acculturation was found. The findings are discussed in light of measurement issues and the shared and unique individual predictors of the different facets of adjustment. PMID:21117478

  19. [Interpersonal motivation in a First Year Experience class influences freshmen's university adjustment].

    PubMed

    Nakayama, Rumiko; Nakanishi, Yoshifumi; Nagahama, Fumiyo; Nakajima, Makoto

    2015-06-01

    The present study examined the influence of interpersonal motivation on university adjustment in freshman students enrolled in a First Year Experience (FYE) class. An interpersonal motivation scale and a university adjustment (interpersonal adjustment and academic adjustment) scale were administered twice to 116 FYE students; data from the 88 students who completed both surveys were analyzed. Results from structural equation modeling indicated a causal relationship between interpersonal, motivation and university adjustment: interpersonal adjustment served as a mediator between academic adjustment and interpersonal motivation, the latter of which was assessed using the internalized motivation subscale of the Interpersonal Motivation Scale as well as the Relative Autonomy Index, which measures the autonomy in students' interpersonal attitudes. Thus, revising the FYE class curriculum to include approaches to lowering students' feelings of obligation and/or anxiety in their interpersonal interactions might improve their adjustment to university.

  20. Cost of Education Index, 1992-93 Biennium. Final Report of the Legislative Education Board.

    ERIC Educational Resources Information Center

    Texas State Legislature, Austin. Legislative Education Board.

    The development of Texas' new cost-of-education index (CEI) for 1992-93 is described in this report. The two components of the index are price, which adjusts for regional price variations beyond the control of local districts, and scale, which adjusts for diseconomies of scale due to differences in district size as measured by pupil attendance.…

  1. Estimation of arsenic in agricultural soils using hyperspectral vegetation indices of rice.

    PubMed

    Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Wang, Junjie; Wu, Guofeng

    2016-05-01

    This study systematically analyzed the performance of multivariate hyperspectral vegetation indices of rice (Oryza sativa L.) in estimating the arsenic content in agricultural soils. Field canopy reflectance spectra was obtained in the jointing-booting growth stage of rice. Newly developed and published multivariate vegetation indices were initially calculated to estimate soil arsenic content. The well-performing vegetation indices were then selected using successive projections algorithm (SPA), and the SPA selected vegetation indices were adopted to calibrate a multiple linear regression model for estimating soil arsenic content. Results showed that a three-band vegetation index (R716-R568)/(R552-R568) performed best in the newly developed vegetation indices in estimating soil arsenic content. The photochemical reflectance index (PRI) and red edge position (REP) performed well in the published vegetation indices. Moreover, the linear combination of two vegetation indices ((R716-R568)/(R552-R568) and REP) selected using SPA improved the estimation of soil arsenic content. These results indicated that the newly developed three-band vegetation index (R716-R568)/(R552-R568) might be recommended as an indicator for estimating soil arsenic content in the study area. PRI and REP could be used as universal vegetation indices for monitoring soil arsenic contamination. PMID:26844405

  2. Estimation of arsenic in agricultural soils using hyperspectral vegetation indices of rice.

    PubMed

    Shi, Tiezhu; Liu, Huizeng; Chen, Yiyun; Wang, Junjie; Wu, Guofeng

    2016-05-01

    This study systematically analyzed the performance of multivariate hyperspectral vegetation indices of rice (Oryza sativa L.) in estimating the arsenic content in agricultural soils. Field canopy reflectance spectra was obtained in the jointing-booting growth stage of rice. Newly developed and published multivariate vegetation indices were initially calculated to estimate soil arsenic content. The well-performing vegetation indices were then selected using successive projections algorithm (SPA), and the SPA selected vegetation indices were adopted to calibrate a multiple linear regression model for estimating soil arsenic content. Results showed that a three-band vegetation index (R716-R568)/(R552-R568) performed best in the newly developed vegetation indices in estimating soil arsenic content. The photochemical reflectance index (PRI) and red edge position (REP) performed well in the published vegetation indices. Moreover, the linear combination of two vegetation indices ((R716-R568)/(R552-R568) and REP) selected using SPA improved the estimation of soil arsenic content. These results indicated that the newly developed three-band vegetation index (R716-R568)/(R552-R568) might be recommended as an indicator for estimating soil arsenic content in the study area. PRI and REP could be used as universal vegetation indices for monitoring soil arsenic contamination.

  3. Products from vegetable oils

    SciTech Connect

    Bagby, M.O.

    1995-12-01

    Vegetable oils serve various industrial applications such as plasticizers, emulsifiers, surfactants, plastics and resins. Research and development approaches may take advantage of natural properties of the oils. More often it is advantageous to modify those properties for specific applications. One example is the preparation of ink vehicles using vegetable oils in the absence of petroleum. They are cost competitive with petroleum-based inks with similar quality factors. Vegetable oils have potential as renewable sources of fuels for the diesel engine. However, several characteristics can restrict their use. These include poor cold-engine startup, misfire and for selected fuels, high pour point and cloud point temperatures. Other characteristics include incomplete combustion causing carbon buildup, lube oil dilution and degradation, and elevated NO{sub x} emissions. Precombustion and fuel quality data are presented as a tool for understanding and solving these operational and durability problems.

  4. Reflectance of vegetation, soil, and water

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.; Gausman, H. W.; Leamer, R. W.; Richardson, A. J.; Gerbermann, A. H. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Iron deficient and normal grain sorghum plants were sufficiently different spectrally in ERTS-1 band 5 CCT data to detect chlorotic sorghum areas 2.8 acres (1.1 hectares) or larger in size in computer printouts of the MSS data. The ratio of band 5 to band 7 or band 7 minus band 5 relates to vegetation ground cover conditions and helps to select training samples representative of differing vegetation maturity or vigor classes and to estimate ground cover or green vegetation density in the absence of ground information. The four plant parameters; leaf area index, plant population, plant cover, and plant height explained 87 to 93% of the variability in band 6 digital counts and from 59 to 90% of the variation in bands 4 and 5. A ground area 2244 acres in size was classified on a pixel by pixel basis using simultaneously acquired aircraft support and ERTS-1 data. Overall recognition for vegetables, immature crops and mixed shrubs, and bare soil categories was 64.5% for aircraft and 59.6% for spacecraft data, respectively. Overall recognition results on a per field basis were 61.8% for aircraft and 62.8% for ERTS-1 data.

  5. Refractive index of air. 2. Group index.

    PubMed

    Ciddor, P E; Hill, R J

    1999-03-20

    In a previous paper [Appl. Opt. 35, 1566 (1996)] one of us presented new equations for evaluation of the phase refractive index of air over a range of wavelengths and atmospheric parameters. That paper also gave an incorrect, although sufficiently accurate, procedure for calculating the group refractive index. Here we describe the results of a more rigorous derivation of the group index that takes proper account of the Lorentz-Lorenz formula, and we demonstrate that deviations from the Lorentz-Lorenz formula are insignificant to within a foreseeable precision of dispersion measurements for atmospheric conditions. We also derive and evaluate a simplification of the resultant equation that is useful for exploratory calculations. We clarify the limits of validity of the standard equation for the group refractive index and correct some minor errors in the previous paper.

  6. Improving Keyword Indexing.

    ERIC Educational Resources Information Center

    Olsgaard, John N.; Evans, John Edward

    1981-01-01

    Examines some of the most frequently cited criticisms of keyword indexing, including (1) the absence of general subject headings, (2) limited entry points, and (3) irrelevant indexing. Six references are cited. (FM)

  7. Body mass index

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/007196.htm Body mass index To use the sharing features on this ... your height is to figure out your body mass index (BMI). You and your health care provider ...

  8. Audio Indexing for Efficiency

    ERIC Educational Resources Information Center

    Rahnlom, Harold F.; Pedrick, Lillian

    1978-01-01

    This article describes Zimdex, an audio indexing system developed to solve the problem of indexing audio materials for individual instruction in the content area of the mathematics of life insurance. (Author)

  9. Body Mass Index Table

    MedlinePlus

    ... Families ( We Can! ) Health Professional Resources Body Mass Index Table 1 for BMI greater than 35, go ... to content Twitter Facebook YouTube Google+ SEARCH | SITE INDEX | ACCESSIBILITY | PRIVACY STATEMENT | FOIA | OIG | CONTACT US National ...

  10. Assessing vegetation change temporally and spatially in southeastern Arizona

    NASA Astrophysics Data System (ADS)

    King, D. M.; Skirvin, S. M.; Holifield Collins, C. D.; Moran, M. S.; Biedenbender, S. H.; Kidwell, M. R.; Weltz, M. A.; Diaz-Gutierrez, A.

    2008-05-01

    Vegetation species cover and photographic data have been collected at multiple grass- and shrub-dominated sites in 1967, 1994, 1999, and 2005 at the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona. This study combines these measurements with meteorological and edaphic information, as well as historic repeat photography from the late 1880s onward and recent satellite imagery to assess vegetation change at WGEW. The results of classification and ordination of repeated transect data showed that WGEW had two main vegetation structural types, shrub dominated and grass dominated. Spatial distribution was closely linked to soil type and variations in annual and August precipitation. Other than the recent appearance of Eragrostis lehmanniana (Lehmann lovegrass) at limited sites in WGEW, little recruitment has taken place in either shrub or grass vegetation types. Effects of recent drought on both vegetation types were apparent in both transect data and enhanced vegetation index data derived from satellite imagery. Historic photos and a better understanding of WGEW geology and geomorphology supported the hypothesis that the shift from grass- to shrub-dominated vegetation occurred substantially before 1967, with considerable spatial variability. This work reaffirmed the value of maintaining long-term data sets for use in assessments of vegetation change.

  11. Index to Volume 110

    NASA Astrophysics Data System (ADS)

    Marriott, R. A.

    2001-02-01

    The Subject Index references items under general headings; where a contribution covers two or more clearly defined subjects, each is separately referenced, but otherwise sub-headings within the same topic are not included. Book and other reviews are indexed as such, but their subjects are not further cross-indexed. The Author Index details all named contributions, including talks at Ordinary Meetings, but not questions from the floor.

  12. Experimental comparison between speech transmission index, rapid speech transmission index, and speech intelligibility index.

    PubMed

    Larm, Petra; Hongisto, Valtteri

    2006-02-01

    During the acoustical design of, e.g., auditoria or open-plan offices, it is important to know how speech can be perceived in various parts of the room. Different objective methods have been developed to measure and predict speech intelligibility, and these have been extensively used in various spaces. In this study, two such methods were compared, the speech transmission index (STI) and the speech intelligibility index (SII). Also the simplification of the STI, the room acoustics speech transmission index (RASTI), was considered. These quantities are all based on determining an apparent speech-to-noise ratio on selected frequency bands and summing them using a specific weighting. For comparison, some data were needed on the possible differences of these methods resulting from the calculation scheme and also measuring equipment. Their prediction accuracy was also of interest. Measurements were made in a laboratory having adjustable noise level and absorption, and in a real auditorium. It was found that the measurement equipment, especially the selection of the loudspeaker, can greatly affect the accuracy of the results. The prediction accuracy of the RASTI was found acceptable, if the input values for the prediction are accurately known, even though the studied space was not ideally diffuse. PMID:16521772

  13. Experimental comparison between speech transmission index, rapid speech transmission index, and speech intelligibility index.

    PubMed

    Larm, Petra; Hongisto, Valtteri

    2006-02-01

    During the acoustical design of, e.g., auditoria or open-plan offices, it is important to know how speech can be perceived in various parts of the room. Different objective methods have been developed to measure and predict speech intelligibility, and these have been extensively used in various spaces. In this study, two such methods were compared, the speech transmission index (STI) and the speech intelligibility index (SII). Also the simplification of the STI, the room acoustics speech transmission index (RASTI), was considered. These quantities are all based on determining an apparent speech-to-noise ratio on selected frequency bands and summing them using a specific weighting. For comparison, some data were needed on the possible differences of these methods resulting from the calculation scheme and also measuring equipment. Their prediction accuracy was also of interest. Measurements were made in a laboratory having adjustable noise level and absorption, and in a real auditorium. It was found that the measurement equipment, especially the selection of the loudspeaker, can greatly affect the accuracy of the results. The prediction accuracy of the RASTI was found acceptable, if the input values for the prediction are accurately known, even though the studied space was not ideally diffuse.

  14. Water Control on Vegetation Growth Pattern in Eurasia from GRACE

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.

    2014-12-01

    High latitude ecosystem productivity is constrained by cold temperature and moisture limitations to plant growth, while these environmental restrictions may be changing with global warming. Satellite data driven assessments indicate that over the past three decades, rapid warming in the northern high latitudes has resulted in earlier and longer potential growing seasons and widespread greening, due to general relaxation of cold temperature constraints to vegetation productivity. However, warming may have also increased water stress limitations to growth. In this study, we use GRACE (Gravity Recovery and Climate Experiment) derived total water storage (TWS), 2-m air temperature (T) from ERA-interim reanalysis, normalized difference vegetation index (NDVI) data from MODIS (Collection 5) and satellite data driven vegetation gross primary productivity (GPP) estimates as surrogates for vegetation growth, for the period August 2002-December 2013 to evaluate terrestrial water supply controls to vegetation growth changes over the three major river basins of northern Eurasia. We find that during the analyzed period, the apparent growth response follows regional vegetation, moisture and temperature gradients and is spatially complex. In the drier southwest characterized by grassland, vegetation growth is mainly controlled by TWS availability. In the central region, dominated by cold temperature and water limited boreal forest, T is the main control on vegetation growth. In the Lena basin, where vegetation includes both boreal forest and water limited grassland, both T and TWS impact vegetation growth. We suggest that GRACE TWS estimates provide reliable observational constraints on water availability to vegetation that supplement sparse soil moisture observations and satellite precipitation estimates with unknown bias.

  15. Characterization of Understory Shrub Expansion in a West Virginia Watershed from 1986 - 2011 Using Landsat Derived Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Atkins, J. W.; Welsch, D. L.; Epstein, H. E.

    2015-12-01

    Mid and southern Appalachian forests have been heavily influenced by human intervention, with much of the current forest area covered by secondary or tertiary growth following significant past logging or fire. The pre-logging forests of mid Appalachia were mainly comprised of large Quercus spp. and Liriodendron tulipiferia with Pinus rubens and Tsuga canadensis at higher elevations. These species have been supplanted by more mesic species such as Betula alleghaniensis and Acer rubrum. Within these forests, Rhododendron maximum is an abundant evergreen shrub that grows in dense thickets that can alter forest community structure, affect species diversity, lower decomposition rates, and affect forest carbon and nitrogen cycling through altering soil chemistry and physics. The spatial patterns and temporal dynamics of R. maximum within these forests, especially in the mid Appalachians, is not fully conceptualized. An increase in R. maximumspatial coverage could significantly affect basic forest ecosystem processes and be of interest to researchers and forest managers. Using Landsat derived vegetation indices--including Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Tasseled Cap Transformations--we quantified the expansion of R. maximum within a topographically complex watershed in West Virginia from 1986-2011. Our array of models show an initial shrub coverage (1986) in our target watershed of between 27.7 - 36.6% and a present-day shrub coverage (2011) of between 41.2 - 42.8%--with a range from 10.2 - 15.1% increase in shrub coverage over the 25 year study window. Averaged model output suggests an increase of 38.4 ha from 1986 to 2011 and a mean NDVI increase of 0.076 for the entire watershed. Furhter spatial analysis will elucidate possible connections and patterns related to distance-from-streams and/or elevation.

  16. Automatic Versus Manual Indexing

    ERIC Educational Resources Information Center

    Vander Meulen, W. A.; Janssen, P. J. F. C.

    1977-01-01

    A comparative evaluation of results in terms of recall and precision from queries submitted to systems with automatic and manual subject indexing. Differences were attributed to query formulation. The effectiveness of automatic indexing was found equivalent to manual indexing. (Author/KP)

  17. Machine-Aided Indexing.

    ERIC Educational Resources Information Center

    Jacobs, Charles R.

    Progress is reported at the 1,000,000 word level on the development of a partial syntatic analysis technique for indexing text. A new indexing subroutine for hyphens is provided. New grammars written and programmed for Machine Aided Indexing (MAI) are discussed. (ED 069 290 is a related document) (Author)

  18. The Europe 2020 Index

    ERIC Educational Resources Information Center

    Pasimeni, Paolo

    2013-01-01

    This paper presents a new index to quantify, measure and monitor the progress towards the objectives of the Europe 2020 strategy. This index is based on a set of relevant, accepted, credible, easy to monitor and robust indicators presented by the European Commission at the time the strategy was launched. The internal analysis of the index shows…

  19. Responses of vegetation growth to climate change in china

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zhou, T.

    2015-04-01

    Global warming-related climate changes have significantly impacted the growth of terrestrial vegetation. Quantifying the spatiotemporal characteristic of the vegetation's response to climate is crucial for assessing the potential impacts of climate change on vegetation. In this study, we employed the normalized difference vegetation index (NDVI) and the standardized precipitation evapotranspiration index (SPEI) that was calculated for various time scales (1 to 12 months) from monthly records of mean temperature and precipitation totals using 511 meteorological stations in China to study the response of vegetation types to droughts. We separated the NDVI into 12 time series (one per month) and also used the SPEI of 12 droughts time scales to make the correlation. The results showed that the differences exist in various vegetation types. For needle-leaved forest, broadleaf forest and shrubland, they responded to droughts at long time scales (9 to 12 months). For grassland, meadow and cultivated vegetation, they responded to droughts at short time scales (1 to 5months). The positive correlations were mostly found in arid and sub-arid environments where soil water was a primary constraining factor for plant growth, and the negative correlations always existed in humid environments where temperature and radiation played significant roles in vegetation growth. Further spatial analysis indicated that the positive correlations were primarily found in northern China, especially in northwestern China, which is a region that always has water deficit, and the negative correlations were found in southern China, especially in southeastern China, that is a region has water surplus most of the year. The disclosed patterns of spatiotemporal responses to droughts are important for studying the impact of climate change to vegetation growth.

  20. How to predict hydrological effects of local land use change: how the vegetation parameterisation for short rotation coppices influences model results

    NASA Astrophysics Data System (ADS)

    Richter, F.; Döring, C.; Jansen, M.; Panferov, O.; Spank, U.; Bernhofer, C.

    2015-01-01

    Among the different bioenergy sources short rotation coppices (SRC) with poplar and willow trees are one of the mostly promising options in Europe. SRC not only provide woody biomass, but often additional ecosystem services. One known shortcoming is the possible negative effect on groundwater recharge, caused by potentially higher rates of evapotranspiration compared to annual crops. An assessment of land use change by means of hydrological models and taking into account the changing climate can help to minimize negative and maximize positive ecological effects at regional and local scales, e.g. to regional climate and/or to adjacent ecosystems. The present study implemented the hydrological model system WaSim for such assessment. The hydrological analysis requires the adequate description of the vegetation cover to simulate the processes like soil evaporation, interception evaporation and transpiration. The uncertainties in the vegetation parameterisations might result in implausible model results. The present study shows that leaf area index (LAI), stomatal resistance (Rsc) as well as the beginning and length of the growing season are the sensitive parameters when investigating the effects of an enhanced cultivation of SRC on water budget or on groundwater recharge. Mostly sensitive is the description of the beginning of the growing season. When this estimation is wrong, the accuracy of LAI and Rsc description plays a minor role. The analyses done here illustrate that the use of locally measured vegetation parameters like maximal LAI and meteorological variables like air temperature, to estimate the beginning of the growing season, produce better results than literature data or data from remote network stations. However the direct implementation of locally measured or literature data on e.g. stomatal resistance is not always advisable. The adjustment of locally vegetation parameterisation shows the best model evaluation. Additionally the adjusted course of LAI

  1. Relationship between tourism development and vegetated landscapes in Luya Mountain Nature Reserve, Shanxi, China.

    PubMed

    Cheng, Zhan-Hong; Zhang, Jin-Tun

    2005-09-01

    The relationship between tourism development and vegetated landscapes is analyzed for the Luya Mountain Nature Reserve (LMNR), Shanxi, China, in this study. Indices such as Sensitive Level (SL), Landscape Importance Value (LIV), information index of biodiversity (H'), Shade-tolerant Species Proportion (SSP), and Tourism Influencing Index (TII) are used to characterize vegetated landscapes, the impact of tourism, and their relationship. Their relationship is studied by Two-Way Indicator Species Analysis (TWINSPAN) and Detrended Correspondence Analysis (DCA). TWINSPAN gives correct and rapid partition to the classification, and DCA ordination shows the changing tendency of all vegetation types based on tourism development. These results reflect the ecological relationship between tourism development and vegetated landscapes. In Luya Mountain Nature Reserve, most plant communities are in good or medium condition, which shows that these vegetated landscapes can support more tourism. However, the occurrence of the bad condition shows that there is a severe contradiction between tourism development and vegetated landscapes.

  2. Can key vegetation parameters be retrieved at the large-scale using LAI satellite products and a generic modelling approach ?

    NASA Astrophysics Data System (ADS)

    Dewaele, Helene; Calvet, Jean-Christophe; Carrer, Dominique; Laanaia, Nabil

    2016-04-01

    In the context of climate change, the need to assess and predict the impact of droughts on vegetation and water resources increases. The generic approaches permitting the modelling of continental surfaces at large-scale has progressed in recent decades towards land surface models able to couple cycles of water, energy and carbon. A major source of uncertainty in these generic models is the maximum available water content of the soil (MaxAWC) usable by plants which is constrained by the rooting depth parameter and unobservable at the large-scale. In this study, vegetation products derived from the SPOT/VEGETATION satellite data available since 1999 are used to optimize the model rooting depth over rainfed croplands and permanent grasslands at 1 km x 1 km resolution. The inter-annual variability of the Leaf Area Index (LAI) is simulated over France using the Interactions between Soil, Biosphere and Atmosphere, CO2-reactive (ISBA-A-gs) generic land surface model and a two-layer force-restore (FR-2L) soil profile scheme. The leaf nitrogen concentration directly impacts the modelled value of the maximum annual LAI. In a first step this parameter is estimated for the last 15 years by using an iterative procedure that matches the maximum values of LAI modelled by ISBA-A-gs to the highest satellite-derived LAI values. The Root Mean Square Error (RMSE) is used as a cost function to be minimized. In a second step, the model rooting depth is optimized in order to reproduce the inter-annual variability resulting from the drought impact on the vegetation. The evaluation of the retrieved soil rooting depth is achieved using the French agricultural statistics of Agreste. Retrieved leaf nitrogen concentrations are compared with values from previous studies. The preliminary results show a good potential of this approach to estimate these two vegetation parameters (leaf nitrogen concentration, MaxAWC) at the large-scale over grassland areas. Besides, a marked impact of the

  3. Adjustable Induction-Heating Coil

    NASA Technical Reports Server (NTRS)

    Ellis, Rod; Bartolotta, Paul

    1990-01-01

    Improved design for induction-heating work coil facilitates optimization of heating in different metal specimens. Three segments adjusted independently to obtain desired distribution of temperature. Reduces time needed to achieve required temperature profiles.

  4. Time-adjusted variable resistor

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.

    1972-01-01

    Timing mechanism was developed effecting extremely precisioned highly resistant fixed resistor. Switches shunt all or portion of resistor; effective resistance is varied over time interval by adjusting switch closure rate.

  5. 78 FR 62712 - Rate Adjustment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... noticing a recent Postal Service filing seeking postal rate adjustments based on exigent circumstances...,'' is ``premised on the recent recession as an exigent event.'' Id. at 1, 2. In Order No. 1059,...

  6. Vegetation Cover Change in Yosemite National Park (California) Detected using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Landsat image analysis over the past 20+ years showed that consistent increases in the satellite normalized difference vegetation index (NDVI) during relatively dry years were confined to large wildfire areas that burned in the late 1980s and 1990s.

  7. Satellite-based studies on large-scale vegetation changes in China.

    PubMed

    Zhao, Xia; Zhou, Daojing; Fang, Jingyun

    2012-10-01

    Remotely-sensed vegetation indices, which indicate the density and photosynthetic capacity of vegetation, have been widely used to monitor vegetation dynamics over broad areas. In this paper, we reviewed satellite-based studies on vegetation cover changes, biomass and productivity variations, phenological dynamics, desertification, and grassland degradation in China that occurred over the past 2-3 decades. Our review shows that the satellite-derived index (Normalized Difference Vegetation Index, NDVI) during growing season and the vegetation net primary productivity in major terrestrial ecosystems (for example forests, grasslands, shrubs, and croplands) have significantly increased, while the number of fresh lakes and vegetation coverage in urban regions have experienced a substantial decline. The start of the growing season continually advanced in China's temperate regions until the 1990s, with a large spatial heterogeneity. We also found that the coverage of sparsely-vegetated areas declined, and the NDVI per unit in vegetated areas increased in arid and semi-arid regions because of increased vegetation activity in grassland and oasis areas. However, these results depend strongly not only on the periods chosen for investigation, but also on factors such as data sources, changes in detection methods, and geospatial heterogeneity. Therefore, we should be cautious when applying remote sensing techniques to monitor vegetation structures, functions, and changes.

  8. Vegetable oil as fuel

    SciTech Connect

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  9. Fermented and Acidified Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetables may be preserved by fermentation, direct acidification, or a combination of these along with pasteurization or refrigeration and selected additives to yield products with an extended shelf life and enhanced safety. Organic acids such as lactic, acetic, sorbic and benzoic acids along with ...

  10. Vegetable Soup Activities.

    ERIC Educational Resources Information Center

    Shepard, Mary; Shepard, Ray

    Vegetable Soup is a new children's television series whose purpose is to counter the negative and destructive effects of racial isolation. This manual gives detailed instructions for discussion of activities that are presented during the television series such as: crafts, games, recipes, language activities, and children's questions. A list of…

  11. Monitoring vegetation growth and morphodynamic effects after stream restoration

    NASA Astrophysics Data System (ADS)

    Vargas-Luna, Andrés; Crosato, Alessandra; Anders, Niels; Hoitink, Ton; Keesstra, Saskia; Uijttewaal, Wim

    2016-04-01

    Vegetation processes are widely recognized as a key component on the ecological and morphological development of river channels. Moreover, plants reduce flow velocities and bed-shear stresses by increasing the local hydraulic roughness and thus increasing water levels. Therefore, monitoring the vegetation development is an important activity in river management not only for protecting ecological services, but also in flood risk reduction; especially in times of a changing climate. This paper presents the analysis the effects of riparian vegetation growth on the morphology of a lowland restored stream located in The Netherlands, the Lunterse beek. An Unmanned Aerial Vehicle (UAV) was used to obtain aerial imagery at different time steps which was the basis for generating land cover maps with semi-automated image classification. In addition hydrological series and multi-temporal high-resolution bathymetric data allowed analysing river bed morphology and the relevance of seasonality. The UAV campaigns were found a crucial step to ease the vegetation mapping and monitoring. The morphological change observed in this stream, represented by the channel-width adjustment and the cross sectional evolution, is slowed down once vegetation is stablished on the stream. Results of this work show that the vegetation root system assert a strong control on soil stabilization, even during the winter season when the plants biomass is highly reduced. Seasonal variations in plant development appear important only during the first stages of establishment, when vegetation has a low density and, more importantly, a root system that is not fully developed yet.

  12. Catechin in the Mediterranean diet: vegetable, fruit or wine?

    PubMed

    Ruidavets, J; Teissedre, P; Ferrières, J; Carando, S; Bougard, G; Cabanis, J

    2000-11-01

    The aim of this study was to determine which type of diet contributes most to plasma concentration of (+)-catechin, a naturally occurring antioxidant flavonoid. Consecutive subjects (n=180) were screened. A blood sample was collected after a fasting period and (+)-catechin measurement in plasma was performed by high-performance liquid chromatography (HPLC) method using fluorescence detection. Dietary consumption of the last evening meal was assessed by a dietary recall method. Taking fruit, vegetable and wine consumption into account, four types of diet were identified. After adjustment for confounding factors, concentration of (+)-catechin in plasma was three-fold higher in diet with fruit and vegetable but without wine (449.5 microg/l), and four-fold higher in diet with wine but without vegetable and fruit (598.5 microg/l) in comparison to diet without fruit, vegetable and wine (131.6 microg/l). When the consumption of vegetable, fruit and wine was combined, the concentration was the highest (637.1 microg/l) (P<0. 001). Vegetable, fruit and wine were the major determinants of plasma (+)-catechin concentration (P<0.001). This study demonstrates that the highest plasma concentration of (+)-catechin was observed in subjects consuming fruit, vegetable and wine, and its antioxidant and antiaggregant activity could partly explain the relative protection against coronary heart disease (CHD). PMID:11058705

  13. A Novel Approach to Modeling Vegetation Distributions and Analyzing Vegetation Sensitivity Through Trait-Climate Relationships In China

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Peng, C.; Zhu, Q.; Wang, H.

    2015-12-01

    There is increasing evidence that current DGVMs have suffered insufficient realism and hard to improve, particularly because they are built on plant functional type (PFT)-climate schemes. It is urgent to develop new approaches, like plant trait-based methods (FTs), to replace of PFT schemes when predicting the distribution of vegetation and investigating the vegetation sensitivity. In this research, we proposed a novel approach to modeling vegetation distributions and analyzing the vegetation sensitivity through trait-climate relationship in China. First, we aggregated data on three key FTs, including leaf mass per area (LMA), area-based leaf nitrogen (Narea), and mass-based leaf nitrogen (Nmass), from the available literatures. In addition, one structural trait of plant communities, leaf area index (LAI), was extracted from MODIS products across China. Second, we derived and developed trait-climate relationships and used different trait combinations in a Gaussian Mixture Model (GMM) to model vegetation distribution. Finally, the GMM trained by the LMA-Nmass-LAI combination was applied to investigate the climate sensitivity of vegetation. The results demonstrated the following: (1) all four traits captured well the relationships between climate variables and traits, as well as effectively predicted vegetation distribution and helped analyzing environmental sensitivity; (2) the LMA-Nmass-LAI combination yielded an accuracy of 72.05% for simulating vegetation distribution, providing more detailed parameter information regarding community structures and ecosystem function, and was therefore selected for training GMMs; and (3) a sensitivity analysis indicated that increasing temperatures shifted the boundaries of most vegetation northward and westward. Because the forests in these regions are well adapted to growth under rainy conditions, increasing precipitation is predicted to expand the boundaries of forests compared with the baseline vegetation distribution

  14. Computations of adjusted rates and lifetime risks from occupational cohort data: a program package using FORTRAN and GLIM.

    PubMed

    Zhou, S Y; Mazumdar, S; Redmond, C K; Dong, M H; Costantino, J P

    1991-02-01

    A program package using FORTRAN and GLIM is presented to compute lifetime risks of dying from a particular cause of death for a worker subjected to specific risk exposures using death rates adjusted for selected covariates (risk factors). Calculations of the exposure index and adjusted rates depend on several commonly used procedures. Tests of homogeneity and trend for adjusted rates are provided. Lifetime risks are calculated in two different ways: adjusting or ignoring competing causes of death.

  15. Monitoring and mapping global vegetation cover using data from meteorological satellites

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.; Holben, B.; Tucker, C. J.

    1984-01-01

    The role of coarse resolution meteorological satellite data for monitoring and mapping of vegetation for global, continental and regional scales is outlined. In the NOAA products used the effects of cloud cover are reduced by the generation of temporal composites of images of the normalized difference vegetation index. Different land cover types are shown to have characteristic spectral phenological curves. Such data have the disadvantage of effectively increasing the apparent areal extent of small areas of green vegetation.

  16. Retrieving pace in vegetation growth using precipitation and soil moisture

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipita